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FOREWORD 
 
 
 
This book is a translation of Les Mathématiques infinitésimales du IXe 

au XIe siècle, vol. IV: Méthodes géométriques, transformations ponctuelles 
et philosophie des mathématiques. The French version, published in 
London in 2002, also included critical editions of all the Arabic mathemati-
cal texts that were the subjects of analysis and commentary in the volume. 

It also included: 1. Les emprunts d’Ibn Hūd aux Connus et à L’Analyse 
et la Synthèse (Ibn Hūd’s borrowings from The Knowns and On Analysis 
and Synthesis); 2. Al-Baghdādī critique d’Ibn al-Haytham (Al-Baghdādī as 
a critic of Ibn al-Haytham), with the critical edition of the Arabic text, 
French translation and mathematical commentaries. 

The whole book, apart from these two appendices, has been translated, 
with great scholarly care, by Dr J. V. Field. The translation of the primary 
texts was not simply made from the French; I checked a draft English 
version against the Arabic. This procedure converged to give an agreed 
translation. The convergence was greatly helped by Dr Field’s experience 
in the history of the mathematical sciences and in translating from primary 
sources. I should like to take this opportunity of expressing my deep grati-
tude to Dr Field for this work. 

Very special thanks are due to Aline Auger (Centre National de la 
Recherche Scientifique), who helped me check the English translations 
against the original Arabic texts, prepared the camera ready copy and 
compiled the indexes. 

 
Roshdi Rashed 
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PREFACE 
 
 
In his magisterial Aperçu historique, Michel Chasles, having given the 

titles of books and referred to the achievements of the great geometers of 
the Hellenistic period, writes:  

[…] then, for two or three centuries more, there came the writers of 
commentaries, who have passed on to us the works and the names of the 
geometers of Antiquity; then finally the centuries of ignorance, during which 
Geometry slumbered among the Arabs and the Persians until the 
Renaissance of learning in Europe.1  

In this peremptory judgement, Chasles, whose good faith cannot be 
doubted, was setting out what was known by historians in the mid nine-
teenth century rather than describing historical facts. At the time, investiga-
tions into the history of geometry in classical Islam were few and scattered, 
and it is not surprising that Chasles’ judgement became the received opin-
ion. And indeed we find it repeated tirelessly in the historical introductions 
to manuals of geometry, such as that by Robert Deltheil and Daniel Caire,2 
as well as in writings penned by historians of geometry, even sometimes up 
to the present day. Nevertheless, a little later a better, though still far from 
satisfactory, grasp of the historical facts struck the first blows against this 
general prejudice. Today, for the majority of historians of mathematics, the 
opinion for which Chasles was the spokesman has given way to a different 
one, less absolute without however being more accurate, which could be 
summarised as follows: Arab geometers, while they never reached the high 
level of the geometry of the classical Greeks, did at least have the merit of 
recognising the importance of their work and of having preserved both its 
spirit and its matter, even going so far as to add several notable details. For 
this, the names that are mentioned are those of Thābit ibn Qurra and of 
Naṣīr al-Dīn al-Ṭūsī. Although it is more nuanced, but also more eclectic, 
this way of looking at things in fact derives from the same logic: to stop at 
the threshold of questions, without indicating the criteria and setting out the 
reasoning that could have led to this modest contribution to geometry. It is 
not clear why, according to the proponents of this theory, the geometers of 
classical Islam should have thus confined themselves to the role of 

 
1 M. Chasles, Aperçu historique sur l’origine et le développement des méthodes en 

géométrie, 3rd ed., Paris, 1889, p. 23. 
2 R. Deltheil and D. Caire, Géométrie et compléments, Paris, 1989. 
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conscientious preservers of the Hellenistic geometrical heritage, while they 
were making major advances in all the other disciplines: algebra, number 
theory, trigonometry, and so on. It is inexplicable that the notable develop-
ments in these latter disciplines and in mathematised disciplines such as 
astronomy and optics should have had so little effect on work in geometry. 
It is not clear why the single exception made by the historians of mathe-
matics should be for the development of the theory of parallel lines.  

To understand how such an opinion came into being, we may point to 
historians’ ideology, the failings of historical research in this area and the 
huge size of the field of investigation, which is often examined only in part 
and in a narrowly focussed way; geometers are considered one at a time 
and their individual contributions are often divided up, which makes it 
difficult to perceive the underlying mathematical rationality, the more so 
because the development of geometry in classical Islam may appear in a 
somewhat paradoxical light.  

The geometers of classical Islam are the heirs of the Greek geometers 
and, one might say, of them alone. Geometry, from the ninth century on-
wards, is incomprehensible without a knowledge of the works of Euclid, 
Archimedes, Apollonius, Menelaus and others, which were translated into 
Arabic. But to understand the linkage between the two phases of the history 
we first need to make a critical examination of how, from the ninth century 
on, the geometers took possession of this immense heritage. 

This task is enormous; it amounts to finding the relation between Greek 
and Arabic geometrical work. We hope that the volumes of this book will 
contribute to carrying out this task, because establishing this relationship is 
not only necessary for grasping the history of geometry from the Greeks to 
at least the eighteenth century, but also we cannot manage without it if we 
wish to make a rigorous assessment of what was contributed by Arabic 
geometry. This is also the method that must be adopted if we wish to avoid 
writing in the very worst style for history, namely that of eclecticism: in 
this style, work written in Arabic is reduced to versions of Greek geometry, 
or again we discern in it the seeds of future geometry, but always in small 
pieces and in particular cases. 

To look at the wider picture, it seems to be best to look back from the 
twelfth century, when geometrical research had already been carried out in 
Arabic for three centuries. Now this picture, while very different from that 
of the third century BC, is also much larger. In the twelfth century the 
domain of geometry includes all the area of Greek geometry, but we also 
find territory that is almost virgin: algebraic geometry represented by the 
works of al-Khayyām and Sharaf al-Dīn al-Ṭūsī; Archimedean geometry 
given renewed vigour by more substantial use of arithmetical sums and the 
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employment of geometrical transformations; and it extended into domains 
hardly glanced at earlier: solid angles, lunes, and so on; the geometry of 
projections, that is to say the study of projections as a complete subject area 
within geometry, as it is presented in the works of al-Qūhī and Ibn Sahl; 
trigonometry (for example, in al-Bīrūnī); the theory of parallel lines, and so 
on. Some of these subject areas were known to Greek geometers, others 
were hardly suspected and there were others whose very existence was 
inconceivable for the Greeks. But it is difficult to draw a map of such a 
continent. One risks going astray if one proceeds author by author and 
relies on the books that are available. We need to begin with the research 
traditions: first to identify them, to make rough reconstructions of them, 
accepting that the description will need to be filled out later, and to recog-
nise variations and individual styles. Without employing this method, the 
historian cannot find the patterns of reasoning which govern research work 
in geometry. If we do not know how to formulate things, the history is 
obscured and it is impossible to recognise the lines of division that run 
through it. So we do not see epistemological analysis as an optional luxury: 
it provides our only means of identifying traditions and styles. This is the 
task we set ourselves in the volumes of this series. In the first two volumes, 
we tried to reconstruct the subject area of ‘infinitesimal geometry’, with its 
dominant type of reasoning. We shall not repeat here, in summary form, 
what we set out there in detail; we shall merely note that these mathemati-
cians combined infinitesimal arguments with projection, and infinitesimal 
arguments with point-to-point geometrical transformations. Moreover, they 
brought together geometry of position and geometry of measurement, to an 
incomparably greater extent than had been done in the past. In other works, 
we have considered Ibrāhīm ibn Sinān, al-Qūhī and Ibn Sahl, who all lived 
in the tenth century, and we have noted the same things in relation to 
projections, transformations, geometry of position and geometry of meas-
ure. In the third volume of the present series, we have proceeded in the 
same way: reconstructing the tradition that led to the opening up of a new 
area in geometry, ‘geometrical constructions by means of the conic sec-
tions’, new criteria for constructability and new means for carrying out 
constructions (notably the use of transformations).  

The introduction of the concepts of transformation and projection as 
concepts proper to geometry, and (a fortiori) the concept of motion, the use 
of motion in definitions and proofs encouraged geometers to make more 
extensive use of transformations – which is what Ibn al-Haytham later does 
in his treatise On the Properties of Circles, translated in this volume – and 
to examine methods for discovery and proof and also to give justifications 
for making use of these concepts, particularly that of motion. This again is 
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exactly what Ibn al-Haytham turns to in his treatise Analysis and Synthesis 
and in his book The Knowns, and it is what explains why he needed to 
geometrise the concept of place; which he did. 

But, to assess these works, and all the others that the reader will find 
here translated into English for the first time and the subject of commen-
taries, it was better not to isolate the works from their context and the other 
writings in the tradition to which they belong. So the reader will find here 
two texts – one by Thābit ibn Qurra, the other by al-Sijzī – to which Ibn al-
Haytham’s treatise Analysis and Synthesis is related. These two texts were 
already published, in an unsatisfactory edition, so we made critical editions 
of them, as rigorously as possible, as well as a French translation that was 
as precise as possible. Here the two works appear in English for the first 
time. In the same spirit, we have also included another text by al-Sijzī.  

Ibn al-Haytham’s On Place was the target of thunderbolts hurled by the 
Aristotelian philosopher ‘Abd al-Laṭīf al-Baghdādī, who devoted a com-
plete book to his criticisms. We gave the editio princeps and the first 
translation of this text in Les Mathématiques infinitésimales (vol. IV, 2002). 

As has been the rule in this series of volumes, Christian Houzel, 
Directeur de recherche at the Centre National de la Recherche Scientifique, 
reread the analyses and historical and mathematical commentaries that I 
wrote to accompany all these texts. 

Pascal Crozet, Chargé de recherche at the Centre National de la 
Recherche Scientifique, did the same for the analysis and commentaries on 
the texts by al-Sijzī. Badawi El-Mabsout, Professor at the University of 
Paris VI, has read our commentary on the geometry of triangles. I thank 
them all very much for their comments and criticisms, which have been of 
considerable benefit to this work.  

I am also grateful to Aline Auger, Ingénieur d’Études at the Centre 
National de la Recherche Scientifique, who has prepared this book for 
printing and compiled the indexes.  

I also thank Professors S. Demidov and M. Rozhanskaya who helped to 
arrange for me to visit St Petersburg where I was able to work on the 
manuscript of Ibn al-Haytham’s book On the Properties of Circles; Profes-
sor B. Rosenfeld who, more than forty years ago, courteously sent me 
photographs of a very significant part of this St Petersburg manuscript; the 
Nabī Khān family and Obaidur-Rahman Khān for having allowed me to 
work on the manuscript of al-Sijzī’s texts; and finally Professor Y. 
T. Langermann for having sent me a microfilm of the text by al-Baghdādī.  

 
              Roshdi RASHED 

Bourg-la-Reine, December 2001 



 
 

INTRODUCTION 
 

MOTION AND TRANSFORMATIONS IN GEOMETRY 
 
 
 
From the mid ninth century onwards, mathematicians were readier than 

before to make use of geometrical transformations. The works of al-
Farghānī, of the brothers Banū Mūsā – particularly those of the younger 
one, al-Ḥasan – and those of Thābit ibn Qurra provide the most striking 
examples. A century later, geometrical transformations have even acquired 
a group name: al-naql, as it is written by al-Sijzī.1 A careful reading of Ibn 
Sahl, al-Qūhī and al-Sijzī, for example, shows that geometers were not 
concerned solely with studying figures but also with investigating relation-
ships between them. Transformations do, of course, appear before the ninth 
century: for instance they are used by Archimedes and Apollonius.2 But in 
the ninth century they are used much more frequently and applied much 
more widely. There is a noticeable difference between the ancients and the 
moderns: among the former certain transformations arise in the course of 
proofs – as can be seen in Archimedes – whereas among the latter a new 
point of view emerges: transformations are used directly in geometrical 
investigations. We have had several occasions to draw attention to the 
emergence of this new attitude, this changed perception of geometrical 
objects. We have also presented it as one of the consequences of research 
in geometry becoming more active from the ninth century onwards – but 

 
1 See Appendix, Text 2. 
2 We may, indeed, note that in On Conoids and Spheroids Archimedes makes use 

of an orthogonal affinity; but this book was not known to Arabic mathematicians. On 
Archimedes’ use of this technique, see Founding Figures and Commentators in Arabic 
Mathematics, A History of Arabic Sciences and Mathematics, vol. 1, Culture and 
Civilization in the Middle East, London, 2012, pp. 347–9. As for Apollonius, it is 
possible that he made use of some transformations in On Plane Loci. All that we know 
about this book comes from Pappus, and we are not sure what method Apollonius may 
have used. All the same, later commentators, such as Fermat, recognised, when they 
were ‘reconstructing’ it, that the text employed some transformations, including 
inversion (see R. Rashed, ‘Fermat and Algebraic Geometry’, Historia Scientiarum, 
11.1, 2001, pp. 24–47). Ninth- and tenth-century mathematicians certainly did not have 
copies of this book by Apollonius. Perhaps they had indirect knowledge of the 
statements of some of its theorems. 
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not an element in causing the revival. Let us now look at the areas covered 
by the revival. 

The first field in which this new orientation of geometry became 
apparent rapidly acquired the name ‘the science of projection (‘ilm al-
tasṭīḥ)’. This part of geometry separated off from astronomy when it 
became necessary to establish a firm basis for providing an exact represen-
tation of the sphere in order to construct astrolabes. We need to recall two 
significant historical facts. In the mid ninth century, questions regarding 
projection were already matters of discussion, or of controversy, in which 
contributions were made by, among others, mathematicians such as the 
Banū Mūsā, al-Kindī, al-Marwarrūdhī (astronomer to Caliph al-Ma’mūn) 
and al-Farghānī.3 Moreover, insufficient emphasis has been given to the 
fact that these questions concerning projection were raised and debated by 
mathematicians who knew the then-recent translation of Apollonius’ 
Conics. This intersection of research on projections with the geometry of 
conic sections can be seen clearly in al-Farghānī’s book The Perfect (al-
Kāmil). Al-Farghānī devotes a complete chapter of his book to the ge-
ometry of projections, a chapter called ‘Introduction to the geometrical 
propositions by which the figure used for the astrolabe is demonstrated’. In 
this chapter he presents the first truly geometrical study of conical 
projections.4 From al-Farghānī to al-Bīrūnī in the eleventh century, notably 
through the work of al-Qūhī and Ibn Sahl,5 we see an increase in the scope 
and vigour of this geometrical work. We have, in short, the opening up of a 

 
3 See Géométrie et dioptrique au Xe siècle. Ibn Sahl, al-Qūhī et Ibn al-Haytham 

Paris, 1993, pp. CIII–CIV; English trans. Geometry and Dioptrics in Classical Islam, 
London, 2005, p. 337. 

4 In fact, in this chapter, the author undertakes a purely geometrical study of 
conical projections. Al-Farghānī first proves a lemma: the conical projection with pole 
P onto the tangent to a circle at the point diametrically opposite of a chord is a segment 
of the tangent such that the endpoints of the chord and of the segment lie on a circle that 
is invariant in the inversion with the same pole P that transforms the given circle into 
the tangent. In the two propositions that follow, al-Farghānī establishes that the pro-
jection of a sphere with pole at the point P of the sphere, onto the plane tangent to the 
sphere at the point diametrically opposite or onto a plane parallel to that plane, is a 
stereographic projection. See al-Kāmil, ms. Kastamonu 794, fols 90–94; and R. Rashed, 
‘Les mathématiques de la terre’, in G. Marchetti, O. Rignani and V. Sorge (eds), Ratio 
et superstitio, Essays in Honor of Graziella Federici Vescovini, Textes et études du 
Moyen Âge, 24, Louvain-la-Neuve, 2003, pp. 285–318. 

5 In these authors we find a purely geometrical investigation of conical projections 
from an arbitrary point, as well as cylindrical projections. See Géométrie et dioptrique 
au Xe siècle, pp. CVII–CXXV, the treatise by al-Qūhī, pp. 190–230 and the commentary 
by Ibn Sahl, pp. 65–82. See also R. Rashed, ‘Ibn Sahl et al-Qūhī: Les projections. 
Addenda & corrigenda’, Arabic Sciences and Philosophy, vol. 10.1, 2000, pp. 79–100. 
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new field of geometry, an area in which Ptolemy’s Planisphaerium is, at 
best, a distant ancestor. And in this new field important contributions are 
made by the geometrical research on sundials carried out by many 
mathematicians, among them Thābit ibn Qurra and his grandson, Ibn 
Sinān. 

The second area in which we see the development of the use of 
transformations also became more active in the mid ninth century, as a 
result of another encounter, again between the Conics – or the tradition 
stemming from Apollonius – and the Archimedean tradition; that is 
between a geometry of position and forms and a geometry of measurement. 
Al-Ḥasan ibn Mūsā and his brothers, as well as their pupil Thābit ibn 
Qurra, make use of transformations from the start, either in the statements 
of certain propositions, or in the course of the proof. The Banū Mūsā 
applied a homothety in their Book for Finding the Area of Plane and Sphe-
rical Figures,6 thereby departing from the method used by Archimedes, 
and they used an orthogonal affinity in their text On the Cylinder and on 
Plane Sections, transmitted by Ibn al-Samḥ.7 Thābit ibn Qurra employed a 
cylindrical projection, an orthogonal affinity, and a homothety, as well as a 
combination of these last two transformations, in his Book on the Sections 
of the Cylinder and on its Curved Surface.8 In the following century, 

 
6 See Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I, pp. 36–7; 

English trans. Founding Figures and Commentators, pp. 42–3. 
7 In his treatise, whose content has been transmitted to us by Ibn al-Samḥ, al-Ḥasan 

ibn Mūsā defines an orthogonal affinity in relation to the minor axis and an orthogonal 
affinity in relation to the major axis, and obtains the ellipse as the image of the circle 
(Propositions 6, 7, 8). From the property of the orthogonal affinity, al-Ḥasan ibn Mūsā 
shows that for any n > N, the ratio, Pn/P'n, of the areas of the two homologous inscribed 
polygons, one inscribed in the ellipse of area S and the other in the ellipse of areas S', is 
equal to the ratio k of the affinity. In other terms the ratio of the areas is preserved when 
it tends to the limit (Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I, 
p. 885; English trans. Founding Figures and Commentators, p. 615). It almost goes 
without saying that the style is novel and that thereafter it was considered important to 
give definitions of certain transformations, to investigate their properties and to make 
use of them in the course of the proofs. This treatise a had a considerable effect on its 
successors, beginning with the Banū Mūsā’s own pupil, Thābit ibn Qurra.  

8 In fact, following the example of his teachers, al-Ḥasan and Muḥammad – two of 
the Banū Mūsā brothers – Thābit ibn Qurra considerably develops the use of transfor-
mations. Thus, in his important treatise On the Sections of the Cylinder and its Lateral 
Surface, he makes extensive use of transformation: orthogonal affinities, homotheties 
and cylindrical projections. Furthermore, he works by combining transformations – 
affinity and homothety. We should emphasise that Thābit ibn Qurra does not content 
himself with merely using these transformations, but also makes a point of establishing 
certain of their properties. For example, Proposition 10 of this book consists of 
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Ibrāhīm ibn Sinān makes considerably increased use of geometrical 
transformations in order to reduce the number of lemmas in his text on The 
Measurement of the Parabola.9 

Finally, we see increasingly frequent use of geometrical transforma-
tions in a third field: geometrical constructions that employ conic sections, 
as well as constructions for generating conics. For example, this was the 
procedure adopted in many studies of the regular heptagon, in which we 
often find an appeal to a similarity.10 We see the same thing in treatises on 
the generation of conics, such as the one in which Ibn Sinān uses an 

                                         
establishing that cylindrical projection of a circle onto a plane that is not parallel to the 
plane of the circle is a circle or an ellipse. To prove this proposition, Thābit ibn Qurra 
combines projections (see Les Mathématiques infinitésimales du IXe au XIe siècle, vol. 
I, p. 458; English trans. Founding Figures and Commentators, p. 333). It is again Thābit 
ibn Qurra who explicitly introduces motion in his attempt to prove Euclid’s fifth 
postulate. See B. A. Rosenfeld, A History of Non-Euclidean Geometry. Evolution of the 
Concept of a Geometric Space, Studies in the History of Mathematics and Physical 
Sciences, 12, New York, 1988, pp. 49–56 and C. Houzel, ‘Histoire de la théorie des 
parallèles’, in R. Rashed (ed.), Mathématiques et philosophie de l’antiquité à l’âge 
classique: Hommage à Jules Vuillemin, Paris, 1991, pp. 163–79. 

9 Ibrāhīm ibn Sinān follows the example of his grandfather and continues to 
increase the use of transformations. Thus, he has made masterful use of an equi-affinity 
(a bijective affinity) in his treatise on The Measurement of the Parabola (see Les 
Mathématiques infinitésimales du IXe au XIe siècle, vol. I, p. 675; English trans. 
Founding Figures and Commentators, p. 459). Ibn Sinān shows that this transformation 
preserves the ratio of areas for triangles and for polygons. Then he shows that the same 
holds for areas with curved boundaries. He also shows that this affinity transforms an 
arc of a parabola into an arc of a parabola. In another, equally important treatise he 
makes use of affinities and projections in order to draw the parabola and an ellipse. To 
draw a hyperbola, he introduces a projective transformation – one that is no longer 
affine or linear – designed to transform the circle into a hyperbola whose latus rectum is 
equal to the transverse diameter; see Fī rasm al-quṭū‘ al-thalātha (On the Drawing of 
the Three Sections), in R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān: Logique et 
géométrie au Xe siècle, Leiden, 2000, pp. 245–62. Geometrical transformations are also 
frequently used in his other works, such as his book On Sundials or his Anthology of 
Problems (ibid., Chapters IV and V).  

10 Mathematicians started by constructing a triangle of one of the types (1, 2, 4), 
(1, 5, 1), (1, 3, 3) or (2, 3, 2) and then transformed it to inscribe it in a circle. See Les 
Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-Haytham. Théorie 
des coniques, constructions géométriques et géométrie pratique, London, 2000, Chapter 
III; English translation: Ibn al-Haytham’s Theory of Conics, Geometrical Constructions 
and Practical Geometry. A History of Arabic Sciences and Mathematics, vol. 3, Culture 
and Civilization in the Middle East, London, 2013. 
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orthogonal affinity and an oblique affinity.11 Abū al-Wafā’ follows his 
example in making a wider use of transformations.12  

So, after a century, that is in the mid tenth century, transformations 
were being used more often and in different fields of geometry. And in 
fact, as we shall see, from this time onwards we find transformations being 
used in Anthologies of Problems, such as those of Ibn Sinān13 and al-Sijzī,14 

 
11 See note 9. 
12 O. Neugebauer and R. Rashed, ‘Sur une construction du miroir parabolique par 

Abū al-Wafā’ al-Būzjānī’, Arabic Sciences and Philosophy, 9.2, 1999, pp. 261–77. 
13 See R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān: Logique et géométrie au Xe 

siècle. 
14  Like his contemporaries, al-Sijzī often makes use of transformations; see 

Appendix (p. 529, n. 15), as well as his treatise Fī taḥṣīl al-qawānīn al-handasiyya al-
maḥdūda (On Obtaining Determinate Geometrical Theorems), ms. Istanbul, Reshit 
1191, fols 70r–72v. In Proposition 3, we notice the use of an inversion, though without 
its being identified as such by al-Sijzī. He shows that if from a point A of a circle, we 
draw a chord AB, the tangent AC and the straight line AD such that DÂB = CÂB, then 
the straight line AD is the inverse of the circle in the inversion (B, BA2). We have  

BA2 = BH · BE = BD · BG. 

Now BĜA  = BÂC (angle enclosed between the chord BA and the tangent AC).  
But BÂC = BÂD, so BĜA  = BÂD; 

the triangles BGA and BAD are similar, 
hence BA

BD
=
BG

BA
, so  

BA2 = BG · BD. 
Similarly, 

BA2 = BH · BE. 

B

H

G

D

C

EA

 
In Proposition 12, he shows that if 

in a given circle we consider a chord 
CD with mid point E, AB the diameter 
through E and two secants through C, 
we have  

BA · BE = BG · BI = BC2  
              = BK · BH = BM · BL. 

A

B

CD
E

H L

I

K

M

G

 
Here we can see that the proposition does indeed deal with the transformation of 

the circle into a straight line. 
This result also corresponds to the inversion (B, BC2) in which the image of the 

circle is the straight line DC.  
This proposition appears again in the Anthology of Problems (fol. 45r-v). Al-Sijzī’s 

proof can be summarised as follows: HD̂B+CK̂B  = 2 right angles and DĈB  and LĈB  
= 2 right angles; but BD̂C  = DĈB , so CK̂B  = LĈB ; so the two triangles HCB and 
KCB are similar, CB

BH
=
BK

CB
 so BK · BH = CB2. 
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as well as in several others of their writings, or in various works by al-Qūhī 
– for example, his Two Geometrical Problems (Mas’alatayn handasiy-
yatayn).15 Thus, the use of conical and cylindrical projections, of affinities, 
of homothety, of translation, of similarity, and sometimes of inversion, was 
standard practice in the second half of the tenth century. Ibn al-Haytham 
was to continually extend this practice into further areas of geometry. 

One of the major consequences of this new ‘transformationist’ 
approach was a de facto involvement of motion in statements and proofs of 
geometrical theorems. This is not a matter of kinematic motion, but of 
geometrical motion, that is, no account is taken of the time in which the 
motion takes place. This involvement of motion was confirmed by works 
that appeared in another area – because it was needed there – the area 
centred on attempts to prove Euclid’s fifth postulate. Here again it was 
Thābit ibn Qurra who took the decisive step.16 Ibn al-Haytham was to 
follow his example, but the basis of his work was more kinematic.17  

The result was that, at the end of the tenth century, two types of 
questions were unavoidable. The first type amounted to demanding a justi-
fication for geometrical transformations in themselves, starting by trying to 
find what characterised them. Arguments were required to legitimate the 
use of transformations, arguments deriving explicitly from geometrical 
fundamentals. The questions of the second type related directly to the intro-
duction of the idea of motion: asking how it can be admitted in definitions 
and in proofs, when it has itself never been defined. These two types of 
questions are obviously closely connected, and in their turn are given addi-
tional force by a third: if, henceforth, we are to concern ourselves with the 
relationships between figures and no longer only study the figures them-
selves, we need to determine the ‘place’ for these relationships. So it 
becomes impossible to leave the question of ‘place’ undecided and to 

                                         
In the same way, we can show that the triangles LCB and MCB are similar, hence  

BL · BM = CB2. 

The equation BA · BE = BC2 expresses a property of the right-angled triangle ACE. 
Because triangles ICB and GCB are similar we have BG · BI = BC

2
.  

In Proposition 5 of the same treatise On Obtaining Theorems, al-Sijzī makes use of 
a homothety; the proposition concerns two circles that touch one another externally. In 
the Anthology of Problems (fols 58v–59r), al-Sijzī again employs a homothety, as he 
also does in other propositions (for example, on fol. 49v).  

15 See commentary on Proposition 3 of the first part of The Knowns, pp. 310–12. 
16 See B. A. Rosenfeld, A History of Non-Euclidean Geometry, pp. 50 ff. and 

C. Houzel, ‘Histoire de la théorie des parallèles’. 
17 See B. A. Rosenfeld, A History of Non-Euclidean Geometry, pp. 59 ff. and 

C. Houzel, ‘Histoire de la théorie des parallèles’. 
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accept the Aristotelian notion of ‘place’ as envelope. These ideas are 
fundamental to classical geometry, and from the end of the tenth century, 
specifically with the work of Ibn al-Haytham, the questions become 
significant sources for reflection and invention. Let us look at the question 
of motion. 

It is a fact that any consideration of motion was banned de jure in 
discussing the elements of geometry. This was the view of Platonic geome-
ters, an opinion dictated by the theory of Ideas; it was also the view of 
Aristotelian geometers, because they saw mathematical entities as abstrac-
tions from physical objects. The true reason for this attitude may well be, 
rather, that there was little need for a concept of motion in a geometry that 
was essentially concerned with studying figures. But even when the need is 
felt, though as yet only slightly, it is not uncommon to avoid the use of 
motion de jure while nevertheless introducing it surreptitiously or 
involuntarily. This is, indeed, what Euclid did in the Elements. He avoids 
motion, but allows it, in disguised form, when he uses superposition. 
Superposition cannot actually take place without displacement, even if the 
displacement is only as seen by the mind’s eye. And it is well known that, 
when Euclid defines the sphere, he opens up the possibility of motion, 
though as it were against his inclination. Outlawing motion nevertheless 
remained the watchword for a long time thereafter. We may, for instance, 
note al-Khayyām’s criticism of Ibn al-Haytham’s use of motion in his 
attempt to prove the fifth postulate.18 

 
18  Fī sharḥ mā ashkala min muṣādarāt Kitāb Uqlīdis (Commentary on the 

Difficulties of Some of Euclid’s Postulates), in R. Rashed and B. Vahabzadeh, Al-
Khayyām mathématicien, Paris, 1999; English translation: Omar Khayyam. The 
Mathematician, Persian Heritage Series no. 40, New York, 2000. In this important text 
he writes: ‘But this is a statement which has no relation whatsoever to geometry for 
several reasons. Notably, how can the line be moved on the two lines while remaining 
perpendicular? And how can one demonstrate that this is possible? And notably, what is 
the relation between geometry and motion? And what is the meaning of motion?’ 
(p. 310; English translation, p. 219). 

Al-Khayyām launches a counterattack against those who defend motion in 
geometry by referring to Euclid’s definition of the sphere in Elements, XI. He writes: 
‘The true and obvious definition of the sphere is known, namely, that it is a solid figure 
which is contained by a single surface, inside of which is a point such that all the 
straight lines drawn from it to the containing surface are equal. And Euclid deflected 
from this definition towards what he said by a lack of discernment and by negligence; 
for he is indeed very negligent in these Books in which he mentions the solids, relying 
on the student’s skill when he would reach them. But if this definition had a meaning, 
one would have defined the circle by saying, That the circle is a plane figure generated 
by the rotation of a straight line in a plane surface, in such a manner that one of its two 
extremities remains fixed in its place while the other gets ultimately to the starting point 
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It is another matter to make use of motion de facto, without worrying 
about the legitimacy of introducing it. By not mentioning the question of 
legitimacy, one avoids contradicting earlier opinion – hence the success of 
this, so to say, practical or even pragmatic use of motion – in transforma-
tions by ancient geometers and by those of the tenth to eleventh centuries. 
In any case, this usage is what prevailed among geometers who worked on 
transcendental or algebraic curves in Antiquity; and later in Archimedes’ 
work On Conoids and Spheroids, as in his Spirals; in Apollonius in his 
Conics, and so on. Such use of motion became even more common in the 
course of the ninth and tenth centuries. 

It is a different matter, again, to introduce motion as one of the funda-
mental notions in geometry. That is to take a positive attitude to motion and 
its place in definitions and proofs. But to take such a step requires a 
reformulation of geometrical ideas, or at least of a certain number of them, 
to re-express them in terms of motion, and also to put new effort into 
refining the notion of geometrical ‘place’. Now, to make such a modifi-
cation we of course require new assumptions, new modes of thought and a 
new method, in short a new mathematical discipline. Ibn al-Haytham is, as 
far as I know, the first to have attempted to carry out this reformulation, 
introducing the concept of a discipline of ‘knowns’, by devising an ars 
analytica and redefining the notion of ‘geometrical place’. After that we 
have to wait until the second half of the seventeenth century, with the 
analysis situs of Leibniz, before we find anything similar. 

Ibn al-Haytham’s geometrical writings can easily be divided into 
several coherent groups. We have already distinguished some of these: 
works on infinitesimal geometry; studies of conics, and studies of geome-
trical constructions carried out with the help of conics; as well as a group of 
writings that give a theoretical treatment of practical problems in 
geometry.19 These groupings of works are not the only ones, and others 
must also be distinguished. We may note that the firm coherence within 
each of these groups of writings derives from a substantial tradition of 
research that Ibn al-Haytham wanted to bring to completion, that is to take 
it as far as the underlying logical possibilities allowed: to pursue research 
work jointly in Archimedean geometry and in the geometry of Apollonius; 
to establish more and more connections between a metrical geometry and a 

                                         
of the motion. However, as people have deflected from that kind of definition because 
of the existence of motion, and have taken into consideration what should not enter into 
the art as a principle, we must follow their tracks and be consistent with the demons-
trative rules and the universal laws mentioned in the works on logic’ (ibid., pp. 310–12; 
English translation, pp. 219–20). 

19 See Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III, Chap. IV. 
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geometry of position and forms. From the Banū Mūsā to al-Qūhī, Ibn al-
Haytham’s predecessor, there had been many contributions to this new 
tradition that is a distinguishing characteristic of Arabic work in geometry. 
This movement towards a unification of geometry, which Ibn al-Haytham 
saw himself as carrying forward, obviously could not progress without 
modifications to inherited ideas and methods, or without giving rise to new 
types of problem. One of these relates to the idea of motion, in its various 
forms, and to the legitimacy of the use of motion in geometry. We have 
noted that, from the time of the Banū Mūsā in the ninth century onwards, 
the idea of motion was present and was employed either in its own right, as 
in the work of Thābit ibn Qurra on the fifth postulate, or was used in the 
form of a geometrical transformation. In the work of Ibn al-Haytham, the 
part played by motion has become so large, and motion is used so repeated-
ly, that it was no longer possible to simply accept it de facto without asking 
questions about its legitimacy. Ibn al-Haytham devoted a substantial group 
of writings to such questions. 

The first text is his Commentary on the Postulates in the Book of 
Euclid.20 This Commentary is not only valuable for what it tells us about 
Euclid, it also sheds light on Ibn al-Haytham’s intentions by providing us 
with information about his novel project. This is no less than to establish 
the principles of geometry, with a view to their including transformations 
and motion – which means, first of all, providing a justification of Euclid, 
whose purpose is to free the ideas in the Elements from the doubts that 
were attached to them. So the Commentary is not at all an ‘Against Euclid’, 
but rather a ‘Meta-Euclid’. To justify the ideas of the Elements is to look 
for the ideas that form the basis of the work on the level of epistemology 
and of ontology. Indeed one would expect no less, given the part the 
Elements play in geometry, not only in the time of Ibn al-Haytham but even 
as late as the eighteenth century. 

So in this Commentary Ibn al-Haytham is consciously undertaking a 
task of providing mathematical explanations. Such an undertaking required 
him to re-examine the definitions, the postulates and many of the propo-
sitions, so as to provide answers to several closely interlinked questions, 
none of which had been formulated either by Euclid or by his ancient 
successors. Only ‘moderns’ had glanced at some of them, and that only in 
passing. The kinds of question that arise are: What means do we have to 
establish that a geometrical notion is what it is? Why is it as it is? How do 
we recognise that it exists? We may note that in these questions ‘how’ 
takes precedence over ‘why’, which allows us to enquire about methods, 

 
20 Ibn al-Haytham, Sharḥ muṣādarāt Kitāb Uqlīdis, ms. Istanbul, Feyzullah 1359, 

fols 150r–237v. 
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and that all three questions direct us, whether we will or no, into a difficult 
process of raising questions about fundamentals. So Ibn al-Haytham the 
mathematician, necessarily committed to his discipline, that of mathemat-
ical research and its development, must double as a philosopher if he wants 
to succeed in his metamathematical task. 

In his Commentary, Ibn al-Haytham proceeds in an orderly manner. He 
begins by setting out the different definitions for each geometrical concept, 
and takes up the one given by Euclid, which he tries to justify in the 
following way: he gives a definition of the same concept in which motion 
is explicitly involved, proves that this is the most appropriate definition, 
and with the help of this definition goes on to interpret and justify Euclid’s 
definition by going beyond it. On examining his procedure more closely, 
we may note that the idea of motion enters into Euclid’s concept, most 
notably by providing a new basis for its existence. Motion in fact appears at 
the heart of a theory of abstraction that has been fundamentally remodelled 
because of a belief in the independent existence of forms, as the best means 
of replying to the questions described above, notably to the question 
concerning existence. Let us briefly examine this point. 

We have had occasion to remark upon a demand that seemed to 
become more and more pressing in the second half of the tenth century, and 
became a necessity in the work of Ibn al-Haytham: to provide a proof of 
existence even if one can employ a construction. Thus, when Ibn al-
Haytham uses intersections of conic sections to solve solid problems, he 
takes care to prove the existence of the point of intersection.21 Moreover, it 
was not long before he generalised this demand by extending it to defini-
tions. It thus became inevitable to return to geometrical objects themselves, 
in order to make sure of their existence. This return to geometrical entities 
themselves necessarily led to questions about their nature: this time what 
was required was a philosophical account.  

The theory that mathemata are the result of abstraction, which no one 
questioned at the time, not even Ibn al-Haytham, can indeed account for 
them as concepts, but it is certainly not capable of establishing their 
existence. According to this theory a mathematical object – a triangle, a 
circle, an angle and so on – is an entity in the mind conceived as separate 

 
21 R. Rashed, ‘L’analyse et la synthèse selon Ibn al-Haytham’, in Mathématiques et 

philosophie de l’Antiquité à l’âge classique. Études en hommage à Jules Vuillemin, 
éditées par R. Rashed, Paris, 1991, pp. 131–62. See also Les Mathématiques infinitési-
males du IXe au XIe siècle, vol. III; English translation: Ibn al-Haytham’s Theory of 
Conics, Geometrical Constructions and Practical Geometry. 
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from matter.22 A straight line, like a circle, does not exist in the perceptible 
world – natural or artificial – even though in order to conceive of it we 
need to start by ‘separating’ it from the edges of perceptible surfaces. As 
Ibn al-Haytham notes, we can even provide a perceptible model of it by 
means of a very fine thread, pulled taut. But this model merely helps the 
‘imagination’ to conceive of the straight line, without in any way establi-
shing that it exists. So the question is how to recognise existence, and to 
answer it we have to modify the theory of abstraction. That is what Ibn al-
Haytham sets out to do. 

In the Commentary as in another slightly later text – the Book for 
Resolving Doubts in the Book of Euclid – Ibn al-Haytham develops a 
theory that we may summarise as follows: if the act of ‘separating’ mathe-
mata from the perceptible is necessary for conceiving them, it cannot of 
itself alone cause them to be grasped as ideal objects, that is as ‘invariable 
intellectual forms’, as Ibn al-Haytham expresses it, nor can this act 
establish that the mathemata exist. In other words, abstraction allows us to 
conceive the straight line as a particular line, the boundary conceived from 
a whole class of surfaces of perceptible bodies, but not as ‘a line that is 
placed in the same way for all its points’,23 as is laid down in Euclid’s 
definition, with all the disputes it has aroused over translations and 
interpretations.24 Next, Ibn al-Haytham invokes the performance of another 
act, the act of ‘imagination’. He himself never says what he meant by this 
term (which at best is equivocal), a term philosophers had been using since 
the mid ninth century in a multiplicity of senses. Putting together the 
various uses Ibn al-Haytham makes of this term, one may deduce the 
following definition: this is an act by which thought, working on the traces 
left by natural or artificial objects in the sensus communis, within itself 
isolates from them invariable intellectual forms. So, when given this slant 
by Ibn al-Haytham, the term ‘imagination (takhayyul)’ seems to be peculiar 
to thought, as a kind of intellectual vision that works on the traces 
perceptible objects leave in the sensus communis. With this act, mathemata 
are thereafter assured of an existence in thought, and imagination itself 
takes on double dimensions: those of knowledge and those of existence. 

 
22 This is the theory widely known at the time, accepted by the majority of 

commentators on Aristotle. See I. Mueller, ‘Aristotle’s Doctrine of Abstraction in the 
Commentators’, in R. Sorabji (ed.), Aristotle Transformed: the Ancient Commentators 
and their Influence, London, 1990, pp. 463–84. 

23 Fī ḥall shukūk Kitāb Uqlīdis, ms. Istanbul, University 800, fol. 4r. 
24 See for example, M. Federspiel, ‘Sur la définition euclidienne de la droite’, in 

R. Rashed (ed.), Mathématiques et philosophie de l’Antiquité à l’âge classique, 
pp. 115–30. 
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Ibn al-Haytham, moreover, lays heavy emphasis upon the ontological 
dimension when he writes:  

Certainly, things that exist are divided into two classes: those that exist by 
sensation and those that exist by imagination and judgement. A thing that 
truly exists is one that does so by imagination and judgement. A thing that 
exists by sensation is not a thing that truly exists, for two reasons. The first is 
that the senses often err; and if the senses err, then the person who perceives 
does not perceive his error, and if the senses err and the person who 
perceives does not perceive his error, then one cannot be certain of the 
existence of the truth of what exists by sensation. A thing that exists of 
which one cannot be certain does not truly exist. That is one of the two 
reasons. The second reason is that perceptible things are entities subject to 
corruption, continually changing and not stable; and if they have not got a 
stable truth, they do not truly exist. In any case, nothing among perceptible 
things exists, in the strict sense. A thing that exists by the imagination is a 
thing that exists in the strict sense, because the form grasped in the 
imagination is imagined according to its true nature and does not change or 
vary except by the variation of the person who imagines it.25 

This could not be clearer: ideal mathematical entities, distinct and 
invariable intellectual forms, exist independently of the subject who appre-
hends them, even if that person apprehends them in a particular way. In Ibn 
al-Haytham’s eyes, this somewhat Platonic theory, of limited scope (it is 
true) and with some difficulties, justifies the existence of mathematical 
forms. A justification is required, but this one is too sweeping to satisfy a 
working mathematician. So it needs to be supplemented by other causative 
mechanisms that can demonstrate how these forms are produced in the 
‘imagination’. Only then can the existence of the forms in thought acquire 
an operational dimension that allows the forms to be discussed as causative 
agents. 

As a preliminary to the task he is engaged upon, Ibn al-Haytham consi-
ders motion in geometry. In this respect he is part of a tradition. About a 
century earlier, Thābit ibn Qurra had, in fact, firmly and explicitly introdu-
ced motion into his writing on the fifth postulate. Thābit is in particular 
concerned with displacement, which is required if one wishes to discuss 
superposition. Accordingly he defines the disc as resulting from rotating a 
segment of a straight line, one of whose two endpoints is fixed.26 Thābit 
brings in motion not only in his definitions but also in his proposed proof 

 
25 Fī ḥall shukūk Kitāb Uqlīdis, ms. Istanbul, University 800, fols 10v–11r. 
26 Thābit ibn Qurra, Fī anna al-khaṭṭayn idhā ukhrijā ‘alā aqall min zāwiyatayn 

qā’imatayn iltaqayā, ms. Paris, BN 2457, fol. 157r. 
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of the fifth postulate. To this we should add his use of transformations, to 
which we have already referred. 

As we have said, in his Commentary Ibn al-Haytham follows each of 
Euclid’s definitions with another definition involving motion. Thus, after 
Euclid’s definition of the straight line, he writes:  

The most specific and the most perfect among the definitions of the straight 
line is: if we fix two points and cause it to turn, its position does not change; 
because by that definition of the straight line we rid ourselves of any doubt 
that could occur in it.27 

Now it is precisely by this rotatory motion about an axis or about itself 
– infitāl – that the straight line is distinguished from all other lines that, for 
their part, change position if they undergo this type of rotation. As Ibn al-
Haytham sees it, this definition by motion underpins and justifies Euclid’s 
definition, and this rotatory motion is the means available to the 
‘imagination’ to assure itself that the straight line exists in thought, and to 
recognise it for what it is. So this definition, later called ‘genetic’, is ‘the 
most specific and the most perfect’, insofar as it gives knowledge of the 
straight line, not by one or other of its properties, but by its efficient cause. 
The same procedure is followed for all the other definitions – angle, circle 
and so on. For example, the circle is defined as the figure generated by the 
rotation of a straight line about one fixed endpoint, with the second 
endpoint moving. This rotation also ensures that this object of thought, the 
circle, exists since it is the efficient cause. 

Once Ibn al-Haytham has introduced motion in the definitions, he 
continues the process by introducing it into the postulates, to justify them 
or, as he hopes, to prove the fifth one. In this last case, he draws inspiration 
from Ibn Qurra but, unlike him, chooses a kinematic conception of 
motion.28 He proceeds in the same way in many of the propositions. 

In the Commentary, as in the Book for Resolving Doubts in the Book of 
Euclid, Ibn al-Haytham introduces motion – rotation, displacement and so 
on – as a fundamental notion in geometry, with the intention of providing 
justification for Euclid’s choice of concepts, to give them a new basis for 
their existence (that is a new mathematical ontology), so as, in the end, to 
free them from the doubts and ambiguities that might affect them. In other 
words, he is writing a commentary on the Elements. We shall return to this 
commentary later. However, introducing motion into geometry imposes 
two further, complementary, tasks. On the one hand we need to carry out 
new mathematical research on geometrical transformations and, on the 

 
27 Sharḥ muṣādarāt Kitāb Uqlīdis, ms. Istanbul, Feyzullah 1359, fol. 155v. 
28 Ibid., see in particular fol. 162v. 
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other hand, we need to find ways to think systematically through geometry 
as a whole starting from the concept of motion. This project, conceived and 
set in train by Ibn al-Haytham, was taken up in the seventeenth century by 
several mathematicians such as Fermat, La Hire and Leibniz. However, we 
have to wait two more centuries before the project is fully realised, that is 
with the introduction of the idea of a group into geometry in the course of 
the last third of the nineteenth century. 

To accomplish the first of these tasks, Ibn al-Haytham wrote several 
studies of transformations; see, among them his book On the Properties of 
Circles, in which he investigates affine properties and homothety. It seems 
to have been in the same spirit that he composed his book On the 
Properties of Conic Sections. To make it possible to think systematically 
about motion in geometry, Ibn al-Haytham invents a new geometrical 
discipline: The Knowns, and proposes an Ars analytica of them in another 
book, Analysis and Synthesis, that he himself presents as exemplifying the 
method employed in this discipline. Here again, Ibn al-Haytham is in fact 
following in a tradition, one started by Thābit ibn Qurra in his text On the 
Means of Arriving at Determining the Construction of Geometrical 
Problems, a tradition that was taken up by Ibn Sinān in his book The 
Method of Analysis and of Synthesis in Geometrical Problems, and then 
followed by al-Sijzī in an attempt to devise an ars inveniendi.  

But motion and transformations are obviously not compatible with a 
conception of ‘place’ as the limit of the surrounding body. Another, more 
abstract representation is necessary in order to take account of the fact that 
a body can change form while retaining the same quantity of volume. We 
need the concept of place as homogeneous, unaffected by the forms an 
object can take, and, moreover, a concept that lends itself to mathematical 
treatment. That is precisely what Ibn al-Haytham is trying to provide in his 
text on place, and, as far as I know, for the first time. 

So, apart from the two books concerned with Euclid’s Elements, this 
fifth volume, dealing with transformations and geometrical methods as well 
as the philosophy of mathematics – not that of the philosophers but that of 
the mathematicians – includes all of Ibn al-Haytham’s writings on the 
philosophy of mathematics that have come down to us. Thus, we have: 

1. The Properties of Circles 
2. The Knowns 
3. Analysis and Synthesis 
4. A Geometrical Problem 
5. The Properties of the Triangle 
6. On Place. 
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In the original French edition of the present volume, Les Mathéma-
tiques infinitésimales, vol. IV, we gave the editio princeps of these writings 
as well as the first translation of them and the first historical and mathe-
matical commentary on them. Here, we present the first translation into 
English. Notes and references have been brought up to date. 

But, to place Ibn al-Haytham’s writings in their context, we also 
include the writings of Thābit ibn Qurra and of al-Sijzī that were mentioned 
above. 
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CHAPTER I 
 

THE PROPERTIES OF THE CIRCLE 
 
 
 

INTRODUCTION 

The long list of mathematical works written by Ibn al-Haytham 
includes several that are still missing. Among these are three that, in the 
mathematics of infinitesimals, speak for themselves: The Greatest Line that 
can be Drawn in a Segment of a Circle, a Treatise on Centres of Gravity 
and a Treatise on the Qarasṭūn. These treatises are all concerned with the 
geometry of measure. Their absence not only deprives historians of 
mathematics of facts that would have helped them to appreciate more 
clearly the range of Ibn al-Haytham’s œuvre, but also, more seriously, it 
makes it absolutely impossible for them to understand the structures of this 
œuvre and the network of meanings that they carry. If the first of the trea-
tises cited above had been at our disposal, we should have a better 
understanding of the distance the author of a treatise on problems of figures 
with equal perimeters, on figures with equal areas and on the solid angle, 
travelled along the road of what was later to be called the calculus of 
variations.  

This state of affairs is not peculiar to the geometry of measure; it is 
found also in the other type of geometry developed by Ibn al-Haytham and 
his predecessors: the geometry of position and forms. Among the books 
that until very recently were still missing we have one with the title On the 
Properties of Circles. A book with such a title is of course intriguing and 
surprising.1 We ask ourselves what Ibn al-Haytham might deal with in a 
book whose title appears so strikingly modern. His predecessors, his 
contemporaries and Ibn al-Haytham himself wrote books and papers on one 
or another aspect of a geometrical figure, for example triangles, but rarely 
on all its properties taken together as a whole. Furthermore, Ibn al-
Haytham had written more than once on the circle, on finding its perimeter 
and finding its area. We may ask what reasons he might have had to return 
to the subject of the circle.  

 
1 Another book by Ibn al-Haytham on conic sections, unfortunately missing, has an 

analogous title: Fī khawāṣṣ al-quṭū‘ (On the Properties of Conic Sections). 
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These were the kinds of questions that could have been asked, until I 
was able to produce a copy of the treatise, and establish a text of it, though 
a rather damaged one. Ibn al-Haytham’s short introduction could not fail to 
sharpen the reader’s curiosity and raise questions. The author indeed pro-
poses to investigate the properties of the circle, or at least a certain number 
of them, since ‘the properties of circles are numerous, and their number is 
almost infinite’ (p. 87). He promises not to include in this treatise 
properties that have already been discovered. There is even a request to the 
reader that if, in the course of his reading, he happens to come upon a result 
that is already obtained elsewhere, he will see this as no more than a 
coincidence produced without the author’s knowledge. Thus, Ibn al-
Haytham explicitly lays claim to novelty and originality.  

Thus, the question becomes: where does Ibn al-Haytham see this 
novelty? A mathematician of his standing, of his universally inventive 
genius, could not describe as new a result that was secondary or partial: 
only an idea he considered fundamental could be called ‘new’. This last 
statement is not a petitio principi on our part, but the conclusion of a suffi-
ciently long analysis of similar situations in the mathematical and optical 
works of Ibn al-Haytham. If it does sometimes happen that Ibn al-Haytham 
makes a mistake when proving a result, he always has a sharp eye in rela-
tion to the value of his programme of research.  

And we shall in fact show that in this book Ibn al-Haytham did not 
confine himself to dealing with metrical properties of the circle, but also 
considered affine properties. It is as if he had intended to carry out a 
systematic exploration of the properties of the circle, and to classify them; 
which then has led him to investigate harmonic division and above all to 
devote about a third of the book to affine properties – similar ranges and, in 
particular, homothety. As far as I know, this is the first treatise in which 
this last form of geometrical transformation is studied in its own right.  

The book sheds light on an important characteristic of Ibn al-
Haytham’s research in geometry: his interest in geometrical transforma-
tions. As we have already pointed out, it is precisely this research that Ibn 
al-Haytham is pursuing in his book The Knowns. Four propositions from 
the treatise On the Properties of Circles reappear in The Knowns, and it is 
in any case very likely that the latter treatise was composed after the former 
one. The Knowns is closely connected2 with another of Ibn al-Haytham’s 
treatises, On Analysis and Synthesis, and his interest in transformations 
must have encouraged him to return to the concept of place – which is what 
Ibn al-Haytham worked on in a short paper that has survived – so it seems 

 
2 See below, p. 231. 
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that On the Properties of Circles belongs to a substantial and homogeneous 
group of treatises.  

The above statements are concerned with facts, titles and names, and 
are thus verifiable. It seems they might shed light on the novelty to which 
Ibn al-Haytham lays claim. But perhaps we should be wary of distorting 
the account of his thought by using the term homothety when he himself 
does not use such a word in his writings. We might be committing the 
cardinal sin of anachronism. The case would be further aggravated if we 
take into account that the term is not yet in use even at the end of the 
eighteenth century – it is indeed not to be found either in the Encyclopédie 
of d’Alembert and Diderot, or in the writings of mathematicians of the 
time – for example those of Euler and Clairaut. It is not until we come to 
Michel Chasles that the word ‘homothety (homothétie)’ appears, employed 
to designate a similarity of both form and position.3 All the same, it would 
hardly be reasonable to deny that mathematicians working earlier than the 
1830s had any knowledge of homothety. In fact, in the history of mathe-
matical concepts, such exclusive attitudes are often adopted at the cost of 
rather harsh simplifications; and, one might say, here as elsewhere, it does 
not greatly matter if we are taxed with anachronism, whatever judgment 
one wishes to convey by the term. On the other hand, it seems as important 
as it is difficult to discern what degree of rational awareness Ibn al-
Haytham might have had of this concept, in work that followed on from 
that of Euclid, Pappus, the Banū Mūsā, Ibn Qurra, Ibn Sinān, al-Būzjānī, 
al-Qūhī, al-Sijzī and others, and preceded the work of Fermat and many 
later mathematicians. So the best approach is to examine the final group of 
propositions in his book, which deal with this concept, before setting about 
making comparisons with the works of his predecessors. 

 
 

1. The concept of homothety 

As we have already noted, in his book On the Properties of Circles, Ibn 
al-Haytham considers similar divisions, homothetic triangles and harmonic 
divisions and pencils, before again addressing homothety in his last ten 
propositions. A consecutive commentary on all the propositions, and in 
particular on the last ten, will be given below. Here we merely wish to 
point out the salient characteristics of this research on homothety, so as to 

 
3 M. Chasles, Aperçu historique sur l’origine et le développement des méthodes en 

géométrie, Paris, 1889, p. 597, note. This is his memoir on the two general principles of 
geometry: duality and homography. 
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get a better grasp of the idea Ibn al-Haytham may have had of this transfor-
mation.  

So let us begin with Proposition 32. Ibn al-Haytham has two circles 
that touch one another – internally or externally (in the latter case equal or 
unequal circles) – and he intends to prove that certain elements are the 
transformed versions of others. In precise terms, let AC and CE be the two 
diameters from the point of contact C, and let CBD be a secant; we have 

 
(1) the arcs BC and DC are similar,  
(2) the arcs AB and DE are similar, 
(3) CB

CD
=
CA

CE
. 

 

      
 Fig. 1.1.1    Fig. 1.1.2 

 
The reasoning emphasises that AB and ED are parallel, and the results 

in the statement follow immediately.  
Ibn al-Haytham thus proves that to every secant straight line passing 

through C there correspond points B, D such that relation (3) holds. Now 
this ratio corresponds to the homothety with centre C and ratio k = ± RH

RG
 

(where RH  et RG  are the radii of the two circles).  
What we should note here is that Ibn al-Haytham’s procedure does not 

simply involve using homothetic triangles. He starts with two tangent cir-
cles, both given, and is seeking to prove that one is the transform of the 
other in a homothety, in order to deduce from this some correspondences 
between arcs. This procedure is different from that of his predecessor, al-
Sijzī, who seems to make no deductions about the circles and the arcs.4 But 
it is also obviously different from the approach that starts from a single fig-
ure and finds another as its transform. In this last case, the homothety can 
be used heuristically, which is not so in the previous case. 

 
4 See p. 5, n. 14. 
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The novelty of Ibn al-Haytham’s procedure consists, at least partly, in 
his identifying the elements of the homothety, its centre and its ratio. Thus, 
in Proposition 35, he again starts with two circles, but they are unequal and 
tangent externally. He draws the common exterior tangent and forms two 
homothetic triangles. He then characterises the position of the point of 
intersection of that tangent and the line of centres by means of a ratio. This 
gives the centre and the ratio of the homothety. He then deduces that the 
homologous radii are parallel and the homologous arcs are similar. Ibn al-
Haytham does not stop there: once he has defined these concepts, he 
applies them to the other cases of the figure, taking as his starting point the 
point that divides the line segment joining the centres in the ratio of the 
radii, externally or internally; a point and a ratio that are none other than 
the centre and the ratio of one or other of the two homotheties in which one 
of the circles appears as the transform of the other. 

Let us briefly return to Ibn al-Haytham’s method of proceeding; we run 
the risk of repeating ourselves, but our purpose is to understand his 
approach better. In Proposition 35, as later in Propositions 39 and 40, he 
continues to start with two circles C1 and C2, tangent externally or separate 
and unequal, as in Proposition 39. Let us consider – Proposition 35 – EE' as 
a common tangent to the two circles; it cuts the line of centres HI in a point 
K beyond H. Ibn al-Haytham’s first concern is to determine the property of 
the point K. 

 
Fig. 1.2 

 
From the property of the tangent EE', he deduces that EH || E'I, from 

which he deduces that the two triangles KEH and KE'I are homothetic; 
hence 

 
(1) KI

KH
=
RI
RH

. 

 

IHK

E

M
N
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Ibn al-Haytham then proves that any secant passing through K to cut 
C2 in M and N and that cuts C1 in M' and N', the points homologous to 
them, defines similar arcs MN and M'N'. His reasoning proceeds as follows: 

for a point K, centre of the positive homothety h K,
RI
RH

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ , the following two 

properties are equivalent. 
1) K is the point of intersection of the line of centres with the external 

common tangent; 
2) K lies on the straight line HI such that KI

KH
=
RI
RH

. 

Ibn al-Haytham’s reasoning is the same in Propositions 39 and 40, 
where the circles are separate; the point K on the extended part of HI is 
defined by (1). In Proposition 39, Ibn al-Haytham proves that if KE is a 
tangent to C2, then it is a tangent to C1; that is E' ∈ C1 and KE' is a tangent 
to C1 at E'. Here, as in the following proposition, he proves that to any 
element of C2 (a point, an arc, a radius, a tangent, an angle and so on) there 
corresponds a homologous element of C1.  

We may note that Ibn al-Haytham deals only with circles that touch 
one another, externally or internally, and separate circles, but never circles 
that intersect. This might have been a restriction designed to make the 

procedure easy. But it is not. The study of the homothety h K, +
RI
RH

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  carried 

out in Propositions 35 and 39 would apply in an identical manner in the 
case where the circles cut one another; this application could not pass 
unnoticed by the mathematician. 

Ibn al-Haytham also considers cases in which, in today’s language, the 
homothety is negative. That is exactly what happens in Propositions 36 and 
37. Here too he starts with two circles C1 and C2, one separate from the 
other, equal or unequal, and a point K on the segment IH such that 

 
KI

KH
= −

RI
RH

; 

 
he proves that if KE touches C2 at E, then it touches C1 at E' such that 
h(E) = E'. He proves that any secant passing through K cuts off two similar 
arcs on C2 and C1. In short, the two homotheties of ratio ± RI

RH
 are studied 

for circles that touch externally and for circles that are separate from each 
other. As for circles that touch internally, in Proposition 32 Ibn al-Haytham 
studies the positive homothety. He returns to this study for circles touching 
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internally in Proposition 43, but does not refer to the negative homothety 
for these last cases. 

More generally, in all the research work incorporated into On the 
Properties of Circles, Ibn al-Haytham is much concerned with the 
properties of common tangents and proves that such tangents pass though 
one of the centres of homothety; he also emphasises the fact that 
homologous radii are parallel, the fact that angles at the centre are equal 
and repeatedly refers to homologous angles, whose homologous arcs he 
deduces are similar. That is, he emphasises the properties of the homothety, 
which itself now becomes the object of study. He was no doubt able to 
deduce from this that the two chords of the arcs were parallel and to find 
the ratio between them, one chord being that joining two arbitrary points on 
one of the circles, the other chord being that joining the homologous points 
of the second circle. Noticing that such chords were parallel would have 
simplified the investigation of the fact that certain straight lines are at right 
angles to one another, which plays a part in Propositions 35, 38, 41 and 42. 

 
 

2. Euclid, Pappus and Ibn al-Haytham: on homothety 

Ibn al-Haytham’s contribution to formulating the concept of a 
homothety is not confined to what can be found in his book On the 
Properties of Circles. But, before examining the corrections and 
generalisation he later introduced, we should take a brief look at the work 
of Euclid and of Pappus, to try to find possible relationships with the 
concepts they employ. Such investigation is required because it has been 
suggested that the same concept is indeed to be found in the work of these 
mathematicians. For Euclid, the reference is to Propositions 2, 5 and 6 of 
the sixth book of the Elements. These propositions consider two straight 
lines cut by two parallel straight lines.  

 
Fig. 1.3 
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In Proposition VI.2 we have  
 

O ′ A 

OA
=

O ′ B 

OB
,  

 
and in Propositions VI.5 and VI.6 we have  

 
O ′ A 

OA
=

O ′ B 

OB
=

′ A ′ B 

AB
. 

 
 Similar triangles such as OAB and OA'B' are what we call homothetic 

triangles. All the same, it is clear that Proposition VI.2 – which, moreover, 
serves as a basis for other propositions – is a special case of what is known 
as Thales’ theorem for two parallel straight lines. So we cannot identify 
this case with the one that appeals to homothetic triangles, with the centre 
and the ratio of a homothety, as in Propositions 11 and 26 of the treatise by 
Ibn al-Haytham. And it is precisely when we have the idea of the latter that 
we recognise the former; it is once we have an idea of that transformation, 
or at least of the correspondence between the two figures, that we identify 
Euclid’s results as an application of the transformation, but surely not 
conversely. Moreover, a knowledge of the property of homothetic triangles 
allowed Ibn al-Haytham to deduce the property of similar divisions on 
parallel straight lines, which are indeed called homothetic divisions. This is 
to say that the new property is fertile, and it is the property Ibn al-Haytham 
uses in Propositions 4 and 6. In short, Euclid’s work does not anticipate 
homothety, but rather is included in homothety. 

One might ask whether the situation is different in regard to Pappus’ 
Mathematical Collection. It has been said this is so, at least for Proposi-
tions 102, 106 and 118 of the seventh book.  

In the first two of these propositions, Pappus reasons in the same way. 
So it is enough to take Proposition 102. This is how the proposition is 
presented in the wording employed by the Alexandrian mathematician:  

Let there be two circles ΑΒΓ, ΔΕΒ touching one another at the point Β; 
let us draw through the point Β straight lines ΓΒΔ, ΑΒΕ, and let us 
draw the straight lines that join ΑΓ, ΔΕ; I say that the straight lines ΑΓ, 
ΔΕ are parallel.5 

 
5 Pappus d’Alexandrie, La Collection mathématique, French trans. P. Ver Eecke, 

Paris/Bruges, 1933, p. 638. 
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Fig. 1.4 

 
To prove this proposition, Pappus begins from Elements III.32; if HBZ 

is the common tangent at the point B, he obtains 
 

AB̂Z = AΓ̂B  and HB̂E = BΔ̂E ; 
 

but AB̂Z = HB̂E , so AΓ̂B = BΔ̂E , hence ΑΓ || ΔΕ. 
 
We have seen that Ibn al-Haytham established a proposition close to 

this one – but not identical with it – employing a different approach. Unlike 
Pappus, he immediately turns his attention to the homothetic triangles BAL 
and BEK. Better still, he determines the centre and the ratio of homothety.  

Proposition 118 of Book VII is the one most often cited in connection 
with the question of homothety. The statement is: 

Let there be two circles ΑΒ, ΓΔ; let us extend the straight line ΑΔ and let us 
make it such that the straight line ΕΗ is to the straight line ΗΖ as the radius 
of the circle ΑΒ is to the radius of the circle ΓΔ; I say that, if a straight line 
drawn from the point Η, to cut the circle ΓΔ, is extended, it also cuts the 
circle ΑΒ.6 

It has already been pointed out that the statement is not perfectly 
precise.7 Pappus in fact begins his proof by saying:  

[…] let us draw from the point Η the straight line ΗΘ tangent to the circle 
ΓΔ; let us draw the straight line joining ΖΘ, and let us draw the straight line 

 
6 Pappus, La Collection mathématique, p. 657. 
7 Ibid., p. 657, note 3 by Ver Eecke. 
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ΕΚ parallel <to the straight line ΖΘ>. Then, since the straight line ΕΚ is to 
the straight line ΖΘ as the straight line ΕΗ is to the straight line ΗΖ, the line 
passing through the points Η, Θ, Κ is straight.8  

Let us return to the proposition and try to make the most of Pappus’ 
text. 

What we are given is two circles (E, RE) and (Z, RZ) and a point Η on 
the straight line EZ such that HE

HZ
=
RE
RZ

. 

 
a) If ΗΘ is a tangent to (Z, RZ), it is a tangent to (E, RE). To prove this 

statement, Pappus draws ΕΚ || ΖΘ, where Κ lies on the circle (E, RE). So 
we have EK

ZΘ
=
HE

HZ
; it follows that Η, Θ, K are collinear, and that the angle 

K is a right angle. 
 
b) A secant drawn to the circle (Z, RZ) cuts it between Δ and Θ; if we 

extend it, it passes between B and K; now HK is a tangent to (E, RE), so the 
secant also cuts the circle (E, RE). 

 
Fig. 1.5 

 
So we see that Pappus starts with two parallel radii, and from the 

equality of two ratios, given as equal by hypothesis, and that he draws his 
conclusion without appealing to the homothetic triangles. In contrast, in a 
closely similar case (see Propositions 39 and 40) Ibn al-Haytham draws 
attention to these triangles and uses the property of the homothety.  

 
 

 
8 Pappus, La Collection mathématique, pp. 657–8. 
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3. Ibn al-Haytham and homothety as a point by point transformation 

All in all, it is very difficult to read Pappus’ texts as an application of 
homothety. So it seems Ibn al-Haytham might have been the first to have 
used homothety, before then going on to study it in its own right. This too 
turns out to be far from the truth. If we confine our attention simply to Ibn 
al-Haytham’s predecessors from the ninth century onwards, notably those 
who worked on geometrical transformations, we find they did indeed 
genuinely make use of homothety in their writings on infinitesimal 
mathematics as well as in those on geometrical analysis. For example, in 
the ninth century the Banū Mūsā made use of homothety in their study of 
concentric circles and regular polygons.9 Similarly, Thābit ibn Qurra used 
homothety for concentric circles and ellipses in his work on plane sections 
of the cylinder.10 Similarly, others in the tenth century, such as Ibn Sinān, 
al-Qūhī and al-Sijzī,11 in considering problems of geometrical analysis, 
used homothety before Ibn al-Haytham did. In this respect, we can again 
cite al-Qūhī and al-Sijzī, to look no further. Here, as elsewhere, Ibn al-
Haytham’s work appears as the final stage in a tradition of research that is 
already a century and a half old. So, at least in historical terms, it is 
understandable why Ibn al-Haytham included this transformation and its 

 
9 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: 

Fondateurs et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-
Qūhī, Ibn al-Samḥ, Ibn Hūd, London, 1996, Chapter I, p. 37; English translation: 
Founding Figures and Commentators in Arabic Mathematics, A History of Arabic 
Sciences and Mathematics, vol. 1, Culture and Civilization in the Middle East, London, 
2012, p. 43.  

10 Ibid., for example Chapter II, pp. 475–6; English trans. p. 352. 
11 We have mentioned several times that Ibn Sinān frequently employs geometrical 

transformations, both in his works on infinitesimal mathematics and in his research on 
conics. Among these numerous transformations, we also find homothety. See R. Rashed 
and H. Bellosta, Ibrāhīm ibn Sinān: Logique et géométrie au Xe siècle, Leiden, 2000, 
for example pp. 486–7, 551–2, 719–20. Ibn Sinān makes use of homothety, but without 
really investigating its properties as Ibn al-Haytham was to do. Ibn Sinān’s successor al-
Qūhī, who took research on projections much further than his predecessors, also 
concerned himself with transformations and with homothety. Thus, in the first three 
propositions of his paper called Two Geometrical Problems, he gives the result stated 
and proved by Ibn al-Haytham in Proposition 3 of The Knowns (al-Mas’alatayn al-
handasiyyatayn, ms. Istanbul, Aya Sofya 4832, fols 123v–124v; see the note on 
Proposition 3, p. 310). Al-Qūhī’s younger contemporary, Aḥmad ibn ‘Abd al-Jalīl al-
Sijzī, in turn continues the use of transformations. Better still, he isolates the concept of 
transformation in its own right as an auxiliary method in analysis and in synthesis (see 
Appendix, Text 2). In various places he employs homothety, similarity, and even a 
primitive form of inversion (for homothety, see below, Proposition 32, note 22).  
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applications in his treatise On the Properties of Circles. In this book, we 
see homothety being put to use as a technique for studying the corres-
pondences between two figures; but it is much more significant that we are 
also witnessing the first known investigation into certain properties of the 
transformation: under homothety an arc becomes an arc, a radius becomes 
a radius, an angle between two straight lines becomes an angle between the 
two homologous straight lines; for two arcs related by homothety the tan-
gents at homologous points are parallel, and so on. 

This, it seems, is where the novelty of Ibn al-Haytham’s work is to be 
found. It would, however, be a mistake to ignore a limitation that is 
intrinsic to his conception that as yet – in this book on The Properties of 
Circles – prevents him from seeing homothety as a true point by point 
transformation. We have already noted that Ibn al-Haytham starts with two 
circles in order to prove that one is the transform of the other. Moreover, 
there is no proposition in his book in which he starts with the centre of 
homothety, the ratio of the homothety and a circle in order to then find 
another circle as the image of the first one. But if we do not look beyond 
this limitation, we are forgetting the place this book by Ibn al-Haytham 
occupies among his other works, and underestimating the intrinsic dynam-
ics of on-going research in mathematics. Ibn al-Haytham’s treatise, as we 
now know, forms part of a group of writings in which he concerns himself 
with the geometry of transformations. Composing these works seems to be 
a necessary response to needs arising from various changes that affected 
the internal relationships between mathematical disciplines, and from the 
new outlook in some disciplines. We may note here, without elaborating 
further, that there was an increasingly close interpenetration between an 
Archimedean tradition of geometry and a tradition of the geometry of 
position and form. We may also take note that there was an awareness of 
algebra, direct or indirect but always huge. Even Ibn al-Haytham, a geome-
ter par excellence, wrote on algebra.12 It is as these researches unfold that 
geometrical transformations appear more and more as being a new field of 
geometry; and it is at the end of this development that Ibn al-Haytham 
writes this group of books, to which his treatise The Knowns also belongs. 

To attempt to illustrate this conceptual relationship, simply in regard to 
homothety, we shall return to a work by Ibn al-Haytham in which this 
affine transformation plays a part, not only in plane geometry but also in 

 
12 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-Haytham, 

London, 1993, Tableau récapitulatif, no. 90, p. 532; English trans. Ibn al-Haytham and 
Analytical Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture 
and Civilization in the Middle East, London, 2012, List of Ibn al-Haytham’s works, 
p. 420. 
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geometry in three dimensions; we shall then conclude with his study of this 
transformation in The Knowns. 

In his work on figures with equal perimeters and equal surfaces 
(isoperimetric and isepiphanic figures), in which he presents the first 
account of a solid angle, Ibn al-Haytham employs homothety to obtain a 
sphere from another sphere. This is not the place to return to Ibn al-
Haytham’s proof, of which we have already given an analysis.13 Here we 
shall confine ourselves to looking at some elements relating to the way 
homothety works. 

Ibn al-Haytham starts from a sphere with centre A, and in this sphere 
two pyramids with vertex A, whose bases are similar regular polygons. We 
can take the planes of these polygons to be parallel; in this case the centres 
of their circumcircles, B and E, lie on a straight line through A. In these 
circles we can also take the radii corresponding to the vertices of the 
polygons as parallel two by two; this we have BC || EG and BD || EH. In 
this case triangles CBD and GEH are similar. So if BF ⊥ CD and 
EM ⊥ GH, we have 

BF

EM
=
BC

EG
. 

 
Fig. 1.6 

 
Ibn al-Haytham proves that the point K, the point of intersection of FM 

and AE, is the centre of the homothety with ratio KB
KE

. This homothety is 

 
13 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II, pp. 374–6 and 

vol. III; English trans. Ibn al-Haytham and Analytical Mathematics, pp. 289–95. The 
proof is long and complicated: five large pages. The figure has seventeen distinct points, 
eighteen solids, eight curves and thirty-five different straight lines. 
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then used throughout the proposition. He proves that this homothety 
transforms B, C, D into E, G, H respectively; that the planes (BCD) and 
(EGH) are homologous, as are the chords CD and GH. He then proves that 
the two angles CAD and GOH are equal if O is the transform of A. These 
angles are angles at the centre in two different spheres (A, AC) and (O, 
OG); so the planes (CAD) and (GOH) cut these spheres in similar arcs CLD 
and GUH. To show this, he proves that the two spheres and the two planes 
are homologous in this same homothety, h K ,

KB

KE
⎛ 
⎝ 

⎞ 
⎠ . 

In fact, Ibn al-Haytham starts from the sphere (A, AC) using the 
previous homothety, and obtains the sphere (O, OG), then he proves that 
the plane (ACD) is homologous to the plane (OGH) and that the arc CLD is 
homologous to the arc GUH.  

Thanks to widening its application to include plane figures as well as 
three-dimensional ones and its explicit use as a geometrical transformation, 
the status of homothety as a point by point transformation seems to be 
unambiguous. This is precisely what is confirmed by the study that Ibn al-
Haytham carries out in The Knowns. 

           
      Fig. 1.7.1        Fig. 1.7.2 

 
The book followed naturally from this new research in geometry, and 

to some extent serves to complete it. In this book, Ibn al-Haytham studies 
the variability of elements of the figures and their transformations. It is 
lines that provide the basis for the theoretical treatment he puts forward in 
his work. In this connection, he returns to homothety in at least seven 
propositions in the first chapter of the book, as well as in the second 
chapter. So let us consider a single example, the first one, to illustrate his 
ideas. In Proposition 3 of the first chapter, he starts with a circle C (E, R), 
an arbitrary point C distinct from E, and a point A on the circumference of 
the circle. With the point A he associates a point D on the extended part of 
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CA and such that CA
AD

= k ; he then proves that D lies on another known 

circle. Thus, he proves that D is the image of A in the homothety 
� �, H +1

H

⎛
⎝
⎜

⎞
⎠
⎟.  That is to say that D lies on the circle with centre G = h(E), 

CG =
k +1

k
CE , and radius R1 =

k +1

k
R . 

It is hardly necessary to repeat that here, as in the preceding example, 
homothety appears as a point by point transformation. Indeed Ibn al-
Haytham seems to want to confirm this idea, by proving what is more or 
less the converse in the following proposition – the fourth: if a straight line 
from the centre of the homothety, C, cuts the first circle in a point A, it will 
cut the second circle in D, and we shall have CA

AD
= k . 

This is, moreover, the form in which the concept of a homothety 
appears after Ibn al-Haytham, for example in the work of Fermat. In the 
first proposition of his book The Reconstruction of the Two Books on Plane 
Loci by Apollonius of Perga (Apollonii Pergaei libri duo de locis planis 
restituti), Fermat proves that the homothetic image of a straight line is a 
parallel straight line and that the homothetic image of a circle is a circle.14  

The history of the concept of a homothety from Euclid to Ibn al-
Haytham and then to Fermat cannot be written as that of the prefiguration 
of a concept; it is rather the history of a double transition, a matter of 
gradual progression on the technical level, but somewhat abrupt on the 
theoretical one: from a correspondence between figures to the transfor-
mation of a figure, from technical use in the course of a proof to the study 
of the properties of the transformation. But, if we want to understand this 
double development, we must widen our scope beyond the narrow frame of 
the history of a concept. While not allowing ourselves to be led astray by 
the romantic notion of a complete history, we need, in this case, to situate 
homothety within the geometry of transformations, of which certain traces 
can be seen in the work of Archimedes and Apollonius, before it becomes a 
defined area of geometry from the mid ninth century onwards, and 
develops further in far distant climes in the seventeenth century. We need 
to remember that for Ibn al-Haytham homothety appears at the same time 
as other affine and projective transformations; and that later, in the book by 
Fermat that we have just cited, homothety is connected with similarity – 

 
 
14 Œuvres de Fermat, publiées par les soins de MM. Paul Tannery et Charles 

Henry, Paris, 1896, vol. III, pp. 3–5. 
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notably with inversion. To the educated eye, the character of this 
intellectual landscape is not at all Hellenistic. 

To this conclusion we may add another: although establishing the 
textual tradition was a necessary condition for tracing the evolution of the 
concept of homothety in Ibn al-Haytham’s works in the eleventh century, it 
is nevertheless the conceptual relationship that provided answers to the 
questions that arose in investigating the history of the text: it is highly 
likely that the text On the Properties of Circles preceded The Knowns. 

 
 

4. History of the text 

Ibn al-Haytham’s treatise On the Properties of Circles (Fī khawāṣṣ al-
dawā’ir) appears in the list of his writings established by Ibn Abī 
Uṣaybi‘a.15 This important treatise was thought to be lost until the recent 
discovery of the manuscript in the V.I. Lenin Library in Kuibychev. Along 
with some writings by al-Bīrūnī, by Kamāl al-Dīn al-Fārisī, by al-Khafrī 
and by al-Kāshī, this manuscript includes several treatises by Ibn al-
Haytham, one of them being the one that interests us here. This valuable 
collection has been transferred to St Petersburg and is now in the National 
Library with pressmark no. 600, Arabic new series. 

The whole collection was copied on thin and transparent paper, slightly 
grey in colour. Because of the transparency of the paper, it often happens 
that the words of the text on the verso of the page show through on the 
recto, and vice versa, which sometimes makes reading awkward. Damp, 
decay of part of the folios and a tear in the lower left corner of a certain 
number of folios – notably in the text On the Properties of Circles – make 
reading very difficult, sometimes impossible. 

The collection is not written in a single hand; we can in fact recognise 
at least two. Nevertheless the numerous treatises by Ibn al-Haytham are all 
in a single hand, the script is nasta‘līq, not very neat, the same script as in 
the copy of the treatise by the astronomer al-Khafrī, Zubdat al-mabsūṭāt, in 
the month of Rajab 1066, that is in May 1656. So the treatises by Ibn al-
Haytham were copied at about this date, probably in some part of the 
Iranian world.  

The text itself has been transcribed in black ink and the geometrical 
figures drawn in red ink. It has neither glosses nor additions in its margins 
and there seems to be nothing to indicate it has been compared with its 
original after the transcription was complete. Each folio measures 
42.5 ×  28 cm. We also observe that there are several series of numbering 

 
15 See vol. II, p. 522. 
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for the folios – evidence that the collection has been put together from 
several parts that have later been regrouped. In fact, in addition to the traces 
of a former numbering system, there are several others. Thus, the collection 
begins with a text by al-Kāshī in which we can recognise this old 
numbering, in Arabic numerals at the top of the page, a system which 
continues. A recent numbering in Indian numerals, at the bottom of the 
page, continues up to folio 493v. When we examined the manuscript, we 
were able to make the following list, adopting the recent numbering: 

 
1v–10v: al-Kāshī, al-Risāla al-kamāliyya 
11r: blank page 
11v–31v: Muḥammad ibn Aḥmad al-Khafrī, Zubdat al-mabsūṭāt 
32r: blank page 
32v–270v: al-Fārisī, Tanqīḥ al-manāẓir 
271r: title page 
271r–301v: al-Fārisī, Zayl tanqīḥ al-manāẓir 
301v–307v: al-Fārisī, Taḥrīr maqāla fī ṣūrat al-kusūf 
308r–309v: Fihrist muṣannafāt Ibn al-Haytham 
309v–310v: Ibn al-Haytham, Fī ḥall shakk fī al-shakl 4 min al-maqāla 

12 li-Uqlīdis 
310v–311r: Ibn al-Haytham, Fī qismat al-miqdarayn al-mukhtalifayn 
311v: blank page 
312r–326v: Ibn al-Haytham, Fī ḍaw’ al-qamar 
326v–339v: Ibn al-Haytham, Fī aḍwā’ al-kawākib 
339v–334v: Ibn al-Haytham, Fī kayfiyyat al-aẓlāl  
335r–347v: Ibn al-Haytham, Fī al-ma‘lūmāt 
348r–368r: Ibn al-Haytham, Fī al-taḥlīl wa-al-tarkīb 
368v–420v: Ibn al-Haytham, Fī hay’at ḥarakāt kull wāḥid min al-

kawākib 
421r–431r: Ibn al-Haytham, Fī khawāṣṣ al-dawā’ir 
431v: blank page 
432r–432v: Ibn al-Haytham, Istikhrāj ḍil‘ al-muka‘‘ab 
433r–489v: part of Tafhīm d’al-Bīrūnī, in another hand, with marginal 

glosses 
490r–491v: part of Fī khawāṣṣ al-dawā’ir 
492r–493v: treatise on algebra, anonymous and incomplete (late). 
 
We note that the text On the Properties of Circles is made up of two 

parts (421r–431r and 490r–491v). But, whereas the first part (421r–431r) 
includes the title of the treatise as well as the colophon, the second part 
(490r–491v) is anonymous. It is for this reason that everyone who had 
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examined the manuscript had thought that the complete text was to be 
found in the first part and had taken the second part as belonging to an 
anonymous mathematical treatise that appears at the end of the collection.16 
It is identifying this last part that has allowed me to assemble a complete 
text of Ibn al-Haytham’s work, to put it in order and finally establish it as a 
text. The treatise appears in the following order: 

 
421r–421v, 490r–490v, 422r–428v, 491v, 491r, 429r–431r. 
 
We may also note that folio 491 is back to front. This kind of mistake 

is not rare; it reappears several times in other treatises. These mistakes 
have, in all probability, occurred when the collection was bound. 

 
The bad state of the text On the Properties of Circles that we have 

described above made it extremely difficult to reconstruct. Sometimes we 
had no more than a few words to start from when reconstructing a whole 
paragraph. In reconstructing we called upon every means at our disposal: 
palaeography, philology and mathematics, as well as our familiarity with 
the writings of Ibn al-Haytham. Further, our long and numerous interven-
tions require us to indicate explicitly what has been done, not only for the 
reader of Ibn al-Haytham’s Arabic text, as one has to do when establishing 
critical editions of texts, but also for the reader of the French and English 
translations. In the English translation (as in the French one) each of our 
interventions is isolated in the style <…>. Text between square brackets 
[...] is an addition to the French text that is necessary for understanding the 
English text. 

 
  

 
16 See Catalogue of the library of St Petersburg, no. 1588 and B. A. Rosenfeld in 

Nauka, Moscow, 1974, p. 124, no. 16. 
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MATHEMATICAL COMMENTARY  

 
Proposition 1. — In a circle let there be an arbitrary chord AC cut in E by 
a chord BD; if BÊC = AB̂C , then BC =CD . 

 

 
Fig. 1.8 

 
The proof is immediate if we use the property of the interior angle. 

This property will be proved only later on – see Proposition 13. Before this, 
Ibn al-Haytham uses inscribed angles and triangles.  

We have BÊC  =  AB̂C , so the two triangles BEC and ABC are similar, 
hence 

(1)  EC
BC

= BC
AC

 ⇒  BC2 = EC ·AC . 

 
Moreover, BÊC  =  AB̂C , so CÊD =  AD̂C ; the two triangles EDC and 

ADC are similar; hence 
 

(2)  EC
DC

= DC
AC

 ⇒  CD2 = EC ·AC ; 

 
taken together, (1) and (2) give the result. 

With the help of the property of the inscribed angle and that of the 
interior angle, we immediately have 

 
meas. AB̂C  = 1

2
(AD+DC) . 

 
meas. BÊC = 1

2
(BC+ AD) . 
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The equality of the two angles leads to the result. 
The first proposition belongs to a group that, as we shall see, includes 

Propositions 12 and 13. In the following four propositions – 2 to 6 – Ibn al-
Haytham deals with parallel chords and similar ranges. 

 
Proposition 2. — The straight line joining the mid points of two parallel 
chords is a diameter that is their common perpendicular bisector. 

 

 
Fig. 1.9 

 
Let there be two parallel chords BE and DG, and their respective mid 

points I and H; we have DH
DG

=
BI

BE
= k =

1

2
 ⇒  HI is a diameter and the angle 

IHD is a right angle. 
 
Ibn al-Haytham proves this proposition by reductio ad absurdum. 
Let K be the centre of the circle. If HI did not pass through K, then KI 

would cut DG in L, L ≠ H. But I is the mid point of BE, so the angle KIE is 
a right angle, hence the angle KLG is a right angle. In the same way, H is 
the mid point of DG, so the angle KHL is a right angle. So in the triangle 
KHL we should have two right angles, which is absurd. 

In the following proposition Ibn al-Haytham considers a ratio k ≠ 1
2

. 

 
Proposition 3. — Let there be two chords EG and DB, parallel and 
unequal, and such that HE

EG
=
IB

BD
= k ≠

1

2
; then HI is not a diameter. 
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Fig. 1.10 
 

Let us suppose that the two chords are unequal and that HI cuts the 
circle in A and C. Let us draw EN and BK perpendicular to AC, they cut the 
circle in L and M respectively. The triangles EHN and BIK are similar, we 
have 

IB

BK
=
HE

EN
; 

 
but by hypothesis 

IB

BD
=
HE

EG
, 

 
so we have  

DB

BK
=
EG

EN
. 

 
If AC were a diameter we should have EL = 2EN and BM = 2BK, hence 

 
DB

BM
=
EG

EL
, 

 
the triangles DBM and GEL which have equal angles at E and B would thus 
be similar; we should have EL̂G = BM̂D , hence , which is 
impossible. So AB is not a diameter. 

 
Notes:  

1) The reasoning assumes that the points E and B are on the same side 
of the straight line HI, that is that the half lines [EG) and [BD) are oriented 
in the same direction. 
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2) Ibn al-Haytham starts from BD̂M = EĜL , which gives , 
which would be impossible. In fact, we have 

 
�BM = BAD+DM  and EAL = EAG +GL ; 

 
now BAD ≠ EAG  by hypothesis and DM =GL  because Ê = B̂ ; so 

 
BAM ≠ EAL . 

 
3) If the chords DG and BE are equal and parallel, they are 

symmetrical with respect to the centre of the circle. If D and G have B and 
E as their respective images in the homothety h(0; –1), then: 

 

• if DH
DG

=
BI

BE
= k ≠

1

2
, H has image I, and HI is a diameter. 

 

 
Fig. 1.11 

  

• If DH

DG
=

E ′ I 

EB
= k ≠

1

2
; then HI' ⊥ DG and HI' ⊥ BE, and HI' is not a 

diameter. 
 

Proposition 4. — Let there be a circle with centre M, two parallel chords 
BD and EG divided at points I and K respectively such that 
DB

KB
=
GE

IE
= k ≠

1

2
. Let us suppose that BE and KI intersect in H, then HM is 

perpendicular to the two chords. 
By hypothesis we have  

BK

BD
=
EI

EG
.  

  BAM = EAL
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The concurrent straight lines BE, KI and HM define two similar 
divisions:  

��

BK
=
EN

��
.  

 
So we have  

BL

BD
=
EN

EG
. 

 

 
Fig. 1.12 

 
So the diameter HM has cut the two parallel chords in the same ratio, 

so, by the second and third propositions, it is perpendicular to the two 
chords. 

 
Notes: 

1) The argument is applicable in both cases: E and B on the same side 
of IK, or E and B on opposite sides of IK. 

2) In both cases we have a homothety with centre H in which E →  B 
and I →  K. 

3) If EG = DB, then EI = BK and in consequence EB || IK; the point H 
does not exist. The parallel to EB passing through M is the perpendicular 
bisector of EG and of BD, the ranges B, K, L, D and E, I, N, G are equal 
divisions, they correspond to one another in the translation defined by BE. 
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Proposition 5. — Let there be two parallel chords BH and DI, cut 
orthogonally in E and G by a chord AC that is not a diameter. Let us 
suppose that BE ≠ DG, then 

 
BE

EH
≠
DG

GI
. 

 
We may also state this proposition in an equivalent way: two unequal 

parallel chords are divided in unequal ratios by a chord that is 
perpendicular to them, if that chord is not a diameter. If the chord is a 
diameter, the ratios are equal. 

Ibn al-Haytham proves this proposition by reductio ad absurdum: we 
draw the diameter PN parallel to AC, it cuts BH and DI in their mid points 
N and P. 

 
Fig. 1.13 

 
If  

BE

EH
=
DG

GI
, 

 
we have  

BE

BH
=

DG

DI
⇒

BE

BN
=
DG

DP
⇒

BE

EN
=
DG

GP
; 

 
which is absurd, since EN = GP and BE ≠ DG. 

 
Note: We have supposed BE ≠ DG, which is the same as supposing that the 
parallel chords are unequal. We cannot have BE = DG except if the chords 
BH and DI are symmetrical about the perpendicular bisector of AC, as BH 
and D'I' are; in this case we have BH = D'I' and BE = D'G'. 
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Proposition 6. — In a circle with centre L let there be two parallel chords 
BH and DI divided in the same ratio, at E and G respectively, by the 
straight line AC:  

DG

DI
=
BE

BH
= k . 

 
Let there be a third chord OU parallel to the first two, such that it is cut 

at Q by the straight line AC; we have 
 

UQ

UO
≠ k . 

 
Fig. 1.14 

 
The straight lines BD and AC intersect in K. From Proposition 4, the 

diameter KL cuts BH, DI and UO respectively in their mid points M, N and 
S respectively. We have 

ND

DI
=
SU

UO
. 

 
So, if we had 

DG

DI
=
UQ

UO
, 

 
we should have 

DI

DG
=
SU

UQ
, 

 
hence 

 
NG

GD
=
QS

QU
. 
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But the straight line BD cuts OU in P outside the circle, and we have 
two similar divisions N, G, D and S, Q, P, hence 

 
NG

GD
=
QS

PQ
; 

 
thus, we have 

QS

PQ
=
QS

QU
, 

 
which is impossible since PQ > UQ. 

 
Notes:  

1) Thus, we are considering similar divisions on two chords, both in 
what we are given for the problem and in the proof. 

2) If the chord OU lies between the chords BH and DI, we would have 
P inside the circle; the reasoning would be the same with PQ < UQ. 

3) The reasoning depends on the fact that the straight line BD that cuts 
the circle in B and D cannot cut it in a third point. 

 
Proposition 7. — Let D be a point outside or inside a given circle. if we 
draw from this point two straight lines DEB and DCA that are secants and 
from the endpoint of one of the two chords cut off by these straight lines we 
draw a straight line parallel to the other chord, let it be EG || AB, then we 
have GD · DC = DE2. 

 
Fig. 1.15 

 
We have 

    DA · DC = DE · DB  (the power of D), 
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hence 
DA

DB
=
DE

DC
. 

 
Moreover, EG || BA, hence 

 
DA

DB
=
DG

DE
. 

 
So we obtain 

DE

DC
=
��

DE
, 

 
hence 

DE2 = DG · DC. 
 

In the same way, if CI || AB, we have DC2 = DE · DI; if BK || EC, we 
have DB2 = DA · DK and if AL || EC, we have DA2 = DB · DL. 

The argument is the same in both cases of the figure: with D inside or 
D outside the circle; Ibn al-Haytham uses the power of the point D and 
homothetic triangles. 

In the following three propositions – 8 to 10 – the data are the same. 
 

Proposition 8. — Let there be a circle with centre D and radius R. Let A 
be a point on this circle; if on the half line DA we take two points E and H 
such that DE · DH = R2, then for any point B of the circumference, other 
than A and C, we have 

EB̂A = AB̂H . 

   
Fig. 1.16 
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By hypothesis we have DE · DH = DB2; hence 
 

 
DE

��
=
��

��
,  

 
so the triangles BED and DBH are similar; hence 

 

 
��

��
=
DE

��
=
EB

��
. 

 
But DB = DA, so 

EB

BH
=
DA

��
=
�	

�

=
AE

AH
, 

 
so A is the foot of the bisector of the angle EBH. 

 
Note: The points E and H are harmonic conjugates with respect to A and C. 
The pencil B (C, A, H, E) is a harmonic pencil. This proposition shows that 
if in a harmonic pencil two of the radiating lines are perpendicular, they are 
the bisectors of the angles between the other two. 
 
Proposition 9. — Let us return to the figure for the previous proposition 
and let the second point of intersection of EB with the circle be called I, 
then BD̂I = BĤI . 

  
Fig. 1.17 

 
The points E and H are defined as in the previous proposition: 

 
DH · DE = DA2. 

 
So we have 
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EB̂A  = AB̂H  = 1
2

 EB̂H , 

 
EÎA  = AÎH  = 1

2
 EÎH . 

 
Moreover, 

 

BÂI  = 1
2

 BD̂I , EB̂H  = AÎH  + BÊI  and EB̂A  = EÎA  + BÂI , 

 
hence, by doubling all the terms: 

 
AÎH  + BD̂I = EB̂H = AÎH  + BÊI ; 

 
so we have 

BD̂I = BÊI . 
 

The argument in this proposition depends on that in the previous 
proposition and on the property that an angle inscribed in the circum-
ference is equal to half the angle at the centre. 

 
Note:  

The proposition implies that the points B, I, D, H are concyclic. The 
circle passing through these four points is the transform of the straight line 
BE by an inversion with centre D that leaves the points of the circle ABI 
unchanged; E and H correspond to one another in this inversion while B 
and I are unchanged. 

This proposition can be interpreted as follows, employing a style of 
expression different from that of Ibn al-Haytham: the inversion with centre 
D and power DA2 transforms the chord BI of the circle with centre D and 
radius DA into the circle circumscribed about the triangle BID. 

 
 

Proposition 10. — With the same data as in the two previous propositions, 
we have  

 (EB + BH) · HI = CH · HE. 
 

On the extension of HB we mark off BK = BE. 
Let us first note that in the manuscript text the end of a line is torn 

away and we have reconstructed it as follows: ‘Q homologous to the point’ 
(p. 96).  
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The circle circumscribed about the triangle ECI does not in general17 
pass through the point K, but through the point Q symmetrical to K with 
respect to EC as is established in the proof that follows. Let us now turn to 
the proof.  

 
Fig. 1.18 

 
We have 

BE = BK ⇒ K̂ = Ê  = 1
2
HB̂E = AB̂E . 

 
But the quadrilateral ABIC is inscribed in the given circle, so 

IĈA =  AB̂E and consequently HK̂E  =  IĈA . 
In the quadrilateral BHDI, we have ID̂B = IĤB  from the previous 

proposition, so ��̂I = �B̂I = �ÎB = B�̂A . 
On the extension of IH we mark off HQ = HK; K and Q are thus 

symmetrical with respect to ED; so we have IQ̂E = HK̂E = IĈ� . 
Consequently, the circle circumscribed about ICE passes through Q, 

and the power of H with respect to this circle gives  
 

HE · HC = HI · HQ = HI · HK. 
 

Note: As in Proposition 8, by hypothesis (C, A, H, E) is a harmonic 
division, so the pencil B (C, A, H, E) is a harmonic pencil in which two 
lines BC and BA are perpendicular; thus, these lines are the interior and 
exterior bisectors of the angle between the other two lines. The same 
applies to the pencil I (C, A, H, E). 

 
17 This circle does not pass through K unless CE is a diameter of it, that is if the 

angle CIE is a right angle. 
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Proposition 11. — Let there be a circle with diameter EA, and let the two 
half lines DG and DH be symmetrical with respect to AE. Let the two 
points B and C be such that BE = EC  (so BC ⊥ AE and OB = OC), BC 
cuts DG and DH in P and N respectively. From B let us draw BI and BK 
and from C, CL and CM which are respectively parallel to them. We have 
BI · BK = CM · CL. 

 
Fig. 1.19 

 
We have, ON = OP, BN = CP, CN = BP; so 

 
CN

BN
=
BP

PC
. 

 
But  

    BI || CM  CN
NB

=
CM

BI
 (homothety with centre N) 

and  
    BK || CL  BP

PC
=
BK

CL
 (homothety with centre P), 

 
so 

CM

BI
=
BK

CL
, 

hence the result. 
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Note: From the statement, EA is an axis of symmetry for the circle and the 
triangle NDP. The proof depends on this symmetry and on the triangles 
with vertex N and with vertex P being homothetic (OND and OPD; CNM 
and BPK; INB and CPL). 

 
Proposition 12. — Let there be two arcs of a circle cut off by a chord AC 
and divided by the points B and D such that 

 

(1)  BA
BC

= DC
DA

, 

 
then BD cuts AC in E such that  

AÊB
BÊC

= AB
CB

. 

 
Fig. 1.20 

 
We have 

AB
BC

=
AĈB
BÂC

 and DC
AD

=
DÂC
DB̂A

=
DB̂C
DB̂A

.  

 
So we have 

AB
BC

=
AĈB
BÂC

=
DB̂C
DB̂A

= AĈB+DB̂C
BÂC +DB̂A

= AÊB
BÊC

. 

 
In the proof Ibn al-Haytham uses the following two properties: 
1) The ratio of two arcs is equal to the ratio of the inscribed angles that 

they subtend. 
2) Proposition I.32 of Euclid’s Elements: the sum of two angles of a 

triangle is equal to the non-adjacent exterior angle. 
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Proposition 13. — If in a circle two chords intersect, then each of the 
angles in which they cut one another is equal to the angle subtended by the 
sum of the two arcs that lie between the two chords. 

 
The statement assumes that the point of intersection lies inside the 

circle. Ibn al-Haytham begins with this case. We draw BH parallel to AC 
(Fig. 1.21). 

 
Fig. 1.21 

 
There are two cases: BH is a tangent to the circle, or BH cuts the circle; 

in both cases, we have HB̂E  =  BÊA . 
If BH is a tangent to the circle and BH || AE, we have BA= BC . The 

angle HBD is equal to the inscribed angle subtended by the arc BCD. We 
have 

BCD = BC +CD = AB+CD . 
 

If BH cuts the circle, then HC = BA . The angle HBD intercepts the arc 
HCD. We have  

. 
 

So we conclude that the interior angle AEB is equal to an inscribed 
angle that cuts off an arc equal to the sum of the arcs AB and CD. 

Similarly, the angle BEC is equal to an inscribed angle that intercepts 
the sum of the arcs AD and BC. 

Ibn al-Haytham next considers the case in which the point of 
intersection lies outside the circle, and proves that the exterior angle AEB is 
equal to an inscribed angle that intercepts an arc equal to the difference of 
the two arcs CB and AD (Fig. 1.22). 
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Fig. 1.22 

 
The following three propositions – 14 to 16 – deal with metrical 

relationships. 
 
Proposition 14. — Let ABC be a circle with centre E, a diameter AE, a 
tangent AL and another tangent BD at B, another point of the circle, 
cutting AL in K and EA in D; we have 

 
BK · DB = BL · BE. 

 

 
Fig. 1.23 
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The triangles AKD and BED are similar, so AK
EB

=
AD

BD
; and we have 

AK = BK, hence  
BK · DB = AD · BE. 

 
The triangles AEL and BED are similar with AE = EB, so they are 

congruent and we have LB = AD, hence 
 

DA · BE = LB · BE. 
Consequently we have 

 
(1)  KB · BD = EB · BL. 
 

Let us extend EA to G and let us draw HGI perpendicular to EA; we 
mark the point H on the tangent BD and the point I on the straight line EB. 
We have 

 

     
HB

BK
=
BI

BL
   (Elements VI.2), 

 
hence 

HB ·BD
BK ·BD

=
BI ·BE
BL ·BE

; 

 
and from (1), we have 

 
(2)  BH · BD = BI · BE. 
 

The result holds true for any line GHI perpendicular to the straight line 
AC, since Proposition 2 of Book VI of the Elements is applicable for any 
position of the point G. 

We note that to establish (1), Ibn al-Haytham uses similar triangles and 
congruent triangles; and to establish (2), he uses (1) and homothetic 
triangles. 

Ibn al-Haytham follows this proposition with two others that also deal 
with metrical properties of the circle. The proofs are immediate and seem 
to require no comment. We shall simply record the statements. 

 
Proposition 15. — Let there be a circle ABCD, B the mid point of the arc 
AC and D an arbitrary point on the arc; we have 

 
DA · DC + DB2 = AB2. 
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Fig. 1.24 

 
Let us draw BE ⊥ AD. Let H be a point on EA such that ED = EH and I 

a point on the circle such that BD = BI . 
We have BD = BH = BI and BD̂A =  BĤD , so BÎA =  BĤA  and 

BÂI  =  BÂH . The triangles ABH and ABI are congruent, hence AI = AH. 
But CD = IA , so AI = CD and AH = CD. Thus, we have 

 
AE = AH + HE = CD + DE  and  AD = CD + 2ED; 

 
from which it follows that 

 
AD · DC + DE2 = CD2 + 2ED · CD + DE2 = (CD + DE)2 = AE2 

 
and 

AD · DC + DE2 + EB2 = AE2 + EB2, 
 

hence  
AD · DC + DB2 = AB2. 

 
Ibn al-Haytham thus establishes this metric relationship from equalities 

of arcs, from which he deduces equalities of chords and the congruence of 
two triangles. 

 
Note: What he says gives no information about the arc AC that is under 
consideration. The argument is valid for any arc AC smaller than, equal to 
or greater than a semicircle. 
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Proposition 16. — If in a circle we have two chords AB and AC such that 
AB < AC  < a semicircle, if D is the mid point of the arc AB, and 
DE ⊥ AC, then 

AC · CB + BD2 = CD2. 
 

 
Fig. 1.25 

 

AD = DB  implies DĈB = DĈA . Let us draw EG = EA; the triangle 
ADG is isosceles and we have AD = DG = DB. 

The angles DBC and DGC have equal supplements DÂG  and DĜA , 
so DB̂C = DĜC . The three angles of the triangles BDC and CDG are equal 
and we have DB = DG, so CB = CG. As E is the mid point of GA, we have 

 
CA · CG = CE2 – EG2 

and 
CA · CG + GD2 = CE2 + DG2 – EG2 = CE2 + ED2 = CD2; 

 
from which we have  

AC · CB + BD2 = CD2. 
 

Note: In Proposition 16, the point D is the mid point of the smaller of the 
two arcs and in Proposition 15, we consider the mid point of the greater 
arc. Propositions 15 and 16 are analogous to Proposition II.5 of the 
Elements when, instead of dividing a segment of a straight line, we divide 
an arc of a circle; the parts of the segment are then replaced by the 
corresponding chords of the circle. 

 
Ibn al-Haytham introduces a new group of propositions, 17 to 23, apart 

from Proposition 21, which begins with a return to Proposition 94 of 
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Euclid’s Data (Proposition 17). The propositions in this group are related 
as shown in the following diagram: 

 
 

Proposition 17. — Let there be a circle ABC, the arc AC with mid point 
E, the chords ED and EB that cut AC in G and H respectively, then 

 
AB + BC

AD +DC
=
BE

DE
. 

 
Fig. 1.26 

 

We have AE = EC  which implies 
 

EÂC  =  EĈA =  ED̂C  =  EĈG  =  AD̂E . 
 

The triangles ECG and ECD are similar, hence  
 

ED

EC
=
EC

��
=
DC

��
. 

 
But DG is the bisector of ADC, so 

 
DC

��
=
DA

��
=
DC + DA

��+ ��
=
DC + DA

AC
, 
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so 
DC + DA

DE
=
AC

EC
. 

 
In the same way, we prove that  

 
AB + BC

BE
=
AC

CE
; 

hence the result. 
 

Notes: In The Knowns (second part, Proposition 18), Ibn al-Haytham gives 
the same proof. 

Moreover, in Euclid’s Data, Proposition 94:18 we find 
 

1)  BA + BC

BE
=
AC

CE
, which implies the result. 

 
2)  (BA + BC) · EH = AC · CE or (AD + DC) · EG = AC · CE. 
 

 Ibn al-Haytham’s approach is no different from that of Euclid: we 
proceed by using the ratio of similarity of two triangles and by the property 
of the foot of the bisector, that is Proposition 3 of Book VI of the Elements. 

 
Proposition 18. — Let ABC be a circle, AC a diameter, D the mid point of 
a semicircle and B an arbitrary point on the other semicircle, then we have 

 
(AB + BC)2 = 2 BD2. 

 
As in the preceding proposition, 

we have  
 

;  

 
so we have  
 

.  
Fig. 1.27 

 
18 Les Œuvres d’Euclide, French trans. by F. Peyrard, Paris, 1819; repr. with an 

important additional Introduction by M. Jean Itard, Paris, 1966, p. 599. 

AB + BC

BD
=
AC

CD

AB + BC( )2

BD2 =
AC2

CD2

E

D

B

AC



 CHAPTER I 56 

But AC2 = 2CD2, hence the result. So we have a special case of the 
preceding proposition where AC is a diameter. 
 
Proposition 19. — Let there be a circle ABCD and the inscribed 
equilateral triangle ADC; let us draw the straight lines DEB, AB and BC; 
then we have  

AB + BC = BD. 

 
Fig. 1.28 

 
From the preceding proposition, we have  

 
AB + BC

BD
=
AC

CD
.  

 
But AC = CD; hence the result. We have a special case of Proposition 

17 where AC is the side of the equilateral triangle. 
 

Proposition 20. — Let there be a circle ABCD, AC the side of the 
inscribed regular pentagon, the point D the mid point of the arc ADC; let 
us draw the straight line DEB cutting AC and let us join AB, BC, BD, then 
we have 

AB + BC + BD

BD
=

BD

AB + BC
. 

 
Ibn al-Haytham thus wishes to prove that BD is a mean proportional 

between the sum (AB + BC + BD) and the sum (AB + BC). 
From Proposition 17, we have  

 
AB + BC

BD
=
AC

CD
.  
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Fig. 1.29 

 
But, from Proposition XIII.8 of the Elements, the straight line that joins 

A to the mid point of the arc DC divides the straight line DC at the point G 
such that  

 
(1) DC · CG = DG2 

 
and we have DG = CA, so 

AB + BC

BD
=
DG

��
; 

 
but (1) implies 

 

(2) DG

CD
=
CG

DG
. 

 
So if we extend DB to H, with BH = AB + BC, we have 

 
HB

BD
=
AB + BC

BD
=
CG

DG
, 

 
hence 
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HD

BD
=
AB + BC + BD

BD
=
CG +GD

DG
=
DC

DG
; 

 
so, by (2) we have 

HB

BD
=
BD

HD
, 

 
that is 

AB + BC

BD
=

BD

AB + BC + BD
; 

 
hence the result. 

We may note that the equation DH
DB

=
DC

DG
 implies that CH and BG are 

parallel to one another. 
 

Note: This time the chord AC is the side of a regular pentagon inscribed in 
the circle. Ibn al-Haytham thus starts from Proposition 17 and uses the 
property established by Euclid in XIII.8 of the Elements to prove that if a 
straight line is equal to the sum BA + BC + BD, it is divisible in extreme 
and mean ratio and the greater part is DB. 
 
Proposition 21. — Let there be a circle ABC with centre D, let AC be the 
side of the inscribed regular pentagon; the radius DB divides AC into two 
equal parts at E; and let DG = BE, then we have EG = P10 (P10 is the side 
of the regular decagon). Let H be the mid point of DB; H is also the mid 
point of GE.  

 
Fig. 1.30 

 
From Hypsicles’ Proposition I.1 (Elements XIV.1), we know that  
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DE = 1
2

 (P6 + P10),  

 
where P6 is the side of the inscribed regular hexagon. But P6 = DB and 
1

2
 P6 = DH, so HE = 1

2
 P10 and GE = P10. 

 
Note: It is true that here the chord AC is again by hypothesis the side of a 
regular pentagon, but the proposition is, nevertheless, independent of the 
preceding one. Here, Ibn al-Haytham starts from the result of Hypsicles’ 
Proposition I.1. From this latter, if we consider the sides of the regular 
decagon and the hexagon inscribed in the same circle as the regular 
pentagon with side AC and apothem DE, we have 

 
DE =  (P6 + P10). 

 
Now DB = P6, and Ibn al-Haytham’s conclusion follows. 
 
Proposition 20 deals with a special case of Proposition 17; it is 

concerned with the side of the regular pentagon. Proposition 21, which is 
out of place in this treatise, justifies its inclusion here only by providing a 
new property of the side of the pentagon. 
 
Proposition 22. — Let us return to the figure for Proposition 18, and its 
hypotheses. We prove that the area (ABCD) = 1

2
 BD2. 

 
Fig. 1.31 
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We have (AB + BC)2 = 2BD2, hence AB2 + BC2 + 2AB · BC = 2BD2; but 
AB2 + BC2 = AC2 = 2AD2, so AD2 + AB · BC = BD2. Moreover, 

 

area (ABCD) = area (ABC) + area (ACD) = 1
2

 AB · BC + 1
2

 AD2, 

 
so 

area (ABCD) = 1
2

 BD2. 

 
We can state this proposition as a corollary to Proposition 18: if AC is a 

diameter, then area (ABCD) = 1
2

 BD2. 

 
Proposition 23. — Let there be a circle ABC, let AC be a diameter, B the 
mid point of one of the semicircles, and D and E two points on the arc BC, 
then 

 (DA + DC)2 – (EA + EC)2 = 2(EB2 – DB2). 
 

 
Fig. 1.32 

 
From Proposition 18, we have 

 
(DA + DC)2 = 2DH2 and (EA + EC)2 = 2EH2; 

 
but 

HD > HE  (DA + DC)2 – (EA + EC)2 = 2(DH2 – EH2); 
 

now 
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DH2 = HB2 – DB2 and EH2 = HB2 – EB2, 
 

so 
DH2 – EH2 = EB2 – DB2; 

 
which gives us the conclusion. 

We may note that the proof is carried out in the same way if the points 
D and E are on opposite sides of B. 

 
The following two propositions – 24 and 25 – deal with calculations of 

areas of inscribed triangles. 
 
Proposition 24. — Let there be a circle ABCD; let AC and BD be two 
diameters that intersect in E. If AC ⊥ BE, G is on CB and GH ⊥ DB, then 

 
EB · BH = area (ABG). 

 

 
Fig. 1.33 

 
We draw GI ⊥ AC. Now GH || AC, hence GI = HE; so 

 
AC · GI = 2 A (AGC), 
AC · HE = 2 A (AGC), 
AC · BE = 2 A (ABC); 

 
hence, by subtracting, 

 
AC · BH = 2 [A (ABC) – A (AGC)] = 2 A (ABG); 
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but AC = 2 EB, hence 
 

EB · BH = A (ABG). 
 
Proposition 25. — Let us return to the previous figure and let us mark N 
the centre of the circle, E and G two points on the arc CB, GH ⊥ BN and 
EI ⊥ BN; EB cuts GH in K and GC cuts EI in M, then 

 
BE · EK = 2 area (AMG). 

 
The triangles BKH and BDE are similar, so 

 
EB

BH
=
ED

HK
=
BD

BK
, 

hence 
EB · HK = ED · BH 

 
and 
 (1) BE · BK = BD · BH; 

 
moreover, 

 
 (2) EB2 = BD · BI (Elements, VI.8); 

 
from (1) and (2) it follows that 
 

BE · EK = BD · HI. 

 
Fig. 1.34 
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But we have 
 

 (3)   DB · NH = AC · NH = 2 A (AGC) 

and  
 (4)   DB · NI = AC · NI = 2 A (AMC); 
  
from (3) and (4) it follows that 
 

DB · HI = 2 [A (AGC) – A (AMC)] = 2 A (AGM). 
 
So we have 

BE · EK = 2 A (AGM). 
 

The following group is made up of six propositions – from 26 to 31 – 
which deal with concentric circles. 
 
Proposition 26. — Let there be two concentric circles with centre G, 
AC = 2R and DE = 2r, two diameters of the large and small circle 
respectively, AHB a tangent to the small circle at H; we have 

 
AB2 + 4r2 = 4 R2. 

 
Fig. 1.35 

 
AC is a diameter of the large circle, the angle AHG is a right angle, so 

HG || BC and we have 
AC

AG
=
AB

AH
=
BC

GH
; 
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now G is the mid point of AC, so H is the mid point of AB and CB = 2GH = 
2r; hence the result. 

 
Note: Ibn al-Haytham in fact wishes to prove that for any tangent to the 
circle (G, r), if we draw a diameter through one of its endpoints, the arc of 
the circle (G, R) which lies between the tangent and the diameter, an arc 
homologous to BC, is subtended by a chord of length 2r. 

Any chord of the circle (G, R) tangent to (G, r) thus has a length 2l 
such that 

l2 + r2 = R2. 
 

We may note that ‘H is the mid point of AB’ is a result found in the 
Collection of Pappus (Proposition 77).19 

We may also note that Ibn al-Haytham uses the fact that the two 
triangles AHG and ABC are homothetic. 
 
Proposition 27. — Let there be two concentric circles with centre G, a 
straight line cutting the two circles in B and H for (G, R) and in E and D 
for (G, r) and let there be a straight line IEK tangent to the latter circle in 
E; we have 

 
(1) IK2 + DE2 = BH2. 

 
Fig. 1.36 

 
The power of E with respect to the large circle gives 

 
EI · IK = EI2 = EC · EA = EB · EH. 

 
19 French trans. Ver Eecke, p. 612. 
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If through D we draw the diameter XY, we have DX = EA, DY = EC, so  
 

DX · DY = DH · DB = EA · EC = EI2, 
 

so  
DH · DB = EB · EH, 

 
we have 

HD = EB and HE = DB. 
 

Moreover, we have KI = 2EI, hence 4HE · EB = IK2 and in 
consequence 4DB · BE = IK2. But  

 
DE = DB – BE, and DE2 = DB2 + BE2 – 2DB · BE, 

so  
 

DE2 + 4DB · BE = (DB + BE)2 = BH2; 
 

hence the conclusion. 
 

Notes: 
1) If as before we designate the length of a tangent as 2l, the relation 

(1) may be rewritten as 
 (2) 4l2 + DE2 = BH2. 

Equation (2) shows that the result proved in Proposition 26 for a 
diameter ADEC can be extended to the case of a chord such as the chord 
BEDH. 

2) The fact that EB and DH are equal derives from DE and HB having 
the same perpendicular bisector. 

3) Ibn al-Haytham makes use of the equalities EB = HD and BD = HE 
proved in Pappus’ Collection (Proposition 79).20 On the other hand, these 
equalities follow immediately and accordingly do not permit us to infer that 
Ibn al-Haytham read Pappus. 

 
Proposition 28. — Let BD and EI be two concentric circles with centre H, 
let there be a straight line BEID that cuts them but does not pass through 
H, and IG ⊥ BD; we have 

 

 
20 French trans. Ver Eecke, p. 613. 
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  BD2 + GI2 = 4R2 (where R is the diameter of the large circle). 
 

We have  
BD = EI + 2BE; 

 
hence, after some calculation, 

 
BD2 = EI2 + 4EB · ED 

 
and 

BD2 + GI2 = 4EB · ED + EG2. 

 
Fig. 1.37 

 
Let us draw TT' , the tangent at E, we have (power of E) 

 
ET · ET' = ET2 = EB · ED, 

 
hence 

TT'2 = 4EB · ED. 
 

So we have 
BD2 + GI2 = TT'2 + EG2; 

 
but from Proposition 26: TT'2 + EG2 = 4R2 (the square of the diameter of 
the large circle); hence the result. 

 
Proposition 29. — With the data of the previous proposition, we have that 
the perpendicular erected at the point E of the small circle – EG – is equal 
to the perpendicular erected at the point B of the large circle – BC. 
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 From Proposition 28 we have AB2 + EG2 = 4R2; moreover, ABC is a 
triangle right-angled at B, so AC is the diameter and we have 

 
AB2 + BC2 = 4R2, 

hence 
EG = BC. 

 

 
Fig. 1.38 

 
Note: This is in fact a corollary of the preceding proposition. 
 
Proposition 30. — Let there be two concentric circles, and let GI be a 
diameter of the small circle, the straight lines BI and BG from a point B of 
the large circle cut the small circle in E and H and the large circle in C 
and D; we have  

IH + GE  similar to DC . 

 
Fig. 1.39 
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The straight lines BK, GH and EI are the three heights of the triangle 
BGI. We have IB̂K  =  IĜH  and GÎE  =  GB̂K , so �ĜI  +  G�̂E  =  �B̂G . 
The angles IGH, GIE, IBG intercept the arcs IH, GE respectively on the 
small circle and the arc CD on the large circle; hence the result. 

 
Notes: The argument is constructed for the case in which E and H are on 
the same side of the straight line GI. In this case K, the foot of the height 
from B in the triangle GBI lies between I and G, because the orthocentre of 
the triangle BGI lies inside the triangle. 

If, on the other hand, the points E and H lie on opposite sides of GI, the 
orthocentre of the triangle GBI lies outside the triangle and the point K lies 
on the extension of GI. 

Thus, we have several cases: 
a) The case given in the text: DB̂C  =  GB̂I  =  GÎE  +  HĜI . 
The angle DBC inscribed in the large circle is the sum of two angles 

inscribed in the small circle, hence 
 

DC  is similar to �A +IE . 
 

b) Other cases: If E and B are on the same side of GI, and H on the 
other side, we have K beyond I 

 
GB̂I  =  GB̂K  −  KB̂I  =  GÎE  −  HĜI . 

 
If H and B were on the same side of GI and E on the other side, K 

would lie beyond G and we should have 
 

GB̂I  =  KB̂I  −  GB̂K  =  HĜI  −  GÎE . 
 

So for these two cases we have 
 

DB̂C  =  |GÎE  −  GĜI | , 
 

hence DC  is similar to GE  – �A , or 

to �A −GE . 

 
Fig. 1.40 
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Proposition 31. — Let there be two concentric circles, with diameter AC 
and DI respectively; A, D, I, C are collinear. If DI is the diameter of the 
small circle and B a point on the large circle, we have 

 
BD2 + BI2 = AD2 + DC2. 

 

 
Fig. 1.41 

 
The circle with diameter IB passes through E and K, so (power of D) 

 
DB · DE = DI · DK. 

 
The circle with diameter BD passes through H and K, so (power of I) 

 
IB · IH = ID · IK. 

 
Adding these two equalities term by term gives 

 
 (1)  DB · DE + IB · IH = ID2. 

 
The points B and A are at the same distance from the centre, so their 

powers with respect to the small circle (small with respect to the large one) 
are equal: 

BD · BE = BH · BI = AD · AI, 
 

hence 
 

 (2)  BD · BE + BH · BI = 2 AD · AI. 
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If DI is the diameter of the small circle and B a point on the large 
circle, adding (1) and (2) term by term gives  

 
BD2 + BI2 = ID2 + 2 AD · AI; 

 
but AI = AD + DI, so 

 
ID2 + 2AD · AI = DI2 + 2AD2 + 2AD · DI = AD2 + AI2 = AD2 + CD2; 

 
hence the result. 

If DI is now the diameter of the large circle and B a point on the small 
circle, we obtain the result by subtracting (2) from (1) term by term. 

 
Fig. 1.42 

 
Note: The method used to prove Proposition 31 is not applicable if the 
points H and E are on opposite sides of AC. However, the result is general 
and can be stated as follows without involving the circle (DI) and the 
points H and E: 

If on a straight line we have two segments AC and DI with the same 
mid point, O, then for any point B of the circle (O, OA), we have 

 
BD2 + BI2 = AD2 + DC2. 

 
  AC > DI     AC < ID 
  Fig. 1.43     Fig. 1.44 

E

E

B

ACI

H

K

D

B

AC I O D

B

ACI O



THE PROPERTIES OF THE CIRCLE  71 

For any point B, we have 
 

    BI2 + BD2 = 2 (BO2 + OD2) (median theorem) 
 

and for any point A, we have 
 

AI2 + AD2 = 2 (AO2 + OD2); 
 

now by hypothesis AI = DC and OB = OA, so 
 

BD2 + BI2 = AD2 + DC2. 
 

Note: The property established here was stated and proved in the same way 
by Ibn al-Haytham in his treatise The Knowns, Proposition 22.21 Ibn al-
Haytham’s result is equivalent to the median theorem. 

 
The last group of propositions in this book – from 32 to 43 – deals with 

tangent circles and homotheties. From Proposition 32 onwards, in fact, all 
the propositions involve two circles and, in general, except in Proposition 
33, the argument calls upon one or another homothety that connects them. 

 
Proposition 32. — Let there be two circles ABC and CDE tangent at the 
point C, then the straight line BCD drawn in the two circles cuts off two 
similar arcs CB and CD and we have 
 

CB

CD
=
CA

CE
. 

 
Fig. 1.45 

 

 
21 See pp. 327, 406–8. 
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From the fact that the homologous angles BAC and DEC are equal we 
deduce that the arcs BC and CD are similar. The right-angled triangles CBA 
and CDE are similar, hence 

CB

CD
=
CA

CE
. 

 
Notes: The statement does not give any details about the circles; the contact 
can be internal or external and in this latter case, the circles can be equal or 
unequal.  

The proposition may be rewritten: Let AC and CE be the diameters 
from the point of contact C and let CBD be a secant; we have 

 
• the arcs BC and CD are similar; 
• the arcs AB and DE are similar; 
• 
CB

CD
=
CA

CE
. 

 
The argument depends upon the fact that AB and ED are parallel and 

the results in the statement follow from that immediately. 
 If we now call the radii of the two tangent circles RH and RG 

respectively, then to any secant straight line passing through C there 
correspond points B and D such that  

 
��

��
=
��

��
= ±

��

�G

, 

 
which corresponds to the homothety h (C, k) where k = ±  

RH
RG

. (k = +  
RH
RG

 if 

the contact is internal and k = −  
RH
RG

 if the contact is external).22 

 
22 In his treatise Fī taḥṣīl al-qawānīn al-handasiyya al-maḥdūda (On Obtaining 

Determinate Geometrical Theorems), al-Sijzī states this same proposition and points out 
that he had proved it in his treatise on Tangent Circles, which today has yet to be found. 
Here is al-Sijzī’s text (mss Paris, BN 2458, fol. 3r; Istanbul, Reshit 1191, fol. 71r-v): 

‘When two circles touch in a point and when we draw straight lines to the 
circumferences of the two circles, a ratio is also generated. 
Let there be the two tangent circles in the two cases of the figure, AB and AC, the 
point A their <point of> contact. We have drawn the two straight lines BAC and 
DAE; then this generates the ratio of AB to AC <which is> equal to the ratio of AD 
to AE. We have proved this in the first proposition of our book on <Tangent> 
circles’. 
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Proposition 33. — Let there be two circles ABC and CDG touching 
externally at C and let there be BD a common tangent, let us join BC and 
DC and GD and AB, then the angle BCD is a right angle and GD and BA 
intersect and are perpendicular.  

Ibn al-Haytham proves this proposition, for the cases when the circles 
are equal and when they are not. To prove that the angle BCD is a right 
angle, we consider the perpendicular to EK at C, it cuts the common 
tangent in I, we have that IC is a tangent to the two circles, so IB = IC = ID, 
so triangle BCD has a right angle at C. 

 
Fig. 1.46 

 
To prove that GD and AB intersect and are perpendicular to one 

another, we deduce from the above that BĈA +  DĈG  = one right angle, 
hence DĜA +  BÂG  = one right angle, so the two straight lines GD and AB 
intersect at L and the angle BLD is a right angle. 

                                         

 
 
Al-Sijzī’s result corresponds to the homothety A,  

��

AJ
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . We may note that al-Sijzī, 

unlike Ibn al-Haytham, does not mention either the ratios of the chords BD and CE, or 
the fact that the arcs BD and CE are similar.  
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Ibn al-Haytham next proves that L lies on the tangent CI, using a 
method that is a little too long – which we shall examine later. It would 
have been enough to note that CDLB is a rectangle, and that we know that 
IB = IC = ID: so I is the point of intersection of the diagonals CL and BD. 
If the circles were equal, CDLB would be a square. 
 
Proposition 34. — Let C1 and C2, C2 ⊂  C1, be two circles that touch 
internally at the point A, let AC and AH be their respective diameters from 
the point A. Let L and E be two arbitrary points on C2, a secant passing 
through L cuts C2 in N and C1 in G and M, and another secant, passing 
through E, cuts C1 in B and D. We have 

 
E� � �E
GCB

= IH � �M
ICB

= NH � �M
NCB

. 

 
Fig. 1.47 

 
By Proposition 32, we have 

 

 (1) AC

AH
=
AK

AL
=
AI

AE
=
AO

AN
, 

 
from this we deduce 

IE

EA
=
KL

LA
=
ON

NA
, 

 
hence 

KL. L�
L�2

=
EI . E�
E�2

=
�� . ��
��

2
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but  
KL · LA = LG · LM, EI · EA = EB · ED, ON · NA = NG. NM; 

 
hence the result. 

 
Notes: 

1) Ibn al-Haytham’s statement can be rewritten as follows:  
The ratio of the power of an arbitrary point of the small circle – small 
relative to the large circle – to the square of its distance from the point 
of contact is always the same. 
In other words, let X be the second point in which EB meets the small 

circle, we shall again have EB. ED
EA2

=
XB. XD
XA2

, so the common value of the 

two ratios associated with a secant does not depend on which secant we 
consider. 

Let this ratio be k; if we put AC = 2R and AH = 2r, we have  
 

� =
�D. �A
HA2

= HC
HA

= R− r
r

. 

 
2) This relationship makes it clear that we have a homothety with 

centre A, h A,
R

r
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

 
3) We find the same property and the same proof in Ibn al-Haytham’s 

treatise The Knowns (first part, Proposition 18). 
 
Proposition 35. — Let C1 (D, DC) and C2(H, HG) be two unequal circles 
touching one another at the point C; let there be a common tangent BE that 
cuts the extension of the diameter that passes through D and H in a point I, 
and let there be a secant passing through I that cuts C1 in N and A and C2 
in M and K; we have that 

 and  are similar. 
 

Now DB̂I  =  HÊI  = a right angle, so DB || HE, hence 
 

(1)  DB

HE
=
ID

IH
, 

 
but 

  ABN   KEM
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DB = DA = DN and HE = HK = HM, 
 

so 
(2) DI

IH
=
DA

HK
=
DN

HM
, 

 
hence DA || HK and DN || HM. Accordingly we have AD̂N  =  KĤM , so 
the arcs ABN and KEM are similar. 

 
Fig. 1.48 

 
Notes: 

1) Let RD and RH be the radii of the circles. The point I exists if 
RH ≠ RD. So Ibn al-Haytham intends to specify the position of the point I. 
He starts from the fact that DB and HE are parallel, which gives equation 

(1), which makes it clear that we have a homothety with centre I, � C,  
DA
DB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

in which the points M, K, G, E, C of C2 have as their respective 
homologues the points N, A, C, B, L of C1. The straight lines HM, HK, HG, 
HE, HC are parallel to their homologues DN, DA, DC, DB, DL. Ibn al-
Haytham deduces from this that the angles with vertex H are equal to their 
homologues with vertex D and that in consequence the arcs KM, MG, KE, 
EM, KC and the arcs AN, NC, AB, BN, AL that are homologous to them are 
similar. 

Ibn al-Haytham did not, however, point out that the chords of the 
homologous arcs are parallel, something that can be deduced immediately 
from the fact that the homologous angles are equal. 

The equality AĈK  = a right angle follows immediately.  
We have AL || KC  AĈK =CÂL  (alternate internal angles). Now the 

angle CAL is a right angle, hence the result. In the same way we have that 
angle NCM is a right angle. 
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2) This proposition is important and calls for several comments. So let 
us give a rigorous description of Ibn al-Haytham’s reasoning. He begins 
with two unequal circles that touch one another externally. He next draws 
the external common tangent and constructs two homothetic triangles, 
which allows him to describe the position of the point of intersection of the 
tangent and the line of centres in terms of a ratio, and in this way to find the 
centre and the ratio of homothety, then to deduce that the homologous radii 
are parallel and the homologous arcs are similar. Thus, he has identified 
these concepts of the centre and ratio of a homothety, which he applies 
later. 
 
Proposition 36. — Let C1(I, ID) and C2(H, HC) be two circles one outside 
the other, equal or unequal. Let K be a point of the segment CD such that 

 
KC

KD
=
AC

DG
=
RH
RI

. 

 
Fig. 1.49 

 
If the straight line KL touches the circle C2, it also touches the circle 

C1. 
We have HL ⊥ KL; the parallel to HL drawn through I cuts KL in M. 

We have 
KC

��
=
CH

DI
=
KH

KI
, 

 
so 

��

��
=
Hk

��
⇒

KH

KI
= −

RH
RI

. 
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But IM || HL, so  
KH

KI
=
HL

IM
,  

 
hence IM = ID and M lies on C1. 

Moreover, HL ⊥ LM, so IM ⊥ LM, the straight line LM is the tangent to 
the circle C1 at M. 

 
Notes: In this proposition Ibn al-Haytham proves that the point M on 

C1 (I, RI) is homologous to L on C2 (H, RH) in the homothety h K ,−
RI
RH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . If 

C1 = C2, the homothety becomes a central symmetry; a complete study of 
these two cases is carried out in The Knowns (second part, Proposition 24). 

 
Proposition 37. — Let us return to the figure for Proposition 36 and let us 
draw a straight line KN that cuts C2 in B and N; it will also cut C1, and 
the arcs cut off on each of the circles on either side of the straight line KN 
are similar (see Fig. 1.49). 

The straight line KN lies within the angle LKH, so it cuts the tangent 
LK. The extension of KN lies within the angle MKI, so it cuts the circle C1. 
Let B, N, O, E be the points of intersection with C2 and C1 respectively. 
We have 

��

KI
=
��

IE
=
��

��
, 

 
hence HB || IE and HN || IO. 

Moreover, we had HL || IM. So each of the angles with vertex H is 
equal to its homologue with vertex I, and the arcs CN, NL, LB, NB, AB are 
similar to their homologues DO, OM, ME, OE, GE respectively, so the arc 
NLB is similar to the arc OME. 

 
Note: The properties to which Ibn al-Haytham draws attention correspond 

to those of the homothety h K ,−
RI
RH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ : The points A, B, L, N, C of C2 have 

as their respective homologues the points G, E, M, O, D, so the arcs AB, 
BL, LN, NC, BN have as their homologues the arcs GE, EM, MO, OD, EO 
and are similar to them. We may note that two homologous arcs, for 
example, BN and EO, lie on opposite sides of the straight line that joins the 
endpoints of the arcs. 
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Proposition 38. — Let us again return to the same figure; we have 
CL ⊥ GM, CB ⊥ GE and AB ⊥ ED (see Fig. 1.49). 

 

From Proposition 37, we have that AL  is similar to GM , hence 
AĈ� =�D̂� , so �ĈA +  ��̂D  = a right angle and CL ⊥ GM. 

We employ the same method in the other cases. 
 

Note: In the homothety h K ,−
RI
RH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , we have A, C, D, G on the line of 

centres where G = h(A) and D = h(C), then for any X ∈ C2, if X' = h(X), we 
have X' ∈ C1, AX || GX' and CX || DX', hence AX ⊥ DX' and CX ⊥ GX'. 

This is precisely the procedure that Ibn al-Haytham presents, in 
different, but equivalent, terms. 
 
Proposition 39. — Let there be two circles C1 (H, HC) and C2 (I, IG) each 
exterior to the other, and HI meets them at the points A, C, D, G, in that 
order and with AC > DG; let there be a point K on the extension of AG 
such that KH

KI
=
AC

DG
 and let KE be a tangent to C2, we have that KE is a 

tangent to C1, let it be the tangent at L. Conversely, if KL is a tangent to 
C1; then it is a tangent to C2. 

 
Fig. 1.50 

 
We have IE ⊥ KE; through H we draw the parallel to IE, it cuts KE in L 

and we obtain HL ⊥ KL. We have HL || IE, so  
 

��

LI
=
�	

IH
.  
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But 

 ��
��

=
AC

DG
=

1
2
AC

IE
, 

 

so HL = 1
2

AC and L is a point on the circle C1, where HL̂K  is a right 

angle, so KL is a tangent to the circle C2. 
Similarly, if from K we draw a straight line that is a tangent to C1, we 

can prove that it is a tangent to C2. 
 

Notes: 
1) Here, as in Proposition 35, Ibn al-Haytham proves that the two 

properties of the point K, the centre of the positive homothety h K,  
RH
RI

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

are equivalent. 
 

• K is the point of intersection of the line of centres and the external 
common tangent of two circles that touch externally. 

• K lies on the straight line IH such that KH
KI

=
RH
RI
. 

 
2) As we have noted earlier, in Proposition 24 of the second part of The 

Knowns, Ibn al-Haytham considers the two cases of equal circles and 
unequal circles. 

3) What we have here may be regarded as a study of the properties of 
the homothety as a transformation of one circle into another. 
 
Proposition 40. — Let us return to the figure for the previous proposition. 
If a straight line from K cuts C2 in N and O, then it cuts C1 in B and M, 
and the arcs cut off on the circles on the same side of the secant straight 
line are similar two by two (see Fig. 1.50). 

We have 
��

KI
=
��

��
=
�	

�

, 

 
so HB || IN and HM || IO. We also have HL || IE. So each of the angles with 
vertex I is equal to its homologue with vertex H and the arcs AB, BL, LM, 
MC are similar to their homologues DN, NE, EO, OG. So the arcs cut off 
by the straight line KO on the same side of the straight line are similar. The 
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arc NEO is similar to the arc BLM and the arc NGDO is similar to the arc 
BCAM; which is the conclusion given in the statement. 
 
Notes: 

1) Ibn al-Haytham proves that the homologous arcs are similar. He 
does not prove that the chords that correspond to them are parallel: 
AB || DN, BL || NE and so on, a property that can be used to shorten the 
proof in certain cases (for example, Proposition 42 for unequal circles and 
Proposition 43). 

2) The method Ibn al-Haytham adopts here is the one he had employed 

in Proposition 37. In the homothety h K,  
RH
RI

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , the points N, E, O of the 

circle C2 have as their homologues the points B, L, M of the circle C1; the 
radii IN, IE, IO have as their respective homologues the radii HB, HL, HM 
which are parallel to them; the arcs NE, EO, NO have as their homologues 
the arcs BL, LM, BM which are similar to them; and finally two 
homologous arcs, for example, the arcs NEO and BLM, are on the same 
side of the straight line that joins their endpoints. 

 
Proposition 41. — Let there be two circles C1 and C2, equal or unequal, 
and let AC and DG be their diameters, where A, C, D, G are in that order, 
and let BE be an external common tangent, B ∈ C1 and E ∈ C2. We have  

 
DE ⊥ BC and GE ⊥ AB. 

 

 
Fig. 1.51 
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First of all we have BCA + EDG < π; it is the same for the sum of two 
opposite angles; so BC and CD meet one another; let it be in H. We draw 
the tangents DK and CI, and we obtain KD = KE and IB = IC, so 

 
DK̂I  =  2 DÊK  and CÎK  =  2 CB̂I . 

 
Now DK̂I  +  CÎK  = π, hence  
 

DÊK  +  CB̂I  = π
2

, 

 
hence the straight lines meet one another and DĜC  = π

2
. 

Moreover, we have BÂG  +  EĜA  < π, so the straight lines AB and GE 
meet one another; let it be in N. The angle N is the fourth angle of a 
quadrilateral NBHE which has three right angles, at Ĥ , Ê , Â , so the 
fourth angle is a right angle. 

 
Notes: If the point of intersection of BE and AG is called J, in the case 
where the circles are unequal, the homothety � �,  

AC

DC
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  gives GE || CB, so 

GE ⊥ AB and ED || BA, so ED ⊥ BC; in the special case where the circles 
are equal, the two triangles ABC and DEG are right-angled and isosceles, 
the conclusion follows immediately and the correspondence between the 
two circles is a translation. 

Ibn al-Haytham gives a proof that is valid in both cases, for unequal 
circles and for equal circles, and the problem is comparable with 
Proposition 33. It is perhaps for this reason – seeking a general proof for 
the two cases – that here he does not explicitly call upon the homothety. 
 
Proposition 42. — Let there be two circles each exterior to the other and 
unequal, with respective diameters AC and DG, AC > DG and the order of 
the points is A, C, D, G. Let there be a point K on the extension of AG, 
through which we can draw a common tangent to the two circles. If from K 
we draw a straight line to cut the two circles in L, E, M, B in that order, 
then  

DE ⊥ CB and DL ⊥ CM. 
 

The arcs AB and DE are similar, by Proposition 40, so BĈA =  EĜD , 
hence �Ĉ�  +  C�̂�  = π

2
, hence the conclusion. 
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Fig. 1.52 

 
In the same way, DL and CM meet one another and are perpendicular. 

 
Notes: 

1) In the homothety � K,  
�I

��

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , we have A, B, C, D on the line of 

centres such that G = h(C) and D = h(A), then, for any point M of the circle 
C(J, JC), if M' = h(M), we have M' ∈ C(I, IG) and AM || DM', CM || CM', 
hence AM ⊥ GM' and CM ⊥ DM'. In this example, we have taken M = B 
and M' = E. 

2) Here Ibn al-Haytham defines the point called K in Propositions 39 
and 40 as the point on the line of centres through which we can draw an 
external tangent to the two circles. It is, however, clear that he considers 
this point as defined by a ratio, because he refers to the property concerning 
similar arcs established in Proposition 40. 

3) The property established here, starting from the point K as the centre 
of a positive homothety, corresponds to what is established in Proposition 
38 with K as the centre of a negative homothety. It follows immediately 
from the fact that the homologous chords are parallel, which Ibn al-
Haytham does not point out. 
 
Proposition 43. — Let there be two circles C1(I, IG) and C2(H, HC), 
C1 ⊂  C2, AC and DG their respective diameters AC > DG; the points are 
in the order A, D, I, H, G, C. Let K ∈ GD, be such that KD

KG
=
AD

GC
 and let 

there be a straight line passing through K that cuts C1 in E and M and C2 
in B and L, in the order B, E, K, M, L. We have that the arcs CB, BA, AL 
are similar to the arcs GE, ED, DM. 

 
DK

KG
=
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GC
⇒
AD

DK
=
GC

KG
⇒
AK

DK
=
KC

KG
=
AC

DG
=
CH

GI
=
HK

IK
. 
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Fig. 1.53 

 
So the point K divides the line segment HI externally in the ratio of the 

radii 
 
KI

KH
=
RI
RH

. 

 
Moreover, we have 

 
HK
IK

= HC
IE

⇒  HB || IE  and HK
IK

= H�
I�

⇒  HL || IM;  

 
from which it follows that the angles at the centre with vertices H and I are 
equal, hence the arcs are similar. 

 
Notes:  

1) We could also deduce from this that the homologous chords are 
parallel: AB || DE, AL || DM; which Ibn al-Haytham does not point out. 

2) The point K is the centre of a positive homothety. The method 
employed here is the same as the one found in Propositions 38 and 41. 

In the homothety h K,  
RI
RH

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , the points A, B, C, L have as their 

respective homologues D, E, B, M; the radii HB, HL have homologues IE 
and IM, which are parallel to them; the arcs CB, BA, AL have as their 
homologues the arcs GE, ED, DM which are similar to them. 
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TREATISE BY AL-ḤASAN IBN AL-ḤASAN IBN AL-HAYTHAM  
 

On the Properties of Circles 
 
 
 
None of the geometrical figures has more properties; none invites more 

subtle investigation; none is more surprising in its complexity than the 
figure of the circle. The ancients and the moderns present several types of 
discussion on its properties, and on the effects of its subtlety. However, in 
regard to all the discussions we have found by mathematicians1 on the 
properties of the circle, we have not seen that they exhausted all the 
properties that can occur in it. Since this was the case, we thought to 
investigate the properties of this figure, following step by step everything 
that can occur in it, giving proofs for everything that we have found that 
mathematicians have not [previously] described, as well as all the things 
that they have not proved in [those of] their books that have come down to 
us. We have examined this matter carefully and we have composed this 
treatise. 

It is possible that our predecessors gave discussions of the properties of 
circles that have not come down to us; but this is not certain. Now we must 
not use the pretext of that possibility to justify our refraining from setting 
out what we have found on [matters] that have not come down to us. If 
anyone discovers, in a discussion by one of our predecessors, one of the 
things that we set out in this treatise, let him rest assured that it did not 
come down to us nor did we have sight of it; and let him not doubt that 
what we have set out on this subject is merely the effect of coincidence. It 
does indeed happen that people arrive at the same idea without intending 
to, and not deliberately. Further, we do not claim that what we have 
established regarding the properties of circles, combined with what all our 
predecessors established about them, exhausts all the properties of circles. 
Indeed, the properties of circles are numerous, and their number is almost 
infinite; which is to say that, whatever [number] of them has already been 
found and whatever [number] is found, it its always possible, later on, to 

 
1 Lit.: by people of this art. 
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find something more. Nevertheless, what this treatise contains is the end 
result of our investigation, [material] that we have not found in the books 
we inherited from our predecessors. It is God’s help that we pray for in all 
things. 

 
<1> If in a circle we draw an arbitrary chord and if in the circle we 

draw another chord that cuts this chord and makes with it an angle equal to 
the angle inscribed in the segment cut off by the first chord, then the 
second chord cuts off two equal arcs on either side of the first chord. 

Example: Let there be a circle ABC in which we draw the chord AC and 
in which we also draw the chord BED in such a way that the angle BEC is 
equal to the angle inscribed in the segment ABC. 

 
Fig. I.1 

 
I say that the arc BC is equal to the arc CD. 
Proof: We join AB, BC, CD and DA. Since the angle BEC is equal to 

the angle ABC, the product of AC and CE is equal to the square of CB. 
Since the angle BEC is equal to the angle ABC, the angle CED is equal to 
the angle ADC, and since the angle CED is equal to the angle ADC, the 
product of AC and CE is equal to the square of CD, so the square of CB is 
equal to the square of CD, so BC is equal to CD and the arc BC is equal to 
the arc CD. This is what we wanted to prove. 

 
<2> If in a circle we draw two parallel chords, and if we divide each of 

them into two halves and if we join the two points of division by a straight 
line, then if we extend that straight line, it passes through the centre of the 
circle. 

Example: Let there be a circle ABC, with centre K, in which we draw 
the two parallel chords BE and DG. We divide BE into two halves at the 
point I, we divide DG into two halves at the point H and we join HI. 

I say that if we extend HI, then it passes through the point K. 
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Fig. I.2 

 
Proof: It cannot be otherwise; if that were possible, let it not pass 

through the centre. We join KI; it cuts the straight line HI because it is not 
in contact with it along a straight line, so let it cut it. We extend it; it will 
cut the straight line DG; let it cut it at the point L. Since BE is divided into 
two equal parts at the point I, the angle KIE is a right angle and the angle 
KLG is a right angle. We join KH; then the angle KHL is a right angle, so 
the two angles L and H of the triangle KLH are right angles; which is 
impossible. So the straight line HI passes through the centre of the circle. 
This is what we wanted to prove. 

 
<3> If in a circle we draw two parallel chords, if we divide the two 

chords in the same ratio, other than the ratio of one half, if we join the two 
points of division with a straight line and if we extend that straight line, it 
does not pass through the centre of the circle. 

Example: Let there be a circle ABC in 
which we draw the parallel chords BD and 
EG. We divide them at the points I and H in 
the same ratio other than the ratio of one 
half, and we join IH. 

I say that IH does not pass through the 
centre of the circle. 

Proof: This is not possible; if it were 
possible, let the line pass through the 
centre. We extend it on both sides to the 
points A and C; so AC would be a diameter 
of the circle and the two angles that are at 
the points H and I would not be right 
angles. 

 
Fig. I.3 

E

D

K

I

H LG

B

A

C

A

H

N

I

E
B

C

G

D

L

M

K



 CHAPTER I: AL-ḤASAN IBN AL-HAYTHAM 90 

At the points B and E we draw the two perpendiculars BK, EN, we 
extend them to M and L and we join DM and GL. Since the ratio of DI to 
IB is equal to the ratio of GH to HE, the ratio of DB to BI is equal to the 
ratio of GE to EH. But the ratio of IB to BK is equal to the ratio of HE to 
EN, because the two triangles IBK and HEN are similar, so the ratio of DB 
to BK is equal to the ratio of GE to EN. But BM is twice BK and LE is 
twice EN because BM and EL are perpendiculars to the diameter. So the 
ratio of DB to BM is equal to the ratio of GE to EL; but the two angles 
DBM and GEL are equal, so the two triangles DBM and GEL are similar, 
and the angle BDM is equal to the angle EGL; so the two segments BAM 
and EAL are similar; which is impossible. So the straight line IH does not 
pass through the centre of the circle. This is what we wanted to prove. 

So it is clear, from what we have proved, that if two <unequal> parallel 
chords cut a diameter of the circle and are not perpendicular to this 
diameter, then they will not be divided in the same ratio by the diameter.2 

 
<4> If in a circle we draw two parallel chords, if we divide them in the 

same ratio and if we join the two points of division with a straight line such 
that the two angles that it makes with the two chords are not right angles, if 
we then extend the straight line that joined the two points of division, if we 
then join the two endpoints of the chords with a straight line that we extend 
to meet the straight line that passes through the two points of division, if 
from the point of intersection we then draw a straight line to the centre of 
the circle, then it will be perpendicular to the two chords. 

Example: Let there be a circle 
ABC in which there are the two 
chords BD and EG that have been 
divided in the same <ratio>, other 
than the ratio of doubling, at the 
points I and K. We join KI and we 
extend it; <we join BE and we 
extend it>, it meets the straight line 
KI <at the> point H. We join the 
point H to the centre of the circle, 
let it be M, <with a straight line>; 
let it cut the two chords BD and EG 
at the points L and N.  

I say that the straight line 
<HNL> is perpendicular to the two 
chords BD and EG. 

 
Fig. I.4 

 
2 See Note 3 in the special case where the chords are equal, p. 38. 
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Proof: The ratio of DB to <BK is equal to the ratio> of GE to EI, the 
ratio of KB to BL is equal to the ratio of IE to EN.3 So the ratio of <DB> to 
BL is equal to the ratio of GE to EN. So if the straight lines BD and EG 
were not <perpendicular> to the diameter MN, then two parallel straight 
lines would be cut by this diameter in the same ratio <while not being> 
perpendicular to it; which is impossible. So the straight line HM is 
perpendicular to the two straight lines BD and EG. <This is what we 
wanted to prove>. 

 
<5> If in a circle we draw an arbitrary chord that cuts off <two parts> 

on the circle <and if we draw> two unequal perpendiculars that end on the 
circumference of the circle on both sides, the chord <does not divide them> 
in the same ratio. 

Example: Let there be a circle ABC in which there is <a chord AC. We 
draw> the two unequal perpendiculars BE and DG, and we then extend 
these two perpendiculars <to H and I>.  

<I say> that the straight line AC does not divide the two perpendicu-
lars BH and DI in the <same> ratio. 

 
Fig. I.5 

 
<Proof>: This is not possible; if it were possible, let the ratio of BE to 

EH <be equal to that ratio>. Let us consider the centre of the circle and let 

 
3 Ibn al-Haytham uses the following property: three concurrent straight lines define 

similar divisions on two parallel lines (an immediate consequence of the similarity of 
two triangles). A more general version of this result, for an arbitrary number of 
concurrent lines, is proved by Piero della Francesca (c. 1412–92) in his treatise on 
perspective (De prospectiva pingendi, Book I, section 8), using similar triangles and 
citing theorems from Elements VI (see J. V. Field, Piero della Francesca: A 
Mathematician’s Art, London, 2005). In context, this becomes a proof of the conver-
gence of perspective images of orthogonals (or images of any set of parallel lines). 
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us draw from it a diameter parallel to the chord AC; let it be <the diameter 
PN>. The diameter will be perpendicular to the two parallel straight lines. 
<So the ratio of NB to> BE is equal to the ratio of PD to DG, so the ratio of 
NE to EB is equal to the ratio of PG to GD. <But> NE is equal to PG, so 
the straight line EB is equal to the straight line GD; but by hypothesis they 
were unequal, which is impossible. So the two perpendiculars BH and DI 
are not divided in the same ratio by the chord AC. This is what we wanted 
to prove. 

 
<6> If in a circle we draw an arbitrary chord and if we then draw in the 

circle two parallel chords that are divided in the same ratio by the first 
chord, then we cannot draw in the circle another chord that is parallel to the 
two chords and that is divided by the first chord in the ratio of the two 
chords that are parallel to it. 

Example: Let there be a circle ABC; in it we draw an arbitrary chord, 
which is AC. We then draw in the circle two parallel chords, BEH and DGI, 
that are divided by the first chord in the same ratio. 

I say that we cannot draw in the circle a third chord parallel to the first 
two and that is divided by the first chord in the ratio of the first two chords. 

 
Fig. I.6 

 
Proof: This is not possible; if it were possible, let us then draw the 

chord UQO which is divided at the point Q such that the ratio of UQ to QO 
is equal to the ratio of DG to GI. <We draw> DB, we extend it in the 
direction towards B and we draw AC; let the lines meet one another <at the 
point> K. <We mark> the centre of the circle, let it be L; we join KL; so the 
straight line KL is perpendicular to the parallel chords, as has been shown 
in Proposition 4. Let it cut the parallel chords at the points M, N, S; so it 
divides [each] of the chords into two equal parts. The ratio of ND to DI is 
equal to the ratio of SU to UO, and the ratio of DI to DG is equal to the 
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ratio of OU to UQ, so the ratio of ND to DG is equal to the ratio of SU to 
UQ, and the ratio of NG to GD is equal to the ratio of SQ to QU. We 
extend the straight line KBD in the direction towards D, it thus meets the 
straight line QU; let it meet it at the point P; so the point P lies outside4 the 
circle and the ratio of NG to GD is equal to the ratio of SQ to QP. But the 
ratio of NG to GD was equal to the ratio of <SQ> to QU, so the ratio of SQ 
to QU would be equal to the ratio of SQ <to QP>; which is impossible. So 
we cannot draw in the circle a third chord that is divided by a straight line 
<AC in the ratio of the two chords> BH and DI. This is what we wanted to 
prove. 

 
<7> <Let there be a circle and an arbitrary point through which we 

draw> two straight lines that cut the circle; we draw the <two chords> that 
subtend the two arcs cut off by these two straight lines. Then, from the 
endpoint of one of the two chords, we draw a straight line parallel to the 
other chord. The parallel straight line then cuts off from the straight line on 
which it ends a straight line such that its product with the straight line that 
<passes> through the point and the endpoint of the arc is equal to the 
square of the straight line that runs between the point and the other end of 
the arc. 

Example: Let there be a circle ABC and a given point D; from the point 
D we draw the two straight lines DEB and DCA, we join AB and CE and 
we draw EG parallel to BA. 

I say that the product of GD and DC is equal to the square of DE. 
 

 
Fig. I.7 

 

 
4 See Note 2, p. 42. 
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Proof: The product of AD and DC is equal to the product of BD and 
DE, so the ratio of AD to DB is equal to the ratio of ED to DC; <but the 
ratio of AD to DB is equal to the ratio of DG to DE>, so the ratio of GD to 
DE is equal to the ratio of ED to DC, and the product of GD and DC is 
equal to the square of DE. 

In the same way, if we draw from the point C a straight line parallel to 
the straight line BA, we then show by an analogous proof that the product 
of ED and the straight line cut off from the straight line ED by the parallel 
is equal to the square of DC. 

In the same way, if we draw from the point B a straight line parallel to 
the straight line EC, to cut the straight line DA; and in the same way if we 
draw from the point A a straight line parallel to the straight line EC <to cut 
the straight line DB>, the same result necessarily follows. This is what we 
wanted to prove. 

 
<8> If in a circle we draw one of its diameters, which we then extend 

outside the circle, if we take an arbitrary point on it and if we then make 
the product of the straight line that lies between the exterior point and the 
centre of the circle and a part of that straight line equal to the square of the 
semidiameter, then if through the three points – the exterior point, the inte-
rior point and the endpoint of the diameter – <we cause to pass> three 
straight lines that meet one another in a point on the circumference of the 
circle, whatever that point may be, then the two angles formed by the three 
straight lines are equal. 

Example: Let there be a circle ABC in 
which there is the diameter AC. We draw the 
diameter <AC> to the point E and we put the 
product of ED and <DH, which is a part of 
the straight line DE, equal to the square of the 
semidiameter. If we draw from the points> E, 
A and H three straight lines EB, AB and <HB, 
I say that the two angles EBA and ABH> are 
equal. 

Proof: We join <DB, then the product of 
ED and DH is equal to the> square of DB, so 
the ratio of <DE to DB is equal to the ratio of 
DB to DH, so the triangle> BED is similar to 
the triangle <DBH>, and the ratio of BD to 
<DH is equal to the ratio of EB> to BH; it is  

 
Fig. I.8 
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also equal to the ratio <of DA> to DH and it is equal to the ratio of EA <to 
AH. So the ratio of AE to AH is equal to the ratio> of EB to BH <and the 
angles EBA and ABH are equal.5 This is what we wanted to prove>.  
 

<9> If from an exterior point we draw a straight line that cuts the cir-
cle, and cuts off from it an arc smaller than a semicircle, if we then join the 
endpoints of the arc to an interior6 point and if we also join the endpoints of 
the arc to the centre of the circle, then the two angles that are formed are 
equal. 

<Example>: Let us draw from the point E the straight line EBI and let 
us join the straight lines BH, IH, BD and ID. 

I say that the two angles BHI and BDI are equal. 

 
Fig. I.9 

 
Proof: We join the straight lines AB and AI, then the two angles EBA 

and HBA are equal, and the angles EIA and HIA are equal. But the angle 
EBH exceeds the angle EIH by the angle BHI and the angle EBA exceeds 
the angle EIA by the angle BAI. But the excess of the half over the half is 
half the excess of the whole over the whole. So the angle BAI is half of the 
angle BHI, but the angle BAI and the angle BDI stand on the same arc 
which is BI, the angle BDI is at the centre and the angle BAI at the 
circumference; so the angle BAI is half the angle BDI. Thus, the two angles 
BHI and BDI are equal. This is what we wanted to prove. 

 
<10> In the same way, let us return to the figure and let us draw a 

straight line from C to I. 

 
5 From Euclid, Elements VI.3. 
6 The interior point and the exterior point referred to in this statement are those of 

the previous proposition. 
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I say that the product of the sum of EB and BH with HI is equal to the 
product of CH and HE. 

 
Fig. I.10 

 
Proof: We extend HB in the direction towards B, we cut off BK equal 

to BE and we join EK, EI and CI. Since EB is equal to BK, the angle E is 
equal to the angle K, so the angle EBH is twice the angle K, and the angle 
K is equal to the angle ABH. But the angle ABH is equal to <the angle 
ABE>, so the angle K is equal to the angle C, and the circle circumscribed 
about the triangle ECI passes through the point <Q homologous to the 
point> K;7 so the product of KH and HI is equal to the product of CH and 
HE <which is equal to the product of QH and HI>. But KH is equal to the 
sum of EB and BH, so the product of the sum of EB and BH with HI is 
equal to the product of CH and HE. This is what we wanted <to prove>. 

 
 
<11> If in a circle we draw one of the diameters, which we extend 

outside <the circle, if we take> an arbitrary point on it and we draw two 
straight lines <that make> equal <angles> on either side of the diameter 
and <let them not meet the circumference of the circle, if we take> on the 
circumference of the circle on either side <of the endpoint of the diameter 
two points at equal distances from> this endpoint and <if we draw from 
one> of these two points two straight lines to the straight lines and from the 

 
7 In the manuscript, a part of the end of the line is effaced; we have replaced it by 

<Q homologous to the point>. The circle circumscribed about triangle ECI does not 
pass through the point K, it passes through the point Q, which is symmetrical with K 
with respect to EC. 
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other point two straight lines <parallel to these latter, then the product of 
these two straight lines> one with the other, is equal to the product of the 
two other straight lines, one with the other. 

Example: Let there be a circle ABC in which we draw the diameter 
AED, on which we take the point D outside the circle. We draw from this 
point two straight lines DG and DH which do not meet the circle but are 
such that the two angles GDE and HDE are equal. On the circumference of 
the circle we take two points B and C whose distances from the point E are 
equal, we draw from the point B two straight lines BI and BK and we draw 
from the point C two straight lines CM and CL parallel to the straight lines 
BI and BK. 

 
Fig. I.11 

 
I say that the product of BI and BK is equal to the product of CL and 

CM. 
Proof: We join BOC, it will be perpendicular to the diameter EA, 

because the arc BE is equal to the arc EC; we extend BC on either side to N 
and P: so NO is equal to OP, because the two angles NDO and PDO are 
equal; now BO is equal to OC, because the two arcs BE and CE are equal; 
finally BN is equal to CP, so the ratio of CN to NB is equal to the ratio of 
BP to PC. But the ratio of CN to NB is equal to the ratio of CM to BI, 
because the latter are parallel; now the ratio of BP to PC is equal to the 
ratio of BK to CL, so the ratio of CM to BI is equal to the ratio of BK to CL. 
So the product of BI and BK is equal to the product of CL and CM. This is 
what we wanted to prove. 
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<12> If in a circle we draw an arbitrary chord, if we divide the two arcs 
cut off by the chord in the same ratio by alternating and if we join the 
endpoints of the two arcs,8 then the ratio of the two angles formed at the 
point of intersection, one to the other, is equal to the ratio of the two arcs 
<whose> chords we drew from one of the two points, the one to the other. 

Example: Let there be a circle <ABC, and the two points B and D on 
either side> of the chord AC such that the ratio of the arc AB to the arc BC 
is equal to the ratio <of the arc CD to the arc> DA. We join BED.  

 
Fig. I.12 

 
I say that the ratio of the angle AEB to <the angle BEC is equal to the 

ratio of> the arc AB to the arc BC. 
Proof: We join <the straight lines CB, BA, CA, AD and DC>; so the 

ratio of the arc AB to the arc BC is equal to the ratio <of the angle ACB to 
the angle> CAB. In the same way the ratio of the arc CD to the arc <AD is 
equal to the ratio of the angle CAD to the angle> ACD. So the ratio of the 
angle ACB to the angle <CAB is equal to the ratio of the angle DAC to the 
angle> ACD. But the angle DAC is equal to the angle <DBC and the angle 
ACD is equal to the angle> ABD, so the ratio of the angle ACB <to the 
angle CAB> is equal to the ratio of the angle CBE to <the angle DBA and is 
equal to the ratio of the angle AEB to the angle> BEC, which is equal to the 
ratio of the whole to the whole. <So the ratio of the angle AEB> to the 
angle BEC <is equal to the ratio of the arc> AB to the arc BC. This is what 
<we wanted to prove>. 

 
<13> <If we draw> in a circle <two chords that cut one another inside 

the circle, then each of the angles in which they cut one another> is equal 

 
8 That is, the points of division of the two arcs. 
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<to the angle that intercepts the sum9 of the two arcs that lie between the 
two chords>. 

<Example: Let there be a circle ABC> in which the two chords AC and 
BD cut one another at the point E. 

 

 
Fig. I.13.1 

 
I say that the angle AEB is equal to the angle that intercepts the sum of 

the two arcs AB and CD. 
Proof: From the point B we draw a straight line parallel to the straight 

line AC, let it be BH; the straight line BH is either a tangent to the circle or 
cuts it. If BH is a tangent to the circle, then the angle HBE is equal to the 
angle inscribed in the segment BAD that intercepts the arc BCD. If BH is a 
tangent to the circle, then the point B is the mid point of the arc ABC, so the 
arc BC is equal to the arc AB, the sum of the arcs AB and CD is equal to the 
arc intercepted by the angle HBE which is equal to the angle AEB. And the 
angle BEC itself is also equal to the angle that intercepts the sum of the 
remaining two arcs of the circle and which are the arcs AD and CB. 

And if the straight line BH cuts the arc intercepted by the angle BEC, 
<then the angle HBD intercepts the arc HCD. But the arc HCD is equal to 
the sum of the arcs HC and CD and the arc HC is equal to the arc AB. Now 
the angle HBD is equal to the angle AEB, so the angle AEB is equal to the 
angle which intercepts the sum of the arcs AB and CD. And the angle BEC 
is itself also equal to the angle which intercepts the sum of the remaining 
two arcs of the circle and which are the arcs AD and CB>. This is what we 
wanted to prove. 

 

 
9 In such expressions, we have added the term ‘sum’ to conform with normal 

English usage. 
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We say in the same way that if in a circle we draw two chords that cut 
one another outside the circle, then the angle in which they cut one another 
is equal to the angle that intercepts the arc by which the greater of the two 
arcs that lie between the two straight lines exceeds the smaller one. 

Let there be a circle ABC in which we draw the chords AC and DB; let 
them meet one another outside the circle at the point E. 

 
Fig. I.13.2 

 
I say that the angle BEC is equal to the angle <that> intercepts the arc 

by which the arc BC exceeds the arc DA. 
Proof: We draw the straight line DI parallel to the straight line AC, so 

the angle BDI is equal to the angle BEC. But the angle BDI is the angle that 
intercepts the arc BI, and the arc BI <is the arc by which the arc> CB 
<exceeds> the arc DA, because the arc DA is equal to the arc <IC. This is 
what we wanted to prove>. 

 
<14> In a circle we draw one of the diameters, then we draw <from its 

endpoint, in one> of the two directions, <a tangent to the circle>, we next 
draw another tangent to the circle, <then we extend the diameter passing 
through the point of contact which meets the first tangent, we have that the 
product> of the two parts of the latter, the one with the other, is <equal> to 
the product <of what the first tangent cut off from the second tangent> and 
the straight line that is adjacent to it, which lies between <the point of 
contact and the point of intersection of the second tangent with the first 
diameter>. 

<Example>: Let there be a circle ABC; in it we draw <the diameter 
AEC; we take the point D outside the circle. We draw a straight line that at 
its endpoint touches the circle>, such as AL. We draw the straight line DB 
<tangent to the circle in B and which meets AL in K, and we extend the 
diameter EB; so it meets AL in L. 
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I say that the product of> KB and BD <is equal to the product of EB 
and BL. 

Proof: The straight line DB is a tangent to the circle at the point B, so 
the angle> B is a right angle. The triangle AKD is similar to the triangle 
EBD, so the ratio of AK to EB is equal to the ratio of AD to DB, so the 
product of AK and DB is equal to the product of AD and EB. Now AK is 
equal to KB, EB is equal to EA and the two triangles AEL and EBD are 
similar; but AE is equal to EB, so LE is equal to ED and LB is equal to AD, 
so the product of DA and BE is equal to the product of EB and BL, and the 
product of KB and BD is equal to the product of EB and BL. This is what 
we wanted to prove. 

 
Fig. I.14 

 
Let us return to the circle and the diameter. We extend the diameter in 

the direction of A as well. On it, we take a point G, we erect the 
perpendicular HGI, we draw the tangent HB, we draw EB and we extend it 
to I. 

I say that the product of HB and BD is equal to the product of EB and 
BI. 

Proof: We draw AK, a tangent to the circle, and we extend it to L, so 
the product of KB and BD is equal to the product of EB and BL; now the 
ratio of HB to BK is equal to the ratio of IB to BL, so the ratio of the 
product of HB and BD to the product of KB and BD is equal to the ratio of 
the product of IB and BE to the product of LB and BE. If we permute, the 
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ratio of the product of HB and BD to the product of IB and BE is equal to 
the ratio of the product of BK and BD to the product of LB and BE. But the 
product of BK and BD is equal to the product of LB and BE, so the product 
of HB and BD is equal to the product of <IB and BE. This> is what we 
wanted to prove. 

 
<15> In a circle we draw an arbitrary chord, <we then divide the arc 

subtended by this chord into two equal parts, then by means of an arbitrary 
point> into two unequal parts, and we draw the chords that subtend the 
arcs; then the product of the chord of the greater of the two parts <and the 
chord of the smaller plus the square of the> chord of the arc that lies 
between the two points <of division is equal to the square of the chord of 
half of the arc.> 

<Example: Let there be a circle ABC> in which we draw the chord AC; 
we divide <the arc AC into two equal parts at the point B and into two 
unequal parts> at the point D. We join the straight lines <AB, AD, DC and 
DB. 

 
Fig. I.15 

 
I say that the sum of the product of DA and DC> and the square of DB 

<is equal to the square of AB. 
Proof: We draw from the point B the straight line BE perpendicular to 

the straight line DA, the straight line> AB is greater <than the straight line 
AE>. We cut off EH equal to ED and we join BH; it will be equal to BD. 
We cut off the arc BI equal to the arc BD; we join AI and IB; then the sum 
of the angle I and the angle C is equal to two right angles. But the angle D 
is equal to the angle H, so the angle I is equal to the angle AHB. But the 
angle BAI is equal to the angle HAB, and the straight line AB is common, 
so the triangle AIB is equal to the triangle AHB, and the straight line AI is 
equal to the straight line AH; but AI is equal to DC, because the arc is equal 
to the arc, so the straight line AH is equal to the straight line DC; but HE is 
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equal to ED, so AE is equal to the sum of ED and DC, and the sum of the 
product of AD and DC and the square of DE is equal to the square of AE. 
We add the same square [EB2] to both, then the sum of the product of AD 
and DC and the squares of DE and EB is equal to the sum of the squares of 
AE and EB, so the sum of the product of AD and DC and the square of DB 
is equal to the square of AB. This is what we wanted to prove. 

 
<16> If in a circle we draw two chords, if we divide the small arc into 

two equal parts and if we join the chords, then the sum of the product of the 
chord of the large arc and the chord of the <arc> by which the large <arc> 
exceeds the small one and the square of the chord of half the small arc is 
equal to the square of the chord of the arc composed of half the small <arc> 
and the <arc> by which the greater <arc> exceeds the smaller one. 

Example: Let there be a circle ABC in which we have drawn the two 
chords AB and AC. We divide the arc AB into two equal parts at the point D 
and we join the chords. 

 
Fig. I.16 

 
I say that the sum of the product of AC and CB and the square of BD is 

equal to the square of DC. 
Proof: We draw the perpendicular DE, we cut off EG equal to EA and 

we join DG. So the angle G is equal to the angle A and the sum of the angle 
A and the angle DBC is equal to two right angles; so the angle DBC is 
equal to the angle DGC; but the angle BCD is equal to the angle DCG, so 
the triangle DBC is equal to the <triangle DGC> and BC is thus equal to 
CG. The product of AC and CB is equal to the product of AC <and CG. But 
GD> is equal to DA and DA is equal to DB, so GD is equal to DB. And 
since the triangle ADG is isosceles, the product of AC <and> CG <is equal 
to the difference between the squares of CE and of EG, so the sum of the 
product of AC and CG> and the square of GD is equal to the square of CD. 
So the sum of the product of AC <and BC, which is equal to the product of 
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AC and CG>, and the square of BD, is equal to the square of CD. This is 
what we wanted to prove. 

 
<17> If we draw an arbitrary chord <in a circle>, if we divide one of 

the two arcs <subtended> by that chord into two equal parts and if we draw 
from the point of <division two> arbitrary <straight lines> which cut the 
chord; <if we then join the endpoints of each of these straight lines to the 
endpoints of the chord> with straight lines, <then the ratio of the sum of the 
first> two straight lines to the sum of the last two straight lines <and the 
ratio of the straight lines that join the two endpoints to the point of division, 
are equal one to> the other. 

Example: <Let there be a circle ABC; we divide the arc> AC into two 
equal parts at the point E. We draw from the point E two arbitrary straight 
lines EHB and EGD, we join the straight lines AB, CB, AD, CD. 

I say that the ratio of the sum of AB and BC to the sum of AD and DC 
is equal to the ratio of BE to ED. 

 
Fig. I.17 

 
Proof: Let us join AE and EC. They are equal, so the two angles that 

are at the points A and C of the triangle ABC are equal and the angle EAC 
is equal to the angle EDC; so the angle EDC is equal to the angle ECG, and 
the triangle EDC is similar to the triangle ECG; so the ratio of ED to EC is 
equal to the ratio of CE to EG and is equal to the ratio of DC to CG. But 
the ratio of DC to CG is equal to the ratio of DA to AG, because the two 
angles at the point D are equal.10 <So the ratio> of the sum of AD and DC 
to AC is equal to the ratio of DE to EC. So the ratio of the sum of AD and 

 
10 Euclid, Elements VI.3. 
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DC to DE is equal to the ratio of AC to CE.11 By the same proof, we show 
that the ratio of the sum of AB and BC to BE is equal to the ratio of AC to 
CE. So the ratio of the sum of AB and BC to the sum of AD and DC is 
equal to the ratio of BE to ED. This is what we wanted to prove. 

 
<18> If in a circle we draw one of the diameters and if we then divide 

one of the two semicircles into two equal parts; if we then draw from the 
point of division a straight line that cuts the diameter in an arbitrary point 
and if we join the two endpoints of the diameter to the endpoint of the 
straight line by two straight lines, then the square of the two straight lines, 
if they become a single straight line, is equal to twice the square of the 
straight line that cuts the diameter. 

Example: In the circle ABCD we draw a diameter AC, <we divide the 
semicircle> ADC into two equal parts at the point D, we draw from this 
point a straight line DEB which cuts <the circle in B and we join> the two 
straight lines AB and BC. 

 
Fig. I.18 

 
I say that the square of the sum of the two straight lines AB <and BC if 

they become> a single <straight line> is twice the square of BD. 
Proof: We join <the two straight lines> AD and DC, so the ratio of the 

sum of AB and BC to <BD> is equal to the ratio of AC to CD, as we have 
proved earlier [in Proposition 17]. <So the ratio of the square of> AB and 
BC, if they become a single straight line, <to the square of BD, is equal to 
the ratio of the> square of AC to the square of CD. But the square of AC <is 
twice the square of CD, so the square of the sum of> AB and BC is twice 
<the square of BD. This is what we wanted to prove>. 

 
11 This property is found in the Data, Proposition 94. It uses the ratio of similarity 

of two triangles and the property of the foot of the bisector, i.e. of the point in which the 
bisector of an angle of a triangle meets the opposite side (Euclid, Elements, VI.3). 

E

D

B

AC



 CHAPTER I: AL-ḤASAN IBN AL-HAYTHAM 106 

<19> <In a circle we draw the side of an> equilateral <triangle>, <then 
with a point we divide the arc subtended by this side of the triangle, we 
draw from the point of division a straight line that cuts the side> which 
subtends this <arc such that it reaches the circle; then we draw from the 
endpoint of the straight line> two straight lines <to the two endpoints> of 
the side, <these two straight lines combined are equal to this straight line>. 

Example: We draw in the circle ABCD an <equilateral> triangle ADC, 
we draw from the point D the straight line DEB and we join AB and BC. 

 
Fig. I.19 

 
I say that the sum of AB and BC is equal to the straight line BD. 
Proof: The ratio of the sum of AB and BC to BD is equal to the ratio of 

AC to CD, from what we have proved earlier.12 Since the arc AD is equal to 
the arc DC and AC is equal to CD, accordingly the sum of AB and BC is 
equal to BD. This is what we wanted to prove. 

 
<20> If in a circle we draw the side of a pentagon,13 if we then divide 

the remainder of the circle into two equal parts and we draw from the point 
of division a straight line which cuts the side of the pentagon and ends on 
the circle, and then we join the two endpoints of the side of the pentagon to 
the endpoint of the straight line by two straight lines, then the sum of the 
two straight lines and the first straight line, if the three are aligned, is 
divisible in extreme and mean ratio,14 and the greater part is the straight 
line <that is a> secant. 

 
12 Proposition 17. 
13 Throughout this text, the pentagon is assumed to be regular. 
14 The length of the first straight line is the mean proportional between the total 

length and the sum of the two other straight lines. 
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Example: Let there be a circle ABCD in which there is the side of the 
pentagon, which is AC. We divide the arc ADC into two equal parts at the 
point D and we draw the straight line DEB which cuts AC; we join AB and 
BC. 

I say that if AB, BC, BD are aligned, 
their sum is divided in extreme and mean 
ratio and <the greater part is DB>. 

Proof: We join DC, so the ratio of the 
sum of AB and BC to BD is equal to the ratio 
of AC to CD, from what we have proved 
earlier [Proposition 17]. But DC subtends the 
arcs of the circle,15 so if we divide DC in 
extreme and mean ratio, the greater side will 
be equal to <AC>. We divide DC at G, so DG 
is equal to AC.16 So the ratio of the sum of AB 
<and BC to> BD is equal to the ratio of GD to 
CD.17 

We extend DB <to the point H such that 
BH> is equal to AB plus BC, so the ratio of 
HB to DB is equal to the ratio <of CG to 
GD>, so the ratio of HD to BD <is equal to 
the ratio of CD to DG which is equal to the 
ratio of DB to BH. <So the ratio of HD to DB 
is equal to the ratio of DB to BH.> 

 
Fig. I.2018 

 
15 One of the arcs subtended by DC is two fifths of the circle, that is two of the arcs 

corresponding to the pentagon. 
16 To prove that DG = CA, it is sufficient to prove that DG = DD', that is that the 

triangle GDD' is isosceles.  
 

DĜ ′D =GD̂ ′′D , 
 

D ˆ ′DG = ′′D ÂG =GD̂ ′′D , 
 

so  
DĜ ′D = D ˆ ′DG  

 
and the triangle GDD' is isosceles. 

 
 

17 From Euclid, Elements XIII.9, we have GD/CD = CG/DG. Perhaps the copyist 
has omitted something. 

18 The figure in the manuscript is incorrect. 
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<The ratio> of the sum of AB, BC, BD <to BD is thus equal to the ratio 
of BD to the sum of AB and> BC, so the straight lines AB, BC, <BD, if we 
imagine them aligned>, are divided in <extreme and mean ratio>. This is 
what we wanted to prove.  

 
<21> If in a circle we draw the side of a pentagon and we draw from 

the centre a perpendicular to the side of the pentagon, a perpendicular 
which we extend to meet the circumference of the circle, if, on the side 
towards the centre, we cut off from the perpendicular a piece equal to the 
sagitta of the arc which is one fifth [sc. of the circle], then what remains of 
the perpendicular is equal to the side of the decagon. 

Example: Let there be a circle ABC in which we draw the side of the 
pentagon; let it be AC. From the centre, which is D, we draw the 
perpendicular DE which we extend to B, and we cut off GD equal to BE. 

I say that EG is equal to the side of the decagon. 

 
Fig. I.2119 

 
Proof: Let us cut DB into two equal parts at the point H; so the straight 

line GE is divided into two equal parts at the point H. Now it has been 
proved in the last two books attached to Euclid’s book 20  that the 
perpendicular DE is equal to half the side of the hexagon plus half the side 
of the decagon; now the straight line DH is half the side of the hexagon, so 
the straight line EH is half the side of the decagon, and the straight line EG 
is the side of the decagon. This is what we wanted to prove. 

 

 
19 This figure does not appear in the manuscript. 
20 Ibn al-Haytham is aware that the fourteenth and fifteenth books do not form part 

of Euclid’s Elements. He knew their author as Hypsicles. 
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<22> If in a circle we draw one of the diameters, if we divide one of 
the semicircles into two equal parts and we draw from the point of division 
an arbitrary straight line that cuts the diameter and ends on the circumfe-
rence, if we draw from its endpoint two straight lines to the two endpoints 
of the diameter and if from the point of division we also draw two straight 
lines to the two endpoints of the diameter, then the quadrilateral that is 
formed is half the square of the straight line drawn from the point of divi-
sion. 

Example: Let there be a circle ABCD in which we draw the diameter 
AC. We divide the arc ADC into two equal parts at the point D; we draw 
the arbitrary straight line DEB and we join the straight lines AB, BC, CD 
and DA. 

I say that the quadrilateral <ABCD is equal> to half the square of the 
straight line BD. 

 
Fig. I.22 

 
Proof: We mark the centre <G, we join> DG and we extend it to K; 

DGK will be perpendicular <to AC. We drop from the point> B the two 
perpendiculars BH, BI, then AC by <BH> is twice the triangle ABC, <and 
the product of AC and DG> is twice the triangle ADC, so the product <of 
AC> and BH <is equal to the product of AC and GI and the product of AD 
and DC is equal> to twice the square of DG. But GC is equal to GD, so the 
product <of GC and DI is equal to the quadrilateral> ABCD. But AC <is 
equal to DK> and the product of KD <and DI is equal to the square of BD>, 
so the quadrilateral <ABCD is equal to half the square of BD. This is what 
we wanted to prove>. 

 
<23> In a circle we draw one of the diameters, we divide one of the 

semicircles into two equal parts, then on one of its quarters we take two 
points and we draw from each of them two straight lines to the endpoints of 
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the diameter and a straight line to the mid point, then the square of the 
greater sum of the two straight lines, if they become one single straight 
line, exceeds the square of the smaller sum of the two straight lines, if they 
become one single straight line, by twice the excess of the square of the 
greater of the two straight lines that join the two points to the mid point of 
the arc over the square of the smaller. 

Example: Let there be a circle ABC; we draw the diameter AC, we 
divide the arc ABC into two equal parts at the point B, on the arc BC we 
take two points D and E and join the straight lines AD, DC, AE, EC, EB, 
DB.  

I say that the excess of the square of the sum of AD and DC, if they 
become one single straight line, over the square of the sum of AE and EC, 
if they become one single straight line, is twice the excess of the square of 
EB over the square of DB. 

 
Fig. I.23 

 
Proof: We mark the centre, let it be G; we join BG and we extend it to 

H, then the arc AHC is divided into two equal parts at the point H. We join 
HD; then the square of the sum of AD and DC – if they become a single 
straight line – is twice the square of HD; in the same way the square of the 
sum of AE and EC – if they become a single straight line – will be twice 
the square of EH, as we have proved in Proposition 18. So the excess of the 
square of the sum of AD and DC over the square of the sum of AE and EC 
is equal to the excess of twice the square of HD over twice the square of 
HE. But the excess of twice over twice is twice the excess of half over half. 
So the excess of the square of the sum of AD and DC over the square of the 
sum of AE and EC is twice <the excess of the square of HD> over the 
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square of HE. But the excess of the square of HD over the square of HE is 
the excess of the <square of EB over the square of> BD. 

The excess of the square of the sum of AD and DC over the square of 
the sum of AE and EC is thus <twice the excess of the square of EB over 
the square> of DB. This is what we wanted to prove. 

 
<24> In a circle we draw <two perpendicular diameters and we join> 

the endpoints of one of these two diameters to one endpoint <of the other 
diameter. We draw from one endpoint> of the first diameter an <arbitrary> 
straight line to the chord that is opposite it; <from the point of intersection 
we drop a perpendicular to> the other diameter, then the product of the 
semidiameter <and the straight line cut off on it by this perpendicular is 
equal to the> triangle on the side towards the endpoint of the diameter <and 
which has as its base the straight line drawn from the endpoint of the first 
diameter.> 

<Example: Let there be a circle ABCD>; the two diameters AC and BD 
cut one another <at the point E. We join CB and from the point A we draw 
a straight line that cuts CB in an> arbitrary <point>, let it be G; from <G> 
we drop <the perpendicular GH to BD.  

I say that the product of EB and BH> is equal to the triangle ABG. 

 
Fig. I.24 

 
Proof: Let us draw the perpendicular GI, we have that the product of 

AC and IG is equal to twice the triangle AGC. But GI is equal to HE, so the 
product of AC and EH is twice the triangle AGC; but the product of AC and 
EB is twice the triangle ABC, so finally the product of AC and BH is equal 
to twice the triangle ABG; but AC is twice EB, so the product of EB and BH 
is equal to the triangle ABG. This is what we wanted to prove. 
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<25> Let us return to the circle and the two diameters; let the centre be 
<the point> N and on the arc BC let us take two points G and E. We join 
the straight lines AG, GC, AE, EC, EB and we draw the perpendiculars GH 
and EI; let the perpendicular GH cut the straight line EB at the point K and 
let the perpendicular EI cut the straight line GC at the point M; we join AM. 

I say that the product of BE and EK is twice triangle AGM. 
Proof: We join DE, so the product of DB and BH is equal to the 

product of EB and BK, because the two triangles BED and BHK are similar 
since each of the angles E and H is a right angle. But the product of DB and 
BI is equal to the square of BE; finally the product of DB and HI is equal to 
the product of BE and EK. In the same way, the product of DB and NH is 
equal to twice the triangle AGC, because NH is equal to the perpendicular 
dropped from the point G onto the straight line AC and BD is equal to AC, 
and the product of BD and NI is twice the triangle AMC, so the product of 
DB and HI is equal to the excess of twice the triangle AGC over twice the 
triangle AMC. So the product of DB and HI is twice the excess of the 
triangle AGC over the triangle AMC. But the product of BE and EK <is 
equal to the product of DB and HI>, so the product of BE and EK is equal 
to twice the excess of the triangle AGC over the triangle AMC. But the 
excess of the triangle AGC over the triangle AMC is equal to the triangle 
<AMG, because the straight lines GH and MI> are parallel, so the product 
of BE <and EK is equal to twice the triangle AMG. This is what we wanted 
to prove>. 

 
Fig. I.2521 

 

 
21 The figure in the manuscript is incorrect. 
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<26> If in two concentric circles <we draw a straight line that cuts the 
two circles and passes through their centre; and if through one of the points 
of intersection we draw the tangent to the small circle that meets the large 
circle when we extend it, then the chord of the arc cut off on> the large 
circle is equal <to the diameter of the small circle, the tangent is divided 
into two equal parts at the point of contact, and the square of the tangent 
plus the square of the diameter of the small circle is equal to the square of 
the diameter of the large circle>. 

Example: Let there be circles <ABC and DHE with centre G; we draw 
from the point A> the straight line AH <a tangent to the small circle at H 
and we extend it to the point B on the large circle>. 

<I say that the chord of the arc BC is equal to the diameter of the 
circle DHE, that the straight line AB is divided into two equal parts at H 
and that the sum of the square of AB> and the square of the diameter of 
the circle DHE is equal to the square of the diameter of the circle ABC. 

 
Fig. I.26 

 
Proof: We join AG and we extend it to C; let it cut the circle DHE at 

the points D and E; so AC is the diameter of the large circle and DE the 
diameter of the small circle. We join GH and CB; then the angle H is a 
right angle and the angle B is a right angle, so the straight line CB is 
parallel to the straight line GH, and the ratio of BA to AH is equal to the 
ratio of CA to AG. But CA is twice AG, so BA is twice AH. So the tangent 
is divided into two equal parts by the point of contact. But since CA is 
twice AG, accordingly CB is twice GH and GH is the semidiameter of the 
circle DHE. The straight line CB is thus equal to the diameter of the circle 
DHE, and the sum of the square of AB and the square of BC is equal to the 
square of AC. 

For any straight line that touches the circle DHE, if from one of its two 
endpoints we draw a diameter of the <large> circle and if we join the other 
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endpoint to <the other> endpoint of the diameter, then the straight line that 
joins them is equal to the diameter of the small circle; thus, the arcs cut off 
by the tangent,22 [which are] homologous to the arc BC, are always equal. 
Thus, the arcs cut off by the tangents are equal, so the tangents are equal. 
This is what we wanted to prove. 

 
<27> If in two concentric circles we draw a straight line that cuts the 

two circles, then the two parts of the straight line that lie between the two 
circles are equal and the sum of the square of the part that is inside the 
small circle and the square of the tangent is equal to the square of the 
complete straight line. 

Example: Let there be the two circles ABC and DE whose centre is G; 
we draw the straight line BEDH which cuts the two circles. 

 
Fig. I.27 

 
I say that <the sum of the square> of DE <and the square> of the 

tangent is equal to the square of BH. 
Proof: <From the centre of the two circles>, let it be G, <we draw> the 

straight line GEA, we extend it <to the point C and we draw the tangent> to 
the small circle, let it be EI; <then the product of CE and EA is equal to the 
square of EI; but the product of CE and> EA is equal to the product of HE 
and EB <which is equal to the square of EI. We draw from the> point G a 
straight line to the point D and we extend it; <so the point D divides the 
diameter into two straight lines> equal to the two straight lines AE and EC; 
<the product of HD and> DB is equal to the product of <HE and EB; so the 
straight line HD is equal to the straight line BE. The product of HE and EB 
is equal to the square of EI>; in the same way the product of CE and EA is 

 
22 We are dealing with arcs that are homologous with the arc intercepted by the 

angle between the tangent and the diameter. 
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equal to the square of EI. But EI is equal to EK, so four times the product 
of CE and EA is equal to the square of IK and four times the product of HE 
and EB is equal to the square of IK. But HD is equal to EB, so HE is equal 
to DB, so four times the product of DB and BE is equal to the square of IK. 
But four times the product of DB and BE, plus the square of ED, is equal to 
the square of the sum of DB and BE which is BH; so the sum of the square 
of the tangent and the square of ED is equal to the square of BH. This is 
what we wanted to prove. 

 
<28> If in two concentric circles we draw a straight line that cuts the 

two circles but does not pass through the centre and if, from one of the two 
points of intersection between the secant and the small circle, we draw a 
perpendicular to the secant, then the sum of the square of the secant and the 
square of the perpendicular is equal to the square of the diameter of the 
large circle. 

Example: Let there be the two circles ABC and EIG with centre H. We 
draw the straight line BEID which cuts the two circles but does not pass 
through the centre. From the point I we draw the perpendicular IG. 

 
Fig. I.28 

 
I say that the sum of the square of BD and the square of IG is equal to 

the square of the diameter of the large circle. 
Proof: We join EG; it will be a diameter, because the angle EIG is a 

right angle; so the arc EIG is a semicircle and the straight line EG is a 
diameter of the circle IG. But the square of BD is four times the product of 
DE and EB, plus the square of EI, so the sum of the square of BD and the 
square of IG is four times the product of DE and EB, plus the square of EI, 
plus the square of IG; but the sum of the square of EI and the square of IG 
is equal to the square of EG. Now four times the product of DE and EB is 
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the square of the tangent, so the sum of the square of BD and the square of 
IG is the square of the tangent, plus the square of EG, which is the diameter 
of the small circle. Now the sum of the square of the tangent and the square 
of the diameter of the small circle is the square of the diameter of the large 
circle, as has been proved in Proposition 26. This is what we wanted to 
prove. 

 
<29> If in two concentric circles we draw a straight line that cuts the 

two circles and does not pass through the centre, and if, from its endpoint 
on the large circle and from its point of intersection with the small circle, 
we draw two perpendiculars which fall inside the two circles, then the two 
perpendiculars are equal. 

Example: Let there be two circles ABC, DEG with the same centre; in 
them we draw a straight line ADEB that cuts the two circles, and from the 
points B and E we draw two perpendiculars BC and EG. 

 
Fig. I.29 

 
I say that the two perpendiculars BC and EG are equal. 
Proof: The angle ABC is a right angle, so the straight line that joins the 

two points A and C is a diameter of the circle and the sum of the square of 
AB and the square of BC is equal to the square of the diameter of the large 
circle. But it has been proved in the previous proposition that the sum of 
the square of AB and the square of EG is equal to the square of the diameter 
of the large circle, so the sum of the square of AB and the square of BC is 
equal to the sum of the square of AB and the square of EG and the straight 
line BC is equal to the straight line EG. This is what we wanted to prove. 

 
<30> If in two concentric circles we draw a diameter of the small 

circle, if from the endpoints of the diameter we draw two straight lines that 
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cut the small circle and meet one another on the circumference of the large 
circle and if we extend them until they meet <the circumference> of the 
large circle on the other side, then the arc cut off by these two straight lines 
on the large circle is similar to the sum of the two arcs cut off from the 
small circle. 

Example: Let there be two circles ABCD, IHEG in which we draw the 
diameter IG; we draw from the points I and G two straight lines IHB and 
GEB and we extend them to C and D. 

 
Fig. I.30 

 
I say that the two arcs IH and GE combined are similar to the arc DC. 
Proof: We join the straight lines GH and IE and we draw a perpendi-

cular BK; so the triangle BIK will be similar to the triangle GHI; so the 
angle IBK is equal to the angle IGH, and the triangle EGI is similar to the 
triangle BKG; so the angle GIE is equal to the angle KBG, so the sum of 
the angles GIE and IGH is equal to the angle CBD, so the sum of the two 
arcs IH and GE is similar to the arc DC. This is what we wanted to prove. 

 
<31> If in two concentric circles we draw one of the diameters, if from 

the endpoints of the diameter of one of them we then draw two straight 
lines which meet one another on the circumference of the other circle, then 
the sum of their squares is equal to the sum of the squares of the two parts 
of the diameter of the large circle. 

Example: Let there be two circles ABC and DEI, whose centre is the 
same point; we draw the diameter ADIC and we draw from the points D 
and I the two straight lines DE and IH which meet one another at the point 
B. 

I say that the sum of the squares of DB and BI is equal to the sum of 
the squares of AD and DC. 
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   Fig. I.31.1    Fig. I.31.2 
 
Proof: We join the straight lines DH and IE and we draw the 

perpendicular BK. So the two angles at the points E and H are right angles 
and each of them is equal to the angle K. The circle circumscribed about 
the triangle IEB passes through the point K, so the product of BD and DE is 
equal to the product of ID and DK. In the same way we prove that the 
product of BI and IH is equal to the product of DI and IK. So the square of 
DI is equal to the product of BD and DE, plus the product of BI and IH. So 
if they [i. e. DE and IH] meet on the circumference of the large circle, in 
the first case of the figure, we add the product of DB and BE to the product 
of IB and BH, and their sum is equal to twice the product of IA and AD, 
because if we extend BD until it ends on the large circle, then the part 
outside [the small circle] will be equal to BE; so the sum of the squares of 
DB and BI is equal to twice the product of IA and AD, plus the square of 
DI. But the sum of twice the product of IA and AD and the square of DI is 
the sum of the squares of AD and AI, that is to say DC. But if they meet on 
the circumference of the small circle, as in the second case for the figure, 
we subtract the product of DB and BE and that of IB and BH whose sum is 
twice the product of DA and AI, finally the [sum of the] squares of DB and 
BI is equal to the square of DA plus the square of AI, so the sum of the 
squares of DB and BI is equal to the sum of the squares of the two parts of 
the diameter. This is what we wanted to prove. 

 
<32> If two circles touch one another and if from the point of contact 

we draw a straight line that cuts the two circles, then the two alternate of 
interior parts of the two circles from the inside of the contact or from the 
outside are similar, and the ratio of the two straight lines one to the other is 
equal to the ratio of one diameter to the other. 
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Example: Let there be the two circles ABC and CDE which touch at the 
point C. In the two circles we draw the straight line BCD. 

<I say that the two arcs CB and CD are> similar <and that the ratio 
of CB to CD is equal to the ratio of one diameter to the other>. 

 
Fig. I.32 

 
Proof: We mark the two centres, let them be H and G; we join HG; it 

passes through the point C. We extend HG to A and E and we join AB and 
ED; the two angles B and D are right angles, so the two straight lines AB 
and ED are parallel, the two angles BAC and CED are equal, the two arcs 
BC and DC are similar, the two arcs AB and ED that remain are also 
similar, and the ratio of BC to CD is equal to the ratio of AC to CE. This is 
what we wanted to prove. 

 
<33> If two circles touch on their exteriors, if we draw a tangent to the 

two circles and if we join its endpoints to the point of contact, then the 
angle produced is a right angle. 

Example: Let there be the circles ABC and CDG touching at the point 
C; let their centres be E and K. We draw a straight line BD tangent to the 
circles at the points B and D and we join <BC> and DC. 

 
Fig. I.33.1 

 
I say that the angle BCD is a right angle. 
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Proof: We join EK; it passes through the point C. We draw the straight 
line CI perpendicular to the straight line EK; so CI is a tangent to the two 
circles. Since the two straight lines CI and BI are tangents to the circle 
ABC, BI and CI will be equal; but since the straight lines CI and DI are 
tangents to the circle CDG, accordingly CI and DI will be equal. So the 
three straight lines BI, IC and ID are equal, the circle whose diameter is BD 
passes through the point C, and the angle BCD is a right angle. This is what 
we wanted to prove. 

Let us return to the figure. We extend EK in both directions to A and G, 
we join AB and GD and we extend them. 

I say that they meet one another and that the angle at which they meet 
is a right angle. 

 
Fig. I.33.2 

 
Proof: The two angles BDG and DBA are each greater than a right 

angle, so the sum of the two angles that are at the points B and D above the 
straight line BD is smaller than two right angles, so the two straight lines 
meet one another; let them meet at the point L. Since the angle BCI plus the 
angle BCA makes a right angle, and the angle CBI plus the angle LBI make 
a right angle and the angle BCI is equal to the angle CBI, the angle BCA is 
equal to the angle LBI. In the same way, we prove that the angle DCG is 
equal to the angle LDI. But the sum of the angles BCA and DCG is equal to 
a right angle, because the angle BCD is a right angle. So the sum of the two 
angles DBL and LDB is equal to a right angle, and thus the angle L is a 
right angle. This is what we wanted to prove. 

 
<34> Let there be two circles that touch one another on the inside. We 

draw <two straight lines> that cut the two circles in arbitrary points and we 
join the point of contact and the points of intersection of the two straight 
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lines [with the circles], then the ratio of the product of two parts of one of 
the two straight lines, one with the other, to the square of the straight line 
that lies between the point of intersection and the point of contact, is equal 
to the ratio of the product of the two parts of the other straight line, one 
with the other, to the square of the straight line that lies between the point 
of intersection and the point of contact. 

 
Fig. I.3423 

 
Example: Let there be two circles ABC and AEH which touch at the 

point A. In these circles we draw the straight lines BED and GLM and we 
join AE, AL. 

I say that the ratio of the product of BE and ED to the square of AE is 
equal to the ratio of the product of GL and LM to the square of LA and 
that the ratio of the product of GL and LM to the square of LA is equal to 
the ratio of the product of GN and NM to the square of NA. 

Proof: We draw the straight lines AE, AL and AN to the points I, K and 
O, and we draw the common diameter; let it be AHC. So the ratio of CA to 
AH is equal to the ratio of KA to AL, which is equal to the ratio of IA to AE 
and equal to the ratio of OA to AN, as has been proved in Proposition 32. 
So the ratio of IA to AE is equal to the ratio of KA to AL and equal to the 
ratio of OA to AN; and the ratio of IE to EA is equal to the ratio of KL to LA 
and is equal to the ratio of ON to NA. So the ratio of the product of KL 
<and> LA to the square of AL is equal to the ratio of the product of IE and 
EA to the square of EA and is equal to the ratio of the product of ON and 
NA to the square of NA; so the ratio of the product of BE and ED to the 

 
23 In the figure in the manuscript, GM is parallel to BD. 
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square of EA is equal to the ratio of the product of GL and LM to the square 
of LA and is equal to the ratio of the product of GN and NM to the square of 
NA. This is what we wanted to prove. 

 
<35> If we have two circles that touch on their exterior, if we draw a 

straight line which touches the two circles and which meets the diameter 
that passes through the two centres of the circles24 and if from the point 
where they meet we draw a straight line that cuts the two circles in an 
arbitrary manner, then on the side of the two points of contact it cuts off 
from the two circles two similar parts.  

Example: Two circles ABC and CEG touch at the point C, their centres 
are the points D and H and the diameter that passes through the two centres 
is LDCHGI. We draw BEI, a tangent to the two circles, it meets the 
diameter at the point I; we draw from the point I a straight line that cuts the 
two circles at the points K and N. 

 
Fig. I.35.1 

 
I say that the two parts [of circles] ABN and KEM are similar. 
Proof: We join the straight lines DA, DB, DN, HK, EH, HM. Since the 

angles DBI and HEI are right angles, accordingly the two straight lines DB 
and HE are parallel, so the ratio of DB to HE is equal to the ratio of DI to 
IH. But DB is equal to DA, and HE is equal to HK. In the same way, DN is 
equal to DB and HM is equal to HE, so the ratio of DI to IH is equal to the 
ratio of DA to HK and is equal to the ratio of DN to HM, so the straight line 
DA is parallel to the straight line HK, and DN is parallel to the straight line 
HM, 25 so the angle ADN is equal to the angle KHM and the arc ABN is 
similar to the arc KEM. But since the angles that are at the point D are 

 
24 This assumes that the circles are unequal. 
25 That these lines are parallel follows from Euclid, Elements, VI.7. 
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equal to the angles that are at the point H,26 the arc NC will also be similar 
to the arc MG, the arc AB will be similar to the arc KE, the arc BN will be 
similar to the arc <EM and the arc AL is similar to the arc> KC. This is 
what we wanted to prove. 

Let us return to the figure and let us join the straight lines AC and KC. 
I say that the angle ACK is a right angle. 

 
Fig. I.35.2 

 
Proof: We join BC and CE, so the angle BCE is a right angle, from 

what has been proved in Proposition 33. Since the arc AB is similar to the 
arc <KE>, the angle ACB is equal to the angle EGK and the angle ECK is 
<their> common <supplement>, so the angle ACK is equal to the angle 
BCE; but the angle BCE is a right angle, so the angle ACK is a right angle. 

In the same way, we prove that if we join the points N and M to the 
point C by two straight lines, then the angle formed at the point C is a right 
angle. This is what we wanted to prove. 

 
<36> If we join the centres of two separate circles with a straight line 

and if we divide the part that lies between the two circles into two parts 
such that the ratio of one to the other is equal to the ratio of the diameter to 
the diameter, then the straight line drawn from the point of division and 
tangent to one of the circles is tangent to the other one, and the straight line 
drawn from the point of division and which is a secant for one of the two 
circles is a secant for the other circle and cuts off from the two circles two 
similar alternate parts. 

<Example>: Let there be two separate circles ABC and DEG, their 
centres H and I; we draw the diameter that passes through their centres; let 
it be AHCDIG. Let us make the ratio of CK to KD equal to the ratio of AC 

 
26 The equality of the angles with vertex D and their homologues with vertex H 

follows from the straight lines DB, DC, DA, DN, DL being parallel to the straight lines 
HE, HG, HK, HM, HC that are their homologues in the homothety (I; IH/ID). 
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to DG, let us draw the straight line KL to be a tangent to the circle ABC and 
let us extend it in the direction towards K. 

 
Fig. I.36 

 
I say that the line is a tangent to the circle DEG. 
Proof: We join HL and we draw IM parallel to LH, then it meets the 

straight line LK; let it meet it at the point M. Since the ratio of CK to KD is 
equal to the ratio of the diameter to the diameter, accordingly the ratio of 
CK to KD is equal to the ratio of HC to DI and is equal to the ratio of the 
whole to the whole, so the ratio of HK to KI is equal to the ratio of the 
semidiameter to the semidiameter, and the ratio of HK to KI is equal to the 
ratio of HL to the semidiameter <of the second circle>. But since IM is 
parallel to HL, the ratio of HK to KI is equal to the ratio of HL to IM, 
accordingly the straight line IM is the semidiameter of the circle DEG, and 
the point M lies on the circumference of the circle. But since IM is parallel 
to HL, and the angle HLK is a right angle, the angle IMK is a right angle, so 
the straight line KM is a tangent to the circle. 

 
<37> In the same way, we draw from the point K a straight line that 

cuts the circle ABC, let the straight line be KNB; then it cuts the circle 
DEG, because it cuts the tangent. Let it cut the circle DGE at the points O 
and E. 

I say that the part BLN is similar to the part OME. 
Proof: We join the straight lines HB, HN, IO and IE; the ratio of HK to 

KI is equal to the ratio of HB to IE and is equal to the ratio of HN to IO, so 
the straight line HB is parallel to the straight line IE, and the straight line 
HN is parallel to the straight line IO and HL is parallel to IM; so the angles 
at the point H are equal to the angles at the point I, each of the angles is 
equal to its homologue, so the arcs intercepted by the equal angles are 
similar, the arc CN is similar to the arc DO, the arc NL is similar to the arc 
OM, the arc LB is similar to the arc ME, the arc NB is similar to the arc OE 
and the arc AB is similar to the arc GE; so the straight line BNKOE has 
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divided the two circles into alternate similar arcs. This is what we wanted 
to prove. 

 
Fig. I.37  

 
<38> Let us return to the figure. We join the straight lines LC and GM. 
 

 
Fig. I.38 

 
I say that they meet and enclose a right angle. 
Proof: The arc AL is similar to the arc GM, so the angle LCA, plus the 

angle MGD, is a right angle; so if we draw the straight line LC in the 
direction towards C, then the angle which is below the straight line GC, 
plus the angle MGD, is a right angle. So the two straight lines meet; let 
them meet at the point Q, then the angle Q is a right angle. 

In the same way, we join the straight lines BC and GE.  
I say that they meet and enclose a right angle. 
Proof: The arc AB is similar to the arc GE, so the angle BCA, plus the 

angle EGD, is a right angle; so if we draw the straight lines BC and GE, 
they meet one another; let them meet at the point P, so the angle P is a right 
angle. 
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In the same way, we prove that if we join the straight lines AB and ED, 
they meet one another and enclose a right angle. In the same way, we prove 
that if we join the straight lines NC and OG, they meet one another and 
enclose a right angle. This is what we wanted to prove. 

 
<39> If in two separate and unequal circles we draw the diameter that 

passes through their centres, if we extend it on the side towards the smaller 
of the two circles and if we take a point on it outside the small circle, such 
that the ratio of the straight line between the centre of the large circle and 
this point to the straight line that lies between this point and the centre of 
the small circle is equal to the <ratio of the diameter to the diameter>, then 
the straight line drawn from this point and a tangent to one of the two 
circles will be a tangent to the other circle and any straight line drawn from 
this point that cuts one of the two circles, cuts the other circle and cuts off 
similar arcs from the two circles. 

Example: Let there be two circles ABC and DEG whose centres are the 
points H and I; the larger circle is ABC. We draw the diameter ACDG, we 
extend it to K, we make the ratio of HK to KI equal to the ratio of AC to 
DG and we draw the straight line KE to be a tangent to the circle DGE. 

 
Fig. I.39 

 
I say that if we extend it, it will be a tangent to the circle ABC. 
Proof: We join IE; then the angle E is a right angle. We draw from the 

point H a straight line parallel to the straight line IE, then it meets the 
straight line KE; let it meet it at the point L. Since HL is parallel to IE, the 
ratio of HK to KI is equal to the ratio of HL to IE; but the ratio of HK to KI 
is equal to the ratio of the diameter AC to the diameter DG, so it is equal to 
the ratio of the semidiameter AC to the semidiameter DG, so the ratio of 
HL to IE is equal to the ratio of the semidiameter AC to the semidiameter 
DG. But IE is half of DG, so the straight line HL is half of AC, the point L 
lies on the circumference of the circle ABC; now the angle HLK is a right 
angle, so the straight line KL is a tangent to the circle ABC. 
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In the same way, we prove that if KL is a tangent to the circle ABC, 
then it is a tangent to the circle DEG. 

 
<40> In the same way, we draw the straight line KON cutting the circle 

DEG and we extend it; it is clear that it also cuts the circle ABC, because it 
lies between the diameter and the tangent; let it cut it at the points B and M. 
We prove in the same way that if the straight line KB cuts the circle ABC, it 
is clear that it also cuts the circle DEG. 

 
Fig. I.40 

 
I say that this straight line cuts off similar arcs from the circles. 
Proof: We join the straight lines HB, HM, IN, IO, then the ratio of HK 

to KI will be equal to the ratio of HB to IN and equal to the ratio of HM to 
IO, so <HB> is parallel to IN and HM is parallel to IO. But it has been 
proved that HL is parallel to IE, so the angles at the points H and I are 
equal – each is equal to its homologue; so the arcs AB, BL, LM, MC are 
similar to the arcs DN, NE, EO, OG. This is what we wanted to prove. 

 
<41> If in two separate circles we draw a straight line that is a tangent 

to them, if we draw the diameter that passes through their centres and if we 
join the two points of contact and the points of intersection with two 
straight lines, then, if we extend them, they meet one another and enclose a 
right angle. 

Example: Let there be the circles ABC and DEG, two separate circles; 
the straight line BE is a tangent to them and the straight line ACDG passes 
through their centres. We join the straight lines BC and ED. 

I say that the straight lines BC and ED meet one another and enclose a 
right angle. 

Proof: Each of the two angles BCA and EDG is less than a right angle, 
so their sum is less than two right angles; but the two opposite angles 
which are under the straight line CD are equal to them, so their sum is less 
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than two right angles, so the two straight lines BC and ED meet one 
another below the straight line CD; let them meet at the point H. I say that 
the angle BHE is a right angle. 

 
Fig. I.41 

 
From the points C and D let us draw the two perpendiculars CI and 

DK, thus they are tangents to the two circles, the straight line CI is equal to 
the straight line IB and the straight line DK is equal to the straight line KE; 
so the angle ICB is equal to the angle IBC, and the angle CIK is twice the 
angle CBI. In the same way, we prove that the angle DKI is twice the angle 
DEK, so the sum of the two angles CIK <and DKI> combined is twice that 
of the two angles CBI and DEK. But the sum of the two angles CIK and 
DKI is equal to two right angles, so the sum of the two angles CBI and 
DEK is equal to a right angle; in conclusion the angle CHD is a right angle. 

In the same way, we join the straight lines AB and GE.  
I say that they meet one another and enclose a right angle. 
Proof: The sum of the two angles BAG and AGE is less than two right 

angles, so the straight lines AB and GE meet one another; let them meet 
one another at the point N. Since NBHE is a quadrilateral, the sum of its 
four angles is equal to four right angles. But each of the angles at the points 
B, H, E is a right angle, so, finally, the angle N is a right angle. This is what 
we wanted to prove. 

 
<42> If in two separate circles we draw the diameter that passes 

through their centres and we extend it, if we find the point from which one 
draws a tangent to the two circles, we draw from that point a straight line 
that cuts the two circles and we draw from each of the endpoints of the two 
similar parts cut off by this straight line, two straight lines to the endpoints 
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of the two diameters, and if we extend them, then they meet one another 
and enclose a right angle. 

Example: Let there be two circles ABC and DEG. We draw the 
diameter ACDG; we extend it to K. Let the point K be the point from which 
one draws the tangent to the two circles. We draw the straight line KLEMB 
that cuts the two circles; it is clear that the arcs AB and MC are similar to 
the arcs DE and LG, as has been shown in Proposition 40. We join BC and 
ED.  

 
Fig. I.42 

 
I say that the two straight lines BC and ED meet one another and 

enclose a right angle. 
Proof: The arc AB is similar to the arc DE, so the sum of the angle BCA 

and the angle EDG is equal to a right angle. If we extend the two straight 
lines BC and ED, then the two angles formed below the straight line CD 
have a sum of a right <angle>, so the two straight lines meet one another 
below the straight line CD; let them meet one another at the point H; so the 
angle CHD is a right angle. In the same way, if we join the straight lines 
DL and MC, they meet one another and enclose a right angle. This is what 
we wanted to prove. 

 
<43> Let there be two circles one of which encloses the other, and 

whose centres are different and let the circles not touch. We draw the 
common diameter and we divide the diameter of the small circle into two 
parts such that the ratio of one to the other is equal to the ratio of the two 
parts cut off on either side of the diameter of the small circle, one to the 
other. Any straight line drawn from the point of division and which cuts the 
two circles cuts off similar arcs from the two circles. 

Example: Let there be the circles ABC and DEG with centres H and I. 
We draw the diameter ADGC, we divide DG into two parts at the point K 
and we make the ratio of DK to KG equal to the ratio of AD to GC. We 
draw the straight line KEB which we extend to M and L.  
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I say that the arcs CB, BA, AL are similar to the arcs GE, ED, DM. 

 
Fig. I.43 

 
Proof: We join IE, HB, IM and HL. Since the ratio of DK to KG is 

equal to the ratio of AD to GC, accordingly the ratio of AD to DK is equal 
to the ratio of CG to GK. So the ratio of AK to KD is equal to the ratio of 
CK to KG and is equal to the ratio of the whole to the whole, that is to the 
ratio of AC to DG. And the ratio of CK to KG is equal to the ratio of the 
diameter AC to the diameter DG, so it is equal to the ratio of CH to GI and 
equal to the ratio of the remainder, which is HK, to the remainder, which is 
IK; so the ratio of HK to KI is equal to the ratio of the semidiameter to the 
semidiameter, the ratio of HK to KI is equal to the ratio of BH to EI and BH 
and IE are parallel; the angles BHC and EIG are equal, so the arc BC is 
similar to the arc EG and finally the arc BA is similar to <the arc> ED. But 
the ratio of HK to KI is also equal to the ratio of HL to IM, so the two 
straight lines HL and IM are parallel, the two angles AHL and DIM are 
equal and the two arcs AL and DM are similar; finally the arcs LC and MG 
are similar, so the arc BAL is similar to the arc EDM and the arc BCL is 
similar to the arc EGM. This is what we wanted to prove. 

 
It is time to end this treatise. Thanks be given to God and to the benefit 

of His help; blessing and peace be upon Muḥammad and all that are his. 
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CHAPTER II 
 

THE ANALYTICAL ART 
IN THE TENTH TO ELEVENTH CENTURIES 

 
 
 

INTRODUCTION 

1. The rebirth of a subject 
 
Among the many writings that mathematicians dedicated to ‘analysis 

and synthesis’ before the mid seventeenth century, that is among those that 
have come down to us, two undoubtedly stand out: a treatise by Ibrāhīm 
ibn Sinān (296/909–335/946), called On the Method of Analysis and 
Synthesis in Geometrical Problems, and a treatise by Ibn al-Haytham also 
called Analysis and Synthesis, whose text is presented in translation here. 
In form and in content, both these texts differ from all the other writings 
we know on the subject. Whereas the Greek philosophers, mathematicians 
and physicians who discussed the matter, from the fourth century BC 
onwards, did so only briefly, and have left us only some fragments, 
Ibrāhīm ibn Sinān and Ibn al-Haytham each composed a substantial work 
entirely devoted to analysis and synthesis. In fact, the Greek mathemati-
cians who discussed the matter can be counted on the fingers of one hand: 
there are some lines in pseudo-Euclid,1 a short fragment in Pappus2 and 
another in Proclus.3 Not that the terms ‘analysis’ and ‘synthesis’ were 
unknown to Greek mathematicians – Archimedes, Apollonius, Diophantus 
and others – but none of them felt the need to discuss the meaning of the 

 
1 This apocryphal paragraph was inserted after the fifth proposition of Book XIII 

of the Elements. See the French translation of F. Peyrard, Les Œuvres d’Euclide, Paris, 
1966, p. 486. 

2 Pappi Alexandrini Collectionis … quae supersunt e libris manu scriptis edidit 
latina interpretatione et commentariis instruxit F. Hultsch, Berlin, 1876–8; Pappus 
d’Alexandrie, La Collection mathématique, trans. P. Ver Eecke, Paris, 1982, vol. II, 
pp. 477–8. The text, which is no more than the beginning of the preface to Book VII, 
has appeared in a new edition, see A. Jones, Book 7 of the Collection, New York, 1986. 

3 Proclus, In Primum Euclidis Elementorum librum Commentarii, ed. G. Friedlein, 
Leipzig, 1873; reprod. Olms, 1967, p. 255, 8–26. See also the French translation by 
P. Ver Eecke, Proclus: Les Commentaires sur le premier livre des Éléments d’Euclide, 
Bruges, 1948, pp. 220–1. 
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terms. It is one thing, as we know, to employ a procedure, to adopt a cer-
tain approach; but it is another, quite different matter to set out the ideas 
that underlie a subject, as constituting a method or forming something as 
large as an area of research. One possibility is to follow the example set by 
Archimedes and do no more than identify the stages of the procedure; a 
second possibility is to explain briefly what underlies the procedure, and 
then indicate how it can be used and the conditions for its applicability: this 
is what Pappus and Proclus do for analysis and synthesis. And Pappus, in 
fact, in a short text, takes the trouble to describe the approach taken by 
Euclid, Aristaeus the Elder and Apollonius, to remind us of the direction of 
reasoning in analysis and synthesis, of their reversibility, and to distinguish 
between theoretical analysis and problematical analysis, and finally to refer 
to the conditions for their applicability. Pappus took no more than a page to 
deal with all these explanations. This immediately accounts for the con-
flicting interpretations that sprang up around the text of the Alexandrian 
mathematician.4 

Was this fragment of Pappus and the fragment of Proclus translated 
into Arabic? Did later mathematicians have indirect knowledge of the 
Greek texts that dealt with this subject? We do not know. At the moment, 
the only text that we know is that of Galen, who picks up the definition of 
analysis and synthesis.5 On the other hand, we know that mathematicians 
and philosophers who were also mathematicians rediscovered this subject 
when reflecting on one or other of the mathematical disciplines. Thus, the 
mathematician Thābit ibn Qurra (d. 901) composed a short paper called On 
the Means of Arriving at Determining of the Construction of Geometrical 
Problems.6 Although he never once uses the terms ‘analysis’ or ‘synthesis’, 
Thābit ibn Qurra is certainly operating in their subject area, or at least in an 
area near it. In contrast, al-Fārābī is more explicit: although he touches on 

 
4 See, for example, J. Hintikka and U. Remes, The Method of Analysis, Dordrecht, 

1974; M. Mahoney, ‘Another look at geometrical analysis’, Archive for History of 
Exact Sciences, vol. V, no. 3–4, 1968, pp. 318–48; R. Rashed, ‘L’analyse et la synthèse 
selon Ibn al-Haytham’, in R. Rashed (ed.), Mathématiques et philosophie de l’antiquité 
à l’âge classique: Hommage à Jules Vuillemin, Paris, 1991, pp. 131–62; reprinted in 
Optique et mathématiques: recherches sur l’histoire de la pensée scientifique en arabe, 
Variorum Reprints, Aldershot, 1992, XIV; and A. Behhoud, ‘Greek geometrical 
analysis’, Centaurus, 37, 1994, pp. 52–86. 

5  On Galen’s text, see R. Rashed, ‘La philosophie mathématique d’Ibn al-
Haytham. II: Les Connus’, Mélanges de l’Institut Dominicain d’Etudes Orientales du 
Caire (MIDEO), 21, 1993, pp. 87–275, Appendix: ‘Un fragment de l’Ars medica de 
Galien sur l’analyse et la synthèse’, pp. 272–5. 

6 Kitāb Thābit ibn Qurra ilā Ibn Wahb fī al-ta’attī li-istikhrāj ‘amal al-masā’il al-
handasiyya (see Appendix, Text 1). 
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the subject only in passing in his Classification of the Sciences,7 he gives 
an explanation of it in his long book On Music.8 It is in the course of the 
tenth century that research on analysis and synthesis sees renewed and 
more intensive activity. Apart from the brief texts concerned with this 
subject that one finds here and there, it is in the tenth century that we see 
the development of three additional types of research, clearly associated 
with three distinct points of view. 

We find collections of selected problems, all treated by analysis and 
synthesis, or by only one of the two methods. Ibn Sinān,9 Ibn Sahl,10 al-
Sijzī,11 and others chose to adopt this style of composition, and have left us 
substantial research texts. In contrast, we find writings intended solely for 
teaching, in which the author seems to be showing beginners, by means of 
examples, how to proceed by analysis and synthesis. This was, apparently, 
the intention behind one of the lost writings of the philosopher mathemati-
cian Muḥammad ibn al-Haytham (who is not to be confused with al-Ḥasan 
ibn al-Haytham), in the Book on Geometrical Analysis and Synthesis as an 
Example for Beginners, a Collection of Geometrical and Arithmetical 
Problems that I have Analysed and for which I have Carried out the 
Synthesis (Kitāb fī al-taḥlīl wa-al-tarkīb al-handasiyyin ‘alā jihat al-
tamthīl li-al-muta‘allimīn, wa-huwa majmū‘ masā’il handasiyya wa-
‘adadiyya ḥallalathā wa-rakabathā). Finally, we come across texts whose 
object of study is indeed the subject of analysis and synthesis. These texts 
are intended for mathematicians, young or old, carrying out research and 
are distinct from the two preceding types of text. The writings of Ibn Sinān 
and of Ibn al-Haytham belong to this third category. We might add to them 

 
7 Al-Fārābī, Iḥṣā’ al-‘ulūm, ed. ‘Uthmān Amīn, 3rd ed., Cairo, 1968, pp. 99–100. 

Al-Fārābī notes that, in the Elements, Euclid proceeds only by synthesis, whereas other 
ancient mathematicians proceed by analysis and synthesis. 

8 Al-Fārābī, Kitāb al-mūsīqā al-kabīr, edited by Ghattās ‘Abd al-Malik Khashaba, 
revised and introduced by Maḥmūd Aḥmad al-Hifnī, Cairo, n.d., pp. 185 to 187 and 
p. 205. 

9 Ibn Sinān, al-Masā’il al-Mukhtāra (Anthology of Problems), in R. Rashed and H. 
Bellosta, Ibrāhīm ibn Sinān: Logique et géométrie au Xe siècle, Leiden, 2000, Chap. V. 

10 See the Book on the Synthesis of the Problems Analysed by Abū Sa‘d al-‘Alā’ 
ibn Sahl, in R. Rashed, Géométrie et dioptrique au Xe siècle. Ibn Sahl, al-Qūhī et Ibn 
al-Haytham, Paris, 1993; English trans. Geometry and Dioptrics in Classical Islam, 
London, 2005, pp. 444–85. 

11 Al-Sijzī, Fī al-masā’il al-mukhtāra allatī jarrat baynahu wa-bayna muhandisī 
Shīrāz wa-Khurāsān wa-ta‘līqātihā (Selected Problems Raised Between Him and the 
Geometers of Shīrāz and Khurāsān, and Commentaries on Them), ms. Dublin, Chester 
Beatty 3652/7, fols 35–52. 
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the text by al-Sijzī, and another, later one by al-Samaw’al.12  Let us 
underline it once more: a simple examination of these treatises is enough to 
convince one that they were not addressed only to pupils studying 
mathematics, but to fully fledged mathematicians concerned with the 
foundations of their discipline and interested in the theory of proof. As we 
shall see, the examples chosen by Ibn al-Haytham included problems 
arising from the most advanced research: for example, Apollonius’ 
problem of the construction of a circle touching three given circles.  

This diversity among the texts dedicated to analysis and synthesis in 
the tenth century seems to reflect a new situation, involving motivations 
and issues we can only guess at. Here we have a subject on the frontier of 
mathematics, logic and philosophy, investigated by mathematicians of this 
period, but starting from a practice that was already old – almost a millen-
nium old; a subject given a title, ἀναλυόμενος (sc. τόπος), in the statements 
made by Pappus, one that was reactivated by the mathematicians of the 
ninth and tenth centuries, although at the time when they were beginning to 
move away from Hellenistic mathematics: tenth-century mathematics had 
benefited from new disciplines such as that of algebra, and had embarked 
upon new areas of geometrical research, for instance on projections and 
transformations. The reasons for the reactivation of this subject must no 
doubt be sought in this somewhat paradoxical aspect of the state of 
mathematics. 

Let us begin with Ibn Sinān. He made a major contribution, and what 
he says provides information about the period that saw the revival of inter-
est in analysis and synthesis. According to Ibn Sinān, we are concerned 
with the first third of the tenth century. It is at about this time that mathe-
maticians resume discussion of the subject, and in particular of the question 
whether synthesis is, strictly, the converse of analysis. Ibn Sinān writes:  

We have now said enough about the method of analysis that is used by geo-
meters, about the criticisms that can be made of it, about what may be false 
in these criticisms […].13  

In the introduction to his treatise, he lets us know that some people 
criticise the analysis employed by geometers and complain that it presents 
a synthesis that is not a converse. These might be the same mathematicians 

 
12  These are Kitāb fī tashīl al-subul li-istikhrāj al-ashkāl al-handasiyya (see 

Appendix, Text 2), and the lost book by al-Samaw’al that he refers to in his treatise on 
algebra, al-Bāhir, ed. S. Aḥmad and R. Rashed, Damascus, 1972, p. 74 of the Arabic 
text. 

13 The Method of Analysis and of Synthesis, in R. Rashed and H. Bellosta, Ibrāhīm 
ibn Sinān: Logique et géométrie au Xe siècle, p. 224. 
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that Ibn Sinān mentions in his Anthology of Problems.14 It remains that Ibn 
Sinān reminds us that this discussion had then only begun to take place and 
that the subject of analysis and synthesis had not often been addressed (lam 
yakthur … al-khawḍ fīhi).15 

In short, according to an eyewitness, from the beginning of the tenth 
century, mathematicians return to the subject of analysis and synthesis: the 
community of geometers takes possession of it as providing material for 
debate. 

Besides providing this first-rate historical evidence, Ibn Sinān’s book 
also suggests two epistemological points of reference. One is spelled out by 
the author in the definition of the purpose of his book: to give an answer to 
the objections certain people addressed to the geometers who make the 
analysis too short, and also to provide a correction to the procedure itself, 
so as to establish the canons to be respected to avoid beginners making 
mistakes. These beginners are not, however, mere pupils, but beginners in 
research who are already capable of reflecting on mathematical arguments. 
This, it seems to us, is the didactic element in Ibn Sinān’s project. The 
other point of reference is an indirect one that is implicit in Ibn Sinān’s 
book, as indeed it is in those of all his successors: he refers to the mathe-
matical context of the tenth century. 

Anyone who studies the development of mathematics between the 
ninth and eleventh centuries notices the striking diversity of the work, 
which is unprecedented in history. If we are not aware of this and do not 
grasp the reasons for it, we are condemned to a profound misunderstanding 
of the history of mathematics in this period and, in attempting to mitigate 
this incomprehension, to lose ourselves in reductionism. 

The heirs to Hellenistic mathematics had, naturally enough, accumu-
lated methods and results over more than two centuries of active research, 
and were led to conceive of disciplines unknown to the Greeks: algebra, 
integer Diophantine analysis, the algebraic theory of cubic equations, and 
so on. Moreover, drawn on by works on astronomy, on optics and on 
statics, mathematicians had, in a way, renewed Hellenistic geometry and 
had introduced new fields. Among the renewed disciplines we find – as we 
have already noted – infinitesimal geometry, spherical geometry and so on; 
the new fields are concerned with the geometry of position and form, and 
the study of geometrical transformations.  

 
14 This means mathematicians like Abū al-‘Alā’ ibn Karnīb and a certain Abū 

Yaḥyā, who are quoted, among others, by Ibrāhīm ibn Sinān himself in the Anthology of 
Problems. 

15 The Method of Analysis and of Synthesis, in R. Rashed and H. Bellosta, Ibrāhīm 
ibn Sinān: Logique et géométrie au Xe siècle, p. 99, 12. 
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The mathematical language associated with the quadrivium obviously 

could not accommodate such diversity, and mathematicians were already 
similarly constrained by operating within the language of the theory of pro-
portions. So they began to look towards other types of proof, sometimes 
algebraic ones, with the help of proportions, but also folding one plane into 
another (rabatment) in order to carry out projections. Finally, the overall 
picture – increasing diversity and frozen forms of expression – called, so to 
speak as a matter of necessity, for logical investigation and philosophical 
explanation. Philosophers such as al-Fārābī seem to have anticipated some 
of the difficulties to which this situation gave rise. For instance, al-Fārābī 
devised a new ontology for mathematical entities,16 and, when he com-
posed his mathematical encyclopaedia, a framework different from that of 
the quadrivium, and also different from that of knowledge as a whole.17 
But, for reasons that were both theoretical and practical, it was up to 
mathematicians alone to address these difficulties. And indeed, in their 
writings on analysis and synthesis, mathematicians were not slow to face 
up to these difficulties. Henceforth, the encyclopaedic aspect of analysis 
and synthesis leads to a live problem that in this context is also not set out 
explicitly: to give an account of the new disciplines and restore the unity of 
mathematics.  

Now, at the end of the ninth century and the beginning of the tenth, the 
term ‘mathematical’, and even the term ‘geometrical’, described a set of 
scattered disciplines that could no longer be enclosed within the narrow 
framework of the quadrivium. It was, moreover, no longer possible to col-
lect all these disciplines under a single name, for example, that of ‘theory 
of magnitudes’. Under these conditions, how was it possible to conceive 
the unity of mathematics? The question was as necessary as it was difficult: 
there was not at the time, and for a long time had not been, any means of 
arriving at that unity. Algebra was still far from being the discipline of 
algebraic structures that it was destined to become, and it was in no way 
formalised. It could effect only a few partial unifications: for instance, of 
the geometry of conics and the theory of equations. Algebra as the science 
of structures was yet to be created; mathematicians had no choice but to 
look for another approach: it was a matter of finding a discipline that was 
logically prior to all the other mathematical disciplines – but on the histori-
cal level necessarily later than all of them – so that it would be capable of 
providing unifying principles. However, no specification of the nature of 
that discipline, of its methods, of its objects, was clear a priori. Analysis 

 
16 R. Rashed, ‘Mathématiques et philosophie chez Avicenne’, in Études sur 

Avicenne, directed by J. Jolivet and R. Rashed, Paris, 1984, pp. 29–39. 
17 See al-Fārābī, Iḥṣā’ al-‘ulūm. 
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and synthesis obviously played the part of a unifying discipline. Ibn Sinān 
does not concern himself with mathematics as a whole, but solely with 
geometry; nevertheless the unification that he brings to bear affects the 
family of procedures for analysis and synthesis, and the arguments that are 
deployed, so to say independently of the areas of geometry in which they 
are applied. The discipline that provides justification for the method, that is 
analysis and synthesis as a discipline, is a sort of programmatic logic, inso-
far as it allows us to associate an ars inveniendi with an ars demonstrandi.  

Ibn Sinān’s contribution has a particular importance: as far as we 
know, it is the first substantial text in the philosophical logic of mathemat-
ics. The author has reduced the fundamental problem of the unity of 
geometry to the logico-philosophical discipline of analysis and synthesis, 
thereby setting in train a long tradition that we can trace all through the 
tenth century and as far as the twelfth-century algebraist al-Samaw’al. It is, 
also, following on from Ibn Sinān – in opposition to him – that Ibn al-
Haytham constructs his own system. 

With Ibn Sinān, we have not yet reached the middle of the great cen-
tury. Mathematical activity is at its zenith. The differentiation between 
disciplines is underway; the geometry of projections takes a great stride 
forward with such mathematicians as al-Qūhī and Ibn Sahl;18 geometrical 
transformations become objects of study and of application among mathe-
maticians; a field of geometrical constructions using conic sections comes 
into being and develops.19 In geometrical proofs, more and more use is 
made of rabatments, images of points and asymptotic properties of conic 
sections to prove the existence of their points of intersection. In short, two 
types of demand have now come to the fore: we need to design frameworks 
for proofs relating to the new mathematical objects and, at the same time, 
to provide levels of existence for them. These two purposes are closely 
connected, and accomplishing them requires, in turn, that the methods have 
a solid basis in a discipline. This discipline must be sufficiently general 
(but without reducing matters to pure logic) so as to be able to supply 
levels of existence for the new geometrical objects; but the discipline must 
also be logically prior to all the mathematical disciplines, so as to supply a 
foundation for the various frameworks for proofs. This was the monu-
mental task to which Ibn al-Haytham addressed himself, no doubt as a 

 
18 See Géométrie et dioptrique au Xe siècle.  
19 See Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-

Haytham. Théorie des coniques, constructions géométriques et géométrie pratique, 
London, 2000. English translation: Ibn al-Haytham’s Theory of Conics, Geometrical 
Constructions and Practical Geometry. A History of Arabic Sciences and Mathematics, 
vol. 3, Culture and Civilization in the Middle East, London, 2013. 
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matter of deliberate choice, but also of necessity. He was the one who took 
innovative research furthest in all branches of geometry, but also in arith-
metic and in Euclidean number theory. These are in fact the very domains 
in which he did most work.  

 
 

2. Analytical art: discipline and method 
 
Ibn Sinān’s treatise is entirely concerned with analysis and synthesis of 

‘geometrical problems’, and only with them. The main body of the book 
corresponds perfectly with the title it is given. However, towards the end of 
the treatise, in a sentence whose meaning is less than clear, Ibn Sinān 
seems to suggest a possible extension. This is what he writes:  

If you consider carefully what their intention is there, you will find that it 
leads to the method of true analysis, which is used in the other sciences.20 

Ibn Sinān gives no further information, and does not explain what he 
means by ‘other sciences’. Perhaps he is simply referring to the other 
mathematical sciences, or perhaps he means to point to other disciplines. In 
any case, Ibn Sinān promises to compose an exhaustive treatise on this 
matter. Ibn Sinān, a mathematical genius who died at the age of thirty-
eight, never wrote this treatise.  

It seems that only Ibn al-Haytham fulfilled Ibn Sinān’s purpose: his 
treatise is not limited to geometry, but considers the mathematical disci-
plines as a whole, though he does not include algebra. Thus, he examines 
analysis and synthesis in arithmetic, in geometry, in astronomy and in 
music, as if he were taking a literal view of the divisions in the quadriv-
ium.21 But that is an illusion that more careful examination does not take 
long to correct: we shall see that the essence is still geometry. 

Just as the forms of the writings by Ibn Sinān and Ibn al-Haytham are 
different, so too their purposes are not the same: Ibn Sinān is entering a 
domain, Ibn al-Haytham wants to lay the foundations of a discipline. But 
this difference, obviously a crucial one, may not be apparent at first read-

 
20 The Method of Analysis and of Synthesis, in R. Rashed and H. Bellosta, Ibrāhīm 

ibn Sinān: Logique et géométrie au Xe siècle, p. 154. 
21 Commenting on a similar act, J. Hintikka wrote: ‘This meaning of the term 

“analysis” was naturally extended from the analysis of geometrical configurations to the 
“analysis” of physical or astronomical configurations. This is roughly the sense in 
which the first great modern scientists speak of analysis’ (J. Hintikka, ‘Kant and the 
tradition of analysis’, in Paul Weingartner [ed.], Deskription, Analytizität und Existenz, 
Salzburg-Munich, 1966, p. 258). 
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ing. To grasp it, let us start by listening to Ibn Sinān talking about his own 
purpose.  

Thus I have established in this book, in an exhaustive manner, a method 
intended for students, which contains all that is necessary for the solution of 
problems in geometry. In it I have set out in general terms the various 
classes of problems in geometry; next I have subdivided these classes and I 
have illustrated each of them by an example; then I have guided the student 
towards the path thanks to which he will be able to know into which of these 
classes he should place the problems that he will be set, by which he will 
know how to carry out the analysis of the problems – as well as the 
subdivisions and conditions necessary for that – and to carry out their 
synthesis – as well as the conditions necessary for that – then how he will 
know if the problem is one of those that have one solution or more than one, 
and in a general way, all that it is necessary to know in this matter. 
I have pointed out into what kind of error geometers fall in analysis, from 
the fact that they commonly have a habit that has come upon them: to 
shorten in an excessive way. I have also indicated for what reason there can, 
for geometers, appear to be, in the propositions and the problems, a differ-
ence between analysis and synthesis, and I have shown that their analysis 
differs from the synthesis only because of the fact of the abbreviations, and 
that, if they had carried out the analysis in full as should be done, it would 
have been identical to the synthesis; doubt would then depart from the hearts 
of those who suspect them of producing in the synthesis things of which they 
had not made mention earlier in the analysis, these things, lines, surfaces and 
other things, that we see figuring in their synthesis, without mention having 
been made of them in the analysis; I have shown that and I have illustrated it 
by examples. I have presented a method thanks to which the analysis is such 
that it coincides with the synthesis; I have warned against the things that the 
geometers tolerate in analysis, and I have shown what kind of error follows 
if we tolerate them.22 

Ibn Sinān’s intention is clear, and his purpose is well articulated: to 
classify geometrical problems according to different criteria (the number of 
conditions, the number of solutions, and so on) in order to show how to 
proceed, in each category, by analysis and synthesis, and in order to point 
out where errors can occur so as to allow them to be avoided. So it is 
essentially a matter of devising a programmatic and pragmatic logic in 
which the problem of irreversibility takes on a very special importance. In 
that connection, Ibn Sinān would have made a useful source for recent 
writings on analysis and synthesis.  

 
22 The Method of Analysis and of Synthesis, pp. 96–8. 
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From Ibn Sinān onwards, and unlike him, mathematicians worked in 

succession on two other projects. The first was the project of al-Sijzī. 
Having read Thābit ibn Qurra and Ibn Sinān, he wrote a text – translated 
and analysed here – in which he considers the question of discovery in 
geometry. He accordingly examines the many ways of making a discovery, 
as it were grouping them around a principal way, which is that of analysis 
and synthesis. That is he arrives at a conception of an ars inveniendi, 
though without naming it as such. The second is the scheme of Ibn al-
Haytham. He starts from the works of his predecessors, Ibn Sinān of 
course, and very probably Thābit ibn Qurra and al-Sijzī, but his aim is 
different: he wants to lay the foundations for a scientific art with its own 
rules and vocabulary. This time the word is used, it is indeed a matter of an 
art and, in fact, of an analytic art. Here again Ibn al-Haytham shows 
himself to be as he always was in each of the various areas of mathematics: 
he completes the tradition to which he belonged. In this case the tradition is 
one that begins with Ibn Qurra and includes many well-known scholars, 
among them, notably, Ibn Sinān and al-Sijzī.  

Ibn al-Haytham begins by reminding us that mathematics is based on 
proofs. By proof, he means ‘the syllogism that indicates, necessarily, the 
truth of its own conclusion’.23 This syllogism is in turn made up ‘of 
premises whose truth and validity is recognised by the understanding, 
without being troubled by any doubt in regard to them; and [the syllogism] 
has an order and arrangement of these premises such that they compel the 
listener to be convinced by their necessary consequences and to believe in 
the validity of what follows from their arrangement’.24 The Art of analysis 
(Ṣinā‘at al-taḥlīl) provides the method for obtaining these syllogisms, that 
is ‘to hunt (taṣayyud) for their premises, to seek the devices for grasping 
them, and to find their arrangement’.25 In this sense, the Art of analysis is 
an ars demonstrandi. It is also an ars inveniendi, insofar as it is thanks to 
this art that we are led ‘to determine the unknowns in the mathematical 
sciences, and how to proceed in pursuing the search (taṣayyud) for the 
premises, which are the basis for the proofs that show the validity of what 
we determine regarding the unknowns in these sciences, and the method 
for arriving at the arrangement of the premises and the structure of their 
combination’.26 

For Ibn al-Haytham, it is indeed an ars (τέχνη, ṣinā‘at) analytica that 
he must design and construct. Now, as far as I know, no one before him 

 
23 See p. 221. 
24 Ibid. 
25 Ibid. 
26 Ibid. 
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had considered analysis and synthesis as an art, or, more precisely, as a 
two-fold art, of proof and of discovery. In the first, the analyst (al-muḥallil) 
must be familiar with the principles (uṣūl) of mathematics. This knowledge 
must be underpinned by ‘ingenuity’, and by ‘intuition in this art (ḥads 
ṣinā‘ī)’ (p. 222). This intuition is indispensable for discovery and proves to 
be equally necessary when the synthesis is not a strict converse of the 
analysis but requires supplementary data and properties that have to be 
discovered. Knowledge of principles, ingenuity and intuition: these are the 
qualities that the analyst must possess in order to find mathematical 
unknowns. And finally he must know ‘the laws’ and ‘the principles’ of this 
analytic art. This necessary knowledge is the object of a discipline that is 
concerned with the foundations of mathematics, and which deals with the 
‘knowns’. This knowledge itself is to be constructed. This last 
characteristic is peculiar to Ibn al-Haytham, insofar as before him no one, 
not even Ibn Sinān, had imagined there could be an analytic art based on a 
mathematical discipline of its own. Ibn al-Haytham devotes a second 
treatise to this discipline, The Knowns, which he had promised in his 
treatise Analysis and Synthesis.27 He presents this new discipline as the one 
that provides the analyst with ‘the laws’ of this art and ‘the foundations’ 
which will allow the discovery of properties to be completed and the 
premises to be understood; that is to say the discipline forms the very basis 
of mathematics and, as we have said, it is indeed necessary to be already 
familiar with this basis in order to construct the complete art of analysis: 
these are the notions called ‘the knowns’.28 We may note that, each time 
that he is considering a foundational problem, as in his treatise On the 
Quadrature of the Circle,29 Ibn al-Haytham returns to these ‘knowns’.  

According to Ibn al-Haytham, a notion is called ‘known’ when it is 
always the same and does not admit of change, whether or not that notion 
is something thought by a subject who has understanding. The ‘knowns’ 
designate the invariant properties, independently of whether we know 
about them, and remain unchanged even when the other elements of the 
mathematical object vary. The analyst’s aim, according to Ibn al-Haytham, 
is to arrive at these invariant properties. Once these fixed elements are 
found, his task is completed, and he can then set out upon the synthesis. 

 
27 See p. 230. 
28 Ibid. 
29 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn 

al-Haytham, London, 1993, p. 91–5; English trans. Ibn al-Haytham and Analytical 
Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture and 
Civilization in the Middle East, London, 2012, pp. 99–106. 
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The ars inveniendi is neither mechanical nor blind, rather it is by the exer-
cise of ingenuity that it must lead to the ‘knowns’. 

Thus, to construct the analytic art demands the existence of a mathe-
matical discipline that itself needs to be constructed. The latter includes the 
‘laws’ and the ‘principles’ of the former. In this conception, the analytic art 
cannot be reduced to something merely logical, independent of mathema-
tics, but its specifically logical part is contained in this mathematical 
discipline. It is for this reason that we must not allow ourselves to be 
misled by the fact that vocabulary is borrowed from Aristotle’s Organon. 
From here on we see the limits on extending this art: it is to the limits of 
this discipline that we now need to turn our attention. We also see the 
differences between Ibn al-Haytham’s project and those of Ibn Sinān and 
of al-Sijzī. The ars inveniendi must itself have a mathematical foundation. 

 
 

3. The analytical art and the new discipline: ‘The Knowns’ 
 
In his treatise Analysis and Synthesis, Ibn al-Haytham says that 

Euclid’s Data ‘includes many notions concerning these knowns, which are 
among the instruments of the art of analysis’. He goes on to say: 

the greater part of the art of analysis is based on these notions, but with the 
exception that there remain other notions among the knowns that are 
indispensible for the art of analysis, and which we need many times, that are 
deduced by analysis, that are not included in this book (the Data), and that 
we have not found in any book.30  

Recognising the necessity of filling this gap in order to provide founda-
tions for the art, Ibn al-Haytham promises to write an independent treatise, 
once this treatise on analysis and synthesis is completed, ‘in which we shall 
show the essential characters of the known notions that we use in the 
mathematical sciences’.31  

This is how, in his treatise Analysis and Synthesis, he introduces the 
known ideas he needs – as indeed he had done in his treatise On the 
Quadrature of the Circle32 – before devoting a whole treatise to the study 
of known ideas in the mathematical sciences. This close relationship 
between the two texts – the Analysis and Synthesis and The Knowns – is so 
strongly emphasised by Ibn al-Haytham himself that it merits further 
attention.  

 
30 See p. 231. 
31 Ibid. 
32 Les Mathématiques infinitésimales, vol. II, chap. I. 
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Ibn al-Haytham wrote the treatise The Knowns in three parts: a long 

introduction – it occupies almost a third of the book – in which he sets out 
a complete treatment of ‘known ideas’, followed by a first part that deals 
with properties ‘that none of the ancients has written about, and they have 
not written on this kind of thing’,33 and, finally, there is a second part that 
gives the properties of ‘the same kind as those set out by Euclid in his book 
the Data, although nothing of this part is to be found in the book the 
Data’.34 So although Ibn al-Haytham considers that in the Data Euclid 
contributed to this new discipline, ‘the knowns’, it is as a distant prede-
cessor. In fact, simply reading through Ibn al-Haytham’s treatise is enough 
to make one realise how strange it is and, if one may say so, how original. 
In the introduction, much effort is expended on defining the concept of a 
‘known’, and in the two parts of the main body of the work we are not 
concerned either with geometry in general, or with one or other of the 
branches of it defined and recognised in the tradition. As we have said, 
everything is there to meet the needs of the analyst. 

In the substantial body of text that serves as an introduction to his trea-
tise, Ibn al-Haytham is at pains to give precise meaning to this concept of a 
‘known’. The word is not new, and it is found in the vocabulary of Arabic 
translations of Euclid. It is in fact the term by which Isḥāq ibn Ḥunayn 
translated the Greek δεδομένα; and thereafter the word was in constant use 
among mathematicians. Thus, Ibn al-Haytham refers, successively, to 
‘known in number’, ‘known in ratio’, ‘known in position’, ‘known in 
shape’ and ‘known in magnitude’. To go no further than the Euclidean 
sense, which is made explicit in the Data, is to understand nothing of the 
distance travelled by Ibn al-Haytham and his predecessors. To give just one 
example, let us consider the phrase ‘known in position’. Euclid means by 
this no more than a single position, that can be determined completely. So, 
a segment known in position is a segment that is always in the same posi-
tion, a position that we can determine. Ibn al-Haytham, on the other hand, 
defines position by the term naṣba (θέσις, ‘situation’), whether this is in 
relation to a thing that is fixed or to one that moves. In short, Ibn al-
Haytham explicitly introduces movement in order to speak of position, 
something that Euclid could not allow. We shall see later the significance 
of involving movement. 

It is, so to speak, as a philosopher that Ibn al-Haytham is at pains to 
determine the sense of the word ‘known’. He begins by returning to what 
characterises apodictic knowledge, that is its being invariable both on the 
ontological level and as conceived by the mind. According to Ibn al-

 
33 See On the Knowns, p. 385. 
34 See On the Knowns, p. 410. 
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Haytham, there are no objects of such knowledge except invariable con-
cepts to which the subject who has the knowledge accords a credibility that 
is itself invariable, having the additional knowledge that this is the case. 
But, for our mathematician, this invariability of the concepts, of the ideas 
of phenomena, implies the other two: the invariability of credibility, and 
the knowledge the subject has of it. In other words, the invariability of con-
cepts is ontologically and logically prior to the invariability of credibility, 
and the knowledge that the subject has of this credibility. It is just this that 
leads Ibn al-Haytham to adopt an unequivocal realism in mathematics 
when he maintains that ‘the known is in truth any notion that does not 
admit of change, whether or not it is believed by someone who believes’.35 

Ibn al-Haytham then sets out some conditions that this apodictic 
knowledge satisfies: its necessity – it is not relative either in regard to a 
place or a time; the nature of the credibility accorded to it by the subject – 
we are concerned with conscious credibility. Thus, it is not enough to know 
that a concept is invariable in order to know that we know it, but that 
credibility must be invariable, and we must know that is so. This awareness 
of the invariability of the credibility of the concept is acquired either by the 
evidence of its necessity – as for the assertion ‘the whole is greater than the 
part’; or as the result of a demonstrative syllogism, when we are dealing 
with a mathematical proposition. ‘The known’ belongs to this last species, 
and only to that one: on the ontological level, it is an invariable concept, 
independent of any subject that knows it; on the level of what is knowable, 
it is characterised by an invariable credibility, which is either the result of 
evidence of its necessity, or the conclusion of a proof.  

To this theory, with its air of Platonism, Ibn al-Haytham adds a distinc-
tion which, for its part, looks Aristotelian: distinguishing something known 
in actuality (in actu) from something known in potentiality (in potentia). 
There is, however, no ontological difference, between these two varieties 
of ‘knowns’, but simply one of understanding: something known in 
potentiality is a known that is just as real as something known in actuality, 
it is simply awaiting a subject to know it.  

Any historian who is interested in more than mere mathematical results 
cannot help but be disconcerted by this philosophical digression, which the 
author presents as an integral part of his mathematical exposition. We may 
ask why Ibn al-Haytham felt the need to work out this philosophical the-
ory, which is in fact rather sketchy, in order to discuss ‘knowns’. Perhaps 
he did so in an attempt to give a philosophical answer to a mathematical 
question that could not yet be given a mathematical answer. Everything 
seems to suggest this was so, particularly since this kind of response is not 

 
35 See On the Knowns, p. 364. 
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an exceptional occurrence in the history of mathematics and of the sci-
ences. Exactly what is happening? Ibn al-Haytham’s problem, inherited 
from his predecessors, at least from the time of the Banū Mūsā, then devel-
oped and widened by Ibn al-Haytham himself, is to provide justification for 
permanence or change in the properties of a geometrical entity that has 
been subjected to transformation or motion. He needs to know what hap-
pens to its extension, its position, its form and its magnitude. While geome-
try was a subject in which the concepts of motion and transformation did 
not occur, this question did not present itself as an urgent one. But the 
situation is completely altered once one introduces motion and geometrical 
transformations, as had been done by Ibn al-Haytham’s predecessors, and 
above all by Ibn al-Haytham himself. He is thoroughly aware of this when, 
in his treatise Analysis and Synthesis, he describes, in connection with 
knowns, what separates him from Euclid:  

[…] all the knowns mentioned by Euclid, in his book called the Data, are 
included within the sum total of the parts that we have mentioned; and in 
what we have mentioned, there are some things that Euclid did not mention: 
these are movable things known in position.36 

In other words, while Euclid’s knowns define position, form, and 
magnitude, as properties inherent to figures, in a geometry that is con-
cerned only with figures, Ibn al-Haytham’s Knowns defines the same 
properties, but for figures and places that move with a continuous motion 
or are subjected to transformations. This difference brings many others 
with it, and they are not insignificant: they affect the conception of a 
geometrical object and that of space. In Euclid, geometrical research is 
concerned with the properties of invariant figures; in Ibn al-Haytham and 
his immediate predecessors, we begin to be interested in the relations 
between figures in a space – this is indeed why Ibn al-Haytham felt obliged 
to write his treatise On Place.37 So the difficult part is to provide justifica-
tion for this new concept of a ‘known’, to be able to speak of the invariant 
properties of a figure, of a place, of a geometrical object, in motion or sub-
jected to a transformation. Neither Ibn al-Haytham, nor his successors in 
the following eight centuries, were capable of providing a mathematical 
answer to that mathematical problem. It is not uncommon that, in situations 
like this one, a mathematician offers a philosophical answer. Once in 
possession of this concept of a ‘known’, Ibn al-Haytham paints a picture of 
the different knowns in the mathematical sciences. But, when writing the 

 
36 Emphasis added, see p. 234. 
37 See Chapter III. 
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Knowns, his position changes slightly, and this modification tells us a great 
deal about the ultimate basis of his theory.  

In his treatise Analysis and Synthesis, which, according to his own 
account, was written only a little before the treatise The Knowns, once the 
‘known’ has been defined in general, Ibn al-Haytham introduces succes-
sively: things known in number, known in magnitude, known in ratio 
(numerical and non-numerical), known in position and known in form. He 
then proceeds to make several classifications of problems: theoretical and 
practical, by the number of solutions for practical problems, and so on; a 
classification that is repeated for each of the four mathematical disciplines. 
Although the matter is quickly settled in regard to astronomy and music, 
since analysis and synthesis in these subjects reduces to the practices in 
geometry and in arithmetic respectively, the disciplines are nevertheless 
treated individually. In the second part of the same treatise, Ibn al-Haytham 
proposes problems on the level of research, or, as he puts it, ‘problems of 
analysis that involve some difficulties’ – six in all, three in arithmetic and 
three in geometry. On these two points, the treatise The Knowns differs 
from Analysis and Synthesis. The quadrivium has vanished from the intro-
duction as well as from the two parts of the book. Moreover, in the latter, 
the essential matter of the new discipline – the ‘knowns’ – deals with 
geometry. Let us look more closely at this point, which we think is a very 
important one.  

In the long introduction to his book The Knowns, Ibn al-Haytham 
abandons the language of the quadrivium in favour of that of the ‘catego-
ries’. Thus, he begins by referring to the Aristotelian subdivision of quan-
tity, because his account is limited to only those ‘knowns’ that relate to 
quantity. He then refers to the elements of discrete quantity: the phonemes 
of language and the numbers. In the first case, the ‘knowns’ deal with the 
essence of the phoneme, the number and the combination of phonemes. For 
the numbers, the ‘knowns’ are: essence, quantity, the properties of their 
nature (ṭabī‘a) (perfect, deficient, square, and so on), and their association 
(commensurability, ratio, addition, subtraction, factors, and so on). Once 
these subdivisions of discrete quantity have been set out, Ibn al-Haytham 
does not return to them, and does not investigate even the simplest example 
of them in the other parts of the book. He then sets out the subdivisions of 
continuous quantity: segments of a straight line, surfaces, solids, weights 
and time. In fact, only the first three feature in the course of the develop-
ment. 

This classification is certainly thoroughly traditional. Its content, how-
ever, is much less so. In fact, from the first, one cannot fail to be aware of 
the care, so to say both for the whole and for the relation of parts, that runs 
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through all of Ibn al-Haytham’s account: when he is dealing with one of 
the elements of a figure, he does not consider it only as a magnitude, but 
also as a specimen of the family to which it belongs. Knowledge of that 
element will thus, and this is the significant part, take account of its magni-
tude, its position, its form, as well as of its relations with other things: in 
short, of the properties of the space. A considerable step has been taken, 
and Ibn al-Haytham devotes a large part of his introduction to explaining 
these concepts. By way of an example, let us take the central concept of 
position.  

To define position Ibn al-Haytham employs three concepts: motion, 
order and relation. Thus, the position of a point – considered as the end-
point of a line – is known when its distance (or distances) from another 
point (or other points) remains invariable. There are several cases to con-
sider: the point P is fixed and the other points are also fixed; the point P 
moves in circular motion about the fixed point, but without the distance 
between them changing; the point P and the other points all share the same 
motion, which leaves the distances between P and each of the other points 
unchanged.  

In the same way, the position of a line is defined in relation to fixed 
points; in this case, the line moves with no motion, except increase and 
diminution, and the distances between its points, and two points, or more, 
do not vary. This line will be said to be of absolutely known position. The 
position of the line could also be located by its relation to a single fixed 
point, and in this case the known concepts would be the unchanging dis-
tances between any point of the line and this fixed point, irrespective of 
whether the line itself is fixed or in motion. We can also locate the position 
of the line by its relation to another line, irrespective of whether the latter is 
fixed or in motion. Again, we can locate the position of the line by its rela-
tion to a moving point or a set of moving points, and in this case the known 
concepts will be the unchanging distances between each point of the line 
and each of the moving points; the line must then move with the same 
motion, and in the same direction, as the motion of the points concerned. 
Finally, we can locate the position of the line by its relation to a fixed line, 
and in this case the known concept is that of the angle formed by the 
intersection of these two lines or of their extensions, irrespective of whe-
ther the line whose position we seek to know is fixed or in motion, pro-
vided that the angle formed remains invariable. If the line, or its extension, 
does not cut the line by its relation to which it would be known in position, 
it will be known in any case if the two lines are cut by a straight line that 
forms a known angle with each of them. 
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Ibn al-Haytham takes his list further still and locates the position of the 

line by its relation to a moving line, then by its relation to a fixed surface, 
and finally by its relation to a moving surface. He returns to the analogous 
task of defining the position of a surface and the position of a solid body, 
and examining other concepts: of known form, of known magnitude and in 
a known ratio. 

We see from the first, when we examine the long introduction to his 
book, that Ibn al-Haytham has included motion as a basic concept of geo-
metry, a concept that is necessary for defining the position and form of any 
geometrical magnitude, and as guarantee of its continuity. An examination 
of this introduction shows, further, that as an heir to Archimedes and also 
to Apollonius, Ibn al-Haytham distinguishes explicitly between positional 
properties and metrical ones. Even if a positional property can be presented 
using measures of distances and angles, that is in a metrical form, Ibn al-
Haytham nevertheless prefers to describe what derives from position in 
positional terms. The essential matter at this stage is to locate the position  
– say of a point – without involving any system of coordinates, but only in 
relation to points and lines, fixed or moving; thus, we are, so to speak, 
dealing with a geometry that is descriptive in the proper sense of the term. 
The objective that Ibn al-Haytham sets himself in The Knowns is clear: to 
identify the invariant relationships that allow one to describe position, 
form, magnitude and ratio. Each group of relationships will make up a 
chapter in the geometry that is to follow, or in the subject he has named 
‘The Knowns’. 

The two chapters that follow this introduction are brimful of powerful 
and penetrating insights. In the first chapter, the author is chiefly concerned 
with properties of position and form. He deals with certain sets of points 
and some point-to-point transformations: homothety, similarity, translation, 
as well as other birational transformations of order 2. But, whereas he 
describes the nature of the first three, he simply uses the remainder without 
description. The first propositions of the chapter are concerned with this 
description, before we turn to an examination of some properties, such as 
the homothetic image of a circle, the transform of a circle under a transla-
tion, and so on. In the second chapter, Ibn al-Haytham tries to find the sim-
plest geometrical methods for defining the positions of points as well as the 
relations between them, starting from elements that are known. In short, 
throughout these two chapters, Ibn al-Haytham studies loci, straight and 
circular, as well as their transforms.  

The research work in these two chapters represents, at most, only a par-
tial realisation of the project set out in the introduction, a sketch of what 
the new discipline promised. However the rewards are sufficiently substan-
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tial to indicate the direction for this research and to shed light on its signifi-
cance. The results give the analyst some invariant properties of position 
and form for a number of geometrical objects, obtained by motion, by 
transformation and by taking plane sections. All these are necessary ele-
ments for laying the foundations for the art of analysis. 

But this achievement, an important piece of geometry, and one that, 
moreover, points the way for future developments, nevertheless cannot 
disguise the gulf between the project and its realisation. The project is con-
cerned with the disciplines of the quadrivium, according to the treatise 
Analysis and Synthesis; discrete quantity as well as continuous, according 
to the introduction to the treatise The Knowns. The realisation deals only 
with geometry. The gulf seems not to have escaped the attention of Ibn al-
Haytham: indeed he seems to have provided a justification for it in 
advance. It was by considering the example of geometry that he conceived 
knowns peculiar to each discipline of the quadrivium, or to each subdivi-
sion of quantity. These special knowns are – let us remind ourselves – for 
number: the essence of number, its quantity, its nature (perfect, square and 
so on), the associations of numbers (ratio, addition, subtraction, commen-
surability and so on). In the treatise The Knowns, that is where he is 
concerned with the new discipline, once he has referred to these properties, 
Ibn al-Haytham forgets about them and also about arithmetic itself. These 
knowns, after being drawn to our attention in the introduction, are then not 
mentioned again. The same happens for all the other special knowns, 
except for those of geometry. Thus, there is every indication that they 
appear here purely and simply for the sake of completeness in regard to the 
other disciplines that deal with quantity. Their presence, which one might 
describe as allusive, is, however, indispensable for providing the generality 
required by the method of analysis and synthesis, which according to Ibn 
al-Haytham was based on ‘knowns’. This method, as Ibn al-Haytham 
explained well in his treatise Analysis and Synthesis, must be applicable to 
all the disciplines of the quadrivium. But Ibn al-Haytham is too deep a 
thinker to be satisfied by the juxtaposition of ‘knowns’ of diverse and 
heterogeneous origins as guarantors of the required generality. And it is 
here that the philosophical theory of knowns he has worked out comes into 
play: it is this theory that gives the discussion of the ‘knowns’ its unity and 
thus its generality. Thus, this philosophical theory comes into play twice: 
to justify the inclusion of motion and transformation as basic concepts for 
geometry; to ensure that there is unity in the discussion of ‘knowns’ in the 
disciplines concerning discrete quantity as well as continuous quantity. We 
can see that this theory is not something derived from elsewhere that has 
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been incorporated into Ibn al-Haytham’s theory. Many centuries later it 
was to be replaced by another, Analysis Situs; but that is another story.  

In his treatise Analysis and Synthesis, Ibn al-Haytham returns to the 
method, that of analysis and synthesis, to examine its application in each of 
the disciplines. That is to say he ‘actualises’ or adapts the method for each 
of them. Thus, he begins with a classification of the mathematical concepts 
and propositions into two classes: theoretical (‘ilmī) and practical (‘amalī). 
While the theoretical class is the same as what is found in his predecessors, 
insofar as it deals with properties that are specific and thus in their essence 
necessary to the object under consideration, the practical class is synony-
mous with ‘action’, and is thus different from one discipline to another as 
can easily be verified. That is, the pair theoretical/practical is not identical 
with the well-known pair ‘theoretical’/‘problematic’ that we meet in 
Pappus’ Collection, III. Thus, for Ibn al-Haytham, to find a perfect number 
or to find two squares whose sum is equal to a given square (Diophantus, 
II.8) is as practical, in arithmetic, as the construction of an equilateral trian-
gle on a given segment of a straight line. As has been the case since Thābit 
ibn Qurra, practical analysis includes both the determination of an un-
known magnitude and the construction of a geometrical figure. Theoretical 
analysis is of the same kind for each of the complete sets of disciplines. 
According to Ibn al-Haytham, the same is true of practical analysis, though 
with the difference that the latter is divided into three species according to 
whether or not there exists a diorism, and whether, in the latter case, we 
have a single solution or many solutions. 

Ibn al-Haytham then explains what analysis means in each case and 
gives examples to illustrate the application of the method. So it remains to 
examine all the mathematical and logical problems raised by this research 
done by Ibn al-Haytham. The mathematical problems, some of which form 
part of the advanced research of the time, are systematically noted and 
commented upon here. As for the logical questions, they are of two types: 
the philosophico-logical ones that Ibn al-Haytham raises, and the questions 
a logician of our own time might recognise as underlying his text. The first 
type will also be noted and commented upon; the second type will be the 
subject of a separate text.38 

 
 
 
 

 
38 We intend, in fact, to write a book on analysis and synthesis in ancient and 

classical Arabic mathematics. 
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4. History of the texts 

 
On Analysis and Synthesis39 

The authenticity of the treatise Analysis and Synthesis and its attribu-
tion to al-Ḥasan ibn al-Haytham are not in doubt. The manuscript tradition 
establishes both without the slightest ambiguity. Al-Qifṭī, Ibn Abī Uṣaybi‘a 
and the copyist of the Lahore manuscript are at one: they all mention this 
title in their lists of the works of Ibn al-Haytham.40 Finally, in this treatise 
Ibn al-Haytham himself cites two other of his writings: The Knowns and 
the Commentary on Euclid’s Postulates. 

This treatise has come down to us in four manuscripts: 
1) Dublin, Chester Beatty Library, no. 3652/12, fols 69v–86r, in the 

numbering in Arabic numerals. This manuscript, here called B, is a copy 
made at Baghdad and completed on Saturday 23 Jumādā al-ūlā 612 of the 
Hegira, that is Saturday morning 19 September 1215, as is indicated in the 
colophon. The writing is elegant naskhī, and the figures are drawn by the 
copyist. 

2) Istanbul, Reshit collection, no. 1191/1, fols 1v–30v. This manuscript, 
here called R, belongs to the collection of the famous copyist and scholar, 
Muṣṭafā Ṣidqī,41 and has thus been copied before the mid eighteenth cen-
tury. The writing is nasta‘līq, and the figures are drawn. As for the date of 
his copy, we cannot be very clear, but it seems to us to be earlier than that 
of manuscript Q, which we shall discuss below. 

3) Cairo, Dār al-Kutub, Taymūr collection, Riyāḍa, no. 323. This 
manuscript has 68 numbered pages, and here we shall call it Q. It belongs 
to the collection of Muṣṭafā Ṣidqī. The writing is good nasta‘līq, and the 
figures have not been drawn. 

4) Kuibychev, Lenin Library V.I – a collection now transferred to 
St Petersburg – fols 348r–368r (former numbering fols 316r–336r), and here 
we shall call it S.42 We may note that one leaf, pages 351r and 351v, is 
inverted. 

Comparing these four manuscripts two by two enables us to show 
without the shadow of a doubt that the Istanbul manuscript, Reshit 1191/1, 

 
39 For the original Arabic, see Les Mathématiques infinitésimales du IXe au XIe 

siècle, vol. IV: Méthodes géométriques, transformations ponctuelles et philosophie des 
mathématiques, London, 2002, pp. 230–391. 

40  See Les Mathématiques infinitésimales, vol. II, pp. 532–3; English trans. 
pp. 420–1. 

41 R. Rashed, Géométrie et dioptrique au Xe siècle, p. CXXXVI. 
42 For a description of this manuscript, see the history of the text On the Properties 

of Circles, Chapter I, pp. 32–4. 
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is a copy made from the one in Dublin, Chester Beatty 3652/12 and from 
that alone. We do not need to work through all the details of the compari-
son here, but simply to refer to some facts: 

1) In relation to B, R is missing 8 phrases of more than two words and 
29 individual words. On the other hand, in relation to R, B is missing only 
a single word, which is in no way significant; that is it could have been 
added by the copyist of R: the word . The copyist of B has repeated a 
long paragraph, 82r, 38–82v, 16 (19 lines each with about fifteen words, 
which might correspond to a page in his model). He noticed his mistake 
and has written above the line, at the start of the repetition, the word  
(error). The copyist of R followed him blindly and has included the word in 
the form   while repeating the paragraph in its entirety. This repetition 
that, on its own, constitutes irrefutable proof, is not unique; we have 
another example. The copyist of B repeats a sentence fol. 70v, 11–12; the 
copyist of R follows him and repeats the same sentence (fol. 3r, 18–19). 

2) We can find at least 35 mistakes in Arabic in B repeated in R. 
3) Where letters in B have been effaced the copyist of R has left empty 

spaces. 
4) All the mathematical mistakes that occur in B are preserved in R. 
5) All the words and phrases lacking in B are missing in R. 
In regard to a wider context, the copyist of R transcribed the other trea-

tises of B.43  
If we look at the texts of al-Sijzī that are in R but not in B, such as The 

Asymptotes to an Equilateral Hyperbola, we can easily show, by a careful 
reading of B, that these treatises were included in it before being removed 
from B. So the copyist of R transcribed B before the loss of these texts. 

Thanks to a similar comparison, we can show that no. 323 of the 
Taymūr collection in Dār al-Kutub, called Q, is also a copy of B, and only 
of B, as can easily be verified. 

Finally, a comparison of R with Q shows that in relation to R, Q has 37 
omissions of a word and 34 omissions of a phrase of more than two words, 
whereas in relation to Q, R has 33 omissions of a word and nine omissions 
of a phrase. 

Comparing B and S shows that, in relation to S, B shows 68 omissions 
of a word, 41 omissions of a phrase (of more than two words, on one occa-
sion of 32 words), so that starting from B alone we cannot obtain a secure 

 
43 See for example P. Crozet, ‘À propos des figures dans les manuscrits arabes de 

géométrie: l’exemple de Siǧzī’, in Y. Ibish (ed.), Editing Islamic Manuscripts on 
Science, Proceedings of the Fourth Conference of al-Furqān Islamic Heritage 
Foundation, 29th–30th November 1997, London, 1999, pp. 131–63. 
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text. On the other hand, in S, by comparison with B we can note 69 omis-
sions of a word, but only 15 omissions of a phrase. 

Systematic comparison of these manuscripts with the help of omis-
sions, additions and different types of error allow us to establish the 
following stemma: 

 
Note that the introduction, that is the most philosophical part of the 

treatise, has been printed as an appendix to our study of Ibn al-Haytham’s 
text.44 Similarly, the French translation of his theorem on perfect numbers, 
as well as a discussion of the history of this theorem, have been the subject 
of an earlier publication.45 The only critical edition of this text, as well as 
the only translation of it, are those we published more than twenty years 
ago.46 It is that editio princeps and the French translation to which we are 
returning here, with the necessary emendations, as a basis for the present 
English version. 

 
The Knowns47 

The authenticity of this text and its attribution to al-Ḥasan ibn al-
Haytham are not in doubt. The treatise is promised in Analysis and Synthe-
sis, and The Knowns includes a reference to another text by Ibn al-
Haytham: On Measurement.48 Moreover, it appears in the list of the works 
of al-Ḥasan ibn al-Haytham copied by Ibn Abī Uṣaybi‘a,49 and it is also 

 
44 ‘L’analyse et la synthèse selon Ibn al-Haytham’, in Mathématiques et philoso-

phie de l’Antiquité à l’âge classique. Études en hommage à Jules Vuillemin, éditées par 
R. Rashed, Paris, Éditions du CNRS, 1991, pp. 131–62; reprod. in Optique et mathéma-
tiques: recherches sur l’histoire de la pensée scientifique en arabe, Variorum Reprints 
CS388, Aldershot, 1992, XIV. 

45 ‘Ibn al-Haytham et les nombres parfaits’, Historia Mathematica, 16, 1989, 
pp. 343–52; repr. in Optique et mathématiques, XI. 

46 ‘La philosophie mathématique d’Ibn al-Haytham. I: L’analyse et la synthèse’, 
MIDEO, 20, 1991, pp. 31–231. 

47  For the original Arabic, see Les Mathématiques infinitésimales, vol. IV, 
pp. 445–583. 

48 See Les Mathématiques infinitésimales, vol. II, pp. 524–5; English trans. Ibn al-
Haytham and Analytical Mathematics, pp. 422–3 and below, p. 377. 

49 Ibn Abī Uṣaybi‘a, ‘Uyūn al-anbā’ fī ṭabaqāt al-aṭibbā’, ed. N. Riḍā, Beirut, 
1965; ed. A. Müller, p. 98. 

x

x

S B

Q R
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noted by the copyist of the Lahore manuscript.50 The text itself has come 
down to us in two manuscripts, which have served to establish the text: 

1) Paris, Bibliothèque Nationale, no. 2458, fols 11v–26r, here called B. 
This is a copy produced in the region of Khusrū Kerd, close to Nishapur, 
and finished on Sunday the ninth of Dhū al-Ḥijja 539, that is Sunday 3 
June 1145,51 as is indicated by the colophon. The manuscript was copied in 
naskhī by Ibn As‘ad al-Bayhaqī, who also drew the figures. It forms part of 
a collection that contains other important mathematical treatises, such as 
the Algebra of al-Khayyām and three treatises by al-Sijzī. The collection 
belonged to Melchissedech Thévenot, who died in 1692. 

The number of omissions in the copy of Ibn al-Haytham’s text is 
extremely small: five words, one geometrical symbol and two connecting 
letters. The copyist did in fact revise his copy by checking it against his 
original, as we can see from the number of words and phrases that he has 
added in the margin, indicating where they belong in the text. He has noted 
some glosses in the margin, in which there are references to propositions in 
Euclid. We note, however, that the order of two folios has been reversed, 
an error that was certainly made after the copying was completed. The trea-
tise thus appears in the following order: 11v, 13r–14v, 12r, 12v, 15r–26r. 

2) The second manuscript belongs to the collection in the library of 
Kuibychev that we mentioned earlier,52 fols 335r–347v (formerly numbered 
fols 303v–315v), here called S. We note an omission of several pages in our 
edition (Les Mathématiques infinitésimales, vol. II, pp. 481–517), as well 
as nine omissions, each time of a phrase, and 44 omissions of a word. On 
the other hand, this manuscript includes six words that are absent in B. 
This shows that what we have is a manuscript tradition different from that 
of B. 

 
 

 
50 A. Heinen, ‘Ibn al-Haiṯams Autobiographie in einer Handschrift aus dem Jahr 

556 H / 1161 A.D.’, Die islamische Welt zwischen Mittelalter und Neuzeit, Festschrift 
für Hans Robert zum 65, Beirut, 1979, pp. 254–79. 

51 According to concordance tables, this date corresponds to 2 June 1145, which 
was, however, a Saturday not a Sunday. The tables have this month beginning on 25 
May 1145, which assumes that the lunar crescent was visible on 24 May in the evening. 
In the place where the manuscript was copied, it is perfectly possible that the lunar 
crescent was not visible, locally, until the evening of 25 May, so we can take the date of 
Sunday 3 June 1145 as the date of completion of the copy. 

52 See p. 151, n. 42. 
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We return here to our editio princeps of the treatise The Knowns, as 

well as its first translation53 making improvements where necessary.  
In establishing these texts, we followed the very rigorous rules that we 

have set out and explained more than once. The French translation also fol-
lowed the method that we decided upon earlier: to translate literally, but 
without conflicting with the stylistic rules of French, thus in language that 
respected the sense and, as far as is possible, the letter of the Arabic text. 
The English translation, whose initial draft was made from the French, fol-
lows the same principles and has, throughout, been compared with the 
Arabic original. 

 

 
53 ‘La philosophie mathématique d’Ibn al-Haytham. II: Les Connus’, MIDEO, 21, 

1993, pp. 87–275. The only work concerned with Ibn al-Haytham’s treatise is 
L. A. Sédillot, ‘Du Traité des Connus géométriques de Hassan ben Haithem’, Journal 
asiatique, 13, 1834, pp. 435–58. 
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I. ANALYSIS AND SYNTHESIS:  
MATHEMATICAL METHOD AND DISCIPLINE 

 
 
 

MATHEMATICAL COMMENTARY 
 
1. The double classification of analysis and synthesis 
 
Preliminary propositions 

 
The first chapter of the treatise is devoted, in its entirety, to illustrating 

the classification of the different kinds of analysis that was set up in the 
introduction, and the classification of the forms they take in the mathemati-
cal sciences: arithmetic, geometry, astronomy and music. The intention is 
obviously as much logical and methodological as it is didactic; so we shall 
not encounter any new mathematical research in this chapter. But, before 
setting out on this work, Ibn al-Haytham first states three propositions rele-
vant to analyse as a whole, both theoretical and practical. These proposi-
tions, all of which are taken from his book The Knowns, again ensure 
continuity with that work. So it is likely that they tell us something about 
the direction in which the mathematician’s thoughts were turning. It is no 
surprise that they are all concerned with geometrical transformations. Let 
us look at them one by one. 

 
Proposition 1. — Given two fixed points A and B and two segments G and 
E, to show that the point C defined by the relation CA

CB
=
G

E
= k  lies on a cir-

cle whose centre and radius are known. 

 
Fig. 2.1 
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We assume k > 1. If C satisfies the conditions, we have CA > CB. Let 
us extend AB and construct the straight half line CM such that 
AĈM  =  CB̂X ; since CB̂X  >  BĈA , the straight half line CM lies outside 
AĈB . We have AĈM  +  CÂB  < 2 right angles; so CM cuts AB at the point 
D beyond B. 

The triangles ACD and BCD have a common angle D and 
AĈD =  CB̂D ; so they are similar, hence 

 
AD

DC
=
CD

DB
=
CA

CB
= k , 

 
so 

AD
DC

⋅ DC
DB

= AD
DB

= k2 . 

 
From which it follows that  

AB

BD
= k 2 −1, 

 
so  

DB =
AB

k 2 −1
. 

 
So the point D is determinate, and 
 

DA = AB ⋅ k2

k2 −1
. 

 
Moreover,  

DA ·DB = DC2 , 
 

hence 
DC = AB ⋅ k

k2 −1
. 

 
That is, the point C lies on the circle with centre D and radius 

R = k
k2 −1

⋅AB . 

 
First we may note that this same problem, with its converse, appears in 

The Knowns, Proposition I.9. The converse also appears here in Problem 
20. 
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Next we may note that, for the time being, Ibn al-Haytham has only 
carried out the analysis: if C satisfies CA

CB
= k , then C lies on the circle with 

centre D and radius R = k

k2 −1
 . AB . The converse: any point C of the circle 

(D, R) satisfies CA
CB

= k  will be dealt with later, as we said. 

This converse shows that the points H and H', the points of intersection 
of the circle and the straight line AB, divide the segment AB in the ratio k; 
so (A, B, H, H') is a harmonic range. 

We may note that, in a different form, this problem was studied by Ibn 
Sinān.1 In the statement of the problem Ibn Sinān assumes a priori that the 
locus of the points is a circle. He describes Apollonius’ analysis, as well as 
a synthesis by his own grandfather Thābit ibn Qurra.2 As it is presented, 
Ibn al-Haytham’s analysis seems to be a more solid version of that of 
Apollonius. 

 
Proposition 2. — Given a fixed circle with centre E and radius R, and a 
fixed point C, if with any point A of the circle we associate the point D on 
CA produced such that CA

AD
= k , then D lies on a circle whose centre and 

radius are known. 
Let A be an arbitrary point on the circle (E, R) and D the point on CA 

produced such that , then  is known. 

 

 
Fig. 2.2 

 
1 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān: Logique et géométrie au Xe siècle, 

Leiden, 2000, pp. 627–35.  
2 Ibid., p. 633. 
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Let G be a point on CE such that DG || EA, and the triangles CEA and 
CGD are homothetic, so GD

EA
=
DC

CA
=
GC

CE
= k1 , so CG = k1CE and GD = 

k1EA = k1R. The point D lies on the circle with centre G and radius k1R, 
that is the circle homothetic with the given circle in the homothety 
C,
k +1

k
R

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

Here Ibn al-Haytham does not investigate the converse: any point D 
lying on the circle C,

k +1

k
R

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  satisfies CA

AD
= k ; whereas the problem, with 

the converse, appears in The Knowns, Proposition I.3. 
 

Proposition 3. — Given a fixed point C and a fixed straight line AB, 
C ∉ AB and D is an arbitrary point on the straight line AB; the point E 
defined by CD̂E  = α (a given angle) and CD

DE
= k , a given ratio, lies on a 

fixed straight line. 

 
Fig. 2.3 

 
Let E be a point that fulfills the conditions for the problem; the triangle 

CDE has a known shape, that is it is similar to a known triangle; so GĈH  
DĈE  = β, a known angle, and CD

CE
= k1 , a known ratio. We draw CG 

perpendicular to AB, and we construct the point H such that GĈH  = 
DĈE  = β and 

 

(1) 
GC

CH
=
CD

CE
= k1 . 

 
We have 

CH =
1

k1
GC , 

so H is a known point. 
From (1) we obtain 

GC

CD
=
CH

CE
, 

C

E

H

B D G A



 ANALYSIS AND SYNTHESIS 161 

thus the triangles CHE and GCD are similar, and consequently angle CHE 
is a right angle. So the point E lies on the straight line Δ which is the 
perpendicular to the straight line CH at H. 

We may note that in the similarity with centre C, with angle β and ratio 
1

k1
, the point G has image H, because CH = 1

k1
GC and GĈH  = β. The 

given straight line AB, perpendicular to CG at G, has as its image the 
straight line Δ, perpendicular to CH at H, and any point D of AB has as its 
image a point E lying on Δ.  

Thus, the analysis has led Ibn al-Haytham to give an account of the 
properties of a similarity. He considers the same problem, and its converse, 
in his treatise The Knowns, Proposition I.4. 

We have just seen that at the start of his first chapter Ibn al-Haytham 
presents three propositions to which he will return in his treatise The 
Knowns, and that he presents them as having a bearing on analysis as a 
whole. Looking at the matter more closely, we may in fact observe that 
they have some common characteristics. All three are of the following 
form: if the position of a point is defined by means of known elements and 
has a property P, then the point lies on a known line L, a circle or a straight 
line. However, in the first proposition this line or straight line is obtained 
as a locus of points, whereas in the following two propositions it is the 
result of a transformation of a figure by a similarity. In the first proposition, 
in fact, we prove that the set of points C such that CA

CB
= k  is a circle whose 

centre lies on AB; the endpoints of the diameter are harmonic conjugates of 
A and B in the same ratio k. This circle, associated with the harmonic range, 
will reappear in Problem 20 and in the last two transformations – a homo-
thety and a similarity – that Ibn al-Haytham uses in Problem 21. So the 
motivation behind the first proposition is clear, and is connected with the 
introduction of these transformations. It is, moreover, specifically these 
two that are treated in Propositions 2 and 3. These first three propositions 
serve as an introduction for all the others, and stand apart from them as 
providing methods that will be employed later on. They give an early 
indication of what The Knowns have also told us, namely that geometrical 
transformations played an important part in Ibn al-Haytham’s reflections 
on analysis and synthesis.  
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Analysis and synthesis in arithmetic 
1. The theoretical section of the arithmetical problems  

1.1. Synthesis as the converse of analysis 
 

Proposition 4. — Let an( )
n≥1 be a sequence of positive integers; if 

 
a1
a2

=
a2
a3
=…=

a n−1
an

, 

then 
a2 − a1
a1

=
a n − a1

ai
i=1

n−1

∑
 

 
(P) ⇒      (Q). 
 
Analysis: With the help of Elements VII.11 and 12, Ibn al-Haytham 

proves that  

(P) ⇒
a2 − a1
a1

=

ai+1 − ai( )
i=1

n −1

∑

ai( )
i=1

n−1

∑
 

 
(P) ⇒     (T). 
 
For (P) ⇒  (Q) to be true, it is necessary that 
 

ai+1 − ai( )
i=1

n−1

∑ = an − a1 . 

 
Ibn al-Haytham proves that this equation holds (moreover, it holds 

whether or not the integers are proportional). 
 
Synthesis: We know, as we have seen in the course of the analysis, that 
 

(1) a1 < a2 <…< an ⇒ ai+1 − ai( )
i=1

n−1

∑ = an − a1  

and that 
 
(2) (P) ⇒  (T); 
 

from (1) and (2) we obtain (P) ⇒  (Q). 
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Accordingly the condition is necessary and sufficient, and the synthesis 
is indeed the converse of the analysis. The only difference between analy-
sis and synthesis is the order in which the premises are arranged; the 
synthesis is derived from implication being transitive. 

 
1.2. Analysis leading to an impossibility: reductio ad absurdum 
The preceding analysis led to a condition that was satisfied by what 

was given. This time we have an analysis that ends in an impossibility. The 
analysis is itself a proof if it is taken as a demonstration by reductio ad 
absurdum. 
 
Proposition 5. — If a1

a2
=
a2
a3
=…=

a n−1
an

, then a2 − a1
a1

=
an

ai
i=1

n −1

∑
 is impossible. 

 
From the preceding proposition, if 
 

a1
a2

=
a2
a3
=…=

an −1
an

, 

 
then 

a2 − a1
a1

=
a3 − a2
a2

=…=
an − an−1
an−1

=
an − a1

ai
i=1

n−1

∑
. 

 
It requires that an = an – a1, which is impossible since a1 ≠ 0. 
 
 

2. The practical section of the arithmetical problems 
2.1. Practical section with discussion: synthesis as the converse of 

analysis 
 

Proposition 6. — To divide two given numbers according to two given 
ratios. 

 (1)    
x1 + x2 = a,

y1 + y2 = b,

x1

y1

= k1,
x2

y2

= k2,  with  k1 > k2.

 

 
The first equation can be rewritten as 
 



164 CHAPTER II: THE ANALYTICAL ART  

k1y1 + k2y2 = a  
 

and the hypothesis k1 > k2 implies k2b < a < k1b, or again 
 
(2)    k2 <

a

b
< k1 , 

 
a necessary condition for the system of equations in (1) to allow of a solu-
tion. We have 

k1y1 + k2 b − y1( ) = a, 
 

hence 
k1 − k2( )y1 = a − k2b  

 
and 

yE =
a − k

�
b

kE − k�
D CCCCy

�
=
kEb − a

kE − k�
; 

 
from which we find x1 and x2. 

 
So if condition (2) is satisfied, the four numbers x1, x2, y1, y2 are posi-

tive and rational and give a unique solution. As this condition is possible, 
that is it is a condition that does not lead to a contradiction, the analysis can 
have a converse and its converse is the synthesis. 

 
2.2. Analysis leading to an impossibility: reductio ad absurdum 
Here Ibn al-Haytham proves that, if condition (2) is not satisfied, then 

the analysis results in an impossibility, and in this case it can be regarded 
as a proof by reductio ad absurdum. 

 
2.3. Practical section, without discussion, problems with a unique 
solution: synthesis as the converse of analysis 
 

Proposition 7. — Given an arbitrary number AB, to partition this number 
into two parts AC and CB where AC < CB, then into two other parts AD 
and DB where AD > DB, such that CB = 2 DB and AD = 3 AC. 
 

 
Fig. 2.4 

 

AB CD
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This problem can be rewritten as a set of four first-degree equations in 
four unknowns. Let the given number be n; n is positive and rational: 

 
x1 + x2 = n, 
y1 + y2 = n, 
x1 = py2, 
y1 = qx2, 

 
where p, q are integers, p > 1, q > 1. 

We have a solution 
 

x1 =
p(q −1)

pq −1
n, x2 =

p −1

pq −1
n, y1 =

q(p − 1)

pq −1
n, y2 =

q − 1

pq −1
n; 

 
for given n, p and q, the values of x1, x2, y1, y2 can be integers or fractions, 
but in any case the solution is unique.  

Here analysis always leads to a rational solution, without requiring 
conditions or discussion. Moreover, as Ibn al-Haytham writes: ‘If we invert 
this analysis, that allows us to complete the procedure and we establish the 
proof that this proposition is true.’3 

 
2.4 Practical section, without discussion, when there is an infinite 
number of solutions 
 

Proposition 8. — To find two square numbers whose sum is a square. 
The solution corresponds to a modified statement: given an arbitrary 

square number, to find another square number such that the sum of the two 
is a square number. This problem has an infinite number of solutions. 

So let the problem be to find positive rational numbers that satisfy 
 
   x2 + a2 = z2 ,  where a is a given positive rational number. 
 
It is necessary that z > x; we put 
 
   x = t 
   z = t + u; 

we have 

   
x = a

2 −u2

2u
, y = a, z = a

2 +u2

2u

⎛

⎝
⎜

⎞

⎠
⎟ , 

 
3 See p. 249. 
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a solution that depends on a parameter u. 
So in this case analysis gives us an algorithm that Ibn al-Haytham 

summarises as follows: 
The analysis has arrived at supposing [we have] a square, an arbitrary square 
[a2], from which we then cut off a square [u2], an arbitrary square, subject to 
the condition that it is smaller than the first [a2 > u2]; then we divide the 

remainder [a2 – u2] into two equal parts a2 − u2

2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , next we divide the half by 

the side of the square that was removed a2 − u 2

2u

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , we multiply the result of 

the division by itself a2 − u2

2u

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
, then we add the result of the product to the 

first square a2 − u2

2u

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ a2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.4  

Here too the synthesis is the converse of the analysis. 
Under the expression ‘practical analysis with discussion or without 

discussion’ (p. 225), Ibn al-Haytham silently brings together the two 
branches of algebra: determinate analysis and indeterminate analysis. In 
fact, in his work determinate analysis is represented by the practical section 
without a discussion with a unique solution and indeterminate analysis by 
the practical section without discussion with an infinity of solutions. 

 
 

Analysis and synthesis in geometry 
 

1. Theoretical section on geometrical problems 
1.1. The multiplicity of analysis and auxiliary constructions 
The example Ibn al-Haytham takes here is the famous proposition that 

is Elements I.20. 
 

Proposition 9. — The sum of any two sides of a triangle is greater than the 
third side.  

Ibn al-Haytham gives two of the various possible analyses for this 
inequality in a triangle, in each case with the required auxiliary construc-
tion. He emphasises that it is possible to give several analyses different 
from the two he has presented here. 

 

 
4 See p. 250. 
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1.2 Analysis that leads to an impossibility: reductio ad absurdum 
 

Proposition 10. — The sum of any two sides of a triangle is equal to the 
remaining side. 

 
2. Practical section on geometrical problems 

2.1. Practical section with discussion 
 

Proposition 11. — To divide a given segment AB into two segments that 
enclose a rectangle of given area C. 
 

 
Fig. 2.5 

 
This problem is that of constructing a focus of an ellipse – Apollonius, 

Conics III.45. Indeed Apollonius uses it several times in Cutting off a Ratio. 
The same problem had been considered in a similar way by Ibn Sinān.5 

 
Analysis: Take a point D on AB such that AD · DB = C. If AD = DB, 

then 

AD · DB = 1
2
AB( )

2

, 

hence  

C = 1
2
BB( )

2

. 

 
If AD ≠ DB, then 

AD ⋅DB < 1
2
AB( )

2

, 

hence 
 
5 Apollonius, Les Coniques, Tome 2.1: Livres II et III, commentaire historique et 

mathématique, édition et traduction du texte arabe par R. Rashed, Berlin, 2010; 
Apollonius de Perge, La section des droites selon des rapports, commentaire historique 
et mathématique, édition et traduction du texte arabe par Roshdi Rashed et Hélène 
Bellosta, Berlin, 2009; R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān: Logique et 
géométrie au Xe siècle, pp. 131–3. 
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C < 1
2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

, 

 
because if D exists it necessarily follows that 
 

C ≤ . 

 

If C <  and E is the mid point of AB, then C < EB2. Let us put 

EB2 – C = G, so G is known. We have 
 

C = AD · DB = (AE + ED)(AE – ED) = AE2 – ED2, 
 

so G = ED2. Consequently, ED is known and the point D is also known. 
 
 

Synthesis: If C = , D is the mid point of AB; we then have  

 

AD · DB = = C. 

 

If C < , and E is the mid point of AB, we put EB2 – C = G = 

DE2, hence we have DE, and in consequence D. We then have  
 

AD · DB = (AE + ED) (BE – ED) = BE2 – ED2 = EB2 – G = C. 
 

If C > , the problem is impossible. Ibn al-Haytham proves this 

by reductio ad absurdum.  
This appears a supplementary result since it has been proved that the 

condition C ≤  is necessary. 

We may note that this problem is the same as that of finding two num-
bers x and y when we know their sum and their product. In Propositions 
VI.27 and 28 of Euclid’s Elements, it appears in the form of an application 
of areas with a defect (ἔλλειψις). 

 

1

2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

1

2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

1

2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

1

2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

1

2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

1

2
AB

⎛ 
⎝ 

⎞ 
⎠ 

2

1

2
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⎛ 
⎝ 

⎞ 
⎠ 
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Proposition 12. — From a given point A to draw a perpendicular to a 
given straight line BC, where A does not lie on BC (Fig. II.1.18, p. 257). 

This problem is the same as Elements I.12. Moreover, it belongs in the 
following section – containing practical geometrical problems, without 
discussion and with a single solution. It should have appeared after Prob-
lem 13. Problems 12 and 13 are, moreover, the two cases for the problem: 
from a point A to draw the perpendicular to a given straight line BC, 
A ∉ BC (Problem 12), A ∈ BC (Problem 13). 

The reversal of the order of these two problems must be the result of an 
accident to the text that occurred some time ago, since it is reproduced in 
all the manuscripts. 

 
2.2. Practical section on geometrical problems without discussion and 

with a single solution 
 

Proposition 13. — From a given point A to draw a straight line perpen-
dicular to a given straight line BC, when the point A lies on BC (Fig. 
II.1.20 of the text, p. 258). 

 
2.3. Practical section on geometrical problems without discussion hav-

ing an infinite number of solutions 
 

Proposition 14. — To construct a circle tangent to a given straight line 
CD and to a given circle AB, where the straight line lies outside the circle. 

Ibn al-Haytham considers only the case in which the two circles touch 
on the outside.6 

 
Fig. 2.6 

 
6 Al-Qūhī considers the same problem in his text The Book of the Centres of 

Tangent Circles that Lie on Lines by the Method of Analysis, ms. Paris, BN 2457, fols 
19r–21r. He considers two cases: circles that make exterior contact and circles that make 
interior contact. See P. Abgrall, ‘Les cercles tangents d’al-Qūhī’, Arabic Sciences and 
Philosophy, 5.2, 1995, pp. 263–95.  
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Let E be the centre of the given circle, R its radius, H the centre of the 
required circle, G its point of contact with the straight line and B the point 
of contact of the two circles.  

From Elements III.12, the points E, B, H are collinear, and HG ⊥ CD.  
 
Analysis: 1) Let us suppose that E, H, G are collinear. Then EG ⊥ CD, 

so G is known; EG cuts the given circle in B, and H is the mid point of BG. 
Hence the synthesis for this case: 

 
Synthesis: From E we drop a perpendicular to CD, let it be EG; it cuts 

the circle in B. Let H be the mid point of BG; the circle (H, HB) is a solu-
tion to the problem, it touches the straight line in G and the circle in B. 

 
Analysis: 2) Let us suppose E, H, G are not collinear; we have HG = 

HB < HE. We extend HG by a length GK = BE = R; we have HK = 
HE= HB + R. If G is known, K is known, and the equality HK = HE 
implies HK̂E  =  KÊH ; we can construct the straight line EH that cuts KG 
in H. 

 
Fig. 2.7 

 
Synthesis: Given any point G on the straight line CD, we construct 

GK ⊥ CD such that GK = R; given K and E on either side of CD, the angle 
HKE is acute; we construct KÊH  =  HK̂E . We have HK = HE and 
BE = GK = R, hence HB = HG. The circle with centre H and radius HB 
touches the circle (E, EB) because H, B, E are collinear, and touches the 
straight line CD because HG ⊥ CD. 

Thus, with every point G of the straight line CD there is associated a 
circle that touches both the given straight line and the given circle. So the 
problem admits of an infinite number of solutions.  

AE

B

CD

I

H
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Notes: 
1) With each point G ∈ CD there is associated a point K lying on a 

straight line D || CD at a distance R. The point H, the centre of the required 
circle, is equidistant from the point E and the straight line D; the point H 
lies on the parabola P, with focus E and directrix D. Every point of the 
parabola P  provides a solution to the problem.  

 
Fig. 2.8 

 
2) If CD is a segment, a ‘straight line with endpoints’ in ancient 

geometry, the set of points H is an arc of a parabola. 
3) If we consider the straight line Δ' , symmetrical to Δ with respect to 

DC, any point of the parabola P  ' with focus E and directrix Δ' is the centre 
of a circle that touches CD and the circle E; the circles thus touch one 
another internally (HK = HE = HB – R). 

Finally we may note that, in the course of all his explanations about 
analysis and synthesis in geometry, Ibn al-Haytham has avoided raising the 
question of whether one can construct a converse. 

 
 

Analysis and synthesis in astronomy 
 
This is the same as in geometry and in arithmetic because Ibn al-

Haytham writes: 
As for problems that refer to astronomy, most of them reduce to numerical 
problems or to geometrical problems; their examples are the examples we 
gave earlier.7 

 
7 See p. 264. 
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But, among these problems, we can identify a particular group, prob-
lems ‘that refer to explanations of the motions of the heavenly bodies’.8 In 
this particular group that relates to celestial kinematics, Ibn al-Haytham 
illustrates analysis by considering the example of the motion of the Sun. 

The problem is an old one. The ancients showed that the angles with 
their vertex at the centre of the instrument, the angles swept out in equal 
times by the radius joining this centre to the centre of the Sun, are unequal. 
Now, for these astronomers, the motion of the Sun must be regular, that is 
circular and uniform, hence the conclusion that the observed motion, that is 
the apparent motion, is different from the real motion, and that this effect 
results from the position of the orb of the Sun. 

Now, the shape of the Universe is a sphere, and the centre of the Sun 
moves in a plane that cuts the celestial sphere in a great circle. The motion 
of the Sun with respect to this circle is ‘different’, that is, it is not a uniform 
circular motion. From this departure from uniformity, the ancients deter-
mined the position of the orb of the Sun, in the plane of the great circle, an 
orb that then described a regular motion. 

Let E be the centre of the Universe, (ABCD) the great circle in which 
the plane cuts the Universe; the orb of the Sun being a circle in this plane, 
its centre lies in this plane; let G be this centre and (HIMN) the circle, the 
centre of the Sun describes the circle (HIMN) in a regular motion.  

If the points G and E were identical, the arcs traversed on the two cir-
cles in the same time would be similar, which is impossible because the 
motion on the circle (HIMN) is regular and that on (ABCD) is ‘different’; 
so G ≠ E. 

If the Sun is in H, it is seen in A; if it is in K, it is seen in L. It has tra-
versed the arc HK on its orb and the arc AL on the circle G. We have HGK
�âK  > AÎL , so the motion of the Sun on the circle (E) in the 
neighbourhood of A is slower than its motion on the orb. Let BD ⊥ AC; the 
arc AD is a quarter of a circle, the arc HN is greater than a quarter of a 
circle, the arc DC is a quarter of a circle and the arc NM is smaller than a 
quarter of a circle. The arcs BAD and BCD are semicircles. The arc IHN is 
greater than a semicircle, the arc IMN is smaller and the motion on (HIMN) 
is regular. So the apparent motion of the Sun on BAD is faster than that on 
BCD, and this is indeed what is seen. 

 
8 See p. 264. 
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   Fig. 2.9a         Fig. 2.9b 
 
Let us determine the ratio EG

GH
. 

Since the motion is regular, the arcs that are traversed are proportional 
to the time taken to traverse them. If t1 and t2 are the times, in hours, that 
the Sun takes to traverse the arcs IHN and IMN, and if we draw GK parallel 
to EN, we have 

IHN − IMN
t1 − t2

= 2KN
t1 − t2

= 360°
24

, 

 
and the arc KN is thus known 

 
GE

GH
=
GE

GN
 = sin KN . 

 
So the argument allows us to calculate the ratio GE

GH
 but not to find the 

distance EG.  
Thus, proceeding by analysis, Ibn al-Haytham has proved that if the 

Universe is a sphere with centre E, and the motion of the Sun is circular 
and uniform on a circle with centre G and radius GH, then 1) G ≠ E; 2) the 
ratio GE

GH
 is known. 

 
 

Analysis in music 
 
Here Ibn al-Haytham is still more laconic than in astronomy. He does 

no more than remind us that such analysis reduces to analysis of numerical 
problems and considers an example: the interval of an octave is composed 
of the interval of a fourth and the interval of a fifth.  
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It is clear that, as for astronomy, Ibn al-Haytham is not presenting any-
thing very new here, but, by mentioning these two subjects, he is trying to 
be comprehensive. Finally, we should emphasise that an exception has 
been made for celestial kinematics. 

 
 
2. Applications of analysis and synthesis in number theory and in 
geometry 
 

The second chapter of the Treatise makes up about half the work, and 
comprises six examples in all, divided into two groups, three examples on 
number theory and three on geometry. Are arithmetic and geometry not the 
mathematical disciplines to which all the others can be reduced? On this 
point, at first glance, Ibn al-Haytham is in line with tradition. But, here as 
elsewhere, we must not let ourselves be deceived: though the bottles are 
the same, the wine is different. The terms ‘arithmetic’ and ‘geometry’ have 
already experienced serious changes of meaning.  

Finally, we need to ask about the author’s intention in writing this 
work and about his choice of examples. For this it is best to look to Ibn al-
Haytham’s text. And, indeed, no one could explain matters better than he 
does himself in presenting this second chapter in the following terms:  

It remains for us to set out problems of analysis involving some difficulties, 
so that analysis becomes a tool to be used by anyone who works through this 
treatise and a guide for anyone who is trying to acquire the art of analysis; so 
that this analysis may be directed by the propositions that are used in it and 
by the complementary results that are added to its objects so that he can 
exercise the art of analysis.9 

So Ibn al-Haytham’s intention seems to be transparent: to provide his 
readers with difficult examples, to give them practice in the art of analysis 
and to make them familiar with exercising it, and in particular to lead them 
to seek out the auxiliary constructions that are so necessary in the applica-
tion of analysis: his purpose is obviously methodological and didactic. 
Although the term ‘methodology’ can often be misleading, what we have 
here is the presentation of several ‘models’ or ‘model problems’ for 
carrying out analysis and synthesis: six models in all, which correspond to 
six research situations from which the reader can draw inspiration, or, at 
the least, which he can use as a basis for imitation. What we mean by 
‘model’ is much more than a mere illustration. The proof of this is that 
some of these models, as Ibn al-Haytham himself admits, refer to difficult 

 
9 See p. 268. 



 ANALYSIS AND SYNTHESIS 175 

questions. This deliberate choice shows that his intention is not purely 
didactic. Ibn al-Haytham chooses research problems of the time: a theorem 
on perfect numbers, the construction of a circle to touch three given circles, 
and so on. Thus, we are dealing with problems that were subjects of debate 
at the time, and specifically so among mathematicians in the tradition to 
which Ibn al-Haytham himself belonged. So everything points to his 
wanting to tell his reader, so to speak in vivo, how to progress, step by step, 
along the path of analysis, and to find the ‘complementary results’ 
necessary for the purpose. 

But, although this reasoning helps us understand his choices, it is not 
sufficient to explain the area from which these items are taken, notably in 
geometry. For this, we need to bear in mind the ‘double’ of this treatise, 
namely the treatise The Knowns. As we shall see, in the course of his 
geometrical analysis it is precisely the properties of position and form that 
are, above all, of interest to Ibn al-Haytham.  

So let us turn our attention to these ‘model problems’. 
 

Number theory 
Perfect numbers 
Ibn al-Haytham seeks to prove the theorem about even perfect numbers 

that can be rewritten as follows: 
 

Theorem. — Let n be an even number, σ0 n( )  the sum of the proper divi-
sors of n; the following conditions are equivalents: 
 

 (a) if n = 2p 2p+1 −1( ) , where 2p+1 −1( )  is prime, then σ0 n( ) = n . 
 
 (b) If σ0 n( ) = n , then n = 2p 2p+1 −1( ) , where 2p+1 −1( )  is prime. 

 
Condition (a) is none other than Proposition IX.35 of Euclid’s 

Elements, while condition (b) was to be given a definitive proof only by 
Euler. But, as far as I know, the first attempt to prove it was that by Ibn al-
Haytham. In any case, he was the one who stated the condition and tried to 
prove it. 

To understand the choice of the example of perfect numbers, we need 
only remember that research into the properties of these numbers had been 
revived by Thābit ibn Qurra,10 and that al-Khāzin had also been interested 

 
10 See F. Woepcke, ‘Notice sur une théorie ajoutée par Thābit Ben Qorrah à 

l’arithmétique spéculative des grecs’, Journal Asiatique, IV, 2, 1852, pp. 420–9; 
R. Rashed, ‘Nombres amiables, parties aliquotes et nombres figurés aux XIIIe et XIVe 
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in them. 11 Nearer to Ibn al-Haytham’s time, we meet al-Anṭākī,12 and, 
among his contemporaries, al-Baghdādī.13 These mark stages in the long 
journey of research before Ibn al-Haytham and in his time.  

Employing the analytical approach, we suppose that the number is n, 
and let its proper divisors also have been found, and we suppose their sum 
is equal to the number. So this number has divisors and these have proper-
ties: we need to find them. Because of this Ibn al-Haytham first proves 

 
(1)    σ0 2

p( ) = 1+ 2+…+2p−1 = 2p − 1, 
 

hence, when n is an even perfect number,  
 
(2)   n = σ0 (n) ≠ 2

p . 
 
So a perfect number cannot be of the form 2p. Ibn al-Haytham estab-

lishes this result by reductio ad absurdum: 
 
If n = 2p, then n – 1 = 1 + 2 + … + 2p–1; and, from (1), we obtain 

n = n – 1. Thus, if a number of the form 2k has as its proper divisors each of 
the terms that precede it – in the same way as the perfect number – it is 
nevertheless not equal to their sum. On the other hand, the definition of a 
perfect number is that it is equal to the sum of its divisors.  

We consider an even number n and a sequence D1 of its proper divisors 
that forms a geometric progression with common ratio 2 that ends with 
n/2 : 2p–1g, 2p–2g, …, 2g, g where 2pg = n. We suppose that the other divi-
sors also form a geometric progression D2 with common ratio 2 : 1, 2, …, 
2q–1, 2q and that g = 2 · 2q – 1. The two sequences of divisors, excluding 1, 
appear as pairs of divisors; so we have p = q, which Ibn al-Haytham also 
establishes by reductio ad absurdum. The sum of the divisors of D1 is  
                                        
siècles’, Archive for History of Exact Sciences, 28, 1983, p. 107–47; repr. in Entre 
arithmétique et algèbre: Recherches sur l’histoire des mathématiques arabes, Paris, 
1984, pp. 259–99. 

11 A. Anbouba, ‘Un traité d’Abū Ja‘far al-Khāzin sur les triangles rectangles 
numériques’, Journal for the History of Arabic Science, 3.1, 1979, pp. 134–78, esp. 
p. 157. 

12 R. Rashed, ‘Ibn al-Haytham et le théorème de Wilson’, Archive for History of 
Exact Sciences, 22.4, 1980, pp. 305–21; repr. in Entre arithmétique et algèbre, pp. 227–
43 and ‘Ibn al-Haytham et les nombres parfaits’, Historia Mathematica, 16, 1989, 
pp. 343–52; repr. in Optique et mathématiques: Recherches sur l’histoire de la pensée 
scientifique en arabe, Variorum CS388, Aldershot, 1992, XI. 

13 R. Rashed, ‘Nombres amiables, parties aliquotes et nombres figurés’. 
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(2p – 1) g = n – g and the sum of the divisors of D2 is 2q+1 – 1 = g, so the 
complete sum is n – g + g = n and n is perfect. 

Finally, Ibn al-Haytham proves that g is prime.  
Let us suppose that g is not prime; there exists d|g, d ≠ 1. But d|n, so 

d ∈ D1 ∪ D2. Now d < g, so d ∉ D1; and on the other hand d ≠ 2k, so d ∉ D2, 
because the terms of D2 are the divisors of 2q+1 = g + 1. It follows that d = 1. 
So it is clear that Ibn al-Haytham is in fact only giving a partial converse of 
Euclid’s theorem. He does not prove that, among all even numbers, only 
Euclid’s are perfect; he merely proves that, among even numbers of the 
form 2p(2q+1 – 1), only Euclid’s are perfect. 

Ibn al-Haytham then performs the synthesis. He takes a number n = 2pg, 
where g is a number such that 

 

G = 2�+1 −1 = 2 H

H= 0

�

∑ . 

 
We have 

n = � 2x

x= 0

P−1

∑ + 2k

k= 0

p

∑ . 

 
Each number in D1 or D2 (for p = q) is indeed a divisor of n. Let us 

suppose that d is a divisor of n, then there exists e, a divisor of n, such that 
d · e = n = 2pg; we have 

e

g
=
2

d

p

. 

 
If g is a factor of e, then d is a factor of 2p and d ∈ D2. If g is not a fac-

tor of e, (g, e) = 1 because g is prime; accordingly e is a factor of 2p, and 
e = 2k (1 ≤ k ≤ p); so d = g2p-k, d ∈ D1. Any divisor of n appears in D1 or in 
D2. We conclude that n is equal to the sum of his divisors; so n is perfect. 

This half-failure should not obscure the whole: we have a serious 
attempt to find a property that characterises all even perfect numbers. This 
‘model problem’ cannot be a mere illustration of analysis and synthesis in 
arithmetic designed for beginners; it is a piece of ongoing research in 
which Ibn al-Haytham is applying this method in number theory. 

In considering the theorem on perfect numbers, Ibn al-Haytham is 
dealing with an important example in number theory, as the subject is 
defined by Euclid. In the course of his analysis Ibn al-Haytham raises the 
problem of the existence of these numbers, of their form, of the ‘cause’ 
(‘illa) by which they have this form and finally the problem of their 



178 CHAPTER II: THE ANALYTICAL ART  

identification as a class of numbers; that is he proposes a criterion for 
distinguishing them as a class of numbers. Moreover, this is the reason that 
led him to prove the converse of Euclid’s proposition. It is precisely this 
research into existence and form that justifies employing the method of 
analysis in arithmetic, even by way of analogy. In the two following exam-
ples, Ibn al-Haytham turns back towards the other tradition in number 
theory in the tenth century, the tradition of rational Diophantine analysis. 

 
Two indeterminate systems of equations of the first degree 
On this occasion also, Ibn al-Haytham is not concerned merely with 

providing solutions to the systems in rational numbers, but rather with 
establishing the existence, form and number of the solutions. So in each 
case the analysis must lead us to express these elements as clearly as 
possible, as is apparent from the text. Here we shall provide only the 
statements of the problems. 

The first system may be written as 
 

1

2
x +

2

3
y = s , 

 
1

3
y +

3

4
z = s , 

 
1

4
z +

1

2
x = s . 

 
Ibn al-Haytham begins by proving that 

 

� =
3

8
z, x =

10

8
z et x =

10

3
� ; 

 
which tells him that the required numbers have known ratios one to 
another: so they exist and are positive rational numbers. As for their form, 
Ibn al-Haytham proves in his synthesis that to any integer n ≡ 0 (mod 8) 
there corresponds a solution x = 10 n

8
, y = 3 n

8
, z = n, in Q+. 

The second problem is stated as follows: if k1, k2, k3 are given ratios, 
and a and b two given numbers, to partition a and b so that  
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(*)    

a = x1 + x2 + x3

b = y1 + y2 + y3  

 

 

where x1

y1

= H1,   
x2

y2

= H2 ,   
x3

y3

= H3         H1 > H2 > H3 > 0( ). 

 
Here again Ibn al-Haytham makes a point of establishing the existence, 

form and number of the solutions. While employing a different style of 
expression, let us follow Ibn al-Haytham’s reasoning. The first equation of 
(*) can be rewritten 

a = k1y1 + k2y2 + k3y3 . 
 
But, H1 > H2 > H3 ⇒ H1b > a > k3b , hence the necessary condition 
 

k1 >
a

b
> k3 . 

 
Let us put  

y1 + y3 = t, 
 

then 
      y2 = b – t    (t < b) 
 

and 
a = k1y1 + k2 (b− t)+ k3(t − y1) , 

 
hence 

y1 k1 − k3( ) = a− k2 (b− t)− k3t , 

 
hence 

    y1 =
a − k2b + t k2 − k3( )

k1 − k3
, 

 
    y2 = b− t , 
 

    y3 =
k2b − a + t k1 − k2( )

k1 − k3
. 
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Discussion: First of all we need to know whether the conditions 

H1 >
a

b
> k3  and 0 < t < b are sufficient to make y1, y2, y3 positive. 

 
 • If a

b
= k2 , the three numbers y1, y2, y3 are positive for 0 < t < b,  

y1 =
k2 − k3
k1 − k3

t, y2 = b − t,  y3 =
k1 − k2
k1 − k3

t . 

 

 • If k3 <
b

�
< y2 , a < k2b, we have y2 > 0, y3 > 0; but 

 

y1 > 0⇔ k2 − k3( )t − k2b − a( ) > 0⇔ t >
k2b − a

k2 − k3
; 

 
the three numbers are positive if  

 

b > t >
k2b − a

k2 − k3
. 

 
 • If y2 <

b

�
< y1 , k2b < a, we then have y1 > 0, y2 > 0; but y3 > 0 

requires that  
b > t >

a − bk2
k1 − k2

. 

 
Notes: 

1) In the course of his synthesis, Ibn al-Haytham distinguishes three 
cases: 

• b
�
= y2 ; he takes as parameter BM = y2 = b – t. 

 

• If b
�
≠ y2 , Ibn al-Haytham takes as parameter H = x1 + x3

y1 + y3
; we have 

 

k =
a − x2
b − y2

=
a − k2 (b − t)

t
= k2 +

a − bk2
t

. 

 
• If b

�
< y2 , we have b > t > k2b − a

k2 − k3
; from which we deduce  

 
k2b − a

b
<
k2b − a

t
< k2 − k3  



 ANALYSIS AND SYNTHESIS 181 

and in consequence  
H3 < H <

b

b
, 

which is the condition Ibn al-Haytham imposes on the ratio H = U
F

. 

 
• If �

�
> k2 , we have b > t > a − bk2

k1 − k2
, hence 

 
a − bk2
b

<
a − bk2

t
< k1 − k2 , 

 
and in consequence 

�

�
< k < k1 , 

 
without again encountering the condition Ibn al-Haytham imposed on the 
ratio k = S

O
. 

 
2) The method Ibn al-Haytham uses has the aim of reducing this 

problem to Problem 6. He accordingly takes as auxiliary unknowns 
X = x1 + x3, Y = y1 + y3 and a parameter H = x1 + x2

y1 + y3
; so we need k1 > k > k3. 

The initial system can be rewritten 
 
    X + x2 = a, 
 
    Y + y2 = b, 
 

    
X

Y
= k,

x2
y2
= k2 , 

 
which corresponds to Problem 6. 

 

Here the ratios a
b

 and k2 are given. From the investigation of Problem 6, 

if �
�
< k2 , we need to choose k in the interval k3, ab

⎤
⎦⎥

⎡
⎣⎢

 in order to have 

k <
�

�
< k2 ; and if �

�
> k2 , we need to choose k in the interval a

b
,k1

⎤
⎦⎥

⎡
⎣⎢
 in order 

to then find 
kY + k2 b − Y( ) = a , 
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hence 
Y =

a − k2b

k − k2
, y2 =

bk − a

k − k2
; 

 
from which we deduce X and x2. 

 
It remains to solve the system 
 
     x1 + x3 = X, 
 
     y1 + y3 = Y, 
 

     
x1
y1
= H1,

x3
y3
= H3 . 

 
We know that k1 >

X

Y
> k3 , from the choice of the parameter k; so this 

system has a unique solution if X and Y are taken to be known. Ibn al-
Haytham is thus led to address an additional problem: to find a ratio lying 
between two given ratios.  

 
 

Geometrical problems 
 
Ibn al-Haytham chooses three problems, of which the first, and sim-

plest, is a problem in plane geometry; the second deals with geometrical 
transformations and the third is concerned with a geometrical construction. 
This sequence of choices does not seem to arise purely as a matter of 
chance, but relates to three areas of geometry, in which there had been 
perceptible development. 

 
Problem in plane geometry 
The first problem is the simplest. It can be written: 

Given three points A, C, B in that order, and a straight line DG, to find 
a point E of that straight line such that EC bisects the angle AEB. 
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Fig. 2.10 

 
Analysis: If EC bisects the angle AEB, we have CA

CB
=
EA

��
. 

 
1) If C is the mid point of AB, we have CA = CB, hence EA = EB, and 

E lies on the perpendicular bisector of AB. 
2) If AC ≠ CB, IA

IB
 ≠ 1 is a known ratio; so the point E lies on a known 

circle, let CI be its diameter (see Problem 1). So E is both on this circle and 
on the straight line DG. 

 
Fig. 2.11 

 
Synthesis:  
1) We draw Δ to be the perpendicular bisector of AB. If DG is not 

perpendicular to AB, Δ cuts DG at the point E, and we have EA = EB. The 
triangle EAB is isosceles, and the height EC bisects the angle at E; the 
problem has one solution. 

If DG ⊥ AB and DG ≠ Δ, the point E does not exist. If DG = Δ, any 
point of DG provides a solution (Fig. 2.10). 

 
2) Ibn al-Haytham takes CA > CB, and defines H by 
 

(1)   
CH

HB
=
CA

CB
>1 . 

 

A

E

B C

D

G

B AC IH

E
G

E
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There exist two points H that satisfy the equation. Ibn al-Haytham 
finds the one between C and B, and the other one beyond B. He chooses the 
latter without giving details, perhaps because of the analogy with Problem 
1 (in that problem the point D, which corresponds to the point H here, was 
defined by a different procedure, and lay on the extension of AB). 

In any case, as the point H lies beyond B, we have 
 

CH

HB
=
CA

CB
=
AC + CH

CB + BH
=
AH

CH
, 

 
hence 

CH 2 = HA ·HB . 

 
Fig. 2.12.1 

 

 
Fig. 2.12.2 

 
Ibn al-Haytham then proves that the circle (H, HC) with diameter CI is 

the known circle of the analysis. Indeed if this circle cuts DG in E, we have 
 

HE = HC and AH
HE

=
AH

HC
=
AC

CB
=
CH

HB
=
HE

HB
. 

 
So the triangles AHE and BHE are similar, hence 

B ACI H

E

G

E

B ACI H

E

G

E
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AH
HE

= AE
EB

 and AE
EB

= CA
CB

. 

 
We may note that this proof for a point E of the circle (H, HC) is a 

proof of the converse that was not supplied in Problem 1; it establishes that 
any point E of the circle (C, CH) satisfies  

 
EA

��
=
CA

CB
. 

 
Discussion: The existence of the point E depends on the distance h 

from the point H to the straight line DG. Let R be the radius of the circle: 
 
  h > R  the problem has no solution 
  h = R  the problem has one solution 
  h < R  the problem has two solutions. 
 
We may note that in this problem Ibn al-Haytham deals with the set of 

points E such that EA
EB

= k . 

If k = 1, the set is the straight line Δ the perpendicular bisector of AB; 
If k ≠ 1, the set is the circle with diameter CI, where C is given, and I is 

the harmonic conjugate of C with respect to A, B. 
 
Problem solved with the help of transformations 
The second problem in this group is more than merely more compli-

cated, and in it Ibn al-Haytham proceeds by means of geometrical transfor-
mations. Its statement is: 

Given a fixed point A, a circle centre G and a straight line BC, to find a 
point D on the circle (G) and a point H on BC such that the angle ADH is 
equal to a given angle and DA

DH
 is equal to a given ratio. 

The data for the problem show that the given point A and the required 
points D and H define a triangle of ‘known shape’, that is similar to a given 
triangle. So we can put the angle DAH = α, a known angle, and AH

AD
= k , a 

known ratio. 
 
1) The point H can be found from D by one of the similarities: 
 

S1 A,α, k( )  or S2 A,−α, k( ) . 
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Fig. 2.13 

 
To establish the existence of the point H is to prove that it lies at the 

intersection of the given straight line BC and one or other of the circles 
C1 = S1(G) or C2 = S2(G). 

 
2) Similarly we can say that D is found from H by one of the 

similarities 
′ S 1 = S1

−1   or  ′ S 2 = S2
−1 . 

 
So if the point D exists, it lies at the intersection of the circle G and one 

or other of the two straight lines 
 

D1 = ′ S 1(BC) or D2 = ′ S 2(BC) . 
 
In both cases, the synthesis compels us to discuss the intersection of a 

straight line and a circle. 
Ibn al-Haytham proposes two analyses of this problem. In the first, he 

begins by using a homothety with centre A in which the circle (G, GD) has 
as its image the circle (I, IK); then he uses a similarity with centre A, in 
which the circle (I, IK) has as its image the circle (N, NH). The combina-
tion of the homothety and the similarity gives one of the similarities 
mentioned in 1). 

In his second analysis, Ibn al-Haytham proves that D lies on the 
straight line found from BC by one of the similarities mentioned in 2). He 
then gives two syntheses, which contain nothing of particular interest. For 
each of these two syntheses, he points out that it compels us to discuss the 
intersection of a straight line and a circle. This discussion also gives him 
the number of solutions. 
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Construction of a circle to touch three given circles 
The third geometrical problem – the last in the second chapter and thus 

the last in the Treatise – is the most important of all, equally for the place it 
occupies and for its history and the challenge it posed. This last ‘model 
problem’ occupies about a fifth of the Treatise as a whole. On the other 
hand, it is the problem that had already been posed by Apollonius, one to 
which Pappus and many others had returned. Finally, this same problem 
had been an object of controversies among Ibn al-Haytham’s predecessors. 
So we have a problem with a noble lineage, but still open and thus a matter 
for ongoing research. In regard to the nature of the problem itself, histori-
ans of geometry have emphasised the profundity of the problem and the 
difficulty it presented at that time. J. L. Coolidge sees it as marking exactly 
the limit of what Greek mathematicians could do.14 

The history of this problem is too well known to be worth further 
discussion here. Ver Eecke has already provided two accounts of it.15 Let 
us simply note that Apollonius poses the problem in his now-lost book The 
Tangencies. It is probably this book that was translated into Arabic under 
the title The Tangent Circles (al-Dawā’ir al-mumāssa), which the tenth-
century biobibliographer al-Nadīm mentions as among the books by 
Apollonius known in Arabic.16 This Arabic translation has now itself been 
lost. The most direct testimony is still that of Pappus, who reports that this 
book included some propositions that ‘they seem to have been numerous, 
but for them too we shall take only one’. This, it seems, sets out the ques-
tion raised by Apollonius:  

If any three elements are given successively in position, such as points, or 
straight lines and circles, to describe a circle that, passing through each of 
the given points (in the case where points are given), or tangent to each of 
the given lines.17  

A simple exercise in combinatorics gives the problems to be solved, 
which Pappus lists: 1) three points, 2) three straight lines, 3) two points and 
one straight line, 4) two straight lines and one point, 5) two points and a 
circle, 6) two circles and one point, 7) two straight lines and one circle, 8) 

 
14 J. L. Coolidge, A History of Geometrical Methods, Oxford, 1940; repr. Dover, 

1963, pp. 51–2. 
15 See, for example, P. Ver Eecke’s introduction to his translation of Apollonius’ 

Conics, Paris, 1959, pp. XXV–XXX. 
16 Al-Nadīm, Kitāb al-fihrist, ed. R. Tajaddud, Teheran, 1971, p. 326. 
17 Pappus d’Alexandrie, La Collection mathématique, French trans. Paul Ver 

Eecke, Paris/Bruges, 1933, II.2, p. 483. 
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two circles and one straight line, 9) one point, one straight line and one cir-
cle, 10) three circles. 

It is the last problem that is of interest here. However, we do not know 
what Apollonius’ solution was, or even whether he proposed one. We are 
no better informed about the terms of Pappus’ solution, since that seems to 
have been lost in Pappus’ own time. But all this had already become a mat-
ter of legend that, as Ver Eecke writes, ‘excited the curiosity of the greatest 
mathematians of recent centuries’.18 Among these we should mention Viète, 
Descartes, Newton and, later, L. Carnot, T. Simpson, L. Euler, N. Fus, 
J. Lambert and Gergonne, among others. But this ‘curiosity of the greatest 
mathematians’ made its appearance well before the seventeenth century, 
since its effects can be seen in the mid ninth century and in the first half of 
the tenth century.19 To understand this renewed interest, we need to look at 
the renewal of research in geometry, notably in the area of the theory of 
conics and that of geometrical constructions. In the case of the present 
problem at least, this renewal of interest is linked with names and books 
that antedate Ibn al-Haytham. One figure who plays a central part is Ibn 
Sinān, who is also important because Ibn al-Haytham picks up on his work. 
Ibn Sinān, the representative of one of the great scientific dynasties of the 
time, the dynasty of the descendants of Thābit ibn Qurra, sheds some light 
on the investigations into this problem carried out in the course of the first 
half of the tenth century. Thus, we know, thanks to him, that a representa-
tive of another scientific dynasty – the Banū Karnīb – Abū al-‘Alā’, took 
an interest in this construction. A third mathematician, no negligible figure, 
Abū Yaḥyā, one of the teachers of the famous Abū al-Wafā’ al-Būzjānī, 
takes up this same problem on his own account. Ibn Sinān reports and criti-
cises the solutions put forward by his two predecessors. He himself not 
only takes an interest in this problem, but also, in all probability, in 
Apollonius’ book The Tangencies, to the point of composing a book that 
has the same title as the Arabic translation of Apollonius’ work: The 
Tangent Circles (al-Dawā’ir al-mumāssa). In his autobiography, Ibn Sinān 
tells us that in this book he deals with ‘in which ways circles and straight 
lines are tangent to one another and pass through [particular] points, and 
about other things’.20 This book, which has thirteen chapters, is, according 

 
18 Les Coniques d’Apollonius de Perge, trans. Paul Ver Eecke, p. XXVI. 
19 We may note that al-Nadīm attributes to the astronomer and mathematician 

Ḥabash al-Ḥāsib (still alive in 859) a book with the title Book on Three Tangent Circles 
and How the Contact is Made (Kitāb al-dawā’ir al-thalāth al-mutamāssa wa-kayfiyya 
al-ittiṣāl), p. 334. 

20 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān: Logique et géométrie au Xe 
siècle, p. 12. 



 ANALYSIS AND SYNTHESIS 189 

to its author himself, closely connected with questions of analysis and 
synthesis. It has not come down to us. Ibn Sinān wrote a supplement 
(tatimma) to this work, a collection of forty-one problems, ‘difficult prob-
lems on circles, straight lines, triangles, tangent circles and other things, in 
which I have used only the method of analysis’.21 Ibn Sinān in fact supplies, 
among other things, the analysis for the problem with which we are 
concerned here. 

It is eminently reasonable to suppose that Ibn al-Haytham knew one or 
the other of Ibn Sinān’s books – if not all of them. We have shown that in 
his research on hour lines for sundials he started from Ibn Sinān’s work, 
but also in opposition to him. The same is true in Analysis and Synthesis. 
That is to say that, together with al-Khāzin, Ibn Sahl and al-Qūhī, Ibn 
Sinān is one of the leading figures of the tradition that Ibn al-Haytham is 
trying to take forward as far as possible. So the real question is to find out 
why he picked up on this problem, and what differentiates his treatment of 
it from that of Ibn Sinān.22 

In investigating the problem of constructing a circle that touches three 
given circles, Ibn Sinān makes the same hypotheses as those made later by 
Ibn al-Haytham: the circles lie outside one another, their centres are not 
collinear, and the required circle touches them externally. Ibn Sinān then 
distinguishes three cases for the given circles C1(K, R1), C2(H, R2) and 
C3(I, R3) (see Fig. 2.14 below).  

The first case is that of equal circles R1 = R2 = R3. 
The solution is immediate. The point L, the centre of the required circle, 

is the centre of the circle circumscribed about the triangle KHI, and its 
radius is r = LK – R1. As we shall see, this case is ignored by Ibn al-
Haytham.  

The second case is that of two equal circles, R1 = R2. 
Ibn Sinān considers the circle C (I, R3 + R1) if R3 < R1, or C (I, R3 – R1) 

if R3 > R1. The problem reduces to that of finding a circle that touches this 
circle and passes through the points K and H, a problem he has solved in 
his Anthology of Problems; but he provides only one solution, the second is 
obvious.  

The third case is that in which the three circles are different from one 
another. Let R3 be the smallest; Ibn Sinān reduces the problem to finding a 
circle that passes through the point I and touches the two circles (K, R1 – R3) 
and (H, R2 – R3). The solution has an error in the reasoning of the analysis, 

 
21 Ibid., p. 16. 
22 Ibid., Chap. V. 
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which leads Ibn Sinān to believe that a ratio is known from the data, which 
is not true.23 It is this particular ratio that Ibn Sinān uses in the synthesis, in 
two different methods, to reduce this problem to another one that he has 
solved in The Tangent Circles: to construct a circle passing through a given 
point A and, at A, tangent to a given straight line, and tangent to a given 
circle. 

Thus, Ibn Sinān’s analysis consists of proving that, in the three cases 
he considers, constructing the circle touching three given circles can be 
reduced to a problem that has already been solved. But we are left with the 
fact that the third case, that is the general case, raises the difficulty we have 
mentioned.  

So we have a problem that Abū al-‘Alā’ ibn Karnīb and Abū Yaḥyā 
worked on, and one the solutions to which were criticised by Ibn Sinān; 
who, although an eminent and esteemed mathematician, seems himself also 
to have been unable to provide a solution. So there is a challenge that Ibn 
al-Haytham will take up. This case is, moreover, far from unique. In addi-
tion, this construction problem is connected with analysis and synthesis. So, 
with this background, it is not hard to understand the reasons that spurred 
Ibn al-Haytham into attacking this problem. He engages with it in a manner 
different from that of Ibn Sinān: he is interested only in the general case 
R1 < R2 < R3. His analysis, as we shall see in some detail, is different from 
that of Ibn Sinān: if the required circle C (L, r) exists, then the circle 
C (L, r + R1) passes through the point K, the centre of C1, and cuts the 
straight lines KH and KI in two points S and O. The required point L is thus 
the centre of the circle circumscribed about the triangle KSO. So the 
analysis leads to the problem of determining the two points S and O from 
what is given; which led Ibn al-Haytham to an auxiliary construction for 
which analysis leads him to distinguish two cases, each time with a 
discussion. 

Thus, Ibn al-Haytham’s analysis is different from that of Ibn Sinān. 
However, it is from the latter’s analysis that Ibn al-Haytham has started his 
own. In fact, his analysis brings in the circle KSO: this circle is none other 
than the circle to which Ibn Sinān appeals in the general case. Now it is 
precisely in the course of his investigation of the construction of this circle 
that Ibn Sinān makes the mistake in his reasoning to which we have 
already referred.  

Thus, matters proceed as if Ibn al-Haytham has noticed this mistake 
and had picked up the problem starting from the same auxiliary circle as 

 
23 See R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān: Logique et géométrie au Xe 

siècle, Chap. V. 
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Ibn Sinān. If that is true, then we may risk advancing hypotheses: when 
following the steps of Ibn Sinān’s construction, Ibn al-Haytham, who had 
done more than anyone to develop construction methods using conic 
sections, does not use the differences LH – LK = R2 – R1 and LI – LK = R3 – 
R1 (see geometrical commentary below), which are, moreover, obvious 
from the figure, and which would have allowed him to construct L as the 
point of intersection of two branches of a hyperbola. However, in On the 
Completion of the Conics, Ibn al-Haytham has no hesitation in using 
intersections of conics, even for constructing solutions to plane problems 
like this one. Perhaps he wanted to follow the tradition that problems in the 
plane are to be solved by means of straightedge and compasses. Perhaps 
also, while having noticed this new possibility, he nevertheless wanted to 
continue along the route laid out by his predecessor, and to correct his 
work. Whatever we choose to believe, here as in other cases Ibn al-
Haytham has conceived his construction in the terms laid down by Ibn 
Sinān and also against him. So let us examine Ibn al-Haytham’s solution. 

 
Let C1 (K, R1), C2 (H, R2), C3 (I, R3) be three given circles, each one 

outside each of the others; K, H, I, which are not collinear, being their 
centres; R1, R2, R3 the radii such that R1 < R2 < R3.  

Let us put HI = d1, KI = d2, KH = d3, and HK̂I  =  α̂  < 2 right angles. 
Thus, by hypothesis d3 > R1 + R2, d2 > R1 + R3 and d1 > R2 + R3. 

To construct a circle C (L, r) touching the three circles (Fig. 2.14).  
If such a circle C (L, r) exists, then the circle C (L, r + R1) passes 

through K and cuts the straight lines HK and IK in S and O respectively. 
The aim of Ibn al-Haytham’s analysis is to prove that the points S and O 
are ‘known’, that is determinate from the data for the problem, and that the 
required point L is consequently the centre of the circle circumscribed 
about the triangle KSO, a known triangle. 

Ibn al-Haytham supposes that L lies inside the salient angle HKI, and 
in this case at least one of the angles LKH and LKI is acute; hence the three 
cases of the figure that are considered (Figs 2.15, 2.16, 2.17). 

But it is possible for L to lie outside the salient angle – in the position 
L1 of Figure 2.14, and in this case at least one of the angles LKH and LKI is 
obtuse. Ibn al-Haytham does not consider this possibility. Moreover, he 
does not address the problem of the number of possible solutions. 
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Fig. 2.14 

 
In all cases of the figure, the circle C (L, r + R1) cuts [HL) in M and P 

and [IL) in N and P', here HM < HK < HP and IN < IK < IP'; we obtain 
 

HM = R2 – R1, IN = R3 – R1, PM = NP' = 2KL = 2(r + R1). 
 
On the straight half lines [HK) and [IK), the positions of the points S 

and O with respect to the point K depend on the case of the figure. In the 
three cases investigated by Ibn al-Haytham, we have IO < IK, where 
HS < HK (Figs 2.14 and 2.15), HS = HK (Fig. 2.16) and HS > HK (Fig. 
2.17). But in Figure 2.14, we have instead IO1 > IK and HS1 > HK. 
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Fig. 2.15 

 
In all the cases, we can write 
 

HM · HP = HS · HK, 
 

hence 
      

HP

HS
=
HK

HM
=

d3
R2 − R1

= λ1  (where λ1 > 1) 

 
and 

IN · IP' = IO · IK 
 

hence  
     

I ′ P 

IO
=

IK

IN
=

d2
R3 − R1

= λ2  (where λ2 > 1). 

 
Ibn al-Haytham next defines U on [HK) and Q on [IK) by 
 

HM

HU
= λ1 and IN

IQ
= λ 2 , 

 
which implies MU || PS and NQ || P'O, and consequently that U lies 
between H and S, and Q between I and O. 
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Fig. 2.16 

 
Fig. 2.17 

 
We also have  

HM2 = HK · HU and IN2 = IK · IQ, 
 

hence 

  HU =
HM2

HK
=

R2 − R1( )2

d3
< d3 = HK   (because a2 − a1 � a2 = a1 � d3 ), 

 
and 
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IQ =
IN2

IK
=

R3 − R1( )2

d2
< d2 = KI . 

 
So the points U and Q are known points, U on the segment KH, Q on 

the segment KI and UKQ is thus a known triangle. 
We have 

λ1 =
HP

HS
=
HM

HU
=
HP −HM

HS −HU
=
MP

US
 

 
and 

λ 2 =
I ′ P 

IO
=

IN

IQ
=

I ′ P − IN

IO − IQ
=

N ′ P 

OQ
. 

 
On the other hand, if K ≠ O and K ≠ S, in the triangle OKS we have 

OK̂S  =  α  or O �KS 1 = 1π –α , and consequently  
 

OS = 2LK sin α = MP sin α = NP' sin α. 
 
From which we deduce 
 

gn
US

= OS
MP

⋅MP
US

= λ1 sinα  

 
and 

OS
OQ

= OS
N ′P

⋅ N ′P
OQ

= λ2 sinα . 

 
But, if K = S (Fig. 2.16), we have OS = OK = 2LK sin α, and the 

preceding result remains true. If K = O, the preceding result is still true. 
Thus, for all cases of the figure, analysis leads to a known triangle 

UKQ and two points S and O on the straight half lines [UK) and [QK), 
defined by  

HS
OS

= k  and OQ
OS

= ′k , 

 
where 

k = 1
λ1 sinα

 and ′k = 1
λ2 sinα

. 
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In order to establish, from these last equations, the conclusion that S 
and O are two known points, Ibn al-Haytham considers an auxiliary 
problem: 

Given a triangle KUQ and two ratios k and k′, to find a pair of points 
(S, O), where S is on [UK) and O on [QK) such that 
  

��

2�
= k  and 2Q

OS
= ′k .24 

 
The data for the auxiliary problem – the angle UKQ = α, KU, KQ, k 

and k' – are all expressed in terms of those of the initial problem: 
 

KU = KH − HU = d3 −
R2 − R1( )2

d3
, 

 

KQ = KI − IQ = d2 −
R3 − R1( )2

d2
, 

 

k =
US

OS
=
R2 − R1
d3 sinα

, 

 

k '=
��

OS
=
R3 − R1
d2 sinα

; 

 
from which we obtain  

US

OQ
=
d2 R2 − R1( )
d3 R3 − R1( )

, 

 

KU
KQ

=
d3
2 − R2 − R1( )2

d2
2 − R3 − R1( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅
d2
d3

. 

 
In his analysis of this problem, Ibn al-Haytham distinguishes two 

cases: 
1.  k

k '
=
US

OQ
=
KU

KQ
,  which corresponds to SO || UQ; 

 
2.  k

k '
=
US

OQ
≠
KU

KQ
. 

 
24 See p. 199. 
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In both cases, a discussion is necessary, but it does not appear either in 
the analysis or in the synthesis. In fact, for the required point S to give a 
solution to the problem of constructing the circle with centre L, we need S 
to lie on the segment UK or beyond K. In case 1, there can be either one or 
two solutions, and in case 2, there can be no solution, or one or two 
solutions (see auxiliary problem). 

 
Synthesis: Let us return to the three given circles. The circle C1 K� R1( )  

cuts HK in E and IK in G. 

 
Fig. 2.18 

 
Ibn al-Haytham calls upon R2 – R1 = HF, where F lies on [HK], R3 – R1 

= IT, where T lies on [IK], and he defines U on [HK) and Q on [IK) by 
HK · HU = HF2 and IK · IQ = IT2; these are the points U and Q of the 
analysis (see Fig. 2.18 above and Figs II.1.45–46, pp. 297–8). 

The points S and O of the analysis here become S and N – the letters of 
the figures change in the synthesis. 

To derive the ratios SN
US

  et  
SN

QN
 in terms of the data, Ibn al-Haytham 

uses an auxiliary construction on the circle C1 (K, R1): if HK̂I  = α̂ , we 
have arc GE = α̂ ; we construct P such that arc GP = 2α̂ , for α̂  < π

2
, 

α̂  = π
2

, α̂  > π
2

; so we have GP = 2 R1 sin α, an equality that holds in all 

three cases of the figure. 
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The points M on [PK] and O on [KG] are defined by 
 

2U1
PM

=
d3

R2 − R1
 and 2R1

�D
=

d2
R3 − R1

. 

 
Fig. 2.19 

 
Finally, let us put 

��

US
=
GP

PM
, 

hence 
SN

US
=

d3
R2 − R1

sinα  

and 
��

��
=
GP

GN
, 

hence 
SN

QN
=

d2
R3 − R1

sinα . 

   
  Fig. 2.20     Fig. 2.21 
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Thus, Ibn al-Haytham has set out the expressions for the ratios 
investigated in his analysis, where he had merely asserted that they are 
known. He has obtained the points S and N. If these two points are different 
from K, then SKN is a triangle. To prove that L, the centre of its circum-
scribed circle, is the centre we require, he argues by reductio ad absurdum. 
In the synthesis, he does not consider the case in which one of the points S 
and N is identified with the point K. This possibility had, however, 
appeared in the second case in his analysis. If, for example, we suppose 
that S = K, then the point L lies at the intersection of the perpendicular 
bisector of [KN] and the perpendicular to the straight line KH at K. 

We may offer a brief conclusion. Ibn al-Haytham’s analysis for the 
three cases he investigates is correct; it is correct also for the fourth case, 
which he seems not to have noticed, though providing that the investigation 
of the auxiliary problem must itself be correct. As we shall see shortly, this 
last is, however, incomplete. It should have included discussions of which 
there is no trace in the treatise. Indeed, Ibn al-Haytham thinks that the 
auxiliary problem has a single unique solution in all the cases, whereas it 
can have two or none. We may wonder why these discussions do not 
appear. To look into this, we must first return to the auxiliary problem. For 
the synthesis, we shall merely note the auxiliary constructions that 
distinguish it.  

 
Auxiliary problem 
 

Let us put KU = b, KQ = c, UQ = a, UK̂Q =  α , UQ̂K  =  β . Let us 
also put US = y, OQ = z, SO = x, where x > 0, y > 0, z > 0. 

Let us follow Ibn al-Haytham and distinguish the two cases of his 
analysis. 

 

I)  
y

z
=

b

c
⇒

b

c
=

k

′ k 
. 

 
In this case, we have OS || UQ, and consequently  

 
OS

SK
=
a

b
; 

 
but by hypothesis  

US

OS
= k  
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hence 
SU

��
= k

a

b
. 

 

If H = b

b
, y

b

b
=1; one point S provides a solution to the problem, that is 

the mid point of [UK]. 

 
Fig. 2.22 

 
If k b

b
≠1, two points S on the straight line [UK) satisfy SU

SK
= k

a

b
. 

 

If k b
b
>1, k >

b

b
, the two points provide solutions to the problem, S1 on 

[UK] and S2 beyond K. 

 
Fig. 2.23 

 

If y b
b
<1, k <

b

b
, the point S1 on [UK] provides a solution to the problem; 

the second point, S2, lies beyond U, it does not lie on the straight half line 
[UK). 

U

Q

O

S

K

U

Q

S

S

K

O

O

1

1 2

2
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Fig. 2.24 

 
Having found the point S, the point O is found from it, because 

SO || UQ. Ibn al-Haytham considers only the point S1.25  
 
II)   

y

z
≠

b

c
⇒

b

c
≠

k

′ k 
  or  k'b ≠ kc. 

 
25 Let us take up this discussion again using a different method: 

OS

SK
=
a

b
⇔

x

b − y
=
a

b
. 

• If y < b, x

b − y
=
a

b
⇔

y

b − y
= k

a

b
⇔ y =

kab

b + ka,
, which gives 0 < y < b, hence the 

solution: 

x =
ab

b + ka
=

ac

c + ′ k a
,  y =

kab

b + ka
,  z =

′ k ac

c + ′ k a
< c.  

That solution gives S
1
 on [UK] and O

1
 on [QK]; it exists for any value of k and 

′ k = k
c

b
. 

• If y > b, x

y − b
=
a

b
⇔

y

y − b
= k

a

b
⇔ y =

kab

ak − b
, we need 0 < y, hence the condition 

H >
b

b
, hence ′ k >

c

a
 because by hypothesis k

b
=

′ k 

c
. 

 
If this condition is satisfied, we have the solution: 

x =
ab

ka − b
=

ac

′ k a − c
,  y =

kab

ka − b
,  z =

′ k ac

′ k a − c
> c.  

This solution gives S
2
 on the straight half line [UK) beyond K, and O

2
 on the 

straight half line [QK) also beyond K. This solution exists only if y > b
b

. 

U

S

S

O

K

Q

1

1

2
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In this case, SO is not parallel to UQ. Ibn al-Haytham sets out a 
procedure for reducing this to the first case. 

He draws through S the parallel to UQ – it cuts KQ in T; and through U 
he draws the parallel to SO, which cuts KQ in J. Depending on the values 
given for b, c, k and k', there are several cases to be distinguished for the 
positions of the points K, Q, O, T and J. In fact, 

 

ST || UQ ⇒ US
QT

= b
c
⇒ OQ

QT
= OQ
US

⋅US
QT

= z
y
⋅ b
c
= ′k b
kc

. 

 
We can have 
 

1)   y

z
>

b

c
⇔

k

′ k 
>

b

c
⇔ kc > ′ k b , hence QT > QO. 

 
In this case, J ∈ [Qz') and G�̂O  =  QÛO  +  GÛQ . 
 

 
Fig. 2.25 

 
2)  y

z
<

b

c
⇔

k

′ k 
<

b

c
⇔ kc < ′ k b , hence QT < QO.  

 
In this case J ∈ [Qz) and GÛO  =  QÛO  –  GÛQ . 

 
Fig. 2.26 

U

S

J Q O T

K zz’

U

S

JQ OT
K zz’



 ANALYSIS AND SYNTHESIS 203 

 
Fig. 2.27 

 
In both cases, we have OT = | OQ – QT |, and we infer 
 

   OQ
OT

= ′k b
′k b− kc

 and OS
O�

= �

′k �− kS
, because OQ

OS
= ′ k . 

 
We have drawn UJ || SO; because triangles UQJ and STO are similar 

we may write 
m =

UJ

JQ
=

SO

OT
=

b

′ k b − kc
. 

 
Moreover, we have UQ̂K  = β, which is given. But the point J can lie 

on the straight half line [Qz) or on its extension. So there are two cases: 
 
 1) kc > ′ k b, m =

UJ

JQ
=

b

kc − ′ k b
 and UQ̂J  = π – β (Fig. 2.25). 

 
 2) kc < ′ k b, m =

UJ

JQ
=

b

′ k b − kc
 and  UQ̂J  = β (Figs 2.26 and 2.27). 

 
In both cases, the ratio UJ

JQ
= m  and the angle UQJ are known. Ibn al-

Haytham concludes from this that ‘the triangle UJQ is of known shape’. 
But, since the points U and Q are known, if m = 1, then J lies on Δ, the 
perpendicular bisector of [UQ]; and if m ≠ 1, J lies on a circle Γ (the circle 
that is the locus of points M such that UM

MQ
= m). 

 
1. c

b
>

′ k 

k
; J is on the straight half line [Qz'). 

 

U

S

JQ OT

K zz’
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If m = 1⇔
c

b
=
1+ ′ k 

k
, Δ does not cut [Qz') because the angle β is acute; 

J does not exist. 
 
If m >1⇔

c

b
<
1 + ′ k 

k
, the point Q lies inside Γ, Γ cuts [Qz') in one 

point; J exists and is unique. 
 
If m <1⇔

c

b
>
1 + ′ k 

k
, U lies inside Γ and Q outside it; Γ does not cut 

[Qz'), J does not exist. 
 

2. c

b
<

′ k 

k
; J is on the straight half line [Qz). 

 
If m = 1⇔

c

b
=

′ k −1

k
, Δ cuts [Qz) because β is acute. J exists and is 

unique.  
 
If m >1⇔

c

b
>

′ k −1

k
, Q lies inside Γ, then Γ cuts [Qz) in one point; J 

exists and is unique. 
 
If m <1⇔

c

b
<

′ k −1

k
, the circle Γ can cut [Qz), touch it, or not cut it. 

 
In this case, let us suppose MN is a diameter of Γ, P its centre and R its 

radius. 

 
Fig. 2.28 
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We have 
MU

��
=
NU

��
= m , 

 
hence  

MU +MQ

MQ
= m +1, MQ =

a

m +1
; 

 
in the same way we have  

NQ − NU

NQ
= 1− m , 

 
hence 

NQ =
a

1 −m
. 

 
From which it follows that  

MN = NQ – MQ = 
2am

1 −m2 , 

 
hence 

R =
am

1− m2 . 

 
Moreover, 

PQ =
NQ + MQ

2
=

a

1− m2 . 

 
If PQ' ⊥ [Qz), we have 
 

P ′ Q = PQsinβ =
asinβ
1−m 2 ; 

 
the circle will cut [Qz) in two points if PQ' < R, that is if 

 
asin β
1 −m2 <

am

1−m 2 , 

 
that is if m > sin β.  

We have 
 

m > sinβ ⇔
b

′ k b − kc
> sinβ ⇔

c

b
>

′ k sin β −1
k sinβ

⇔
c

b
>

′ k 

k
−

1

k sinβ
. 
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So we obtain 
 

• if c

b
<

= k 

k
�

1

k sin+
, the point J does not exist; 

 
• if c

b
=

= k 

k
�

1

k sin+
, there exists a unique point J on [Qz); 

 
• if ′ k -1

k
>

c

b
>

′ k 

k
−

1

k sinb
, there exist two points J1 and J2 on [Qz). 

 
Below is a summary of the complete discussion when it is assumed 

that β is acute, and we suppose that the two numbers = k 

k
�

1

k sin+
 and ′ k 

k
−
1

k
 

are positive. 
 

c
b
∈ 0, ′k

k
− 1
k sinβ

⎤

⎦
⎥

⎡

⎣
⎢          no point J

c
b
= ′k
k
− 1
k sinβ

                1  point J

c
b
∈ ′k

k
− 1
k sinβ

, ′k −1
k

⎤

⎦
⎥

⎡

⎣
⎢    2 points J1  and J2

c
b
= ′k −1

k
                          1  point J  

c
b
∈ ′k −1

k
, ′k
k

⎤
⎦⎥

⎡
⎣⎢
                 1  point J  

     

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

  case 2, J  on [Qz)  

c
b
∈ ′k

k
,1+ ′k
k

⎤
⎦⎥

⎡
⎣⎢
                1 point J

c
b
= 1+ ′k

k
                         no point J

c
b
∈ 1+ ′k

k
,+∞

⎤
⎦⎥

⎡
⎣⎢
                no point J   

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

 case  1, J  on [Q ′z )

 
 

 Once we have obtained the point J, the triangle KUJ is known, and we 
find SO as in case 1, since SO || UJ. To investigate the position of O would 
demand a supplementary discussion when J is on [Qz'), a discussion we 
shall not give here. 
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We may also note that the method Ibn al-Haytham uses in case II 
assumes S ≠ K. If S = K, the parallel to SO drawn through U is parallel to 
QK; the point J accordingly recedes to infinity. 

We have just seen that the investigation of the auxiliary problem, 
although correct, is not complete. Ibn al-Haytham seems to think that the 
problem has a unique solution in every case. But we have seen that there 
can be two solutions, or none.  

If the conclusions we have drawn from our investigation are correct, 
we should ask ourselves about how this discussion came to escape Ibn al-
Haytham. We can see only two lapses. The first arises from the fact that he 
took it that a point of a given straight line, defined by the ratio of its 
distances from two known points, is unique; he takes the one that lies on 
the segment joining the two points and neglects the one on the extension of 
the segment. The second lapse arises from the assertion that a triangle is 
defined, up to a similarity, if we are given an angle and the ratio of one side 
adjacent to that angle to the side that is opposite it. 

It remains that Ibn al-Haytham has reduced the problem of the 
construction of the circle touching three given circles to the problem of the 
existence of the two points required in the auxiliary problem. So it is on the 
discussion of this latter problem that the number of solutions to the initial 
problem depends. Now this discussion, a very complicated one, as we have 
seen, was one Ibn al-Haytham did not engage upon. 

 
Geometrical commentary on the problem 
Let us return to the data for the problem. If the circle C (L, r) exists, we 

have LK = r + R1, LH = r + R2 and LI = r + R3, hence 
 
(1) LH – LK = R2 – R1 

 
and 
 

(2) LI – LK = R3 – R1. 
 
From (1) L ∈ H1, the branch around the focus K of a hyperbola whose 

second focus is H; and from (2) L ∈ H2, the branch around the focus K of a 
hyperbola whose second focus is I. So the problem of constructing the 
tangent circle reduces to one of the problems that Ibn al-Haytham proposed 
in a particular area of geometry: geometrical construction using conic sec-
tions. The whole problem is now to find out whether H1 and H2 cut one 
another. 
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If we examine the special case in which the centres of C1, C2, C3, that 
is K, H, I, are collinear, the two branches H1 and H2 then have the same 
axis, and it is clear that H1 and H2 can have 0, 1 or 2 common points; 
consequently, the problem itself admits of 0, 1 or 2 solutions. If 
HK̂I =α = 0 , we have the following figures: 

 

 
Fig. 2.29 

 

 
Fig. 2.30 

I H

K

H

H

1

2

I H K

H

H 2

1
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Fig. 2.31 

 

 
Fig. 2.32 

 
We may note that H1  and H2  have the same vertex if and only if  

 
KH − R2 − R1( ) = KI − R3 − R1( )⇔ KI − KH = R3 − R2 ⇔ d3 − d2 = R3 − R2 . 

 
If HK̂I =α = π , H1 and H2 cut one another in two points that are 

symmetrical with respect to the straight line HK. 

I H K

H

H

1

2

I H K

H

H1

2
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Fig. 2.33 

 
We may also note that the asymptotes are parallel if and only if 
 

KH

R2 − R1
=

KI

R3 − R1
. 

 
If in addition, HK̂I =α = 0 , H1 and H2 have their common point at 

infinity, the curves C1, C2, C3 then have two common tangents. 
 

 
Fig. 2.34 

 
As we have seen, this special case with collinear centres was not 

considered by Ibn al-Haytham, who supposes that KHI is a true triangle. 
The investigation of the intersection of H1 and H2 then becomes compli-
cated. We can, however, reduce this investigation to that of the intersection 
of a straight line Δ and a branch of a hyperbola, using an algebraic method.  

Let there be an orthonormal coordinate system (Kx, Ky); let us put 
0 < HK̂I < π . We have K(0, 0), H(d3, 0), I(d2 cos α, d2 sin α), L(x, y).  

 

I K H
H H

12

R

R

I

H
K

3

2

1R
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Fig. 2.35 

 
Thus, the data satisfy the inequalities 

 
aE < a2 < a3, d2 > R3 + R1, d3 > R2 + R1 , 

 
d2
2 + d3

2 − 2d2d3 cosα > R2 + R3( )2 . 
 
 
The circle C (L, r) is a solution to the problem if and only if 

 
LK = r + R1, LH = r + R2 and LI = r + R3, 

 
hence 

(1)  x2 + y2 = R1 + r( )2 ; 
 
(2)  d3 − x( )2 + y2 = R2 + Q( )2 ; 
 
(3)  N2 cosα − U( )2 + N2 sinα − �( ) 2 = M3 + Q( )2 . 
 
From (1) and (2) we obtain 
 
(4)  d3 d3 − 2x( ) = R2 − R1( ) R2 + R1 + 2r( ), 
 

and from (4) we have 

R

I

R

K
H

L

y

x

r

3

2
R1
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x <
d3
2

. 

 
From (1) and (3) we obtain 
 
(5)  d2 d2 − 2 x cosα + y sinα( )[ ] = R3 − R1( ) R3 + R1 + 2Q( ) , 
 

and from (5) we have 
x cosα = ysinα <

d2
2

. 

 
From (4) we obtain 

2r =
d3
2 − 2d3x

R2 − R1
− R2 + R1( ), 

 
hence 

(6)  2 r + R1( ) = d3
2 − 2d3x

R2 − R1
− R2 − R1( ). 

 
From (1) and (6) we obtain 
 

x2 + y2 =
1

4 R2 − R1( )2
d3
2 − R2 − R1( )2 − 2d3x[ ]2 , 

 
which can be rewritten 

 
4 x 2 − d3x( ) R2 − R1( )2 − d32[ ] + 4y2 R2 − R1( )2 = d3

2 − R2 − R1( )2[ ]2 ; 

 
hence 

 

(7)  
4 x −

d3
2

⎛ 
⎝ 

⎞ 
⎠ 

2

R2 − R1( )2
−

4y2

d3
2 − R2 − R1( ) 2

= 1, 

 

the equation of the hyperbola H1 with centre d3

2
,0

⎛ 
⎝ 

⎞ 
⎠ , foci K and H and 

transverse axis (R2 – R1). 
From the condition x < d3

2
, the point L lies on the branch of H1 that 

passes round the focus K. 
From (4) and (5) we obtain 
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 (8)  R3 − R2 =
d2
2 − 2d2 x cosα + y sinα( )

R3 − R1
−
d3
2 − 2d3x

R2 − R1
 

 
which is the equation of the straight line Δ. 

We may note that by eliminating r between (1) and (5), we find the 
equation of H2, with axis KI and foci K and I, which can be written 

 

x2 + y2 =
1

4 R3 − R1( )2
d2
2 − R3 − R1( )2 − 2d2 x cosα + ysinα( )[ ]

2

, 

 

where x cosα + ysinα( ) < d2
2

; or again 

 

4 x cosα + y sinα −
d2
2

⎛ 
⎝ 

⎞ 
⎠ 

2

R3 − R1( )
2 −

4 −x sinα + y cosα( )2

d2
2 − R3 − R1( )

2 = 1 . 

 
Eliminating x2 + y2 between the equations of H1 and H2 give us back 

the equation of the straight line Δ.  
 

 
Fig. 2.36 
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Y

X

L

K H
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Now, the investigation of Δ and H1 brings in six parameters: R1, R2, R3, 
d2, d3 and α. We shall not present it here. Let us note, however, that if Δ is 
parallel to an asymptote, Δ and H1 have one common point at infinity; to 
this point there corresponds a straight line tangent to the three given circles. 
This is, for example, the case in Figure 2.36, in which the circle L, on the 
one hand, and the straight line XY, on the other, are tangents to the three 
given circles. This straight line corresponds to the case in which, in Figure 
2.14, the point L1 recedes to infinity. 

 
Algebraic commentary on the auxiliary problem 
The algebraic reading of the auxiliary problem is not from Ibn al-

Haytham. It allows us to look at his text in a different way, which might 
shed light on its development.  

Let us set out with the same data as before. We are presented with 
several cases for the figure, according to the positions of S and O with 
respect to K on the straight half line [UK) and the straight half line [QK), 
respectively. In all the cases for the figure, we can write 

 
SO2 = KS2 + KO2 – 2KS · KO cos SK̂O . 

 
Let us put SO = x, US = y, OQ = z, (where x, y, z are positive 

unknowns), hence 
 

x2 = b− y( )2 + c− z( )2 − 2 b− y ⋅ c− z  cos SK̂O . 
 
If b – y and c – z have the same sign, SK̂O  = α, and if b – y and c – z 

have opposite signs, SK̂O  = π – α, so, in every case, x, y, z satisfy 
 

 (1)  
x2 = b− y( )2

+ c− z( )2
− 2 b− y( ) c− z( )cosα,

y
x
= k    and  z

x
= ′k .  

⎧

⎨
⎪

⎩
⎪

 

 
Eliminating y and z gives  
 

(2)  b − kx( )2 + c − ′ k x( )2 − 2 b − kx( ) c − ′ k x( ) cosα − x2 = 0 , 
 

and if we make use of a 2 = b2 + c2 − 2bc cosα , (2) can be rewritten 
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(3) �2 k2 + = kO 2 − 2k ′ kO cosα −1( ) − 2� bk + c ′ kO − kc + ′ kOb( ) cosα[ ] + Q2 = 0 , 
 

an equation whose discriminant is 
 

Δ = bk + c ′ k − kc + ′ k b( ) cosα[ ]2 − a2 k2 + ′ k 2 − 2k ′ k cosα −1( )  
 

which, after manipulation and simplification, can be rewritten 
 

Δ = a2 − sin2 α kc − ′ k b( )2 ; 
 

hence 
Δ ≥ 0⇔ kc − ′ k b ≤

a

sinα
⇔ kc − ′ k b ≤

b

sinβ
. 

 

1.  kc = k'b; then we have c

b
=

′ k 

k
  and Δ = a2. 

 

Let us put k
b

=
′ k 

c
= λ , hence k = λb and k' = λc; from (2) we have 

 
1 − λx( )2 b 2 + c2 − 2�� cosα( )− x2 = 0⇔ x2 = a2 1 − λx( )2  

 
  ⇔ x = a1− λx ⇔ x 1+ aλ( ) = a  or x aλ −1( ) = a 
 
  ′ � =

Qb

b + Qk
=

Qc

c + Q ′ kO
  or � = Qb

Qk − b
=

Qc

Q ′ kO − c
. 

 
The first root gives a solution for any value of k; the second gives a 

solution if k

b
=

′ k 

c
>
1

a
. So the problem has at least one solution; it will have 

a second one if �
b
>
1

a
. 

We may note that kc = ′ k b⇔
k

′ k 
=

b

c
, now k

′ k 
=
y

z
, hence y

z
=
b

c
 which 

implies SO || UQ; so this case corresponds to Ibn al-Haytham’s case I. 
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Fig. 2.37 

 

2.   kc > k'b; we thus have c

b
>

′ k 

k
. 

 

  
Δ ≥ 0⇔

b

sin β
≥ kc − ′ k b ⇔ kc ≤ b ′ k +

1

sinβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⇔

c

b
≤

′ k 

k
+

1

k sinβ
. 

 
3.   kc < k'b; we thus have c

b
�

′Δk 

k
 

 

  
Δ ≥ 0⇔

b

sin β
≥ ′ k b − kc ⇔ kc ≥ b ′ k −

1

sinβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⇔

c

b
≥

′ k 

k
−

1

k sinβ
. 

 
From 1, 2 and 3, it follows that 
 

Δ ≥ 0⇔
′ k 

k
−

1

k sinβ
≤

c

b
≤

′ k 

k
+

1

k sinβ
. 

 
If this double condition is satisfied, the equation has two roots or one 

double root, but these roots do not provide solutions of the initial problem 
unless they are positive, which introduces discussions that we shall not 
enter into here. 

 
Fig. 2.38 
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Let us, however, examine the special cases in which one of the points, 
S or O, is identified with the point K. The equations (1), (2) or (3) still 
apply; from which we obtain: 

 

• S = K⇔ y = b, x = b
k

 and  z = ′k b
k

. 

 
From (2) we shall have S = K if and only if  
 

c −
′ k b

k

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

=
b

k
⎛ 
⎝ 
⎜ ⎞ 
⎠ 
⎟ 
2

⇔ kc − ′ k b = ′b⇔
c

b
=

′ k ′1

k
; 

 
c

b
=

′ k +1

k
⇒ z =

′ k c

1 + ′ k 
< c , 

 
so O lies on [QK); 

c

b
=

′ k −1

k
 

 
then does not give a solution unless k' > 1; we then have 

 

z =
′ k c

′ k −1
> c , 

 
the point O lies on [K, z). 

 

•   O = K⇔ z = c, x = c
′k
 and y = kc

′k
. 

 
From (2) we shall have O = K if and only if  
 

b −
kc

′ k 
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

=
c

′ k 
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

⇔ ′ k b − kc = ′c ⇔
c

b
=

′ k 

k ′ 1
; 

 
c

b
=

′ k 

k + 1
⇒ y =

kb

k +1
< b , 

 
so S lies on [UK); 

c

b
=

′ k 

k − 1
 

 
does not give a solution unless k > 1; then we have 
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y =
kb

k −1
> b,  

 
the point S lies on [Ky). 

 

We have just seen that equation (3) has the root x = b
k

 when c

b
=

′ k ′1

k
 

and has the root x =
c

′ k 
 when c

b
=

′ k 

k ′ 1
. So in each of these four 

eventualities it has a second root that is obtained, for example, by using the 
product of the roots P =

a2

k2 + = k 2 − 2k ′ k cosα −1
; the second root does not lead 

to a solution to the problem unless we have 
 

k 2 + ′ k 2 − 2k ′ k cosα −1 > 0.  
 
To sum up, we find both cases Ibn al-Haytham investigated and special 

cases to which he did not draw attention. 
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TREATISE BY AL-ḤASAN IBN AL-ḤASAN IBN AL-HAYTHAM  
 

On Analysis and Synthesis 
 
 
 
Every science and every study has a purpose, and that purpose is the 

peak to which one ascends, and to which aspire the spirits of those who 
seek after it zealously, with the aim of reaching it and mastering it. The 
mathematical sciences are founded on proofs; the ends they seek to attain 
are determination of unknowns, in the parts of the mathematical sciences, 
and to establish proofs that demonstrate the truth of their results.1 The peak 
to which the spirit aspires in those who investigate these sciences with zeal 
is to obtain proofs by which one deduces the unknowns in these sciences. A 
proof is a syllogism that indicates, necessarily, the truth of its own conclu-
sion. This syllogism is made up of premises whose truth and validity are 
recognised by the understanding, without being troubled by any doubt in 
regard to them; and [the syllogism] has an order and arrangement of these 
premises such that they compel the listener to be convinced by their neces-
sary consequences and to believe in the validity of what follows from their 
arrangement.  

The method used to obtain these syllogisms is to hunt for their prem-
ises, to seek the devices for grasping them and to find their arrangement. 
The art by which we pursue the search for these premises, and arrive at the 
arrangement that leads to those of their results that we are working on, is 
called the art of analysis. Everything that has come to light in the mathe-
matical sciences is owing to this art alone. 

We explain in this treatise how to proceed by the art of analysis, which 
leads to determine the unknowns in the mathematical sciences, and how to 
proceed in pursuing the search for the premises, which are the basis for the 
proofs that show the validity of what we determine regarding the unknowns 
in these sciences, and the method for arriving at the arrangement of the 

 
1 The Arabic term used here is ma‛nā. The term is used in a wide variety of 

contexts, to mean notion or concept, and sometimes proposition or result and so on. We 
have taken the liberty of translating the word according to the context. 
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premises and the structure of their combination. We also show the nature of 
these premises and the inverse of their arrangement, which is the demon-
strative syllogism, and it is that which is known as synthesis; it has in fact 
been called synthesis because it is the combining of the premises deduced 
by analysis, and it is syllogistic synthesis. Furthermore, we divide this art 
into its subdivisions, we describe their rules and laws, and we display the 
details of its parts. We also provide our help in regard to all the principles 
used in this art and that are required by it, and thus we begin by saying: 

We say that the mode of proceeding in analysis is to suppose the quae-
situm completely accomplished and finished, then we examine the proper-
ties of this object, necessary consequences of this object and of its genus, 
then what follows from these necessary consequences, then the necessary 
consequences of these last, until we end up with a thing that is given in the 
quaesitum, which is not impossible for it. Here is how we generally pro-
ceed in analysis. When this examination ends up with the thing that is 
given, we break off the examination of this thing, and the person carrying 
out the examination stops there; what is given is the thing that we cannot 
reject, and that nothing can prevent [our accepting]. 

The mode of proceeding in synthesis consists of supposing what is 
given, which is what analysis arrived at and where the person examining it 
stopped, then add to it the property we found [in the analysis], then to that 
we add the property we found before that last; in this order we follow the 
inverse of the order followed in the analysis; in fact if we follow this route, 
the progression arrives at the thing we seek, because it was the first object 
in the analysis; if we invert the order, the first then becomes the last; and if 
the inverse order ends with the first quaesitum, then that order will be a 
demonstrative syllogism, and the first supposed quaesitum will be its 
conclusion; then the quaesitum will exist, and moreover, its validity will be 
certain, because it is the conclusion of a demonstrative syllogism that 
shows, as a necessity, the validity of its conclusion. 

The art of analysis requires prior knowledge of the principles of 
mathematics and of their application so that the analyst bears these princi-
ples in mind during his practice of analysis, and furthermore has recourse 
to intuition in this art; for no art is in fact complete, for someone who 
practises it, except through an intuition of the method that leads to the 
quaesitum. We have recourse to intuition in the art of analysis when the 
analyst does not find in the subject of the problem given properties that, 
when combined, lead to the quaesitum; in that case, the analyst needs 
intuition. What he needs to grasp by intuition is an addition, this he adds to 
the object, so that, once this is added, it produces properties of the object 
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that lead, with this addition, to properties which, once combined, have as 
their result the thing we are looking for. 

In what follows in this account, we shall give examples of all that we 
have just mentioned, examples which display all the concepts that we have 
determined: the mode of obtaining them will appear, those among them 
that were hidden will be unveiled, moreover, the validity of what we have 
determined and arranged will be verified and will become certain, once that 
we have given a detailed account of this art, that we have set it out in order, 
and that we have acknowledged all its species and all its parts. 

This art is divided up in accordance with the division of its objects, 
because the method for analysing each of the species of its objects is unlike 
the method in the analysis of the remaining species. The objects of this art 
are unknowns in the parts of the mathematical sciences; these unknowns in 
the parts of the mathematical sciences are themselves divided according to 
the subdivisions of all the parts of these sciences. Now, the parts of these 
sciences are divided first of all into two subdivisions: theoretical and 
practical; every part of the mathematical sciences is in fact either 
theoretical or practical. That part among them which is theoretical is that in 
which we are seeking to know the truth of a property necessary to that part 
on account of its essence and its form. That part which is practical is that 
we seek to carry out and bring things about in existence by action. Both for 
the theoretical and for the practical we give examples from the parts of 
each species of the mathematical sciences, so as to show that what we have 
set out is true.  

The concepts proper to the theoretical part of the science of numbers2 
follow the example in our statement: for two square numbers, the ratio of 
one to the other is equal to the ratio of the side to the side multiplied by 
itself; and the example in our statement: given successive numbers in 
proportion, and that are the smallest numbers in their ratio, each of the 
<numbers> at the two ends is prime to the other;3 and the example in our 
statement: for two numbers, one of which measures the other, the one that 
is measured has a part that has the same name as the one that measures it. 
This is the style of all the theoretical concepts in the science of numbers. 

The concepts proper to the practical part of the science of numbers 
follow the example in our statement: to find two square numbers such that 
their sum is a square; and the example in our statement: to find successive 
numbers in the same ratio, as many of them as we wish; and the example in 

 
2 Although this expression is in the singular in Arabic it is translated by the plural 

in French. A literal translation of the Arabic term would be ‘theory of number’. 
3 Compare Euclid, Elements, IX.15. 
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our statement: to find a perfect number.4 This is the style of all the practical 
results in the science of numbers. 

The theoretical concepts of geometry follow the example in our 
statement: <the sum of> two sides of a triangle is greater than the remain-
ing side; and the example in our statement: the sum of the three angles of a 
triangle is equal to two right angles; and the example in our statement: the 
sides and the opposite angles in plane figures with parallel sides are equal 
two by two. 

The practical concepts of geometry follow the example in our 
statement: to construct an equilateral triangle on a given straight line; and 
the example in our statement: to construct on a given straight line an angle 
equal to a given angle; and the example in our statement: to construct a 
square equal to a given figure. 

The theoretical concepts of astronomy follow the example in our 
statement: the centre of the sphere of the Sun lies away from the centre of 
the Universe; and follow the example in our statement: the motion of 
Gemini is opposite to the order of succession of the signs of the Zodiac;5 
and follow the example in our statement: the sphere of the fixed stars is 
higher than the spheres of the wandering stars. 

The practical concepts of astronomy do not form part of astronomy 
itself, but to its proofs, as for example: take away a ratio from a ratio, or 
add a ratio to a ratio, or draw from a point a perpendicular to one of the 
lines that are imagined in astronomy, or to construct a triangle on one of 
the lines in astronomy. All these propositions reduce to ones in the science 
of numbers or in geometry. We can mention in this area the construction of 
the instruments with which we observe heavenly bodies, and this forms no 
part of the body of theoretical mathematical sciences. 

The theoretical concepts of music follow the example in our statement: 
the interval of an octave is composed of the interval of a fourth and the 
interval of a fifth; and follow the example in our statement: the interval of 
an octave is made twice by fifteen [single-tone] steps in interval;6 and 
follow the example in our statement: the interval of a fourth divides into 
more than two tones. 

 
4 Lit.: the perfect number. 
5 The constellation of Gemini participates in the diurnal motion, which takes place 

in a retrograde sense about the axis of the world. The apparent annual progression of the 
Sun through the sign of the Zodiac takes place in the direct sense. 

6 Ibn al-Haytham’s expression seems to be designed to avoid referring to intervals 
less than a single ‘tone’. For the Greek music theory on which he is drawing, see 
Andrew Barker, Greek Musical Writings, 2 vols, Cambridge, 1984, 1989 [vol. 1, The 
Musician and his Art, vol. 2, Harmonic and Acoustic Theory]. 
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The practical concepts of music are the composition of the degrees [of 
intervals of a single tone]; they reduce to the science of numbers, because 
they reduce to the composition of numerical ratios. 

As for the practice of music, that is to say manual practice which 
consists of striking strings and instruments and of combining sounds, it 
does not enter into this examination. 

No concept, in one or other of the mathematical sciences, can be 
anything but theoretical or practical. The practical part then divides into 
two subdivisions, with discussion or without discussion. The [examples in 
the] part with discussion follow the example in our statement in the parts of 
the science of numbers: to divide two known numbers in two known ratios; 
if we do not impose the condition that one of the two ratios is to be greater 
than the ratio of one of the divided numbers to the other, and that the other 
ratio is to be smaller than the ratio of the two numbers divided one by the 
other, it will not be possible for these two numbers to be divided in these 
two ratios7 – this condition is called discussion; and follow the example in 
our statement: to find the greatest number that measures two known 
numbers; if we do not impose on the two numbers the condition that they 
must be commensurable, there cannot exist a number that measures them 
[both] – this condition is the discussion; and follow the example in our 
statement: to find a third number in proportion with two known numbers;8 
if we do not impose on the two numbers the condition that they must be 
commensurable, there cannot exist a third number in proportion with these 
two numbers. 

Anything that has a discussion in the parts of geometry follows the 
example in our statement: from three given straight lines to construct a 
triangle; if we do not impose on the straight lines the condition that the sum 
of any two of them must be greater than the third, we shall not be able to 
construct a triangle from these three straight lines; and following the 
example in our statement: to draw in a known circle a chord equal to a 
known straight line; if we do not impose on the straight line the condition 
that it must not be greater than the diameter of the circle, we shall not be 
able to draw the chord in the circle; and following the example in our 
statement: from a known point to draw to a known straight line a straight 
line that is perpendicular to it; if we do not impose on the straight line the 

 
7 If a and b are the given numbers, k1 and k2 the given ratios, we require a1 and a2, 

b1 and b2 such that a1 + a2 = a, b1 + b2 = b, a1/b1 = k1, a2/b2 = k2. This problem is the 
sixth one in the text; we have proved that if k1 < k2, it is necessary that k1 < a/b < k2. 

8 Given a and b, to find x such that a/b = b/x, x = b2/a.  
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condition that it must not be finite, then perhaps this will not be possible. 
These three conditions are the discussion for these three propositions. 

As for astronomy and music, they do not involve discussion, because 
they do not contain practical concepts except in their proofs and in their 
syllogisms; and everything that is in these procedures is numerical or 
geometrical, and discussion of them belongs with discussion in the science 
of numbers and in geometry. 

The part without discussion divides into two subdivisions, indetermi-
nate and non-indeterminate. An indeterminate <problem> is one that has 
several solutions, and the non-indeterminate is that which has a single solu-
tion, that is to say that it cannot be completed except in a single way. 

In the parts of the science of numbers, the indeterminate follows the 
example in our statement: to find two square numbers such that their sum is 
a square. [The problem in] this statement can have several solutions, that is 
to say there can exist many squares, an infinite number, such that each pair 
among them has a square sum;9 and follows the example in our statement: 
to find a number that has given parts;10 many numbers can be found, an 
infinite number, each of which has these same parts. 

And following the example in our statement in the parts of geometry: 
to construct a circle that touches two given known circles; [the solution to] 
this proposition can be constructed in many ways, since the circle that is 
constructed can touch the two circles with its convex edge on the convex 
edges of the two circles; it can touch one of the two circles with its convex 
edge on the convex edge of the latter, and touch the other with its concave 
edge on the convex edge of it; it can touch each of the two circles with its 
concave edge on one of the convex edges of the two circles – the construc-
tion of this circle is thus carried out in three ways;11 and follows the 
example in our statement: from a given point to draw a straight line that is 
a tangent to a given circle;12 this construction is carried out in two ways, 

 
9 The word may seem ambiguous. The author means to say that there exist pairs of 

square numbers, an infinite number of them, such that the sum of the two terms of each 
pair is a square. 

10 This is a problem of factorisation of integers. Ibn al-Haytham’s vocabulary is 
derived from Euclid. That is ‘parts’ means what would now be called ‘factors’ (see 
Euclid, Elements, VII, Definition 3). 

11 Here we have three types of problems that each have an infinity of solutions. 
The required circle can have 1) exterior contact with each of the given circles A and B; 
2) interior contact with A and B; 3) interior contact with A (or B) and exterior contact 
with B (or A). 

12 It is taken for granted that the point lies outside the circle, otherwise the problem 
requires a discussion. 
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because if we join the point to the centre of the circle with a straight line, 
we can draw from the point two straight lines [one] on either side of that 
straight line, each of them being a tangent to the circle. In the science of 
numbers and geometry, the examples of these propositions are many; in the 
problems without discussion there can be indeterminate problems, and the 
examples that we have mentioned are sufficient [to stand] for all of them. 

In astronomy there cannot be practical parts, except in its proofs, which 
reduce to the science of numbers or to geometry. It remains that among the 
motions of the heavenly bodies there can be some that can be produced in 
two ways, like the motion of the Sun, which can be according to two orbs: 
one of which has its centre at the centre of the Universe,13 and the other 
[orb] is its epicycle and has its centre on the circumference of the first one; 
the motion of the Sun can be according to a single orb14 whose centre lies 
away from the centre of the Universe. However, this proposition cannot be 
said to be practical, because it is as such, in one manner, and cannot be in 
the other one. 

In the parts of music there can be indeterminate practical parts; 
however, their construction reduces to the science of numbers, as in [the 
proposition introduced by] our statement: to divide the interval of an octave 
into the two intervals of a fifth and a fourth; the division of this interval in 
fact takes place under two [different] assumptions; we can do things so that 
the interval of a fourth precedes the interval of a fifth and we can do things 
so that the interval of a fifth precedes the interval of a fourth; and in the 
example in our statement: to divide the interval of a fourth into three 
intervals; this interval, that is a fourth, divides into two tones and a remain-
der; this remainder can be at the beginning, or can be in the middle, or can 
be at the end; so the division can be done in three ways. Nevertheless, these 
subdivisions reduce to the science of numbers, because they divide 
according to the division of the numerical ratios through which the inter-
vals are found according to ratios.15 

It is clear from all that we have proved about the division of the parts 
of the mathematical sciences that they first divide into two subdivisions. 
One of the subdivisions then divides into three [further] subdivisions. It 
follows that analysis in the parts of these sciences must be divided in 

 
13 This is the circle called the deferent; its centre is U, the centre of the Universe; 

the Sun S moves on the epicycle whose centre P moves round the deferent. 
14 The circle usually called an eccentric, whose centre E is different from U. 
15 The three sections of the practical part are: 
 - with discussion (maḥdūd) 
 - without discussion (ghayr maḥdūd): - determinate (ghayr sayyāl) 
       - indeterminate (sayyāl) 
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accordance with these subdivisions. Analysis in the theoretical part is of a 
single genus. Analysis in the practical part is also of a single genus, but it is 
divided into three species. Let us now show how analysis works in these 
subdivisions. 

Analysis in the theoretical part is of a single genus. It is true that one 
and the same theoretical part can be analysed in several manners, but these 
manners nevertheless derive from a single genus. This is in effect because, 
if the quaesitum is theoretical, the analysis must be carried out by follow-
ing through the properties only of the object of the notion we are seeking. 
So if it is analysed in several ways, that is if in analysing it several methods 
are used, then the analysis, for each of these methods, is carried out by 
seeking only its properties, once we suppose that the quaesitum is 
completely and perfectly given. If we do not, in some way, find properties 
for the quaesitum that lead to a property that exists in it, and such that, 
when we combine it with others, it produces this quaesitum, then the ana-
lyst must add to this object some additions that do not make it less like 
what it really is; he must then examine the properties of the object with the 
addition – it must in fact happen that other properties come to the object as 
a result of the addition; if, with this addition, the analysis is completed, 
then it is that one [i.e. that analysis] which, if we reverse it, produces the 
quaesitum; otherwise, we add to this addition another addition, and so on 
until there come, with these additions, properties which, once reversed and 
combined, produce what is required. These additions cannot be carried out 
except by using mathematical intuition, by which one grasps the premises. 
This intuition is the one we mentioned earlier, and the law of this intuition 
is to seek an addition such that, if one attaches it to the first object, there 
results from their combination a property or several properties that did not 
exist before this addition [was made]. If the analyst continues with this 
method, he cannot but arrive at a given property, or at a false property. If 
this method leads to a given property, then the proposition under investi-
gation is valid and has a reality; but if the method derives a false property, 
the proposition under investigation is false and has no reality. We shall 
then show by means of examples how to add these additions, how to seek 
their properties, how to reverse them and how to reconstruct them. 

If the analysis then leads to a given property and one that has reality, 
then, if we reconstruct this analysis, we show from that by true [i.e. deduc-
tive] proof that the proposition we are seeking to establish is true and 
beyond doubt. But, if the analysis leads to data that are impossible, this 
indicates that the proposition we are seeking to establish is impossible, and 
the analysis itself will be a proof of the falsity of the statement, if the analy-
sis is presented as a proof by reductio ad absurdum; proof by reductio ad 
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absurdum in fact reduces to supposing the assertion as true in with what it 
conveyed, and then to examine its necessary consequences. But, in the 
analysis that leads to something impossible, we have supposed the asser-
tion as true in what it conveyed, and then examined its necessary conse-
quences; these consequences have thus led to something impossible. 
Analysis that leads to something impossible is thus a proof by reductio ad 
absurdum of the falsity of the proposition under investigation. This is how 
analysis is carried out in theoretical parts of the mathematical propositions, 
as in their synthesis. 

Analysis for the practical part belongs to the family of ingenious proce-
dures. We are in fact seeking to do something that belongs to these subtle 
practices, now all the subtle practices belong to the family of ingenious 
procedures. The first thing that the analyst must do in connection with 
analysis in these practical parts, is, after having supposed that the quaesi-
tum is entirely completed and perfect, to examine its necessary properties, 
if it [the quaesitum] exists and has the qualities required in practice, and to 
examine what necessarily follows from these properties, and what neces-
sarily follows from these last consequences, until he arrives at something 
that is given, as we have shown in analysis in the theoretical part. If the 
analyst does not see properties that lead to the quaesitum, he adds to the 
object additions, from which properties arise, as we have shown in the 
example in the theoretical part, and he examines the properties of what is 
produced until he ends up with something given; if he thus ends up with 
something given, then for each of these properties he examines how one 
can find this property, and how to think up a stratagem for finding it, so 
that it exists, and to realize it in actu according to the quality that derives 
necessarily from the form of the proposition whose reality we are seeking 
to establish. In reflecting on the way to discover each of these properties, 
and in imagining a stratagem for bringing this property into existence, it 
becomes apparent to him that this property requires a condition and a 
discussion, or does not require them. If it is one of those properties that 
require a condition, then it is apparent to him that this property may not 
exist, that its existence may not occur, or that it may exist; it is when he 
leans in this direction that it becomes apparent to him that the quaesitum 
needs a discussion. It is then that he must assume the existence of that 
property or that proposition whose existence he has assumed, and ask him-
self when it is possible for that existence to be achieved, and when it is not 
possible for it to be achieved. If the quality by which the existent of this 
property or this quaesitum becomes a reality is then fixed for the analyst, 
the analysis is complete, and the discovery of what is required is complete. 
If in the course of his reflexion and his careful consideration of a means of 
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finding the properties and the concepts by which the quaesitum is obtained, 
he does not encounter anything that makes it impossible to find them [or 
anything] that obstructs a part of them, then the quaesitum does not need 
either a condition or a discussion. In this case, he works to bring into action 
those properties that have appeared; but in bringing these properties and 
these concepts into action, it becomes apparent to him that these properties, 
or one of these properties, come about in several ways, or come about in 
only a single way. If each of these properties comes about only in a single 
way, then the quaesitum is not indeterminate. And if these properties, or 
one of them, come about in several ways, then the quaesitum can be 
obtained in several ways. So if, in this part, analysis also ends with some-
thing impossible, then this quaesitum cannot be obtained. All these subdivi-
sions that make up the structure of analysis in the practical part belong to 
the same genus, and the method for analysis in them is similar to analysis 
in the theoretical part, except for the difference between analysis in the 
theoretical part and analysis in the practical part, that analysis in the 
theoretical part is a search for a property that pertains to the concept we 
seek and that exists in it, whereas analysis in the practical part consists of 
conceiving of the stratagem for finding the required concept and for bring-
ing it into action, and that the method for finding it and bringing it into 
action is to bring into action each of the properties that appear in the 
analysis. 

What we have just described is the whole set of the parts of analysis, 
and the mode of proceeding in each of these parts; when we mention 
examples, each of these parts will be illuminated and unveiled, as well as 
the art of analysis and its existence in actu will appear.  

As for the laws that govern this art and its foundations, from which we 
complete our discovery of the properties and our grasp of the premises, and 
which are the basis of mathematics, of which we have said earlier that 
knowing them before we start is indeed necessary for completing the art of 
analysis, these are the notions called ‘the knowns’. The knowns are divided 
into five groups, which are: known in number, known in magnitude, known 
in ratio, known in position, known in shape.16 Euclid’s book translated as 
the Data includes many notions concerning these knowns, which are 
among the instruments of the art of analysis; and the greater part of the art 
of analysis is based on these notions, but with the exception that there 
remain other notions among the knowns that are indispensible for the art of 

 
16 Ibn al-Haytham uses the term ṣūra (form). We have translated it as ‘shape’ so as 

to distinguish it from other uses of ‘form’ and because Ibn al-Haytham himself refers to 
Euclid’s Data. 
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analysis, and which we need many times, that are deduced by analysis, that 
are not included in this book, and that we have not found in any book. We 
shall show in this book which knowns we use in the examples of analysis 
in this treatise, the ones that exist in the books, and also those that are not 
mentioned. We summarise each of these known notions, and we reveal 
what it really is; and, once this [present] treatise is finished, we shall 
straightaway set about [writing] an independent treatise on the knowns, in 
which we shall show the essential characters of the known notions that we 
use in the mathematical sciences; we shall deal exhaustively with all its 
parts, and we shall mention everything that concerns them. 

Here we say: a known, in general terms, is that which does not change, 
because anything that changes and has change in its nature, has no determi-
nate or assignable reality. If it does not have a determinate and assignable 
reality that is its essential character, it is not correct [to say] that it is known, 
because it is possible that all that we know about it may change from what 
it was; a thing will not be known unless it is fixed, in a single state, which 
is its essential character, which is proper to it. If this is the case, a known is 
that which does not change. Now that the essential character of the known 
is established, let us then explain each of the known notions that we have 
mentioned earlier and which are the basic elements of the art of analysis. 

We say: a thing* known in number is one whose number does not 
change, and the number is a unit or a sum made up of units; a thing known 
in number is one whose units do not change, that is they neither increase 
nor decrease. A thing known in magnitude is one whose magnitude does 
not change, because a known is a thing that does not change. What is 
known of a thing of known magnitude is its magnitude. A thing known in 
magnitude is one whose magnitude does not change. Magnitudes can be 
divided into two groups: natural and imaginary. Natural magnitudes are 
sensible bodies, their surfaces, their dimensions, which are their length, 
their width and their depth. Imaginary magnitudes are the magnitudes 
derived from sensible magnitudes by the imagination; these are the dimen-
sions that are a straight line, a surface, and, in the mathematical sense, a 
solid. We have set out these notions in our book the Commentary on 
Euclid’s Postulates; and apart from that, these notions are well known to 
anyone who has studied geometry: their fame is such that we do not need to 
define them here. A thing known in magnitude is one whose magnitude 
does not change; but the magnitude is the dimension or the dimensions, so 
a thing known in magnitude is one whose dimension or dimensions do not 

 
* We add ‘thing’ 
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change, that is to say that its dimension or dimensions do not increase or 
decrease. 

A thing known in ratio is one whose ratio does not change. But a ratio 
is the measure of the quantity of what is compared to the quantity of that to 
which it is compared. But a ratio cannot exist except between two magni-
tudes of the same species, and which are jointly described by the same 
definition. Ratio comes in two species, which are numbers17 and magni-
tudes. As for a ratio that is in numbers which are greater than one, it 
reduces entirely to a single base, which is: one of the two numbers is 
[some] parts of the other number, if we find the ratio of the smaller to the 
greater, and if we find the ratio of the greater to the smaller; and if we find 
the ratio of equality one to the other, each of them will be [some] parts of 
the other even when equal to it, because each of the units that are in the 
number is a part of the other number, and every number greater than one is 
a collection of units; and every number is [some] parts of every number; 
thus for two numbers, one is [some] parts of the other; a thing known in 
ratio, among numbers, [means that] there are two numbers such that the 
parts of one in relation to [those of] the other do not change, that is to say 
that the units of each of them do not increase or decrease. As for a ratio that 
is in magnitudes, it can be divided into two types: [it can be] a numerical 
ratio or a non-numerical ratio. We have demonstrated the distinction 
between each of these two ratios in our book, the Commentary on 
<Euclid’s> Postulates, and in that book we have proved that each of these 
two ratios among magnitudes exists. Here we shall shed light on each of 
these two ratios by a brief discussion, which will make clear what they 
mean. The numerical ratio existing between two magnitudes is the one by 
which the ratio of one of its two magnitudes to the other is equal to the 
ratio of a number to a number. And the non-numerical ratio is the one by 
which the ratio of its two magnitudes is not the ratio of a number to a 
number; but the ratio by which one of its two magnitudes to the other is the 
ratio of a number to a number, is one by which one of its two magnitudes is 
a part or parts of the other, that is to say that we can divide up each of them 
[sc. the magnitudes] into equal parts in such a way that each of the parts of 
one of them is equal to each of the parts of the other, or that one is 
measured by the other. The non-numerical ratio is that for which this is not 
possible. 

 
A known ratio, which is between two magnitudes, divides into two 

types. One of the types is when the ratio of one of the two magnitudes to 

 
17 Lit.: ‘number’ – singular which indicates a plural. 
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the other is equal to the ratio of a known number to a known number; and 
the other type is when the ratio of one of the two magnitudes to the other is 
equal to the ratio of a known magnitude, that we can find and take note of, 
to a known magnitude, that we can find and take note of. It is possible to 
unite the two types under this type; we then say: a known ratio that is 
between two magnitudes is such that the ratio of one of its two magnitudes 
to the other is equal to a ratio of a known magnitude that we can find and 
take note of, to a known magnitude that we can find and take note of; 
because, for two magnitudes for which the ratio of the one to the other is 
equal to the ratio of a known number to a known number, it is possible to 
find two magnitudes that are in their ratio. Thus, the known ratio between 
two magnitudes is such that we can find two known magnitudes that are in 
the ratio of its two magnitudes. If we find two known magnitudes in the 
ratio of two magnitudes, then the ratio between these two magnitudes does 
not change, because the two known magnitudes do not change, it being 
given that they are known. 

A thing known in position is one whose position does not change. As 
for what position is, that is place (naṣba),18 and place is established with 
respect to a thing whose location is defined. Position is for a body, for a 
surface, for a line and for a point. Position for a body divides into two 
types: either it can be relative to a fixed thing, or it can be relative to a 
thing that moves. Something that is relative to a fixed thing is a thing that 
does not undergo displacement or move with any kind of motion; a body 
known in position relative to a fixed thing is one in which the distance from 
each of its points to the fixed points that are in the fixed thing is [always] 
the same distance and does not change; this type is the one called known in 
position absolutely. As for a body known in position relative to a thing that 
moves, it is one in which the distance from each of its points to every point 
of this movable thing is [always] the same distance, which does not change. 
It follows that for this body, which is of known position and which has 
such a property, when the body to which it is related moves, [the body in 
question] moves with a motion equal to its motion, so that the distances 
between each of its points and any point of the thing to which it is related 
are the same distances as those which there were between them, as [if it 
were] a determinate part among the parts of the movable body, and as [if it 
were] the determinate organ among the organs of a human being. The 
distances from each point of the determinate part among the parts of the 
body to each point of the remaining parts of the body do not change; 

 
18 This is our translation for the term naṣba usually used to translate the Greek term 

θέσις. 
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however, if this body moves, the part moves with its motion and the 
distances from each point of the part to each point of the remainder of the 
body are the same distances and do not change. The part is said to be of 
known position with respect to this or that, and we cannot refer to this thing 
known in position without, while referring to it, referring to the other thing 
with respect to which it is known in position. In the same way, surfaces of 
known position are also divided into two types and their state as regards 
position is like the state for bodies, without any difference: either their 
position is relative to surfaces, or to lines, or to fixed points; or their 
position is relative to surfaces, or lines, or points that are movable; and 
these surfaces will be in motion through the motion of the things to which 
their position is related. 

In the same way, the position of lines divides into two parts according 
to the same division as for surfaces; and in the same way for points, if we 
say: a point of a position known absolutely is one whose position is relative 
to a fixed point or points, and is one that does not suffer displacement or 
move. If we say that the point is of known position with respect to a 
movable thing, it will be one whose distance from any point of that 
movable thing is [always] the same distance, which does not change. And 
if the thing moves, the point moves through its motion, as the centre of a 
circle, in which the distance to each point of the circumference of the circle 
is the same distance, which does not change; and nevertheless, if the circle 
moves, its centre moves with it, as for the centre of the sphere, and as for 
the vertex of a cone; and for this there are numerous examples. Thus, [the 
manner in which] a thing is known in position is divided into two 
subdivisions in each of the magnitudes, which are a line, a surface and a 
body: it is the same for points. 

As for known in form, it exists only for figures; thus a figure of known 
form is one whose angles are known, and for which the ratios of the sides 
one to another are known. Figures exist in surfaces and in bodies; plane 
figures can include figures of known form, and solid figures can include 
figures of known form. 

What we have mentioned are all the parts of knowns, they are all used 
in the art of analysis; all the knowns mentioned by Euclid, in his book 
called the Data, are included within the sum total of the parts that we have 
mentioned; and in what we have mentioned, there are some things that 
Euclid did not mention: these are movable things known in position. There 
also remains among these parts a notion that none of the ancients 
mentioned, and that we have not found in any book; this is one of the 
notions that we need in the art of analysis, and one whose usefulness for 
solving problems is increasing; in this place we mention certain of its parts 
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so as to use them in examples of analysis and to show how to use these 
knowns, and how the need for this notion makes itself felt; and we shall 
show where it proves successful in the art of analysis, and the inadequacy 
of the knowns that are in the books in dealing with all the parts of known 
ideas; we shall then deal with all the parts of the knowns, and we shall give 
an exhaustive account of them in this treatise, to which we shall now turn. 

 
 

<FIRST CHAPTER> 
 
– 1 – One <of the results> that we shall set out immediately is that for 

any pair of points of known position, from which are drawn two straight 
lines that meet one another in a single point and are such that the ratio of 
one of the straight lines to the other is a known ratio, then this point [of 
intersection] lies on the circumference of a circle of known position. 

Example: Let there be two points A and B known in position, from 
which are drawn the two straight lines AC and BC such that the ratio of AC 
to CB is equal to a known ratio which is the ratio of G to E, the ratio of the 
greater to the smaller.  

We say that the point C lies on the circumference of a circle known in 
position. 

Proof: We join AB and we extend it in the direction of B to [the point] 
D. At the point C on the straight line AC, we construct an angle equal to the 
angle CBD; let the resulting straight line be drawn in the direction of B and 
let the angle be ACM. The straight line CM will then lie outside the triangle 
ACB, because the angle ACM is equal to the angle CBD which is greater 
than the angle ACB.  

 
Fig. II.1.1 

 
I say first that the straight line CM meets the straight line BD. 
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We extend the straight line AC to the <point> N. The angle NCM is 
then equal to the angle CBA and the angle CBA is greater than the angle 
CAB, because AC is greater than CB and this [is so] because the ratio of AC 
to CB is the ratio of the greater to the smaller; so the angle NCM is greater 
than the angle CAB, so the sum of the two angles MCA and CAB is smaller 
than two right angles and the straight lines CM and AB meet one another in 
the direction towards B; let them meet one another at the point D. Thus, the 
two triangles ACD and BCD are similar because the angle ACD is equal to 
the angle CBD and the angle ADC is common to the two triangles; so it 
remains that the angle BCD is equal to the angle CAD. So the ratio of AD 
to DC is equal to the ratio of CD to DB and is equal to the ratio of AC to 
CB. But the ratio of AC to CB is equal to the ratio of G to E which is 
known, so the ratio of AD to DC is equal to the ratio of G to E. We put the 
ratio of E to S19 equal to the ratio of G to E, so the ratio of E to S is equal to 
the ratio of CD to DB. So the ratio of AD to DB is equal to the ratio of G to 
S. And the ratio of G to E is known, so the ratio of E to S is known and the 
ratio of G to S is known, as has been proved in the eighth proposition of the 
Data. So the ratio of AD to DB is a known ratio, so the ratio of AB to BD is 
known, as has been proved in the fifth proposition and eighth proposition 
of the Data. But AB is known in magnitude and in position, so the straight 
line BD is known in magnitude as has been proved in the second proposi-
tion of the Data. So the point D is known, the straight line AD is of known 
magnitude, the straight line DB is of known magnitude and the surface 
enclosed by the two straight lines AD and DB is of known magnitude as has 
been proved in the fiftieth proposition of the Data.20 But the surface 
enclosed by the two straight lines AD and DB is equal to the square of DC, 
because DC is the mean proportional between them. So the straight line DC 
is of known magnitude. We make DH equal to DC, then the straight line 
DH is of known magnitude and its point D is known, so the point H is 
known and the straight line DH is known in position. We take D as centre 
and with distance DH we draw a circle, then it passes through the point C, 
because DC is equal to DH; let the circle be HCI; so the circle HCI is 
known in position, because its centre is known in position, its semidiameter 

 
19 Ibn al-Haytham introduces the segment S such that G

E
= E
S

 so as to apply 

Proposition 8 of the Data and draw the conclusion that G
S

 is known.  
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20 This conclusion can be seen to follow from the converse of Proposition 55 (ed. 
Heiberg), Proposition 56 (in the recension by al-Ṭūsī). 
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is of known magnitude and it passes through the point C; so the point C lies 
on the circumference of a circle known in position which is the circle HCI. 
This is what we wanted to prove. 

 
– 2 – We also say: if there exists a circle known in magnitude and in 

position and a point known in position, if from the point we draw a straight 
line as far as the circumference of the circle and extend it until the ratio of 
the first straight line to the second straight line is a known ratio, then the 
point that is the endpoint of the second straight line lies on the circumfer-
ence of a circle known in magnitude and in position. 

Example: The circle AB is known in magnitude and in position and the 
point C is known. From the point C we draw the straight line CA that we 
extend to D, so that the ratio of CA to AD is known.  

 
Fig. II.1.2 

 
I say that the point D lies on the circumference of a circle known in 

magnitude and in position. 
Proof: We mark off the centre of the circle, let it be E; we join CE, we 

extend it in the direction towards E; we join EA and we imagine <a straight 
line> DG parallel to the straight line AE. So the ratio of GD to EA is equal 
to the ratio of DC to CA and is equal to the ratio of GC to CE. But the ratio 
of DC to CA is known, because the ratio of DA to AC is known, as has been 
proved in the sixth proposition of the Data. So the ratio of GD to EA is 
known, the ratio of GC to CE is known, EA is of known magnitude and EC 
is of known magnitude. So the straight line GD is of known magnitude; but 
the straight line GC is of known magnitude, as has been proved in the 
second proposition of the Data. But since the two points C and E are 
known in position, accordingly the straight line CE is known in position, as 
has been proved in the twenty-fifth proposition of the Data.21 So the 

 
21 This is Proposition 26 in Heiberg’s edition and in the recension by al-Ṭūsī. 
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straight line CG is known in magnitude and in position and its point C is 
known, so its point G is known as has been proved in the twenty-sixth pro-
position of the Data.22 We take the point G as centre and, with distance GD 
of known magnitude, we draw a circle, let it be the circle DHI; then the 
circle DHI is known in magnitude and in position, because its centre is 
known in position and its semidiameter is of known magnitude. Now the 
point D lies on the circumference of this circle, so the point D lies on the 
circumference of a circle known in magnitude and in position. This is what 
we wanted to prove. 

 
– 3 – We also say: if we have a straight line known in position and a 

given point C that does not lie on the straight line, if from that point we 
draw a straight line to the straight line known in position and which is 
inclined to it, making a known angle, so that the ratio of the two straight 
lines that were generated, one to the other, is a known ratio, then the point 
that is the endpoint of the second straight line lies on a straight line whose 
position is known. 

Example: The straight line AB is known in position and the point C is 
known; we draw the straight line CD to the point D on the known straight 
line AB. <The straight line> CD is inclined to the straight line DE, and 
encloses a known angle with DE, which is the angle CDE, so that the ratio 
of CD to DE is a known ratio. 

I say that the point E lies on a straight line known in position. 

 
Fig. II.1.3 

 
Proof: We join CE, so the triangle CDE is known in form, as has been 

proved in the thirty-ninth proposition of the Data;23 so the angle DCE is 
known and the angle CED is known. From the point C we draw a perpen-
dicular to the straight line AB, let it be CG; CG is thus known in position as 
has been proved in the twenty-ninth proposition of the Data.24 The straight 
line AB is known in position and cuts the straight line CG. So the point G is 

 
22 This is Proposition 27 in Heiberg’s edition and in the recension by al-Ṭūsī. 
23 This is Proposition 41 in Heiberg’s edition and in the recension by al-Ṭūsī. 
24 This is Proposition 30 in Heiberg’s edition and in the recension by al-Ṭūsī. 
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known, as has been proved in Proposition 24 of the Data.25 The straight 
line CG has known endpoints, so it is known in magnitude and in position. 
On the straight line CG we construct the angle GCH equal to the known 
angle DCE; so the straight line CH is known in position, as has been 
proved in the twenty-eighth proposition of the Data.26 We put the ratio of 
GC to CH equal to the ratio of DC to CE, which is known. So CH is known 
in magnitude, as has been proved in the first proposition of the Data. We 
join EH. Since the angle GCH is equal to the angle DCE, the angle GCD is 
equal to the angle HCE. But since the ratio of GC to CH is equal to the 
ratio of DC to CE, the ratio of GC to CD is equal to the ratio of HC to CE. 
So the triangle HCE is similar to the triangle GCD, so the angle CHE is 
equal to the angle CGD. But the angle CGD is a right angle, so the angle 
CHE is a right angle. So from the known point H we have drawn the 
straight line HE which encloses a known angle with HC, which is known in 
position. The straight line HE is known in position, so the point E lies on a 
straight line known in position. This is what we wanted to prove. 

These notions from The Knowns that we have set out are sufficient for 
what we use and prove in this treatise on the way of proceeding by analysis. 

 
– 4 – Let us now show, by examples, the way to proceed by analysis 

and let us mention, for each of the parts into which we have divided up all 
the concepts found by analysis, an example thanks to which we reveal the 
way of proceeding for solving the problems that belong to that part and the 
way of proceeding by analysis for resolving them. 

We say that the example in the theoretical part of numerical problems 
is like our statement: if we have successive numbers in proportion and if 
we subtract from each, from the second and the last, [a number] equal to 
the first, then the ratio of what remains from the second to the first is equal 
to the ratio of what remains from the last to the sum of all the numbers that 
precede it. 

The way of proceeding by analysis to solve this problem is to suppose 
the statement to be perfectly correct and to examine the properties of the 
numbers to which this statement applies, then <to examine> what 
necessarily follows from these properties and what necessarily follows 
from what is necessary, until we end up with a property that was given, as 
we have set out earlier.  

 
25 This is Proposition 25 in Heiberg’s edition and in the recension by al-Ṭūsī. 
26 This is Proposition 29 in Heiberg’s edition and in the recension by al-Ṭūsī. 
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Let the successive numbers in proportion be the numbers A, BC, DE, 
GH. We subtract from BC – the second – <a number> CM equal to A and 
we subtract from GH – the last – <a number> LH equal to A.  

 

 
Fig. II.1.4 

 
I say that the ratio of BM to A is equal to the ratio of GL to the sum of 

DE, BC and A.  
We suppose this is so and we examine the properties of these numbers 

that are the subject of the stated notion that must be investigated to decide 
whether it is true or false. If we examine the properties of this proposition, 
the first thing that is apparent is that the second [number] is greater than the 
first, because we cannot subtract from the second something that is equal to 
the first unless the second is greater than the first. And if the second is 
greater than the first, then each of the remaining numbers is greater than its 
predecessor. But since these numbers are proportional, we must investigate 
the properties of proportional numbers. But since we have taken away 
<certain quantities> from some of these numbers, we must investigate the 
properties of proportional numbers from which we have taken away 
<certain quantities>. It has been proved in the twelfth proposition of the 
seventh book of Euclid’s work27 that if from two numbers we subtract two 
numbers such that the ratio of the whole to the whole is equal to the ratio of 
the [part] subtracted to the [part] subtracted, then the ratio of the remainder 
to the remainder is equal to the ratio of the whole to the whole. It follows 
that if, from each of these numbers, we subtract the number that precedes it, 
then the ratio of the remainders one to another is equal to the ratio of the 
numbers subtracted one to another. If we permute the ratio, then the ratio of 
the remainder of one of the numbers to what has been subtracted from it is 
equal to the ratio of the remainder of each of these numbers to what has 
been subtracted from it. This investigation shows the intuition <formed> by 
the art that made us to add a supplement to the object; this supplement is 
the subtraction of each number from the number that follows it. So from 
the number DE, the third, we take away NE which is equal to BC and from 
GH, the fourth, [we take away] IH which is equal to DE; so the ratio of GI 

 
27 This is Proposition 11 in Heiberg’s edition. 
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to DN is equal to the ratio of GH to DE, which is equal to the ratio of IH to 
EN, so the ratio of GI to IH is equal to the ratio of DN to NE. In the same 
way, the ratio of DN to NE is equal to the ratio of BM to MC, so the ratio of 
GI to IH is equal to the ratio of DN to NE and to the ratio of BM to MC. 

If we examine the properties of the proportional numbers in a second 
way, then there exists a ratio of one of the earlier numbers to its homologue 
among the later ones that is equal to the ratio of all the preceding numbers 
to all the succeeding ones, because that has been proved in Proposition 13 
of the seventh book of Euclid’s work.28 So the ratio of the sum of GI, DN 
and BM to the sum of IH, NE and MC is equal to the ratio of BM to MC, 
and MC is equal to A. So the ratio of the sum of GI, DN and BM to the sum 
of IH, NE and MC is equal to the ratio of BM to A. But IH, NE and MC are 
the numbers DE, BC and A, so the ratio of the sum of GI, DN and BM to 
the sum of DE, BC and A is equal to the ratio of BM to A. But the statement 
was that the ratio of BM to A is equal to the ratio of GL to the sum of DE, 
BC and A. The sum of the remainders, which are GI, DN and BM, is thus 
equal to the number GL. 

Let us now investigate: if these remainders – which are GI, DN and 
BM – have a sum equal to the remainder that is GL, in this case the 
statement is true and it is a valid proposition; if the sum of these remainders 
was not equal to the remainder which is GL, then the statement would be 
false and would not have any validity. But we have taken away IH which is 
equal to DE and DE is greater than BC, so IH is greater than BC. So we 
take away from IH something equal to BC; let it be KH. But BC is greater 
than A, so KH is greater than A and LH is equal to A, so KH is greater than 
LH. But since LH is equal to A and MC is equal to A, LH is equal to MC; 
since KH is equal to BC and LH is equal to MC, KL is equal to BM, and 
since IH is equal to DE and KH is equal to NE, IK is equal to DN. The 
remainders, which are GI, IK and KL, are equal to the remainders, which 
are GI, DN and BM. But <the sum> of the remainders GI, IK and KL is the 
remainder GL taken as a whole. And if the remainders have a sum equal to 
GL, then the statement is true and is not subject to any doubt. What we 
have set out is the analysis of this problem, from which we have shown 
how to proceed by analysis for this problem and for any problem [that is] 
numerical, theoretical and true.29 

The synthesis for this problem is: we assume we have successive 
numbers in proportion, let them be A, BC, DE and GH; from the second 

 
28 This is Proposition 12 in Heiberg’s edition. 
29 The ‘problem’ concerned is in fact a proposition in number theory. So it can be 

either true or false. 
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and from the last we take away something that is equal to the first, that is to 
say MC and LH. We then take away from GH something that is equal to 
DE, let it be HI, and we take away from HI something that is equal to BC, 
let it be HK. It is clear then that the remainders – which are GI, IK and KL, 
whose sum is GL – are equal to the amounts by which the magnitudes GH, 
DE, BC and A exceed one another. But this premise is the one arrived at by 
the analysis. 

In the same way, the ratio <of the sum> of these remainders to <the 
sum> of the magnitudes DE, BC and A is equal to the ratio of BM to A. It is 
obvious that the remainders GI, IK and KL are equal to the amounts by 
which the magnitudes GH, DE, BC and A exceed one another, because we 
have subtracted the magnitudes HI, HK and HL which are equal to the 
magnitudes DE, BC and A. That the ratios of these remainders to the 
magnitudes DE, BC and A are equal to the ratio of BM to A is proved like 
this: the ratio of GH to HI is equal to the ratio of HI which is subtracted, to 
HK which is subtracted, and is equal to the ratio of GI which is the 
remainder to IK which is the remainder. In the same way, the ratio of IH to 
HK is equal to the ratio of HK to HL and is equal to the ratio of the 
remainder, that is IK, to the remainder, that is KL. But the ratio of IH to HK 
is equal to the ratio of GH to HI, which is equal to the ratio of GI to IK, so 
the ratio of GI to IK is equal to the ratio of IK to KL. If we permute, the 
ratio of GI to IH is equal to the ratio of IK to KH. 

 

 
Fig. II.1.5 

 
In the same way, we prove that the ratio of IK to KH is equal to the 

ratio of KL to LH, so the ratio of GI to IH is equal to the ratio of IK to KH 
and is equal to the ratio of KL to LH. But the ratio of one of the preceding 
[numbers] to one of the succeeding ones is equal to the ratio of all the 
preceding ones30 to all the succeeding ones. So the ratio of KL to LH is 
equal to the ratio of GL to the sum of IH, KH and LH; but IH is equal to DE, 
KH is equal to BC, LH is equal to A and KL is equal to BM, so the ratio of 

 
30 That is the sum of all the preceding numbers. 
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BM to A is equal to the ratio of GL to the sum of DE, BC and A. This is 
what we wanted to prove. 

This proof is the converse of the preceding analysis, that is to say that 
the premises used in this proof are the premises which appeared in the 
analysis, but their order is inverted compared with their order in the 
analysis. 

 
– 5 – For the example of what leads to something impossible, it is as 

when we say in this same proposition: if we have successive number 
proportion and if we subtract from the second a <number> equal to the first, 
then the ratio of the number that remains from the second one to the first is 
equal to the ratio of the last number to the sum of all the numbers that 
precede it. 

If we carry out an analysis of this proposition, then the method of 
analysis is the one we have set out: we examine the properties of the 
successive proportional numbers and the properties of what we subtract 
from them. The analysis ends up with subtracting from each number the 
number that precedes it and we have remainders such that the ratio of the 
sum of the remainders <to the sum> of the numbers that have been 
subtracted is equal to the ratio of the remainder of the second <number> to 
the first number. But the numbers from which we have subtracted the 
numbers that precede them are numbers measured by the first, and the 
numbers subtracted are all the numbers that precede the last one; so the 
ratio of the sum of the remainders to the sum of the numbers that precede 
the last one is the ratio of the remainder of the second to the first number. 
Now, the statement is that the ratio of the remainder of the second to the 
first number is equal to the ratio of the last number to the sum of the 
numbers that precede it. It follows from the analysis that the sum of the 
remainders is equal to the last number. If we subtract from the last 
number31 the number that precedes it, then <the sum> of the remainders 
will be less than the last number by a quantity equal to the first number. 
Because we have proved in the first analysis that the sum of the remainders 
is equal to the number GL and that LH is equal to the first. This second 
analysis thus leads to the sum of the remainders being the number GL; now 
it was required that the sum of the remainders should be equal to the whole 
of GH. It is thus necessary from this analysis that GL is equal to GH, which 
is impossible. The analysis in which we supposed the statement to be 
<true>, that is that the ratio of the remainder of the second to the first is 

 
31 Lit.: we subtract from the last number. It is obvious that by ‘last’, he means a 

number that has a predecessor. 
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equal to the ratio of the whole last number to the sum of all the numbers 
that precede it, led to this impossibility. 

 If analysis has led to a false proposition, the proposition under 
investigation is false and has no truth, because the impossibility comes 
from having supposed the proposition under investigation could hold. This 
analysis is itself a proof that the proposition under investigation is 
impossible, if we make this analysis into a proof by reductio ad absurdum 
as we have shown earlier. According to this example we shall carry out the 
analysis of numerical and theoretical propositions, if they are false. 

 
<6> For the example in the practical part with discussion for numerical 

problems, this is our statement: to divide two given numbers in two given 
ratios.  

Let the two numbers be AB and CD and the two ratios the ratio of H to 
I and the ratio of K to L. 

The analysis of this problem will be carried out in the following way: 
we suppose that the two numbers have been divided at the two points E and 
G, that the ratio of AE to CG is equal to the ratio of H to I, that the ratio of 
EB to GD is equal to the ratio of K to L and that the ratio of H to I is not 
equal the ratio of K to L. So the ratio of AE to CG is not equal to the ratio 
of EB to GD. It is necessary for the analyst to examine the properties of the 
different ratios. If he examines the properties of the different ratios, it will 
become clear to him that one of the two ratios is greater than the other. It 
follows that one of the two ratios, AE to CG and EB to GD, is greater than 
the other. That is all that can be brought to light here. So if the analyst does 
not add something to this object that can bring to light a supplementary 
property, the investigation of this proposition will not be completed. Now 
this addition requires intuition in order that the addition shall give rise to a 
supplementary property. The addition which gives rise to a supplementary 
property is to increase the smaller of the two ratios so that it becomes like 
the greater one or to decrease the greater ratio so that it becomes like the 
smaller one. Let the ratio of EB to GD be smaller than the ratio of AE to 
CG. We put the ratio of EB to GM equal to the ratio of AE to CG, so GM 
will be smaller than GD and the ratio of AB to CM will be equal to the ratio 
of AE to CG. But the ratio of AE to CG is equal to the ratio of H to I. So the 
ratio of AB to CM is equal to the ratio of H to I. But the ratio of AB to CM 
is greater than the ratio of AB to CD, so the ratio of AB to CD is smaller 
than the ratio of H to I. In the same way, since the ratio of EB to GD is 
smaller than the ratio of AE to CG, the ratio of EB to GD is equal to the 
ratio of AE to a number greater than GC; let this be the whole of the 
number GP. So the ratio of AE to PG is equal to the ratio of EB to GD and 
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is equal to the ratio of the whole of AB to the whole of PD. So the ratio of 
AB to PD is equal to the ratio of EB to GD. But the ratio of EB to GD is 
equal to the ratio of K to L, so the ratio of AB to PD is equal to the ratio of 
K to L. But the ratio of AB to PD is smaller than the ratio of AB to CD, so 
the ratio of AB to CD is greater than the ratio of K to L. So the ratio of AB 
to CD is greater than one of the two ratios we assumed and smaller than the 
other ratio. 

So analysis has led to showing that the ratio of one of the two numbers 
we took to the other one is greater than one of the two ratios we assumed 
and smaller than the other ratio, and that one of the two given ratios is the 
ratio of one of the two numbers to a part of the other, and that the other 
ratio is the ratio of this number to a number that is greater than the other 
one. At this stage, let the analyst examine the ratio of the two given 
numbers; if it is greater than one of the two ratios and smaller than the 
other, then the quaesitum is possible, and if it is neither greater than one of 
the two ratios nor smaller than the other one, then the quaesitum is not 
possible. 

 
Fig. II.1.6 

 
Analysis has also arrived at [the result] that the ratio of AE to PG is 

equal to the ratio of EB to GD, so the ratio of AE to EB is equal to the ratio 
of PG to GD. We also find that the ratio of AB to CM is equal to the ratio 
of AE to CG, so the ratio of AE to CG is equal to the ratio of EB to GM. So 
the ratio of AE to EB is equal to the ratio of CG to GM. But the ratio of AE 
to EB is equal to the ratio of PG to GD, so the ratio of CG to GM is equal 
to the ratio of PG to GD and is equal to the ratio of the remainder, which is 
PC, to the remainder, which is MD. 

So analysis has arrived at [the result] that the ratio of two parts of CM, 
one to the other, is equal to the ratio of CP – which is the amount by which 
PD exceeds DC – to MC, which is the difference between the whole of CM 
and CD. This proposition is possible and is not difficult, that is to say that it 
is possible to divide CM into two parts such that the ratio of one to the 
other is equal to the ratio of PC, which is the excess, to MD, which is the 
difference. 
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If the analysis arrives at a possible proposition, if this analysis is then 
inverted and composed, 32  it produces what we are looking for; the 
properties that have been brought to light by the analysis will be premises 
from which we build up a demonstrative syllogism that produces the 
quaesitum. 

 
The synthesis of this problem is carried out as we shall describe: we 

suppose <we are given> the two magnitudes and the two ratios; let the ratio 
of one of the two magnitudes to the other be greater than one of the two 
ratios and smaller than the other ratio. We put the ratio of AB to CM equal 
to the ratio of H to I which is the greater of the two ratios, so CM will be 
smaller than CD. We put the ratio of AB to DP equal to the ratio of K to L 
which is the smaller of the two ratios, thus DP will be greater than CD. We 
put the ratio of CG to GM equal to the ratio of PC to MD and we put the 
ratio of AE to EB equal to the ratio of CG to GM. 

 

 
Fig. II.1.7 

 
I say that the ratio of AE to GC is equal to the ratio of H to I and that 

the ratio of EB to GD is equal to the ratio of K to L.  
Proof: The ratio of CG to GM is equal to the ratio of CP to MD, so the 

ratio of CG to GM is equal to the ratio of PG to GD. But the ratio of CG to 
GM is equal to the ratio of AE to EB, so the ratio of AE to EB is equal to 
the ratio of PG to GD. So if we permute, the ratio of AE to PG will be 
equal to the ratio of EB to GD and equal to the ratio of the whole of AB to 
the whole of PD. But the ratio of AB to PD is equal to the ratio of K to L, 
so the ratio of EB to GD is equal to the ratio of K to L. 

In the same way, since the ratio of AE to EB is equal to the ratio of CG 
to GM, the ratio of AE to CG is equal to the ratio of EB to GM and is equal 
to the ratio of the whole of AB to the whole of CM; so the ratio of AE to 
CG is equal to the ratio of AB to CM. But the ratio of AB to CM is equal to 
the ratio of H to I, so the ratio of AE to CG is equal to the ratio of H to I. So 
we have divided up each of the two numbers AB and CD into two parts, so 
that the ratio of one of the two parts of AB to one of the two parts of CD is 

 
32 That is to say, it becomes a synthesis. 
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equal to the ratio of H to I and the ratio of the other part of AB to the other 
part of CD is equal to the ratio of K to L. This is what we wanted to prove. 

The way to carry out the synthesis of this problem is as follows. All the 
premises that we have used in the division and in the proof that the division 
is correct are the properties that have been brought to light in the course of 
the analysis. They have been laid out in detail thanks to the additions and 
pushing forward the search. But we obtain this construction by supposing 
that the ratio of one of the two magnitudes to the other is greater than one 
of the two ratios and smaller than the other ratio. Now this proposition is 
the discussion of this problem, because we have completed it only after 
having taken this proposition as a condition. 

So it remains for us to prove that if the ratio of the two numbers is not 
greater than one of the two ratios and is not smaller than the other, then the 
two numbers cannot be divided up in the two ratios.33 

 

 
Fig. II.1.8 

 
Let us return to the two numbers and the two ratios. Let the ratio of AB 

to CD not be greater than one of the two ratios nor smaller than the other, 
then the ratio of AB to CD will either be equal to one of the two ratios or be 
greater or smaller than the two of them. 

Let the ratio of AB to CD first be equal to one of the two ratios, which 
[say] is the ratio of H to I. We suppose that the two numbers have been 
divided in the two ratios as we did before, and that the ratio of AE to CG is 
equal to the ratio of H to I. So the ratio of EB to GD is equal to the ratio of 
K to L. Since the ratio of AB to CD is equal to the ratio of H to I and the 
ratio of AE to CG is equal to the ratio of H to I, the ratio of AE to CG is 
equal to the ratio of AB to CD. So the ratio of EB to GD is equal to the ratio 
of AB to CD and is equal to the ratio of H to I. But the ratio of EB to GD 
was equal to the ratio of K to L, so the ratio of H to I is equal to the ratio of 
K to L. But by hypothesis these two ratios were different, which is 
impossible. 

So the analysis has arrived at a premise which is not given, so we 
cannot carry out the synthesis corresponding to this analysis, because the 

 
33 The condition is indeed a necessary one. 
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last premise at which the analysis arrived is not given. If it is not possible 
to carry out the synthesis corresponding to the analysis, we cannot 
complete required division, nor establish the proof that it is correct. 

If the ratio of AB to CD is greater than [both of] the two ratios, let us 
suppose <we are given> what we are required to find, that is to say that the 
ratio of AE to CG is equal to the ratio of H to I and that the ratio of EB to 
GD is equal to the ratio of K to L. So the ratio of AB to CD will be greater 
than the ratio of AE to CG and greater than the ratio of EB to GD. We put 
the ratio of AE to PG equal to the ratio of AB to CD; PG will thus be 
smaller than CG. We put the ratio of EB to GM equal to the ratio of AB to 
CD; GM will thus be smaller than GD. PM will thus be smaller than the 
whole of CD. But the ratio of AE to PG is equal to the ratio of EB to GM, 
so the ratio of AE to PG is equal to the ratio of AB to PM. But the ratio of 
AE to PG is equal to the ratio of AB to CD, so the ratio of AB to PM is 
equal to the ratio of AB to CD, so CD is equal to PM, which is impossible. 

If the ratio of AB to CD is smaller than the two ratios, then the sum of 
PG and GM is greater than CD; now it is necessary that it is equal to it. 

Thus, when the ratio of AB to CD is not greater than one of the two 
ratios nor smaller than the other ratio, the analysis arrives at a false premise. 
And if the analysis arrives at a false premise, this analysis is proof that 
what we are looking for is not possible and cannot exist. If we make this 
analysis into a proof by reductio ad absurdum, as we have done in this 
analysis, what we have shown is a proof of the discussion. 

 
<7> For the example in the practical part without discussion for 

numerical problems that appear in a single way, this is our statement: to 
divide a known number, twice, into two parts, so that the greater part in the 
first division is twice the smaller part in the second division and the greater 
part in the second division is three times the smaller part in the first 
division. 

 
Fig. II.1.9 

 
Let the given number be AB; we wish to divide AB, twice, into two 

parts in the way that we have described. Let us suppose that the number AB 
has been divided into two parts, twice, at the two points C and D: the first 
division at the point C, the greater part being CB, and the second division at 
the point D, the greater part being AD. CB will be twice BD, so CD is equal 
to DB. But AD is three times AC, so DC is twice AC; now CD is equal to 
DB, so BC is four times CA and AB is five times AC. But AB is known, so 
AC is known and each of the <numbers> AC and CB is known; DB is half 

AB CD
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of BC, so BD is known. The two parts AC and CB are known and the two 
parts AD and DB are known.  

Analysis has arrived at parts that are known, and whose ratio to the 
number as a whole is known. But any number can be divided into parts 
whose ratio to the number as a whole is known. And if there are fractions 
in the parts, then if we multiply the number by the homonymous numbers 
of the fractions, the numbers will all be integers.  

The analysis has arrived at a possible concept: the division of a number 
into known parts. If we invert this analysis, that allows us to complete the 
procedure and we establish the proof that this proposition is true. This 
analysis is one of those that does not need an addition to the object. 

We shall carry out the synthesis for this problem by cutting off34 a fifth 
from the number AB; that is the premise arrived at by the analysis, let it 
[the part removed] be AC; we divide CB into two equal parts at the point D. 

 

 
Fig. II.1.10 

 
We say: we have divided AB in the two ratios that were required. 
Proof: AB is five times AC, so BC is four times CA. BD is half BC, so 

CB is twice BD, which is one of the two <numbers> we seek. But since CB 
is four times CA and CD is half CB, CD is twice CA. So DA is three times 
AC and it is the second <number> that we seek. So AB has been divided 
twice in the manner required. This is what we wanted to do. 

This part, [one] among the practical parts, can be completed only in a 
single way, since a single number has only a single firth [part] and its four 
fifths can be divided into two halves only by a single [form of] division; so 
a number can be divided in the two ratios we mentioned only in a single 
way. 

  
<8> For the example in the practical part without discussion for 

indeterminate numerical problems, this is our statement: to find two square 
numbers whose sum is a square. 

 

  
Fig. II.1.11 

 
34 Lit.: by dividing. 
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Let us suppose an example has been found and that these two numbers 
are AC and CB, so AB is a square. Let the number DE be the side of the 
square AB and the number DG the side of the square AC, so the square of 
DE is the number AB and the square of DG is the number AC. The amount 
by which the square of DE exceeds the square of DG is thus the number 
CB and the amount by which the square of DE exceeds the square of DG is 
the square of EG plus twice the product of DG and GE. The sum of the 
square of EG plus twice the product of DG and GE is a square number, 
because it is equal to CB which is a square. If from the square CB we cut 
off the square of EG, the remainder is twice the product of DG and GE; so 
half of it is the product of DG and GE. But if we divide the product of DG 
and GE, by EG, from the division we obtain GD. So if we cut off from the 
square CB the square of EG and if we take half of the remainder that we 
[then] divide by EG, from the division we obtain GD; if we next multiply 
GD by itself, we have AC, and AC plus CB is AB which is the square of DE. 

The analysis has arrived at supposing [we have] a square, an arbitrary 
square, from which we then cut off a square, an arbitrary square, subject to 
the condition that it is smaller than the first; then we divide the remainder 
into two equal parts, next we divide the half by the side of the square that 
was removed, we multiply the result of the division by itself, then we add 
the result of the product to the first square.  

This problem is possible and is not difficult; thus since this problem is 
possible, if we carry out the synthesis that corresponds to this analysis, the 
synthesis arrives at the existence of the quaesitum and, in addition, proves 
the truth of the quaesitum. 

 
The synthesis of this problem is carried out in the following way: we 

suppose we have an arbitrary square number, let it be AC; we cut off from 
it an arbitrary square, let it be the square whose side is DG; we divide up 
what remains of AC into two equal parts and we divide the half by the 
number DG; let GE be what we obtain from the division. We multiply GE 
by itself, let CB be <the product>; so CB will be a square and CA a square.  

 

 
Fig. II.1.12 

 
I say that AB which is the sum of the two squares is a square. 
Proof: AC is the square of DG plus twice the product of DG and GE, 

and CB is the square of GE, so the whole of AB is the square of DG plus 
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the square of GE plus twice the product of DG and GE. But the square of 
DG plus the square of GE plus twice the product of DG and GE is the 
square of DE, so the number AB is the square of DE, so AB is a square, it is 
the sum of AC and CB, which are squares. So we have found two square 
numbers whose sum is a square, they are the two numbers AC and CB. This 
is what we wanted to do. 

This problem is indeterminate, that is to say that it can have many 
solutions. In fact, if we suppose that instead of the square AC we have 
another square, different from AC, and if we do what we did for AC, we 
obtain two squares whose sum is a square. This is proved as for the two 
squares AC and CB. If from the square of AB we cut off a square, different 
from the square AC, that is a square whose side is different from DG, and if 
we do what we did for DG, we obtain a square different from the square 
CB, and the sum of this square and the square AC will be a square. 

This example provides a pattern for practical numerical problems, that 
are indeterminate and without discussion.  

We have completed the parts of analysis for numerical problems. 
 
<9> As regards geometrical problems, the example in the theoretical 

part of geometrical problems is as in our statement: the sum of two sides of 
a triangle is greater than the remaining side. 

 
Fig. II.1.13 

 
The analysis for this problem consists of supposing the statement true 

in its given form. So the sum of the two sides AB and AC is greater than BC. 
We examine the properties of the triangle to bring to light a property that 
leads to this. If we examine the properties of the triangle as it is, we do not 
find a property that leads to this statement being true. So the analyst must 
exercise intuition in regard to an addition that he adds to this proposition to 
generate a property or properties that are not found in this triangle as it is. 
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One of these additions35 that we can add to generate a supplementary 
property consists of putting the two sides into a single line; we extend BA 
and we cut off from it <a straight line> equal to AC, let it be AD. So we 
have BD greater than BC. Let us join CD, we have the triangle BDC whose 
side DB is greater than the side BC. Now it has been proved in the 
eighteenth proposition of the first book of Euclid’s work <the Elements> 
that the greatest side of any triangle subtends the greatest angle; so the 
angle BCD is greater than the angle BDC. But the angle BDC is equal to 
the angle ACD since AD is equal to AC. So the angle BCD is greater than 
the angle ACD, this is indeed how matters stand.  

The analysis has arrived at a given proposition about which there is no 
doubt, that is that the angle BCD is greater than the angle ACD.  

 
The synthesis corresponding to this analysis is carried out as we shall 

describe it: let us extend BA, as we did in the analysis; let us cut off AD 
equal to AC and let us join DC. So the angle BCD is greater than the angle 
ACD, this is the premise at which the analysis arrived, and it is the one that 
we start from at the beginning of the proof. But the angle ACD is equal to 
the angle ADC, because AC is equal to AD; now this premise was proved 
before the last premise, so the angle BCD of the triangle BCD is greater 
than the angle BDC. Thus, the side BD is greater than the side BC from 
what has been proved in the nineteenth proposition of the first book of 
Euclid’s work <the Elements>. But the side BD is equal to the sum of the 
two sides BA and AC, so the sum of the two sides BA and AC is greater 
than the side BC. This is what we wanted to prove. 

 
The analysis of this proposition can be carried out in another way, that 

is we add an addition different from the preceding one.36 Among the 
additions that are possible in this proposition, we put BD equal to AB, since 
if BC were not greater than BA, the sum of BA and AC would be greater 
than BC and we dispense with the proof of this.  

If BC is greater than BA, there remains AC greater than CD, so the 
angle ADC is greater than the angle CAD. But this is so because it is 
obtuse; in fact, the angle BDA is equal to the angle BAD, because the side 
BA is equal to the side BD and the sum of two angles of a triangle is 
smaller than two right angles; so the angle BDA is smaller than a right 

 
35 Here the addition is an auxiliary construction, the construction of the sum of two 

line segments. 
36 Lit.: an addition different from the addition that was added in that way [of 

carrying out the analysis]. 
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angle, so the angle ADC is greater than a right angle and it is thus greater 
than the angle DAC. So the analysis has arrived at a premise that has 
already been proved: the angle ADC is greater than the angle DAC and the 
side BA is equal to the side BD. 

 
Fig. II.1.14 

 
The synthesis corresponding to this analysis is carried out in the 

following way: we suppose we have the triangle, we cut off BD equal to 
BA, and we join AD; so the angle BAD is equal to the angle BDA and their 
sum is smaller than two right angles. So the angle BDA is smaller than a 
right angle, so the angle ADC is greater than a right angle. But the sum of 
the two angles ADC and DAC is smaller than two right angles, thus the 
angle ADC is greater than the angle DAC, the side AC is thus greater than 
the side CD. But the side AB is equal to the side BD, so the sum of the two 
sides BA and AC is greater than the side BC. This is what we wanted to 
prove. 

We can carry out an analysis of this proposition in ways different from 
these two, but these two ways are sufficient for the purpose we set our-
selves, that is to show by these two ways, specimens of those geometrical 
propositions that can be treated by analysis in several ways. 

 
<10> Analysis that leads to something impossible in the theoretical 

part of geometrical problems is like the example in our statement of this 
proposition: the sum of two sides of a triangle is equal to the third side. 

 
Fig. II.1.15 
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The analysis for this case will be carried out like the previous analysis, 
that is we extend BA and we cut off AD equal to AC; so BD will be equal to 
BC and the angle BCD will thus be equal to the angle BDC. But the angle 
BDC is equal to the angle ACD, because AD is equal to AC, so the angle 
BCD will be equal to the angle ACD, which is impossible. 

As the analysis has led to something impossible, the statement is false. 
The proof it is false is that same analysis, if we consider it as a proof by 
reductio ad absurdum. In fact, if we suppose the statement to hold in the 
form it was given, that is that the sum of two sides of a triangle is equal to 
the remaining side and if we carry through the proof using the premises 
that have been shown by the analysis, then the syllogism will be demons-
trative and it leads necessarily to the impossibility that followed in the 
analysis. 

This example provides a pattern for carrying out the analysis of 
theoretical geometrical problems that lead to an impossibility; it is 
following the pattern of this proof, which is by reductio ad absurdum and 
generated by the analysis, that we shall carry out the proof that the 
statement is false. 

 
<11> For the example in the practical part of geometrical problems 

with discussion, this is our statement: to divide a given straight line into 
two parts such that the area enclosed by the two parts is equal to a given 
area.  

Let the straight line be AB and the area C; let us suppose that the 
straight line has been divided at the point D and that the area enclosed by 
the two straight lines AD and DB is equal to the area C.  

 

 
Fig. II.1.16 

 
If we examine the properties of this proposition, we find that the two 

straight lines AD and DB are either equal or different. If they are equal, 
then the area C is equal to the square of half of the straight line AB. If the 
two straight lines AD and DB are different, then the area enclosed by the 
two straight lines AD and DB is smaller than the square of half the straight 
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line <AB>.37 So the area C will be smaller than the square of half the 
straight line which is AB. But it is not possible to divide the straight line AB 
into two parts such that the area they enclose is greater than the square of 
half of the straight line. So if the area C is equal to the square of half the 
straight line AB, the analysis arrives at the fact that the straight line AB has 
been divided into two equal parts and this is possible. If the area C is 
smaller than the square of half of the straight line, let the amount by which 
the square of half the straight line exceeds the area C be the area G. Let us 
divide AB into two equal parts at the point E. The area G will be equal to 
the square of DE because the square of EB is equal to the product of AD 
and DB plus the square of DE, the square of EB is equal to the sum of the 
two areas C and G and the product of AD and DB is equal to the area C. So 
the square of DE is equal to the area G and the square of EB is known, so 
the sum of the two areas C and G is known and the area C is known, so the 
area G is known, because if from a known magnitude we take away a 
known magnitude, the remainder is <a> known <magnitude> as has been 
proved in the fourth proposition of the Data. But the area G is equal to the 
square of ED, so the square of ED is known, so the straight line ED is 
known; but the straight line EB is known and the point E is known, so the 
point D is known.  

The analysis has arrived at the straight line AB being divided in a 
known point which is the point D and that ED is known; now if ED is 
known, we can find it. 

In addition, we have shown in the analysis that the area C is not greater 
than the square of half the straight line AB. 

 
The synthesis of this problem will be carried out in the following way: 

if the area C is equal to the square of half the straight line AB, we divide the 
straight line AB into two equal parts; the area enclosed by the two halves is 
thus equal to the area C. If the area C is smaller than the square of half the 
straight line AB, we divide the straight line AB into two equal parts at the 
point E and from the square of EB we take away the area C; there remains 
the area G. We put the square of ED equal to the area G, the area enclosed 
by the two straight lines AD and DB will be equal to the area C, because 
the area enclosed by the two straight lines AD and DB plus the square of 
DE is equal to the square of EB, so the square of DE is the amount by 

 
37 The product of two numbers whose sum is constant is a maximum when the two 

numbers are equal. Indeed, 4xy = (x + y)2 – (x – y)2, hence xy = x + y
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which the square of EB exceeds the area enclosed by the two straight lines 
AD and DB. But the area G is the amount by which the square of EB 
exceeds the area C, so the area enclosed by the two straight lines AD and 
DB is equal to the area C. So we have divided the straight line AB into two 
equal parts at the point E so that the area enclosed by the two straight lines 
AD and DB is equal to the area C. This is what we wanted to prove. 

 

 
Fig. II.1.17 

 
So it remains to prove that if the area C is greater than the square of 

half the straight line AB, then it is not possible to divide the straight line AB 
into two parts such that the area enclosed by these two parts is equal to the 
area C, which is a proof of the discussion. Indeed, if the straight line AB is 
divided into two parts, then either the division is in the mid point of the 
straight line, or the two parts are different. If the division is at the mid point 
of the straight line, then the area enclosed by the two parts is equal to the 
square of half the straight line. If the two parts are different, then the area 
enclosed by the two parts is smaller than the square of half the straight line. 
For any division by which the straight line AB is divided into two parts, the 
area enclosed by the two parts is accordingly not greater than the square of 
half the straight line. So if the area C is greater than the square of half the 
straight line, then the straight line is not divided into two parts that enclose 
an area equal to the area C. 

 
<12> This is our statement: to draw, from a known point to a known 

unlimited straight line, a straight line that is perpendicular to it. 

 
Fig. II.1.18 
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Let A be the point and BC the straight line; we wish to draw from the 
point A to BC a straight line that is perpendicular to it. We suppose that this 
has been done and that the perpendicular is AD. If the analyst examines the 
property of this straight line, he notices that any straight line drawn from 
the point A to the straight line BC, apart from the straight line AD, will be 
greater than the straight line AD, because if from the point A we draw 
another straight line to the straight line BC, we generate a triangle such that 
one of its angles is a right angle; each of the two remaining angles is thus 
acute. We draw the arbitrary straight line AE, so AE will be greater than AD, 
because the angle ADE is greater than the angle AED. It also follows that if 
we make the straight line DG equal to the straight line DE and if we join 
AG, then AG will be equal to AE and GE will be divided into two equal 
parts by AD. It follows that if from the point A to the straight line BC we 
draw two equal straight lines, if we divide the straight line that lies between 
them into two equal parts, and if we join the point of division and the point 
A with a straight line, then this straight line that joins them is perpendicular 
to the straight line BC. But if AG and AE are equal, then the circle with 
centre at the point A and with semidiameter the straight line AE cuts the 
straight line BC at the two points G and E such that a part of this circle lies 
beyond the straight line BC. 

So the analysis has arrived at something possible, that is: to draw with 
centre A a circle that is cut by the straight line BC.  

 

 
Fig. II.1.19 

 
We carry out the synthesis of this problem by supposing that beyond 

the straight line BC we have a point, such as the point H; with centre A and 
distance AH, we draw a circle, it cuts the straight line BC in two points; let 
it [the straight line] cut it at the points E and G; we join AE and AG, we 
divide EG into two equal parts at the point D and we join AD. The two 
straight lines ED and DA are equal to the two straight lines GD and DA and 
the base AE is equal to the base AG, so the angle ADE is equal to the angle 
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ADG; so they are right angles and the straight line AD is perpendicular to 
the straight line BC. This is what we wanted to prove. 

 
It is clear that it is possible to draw from the point A to the straight line 

BC only a single perpendicular, because if we draw two perpendiculars 
from the point A to the straight line BC, a triangle is formed in which two 
angles are right angles, which is impossible. 

 
<13> For the example in the practical part without discussion which 

takes place in [only] one way, this is our statement: to draw from a given 
point on a known straight line a straight line that is perpendicular to it. 

 

 
Fig. II.1.20 

 
Let the point be A and the straight line BC; we wish to draw from the 

point A a straight line that is perpendicular to the straight line BC. We 
suppose this has been done and that the perpendicular is AD. If the analyst 
examines the property of this straight line, it becomes clear that for any 
straight line drawn from the point A, apart from the straight line AD, the 
angles that lie on either side of this straight line are different, and that we 
can draw from the point A only a single straight line such that the angles to 
either side <of this straight line> are equal. It next becomes clear that if 
from the point D we draw two straight lines to two points of the straight 
line BC on either side of the point A, such that their distances from the 
point A are equal, then they will be equal. Thus, the triangle that is formed 
is isosceles and the point A is the mid point of its base. Let it be the triangle 
DEG, such that EA is equal to AG. So the analysis has arrived at something 
possible, that is: to construct on a segment of the straight line BC an 
isosceles triangle such that the point A divides its base into two equal parts; 
and this is something possible. 
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Fig. II.1.21 

 
Synthesis of this problem: on either side of the point A let us cut off 

from the straight line BC two equal straight lines, such as the two straight 
lines AE and AG. On the straight line EG we construct an equilateral 
triangle, let the triangle be EDG; so this triangle will be isosceles. We join 
AD, the two triangles that lie on either side of AD have equal angles, so the 
angle EAD is equal to the angle GAD and the straight line AD will be 
perpendicular to the straight line BC. This is what we wanted to prove. 

 
<14> For the example in the practical part of geometrical problems 

without discussion and indeterminate, this is our statement: given a circle, 
and given an unlimited straight line lying outside this circle, to construct a 
circle that touches the given circle and at the same time touches the straight 
line. 

Let the circle be AB and the straight line CD; we wish to draw a circle 
that touches the circle AB and touches the straight line CD.  

 

 
Fig. II.1.22 
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We suppose that this has been done. Let there be a circle BIG, let it 
touch the circle AB at the point B and touch the straight line CD at the point 
G; let there be the point H, the centre of this circle, and the point E, the 
centre of the circle AB. If the analyst examines the properties of this 
proposition, as well as the properties of the tangent circle, he finds that, for 
two circles that touch, the straight line that joins their two centres passes 
through the point of contact, as has been proved in the third book of 
Euclid’s work <the Elements>. We join the two points E and H; the straight 
line EH thus passes through the point B. If he also examines the property of 
the circle that touches a straight line, he finds that the straight line drawn 
from the centre of the circle to the point of contact is perpendicular to the 
straight line tangent. We join the line HG perpendicular to the straight line 
CD. But the straight line HG either is a continuation of the straight line EH 
or it is not a continuation of it. If the two straight lines EH and HG are 
continuations of one another, as in the first case of the figure, then the line 
EG is straight and it is perpendicular to the straight line CD. But the point 
E is known, because it is the centre of the known circle, and the straight 
line CD is known in position, by hypothesis, since it has been given. Now, 
from the known point E we have drawn to the straight line CD, known in 
position, the straight line EG, which makes a known angle with it. So the 
straight line EG is known in position, as has been proved in Proposition 29 
of the Data.38 But the straight line CD is known in position, so the point G 
is known, as has been proved in Proposition 24 of the Data.39 So the two 
points E and G are known, the straight line EG is then known in magnitude 
and in position and the circle AB is known in position, so the point B is 
known. The straight line BG is accordingly known in magnitude and it is 
divided into two equal parts at the point H since BHG is a straight line, so 
the point H is known, the straight line HB is known in magnitude and the 
circle BIG is known in magnitude and in position. 

The analysis has arrived at our drawing, from a known point of the 
straight line EG known in position, and drawing a circle of known 
magnitude; this is possible. 

 
The synthesis of this problem is carried out as we shall describe: let us 

draw from the point E a perpendicular to the straight line CD, let it be EG. 
This perpendicular necessarily cuts the circumference of the circle AB; let it 
cut it at the point B; we divide the straight line BG into two equal parts at 

 
38 This is Proposition 30 in Heiberg’s edition and in the recension of al-Ṭūsī. 
39 This is Proposition 25 in Heiberg’s edition and in the recension of al-Ṭūsī. 
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the point H and we take H as centre; using the point H and distance HB we 
draw the circle BIG.  

I say that the circle BIG touches the circle AB and touches the straight 
line CD. 

 
Fig. II.1.23 

 
Proof: The straight line HE is a diameter of the two circles AB and 

BIG,40 so the perpendicular drawn from the point B to the straight line EH 
is a tangent to the two circles, so the two circles touch [one another]. But 
since CD is perpendicular to the diameter BHG, accordingly the circle BIG 
touches the straight line CD. So we have drawn a circle that touches the 
circle AB and touches the straight line CD, which is the circle BIG. This is 
what we wanted to do. 

 
If the two straight lines EH and HG are not continuations of one 

another as in the second case for the figure, then if the analyst examines the 
properties of this figure, he finds that the straight line BH is equal to the 
straight line HG; so we find that the straight line EH exceeds the straight 
line HG by a magnitude equal to the straight line BE. But BE is of known 
magnitude since it is the semidiameter of the circle AB, which is known in 
magnitude and in position, because it was given. So if we add to the 
straight line HG a straight line equal to the straight line EB, it will be equal 
to the straight line EH. We extend the straight line HG in the direction of G 
and we cut off from it GK equal to the semidiameter of the circle AB. So 
KH will be equal to HE; we join EK. So the triangle EHK will be isosceles. 
But if the point G is known in position, <the straight line> HGK will be 
known in position as has been proved in the twenty-eighth proposition of 

 
40 He means that this segment HE lies on the diameter of the two circles. 
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the Data,41 the straight line GK will be known in magnitude and in position 
and the point K will thus be known. But the point E is known, by 
hypothesis, so the straight line EK has known endpoints, so it is known in 
magnitude and in position, as has been proved in the twenty-fifth 
proposition of the Data.42 The angle EKH is known because its two sides 
are known in position and the angle KEH is known, because it is equal to 
the angle EKH. So the straight line EH is known in position, the triangle 
EKH has known angles and the straight line KH is known in position, so 
the two straight lines KH and EH are known in position; now they cut one 
another at the point H, so the point H is known. 

 

 
Fig. II.1.24 

 
The analysis has arrived at [the conclusion] that, when the point G is 

known, the straight line GH, which is the semidiameter of the tangent circle, 
is known in position and thus the point H, which is the centre of the circle, 
is known. This is something possible and is not difficult, that is to say that 
we consider a point on the straight line CD from which is drawn a perpen-
dicular to the straight line CD and we cut off from it a straight line equal to 
the semidiameter of the circle AB. 

 
The synthesis of this problem is carried out in the following way: given 

the circle and the straight line, we consider an arbitrary point G on the 
straight line CD. From this point we draw the perpendicular GH, we extend 
it in the direction of G, we cut off from it GK equal to the semidiameter of 

 
41 This is Proposition 29 in Heiberg’s edition and in the recension of al-Ṭūsī. 
42 This is Proposition 26 in Heiberg’s edition and in the recension of al-Ṭūsī. 
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the circle AB and we join the straight line EK. So the angle EKG is acute, 
because the angle CGK is a right angle. At the point E on the straight line 
EK we construct an angle equal to the angle EKH, let it be the angle KEB. 
So the straight line EB meets the straight line KH, let it meet it at the point 
H. Since the angle KEH is equal to the angle EKH, the straight line EH is 
equal to the straight line KH, but the straight line EB is equal to the straight 
line KG; there remains the straight line BH equal to the straight line GH. 
We take the point H as centre and with distance HG we draw a circle, it 
accordingly passes through the point B, since HB is equal to HG; let the 
circle be BIG. Since the straight line HE is a common diameter of the two 
circles AB and IG and since the point B is common to the two circles, the 
circle IG touches the circle AB. But since CD is perpendicular to the 
straight line GH, the circle GI touches the straight line CD. So we have 
drawn a circle that touches the circle AB and touches the straight line CD, 
that is to say the circle BIG. This is what we wanted to do. 

 

 
Fig. II.1.25 

 
It becomes clear from our hypothesis concerning the point G that it is 

possible to construct many circles, an infinite number, each of them 
touching the circle AB and the straight line CD. So this problem is 
indeterminate, since through any point we take on the straight line CD we 
can draw a perpendicular to the straight line CD and follow the same 
procedure for this as we did for the perpendicular GH. On this perpendi-
cular we choose a point such that if we take it as the centre of a circle, this 
circle will touch the circle AB and the straight line CD. But, as it is possible 
to draw from the point E a perpendicular to the straight line CD, it is also 
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possible to construct a circle which touches the circle AB and touches the 
straight line CD, from the first property we mentioned.  

We have dealt exhaustively with the examples of all the subdivisions of 
geometrical problems. 

As for problems that refer to astronomy, most of them reduce to 
numerical problems or to geometrical problems; their examples are the 
examples we gave earlier; among these problems there are those that refer 
to explanations of the motions of the heavenly bodies. 

 
<15> We present an example from which we show the analysis that 

leads to concepts deduced from astronomy; one of these examples is the 
motion of the Sun. 

When the ancients observed the motion of the Sun and they measured it 
with respect to the centres of instruments, by means of which they 
observed the Sun, and which were taken as being at the centre of the 
Universe, they found that its motion varies with respect to the centres of the 
instruments, that is they found that in equal times the Sun traverses unequal 
angles with respect to the centres of the instruments. But they were 
convinced that the motions of the celestial bodies cannot be anything but 
uniform, similar, simple and not compound, because the substance of 
celestial bodies is a simple substance, not compound, and there is no 
variation in it.43 So, when they found that their motions were variable, 
while at the same time assuming that their motions were uniform, they 
believed that the position of their orb meant that their apparent motions44 
were different from their real motions and they determined the position of 
the orb by analysis. But they had found that the centre of the Sun moves in 
a single fixed plane that cuts the Universe. For them, it was established that 
the form of the Universe is a spherical figure, it followed that the plane in 
which the centre of the Sun moves cuts the sphere of the Universe and it 
followed that a circle is formed in the surface of the sphere of the Universe, 
whose centre is the centre of the Universe. They then determined the 
position of this circle, they considered the motion of the Sun in relation to 
the circumference of this circle and they found it variable.45 Starting from 
this variation,46 they determined the position of the orb of the Sun, which 

 
43 That is, the substance is homogeneous. 
44 Lit.: what of their motions appears to the sight. 
45 ‘Variable’ means the motion is not both circular and uniform, i.e. that it is 

‘anomalistic’. See p. 172. 
46 I.e. anomaly. 
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moves the Sun with regular motion. Their determination of the position of 
this orb was carried out by analysis as we shall describe.  

 

 
Fig. II.1.26 

 
Let the circle, whose centre is the centre of the Universe in the plane in 

which the centre of the Sun moves, be the circle ABCD with centre E. 
Since the centre of the Sun always moves in the plane of this circle, it is 
necessary that the centre of the regular motion by which the Sun moves is 
also in the plane of this circle; let G be the centre of the regular motion and 
let the centre of the Sun move with a regular motion on the circumference 
of the circle HIMN. If the centre of the circle HIMN were the centre of the 
circle ABCD, the Sun would have traversed two similar arcs of the two 
circles in the same time, and the motion of the Sun along the circumference 
of the circle HIMN would also be variable.47 Now the motion of the Sun 
along the circumference of the circle HIMN is uniform, by hypothesis, so 
the centre of the circle HIMN is not the centre of the circle ABCD, so the 
point G is not the point E and the point G is distinct from the point E. The 
analysis has arrived at the centre of the regular motion being different from 
the centre of the variable motion,48 which is the centre of the Universe.  

They carried out the synthesis corresponding to this analysis by joining 
the point E and the point G with a straight line that they extended on both 
sides to the two points A and C. They drew from the point E the straight 
line EKL, which cuts the two circles, and they joined GK. If the Sun is seen 
as lying on the straight line EL, then on the circle ABC it has traversed the 
arc AL and it has traversed the arc HK of the circle HIMN, because in its 

 
47 I.e. anomalistic. 
48 I.e. anomalistic motion. 
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revolution the Sun must pass through the point H and in relation to the 
circle ABCD it is seen at the point A. If it comes to the point K, then it is 
seen as lying on the straight line EKL and thus it traverses the arc AL of the 
circle ABCD and traverses the arc HK of the circle HIMN. But the arc HK 
is a little greater than the arc AL, because the angle HGK is greater than the 
angle AEL. The motion of the Sun in the circle ABCD in this position will 
be slower than its motion in the circle HIMN. From the point E we draw the 
straight line BED at right angles, it cuts the circle ABCD into four equal 
parts and cuts the circle HIMN into different parts; so the arc AD is a 
quarter of a circle and the arc HN is greater than a quarter of a circle; the 
arc DC is a quarter of a circle and the arc NM is smaller than a quarter of a 
circle. We draw GK parallel to EN, so the arc HK is a quarter of a circle 
and the arc KN is the amount by which the arc HN exceeds a quarter of a 
circle and it is the difference between the arc NM and a quarter of a circle; 
it follows, for this position, that the arc IHN is greater than a semicircle and 
the arc IMN is smaller than a semicircle.  

If the motion of the Sun on the circle HIMN is uniform, the Sun must 
traverse the arc IHN in a time longer than the time in which it traverses the 
arc NMI. But if it traverses the arc IHN, in the circle ABCD, it traverses the 
arc BAC, which is a semicircle, and if it traverses the arc NMI, in the circle 
ABCD, it traverses the arc DCB, which is a semicircle, so the motion of the 
Sun in the semicircle BAD is slower than its motion in the semicircle DCB; 
now the latter is the motion that is perceived by the observer. 

Then they also determined by analysis the magnitude of the amount by 
which the arc IHN exceeds the arc NMI, starting from the magnitude of the 
amount by which the time in which the Sun traverses the arc IHN exceeds 
the time in which it traverses the arc NMI, because the ratio of the time to 
the time is equal to the ratio of the distance to the distance if the motion is 
uniform. 

They also determined, from the magnitude of the amount by which the 
arc IHN exceeds the semicircle, the magnitude of the straight line EG and 
its ratio to the straight line GH. And in this way they determined by 
analysis the positions of the orbs of all the wandering stars, as well as the 
magnitudes of these orbs and the [linear] eccentricity. These are enough as 
examples of analysis in astronomy. 

 
As for the notions that pertain to music and to the problems that can be 

devised in that art, they all reduce to numerical problems.  
 
<16> As an example for that, our statement is: the interval of an octave 

is composed of the interval of a fourth and the interval of a fifth. 
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Let there be an interval of an octave between the two notes A and B, let 
there be an interval of a fourth between the two notes C and D, let there be 
an interval of a fifth between the two notes E and F. 

I say that the ratio between the two notes A and B is composed of the 
ratio between the two notes C and D and of the ratio between the two notes 
E and F. We suppose that this is so. Let there be an interval of a fourth 
between the two notes A and H, the interval of a fifth is then between the 
two notes H and B, the interval between the two notes A and B is composed 
of the interval between the two notes A and H and the interval between the 
two notes H and B. Since the interval of a fourth is [expressed] in the ratio 
of [one to] one plus a third, the interval between the two notes A and H is 
[expressed] in the ratio of one plus a third; since the interval of a fifth is 
[expressed] in the ratio of [one to] one plus a half, the interval between the 
two notes H and B is [expressed] in the ratio of [one to] one plus a half. It 
is accordingly necessary that the interval between the notes A and B is 
composed of the ratio of [one to] one and a third and <the ratio> of [one to] 
one plus a half. But the ratio composed of the ratio of [one to] one plus a 
third and <the ratio> of [one to] one plus a half is the ratio of doubling. It is 
accordingly necessary that the interval between the two notes A and B are 
in the ratio of doubling. But this is so because the interval of an octave is 
[expressed] in the ratio of doubling. 

 

 
Fig. II.1.27 

 
So the analysis has arrived at the given notion, that is: the interval of an 

octave is [expressed] in the ratio of doubling, and this is the manner in 
which analysis is carried out for all problems of the composition [of 
intervals]. 

 
Synthesis of this problem: the interval of an octave is found in the ratio 

of doubling and the ratio of doubling is composed of the ratio of [one to] 
one and a third and <the ratio> of [one to] one plus a half. The interval of a 
fourth is [expressed] in the ratio of [one to] one plus a third. The interval of 
a fifth is [expressed] in the ratio of [one to] one plus a half and the interval 
of an octave is composed of the interval of a fourth and the interval of a 
fifth. This is what we wanted to prove. 
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We have completed [giving] examples of analysis for all the 
propositions that serve to characterise the parts of all the mathematical 
sciences. In all these examples, we have deliberately looked for simplicity, 
in order to make it easy to understand for someone who is studying the art 
of analysis. 

 
 

<SECOND CHAPTER> 
 
It remains for us to set out problems of analysis involving some 

difficulties, so that analysis becomes a tool to be used by anyone who 
works through this treatise and a guide for anyone who is trying to acquire 
the art of analysis; so that this analysis may be directed by the propositions 
that are used in it and by the complementary results that are added to its 
objects so that he can exercise the art of analysis: to continue the search for 
premises that is in fact carried out through the complementary results that 
are added and through the properties that emerge from them. In these 
examples we limit ourselves to dealing only with numerical problems and 
with geometrical problems; they are clearer and all other problems reduce 
to them. 

 
<17> For one of these problems, our statement is: to find perfect 

numbers. 
A perfect number is one that is equal to the sum of its parts,49 which 

measure it. This problem is the one set out by Euclid at the end of the 
arithmetical books of his work.50 He did not, however, mention treating it 
by analysis, and nothing that he says shows how he found the perfect 
number by analysis. He proposes the number only through synthesis, as for 
the other problems that he included in his work. We show here how to find 
a perfect number by analysis, and then proceed to set up the synthesis. 

 
Method for the analysis of this problem: we assume that the perfect 

number has been found, let it be for example the number AB, and that the 
parts that measure it are the numbers C, D, E, G, H, I, L, M, N. Let us take 
AB to be equal to the sum of the numbers C, D, E, G, H, I, L, M, N. We 
then examine the properties of the numbers that have [aliquot] parts. If we 
examine the properties of the numbers that have parts, we find, as has been 

 
49 For the Euclidean origin of this term, see footnote 10. 
50 Euclid, Elements, IX.35. 
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shown in Proposition 36 of the ninth book,51 that if any number of numbers 
follow one another with the same ratio, and if we subtract from the second 
and the last a number equal to the first, then the ratio of the remainder of 
the second to the first is equal to the ratio of the remainder of the last to the 
sum of all the numbers that precede it.52 It follows that, given successive 
proportional numbers in double ratio, if we subtract from the second of 
them and from the last of them a number equal to the first, then the 
remainder of the second will be equal to the first and the remainder of the 
last will be equal to the sum of all the numbers that precede it. But for 
successive numbers in double ratio, each of them measures the greatest 
number and each of them is a part of the greatest number. From all this it 
follows that if the numbers AB, C, D, E, G, H, I, L, M, N are in continued 
double proportion, then each of the <numbers> C, D, E, G, H, I, L, M, N is 
a part of AB, and if we subtract from AB <a number> equal to N, the 
remainder of AB is equal to the sum of the remaining numbers, which are 
parts of AB. But the whole of AB is equal to the sum of the parts, so the 
number AB is not in double proportion with all the remaining successive 
numbers. 

 
Fig. II.1.28 

 
In the same way, one of the properties of successive proportional 

numbers whose ratio is that of doubling and which begin with one, is that if 
we subtract one from each of them, <each> remainder will be equal to the 
sum of the numbers that precede it, because if we also subtract one from 
the second, which is two, the remainder will be equal to the first, which is 
one. It follows that for the numbers C, D, E, G, H, I, L, M, N, if some of 
them are successive [numbers] in double ratio beginning with AB, and if 
the last <of those> which is the smallest of them is less by one than twice 

 
51 This is Proposition 35 in Heiberg’s edition of the Elements. 
52 Proposition 4 of this treatise. 
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the one that immediately precedes it, then all the numbers that succeed AB 
are parts of AB, and AB is equal to their sum.  

*Let the numbers AB, C, D, E, G be in succession in the ratio of 
doubling, and let the number G be one less than twice the number H; from 
AB we take away KB equal to G, then AK will be equal to the sum of the 
numbers C, D, E, G; but G is one less than twice H; so it is equal to the 
sum of H, I, L, M, N; now KB is equal to G and KB is equal to the sum of H, 
I, L, M, N, so the whole of AB is equal to the sum of the numbers C, D, E, 
G, H, I, L, M, N.*53 But the numbers H, I, L, M, N are successive numbers 
in the ratio of doubling, beginning with one and N is one. But since C is 
half AB, C measures AB by the units of M, D measures AB by the units of L 
and E measures AB by the units of I; and the same holds for the remaining 
numbers. So if the numbers C, D, E, G are the same in number as the 
numbers H, I, L, M, then each of the numbers that follow AB measures AB 
by the units of one of the numbers that follow N and each of the numbers 
that follow N measures AB by the units of one of the numbers that follow 
AB. Thus, all the numbers are parts of AB and no other number measures 
AB. If the numbers that follow AB are more numerous than the numbers 
that follow N, if some of the numbers that follow AB measure AB by the 
units of the numbers that follow N, and if the remaining numbers that 
follow AB measure AB by the units of other numbers, then these other 
numbers are parts of AB. But AB has no parts other than the numbers C, D, 
E, G, H, I, L, M, N. So the numbers that follow AB are not more numerous 
than the numbers that follow N. If the numbers that follow AB are less 
numerous than the numbers that follow N, then some of the numbers that 
follow N measure AB by the units of the numbers that follow AB, and the 
remaining numbers that follow N measure AB by the units of other 
numbers; these other numbers are thus parts of AB. But AB has no other 
parts than the given numbers. The numbers that follow AB in the ratio of 
doubling are of the same number as those that follow N. Thus, the numbers 
C, D, E, G are of the same number as the numbers H, I, L, M. 

In the same way, if the number G has one part or several parts, then 
this part or these parts measure AB, since G measures AB. This part or these 
parts are one part or several parts of AB, and none of them is one of the 
numbers C, D, E, G, H, I, L, M, because none of the numbers C, D, E is a 
part of G, since each of them is greater than G, and none of the numbers H, 
I, L, M measures G, because if we add [the number] one to G, then the 

 
53 The piece of text between *…* should have appeared several lines earlier, that is 

before the sentence that begins ‘it follows that’. It seems to us that this passage corre-
sponds to a break in the text that we noted in manuscripts B and S. 
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numbers H, I, L, M measure it and none of the numbers H, I, L, M measures 
the number one that has been added, because each of them is greater than 
one, so none of the numbers H, I, L, M measures the number G, so none of 
them is a part of the number G; so if the number G is one part or several 
parts other than unity, then this part – or these parts – is a part of AB, and 
each of them is different from any of the numbers C, D, E, G, H, I, L, M. 
But AB has no parts other than these numbers and unity, so the number G is 
a prime number. 

The analysis has arrived at there being, between the number AB and the 
number G, numbers that are all successive and whose ratio is that of 
doubling; among these, the number G is prime, and the number G is one 
unit less than double one of the numbers in continued proportion beginning 
with one and in the ratio of doubling. This concept is possible, that is the 
existence of a number among the numbers in continued proportion begins 
with one and in the ratio of doubling, [a number] such that if we subtract 
one from it we have a prime number. 

The synthesis of this problem is carried out as we shall describe: using 
induction, we consider the numbers that are evenly even numbers, that is 
those that are in the double ratio starting with one. We subtract unity from 
each of them; the one that becomes prime we then double as many times as 
we need to make the number of the numbers in the series that are doubled 
in this way equal to the number of proportional numbers in the series that 
precede this number, including the unity that is the first number. The 
greatest number that the doubling produces is a perfect number. 

Example: The numbers A, B, C, D, E, GH are successive <numbers> 
whose ratio is that of doubling. Of these A is equal to unity, and if we 
subtract unity from GH, the remainder will be a prime number. We subtract 
from GH the number unity which is SH, there remains GS a prime number; 
we double GS as many times as we need to make the number of the 
doublings equal to the number of the numbers A, B, C, D, E; let the 
numbers be GS, I, K, L, NO. 

I say that the number NO is a perfect number. 
Proof: We cut off OP equal to GS, so NP is equal to the sum of the 

numbers L, K, I, GS; but the number PO is equal to the sum of the numbers 
E, D, C, B, A, so the number NO will be equal to the sum of the numbers A, 
B, C, D, E, GS, I, K, L. But each of the numbers L, K, I, GS measures NO 
by the units of one of the numbers E, D, C, B, and each of the numbers B, 
C, D, E measures NO by the units of one of the numbers GS, I, K, L. All the 
numbers B, C, D, E, GS, I, K, L are parts of NO; but it has been shown that 
NO is equal to the sum of these numbers plus A which is equal to unity. It 



272 CHAPTER II: AL-ḤASAN IBN AL-HAYTHAM 

remains for us to prove that no number other than these numbers measures 
NO.  

Let the number M measure NO; I say that M is one of the numbers B, C, 
D, E, GS, I, K, L. Let the number M measure NO by the units of the number 
Q. If we then multiply it by Q, we have NO; but the number GS measures 
NO by the units of the number E; so if we multiply GS by E, we have NO. 
So the product of E and GS is equal to the product of M and Q. So the ratio 
of GS to Q is equal to the ratio of M to E. Either GS measures Q, or it does 
not measure it. If GS measures Q, then M measures E; but the numbers A, B, 
C, D, E are in continued proportion from one, the one that follows unity is 
a prime <number>, since it is two; so no number measures the greatest 
except one of them, as has been proved in Proposition 13 of the ninth book; 
so the number M is one of the numbers B, C, D, E. If the number GS does 
not measure Q, then they are prime to one another, as has been proved in 
Proposition 31 of the seventh book; if they are prime to one another, then 
they are the two smallest numbers in the proportion, as has been proved in 
Proposition 22 of the seventh book, and if the two numbers GS and Q are 
the two smallest numbers in their proportion, then they measure the 
numbers that follow them in their proportion, as has been proved in 
Proposition 20 of the seventh book. So if the number GS does not measure 
Q, they are the two smallest numbers in the continued proportion and they 
measure the numbers that follow in their proportion. But the ratio of GS to 
Q is equal to the ratio of M to E. So the number Q measures E; so the 
number Q is one of the numbers B, C, D. So the number Q measures NO by 
the number of units of one of the numbers GS, I, K, L. But Q measures NO 
by the number of units of M, so the number M is one of the numbers GS, I, 
K, L. 

 
Fig. II.1.29 

 
So every number that measures NO is one of the numbers B, C, D, E, 

GS, I, K, L. And no part, other than the numbers B, C, D, E, GS, I, K, L and 
A, which is unity, measures NO. But the number NO is equal to the sum of 
these numbers, so the number NO is a perfect number. This is what we 
wanted to prove. 
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<18> As an example, our statement: to find three numbers such that if 
to two thirds of the second we add half the first, if to three quarters of the 
third we add one third of the second and if to one half of the first we add 
one quarter of the third, these three <sums> are equal. 

The analysis of this problem is carried out as we shall describe: let the 
numbers be AB, CD and EG. Let us cut off a half of AB, which is AH. We 
add it to CD; let [the result] be CI. From CD we cut off one third of it, let it 
be KD, and we add it to EG; let [the result] be EL. We cut off a quarter of 
EG, let [the result] be MG, and we add it to AB, let [the result] be AN. So 
the three numbers HN, IK and LM are equal. We suppose this is so and we 
examine what is necessary for the magnitudes of the numbers after the 
additions [have been made]. Since HN is equal to IK and IK is IC, which is 
half AB, plus CK, which is two thirds of CD, and HA is half AB and is thus 
equal to IC, there remains AN equal to CK. But AN is a quarter of EG, so 
two thirds of CD is equal to a quarter of EG; so the whole of CD is equal to 
a quarter of EG plus an eighth. 

 

 
Fig. II.1.30 

 
In the same way, since HN is equal to LM and LM is equal to LE, 

which is a third of CD, plus EM which is three quarters of EG, and AN is a 
quarter of EG, we take away from EM a quarter of EG and from HN <we 
take away> AN; so there remains LE plus half of EG equal to HA. But HA 
is half of AB, so half of AB is a third of CD plus half of EG; so the whole of 
AB is equal to two thirds of CD plus the whole of EG. But two thirds of CD 
is a quarter of EG, so the whole of AB is equal to EG plus a quarter of it. So 
the ratio of AB to EG is equal to the ratio of five to four; it is thus equal to 
the ratio of ten to eight. But the ratio of CD to EG is the ratio of three to 
eight, and the ratio of AB to CD is the ratio of ten to three.  

So the analysis has resulted in showing that the ratios of the required 
numbers one to another are known ratios and that it is possible for them to 
exist. 

 
The synthesis of this problem is carried out as follows: we take a 

number that has a quarter and an eighth, whatever this number is, let it be 
the number AB; we add a quarter of itself to it, so that it becomes the 
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number CD and we also take a quarter of it and an eighth of it, and let 
<their sum> be EG. 

I say that the number CD is the first number we require, that EG is the 
second number and AB is the third number. 

 

 
Fig. II.1.31 

 
Proof: The number CD has ten parts, the number EG has three parts 

and the number AB has eight parts. If to the second, which is three parts, 
we add half of the first, which is five parts, this makes eight parts and there 
remain five parts of the first. If to the third, which is eight parts, we add a 
third of the second, which is one single part, the third will be nine parts, 
and of the second there remain seven parts. If <to what remains of the> 
first, which is five parts, we add a quarter of the third, which is two parts, 
the first becomes seven parts, but the third has become seven parts. The 
numbers become equal after the additions. This is what we wanted to prove. 

The synthesis indicates that this problem is indeterminate, since it 
works for any number that has an eighth. This is what we wanted to prove. 

 
<19> As an example, our statement: to divide two known numbers in 

three ratios that are equal to known ratios. 
Let the two numbers be AB and CD; the given ratios are the ratio of E 

to G, the ratio of H to I and the ratio of K to L. Let the greatest ratio be the 
ratio of E to G and the smallest ratio be the ratio of K to L.  

The method for the analysis for this problem will consist of supposing 
that the two numbers have been divided in these ratios; we then examine 
the properties of these two numbers once they have been divided. Let the 
two numbers be divided at the points N, M, P, Q. Let the ratio of AM to CP 
be equal to the ratio of E to G, let the ratio of MN to PQ be equal to the 
ratio of H to I and let the ratio of NB to QD be equal to the ratio of K to L. 
If we examine the properties of these two numbers after they have been 
divided, we find that the ratio of AN to CQ is smaller than the ratio of E to 
G and greater than the ratio of H to I; we find that the ratio of MB to PD is 
smaller than the ratio of H to I and greater than the ratio of K to L, and we 
find that the ratio of the sum of AM and MB to the sum of CP and PD is 
smaller than the ratio of E to G and greater than the ratio of K to L – this 
result has in fact been proved in Proposition 6 of this treatise. If the ratio of 

A

E

B

CD

G



 ON ANALYSIS AND SYNTHESIS 275 

AN to CQ is greater than the ratio of H to I, the ratio of NB to QD is equal 
to the ratio of K to L and the ratio of K to L is smaller than the ratio of H to 
I, then the ratio of AN to CQ is greater than the ratio of NB to QD. So if the 
ratio of AN to CQ is greater than the ratio of NB to QD, then the ratio of AB 
to CD is greater than the ratio of NB to QD, so it is greater than the ratio of 
K to L. But since the ratio of AN to CQ is smaller than the ratio of E to G 
and the ratio of NB to QD is equal to the ratio of K to L which is smaller 
than the ratio of E to G, each of the ratios of AN to CQ and of NB to QD is 
smaller than the ratio of E to G, accordingly the ratio of AB to CD is 
smaller than the ratio of E to G. So the ratio of AB to CD is smaller than the 
ratio of E to G and greater than the ratio of K to L. But the ratio of H to I is 
smaller than the ratio of E to G and is greater than the ratio of K to L, 
because the ratio of E to G is the greatest of the three ratios and the ratio of 
K to L is the smallest of the three ratios. If this is so, the ratio of AB to CD 
can be equal to the ratio of H to I or can be higher than it or can be lower 
than it. 

 

 
Fig. II.1.32 

 
If the ratio of AB to CD is equal to the ratio of H to I, then the ratio of 

MN to PQ is equal to the ratio of AB to CD and is equal to the ratio of the 
remainder to the remainder, so the ratio of the sum of AM and NB to the 
sum of CP and QD is equal to the ratio of AB to CD and is equal to the 
ratio of H to I.  

If the ratio of AB to CD is greater than the ratio of H to I, which is the 
ratio of MN to PQ, then the ratio of the sum of AM and NB to the sum of 
CP and QD is greater than the ratio of H to I, while nevertheless being 
smaller than the ratio of E to G and greater than the ratio of K to L. 

And if the ratio of AB to CD is smaller than the ratio of H to I, then the 
ratio of the sum of AM and NB to the sum of CP and QD is smaller than the 
ratio of H to I, while nevertheless being greater than the ratio of K to L. 

So the analysis has established that the ratio of AB to CD is smaller 
than the ratio of E to G and greater than the ratio of K to L, and either it is 
equal to the ratio of H to I, or it is higher than it, or it is lower than it. If the 
ratio of AB to CD is equal to the ratio of H to I, then the ratio of the sum of 
AM and NB to the sum of CP and QD is also equal to the ratio of H to I. If 
the ratio of AB to CD is greater than the ratio of H to I, then the ratio of the 
sum of AM and NB to the sum of CP and QD is greater than the ratio of H 
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to I, while nevertheless being smaller than the ratio of E to G. And if the 
ratio of AB to CD is smaller than the ratio of H to I, the ratio of the sum of 
AM and NB to the sum of CP and QD is smaller than the ratio of H to I, 
while nevertheless being greater than the ratio of K to L. 

 
The synthesis of this problem is carried out as follows: if the ratio of 

AB to CD is equal to the ratio of H to I, from AB and CD we cut off two 
numbers such that the ratio of one to the other is equal to the ratio of H to I; 
this is possible, albeit indeterminate. Let the two numbers be AM and CP; it 
remains that the ratio of BM to PD is equal to the ratio of AB to CD which 
is the ratio of H to I. But the ratio of H to I is smaller than the ratio of E to 
G and greater than the ratio of K to L. We divide the two numbers MB and 
PD in two ratios equal to the ratios of E to G and of K to L, as we have 
shown in Proposition 6 of this treatise. Let the ratio of MN to PQ be equal 
to the ratio of E to G and the ratio of NB to QD be equal to the ratio of K to 
L, then the two numbers AB and CD have been divided in the three given 
ratios. 

If the ratio of AB to CD is greater than the ratio of H to I, we take a 
ratio smaller than the ratio of E to G and greater than the ratio of AB to CD; 
this is possible because the ratio of E to G is greater than the ratio of AB to 
CD. And for two different ratios one of which is greater than the other, it is 
possible to find a third ratio smaller than the greater one and greater than 
the smaller one; we shall prove that result once this proposition is 
completed. 

Let the ratio of S to O be smaller than the ratio of E to G and greater 
than the ratio of AB to CD. So the ratio of S to O is greater than the ratio of 
H to I and we have that the ratio of AB to CD is smaller than the ratio of S 
to O and greater than the ratio of H to I. We divide AB and CD in two 
ratios equal to the ratios of S to O and of H to I, as has been shown in 
Proposition 6 of this treatise. Let the ratio of AN to CQ be equal to the ratio 
of S to O and let the ratio of NB to QD be equal to the ratio of H to I, then 
the ratio of AN to CQ is smaller than the ratio of E to G and greater than the 
ratio of K to L. We divide the two numbers AN and CQ in two ratios equal 
to the ratios of E to G and of K to L. Let the ratio of AM to CP be equal to 
the ratio of E to G and let the ratio of MN to PQ be equal to the ratio of K 
to L. So the two numbers AB and CD have been divided in the three given 
ratios.  

 
Fig. II.1.33 
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If the ratio of AB to CD is smaller than the ratio of H to I, we suppose a 
ratio smaller than the ratio of AB to CD and greater than the ratio of K to L. 
Let the ratio of U to F be smaller than the ratio of AB to CD and greater 
than the ratio of K to L. So the ratio of AB to CD is smaller than the ratio of 
H to I and greater than the ratio of U to F. We divide AB and CD in two 
ratios equal to the ratios of U to F and of H to I. Let the ratio of AN to CQ 
be equal to the ratio of U to F and let the ratio of NB to QD be equal to the 
ratio of H to I; but the ratio of U to F is smaller than the ratio of AB to CD 
and the ratio of AB to CD is smaller than the ratio of E to G, so the ratio of 
U to F is smaller than the ratio of E to G. But the ratio of U to F is greater 
than the ratio of K to L, so the ratio of AN to CQ is smaller than the ratio of 
E to G and greater than the ratio of K to L. We divide AN and CQ in the 
two ratios equal to the two ratios of E to G and of K to L. Let the ratio of 
AM to CP be equal to the ratio of E to G and let the ratio of MN to PQ be 
equal to the ratio of K to L. So the two numbers AB and CD have been 
divided in the three given ratios. 

 
So we have proved, from all that we have set out, how to divide two 

numbers AB and CD in the three given ratios. This is what we wanted to do. 
We have proved, further, that this problem is indeterminate, that is to 

say that it can be solved in several ways: if, indeed, the ratio of AB to CD is 
equal to the ratio of H to I, then, given any part of the number AB, if we 
make its ratio to a part of the number CD equal to the ratio of H to I, we 
have a solution to the problem. 

If the ratio of AB to CD is greater or smaller than the ratio of H to I, 
then we need, in our procedure, to find a ratio smaller than one ratio and 
greater than <another> ratio; now it is possible to find many ratios greater 
than a single constant ratio and smaller than a single constant ratio. In this 
way the problem is again indeterminate. In all cases, it is possible for the 
two numbers to be divided in the three ratios in many ways. 

However, this problem is <subject> to a discussion, because it cannot 
be solved except when the ratio of the two numbers one to the other is 
smaller than the greatest ratio and greater than the smallest ratio. If we 
suppose the ratio of the two numbers is not smaller than the greatest ratio 
and is not greater than the smallest ratio, what follows is impossible. And 
the impossibility that follows in this proposition is like the impossibility 
that followed in Proposition 6 of this treatise. The discussion in this 
proposition is the same as the discussion in Proposition 6. 

As for the way to find a ratio smaller than one ratio and greater than 
[another] ratio, this is done as we shall describe: let the greater of the two 
ratios be the ratio of AB to CD and let the smaller be the ratio of EG to HI. 
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We put the ratio of EG to IL equal to the ratio of AB to CD, so the ratio of 
EG to IL is greater than the ratio of EG to HI; so IL is smaller than HI. We 
take away from HL, an arbitrary [number] HN; the ratio of EG to IN will 
then be smaller than the ratio of AB to CD and greater than the ratio of EG 
to HI. 

 
Fig. II.1.34 

 
If the number HL is one, we multiply all the numbers by as large a 

number as we wish until a whole number emerges in place of HL. The 
multiples of the numbers will be in the ratios of the original numbers. 
Similarly, if one of the numbers given to define the two ratios contains 
fractions, we multiply all the numbers by the homonymous number of the 
fraction,54 then the ratios will be ratios of whole numbers. It is in this way 
that we can find a ratio smaller than a given ratio and greater than a given 
ratio. This set of numerical problems is sufficient to provide a basis for 
practice. 

 
<20> As for geometrical problems, they follow the example in our 

statement: given a straight line AB, on which there are three points that are 
A, B and C, and a straight line DG being known in position and unlimited 
in length, we wish to draw from the two points A and B two straight lines 
that meet one another in a point of DG such that if from the point C we 
draw a straight line that passes through this point, it divides the angle 
formed at this point into two equal parts.  

Using the method of analysis we suppose that this has been found and 
that the straight lines are AE, BE and CE. So the angle AEC will be equal to 
the angle CEB. Since the angle AEB has been divided into two equal parts 
by the straight line EC, the ratio of AE to EB is equal to the ratio of AC to 
CB. 

If AC is equal to CB, then CE is a perpendicular and it has been drawn 
from the known point C to the straight line AB. So the straight line EC is 

 
54 If one of the given numbers is a sum in which one or more terms are fractions, 

the homonymous number is the denominator of the fraction we obtain in carrying out 
the addition. 

A

E

B

CD

I HNL

G



 ON ANALYSIS AND SYNTHESIS 279 

known in position as has been proved in the twenty-eighth proposition of 
the Data55 and the straight line DG is known in position, by hypothesis. So 
the two straight lines DG and EC are known in position and they intersect 
at the point E, so the point E is known as has been proved in Proposition 24 
of the Data.56 

 
Fig. II.1.3557 

 
The synthesis for this case consists of drawing from the point C a 

perpendicular to AB, which we extend until it meets the straight line DG. 
From where it meets the straight line DG we draw two straight lines to the 
points A and B and the problem is completed.  

 

 
Fig. II.1.36 

 
If the two straight lines AC and CB are different, let AC be the greater, 

then the ratio of AE to EB is a known ratio since it is equal to the ratio of 
AC to CB, both of which are known, and it is the ratio of the greater to the 
smaller. So the point E lies on the circumference of a circle known in 
position as has been proved in the first proposition of this treatise. Let the 
circle be the circle ECI; so the circle ECI is known in position; but the 

 
55 This is Proposition 29 in Heiberg’s edition and in the recension by al-Ṭūsī. 
56 This is Proposition 25 in Heiberg’s edition and in the recension by al-Ṭūsī. 
57 In the figures for Problem 20 in the manuscript, we have DG || AB; but the 

statement is more general. We have added Figure II.1.35 to fit with the text. 
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straight line DG is known in position, they cut one another at the point E, 
so the point E is known as has been proved in Proposition 24 of the Data.58 

 
The synthesis of this problem is carried out as we shall describe: we 

put the ratio of CH to HB equal to the ratio of AC to CB, thus the ratio of 
the whole of AH to the whole of HC is equal to the ratio of CH to HB. We 
take HB, we take H as centre and with distance HC we draw a circle, let the 
circle be CEI; let this circle cut the straight line DG at the point E; we join 
AE, BE, CE and HE; HE is equal to HC, so the ratio of AH to HE is equal 
to the ratio of AH to HC; but the ratio of AH to HC is equal to the ratio of 
CH to HB, so the ratio of AH to HE is equal to the ratio of EH to HB. But 
the angle AHE is common to the two triangles AHE and BHE, so the 
triangles AHE and BHE are similar and the ratio of AH to HE is equal to 
the ratio of AE to EB; but the ratio of AH to HE is equal to the ratio of AH 
to HC and is equal to the ratio of AC to CB, so the ratio of AE to EB is 
equal to the ratio of AC to CB, so the angle AEB has been divided into two 
equal parts by the straight line CE, as has been proved in the sixth book of 
the work of Euclid. This is what we wanted to do. 

 

 
Fig. II.1.37 

 
This problem requires a discussion because the circle ECI may not 

meet the straight line DG, and the discussion for this problem is that the 
straight line HC shall not be smaller than the perpendicular drawn from the 
point H to the straight line DG, because HC is the semidiameter of the 
circle and the point H is the centre of the circle. If the semidiameter of the 
circle is smaller than the perpendicular drawn from its centre to the straight 
line DG, then the endpoint of the perpendicular will lie outside the 
circumference of the circle. But the endpoint of this perpendicular is the 
point of the straight line DG that lies closest to the circumference of the 
circle, so no straight line drawn from the centre of the circle to its 
circumference reaches the straight line DG.  

 
58 This is Proposition 25 in Heiberg’s edition and in the recension by al-Ṭūsī. 
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So if the semidiameter of the circle is smaller than the perpendicular 
drawn from its centre to the straight line DG, this problem cannot be solved. 

If the semidiameter of the circle is equal to the perpendicular drawn 
from the centre to the straight line DG, then this problem is soluble and 
there is a single case, as in the example of the first figure. In fact, if the 
semidiameter of the circle is equal to the perpendicular and if from the 
centre of the circle, which is the point H, we draw the perpendicular HE, 
then HE will be the semidiameter of the circle, the straight line DG will be 
a tangent to the circle at the point E and the circle does not meet the 
straight line DG in any other point. 

If the semidiameter of the circle is greater than the perpendicular, then 
if from the centre of the circle we draw a perpendicular to the straight line 
DG that then reaches the circumference of the circle, the straight line DG 
cuts this straight line which is the semidiameter of the circle and which is 
perpendicular <to the straight line DG>; so it cuts the circle in two places. 
If to each of these two points we draw straight lines from the points A, C 
and B, the angle that is enclosed at this point is divided into two equal parts. 
The proof relating to each of these two points is the one given earlier. 

So if the semidiameter of the circle is greater than the perpendicular 
drawn from its centre to the straight line DG, then the problem will have 
two cases involving two different points. If the semidiameter is equal to the 
perpendicular, then the problem will have a single case. If the semidiameter 
is smaller than the perpendicular, then the problem has no solution. This is 
the discussion for this problem. 

 
<21> As an example, our statement: the point A being given, the 

straight line BC being given in known position and the circle DE being 
given, we wish to draw from the point A to the circle DE a straight line, 
inclined at a known angle, so as to reach the straight line BC, in such a way 
that the ratio of the two straight lines that are generated, the one to the other, 
is known. 

The method of analysis is to suppose that this result has been achieved, 
that is that we have found the two straight lines AD and DH, that the angle 
ADH is known and that the ratio of AD to DH in known. We mark the 
centre of the circle; let it be G. We extend AD and we put DK equal to DH, 
then the ratio of AD to DK is known; so the point K lies on the 
circumference of a circle known in position, as has been proved in the 
second proposition of this treatise. Indeed, we join AG, it will be known in 
magnitude and in position, because its two endpoints are known, as has 
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been proved in Proposition 25 of the Data.59 We extend AG and we put the 
ratio of AG to GI equal to the ratio of AD to DK which is known, so the 
straight line GI will be known in magnitude, as has been proved in 
Proposition 2 of the Data, and it is known in position, so the point I is 
known, as has been proved in Proposition 26 of the Data.60  

 
Fig. II.1.38 

 
We join GD and IK; they will be parallel because the ratio of AG to GI 

is equal to the ratio of AD to DK, so the triangle AIK is similar to the 
triangle AGD. So the ratio of IK to GD is equal to the ratio of IA to AG; but 
the ratio of IA to AG is known, so the ratio of IK to GD is known. So IK is 
known and the point I is known, so the point K lies on the circumference of 
a circle known in magnitude and in position. We join AH, the triangle ADH 
is of known shape because the ratio of AD to DH is known and the angle 
ADH is known, as has been proved in Proposition 39 of the Data.61 The 
angle HAK is known, the ratio of HA to AD is known and the ratio of AD to 
DK is known, so the ratio of AD to AK is known and the ratio of HA to AK 
is known. On the straight line AI, at the point A, we construct the angle IAN 
equal to the angle KAH, which is known, so AN is known in position, as 
has been proved in Proposition 28 of the Data.62 We put the ratio of NA to 
AI equal to the ratio of HA to AK, which is known, so AN is of known 
magnitude, because its ratio to AI, which is of known magnitude, is a 
known ratio, as has been shown in Proposition 2 of the Data. We join NH. 
Since the angle IAN is equal to the angle KAH, the angle NAH will be equal 
to the angle IAK; but the ratio of NA to AI is equal to the ratio of HA to AK, 

 
59 This is Proposition 26 in Heiberg’s edition and in the recension by al-Ṭūsī. 
60 This is Proposition 27 in Heiberg’s edition and in the recension by al-Ṭūsī. 
61 This is Proposition 41 in Heiberg’s edition and in the recension by al-Ṭūsī. 
62 This is Proposition 29 in Heiberg’s edition and in the recension by al-Ṭūsī. 



 ON ANALYSIS AND SYNTHESIS 283 

so the ratio of NA to AH is equal to the ratio of IA to AK. So the triangle 
NAH is similar to the triangle IAK, so their sides are proportional, so the 
ratio of NH to IK is equal to the ratio of HA to AK; but the ratio of HA to 
AK is known, so the ratio of NH to IK is known; now IK is of known 
magnitude, so NH is of known magnitude, as has been proved in 
Proposition 2 of the Data. But the point N is known, because AN is known 
in magnitude and in position. Accordingly the straight line NH is known in 
magnitude and the point N is known in position, so the point H lies on the 
circumference of a circle known in position, as has been proved in 
Proposition 3 of this treatise. 

So the analysis has arrived at a possible result.  
It is possible to analyse this problem using another shorter method, 

which is this: we join the straight line AH, then the triangle AHD will be of 
known shape, because the ratio of AD to DH is known and the angle ADH 
is known, so the ratio of AH to AD is known. But the point A is known and 
the straight line BC is known in position; now from the point A we have 
drawn a straight line AH that is inclined at a known angle, which is the 
angle HAD, in such a way that the ratio of AH to AD becomes known, so 
the point D lies on a straight line known in position, as has been proved in 
Proposition 3 of this treatise. 

The synthesis of this problem starting from the first analysis is carried 
out in the following way: let A be the given point, BC the given straight 
line and DE the given circle; the known angle the angle GHI and the 
known ratio the ratio of K to L. On one of the two sides63 of the angle we 
take the point G and we put the ratio of GH to HI equal to the ratio of K to 
L. We join GI, we extend GH to M and we put HM equal to HI. We mark 
the centre of the circle, let it be N; we join AN and we extend it; we put the 
ratio of AN to NP equal to the ratio of GH to HM and we put the ratio of 
PQ to the semidiameter of the circle equal to the ratio of PA to AN. At the 
point A, we construct the angle PAJ equal to the angle MGI, we put the 
ratio of JA to AP equal to the ratio of IG to GM and we put the ratio of JF 
to PQ equal to the ratio of JA to AP. We take J as centre and with distance 
JF we draw a circle, let the circle be FO; let this circle cut the straight line 
BC at the point O; let us join AO.  

I say that if we place the straight line AO at an angle equal to the angle 
GIH, the inclined straight line reaches the circle DE, and that if we join its 
endpoint and the point A with a straight line, it encloses with it an angle 
equal to the angle GHI and the ratio of one of the straight lines to the other 
is equal to the ratio of GH to HI. 

 
63 Lit.: straight lines. 
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Fig. II.1.39 

 
Proof: We join JO, we take P as centre and with distance PQ we draw 

a circle, let it be the circle QU. We draw from the point P a straight line 
that encloses with the straight line AP an angle equal to the angle AJO, let 
the straight line meet the circumference of the circle at the point U; we join 
AU. The triangle APU is similar to the triangle JAO; we draw ND parallel 
to PU, so the ratio of PU to ND is equal to the ratio of PA to AN. But the 
ratio of PA to AN is equal to the ratio of PU, which is equal to PQ, to the 
semidiameter of the circle, so the straight line ND is the semidiameter of 
the circle and consequently the point D lies on the circumference of the 
circle.  

We join OD. Since the triangle APU is similar to the triangle AJO, the 
ratio of JA to AP is equal to the ratio of OA to AU. But the ratio of JA to AP 
is equal to the ratio of IG to GM, so the ratio of OA to AU is equal to the 
ratio of IG to GM. But the ratio of UA to AD is equal to the ratio of MG to 
GH, because it is equal to the ratio of PA to AN. So the ratio of OA to AD is 
equal to the ratio of IG to GH. But the angle OAJ is equal to the angle UAP, 
so the angle OAU is equal to the angle PAJ. But the angle PAJ is equal to 
the angle IGH, so the angle OAD is equal to the angle IGH and the ratio of 
OA to AD is equal to the ratio of IG to GH; so the triangle OAD is similar 
to the triangle IGH. So the ratio of AD to DO is equal to the ratio of GH to 
HI and the ratio of GH to HI is equal to the ratio of K to L, so the ratio of 
AD to DO is equal to the ratio of K to L which is given, and the angle ADO 
is equal to the angle GHI which is given. This is what we wanted to do. 

This problem requires a discussion and the discussion in this synthesis 
is like the discussion in the preceding proposition, that is to say that the 
straight line JF, which is the semidiameter of the circle FO, should not be 
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smaller than the perpendicular drawn from the known point J to the straight 
line BC. If it [FO] is equal to the perpendicular, then the problem will have 
a single case and if it [FO] is greater than the perpendicular, then the 
problem will have two cases. 

 
The synthesis of this problem starting from the second analysis: let the 

straight line, the angle and the ratio be given, as they were in the preceding 
synthesis.  

 
Fig. II.1.40 

 
We put the ratio of GH to HI equal to the ratio of K to L and we join GI. 

From the point A we draw a perpendicular to the straight line BC, let it be 
AM. On the straight line AM let us construct an angle MAN equal to the 
angle IGH. We put the ratio of MA to AN equal to the ratio of IG to GH and 
from the point N we draw a straight line making a right angle, let it be ND; 
let us extend it, let it meet the circle at the point D; we join AD and we 
make the angle DAO equal to the angle NAM. But since the angle DAO is 
equal to the angle NAM, accordingly the angle NAD is equal to the angle 
MAO. So the straight line AO meets the straight line BC; let it meet it at the 
point O. Then the triangle MAO is similar to the triangle NAD. We join OD, 
then the ratio of MA to AO is equal to the ratio of NA to AD, so the ratio of 
MA to AN is equal to the ratio of OA to AD. But the ratio of MA to AN is 
equal to the ratio of IG to GH, so the ratio of OA to AD is equal to the ratio 
of IG to GH. Now the angle OAD is equal to the angle IGH, so the triangle 
AOD is similar to the triangle GHI, so the angle ADO is equal to the angle 
GHI and the ratio of AD to DO is equal to the ratio of GH to HI which is 
the ratio of K to L. So we have drawn a straight line to the circle, that is the 
straight line AD, and we have placed it at an angle equal to the angle GHI, 
which is the angle ADO; the ratio of AD to DO has become equal to the 
ratio of K to L. This is what we wanted to do. 
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This synthesis also requires a discussion. The discussion in this 
synthesis concerns the straight line ND. If the straight line AN is known in 
magnitude and in position and a point N on it is known and if we have 
drawn from this point a straight line at a right angle, which is ND, then the 
straight line ND is known in position. But the straight line ND meets the 
circle or does not meet it. If the straight line ND meets the circle, the 
problem is soluble, if it does not meet it, then the problem is not soluble. If 
the straight line ND meets the circle, it is a tangent to it or it cuts it. If it is a 
tangent to it, it meets it in a single point, and the problem has a single case. 
If it cuts it, it meets it in two points and the problem has two cases. 

 
<22> As an example, our statement: to draw a circle touching three 

given circles of different magnitudes whose centres do not lie on a straight 
line. Let the three circles be the circles AB, CD and EG; to draw a circle 
that is tangent to them.64  

The method of analysis in this problem is to suppose that this has been 
achieved and that the circle touching the three circles is the circle BCE. Let 
the centres of the circles be H, I, K, L. We then investigate the properties 
that are necessary in this problem. If the analyst investigates the properties 
of this problem, it becomes clear to him that any straight line that joins the 
centres of two of these circles65 passes through the point of contact, as has 
been proved in the third book of the work of Euclid.66 Let us join the 
centres with the straight lines HL, LK and LI, so they pass through the 
points B, C and E. We then investigate what is necessary for these straight 
lines; it emerges that the straight lines HB, EK and CI are each known in 
magnitude, because these circles are given.67 But since these circles are of 
different magnitudes, the differences of these straight lines are known. Let 
KE be the shortest of these straight lines and CI the longest. We take away 
BM and CN, each equal to KE; each of the two straight lines HM and NI is 
then known and the straight lines LK, LM and LN are equal. So the points K, 
M, N lie on the circumference of a circle with centre L. We take L as centre 
and with distance LK we draw a circle; it passes through the two points M 
and N; let the circle be KMN, so the point K lies on the circumference of 

 
64 Ibn al-Haytham does not specify here that, taken two by two, the given circles lie 

outside one another, nor that the required circle must touch each of them on the outside. 
The figures and the argument show that these hypotheses are needed. Moreover, Ibn al-
Haytham mentions them in his conclusion. 

65 A straight line joining the required centre to the centre of one of the given 
circles. 

66 Elements, III.12. 
67 They are the radii of the given circles. 
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the circle KMN, and the two points H and I lie outside it. But since we wish 
to add something supplementary that will produce properties that did not 
exist, we join the two straight lines KH and KI; these two straight lines 
enclose an angle because, by hypothesis, the three centres are not collinear. 
But if the two straight lines HK and KI enclose an angle, then the sum of 
the two angles LKH and LKI is less than two right angles, in every case one 
of these two angles is acute, or both of them are acute. 

 
Fig. II.1.41*  

 
First let both of them be acute, then each of the two straight lines KH 

and KI cuts the circle KMN. Let the straight line KH cut the circle at the 
point S and let the straight line KI cut the circle at the point O. Let us join 
SL, OL and HI and we draw HL [extending it] to meet the circle; let it meet 
it at the point P. So the product of KH and HS is equal to the product of PH 
and HM. So the ratio of PH to HS is equal to the ratio of KH to HM. But 
the ratio of KH to HM is known, because each of them is known, as has 
been proved in the first proposition of the Data. So the ratio of PH to HS is 
known; let it be equal to the ratio of MH to HU, so the ratio of MH to HU 
will be known. Now MH is known, so HU is known, as has been proved in 

 
* The letter ز (transcribed without a diacritical point ر) has been used to designate 

two different points (G) in the figure. 



288 CHAPTER II: AL-ḤASAN IBN AL-HAYTHAM 

Proposition 2 of the Data. There remains the ratio of MP, which is the 
diameter of the circle, to US, [which is] equal to the ratio of PH to HS, 
which is known and which is equal to the ratio of KH to HM; so the ratio of 
KH to HM is equal to the ratio of MH to HU. 

In the same way, if we draw the straight line IL [extending it] to meet 
the circle, the product of the whole of this straight line and IN is equal to 
the product of KI and IO. The ratio of the whole of this straight line to IO is 
equal to the ratio of IK to IN, which is known. If we put the ratio of KI to 
IN, which is known, equal to the ratio of NI to IQ, then IQ will be known 
and the ratio of the diameter of the circle to OQ will be known. But since, 
by hypothesis, the two points K and H are known, the straight line KH is 
known in magnitude and in position, as has been proved in Proposition 25 
of the Data.68 But since HU is of known magnitude and the point H on it is 
known, the point U is known, as has been proved in Proposition 26 of the 
Data;69 so the point U is known. In the same way, we prove that the point 
Q is known. We join UQ, then UQ is known in magnitude and in position 
and in the triangle KUQ each of the sides is known in magnitude and in 
position; so it will be of known shape, that is to say that its angles are 
known and the ratios of its sides one to another are known, as has been 
proved in Proposition 37 of the Data.70 We join SO; it will be a chord of 
the circle MKN. Since the angle SKO is known, the angle SLO is known, 
because it is double it, the two angles LSO and LOS are equal and each of 
them is known. The triangle LSO is of known shape, so the ratio of OS to 
SL is known and thus the ratio of OS to double SL, which is the diameter of 
the circle, is known. The ratio of the straight line SO to the diameter of the 
circle is known and the ratio of each <of the straight lines> US and QO to 
the diameter of the circle is known, so the ratio of the straight line SO to 
each of the straight lines US and QO is a known ratio, as has been proved 
in Proposition 8 of the Data.71 

So the analysis has led to our drawing in the triangle UKQ, which is of 
known shape, the straight line SO in such a way that its ratio to each of the 
two straight lines SU and OQ is a known ratio. But the ratio of US to QO is 
known, because the ratio of each of them to the diameter of the circle is 
known, and the ratio of UK to KQ is known, so the ratio of UK to KQ 
either is equal to the ratio of US to QO, or is not equal to the ratio of US to 
QO. If the ratio of UK to KQ is equal to the ratio of US to QO, then the 

 
68 This is Proposition 26 in Heiberg’s edition and in the recension by al-Ṭūsī. 
69 This is Proposition 27 in Heiberg’s edition and in the recension by al-Ṭūsī. 
70 This is Proposition 39 in Heiberg’s edition and in the recension by al-Ṭūsī. 
71 This is Proposition 9 in Heiberg’s edition. 
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straight line SO will be parallel to the straight line UQ, because the ratio of 
SU to UK is equal to the ratio of OQ to QK. If the ratio of UK to KQ is not 
equal to the ratio of US to QO, then the straight line SO is not parallel to 
the straight line UQ. 

 
Fig. II.1.41a 

 
If the straight line SO is parallel to the straight line UQ, the triangle 

OSK is similar to the triangle QKU. But the triangle QKU is of known 
shape, as has been proved earlier, so the triangle OSK is of known shape. 
So the ratio of OS to SK is known. But the ratio of OS to SU is known, so 
the ratio of US to SK is known. But UK is of known magnitude, so each of 
the two straight lines US and SK is of known magnitude, as has been 
proved in Proposition 7 of the Data.72 So the straight line SK is of known 
magnitude, and in the same way we prove that the straight line OK is of 
known magnitude; the straight line OS will be of known magnitude, 
because its ratio to SK is known. In the triangle OSK, each side is of known 
magnitude and position. But this triangle is inscribed in the circle MKN. 
From the point L we draw a perpendicular to the straight line SK, let it be 
LF. It divides SK, which is of known magnitude, into two equal parts; so 
the point F will be known. From the point L we also draw a perpendicular 
to the straight line OK, let it be LG; the point G is known. We join FG; FG 
is known and the triangle KFG will be of known shape, because each of its 
sides is known. The ratio of GF to FK is known, the angle KFG is known 
and the angle KFL is a right angle, so the angle GFL is known, because if 
from a known magnitude we cut off a known magnitude, the remainder 
will be known, as has been proved in Proposition 4 of the Data. In the 
same way, we prove that the angle FGL is known, there remains the angle 
FLG which is known, so the triangle LFG is of known shape, as has been 

 
72 U and K being given, US

SK
 the known ratio, if US

SK
 ≠ 1, defines two points S on the 

straight line UK, one on the segment and the other on one of the extensions, and if 
US
SK

 = 1, a single point S that is the midpoint of UK. Proposition 7 of the Data deals with 

the point S on the segment UK, which is the point considered by Ibn al-Haytham.  
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proved in Proposition 38 of the Data.73 The ratio of GF to FL is known and 
the ratio of FG to FK is known, so the ratio of KF to FL is known and the 
angle KFL is known, so the triangle LFK is of known shape. So the angle 
FKL is known and the straight line HK is known in position, so the straight 
line KL is known in position, as has been proved in Proposition 28 of the 
Data.74 The ratio of FK to KL is known, because the triangle FKL is of 
known shape. But the straight line FK is of known magnitude, so the 
straight line KL is known in magnitude and in position, the point K on it is 
known, so the point L is known, as has been proved in Proposition 26 of 
the Data.75 So the point L is known and it is the centre of the circle BEC 
which touches <the given circles>, the straight line KL is of known 
magnitude, the part of it, KE, is known because it is the semidiameter of 
the given circle and the remainder, EL, is known and it is the semidiameter 
of the circle BEC. So the circle BCE has a semidiameter of known 
magnitude and its centre is known in position, so the circle BCE is known 
in magnitude and in position. So it can exist, because every magnitude 
known in magnitude and in position can exist. 

 

 
Fig. II.1.41b 

 
If the straight line SO is not parallel to the straight line UQ, from one of 

the two points S or O we draw a straight line parallel to the straight line 
UQ; let it be ST. The ratio of US to QT is known, because it is equal to the 
ratio of UK to KQ. But the ratio of US to QO is known, so the ratio of OQ 
to QT is known, as has been proved in Proposition 8 of the Data, and the 
ratio of QO to OT will be known, as has been proved in Proposition 5 of 
the Data. Now, the ratio of QO to OS is known, so the ratio of QO to each 
of the two magnitudes OT and OS is known, so the ratio of SO to OT is 
known, as has been proved in Proposition 8 of the Data. From the point U 

 
73 This is Proposition 40 in Heiberg’s edition and in the recension by al-Ṭūsī. 
74 This is Proposition 29 in Heiberg’s edition and in the recension by al-Ṭūsī. 
75 This is Proposition 27 in Heiberg’s edition and in the recension by al-Ṭūsī. 
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we draw a straight line parallel to the straight line SO, let it be UJ. The 
triangle UJQ is thus similar to the triangle SOT. So the ratio of UJ to JQ is 
equal to the ratio of SO to OT. But the ratio of SO to OT is known, so the 
ratio of UJ to JQ is known and the angle UQJ is known, so the triangle 
UJQ is of known shape, as has been proved in Proposition 41 of the Data.76 
So the angle UJQ is known and the angle JUQ is known; there remains the 
angle UJK which is known.77 Thus, the angle JUK is known, so the triangle 
UJK is of known shape. The ratio of UK to KJ is known. But the ratio of 
UK to KJ is equal to the ratio of US to OJ, because UJ is parallel to SO. So 
the ratio of US to OJ is known, thus in the triangle UKJ, of known shape, 
we have drawn the straight line SO parallel to the straight line UJ, in such a 
way that the ratio of SO to each of the two straight lines SU and OJ is 
known. The analysis is completed as before, that is to say from the place at 
which it was assumed that the straight line SO was parallel to the straight 
line UQ – which is the base of the triangle of known shape – as far as the 
place in which it was proved that the circle BCE was known in magnitude 
and in position, which is the point where the analysis is complete. 

These two analyses are both based on the fact that the two straight lines 
KH and KI cut the circle KMN, which happens when each of the two angles 
HKL and IKL is smaller than a right angle. 

If one of these two angles is not smaller than a right angle, then the 
other angle is smaller than a right angle. Let the angle HKL not be smaller 
than a right angle, then the angle LKI will be smaller than a right angle, so 
the straight line IK will cut the circle KMN and the angle HKL will be 
either a right angle or much greater than a right angle. 

If the angle HKL is a right angle as in the second case of the figure, 
then the product of PH and HM is equal to the square of HK, so the ratio of 
PH to HK is equal to the ratio of KH to HM. But the ratio of KH to HM is 
known, because each of them is known, so the ratio of PH to HK is known 
and HK is of known magnitude, so the straight line PH is of known 
magnitude. But HM is of known magnitude, so the straight line MP is of 
known magnitude and it is the diameter of the circle KMN. So the diameter 
of the circle KMN is of known magnitude, so half of it is of known 
magnitude and the straight line LK is thus of known magnitude. But it is 

 
76 In the manuscripts, the number of the proposition is illegible. Being given the 

angle UQJ and ratio UJ/JK does not define a triangle UJQ (up to a similarity). We can 
have 0, 1 or 2 triangles that are solutions to the problem. Proposition 41 of the Data 
treats the case in which an angle and the ratio of the sides enclosing this angle are 
known. 

77 Depending on the case shown in the figure, the angle JUK appears either as the 
sum or as the difference of known angles. 
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known in position, because it encloses a right angle with the straight line 
HK, which is known in position. So the straight line KL is known in 
magnitude and in position and the point K on it is known, so the point L is 
known and it is the centre of the circle BCE. But the straight line KL is of 
known magnitude and the straight line KE is of known magnitude, so the 
straight line EL is of known magnitude. Now, we have proved that it is 
known in position. So the circle BCE that touches <the three circles> is 
known in magnitude and in position. 

 

 
Fig. II.1.42 

 
If the angle HKL is greater than a right angle as in the third case of the 

figure, then the analysis of this proposition is the same analysis as that we 
set out when we supposed that the straight line SO was not parallel to the 
straight line UQ; there is no point of difference between these two analyses. 
The analysis of this case of the figure, I mean the third one, has led to the 
fact that the circle BCE is known in magnitude and in position.78 

So we prove by this analysis that the required circle that touches the 
three given circles is known in magnitude and in position. So it can exist. 
To find it, we make use of the lemmas we demonstrated in the analysis and 
which have led to the tangent circle being known in magnitude and in 
position. 

 
78 Ibn al-Haytham does not mention that in the case where the angle HKL = 1 right 

angle (Fig. II.1.42), the point S coincides with K and that in the case where the angle 
HKL > 1 right angle (Fig. II.1.43), the point S lies on HK produced. In the commentary, 
we shall see that the argument used to find the straight line SO is valid for all cases of 
the figure. 
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Fig. II.1.43 

 
Among these lemmas arrived at in the analysis, the one that allows us 

to find the tangent circle is that the triangle UKQ, in which the straight line 
SO has been drawn in such a way that the ratio of this straight line to each 
of the straight lines SU and OQ is known, is of known shape. It is with the 
help of this straight line that the problem is completed and it is with the 
help of these <ratios> that we find the centre of the tangent circle.  

 
The synthesis of this problem is carried out as we shall describe: let the 

given circles be the circles AB, CD, EG and let the smallest be EG; we 
wish to draw a circle that touches these circles. We mark the centres of 
these circles; let the points be H, K, I. We join the straight lines HK, KI, IH. 
Let the straight line HK cut the circle AB at the point A and cut the circle 
EG at the point E and let the straight line KI cut the circle CD at the point 
D and cut the circle EG at the point G. We take away each of the straight 
lines AF and DT, equal to KE, and we put the product of KH and HU equal 
to the square of HF; we put the product of KI and IQ equal to the square of 
IT. We join UQ, then the triangle UKQ is of known shape because each of 
its sides is known in magnitude and in position. We put the arc EP equal to 
the arc EG and we join KP and GP. We put the ratio of the sum of GK and 
KP to PM equal to the ratio of KH to HF and we put the ratio of the sum of 
PK and KG to GO equal to the ratio of KI to IT. In the triangle UKQ we 
draw a straight line that cuts off from the two straight lines UK and QK two 
straight lines such that its ratio to what it cuts off from the straight line UK 
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is equal to the ratio of GP to PM and its ratio to what it cuts off from QK is 
equal to the ratio of GP to GO; let it be the straight line SN. We have 
shown how to find this straight line using analysis; we shall proceed to the 
synthesis once the construction of the circle is finished, so that these 
matters do not become mixed up. 

 
Fig. II.1.44 

 
If in the triangle UKQ we draw the straight line SN in accordance with 

the ratio we have mentioned, then the triangle SKN will be of known 
magnitude and each of its sides will be known in magnitude and in position. 
We draw a circle circumscribed about the triangle SKN; let it be the circle 
SKN. The centre of the circle will be known; let it be the point L. We join 
the straight lines HL, KL, IL, SL and NL. Let the straight line HL cut the 
circle SKN at the point J and cut the circle AB at the point B; let the straight 
line IL cut the circle SKN at the point X and cut the circle CD at the point C 
and let the straight line KL cut the circle EG at the point W. The straight 
lines LK, LJ and LX are equal.  

If the angle HKI is less than a right angle, then the segment SKN is 
greater than a semicircle, so the straight line SN will lie beyond the centre L, 
inside the triangle UKQ, as in the first case of the figure; so the angle SLN 
is double the angle SKN, so it is equal to the angle PKG and thus the 
triangle SKN is similar to the triangle PKG. The ratio of the sum of SL and 
LN to SN is equal to the ratio of the sum of PK and KG to GP. The ratio of 
NS to SU is equal to the ratio of GP to PM, so the ratio of the sum of SL 
and LN to SU is equal to the ratio of the sum of GK and KP to PM and the 
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ratio of the sum of PK and KG to PM is equal to the ratio of KH to HF; so 
the ratio of the sum of SL and LN to SU is equal to the ratio of KH to HF. 
We extend HL to the point V, then JV will be the diameter of the circle 
SKN, so it will be equal to the sum of SL and LN. So the ratio of JV to SU is 
equal to the ratio of KH to HF. 

I say first that HJ is equal to HF. 
Proof: Indeed, it cannot be otherwise.79 If this were possible, let HJ be 

greater than HF. We put the ratio of HJ to HO' equal to the ratio of KH to 
HJ, then HO' will be greater than HU, because the product of KH and HU 
is equal to the square of HF; the product of KH and HO' is equal to the 
square of HJ, but HJ is greater than HF, so HO' is greater than HU. But 
since the product of VH and HJ is equal to the product of KH and HS, the 
ratio of KH to HJ is equal to the ratio of VH to HS. But the ratio of KH to 
HJ is equal to the ratio of JH to HO'. So the ratio of VH to HS is equal to 
the ratio of JH to HO', so the straight line HO' is smaller than the straight 
line HS. Now, we have proved that it was greater than the straight line HU, 
so the point O' lies between the two points U and S. 

 

 
Fig. II.1.44a 

 
In the same way, since the ratio of VH to HS is equal to the ratio of JH 

to HO', the ratio of VJ, the remainder, to O'S is equal to the ratio of VH to 
HS and is equal to the ratio of KH to HJ. So the ratio of JV to O'S is equal 
to the ratio of KH to HJ. But the ratio of KH to HJ is smaller than the ratio 
of KH to HF, because HJ is greater than HF. So the ratio of JV to O'S is 
smaller than the ratio of KH to HF. But the ratio of KH to HF is equal to 
the ratio of JV to US, so the ratio of JV to O'S is smaller than the ratio of JV 

 
79 To show that HJ = HF, we may replace the argument by reductio ad absurdum 

by the following:  
 (1) HF2 = HK · HU by hypothesis, 
 (2) HJ · HV = HS · HK (power of H), 

and we have seen that  
 (3)

 
JV
SU

= HK
HF

.
 

From (1) et (2), we deduce HF2 + HF · JV = HK · HU + HK · SU = HK · HS; and 
(2) can be written HJ2 + HJ · JV = HK · HS, hence  

HF2 + HF · JV = HJ2 + HJ · JV <=> (HF – HJ) (HF + HJ + JV) = O, 
an equation that is satisfied only by HF = HJ. 
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to US; so O'S is greater than US. This is impossible because the point O' 
lies between the points U and S. Now this impossibility follows from our 
hypothesis that the straight line HJ is greater than the straight line HF. So 
the straight line HJ is not greater than the straight line HF. 

I say that the straight line HJ is not smaller than the straight line HF. If 
this were possible, let it be smaller than HF. We put the ratio of HJ to HI' 
equal to the ratio of KH to HJ; HI' will thus be smaller than HU because 
the product of KH and HU is equal to the square of HF and the product of 
KH and HI' is equal to the square of HJ. But HJ is smaller than HF, so HI' 
is smaller than HU. But since the product of VH and HJ is equal to the 
product of KH and HS, the ratio of KH to HJ is equal to the ratio of VH to 
HS. But the ratio of KH to HJ is equal to the ratio of JH to HI', so the ratio 
of VH to HS is equal to the ratio of JH to HI' and is equal to the ratio of the 
remainder, which is JV, to the remainder, which is I'S. So the ratio of JV to 
I'S is equal to the ratio of KH to HJ and the ratio of KH to HJ is greater 
than the ratio of KH to HF, because HJ is smaller than HF; so the ratio of 
JV to I'S is greater than the ratio of KH to HF. But the ratio of KH to HF is 
equal to the ratio of JV to US, so the ratio of JV to I'S is greater than the 
ratio of JV to US, and thus the straight line I'S is smaller than the straight 
line US. This is impossible because the straight line HI' is smaller than the 
straight line HU. This impossibility derives from our hypothesis that the 
straight line HJ is smaller than the straight line HF. So the straight line HJ 
is neither smaller than the straight line HF, nor greater than it, thus the 
straight line HJ is equal to the straight line HF. But HB is equal to HA, 
there remain JB equal to FA and FA equal to KE, that is WK, so the straight 
line JB is equal to the straight line KW; now JL is equal to LK, there 
remains BL equal to WL. By an analogous method, we prove that the 
straight line IX is equal to the straight line IT and that the straight line XC is 
equal to the straight line KW, there remains CL equal to WL. So the straight 
lines LB, LW and LC are all three equal. We take L as centre and with 
distance LB we draw a circle, let it be the circle BCW; this circle touches 
the three circles because it meets each of these circles in a point of the 
straight line that joins its centre to the centre of each of these circles. In fact, 
if from the point B we draw a perpendicular to the straight line HL, it 
touches the circle AB. It touches the circle AB and it touches the circle 
BCW. So the circle BCW touches the circle AB at the point B. In the same 
way, we prove that it touches the circle CD at the point C and that it 
touches the circle EG at the point W. So the circle BCW touches the three 
circles. This is what we wanted to do.  

If the angle HKI is a right angle, then the straight line SN is a diameter 
of the circle <SKN>, as has been proved in the second case of the figure. 
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The ratio of NS to SU is equal to the ratio of GP, a diameter of the circle 
EG, to PM, and the ratio of SN to NQ is equal to the ratio of PG to GO. The 
remainder of the construction is carried out as before. 

 

 
 

Fig. II.1.45 
 
If the angle HKI is greater than a right angle, then the straight line NS 

can lie outside the triangle <UKQ>, as in the third case of the figure; it can 
lie inside the triangle UKQ and the centre of the circle will lie outside the 
triangle SKN; the straight line NS can itself be the straight line KQ, as we 
shall prove later. The remainder of the proof is carried out as before, that is 
to say that we shall prove, in both cases of the figure, that the straight line 
HJ is equal to the straight line HF and that the straight line IX is equal to 
the straight line IT; and this completes the proof. 

 
It remains for us to show how, in the triangle UKQ of known shape, to 

draw a straight line like the straight line NS, in such a way that the ratio of 
NS to SU is equal to the ratio of GP to PM and the ratio of NS to NQ is 
equal to the ratio of GP to GO. 
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Fig. II.1.46 

 
The analysis for this lemma has been presented in the analysis of the 

problem; it remains to proceed to the synthesis corresponding to this 
analysis so that the problem is completed. 

We assume the triangle UKQ is given, then we investigate: if the ratio 
of PM to OG is equal to the ratio of UK to KQ and if the angle QKU is 
smaller than a right angle, then we put the ratio of PG – which is in the first 
case of the figure – to GCa80 equal to the ratio of QU to UK. We divide the 
straight line UK at the point S in such a way that the ratio of US to SK is 
equal to the ratio of PM to GCa.81 From the point S we draw the straight 
line SN parallel to the straight line UQ. 

 
80 We may note that GCa has been used only as an auxiliary length to define the 

point S on the segment UK; we could directly consider the ratio SU
SK

 such that 

SU
SK

= PM
PG

·QU
UK

. 

81 There exist two points S on the straight line UK defined by the ratio SU
SK

. Ibn al-

Haytham considers only the one that lies on the segment UK. But in finding the tangent 
circle the second point can be used if it lies beyond K on the line UK. 
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Fig. II.1.47 

 
I say that the ratio of NS to SU is equal to the ratio of GP to PM and 

that the ratio of SN to NQ is equal to the ratio of PG to GO. 
Proof: The ratio of PM to GCa is a compound of the ratio of PM to PG 

and the ratio of PG to GCa, but the ratio of PM to GCa is equal to the ratio 
of US to SK, so the ratio of US to SK is a compound of the ratio of PM to 
PG and the ratio of PG to GCa. But the ratio of PG to GCa is equal to the 
ratio of QU to UK, which is equal to the ratio of NS to SK, so the ratio of 
US to SK is a compound of the ratio of PM to PG and the ratio of NS to SK. 
But the ratio of US to SK is a compound of the ratio of US to SN and the 
ratio of NS to SK. The ratio compounded of the ratio of US to SN and the 
ratio of SN to SK is equal to the ratio compounded of the ratio of PM to PG 
and the ratio of NS to SK. We eliminate the ratio of NS to SK, which is 
common; there remains the ratio of US to SN equal to the ratio of PM to 
PG. So the ratio of NS to SU is equal to the ratio of GP to PM. But the ratio 
of SU to NQ is equal to the ratio of UK to KQ. Now the ratio of PM to GO 
is equal to the ratio of UK to KQ, so the ratio of SU to NQ is equal to the 
ratio of PM to GO. By the ratio of equality, the ratio of SN to NQ is equal 
to the ratio of PG to GO. So we have drawn in the triangle UKQ the 
straight line NS in such a way that the ratio of NS to SU is equal to the ratio 
of GP to PM and the ratio of NS to NQ is equal to the ratio of GP to GO. 
This is what we wanted to do. 

If the ratio of PM to GO is not equal to the ratio of UK to KQ, then the 
ratio of PM to GO either is greater than the ratio of UK to KQ or is smaller 
than it.  

If it is smaller than it, then the ratio of GO to PM is greater than the 
ratio of KQ to KU. One of the two ratios of GO to PM or of PM to GO is 
greater than one of the two ratios of UK to KQ or of KQ to KU. Let the 
ratio of GO to PM be greater than the ratio of KQ to KU. So we put the 
ratio of PM to GF equal to the ratio of UK to KQ; but the angle UKQ is 
smaller than a right angle, as has been proved in the first case of the figure. 
On the straight line PG we construct a segment of a circle intercepted by an 
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angle equal to the angle KQU, let the segment be PJG; in it we draw the 
chord GJ equal to the straight line FO and we join FJ. From the point U we 
draw a straight line that encloses with the straight line UQ an angle equal to 
the angle GPJ, let the straight line be UD; so it generates the triangle UQD 
such that the ratio of UD to DQ is equal to the ratio of PG to GJ. In the 
triangle UKD we draw the straight line parallel to the straight line UD such 
that its ratio to what it cuts off from the straight line KU is equal to the ratio 
of PG to PM and its ratio to what it cuts off from the straight line KD is 
equal to the ratio of PG to GF, as we did in the preceding proposition; let 
the straight line be SN. 

 
Fig. II.1.48 

 
I say that the ratio of SN to NQ is equal to the ratio of PG to GO. 
Proof: From the point S we draw the straight line SL parallel to the 

straight line UQ, then the triangle SLN is similar to the triangle UDQ, so 
the ratio of SN to NL is equal to the ratio of UD to DQ. But the ratio of UD 
to DQ is equal to the ratio of PG to GJ, so it is equal to the ratio of PG to 
FO, so the ratio of SN to NL is equal to the ratio of PG to FO, then the ratio 
of LN to NS is equal to the ratio of FO to GP. But the ratio of NS to SU is 
equal to the ratio of GP to PM and the ratio of SU to LQ is equal to the 
ratio of UK to KQ, which is equal to the ratio of PM to GF. By the ratio of 
equality,82 the ratio of NL to LQ is equal to the ratio of OF to FG, so the 
ratio of NQ to QL is equal to the ratio of OG to GF and the ratio of QN to 
NL is equal to the ratio of GO to OF. But the ratio of LN to NS is equal to 
the ratio of OF to GP, so the ratio of QN to NS is equal to the ratio of GO 
to GP. So the ratio of SN to NQ is equal to the ratio of PG to GO. But the 

 
82  The product term by term of the three equalities LN

NS
= OF
PG

, NS
SU

= PG
PM

 and 

SU
LQ

= OF
GF

, and so LN
LQ

= OF
GF
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ratio of NS to SU is equal to the ratio of GP to PM. So in the triangle UKQ 
we have drawn a straight line in accordance with the required ratios.83 This 
is what we wanted to do. 

This construction is carried out on the basis of <the hypothesis> that 
the angle HKI is smaller than a right angle, as in the first case of the figure. 

If the angle HKI is a right angle, in the triangle UKQ we draw a straight 
line that cuts off from the straight line UK a straight line such that its ratio 
to the latter is equal to the ratio of GP, which is the diameter of the circle 
EG, to PM, as in the second case of the figure, and which cuts off from KQ 
a straight line such that its ratio to the latter is equal to the ratio of PG to 
GO. We complete the construction as before. 

 

 
Fig. II.1.49 

 
If the angle HKI is greater than a right angle, as in the third case of the 

figure, then one of the two ratios of GO to PM or of PM to GO is smaller 
than one of the two ratios of UK to KQ or of QK to KU. Let the ratio of GO 
to PM be smaller than the ratio of QK to KU. We put the ratio of GO to PF 
equal to the ratio of QK to KU. On the straight line GP we construct a 
segment of a circle intercepted by an angle equal to the angle QUK, let the 
segment of a circle be PJG, in which we draw the straight line PJ equal to 
the straight line MF, and we join GJ. At the point Q of the straight line UQ 
we construct an angle equal to the angle PGJ; let the angle be UQC. This 
forms a triangle QKC and a triangle QUC. The triangle QUC will be 
similar to the triangle PGJ. So the ratio of QC to CU will be equal to the 
ratio of GP to PJ. In the triangle QKC we draw a straight line parallel to 
the straight line QC which cuts off from the straight line KQ a straight line 
such that the ratio of the straight line parallel to it84 is equal to the ratio of 

 
83 Lit.: the required ratio. 
84 That is, the straight line that has been cut off. 
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PG to GO and which cuts off from the straight line KU a straight line such 
that the ratio of the straight line parallel to it is equal to the ratio of GP to 
PF, as we have seen earlier; let the straight line be NS. 

I say that the ratio of NS to SU is equal to the ratio of GP to PM. 
 

 
Fig. II.1.50 

 
Proof: We draw NL parallel to QU; so the triangle NLS is similar to the 

triangle QUC. The ratio of LS to SN is thus equal to the ratio of UC to CQ. 
But the ratio of UC to CQ is equal to the ratio of JP to PG, so the ratio of 
LS to SN is equal to the ratio of JP to PG, that is of MF to PG, and the ratio 
of LS to SN is equal to the ratio of MF to PG. But the ratio of SN to NQ is 
equal to the ratio of PG to GO and the ratio of NQ to LU is equal to the 
ratio of QK to KU, which is equal to the ratio of GO to FP. By the ratio of 
equality, the ratio of SL to LU is thus equal to the ratio of MF to FP, so the 
ratio of US to SL is equal to the ratio of PM to MF. But the ratio of LS to 
SN is equal to the ratio of MF to PG, so the ratio of US to SN is equal to the 
ratio of PM to PG. So the ratio of NS to SU is equal to the ratio of GP to 
PM, and the ratio of SN to NQ is equal to the ratio of PG to GO. So we 
have drawn a straight line NS that has the required property. This is what 
we wanted to do.  

But the straight line QC can lie outside the triangle QKU. It can lie 
inside the triangle QKU and the figure is then as in the case of the figure 
<that we have given> for the triangle. If QC lies outside the triangle, the 
figure will be as in the third case for the figure.  
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Now if the straight line QC lies inside the triangle, then the triangle 
will be similar to the two preceding cases of the figure, because the straight 
line NS will lie between the point K and the centre L and the circle SKN 
will cut the straight line UK in a point between the two points U and K. QC 
can be the straight line QK if the angle PGJ is equal to the angle UQK; it is 
then that the straight line QK will be divided in a point, such as the point N, 
so that the ratio of KN to NQ will be equal to the ratio of PG to GO. From 
the point N we draw the straight line NL parallel to the straight line QU; the 
ratio of LK to KN is thus equal to the ratio of JP to PG, that is to the ratio 
of MF to PG. So, by equality, the ratio of LK to NQ is equal to the ratio of 
MF to GO. But the ratio of NQ to LU is equal to the ratio of QK to KU 
which is the ratio of GO to FP. So the ratio of KL to LU is equal to the ratio 
of MF to FP, so the ratio of UK to KL is equal to the ratio of PM to MF. 
Now the ratio of LK to KN is equal to the ratio of MF to PG, so the ratio of 
UK to KN is equal to the ratio of MP to PG. So the ratio of NK to KU is 
equal to the ratio of GP to PM. The straight line NK thus takes the place of 
the straight line NS and the circle will touch the straight line UK at the 
point K, as has been proved in the analysis when we divided the 
investigation 85  of the angle UKQ into three separate cases: an acute 
<angle>, a right <angle> or an obtuse <angle>. 

If the straight line QC lies outside the triangle UKQ and if we take the 
ratio of US to SK to be compound, which has been explained in detail in the 
previous proposition, the proof is completed as before. 

What we have set out for the triangle UKQ is the entirety of the parts of 
the investigation of it86 and the entirety of the cases that can occur for this 
triangle. 

It is in this way that the analysis of this problem and its synthesis are 
carried out. 

But this problem can have several cases. In fact, the circle that touches 
three circles can touch these three circles with its concave side; it can touch 
two circles with its concave side and touch only one circle with its convex 
side; it can touch one circle with its concave side and two circles with its 
convex side. The analysis and the synthesis then differ. In fact, each of 
these cases can be analysed in several ways and the arc GJP that we added 
in the course of the synthesis of the problem, the triangle <SKN> that we 
determined in this problem and the ratios between these chords that we 
used do not form part of the body of lemmas that we found by the analysis; 
however, we added them for the purpose of solving the problem by 

 
85 Lit.: when we have divided the angle. 
86 Lit.: of its parts. 
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introducing the straight line NS in the triangle UKQ that resulted from the 
analysis. We did not carry out an analysis of this result when we arrived at 
it, because if we had analysed it at that point, the analysis would have been 
long and difficult, and would have become obscure to most of those who 
examined it. So in the analysis we stopped at this straight line which we 
determined only later, by synthesis, trying to make things easier. 

All the cases that we have set out derive from <the hypothesis> that the 
three circles are separate; they can cut one another or touch, one and the 
same circle can touch them in different positions. We can carry out the 
analysis of each case in several ways, but our aim is neither to resolve the 
problem nor to proceed to its solution, our aim is to indicate how the 
analysis is carried out and to show the method to follow in searching out 
lemmas that allow us to solve problems. The analysis we have given for 
this problem and the preceding problems is sufficient for the purpose we 
set ourselves. 

It is here that we end this treatise. 
To God the Most High we express our gratitude for the benefits He has 

bestowed upon us. 
 
 
 



 
 

II. THE KNOWNS:  
A NEW GEOMETRICAL DISCIPLINE 

 
 
 

INTRODUCTION 
 
The treatise The Knowns is not merely one more text by Ibn al-

Haytham. It is a book that its author intended, like his Analysis and 
Synthesis, to be foundational. In such cases, it is not unusual for objectives 
to multiply and to overlap: one cannot be sure whether what he is doing is a 
matter of pursuing a line of research already initiated, or of setting a new 
discipline in place, or of providing new foundations for an established 
discipline by bringing to completion a contribution that has become 
classical. All these objectives are interconnected, and while, at first glance, 
they are different, they in fact prove to be closely linked. It is because of 
this multiplicity, and not in spite of it, that the book has a place in the 
history of geometry that is important and unusual in equal measure. 

 In this treatise, Ibn al-Haytham pursues a line of research initiated a 
century and a half before, one to which he himself gave powerful impetus 
and took as far as it will go, that is research concerning motion and trans-
formations in geometry: homothety, translation, similarity and even 
second-degree rational application. Ibn al-Haytham defines the transforma-
tions he uses in attacking the different problems that make up the book. In 
this respect, The Knowns belongs to a whole group of writings by Ibn al-
Haytham, a group that also includes the texts that are translated, and are the 
subject of commentaries, in this volume: The Properties of Circles and the 
Analysis and Synthesis. 

While this research on motion and transformations in geometry does 
not serve to distinguish The Knowns from several other texts, it is a quite 
different matter when we turn to the second objective of the treatise, which 
is shared only with the Analysis and Synthesis: to invent a new geometrical 
discipline of ‘knowns’, whose method is supplied in the book. Two central 
ideas govern this new discipline: on the one hand, we must no longer think 
of geometrical objects as being static figures, as they are in Euclid’s geo-
metry, that is as given once and for all, but rather as figures generated by 
one or more continuous motions, and thus variable. The problem is then to 
identify the elements that do not vary in the course of the motion. On the 
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other hand, and this is the second idea, motion must be accepted explicitly 
not only for use in proofs but also as a legitimate procedure for proof. 

This new geometrical discipline imposes new tasks on the geometer. 
As he starts with figures generated by a motion of some kind he must 
identify this motion, and in these circumstances must proceed by analysis; 
and it is analysis that will, further, allow him to search out the elements that 
are invariant in the course of the motion that generates the figure. But, on 
the other hand, by starting from definitions of geometrical objects in terms 
of the motion that generates them – a straight line by rotation about an axis, 
a circle by rotation of a straight line about a fixed endpoint, and so on – we 
do not need to bring in additional material to deduce the consequences that 
follow, notably the properties described in the Elements. This approach is 
obviously a synthetic one. It is in this sense that the ars analytica includes 
the two methods. Surely synthesis is thus also a method of discovery. In its 
own way, synthesis serves as well as analysis in seeking out the properties 
that are invariant in the course of the motion that generates a geometrical 
object, that is an entity perceived by reason. The need for this new 
discipline becomes clear: it serves to give an account of the geometrical 
transformations that were then being used more and more; it provides a 
response to Ibn al-Haytham’s new demand for establishing that geometrical 
objects exist. Through its definitions referring to their generation, this new 
discipline always provides us with the complete cause of the intellectual 
entity, and thus of its existence. It is indeed on this account that Ibn al-
Haytham makes use of these ideas in, for example, his treatise The 
Quadrature of the Circle.1 We have already remarked that this geometrical 
discipline – of The Knowns – that Ibn al-Haytham is, as far as I know, the 
first to have thought of, will re-emerge from the second half of the 
seventeenth century onwards, under other names and in different places. 

The third objective that Ibn al-Haytham sets himself in his treatise The 
Knowns is that of using the new geometrical discipline to provide founda-
tions for Euclid’s geometry. It seems that this endeavour forms part of a 
programme specific to Ibn al-Haytham, one that he has been at pains to put 
into action in several areas of mathematics, of optics and of astronomy: that 
of completing what his predecessors have left behind them, either by 
correcting it, or by providing it with new foundations. There is no lack of 
examples: the Conics of Apollonius, the geometrical constructions of 

 
1 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-

Haytham, London, 1993; English trans. Ibn al-Haytham and Analytical Mathematics. A 
History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in the 
Middle East, London, 2012. 
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Archimedes,2 the contributions made by the followers of Archimedes to 
measuring the paraboloid and the sphere, figures with equal perimeters 
(isoperimetric), figures with equal areas (isepiphanic) and the solid angle…, 
the Optics of Ptolemy, and so on. This time, he turns his attention to 
nothing less than Euclid’s geometry. To accomplish this final task, Ibn al-
Haytham does not work in opposition to Euclid but tries to go further than 
he did. Thus, the new discipline takes in Euclid’s geometry; it justifies it 
and provides foundations for it, insofar as the new discipline offers means 
of defining the objects proper to geometry by using the motions that 
generate them, and at the same time provides geometry with procedures 
that involve motion and make it possible to prove geometrical theorems. In 
The Knowns Ibn al-Haytham sets out the concepts of this discipline, but it 
is principally in his Commentary on the Postulates in the Book by Euclid 
and in his Book for Resolving Doubts in the Book of Euclid, that he fulfils 
his purpose of providing foundations for Euclidean geometry. This 
programme, first proposed by Ibn al-Haytham, and whose significance has 
not so far been well understood, reappears six centuries later in the writings 
of Hobbes, but less well understood and in a weaker form.3 

Seen in this light, the book The Knowns belongs to another group of 
writings by Ibn al-Haytham, which for example includes the two commen-
taries we have mentioned. So we shall find this treatise central in two 
respects – for the geometrical work of Ibn al-Haytham and, more generally, 
for the history of geometry – when we come to study these two commen-
taries. At the beginning of the second chapter of this volume we have 
considered the ideas found in this new geometrical discipline. It now 
remains to examine the geometrical content of The Knowns. 
  

 
2 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fonda-

teurs et commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, 
Ibn al-Samḥ, Ibn Hūd, London, 1996; English trans. Founding Figures and Commenta-
tors in Arabic Mathematics, A History of Arabic Sciences and Mathematics, vol. 1, 
Culture and Civilization in the Middle East, London, 2012. 

3 On this concept in Hobbes, see Opera philosophica quae latine scripsit omnia…, 
ed. Gulielmi Molesworth; especially his Elementorum philosophiae sectio prima de 
corpore, vol. II, London, 1839, pp. 98–9 and his Examinatio et emendatio mathema-
ticae hodiernae, vol. IV, London, 1865, p. 76. See also the commentary by Martial 
Gueroult, as well as the similarities he establishes between the conception in Hobbes 
and, following him, that of Spinoza; Martial Gueroult, Spinoza, vol. II: L’âme, Paris, 
1974, pp. 480–7.  
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 MATHEMATICAL COMMENTARY 

 
1. Properties of position and of form and geometrical transformations 

 
If we are to believe Ibn al-Haytham, the first part of The Knowns 

included concepts and propositions ‘that none of the ancients has set out, 
and they have not set out anything of this kind’.4 Exactly what does this 
novelty that is claimed by an eminent mathematician, who is always 
rigorous and circumspect, consist of? And in fact, before even setting out 
on a detailed commentary on this part, we should note that Ibn al-Haytham 
considers two closely connected areas: sets of points and point by point 
transformations. In this research, Ibn al-Haytham’s principal concern is to 
identify the non-variable elements of the figure, those of geometrical loci, 
and those that do vary, those of shape, of position or of magnitude. The 
majority of the propositions in this part concern properties of position and 
of shape. Ibn al-Haytham is in fact looking for rectilinear or circular loci 
that provide answers to problems that associate with each point of a locus 
already given – a straight line or a circle – a new point, found by a trans-
formation of the known locus into the locus we seek. These transformations 
are displayed explicitly in cases where we have a homothety, a similarity or 
a translation. In other cases, the transformations, although present, are not 
identified. In fact, some of them are birational transformations of order 2. 
Moreover, we need to remember, an essential difference between the two 
types of transformation we have mentioned above: whereas homotheties, 
similarities and translations can act on all the points in the plane, the qua-
dratic birational transformations employed by Ibn al-Haytham act only 
from a curve to a curve. 

This difference is perhaps the reason why Ibn al-Haytham did not 
explicitly discuss the second type of transformation, despite its being 
present in his work. 

We may also note that it often happens that Ibn al-Haytham does not 
enter into any discussion about the existence of solutions and their number. 
It would be very naïve to suppose that such discussions, which are often 
easy, were beyond Ibn al-Haytham’s capacity; their absence, seen also in 
other books (for example in the Completion of the Work on Conics), is 
simply an indication of the fact that Ibn al-Haytham did not feel obliged, on 
every occasion, to enter into a discussion and to carry it through to the end. 

Let us take the propositions of this part one by one. 

 
4 See p. 385. 
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Proposition 1.1. — Any point B situated at a given distance d from a fixed 
point A lies on the circle with centre A and radius d. 
 

 
Fig. 2.1.1 

 
Ibn al-Haytham devotes all this part of his work to plane geometry and 

deliberately concerns himself only with straight lines and circles; he begins 
by characterising the circle as the locus of a point equidistant from a fixed 
point. 

He stresses the fact that a circle is determinate in position and 
magnitude when the centre and the radius are known. He distinguishes the 
invariant elements – a fixed point, a known distance – from the variable 
elements – positions of the point B. Here we see the beginnings of the idea 
of drawing the figure in a continuous motion; this idea will reappear 
throughout the text. 

The following three propositions are designed to show the 
characteristics of homothety and similarity. 

 
Proposition 1.2. — Let there be a given circle (C, R) and a given point 
B ∈ (C, R). The locus of the point D such that BD

BC
 = k, a given ratio, and 

that CB̂D  = α, a given angle, is a circle (C, r) concentric [with the given 
one]. This latter circle is the transform of (C, R) in a similarity with centre 
C, ratio k1 and angle α1 which can be deduced from R, k and α. 

Ibn al-Haytham shows that the 
point D is the image of the point B 
in this similarity with centre C, ratio 
k1 =  and angle BCD = α1. The 

given values k1, α1 are known 
because the triangle BCD, in which 
the angle at B and the ratio of the 
sides enclosing this angle are 
known, is of known shape. 

 
Fig. 2.1.2 
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Proposition 1.3. — Let there be a circle (E, R), an arbitrary given point 
C ≠ E and an arbitrary point A ∈ (E, R). The locus of the point D ∈ [C, A) 
such that CA

AD
 = k, a given ratio, is a circle (G, R1). This circle is the 

transform of the circle (E, R) in the homothety h (C, k + 1
k

). 

 

 
 Fig. 2.1.3 

 
Ibn al-Haytham proves the converse and defines the homothety. 
 

Note: Al-Qūhī had studied this problem in his text Two Geometrical 
Problems (Mas’alatayn handasiyyatayn)5 and it is highly likely that Ibn al-
Haytham knew this text by al-Qūhī, as well as many others written by his 
eminent predecessor. A comparison of the two texts is of interest. 

In this third problem of The Knowns, Ibn al-Haytham studies the 
homothetic figure of a circle with given centre E and radius r. The problem 
has two parts: 

First part: Ibn al-Haytham takes a point C that can lie inside or outside 
the circle and chooses a ratio k. A point A describes a circle (E, r1). Ibn al-
Haytham studies the geometrical locus of the point D of the straight line 
CA defined by the given ratio CA

AD
. 

In the argument, it is the ratio k = CD

CA
 that is used. Now 

 

 
5 See mss Cairo, Dār al-Kutub, 40, fols 206v–208r; Istanbul, Aya Sofya 4830, fols 

171r–173r and also 4832, fols 123v–125r.  
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CD

CA
=
CA

AD
+1 , 

 

so the ratio CD
CA

= k  is known. 

Ibn al-Haytham draws DG || EA where G lies on CE and deduces 
 
1) 

CG

CE
= k , so G is a known point; CG = k · CE. 

2) 
DG

EA
= k , so the length DG is known; DG = k · r1. 

So the point D lies on the circle (G, r2) where r2 = k · r1. 
 
Second part: Let there be two circles (E, r1) and (G, r2) and a point C 

on the straight line EG such that CE
CG

=
r1
r2

. 

 
For any straight half line from C that cuts (E, r1) in A and (G, r2) in D, 

we have  
DG

AE
=
r2
r1
=
CE

CG
. 

 
From this we deduce that DG || AE; hence  
 

CD

CA
=
CG

CE
=
r2
r1

. 

 
The ratio CD

CA
 is the same for any straight half line from C; the same is true 

for the ratio CA
AD

. 

When the point C lies outside the circle with centre E, the position of 
the circle with centre G depends on the value of the given ratio. The two 
circles may cut one another, as in the figure, or touch, or lie entirely outside 
one another. The argument is the same in all these cases for the figure. 

 
The two parts of Ibn al-Haytham’s proposition correspond to the first 

two propositions of the treatise by al-Qūhī, but in reverse order. However, 
whereas Ibn al-Haytham presents a single argument in regard to the given 
point C, whether it lies inside or outside the given circle, in his first two 
propositions al-Qūhī supposes that C lies inside the given circle; the 
homothetic circles then lie one inside the other. In a third proposition in his 
text, he considers the case in which the given point lies outside the given 
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circle. The proof is, however, unchanged. The order of the argument 
presented by Ibn al-Haytham is more ‘natural’ and his proof is more 
concise than those of al-Qūhī. On his proof, Ibn al-Haytham does not make 
use of the endpoints of the diameters on the straight line CE, whereas al-
Qūhī considered them in his first proposition in order to introduce the 
second circle. The reasoning is slightly different. Ibn al-Haytham draws 
DG || EA and from this deduces the equalities between ratios that lead to 
the conclusion, whereas al-Qūhī starts from an equality between ratios 
from which he deduces that the two straight lines are parallel and there are 
other equalities between ratios, and he reaches the conclusion in the same 
way. 

Finally, we may note that in the case where the centre of homothety 
lies outside the given circle, al-Qūhī proves that the tangent drawn from the 
centre of homothety to the first circle is also a tangent to the second circle. 
Ibn al-Haytham, for his part, studies the problem of the common tangents 
in a general manner in Proposition 2.24 of The Knowns. The point of 
intersection of a common tangent with the straight line through the centres 
is a centre of homothety. 

 
Proposition 1.4. — Let there be a given circle (C, R), an arbitrary given 
point D ≠ C and a variable point E lying on the circle (C, R). The locus of 
a point G such that DE

EG
 = k, a given ratio and that DÊG  = α, a given angle, 

is a circle. This last is the transform of the circle (C, R) in a similarity with 
centre D, with ratio k1 and angle β which can be deduced from the data for 
the problem. 
 

 
Fig. 2.1.4 

 
Ibn al-Haytham proves the converse proposition and thus defines the 

similarity. 
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Proposition 1.5. — Let there be a given straight line BC, a given arbitrary 
point A, A ∉ BC, and a variable point D on BC. The locus of the point E 
such that DA

DE
 = k, a given ratio, and  AD̂E  = α, a given angle, is a straight 

line. That straight line is the transform of the straight line BC in a 
similarity with centre G such that AG ⊥ BC, with ratio k1 and angle α. The 
ratio k1 is deduced from what is given. 
 

 
Fig. 2.1.5 

 
Proposition 1.6. — Given two points A and B and an angle α, the locus of 
the point C such that AĈB  = α in a half-plane defined by the straight line 
AB is an arc of a circle. This arc is called the subtending arc that contains 
the angle α. 

Let C be a point that has the properties in the 
problem and let D be the centre of the circle 
circumscribed about the triangle ABC, then AD̂B  = 2α, 
DÂB =  DB̂A  =  – α, DA = . The point D and 

the length DA are determined by what is given. So 
C ∈ C (D, DA). 

 
Fig. 2.1.6a 

 
Notes: 

1) The straight line AB cuts the circle into two arcs: 
C ∈ (I) ⇒  AĈB  = α, 
C ∈ (II) ⇒  AĈB  = π – α;  

only the first arc is a solution.  
2) If a point C has the properties required in the 

problem, the point symmetrical to it with respect to AB 
is a solution. The point C lies on the arc AEB or on the 
arc AE1B. 

3) Conversely, any point C on the arc AEB or on 
the arc AE1B satisfies AĈB  = α. 

 
Fig. 2.1.6b 

A

E

BC D G

K

π
2

AB

2sinα AB

C

D

A

E

E

D

D

B

I

II

1

2

1



314 CHAPTER II: ANALYTICAL ART 

4) This proposition is a preparation for the following proposition, in 
which we investigate homotheties of a circle in a homothety whose centre 
is the centre of that circle. 

We may note that in this property Ibn al-Haytham makes use of the 
relation between the angle at the centre and the inscribed angle. 

 
Proposition 1.7. — Given the subtending arc obtained in Proposition 1.6, 
the locus of the point D ∈ [AC) such that AC

CD
 = k, a given ratio, is the arc 

homothetic to the subtending arc in the homothety h A, k+1
k

⎛
⎝
⎜

⎞
⎠
⎟ . 

 
Fig. 2.1.7 

 
Note: The point C lies on the subtending arc of the angle α constructed on 
AB, and AC

CD
= k⇒

AD

AC
=
k +1

k
= k1 , so D is the image of C in the homothety 

h (A, k1). So D lies on the subtending arc of the angle α constructed on the 
segment AE such that E is the image of B in the homothety h(A, k1). 

On the extension of AB Ibn al-Haytham constructs the point E such that 
AB

BE
 = k (so AE

AB
 = k1) and, with the help of homothetic triangles, he proves 

that the angle ADE = α; so he has reduced this to the previous proposition, 
that is to considering the subtending arc. 

 
 
Proposition 1.8. — The locus of a point equidistant from 
two given points A and B is the perpendicular bisector of 
AB. 
 

Here Ibn al-Haytham is using the third case for the 
equality of angles in triangles, Elements I.8.  

Fig. 2.1.8 
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Proposition 1.9. — Let A and B be two given points and k ≠ 1 a given 
ratio. The locus of a point C such that CA

CB
 = k is a circle the endpoints of 

whose diameter are the points that divide AB in the given ratio k and thus 
form a harmonic range with A and B. 
 

 
Fig. 2.1.9 

 
Ibn al-Haytham also proves the converse: any point of the circle we 

have found gives a solution to the problem. 
The circular locus that we find is usually called Apollonius’ circle. 
 

Proposition 1.10. — Let A and B be two 
given points such that the segment AB = l, 
and let S be a given area. The locus of a 
point C such that the area (ABC) = S is 
formed by two straight lines parallel to AB 
whose distance from AB is equal to . 

 
Fig. 2.1.10 

 
Proposition 1.11. — Let there be two equal circles with centres E and G, 
then the circle with centre G is the transform of the circle with centre E 
under the translation EG, from E towards G, let it be T(EG) . 
 

 
Fig. 2.1.11 

A

E

B

C

D

I

H

G

2S

l

C D

B A

<C > C

D E

I
B

A

<B >

H

G



316 CHAPTER II: ANALYTICAL ART 

Proposition 1.12. — The transform of a circle under a translation is an 
equal circle. 

 
Fig. 2.1.12 

 
Let us return to Ibn al-Haytham’s formulation:  
Let there be two equal circles (E, R), (G, R) and an arbitrary straight 

line parallel to EG that cuts the circles in A and C respectively, such that 
AC = EG; if a point I on the extension of AC satisfies AC

CI
 = k, a given 

ratio, then I lies on a circle equal to the given circles. 
 

Let H be the point of EG defined by EG
GH

 = k, then H is a known point. 

We have AC = EG and consequently CI = GH; so the quadrilateral (HICG) 
is a parallelogram, hence HI = GC = R and I ∈ (H, R). 

 
Note: In other words, the hypothesis can be expressed in the form 

 

T (V2 )  CI  = 1
k
AC  = 1

k
 EG  =  V1  

 
or in the form 

AI A = 1+ 1
k

⎛
⎝
⎜

⎞
⎠
⎟ AC  = 1+ 1

k

⎛
⎝
⎜

⎞
⎠
⎟  EG  =  V2 ; 

 
the point I is derived from C in the translation T (V1)  or from A in the 
translation T (V2 ) . 

 
Proposition 1.13. — Let there be a given segment [AB], a given point 
C ∉ AB and a variable point D ∈ [AB]. The locus of a point E on [CD) 
such that DC

DE
=
DA

DB
 is a straight half line [Bx) || CA. 

In other words, the equation  defines the transformation of 

[BA] into the straight half line [Bx). 
This transformation is the homography which leaves B unchanged and 

transforms A into the point at infinity of CA and the point at infinity of 
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(BA) into the point where (Bx) meets the straight line parallel to (BA) that 
passes through C. 

 
Fig. 2.1.13 

 
Let us use coordinate geometry for this transformation by taking (BA) 

as the axis for the abscissa and (Bx) as the axis for the ordinate. The 
coordinates of the points concerned are: B (0,0); A(a,0); C(a, c); D(x,0); 
E(X,Y). 

The equation of CD can be written  
 

X − a

x − a
=
Y − c

−c
  

 
and the condition 

CD

ED
=
AD

DB
  

 
projected onto the axis (BA) can be written 

 
 
� − �

A − �

=
�− �

�

,  

 
that is X = 0, which defines the straight line (Bx). We then have 

 
 
Y − c

c
=

a

x − a
, 

 
that is 

Y =
cx

x − a
,  
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an expression of the homographic transformation. In the case considered by 
Ibn al-Haytham, since 0 ≤ x ≤ a, y ∈ [0, ∞[. 

 
Notes:  

1) If x becomes infinite, the condition becomes the identity –1 = –1 
which does not lead to a determinate value of X; so the straight line Y = c 
parallel to (BA) and passing through C must be taken to be a singularity as 
a component part of the locus as a whole; it corresponds to a single point of 
(BA), the point at infinity. 

2) Ibn al-Haytham determines the locus by considering, for a fixed 
position of D on BA, the homothety with centre D that transforms A into B; 
this homothety transforms C into E, so it transforms the straight line AC 
into the straight line BE, which is thus parallel to AC. Since AC is known 
and B is known, the straight line BE is known. We have a variable 
homothety, different for each point D. 

 
Let us return to the equation Y =

cx

x − a
; if we fix x while leaving c 

variable, we effectively define a homothety with centre D, and ratio x

x − a
, 

transforming the straight line CA into BE. 
Since Ibn al-Haytham provides no explanations in his short proof, and 

since the preceding propositions concern homotheties, it is reasonable to 
suppose that this latter interpretation is the most appropriate one for the text 
and that Ibn al-Haytham did not think about homographic transformation. 

 
Proposition 1.14. — Let there be a given segment [AB], a given point 
C ∉ AB and a variable point D ∈ [AB]. The locus of a point E ∈ [C, D) 
such that CD · DE = AD · DB is an arc of the circle circumscribed about 
the triangle ABC. 

 

 
Fig. 2.1.14 
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Ibn al-Haytham transforms the condition for the problem into a relation 
of proportions CD

DB
=
AD

DE
, which makes the triangles ADE and CBD similar 

to one another; thus the angle AEC is equal to the known angle CBD and E 
lies on the corresponding subtending arc. 

We may note that with each point D of AB there is associated a point E 
of the circle that is the locus; thus we define a correspondence between the 
straight line AB and this circle. The converse is also true: with each point E 
of the subtending arc, we can associate the point D in which CE cuts AB; 
the triangles AED and CBD remain similar because they have two 
corresponding equal angles, so the equation CD · DE = AD · DB is 
satisfied. 

Let us use coordinate geometry for the relationship between AB and the 
circle. We take as axes the straight line AB and the perpendicular to AB that 
passes through C; the coordinates of the points we are concerned with can 
be written: A(a, 0); B(b, 0); C(0, c); D(x, 0); E (X, Y). We have X

x
+
Y

c
= 1 

because C, D, E are collinear and the condition for the problem can be 
written: 

 (x2 + c2) [(X – x)2 + Y2] = (a – x)2 (x – b)2. 
 
We have  

Y =
c

x
x − X + ,  

 
so  

(X – x)2 (x2 + c2)2 = x2 (a – x)2 (x – b)2, 
 

which gives 

X = x ±
x(a − x)(x − b)

x 2 + c2
=

x
(a + b)x + c2 − ab

x2 + c2

x
2x2 − (a + b)x + c2 + ab

x2 + c2
.

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 

 
We next have 

  
Y = ∓

c(a − x)(x − b)

x2 + c2
. 

 
We note that this transformation is a rational application of degree 2 or 

3 depending on which sign we choose. The case considered by Ibn al-
Haytham corresponds to the upper sign. 
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Moreover, 
x =

cX

c − Y
, X − x = −

XY

c − Y
  

 
and  

X − x( )2 + Y 2 = Y 2
X2 + (c − y)2

(c − Y)2
, x2 + c2 = c2

X 2 + (c − Y )2

(c − Y )2
.  

 
The condition for the problem thus reduces to 
 

cY [X2 + (c – Y)2] = ± (ac – aY – cX) (cX – bc + bY). 
 
In the case considered by Ibn al-Haytham, the first member is negative 

(c > 0, Y < 0) while the product in the second member has the sign of  
(a – x)(x – b), which is positive; so we must choose the lower sign. 

When we make Y = c in the equation, we note that the equation is 
satisfied identically; so we can take Y – c as a factor. We write the equation 
as: 

cY (Y – c)2 + cX2Y  = [a (Y – c) + cX] [cX+ b (Y – c)] 
    = (Y – c) [(a + b) cX + ab (Y– c)] + c2X2; 
 

or  
(Y – c) [cY (Y – c) + cX2 – (a + b) cX – ab (Y – c)] = 0, 

 

c (Y – c) [X2 + Y2 – (a + b)X – 
ab + c2

c
Y + ab] = 0. 

 
The first factor Y – c corresponds to the line parallel to AB that passes 

through C; this straight line is a singularity in the locus, the image of the 
unique point at infinity of the straight line AB. The second factor gives the 
equation of the circle circumscribed about the triangle ABC. 

In the transformation in which AB becomes this circle, the points A and 
B are fixed and the point at infinity of the line AB becomes the point 
(a + b, c) where the line parallel to AB that passes through C meets the 
circle. 

The upper sign would have given a cubic curve that does not corre-
spond to any of the cases considered in this treatise. 

If we extend the construction by taking a point D that does not lie on 
the straight line AB, we find an irrational transformation of the plane into 
itself. 
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Propositions 1.15 and 1.16. — Let there be a given circle C  and two 
given points A and B lying outside C. If two straight lines from A and B 
cut one another in a point H inside C  such that HA · HG = HB ·HE , then 
CD || AB and (A, B, G, E) are concyclic. 

In fact, in Proposition 1.15, Ibn al-Haytham proves that if A, B, G, E lie 
on the same circle, then AB || CD; in Proposition 1.16, he establishes that if 
AB || GE, then A, B, C, D lie on the same circle. 

    
   Fig. 2.1.15    Fig. 2.1.16 
 

Proposition 1.17. — Let there be two given points A and B lying outside a 
given circle; two straight lines from A and B cut one another in C on the 
circle and cut it again in D and E. If CA

CD
=
CB

CE
, then we either have 

AD · DC = BE · EC, or the ratio AD ·DC
BE · EC  

is known. 

Let PA and PB be the powers of 
the points A and B with respect to the 
circle, PA > 0, PB > 0; we have  

AC · AD = PA  and  BC · BE = PB. 

Let us write k for the ratio ; by 

hypothesis we have 

, 

hence  
CD
CE

= EB
k ⋅AD

, 

that is  
k · AD · CD = CE · EB.  

Fig. 2.1.17a 
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Note: The hypothesis CA
CD

=
CB

CE
 implies DE || AB. But if a line parallel to AB 

cuts the circle in D and E, the point of intersection C of the straight lines 
AD and BE is not in general a point on the circle. From Proposition 1.16, it 
can lie inside the circle. 

Proposition 1.17 thus appears to be a special case of Proposition 1.16 in 
which the points D, C, H are coincident. 

For a point C to satisfy the conditions in Proposition 1.17, it must be 
the point of contact of a circle that passes through A and B and is tangent to 
the given circle. In the text, Ibn al-Haytham supposes we have an external 
contact. 

If I is the centre of the required circle, O the centre of the given circle 
and R its radius, we have IO – IA = R and IA = IB. 

If I exists, it is at the intersection of Δ, the perpendicular bisector of AB, 
and HA, the branch around A of the hyperbola with foci O and A. 

So we can have two points, one point or no point C that is a solution to 
the problem. 

We may also note that in the case where Δ, the perpendicular bisector 
of AB, passes through the centre of the circle (PA = PB and k = 1), Δ cuts the 
circle in C1 and C2. The point C1 is a solution to the problem, whereas the 
point C2 is not. 

 
Fig. 2.1.17b 

 
Proposition 1.18. — Let there be two circles touching internally at A. A 
straight line that passes through an arbitrary point D of the smaller circle 
cuts the greater circle in B and G; if D is a variable point on the smaller 
circle, then DB⋅DG

DA2
 is known. 

D
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Fig. 2.1.18 

 
The straight line AD cuts the greater circle in H. We have DB · DG = 

DA · DH, hence  
DB ⋅DG
DA2

= DA ⋅DH
DA2

= DH
DA

; 

 
but 

DH

DA
=
CE

EA
,  

 
hence  

DB ⋅DG
DA2

= CE
EA

= R− r
r

,  

 
where R and r are the radii of the greater circle and the smaller circle 
respectively. 

 

Note: The two circles correspond to one another in the homothety h A, R
r( ) , 

hence 
AH

AD
=
AC

AE
=
R

r
  

 
and consequently  

DH

AD
=
R − r

r
. 

 
Proposition 1.19. — Let there be two circles touching internally at A. The 
tangent to the smaller circle at an arbitrary point D cuts the greater circle 
in two points, let B be one of them. When D varies, the ratio BA

BD
 is 

constant. 
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Let AGC be the common diameter and E the point of intersection of AB 
and the smaller circle. We have  

 
AE

��
=
AH

HC
, 

hence 
AB
BE

= AC
GC

= R
R− r

= AB2

AB ⋅BE
; 

 
but 

BD2 = BE · BA, 
 

hence 
��

2

��
2 =

�

� − �
 and �A

�D
= R

R− r
. 

 
If BD cuts the greater circle again in H, we prove in the same way that  
 

HA
HD

= R
R− r

. 

 

 
Fig. 2.1.19 

 
So we have  

HA

HD
=
BA

BD
 

 
 

 and consequently  
AB+ A	
BD+	D

= AB+ A	
B	

= E
E− 


. 
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We may note that the two circles correspond to one another in the 
homothety h A, R

r( ) . 

 
Note: In Propositions 1.18 and 1.19, we consider a variable point on a 
given circle and two straight lines that pass through this point, in each case 
we study a ratio associated with these straight lines and we prove that it is 
constant and can be expressed in terms of what we are given. 

Propositions 1.20 and 1.21 each concern two circles that touch 
internally. These circles again correspond to one another in a homothety 
which has as its centre the point of contact and as its ratio the ratio of the 
radii. These propositions shed light on the reasons for including the 
preceding propositions. Thus, Proposition 1.20 is a corollary to Proposition 
1.19, while Proposition 1.21 is a consequence of Proposition 1.18. 

 
Proposition 1.20. — Let there be two circles touching internally at the 
point A, AGC their common diameter, the straight line BDH touching the 
smaller circle at D; let us join AD and let us extend it to I on the greater 
circle. The point I, the point of intersection of AD and the greater circle, is 
the mid point of the arc subtended by the tangent at D. 
 

 
Fig. 2.1.20 

 
From Proposition 1.19, we have 
 

BD

BA
=
DH

AH
 or 

DB

DH
=
AB

AH
, 
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so AD is the bisector of the angle BAH inscribed in the greater circle, so I is 
the mid point of the arc HB. 

 
Proposition 1.21. — Let there be two circles touching at A, AEC their 
common diameter; we put k = CE

EA
 and k1 = EC · EA. If a variable straight 

line that passes through E cuts the smaller circle in D and the greater one 
in B and G, then 

DB · DG + k DE2 = k1. 
 

 
Fig. 2.1.21 

 
From Proposition 1.18, we have 
 

DB ⋅DG
DA2

= CE
EA

= k , 

 
so 

DB · DG = k · DA2, 
 

hence 
DB · DG + k · DE2 = k (DA2 + DE2) = k · AE2, 

 
hence the result, where 

 
k =

CE

EA
 and k1 = CEEA

⋅AE2 = EC ⋅EA ; 

 
so k and k1 are known and we can express them in terms of R (the radius of 
the greater circle) and r (radius of the smaller circle):  

 

� =
R− r

r
 and k1 = 4r (R – r). 
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Propositions 1.22 and 1.23 concern loci of points. In Proposition 1.22, 
we use a metric property to determine the locus of the point; this propo-
sition serves as a lemma for Proposition 1.23. 

 
Proposition 1.22. — Let there be a circle with centre G and diameter AC 
and two points E and D on this diameter such that GE = GD. For any point 
B lying on the circle, we have 

 
(*) BE2 + BD2 = AD2 + DC2. 
 

 
Fig. 2.1.22 

 
In other words, let there be a line segment AC with mid point G, let E 

and D be two points on this segment such that GE = GD; the sum of the 
squares of the distances from an arbitrary point B on the circle with 
diameter AC to the points E and D is constant. The converse is true 
(compare Proposition 1.23); the locus of a point B that satisfies (*) is a 
circle with centre G and diameter the segment AC. 

The proof given by Ibn al-Haytham is valid for any point B on the 
circle. 

 
Proposition 1.23. — Let A and B be two fixed points and  a given length. 
The locus of a point C such that CA2 + CB2 = 2 , and AĈB  is acute, is a 
circle whose centre is the mid point of AB and whose radius is known.  

If the angle C is acute, it is necessary that the given length  satisfies 
the relation  > AB in order for the triangle ABC to exist. 

Let us put 2  – AB2 = d2; let E be a point such that 2EA · EB = d2 and 
let G be such that AG = EB. Let us draw the circle with diameter GE and let 
us prove that it passes through C. 

If C does not lie on the circle, the bisector of the angle ACB cuts the 
circle in H and I, then, from Proposition 1.22, we have 

 
HA2 + HB2 = AB2 + 2AE · EB, 
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so 
HA2 + HB2 = CA2 + CB2. 

 

 
Fig. 2.1.23 

 
But AĈ�  being acute implies that ��̂A  and HĈA  are obtuse, hence 

HB > CB and HA > CA, hence HA2 + HB2 > CA2 + CB2, which is 
impossible. 

 
Notes: 

1) The argument by reductio ad absurdum is valid if the point C is 
taken to lie inside or outside the circle. 

2) From Proposition 1.22, we can calculate the radius of the circle. Let 
K be the centre, we have seen that 

 
CB2 + CA2 = GA2 + GB2 = 2(GK2 + KA2), 

 
hence 

2GK2 = 2  – 2KA2 = 2  – 
AB2

2
. 

 
Proposition 1.24. — Let AC be an arbitrary chord in a given circle, if the 
point D of that chord is such that  

 
(*) DA · DC = k2,  where k is given, 
 

then D lies on a known circle. 
 
In other words: the locus of a point D that has a given power k2 with 

respect to a given circle (E, R) is part of a concentric circle (E, R'). The 
radius R' can be found from k and R: 

AE B

C

GI

H

K
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If D lies inside the circle, we have k2 = R2 – R'2 => R'2 = R2 – k2. 
If D lies outside the circle, we have k2 = R'2 – R2 => R'2 = R2 + k2. 
 

 
Fig. 2.1.24 

 
Let E be the centre of the circle, ED cuts the circle in B and H, we have 
 

DA · DC = DB · DH = EB2 – ED2 = k2, 
 

so ED2 = R2 – k2. But ED is constant for given k, so D lies on the circle 
E, R2 − k2( ) . 

 
 

2. Invariant properties of geometrical loci and geometrical 
transformations 

 
In the second and final part of The Knowns, Ibn al-Haytham deals with 

concepts and propositions, he writes, ‘of the same kind as what was set out 
by Euclid in his book the Data, although nothing in this part is to be found 
in the book the Data’.6 This declaration gives us to understand that in the 
Data Euclid dealt with only a particular class of knowns and that Ibn al-
Haytham returns to the study of them to complete Euclid’s book with new 
propositions that Euclid had not thought of. So for Ibn al-Haytham his 
distant predecessor also considered only a certain class of invariant proper-
ties of the figures. What we have is an a posteriori interpretation of the 
presence of this book by Euclid in the ‘domain of analysis’ as Pappus has 
set its boundaries in the preamble to the seventh book of his Mathematical 

 
6 See p. 410. 
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Collection. In any case, in this part of his work Ibn al-Haytham investigates 
certain invariant properties of rectilinear and circular loci. 

He employs a multiplicity of methods, some of which are close to those 
of Euclid. Geometrical transformations appear mainly in the form of 
homotheties in similar divisions. The last proposition finds the centres of 
homothety for two given circles; it is thus presented as the procedure that is 
the converse of that in Proposition 1.3. 

He starts with a group of five propositions in which he tries to find a 
straight line that passes through a known point and has a property P. In the 
first proposition of this group, he deals with finding a straight line that 
passes through a known point A and cuts a known circle between B and C 
in such a way that BA/BC = k, a known ratio. The construction of this 
straight line reduces to constructing a second point as the intersection of 
two lines: two circles in the first proposition, a circle and a straight line in 
the third, two straight lines in the fourth and the fifth. As for the second 
proposition, it reduces to the first one. We may note that all of these are 
construction problems, the second one being a neusis. 

 
Proposition 2.1. — From a given point A outside a circle, we draw a 
straight line that cuts the circle in B and C (where B lies between A and C). 
If AB
BC

= k , where k is a given ratio, then the straight line is known in 

position. 

 
Fig. 2.2.1 

 
So we are concerned with finding a straight line that passes through a 

known point A and cuts a known circle in B and C such that BA
��

= k . 

The power of A with respect to the circle (O, R) is known; 
 
    AB · AC = AO2 − R2 = k1

2 , which is known. 
 
We have 

AC
AB

= AB+BC
AB

=1+ 1
k
= AC ⋅AB

AB2
=
k1
2

AB2
, 

A

B

C
D

<O>
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hence 
AB2 =

k1
2

1 +
1
k

;  

 
the length AB is determined by the data for the problem; let AB = d. 
Consequently B ∈ C (A, d), so it lies at the intersection of two circles 
C (O, R) and C (A, d). 

 
Note: Ibn al-Haytham does not prove here that the point B exists. The 
circles C (O, R) and C (A, d) cut one another if and only if 

 
 
(1) AO – R < d < AO + R; 
 

but 
d2 =

k

1+ k
(k1

2 =
k

1 + k
AO2 − R2( ), 

 
hence (1) may be written 

 
AO − R( )2 <

k

1+ k
AO2 − R2( ) < AO + R( )2 , 

 
hence 

(1 + k) (AO – R) < k (AO + R) 
 

and 
k (AO – R) < (1 + k) (AO + R). 

 
The second condition is always satisfied, and it remains to satisfy 
 

AO < (2k + 1) R. 
 

We have 
 
• AO < (2k + 1) R, there exist two straight lines symmetrical with 

respect to AO that give a solution to the problem. 
• AO = (2k + 1) R, there exists a straight line that gives a solution to the 

problem, that is AO. 
• AO > (2k + 1) R, there does not exist any straight line that gives a 

solution to the problem. 



332 CHAPTER II: ANALYTICAL ART 

Proposition 2.2. — From a known point we draw to a circle known in 
position a straight line that cuts off a known segment from the circle, then 
the line is known in position. 

This is how Ibn al-Haytham states the second proposition. 
We may note that from the definitions in Book III of the Elements 

(Definitions 6, 7, 8 and 11), as well as Proposition 23 of the same book, or 
the Definitions 7 and 8 and Propositions 88 and 89 of the Data, the 
segment of the circle is known if we know its base and the inscribed angle 
with its vertex on the arc of the circle that is a boundary of the segment. 

In a known circle, a known inscribed angle is associated with a chord 
of known length. So, to say that a segment of a given circle is known 
reduces to saying that its base is known. In Elements III.34 Euclid gives a 
construction for this base. Ibn al-Haytham’s problem may be rewritten as 
follows: 

From a point A we draw a straight line that cuts a known circle in B 
and C; if the chord BC is of known length, then the straight line BC is 
known in position. 

 
Fig. 2.2.2 

 
The power of the point A with respect to the circle is known, let 

AB · AC = k2. 
Let us put BC = 2 BD = 2  (where D is the mid point of BC). 
But if A lies outside the circle, we have 
 

AB · AC = AD2 – BD2 => AD2 = k2 + 2 . 
 
If, on the other hand, A lies inside the circle (a case not considered by 

Ibn al-Haytham, whose purpose is clearly to get back to the previous 
proposition), we have AD2 = 2  – k2. 

So the length AD is known. From it we deduce AD
DB

, then AD − DB
2DB

=
AB

BC
 

and we have returned to the previous case. 
 
 

A B
CD
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Proposition 2.3. — Let A, B, C be three known points and D a point on the 
segment BC; if AD

DC
= k , a given ratio, then the straight line AD is known in 

position.  

 
Fig. 2.2.3 

 

By hypothesis we have two known points A and C and DA
DC

= k , so from 

Proposition 9, D lies on a circle whose centre is a point of AC. So if D 
exists, it is at the intersection of this circle and the segment CB. The point 
D is known, as is the point A; so AD is known. 

 
Proposition 2.4. — Let there be a known point A and two straight half-
lines that are parallel and in opposite directions [CB) and [DE). Let us 
suppose that a straight line from A cuts the straight half-lines in H and G 
respectively. If HC

DG
= k  is a known ratio, the straight line AG is known. 

 
Fig. 2.2.4a 

 
We suppose that A does not lie on the straight line CD. Let I be the 

point of intersection of AG and DC, we have  
 

��

��
=
��

BC
= k⇒

AB

��
= 1+ k , 

 
because I lies between C and D. 
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So the point I is known and consequently the straight line AI is also 
known. 

 
Comment: In the statement of this problem, Ibn al-Haytham first makes it 
clear that BC and DE are ‘two parallel straight lines known in magnitude 
and in position’. So we are dealing with segments. On the straight lines CB 
and DE, the points H and G such that ��

BD
= k < 0  correspond to one another 

in a homothety in which the image of D is C. So the centre of this homo-
thety is the point I such that IC

ID
= k . So for given k, k < 0, the point I exists 

and it is unique, I ∈ [CD]. It follows that if A ∉ [CD], the straight line AI 
cuts the straight lines CB and DE respectively in H and G such that CH

DG
= k . 

Note that, in this book, when we write k < 0 we always mean that the 
segments in a ratio have opposite senses. 
 

 
Fig. 2.2.4b 

 
But if H and G must belong to the segments [CB] and [DE] respec-

tively, the straight line AI does not give a solution to the problem except 
when A is in the smaller of the angles BIC and DIE, or in the angle that is 
opposite it at its vertex (the hatched area). 

 

 
Fig. 2.2.4c 

 

Proposition 2.5. — Let there be a point A, a segment BC and an arbitrary 
point D on this segment. If AD + CD = , a known length, then the straight 
line AD is known. 
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Let us put BC = 1 ; we have BD + DC = 1  and AD + DC = . 
 

 
Fig. 2.2.5 

 
If  = 1 , then AD = BD, so, from Proposition 1.8, D ∈ Δ, the 

perpendicular bisector of AB. The point D must lie at the intersection of the 
segment BC and Δ. 

Note: We may note that if AB ⊥ BC, then Δ || BC, and the point D does 
not exist. On the other hand, it can happen that the point of intersection of 
Δ and BC does not lie on the segment BC. 

 
If 1  > , then DB > AD. Let E be such that BE = 1  –  = BD – AD; 

so the point E is known and ED = DA. If the point D exists, it thus lies on 
the perpendicular bisector of EA and on the segment EC; it is then known 
and the straight line AD is also known. 

We may add the same note as before. 
 
If 1  < , the argument takes the same form. We then have E lying 

beyond B. 
 
In Propositions 2.6, 2.7 and 2.8, we go on to the construction of a point 

by using the intersection of a straight line and a circle. We are in fact 
dealing with two straight lines that each pass through a known point and 
have a property P; they are determined by a second point, which is 
constructed as in the preceding group of propositions by the intersection of 
two lines – here a straight line and a circle (a subtending arc). We 
encounter the same procedure later on, in Problems 2.21 and 2.22. 

The two Problems 2.6 and 2.7 can be written: Let there be a straight 
line Δ and two points A and B, to find a point E on Δ such that:  

(6) AÊB  = α, a known angle 
 
(7) EA

EB
= k , a known ratio. 
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In the two cases, E ∈ Δ and E ∈ C (a circle). The problem can have 0, 
1 or 2 solutions. 

 
In Problem 2.8, we again take a straight line Δ and two fixed points E 

and G, and we try to find H ∈ D such that EH · HG = k which is known. 
The point H lies on a subtending arc and the problem again has 0, 1 or 2 
solutions. 

In the three Problems 2.6, 2.7 and 2.8, there is a finite number of pairs 
of straight lines that provide solutions to the problem; whereas in Problem 
9, as we shall see, there is an infinite number of such pairs of straight lines. 

 
Proposition 2.6. — Let there be two fixed points A and B and a straight 
line CD. Let there be a point E ∈ CD such that AÊB  = α, a known angle, 
then the segments AE and BE are known.  

 
If the point E exists, it lies at the 

intersection of the straight line CD and the 
subtending arc that contains the angle α 
constructed on AB, from Proposition 1.6; so we 
can have 0, 1 or 2 solutions. 

We are dealing with the intersection of a 
straight line and two arcs that are symmetrical 
with respect to AB. 

 

 
Fig. 2.2.6 

 
 
Proposition 2.7. — Let there be two fixed points A and B and a fixed 
straight line CD. Let there be a point E ∈ CD such that AE

BE
= k , a known 

ratio. The two straight lines AE and BE are then known. 
 

 
Fig. 2.2.7 
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If the point E exists, it lies at the intersection of the straight line CD 
and a circle determined by the data for the problem, from Proposition 1.9; 
here again we can have 0, 1 or 2 solutions. 

 
Proposition 2.8. — Let there be AB and CD two parallel straight lines, E 
and G two fixed points on AB. Let there be a point H on CD such that 
EH · HG = k, a known product. The segments EH and GH are then known 
in position and in magnitude. 

Let us suppose the point H is known. There exists a point I on AB such 
that GĤI  =  GÊH . The triangles IHG and HEG are similar, hence 

 

HÎG  =  EĤG  and IH
HE

=
HG

GE
.  

 
So we have 

HI · EG = EH · HG = k; 
 

since EG is known, we have 
 

IH = k
EG

= , a known length. 

 
Let us put in a straight line DB perpendicular to the two known parallel 

lines; the distance DB = d is known. 
 
If d = , then IH ⊥ AB, so ��̂E  is a right angle and consequently 

A�̂B  is a right angle. 
If d < ; let DL = , the circle (D, ) cuts AB at the point K, DK = HI 

= ; then the two straight lines DK and HI are either parallel or anti-
parallel. In the first case: ��̂E  = DK̂B , a known angle, and consequently 
A�̂B  = DK̂B  a known angle. 

  
           Fig. 2.2.8a        Fig. 2.2.8b 
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In the second case (when the lines are anti-parallel), the two straight 
lines DK and HI cut one another in a point M (Figs 2.2.8c and 2.2.8d); we 
have MÎK  =  IK̂M  = DK̂B , a known angle, so the angles HIG and EHG 
are again known. 

   
   Fig. 2.2.8c     Fig. 2.2.8d 
 
So in all cases, AĤB= α is known. 
 
If the point H exists, it lies at the intersection of the subtending arc that 

contains the angle α constructed on EG and the straight line DC; then it is 
known and the straight lines EH and GH are again known. 

 
Notes:  

1) The point H lies on a line parallel to EG, the triangle HEG has a 
known area S. Now  

 
S = 

1

2
EH · HG sin AĤB  = 

1

2
k sin AĤB , sin AĤB  = 

2S

k
, 

 
so AĤB = α, an angle determined by the data for the problem. 

2) The problem considered is plane because the straight line CD is 
parallel to EG. If we do not make this hypothesis, we are dealing with a 
solid problem, as is proved by the following formulation in terms of 
coordinate geometry: 

As coordinate axes we take the straight line EG and the perpendicular 
bisector of EG. The coordinates of G and E are (–a, 0) and (a, 0) 
respectively. The equation of the straight line CD is of the form αx + βy = γ 
and the condition for the problem can be written 

 
GH2 · HE2 = ((x + a)2 + y2) ((x – a)2 + y2) = k2, 

 
or 

(x2 – a2)2 + 2y2 (x2 + a2) + y4 = k2. 

D
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We eliminate y by using the equation for CD: 
 

β4 (x2 – a2)2 + 2β2 (γ – αx)2 (x2 + a2) + (γ – αx)4 = β4k2, 
 

an equation of the fourth degree in x. 
 
In the case considered, where the straight lines are parallel, we have 

α = 0 and the preceding equation reduces to: 
 

β4 (x2 – a2)2 + 2β2γ2 (x2 + a2) + γ4 = β4k2, 
 

or 
β4z2 + 2β2γ2z + 4β2γ2a2 + γ4 – β4k2 = 0, 

 
if we put z = x2 – a2. 

 
Proposition 2.9. — Let there be two parallel straight lines AB and CD, 
and two known points E and G on AB. From these points are drawn two 
straight half lines that cut CD in I and K and cut one another in H beyond 
CD. If the area of the triangle HGE is known, then the segment KI is of 
known length. 

 
Fig. 2.2.9 

 
Since the triangle HEG has a known area and a fixed base EG, the 

height from H is of constant length h; so the locus of H is a straight line 
parallel to AB. Let L be its intersection with the perpendicular AC, the 
lengths LA and LC are known and we have 

 
AL

LC
=
EH

HI
=
EG

IK
= k , 

 
a ratio that does not depend on the position of H. 

Then we have 

AEB

C
D I

H L
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IK =
1

k
EG , 

 
where IK is of known length. 

 
Note: Let us put EG = a and let us use d and h respectively to designate the 
distance between the two parallel lines and the height of the triangle HEG 
of given area S. 

The statement assumes that h > d, that is 2S > ad. We have 
 

k =
h

h − d
=

2S

2S − ad
 and IK =

a

k
, 

 
hence 

IK = a 1 −
ad

2S
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

 
If h < d, 2S < ad, the locus of the point H lies between the straight lines 

AB and CD and we have 
IK = a

ad

2S
−1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

 
Thus, the locus of the point H is a straight line Δ || EG; the distance 

between the two straight lines is h = 2S
EG

. To each point H of Δ there 

corresponds a segment IK of constant length on DC. 
 
 

Proposition 2.10. — In the general case, being given two points A and B 
and two angles α and β defines a triangle. 

 
Notes: 

1) We suppose the angles to be on the same side of AB: 
• if their sum is two right angles, the straight lines are parallel; 
• if their sum is not two right angles, the straight lines cut one another 

on one or the other side of AB. The point of intersection C is unique. The 
data define a unique triangle, because A and B are fixed. The three sides are 
then known and the ratios of these sides two by two are also known. 

 
2) If a triangle T has known angles, if we take points A and B we can 

construct a triangle ABC which is similar to it. The ratios of the sides two 
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by two are then known. The triangle T is determinate, up to similarity. If a 
side of T is known, T is then determinate, up to isometry. 

 

Fig. 2.2.10 
 

In this proposition, Ibn al-Haytham first proves that being given one 
side of a triangle and two angles adjacent to that side allows us to construct 
the triangle. He makes two comments on this: one on isometric triangles 
that he uses in Proposition 2.12, the other on similar triangles that he uses 
in Proposition 2.11, in which a straight line that passes through a given 
point and has a property P is characterised by the angle it makes with a 
given straight line. 

We may note that Ibn al-Haytham’s investigation in Proposition 2.10 
resembles what Euclid did in Propositions 39 and 40 of the Data, where we 
again find the construction of a triangle in which three elements are known; 
these are three sides in Proposition 39 and three angles in Proposition 40. 

 
Proposition 2.11. — Let there be a given triangle ABC and a given point 
D on the extension of BC. If a straight line from D cuts AB in E and AC in 
G such that GC

EB
= k  is a known ratio, then the straight line DEG is known. 

The parallel to AC drawn through B cuts DE in H. The points C, B, D 
are known, hence  

     CD

��
= k1 , a known ratio,  

 
and we have 

 
GC

BH
=
CD

DB
= k1 . 

 

But GC
EB

= k , by hypothesis, hence  

 

B
ABA

B A

C

C

2 right 
angles

2 right 
angles

2 right 
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EB

BH
=
k1
k

. 

 

 
Fig. 2.2.11 

 
Moreover, x�̂�  =  �X̂C , a known angle. The triangle EBH is determi-

nate up to similarity, so the angle BHE is known, and consequently the 
angle BHD is also known. 

But HB̂D =  AĈB , a known angle, so the angle BDH is known, so the 
straight line DHG is known, and the points G and E also. 

 
Note: We are dealing with the construction of a straight line that passes 
through a given point; the line is defined by an angle. 

 
The problem does not always have a solution. Let us put BC = a, AC = 

b, BA = c, BD = d, EB = x, CG = y, where y/x = k. 
 
In the triangles EBD, CGD and AGE, we have 
 

(1) sinD
x

=
sinE

d
, (2) sinD

�
=
sinC

� + G
, (3) sinE

b − y
=
sinG

c − x
. 

 
From (1) and (2) we obtain 

y
x
= sinE
sinG

⋅ a+ d
d

, 

 
and taking account of (3) 

y
x
= b− y
c− x

⋅ a+ d
d

, 

hence 
y = k x ⇔  dk (c – x) = (b – kx) (a + d), 

 
hence 

x =
b(a + d) − kdc

ak
. 

A

E

BC D

H

G
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We must have 0 < x < c, which requires b
c
< H < B

�

⋅ A+ E
E

; these 

inequalities also imply that 0 < y < b. 
 
If this double condition is satisfied, the problem has a unique solution. 

 
Proposition 2.12. — Let there be a given circle, a given straight line CD 
outside this circle and a tangent to the circle at a point B which meets CD 
in E. If the length BE is equal to a given length, then the segment BE is 
known in position. 

 
Fig. 2.2.12 

 
Let C (H, BH) be the circle, BE = d and r = BH given lengths. The 

triangle HBE, with a right angle at B, is determinate up to isometry, so 
HE = d1 is a known length. So the point E lies on C (H, d1) and it also lies 
on the given straight line CD. So the angle HEB is known, the straight line 
EB is thus known. 

 
Notes: 

1) There are two tangents that correspond to the point E of the straight 
line DC. 

2) To establish the existence of the point E, we have HE =d1= d 2 + r2 . 
Let h be the distance from H to the given straight line; we have the 
following cases: 

d1 < h, the problem has no solution; 
d1 = h, the problem has one solution; 
d1 > h, the problem has two solutions. 
3) Ibn al-Haytham does not use Pythagoras’ theorem in finding HE, but 

proves that from the data for the problem the triangle HBE, in which we 
know an angle, the right angle, and the lengths of two sides, is determinate 
up to isometry. This confirms that this research, just like the Data of Euclid, 
in no way belongs to the domain of algebra. 

The construction of point E can be carried out by means of straightedge 
and compasses. 
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4) So the problem reduces to constructing E using the intersection of 
the given straight line and a circle whose centre is known. The radius of the 
circle is found from what we are given. 

The same will be true for a whole group of problems, numbered from 
12 to 16. 

 
Proposition 2.13. — Let there be a given circle C (H, HB) and a given 
straight line CD lying outside the circle. Let us join a point B on the circle 
to a point E on CD in such a way that BÊC = α, a known angle and BE = 
d, a known length; then the straight line BE is known in position. 
 

 
Fig. 2.2.13a 

 
Let H be the centre of the circle, let us put HK = h, the distance from H 

to CD. Let the point G on CD be such that xĜC  = α, then the point G is 
known, as is the length HG,  

HG = d1 =
h

sinα
. 

 
To characterise the point G, here – as in Proposition 2.17 and 

Proposition 2.23 – Ibn al-Haytham uses Proposition 1.6, that is the 
subtending arc. It is simpler to note that, with the perpendicular dropped 
from H on CD, HG makes an angle β = π

2
− α  if α <

π
2

 or β = α −
π
2

 if α >
π
2

. 

In both cases, G exists and it is unique. 
In regard to the numbers of solutions, there are several cases to 

consider: 
If d1 = d, then HGEB is a parallelogram, because HG = EB and 

HG || EB, so BH || CD. The point B lies at the intersection of the circle and 
the parallel to CD drawn through H. There are two solutions. 

If d1 > d, then the straight line HB meets the given straight line; let the 
point of intersection be C. The point B lies between H and C. We have 

 
��

��
=
xG

GE
=
d1
d
=1 +

xE

GE
, 
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hence 
HB

CB
=
d1
d
−1 . 

 
Now HB = r, the radius of the circle, so 
 

CB = r
d

d1 − d
 and HC =

rd1
d1 − d

= R. 

 
So the point C lies at the intersection of the given straight line and 

the circle C (H, R). The point C exists if and only if 

. 

 
Fig. 2.2.13b 

 

But , so the condition can be written d sin α ≥ h – r. 

When we find C, we deduce B and BE || HG from it. 

 

 
If d1 < d, the straight line HB meets the given straight line, but we have 

that H lies between B and C. In this case we have 
 

d1
d
=
CH

��
=1 −

r

CB
, 

 
hence 

CB =
d y

d − d1

,     xG =
d1y

d − d1

= E . 

 
The condition R ≥ h gives  

d sin α ≤ h + r. 

R ≥ h⇔
rd1
d1 − d

≥ h

A

E B

C

D

<K> H

G

d1 =
h

sinα
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Fig. 2.2.13c 

 
To summarise, this problem has a unique solution if  
 

d sin α = h ± r; 
 

it has two solutions if  
h – r < d sin α < h + r; 

 
and it has no solution if d sin α lies outside the interval [h – r, h + r]. 

 
This problem also reduces to the construction of a point C using the 

intersection of the given straight line and a circle with known centre; the 
radius is deduced from what we were given. 

 
Proposition 2.14. — Let there be two parallel straight lines AB and CD 
and a point E lying between them. Let there be a straight line that passes 
through E and cuts AB and CD in H and G respectively. 

If EG · EH = k, then EG is known in position. 
 
The given straight lines correspond to one another in a homothety with 

centre E. Ibn al-Haytham’s argument sets out from a point I on AB, chosen 
arbitrarily, and uses that property. 

If the distances from E to the straight lines AB and AC are called α and 
β respectively, the ratio of the homothety has the absolute value β

α
. 

If the straight line EG exists, we have 
 

H

B

C

G

K I

E
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EG
EH

= β
α
= EG2

EG ⋅EH
= EG

2

k
⇒ EG2 = k ⋅ β

α
. 

 

 
Fig. 2.2.14 

 

The circle with centre E and radius kβ
α

 does not cut the straight line 

CD unless kβ
α

≥ β 2 , that is unless k ≥ αβ. Thus, if 

 
k < αβ, the problem does not have a solution; 
k = αβ, the problem has one solution G0H0 ⊥ AB; 
k > αβ, the problem has two solutions symmetrical with respect to 
G0H0. 
 
This problem also reduces to constructing a point G using the 

intersection of a given straight line and a circle with a known centre; the 
radius of the circle is deduced from what we are given. 

 
Proposition 2.15. — Let there be a triangle ABC, determinate up to 
isometry. If a point D on the base satisfies 

 

(1)    AD2

BD ⋅DC
= k , a given ratio, 

 
then the straight line AD is known in position. 

 
If the straight line AD exists, it cuts the circle C, the circle 

circumscribing (ABC), again in G; the points G and A lie on opposite sides 
of BC; hence  

DB · DC = DA · DG. 
 
The condition (1) becomes  

B H H A

E

GGD C

0

0
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DA

DG
= k . 

 

 
Fig. 2.2.15 

 
Let E be the point of AC beyond C such that CA

CE
= k , then the required 

point G lies on Δ, the parallel to BC that passes through E, and it lies on the 
circle. So G exists if Δ cuts the circle. 

 
Let G0 be the mid point of the arc CB, the straight line AG0 is the 

bisector of the angle A; let D0 be the point in which it cuts the base and let 
D0A

D0G
= k0 , a known ratio. 

 
If k > k0, the problem does not have a solution. 
If k = k0, the problem has one solution, AD0, the bisector of the angle 

BAC. 
If k < k0, the problem has two solutions. The corresponding points G 

and G' are such that the arc CG is equal to the arc BG', so the two straight 
lines AD and AD' are symmetrical with respect to the bisector AD0. 

 
Note: In the statement of the problem, Ibn al-Haytham writes ‘triangle 
whose sides and angles are known’. The position of the triangle is not 
given. On the conclusion, he writes ‘I say that the straight line AD is known 
in position’. This refers to the position of AD with respect to the triangle. 

This problem is reduced to that of constructing a point G using the 
intersection of the given circle and a straight line deduced from what we 
have been given. 

 

C D D D’ B

G’G

G

E

0
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Proposition 2.16. — Let there be two given straight lines AB and AC, and 
a point D lying inside the salient angle BAC. If a straight line that passes 
through D cuts AB in E and AC in G such that DE

DG
= k , a known ratio, then 

the segment EG is known. 

 
Fig. 2.2.16 

 
The line parallel to AB that passes through D cuts AC in H and we have 
 

HA

HG
=
DE

DG
= k . 

 
So with every value of k there is associated a point G and consequently 

a straight line GD which cuts AB in E (G ≠ H, so GD is not parallel to AB). 
 
In Propositions 2.13, 2.14, 2.15 and 2.16, Ibn al-Haytham uses parallel 

straight lines and Thales’ theorem; he finds homothetic triangles as well as 
homothetic straight lines. 
 
Proposition 2.17. — Let there be two straight lines AB and AC, and a 
point D in the salient angle BAC. If a straight line that passes through D 
cuts AB in E and AC in G such that DE · DG = k2, then the segment EG is 
known. 

Let us suppose that the straight line GE exists; let H lie on the 
extension of AD and be such that DA · DH = k2; the points A and H lie on 
opposite sides of D. We have 

DE · DG = DA · DH ⇔ ��

��
= ��
�k

; 

so the triangles DAE and DGH are similar and consequently ��̂k = ��̂�= 
α, a known angle. So the point G lies on the subtending arc for the angle α 

A

E

B

C

D

H

G



350 CHAPTER II: ANALYTICAL ART 

constructed on the segment DH. But G also lies on the straight line AC. So 
the point G exists if the straight line AC and the subtending arc cut one 
another, and we could have 0, 1 or 2 solutions. 

 
Fig. 2.2.17 

 
With the point G that provides a solution to the problem there is 

associated a segment GE known in length and position. 
 

Proposition 2.18. — Let A, C and D be three known points on a circle 
such that DC ≠ DA . If a straight line that passes through D cuts the arc 
AC which does not contain D in a point B such that BA + BC

BD
= k , a known 

ratio, then the segment DB is known (in position and magnitude). 
 

 
Fig. 2.2.18 
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Let us suppose the problem has been solved. If E is the mid point of the 
arc CDA, we have CB̂E = EB̂A =CÂE . Moreover, BĈA =  BÊA , the 
triangles ABE, GBC and EGA are similar two by two:  

 

(ABE) and (GBC) ⇒  Bd
��

=
BC

Cr
, 

 
(ABE) and (EGA) ⇒  BE

EA
=
BA

AG
, 

 
hence 

Bd

��
=
BC + ��
Cr + ��

=
BC + ��

��
, 

 
so 

AB + BC

�	
=
AC

EA
= ′ k ,  

 
a known ratio (because A, C and E are known points). 

So we have 
     

Bd

BH
=
k

′ k 
, 

 
because 

BA + BC

BD
= k . 

 

So in the triangle EBD, we know the angle EBD and the ratio BE
BD

; this 

triangle is determinate up to similarity and thus its other angles are known. 
So the straight line DB makes a known angle with the straight line DE. 

The point B lies at the intersection of that straight line and the given circle. 
The points B and D need to lie on opposite sides of AC if B is to provide a 
solution to the problem. If this is so, the segment BD is determined by its 
two endpoints. 

 
To summarise, we are concerned with three given points A, C, D that 

are not collinear and a circumscribed circle (ADC); the problem is to 
construct a point B on the arc AC such that BA + BC

BD
= k , a known ratio. Ibn 

al-Haytham constructs B as the point of intersection of the given circle and 
a straight line. 
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Proposition 2.19. — Let there be a given angle xAy and in this a straight 
half line Az. For any straight line Δ that cuts Ax in B, Ay in C and Az in D, 
we have 

    DC
DB

= AC
k ⋅AB

,    where k = sin α
sin β

, 

 
where α = xÂy and β = yÂz, known angles. 
 

 
Fig. 2.2.19 

 
First we may note that Ibn al-Haytham does not mention the special 

case α = β; in which case Az is the bisector and in any triangle ABC we 
then have  

    
DC

DB
=
AC

AB
   (in this case k = 1). 

 
Let us now look at the general case. 
For an arbitrary point B on Ax, let us draw an arbitrary straight line 

which cuts Ay in C and Az in D, and a straight line parallel to Az which cuts 
the extension of Ay in E. The triangle AEB has two angles known; it is 
determinate up to similarity. So we have EA

AB
= k , a ratio which does not 

depend on the angles that are given. In fact,  
 

EA

sinα
=

AB

sinβ
.  

Moreover,  
DC

DB
=
AC

AE
,  

hence 
DC
DB

= AC
k ⋅AB

. 

A

E

BC D

<y>
<z>

<x>
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Notes: 
1) From this property we immediately deduce: Three concurrent 

straight lines Ax, Ay, Az determine similar divisions on two parallel lines. 
Let there be points D, B, C lying on Δ and D1, B1, C1 on Δ1. If Δ || Δ1, 

we have  
DB

DC
=
D1B1
D1C1

. 

 
2) The property established in this proposition is a generalisation of the 

property of the point of intersection of the internal bisector of an angle of a 
triangle ABC with the base. 

 
The following proposition is the converse of this. 
 

Proposition 2.20. — If the angles of a triangle ABC are known and if D is 
a point of [BC] such that DC

DB
= k , a known ratio, then the straight line AD 

makes known angles with AB and AC. 
The triangle ABC is determinate up to similarity, so CA

CB
= ′ k , a known 

ratio, ′ k =
sin ˆ B 

sin ˆ C 
. 

Let E be a point on the extension of AC such that , a known 

ratio. The straight line BE is parallel to the required straight line, because 
. 

But the triangle EAB is determinate up to 
similarity, because 

 
BÂE = 2 right angles – Â 

 
and 

AE
AB

= AE
AC

⋅ AC
AB

= ′k
k

. 

 
 

 
Fig. 2.2.20a 

 
So the angle AEB is known and consequently the angle CAD is also 

known. 
 

CA

AE
= k

DC

CA
=
��

��
= k

A

E

BC
D
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Notes: 
1) Starting from Proposition 2.20, we prove that: 
if on two parallel straight lines Δ and Δ1 we have the similar ranges D, 

B, C and D1, B1, C1 such that DB
D1B1

=
DC

D1C1
≠ 1, then the three straight lines 

BB1, CC1, DD1 are concurrent.  
This is the converse of Proposition 2.19. 
 
Propositions 2.19 and 2.20 state that if three straight lines are 

concurrent, they cut off similar ranges on two parallel straight lines, and 
conversely.7 

This configuration reminds us of Desargues: in his version the points D 
and D1 do not lie on BC and B1C1. The straight lines BC and B1C1 are 
parallel and the same holds for BD and B1D1; of BB1, CC1 and DD1 are 
concurrent, DC and D1C1 are parallel, and conversely.8 

 
 

Fig. 2.2.20b 
 

 
7 Piero della Francesca (c. 1412–1492) gives a version of this theorem in his treatise 

on perspective, De prospectiva pingendi, Book 1, Section 8. See J. V. Field, ‘When is a 
proof not a proof? Some reflections on Piero della Francesca and Guidobaldo del 
Monte’, in R. Sinisgalli (ed.), La Prospettiva: Fondamenti teorici ed esperienze 
figurative dall’Antichità al mondo moderno, Florence, 1998, pp. 120–32, figs pp. 373–
5; and J. V. Field, Piero della Francesca: A Mathematician’s Art, New Haven and 
London, 2005. 

8 See Girard Desargues, Exemple de l’une des manieres universelles du S. G. D. L. 
touchant la pratique de la perspective sans emploier aucun tiers point, de distance ni 
d’autre nature, qui soit hors du champ de l’ouvrage, Paris, 1636, pp. 11–12; translation 
J. V. Field and J. J. Gray, The Geometrical Work of Girard Desargues, London and 
New York, 1987, pp. 158–60 (French text, pp. 200–1). 
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The case examined by Ibn al-Haytham is a degenerate limit of the 
configuration in Desargues. 
 
Proposition 2.21. — Let there be a given circle, a given chord AB and a 
triangle ABC inscribed in the circle. If this triangle has a given area, the 
point C is known, then the straight lines AC and BC are also known. 

 

 
Fig. 2.2.21a 

 
Here Ibn al-Haytham returns to the proof of the second proposition of 

the first part about triangles with given area and with one given side; he 
deduces from this that the point C lies on a chord parallel to AB. As in 
Proposition 2.10, the point C lies on one or other of the two parallel straight 
lines equidistant from AB. Now by hypothesis C lies on the circle. 

 
Notes: 

The problem can have 0, 1, 2, 3 or 4 solutions. 
 

 
Fig. 2.2.21b 

 
Let D be the mid point of AB and O the centre of the circle. Let us put 

AB = 2a, OA = R, OD = d; we have R2 = a2 + d2. If S is the area given for 
the triangle ABC, its height is h = S/a. 

The perpendicular bisector of AB cuts the circle in C1 and C2 and we 
have 

AB

CD

C

O

D A

C

B

h

h

1
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DC1 = R – d and DC2 = R + d, 
 

hence 
 

h < R – d  the problem has four solutions 
h = R – d  the problem has three solutions 
R – d < h < R + d  the problem has two solutions 
h = R + d  the problem has one solution 
h > R + d  the problem has no solution. 
 
The problem reduces to that of constructing the point C using the 

intersection of the given circle and a straight line deduced from what was 
given, using the method that was set out in Proposition 1.10. 

 
Proposition 2.22. — Let there be a circle and two known points A and B 
on this circle. If C is a point on the circle such that CA · CB = k2, a known 
ratio, then C is known and thus the straight lines CA and CB are also 
known. 

This proposition reduces to the preceding one, because 
 

area (ABC) = 1
2

CA · CB · sin Ĉ  = 1
2

 CA · CB sin ( 1
2
AÔB ), 

 
Fig. 2.2.22 

 
where AÔB  is the angle at the centre. 

Now CA · CB = k2 is known, and sin 1
2

 does not depend on the 

position of the point C on the circle, so area (ABC) = S is known. Ibn al-
Haytham makes this clear in his proof: 

Let us suppose that C is known; let AD ⊥ BC, then the triangle ADC 
has known angles and  

CA

AD
= ′ k =

A

sin ˆ D 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
, 

 
hence 

AB

C

D

AÔB
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CA ⋅CB
AD ⋅CB

= k2

AD ⋅CB
= CA
AD

= ′k , 

 
hence 

AD ⋅CB = k
2

′k
 and area (ABC) = 1

2
k2

′k
= 1

2
k2 sinĈ

⎡
⎣⎢

⎤
⎦⎥

; 

 
so we have returned to the preceding problem and there can be 0, 1, 2, 3 or 
4 solutions for the point C. 

 
Note: This problem is like Problem 2.8, with a circle instead of two parallel 
straight lines. In both cases, the area of the triangle is fixed by the data. 

 
Proposition 2.23. — We are given a circle and a straight line CD. If a 
straight line cuts the circle in A and B and the straight line CD in E in 
such a way that AB

BE
= k , a known ratio, and BÊC  = α, a known angle, then 

the straight line AB is known, so the segment AB is known. 
Let us suppose that the straight line AB is known. Let H be the centre 

of the circle and HI ⊥ AB, then I is the mid point of AB and . 

Let G be a point on CD such that xĜC  = α; G exists and is unique, 
and HG is parallel to the required straight line. Let us put HG = . 

 

 
 

   Fig. 2.2.23a    Fig. 2.2.23b 
 
If HI || DC, which implies α =

π
2

, then IE = HG = . But IB
BE

=
k

2
, 

hence 
IB+BE
BE

= k + 2
2

= IE
BE

⇒ BE = 2l
k + 2

= ′ . 

IB

BE
=
k

2

G

E B

C

D

I

HK

A
C

B

D

E

H

I

G
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So we return to Proposition 2.13 with BE = ′  and BÊC  = π
2

. 

If α ≠ π
2

, HI cuts the straight line CD at the known point C. The 

straight line CB cuts HG in K and we have HK
KG

=
IB

BE
=
k

2
; so, from 

Proposition 2.20, the straight line CK is known in position and the point B 
lies at the intersection of this straight line and the circle. We then draw the 
perpendicular from B to CH, which gives us the points E and A. So the 
points A, B and E are known. 

We have just seen that this proposition reduces to Proposition 2.13 or 
to Proposition 2.20 depending on the given angle, and this reduces to the 
construction of a point by means of a given circle and a straight line. 

 
Comment: We can restate this proposition as follows: Let there be a circle 
C (H, R) and a straight line xy that lies outside it. To find on xy a point E so 
that a straight half-line Ez cuts the circle in A and B such that xÊz  = α and 
BA

BE
= k , both known. 

The analysis of this problem leads to similar ranges I, B, E and H, K, G 
if α  ≠ π

2
 and to equal ranges of α = π

2
. 

The synthesis begins from the data, which allow us to construct K and 
G. 

 
 

   Fig. 2.2.23c     Fig. 2.2.23d 
 

If α ≠ π
2

, we know C. The required point B ∈ C  ∩ KC, from which we 

deduce Ez, and thus A. The problem can have 0, 1 or 2 solutions. 

x
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If α = π
2

, the point C does not exist and the required point B is given by 

the intersection of the circle and the perpendicular to HG at K, hence there 
are 0, 1 or 2 solutions. 

 
Proposition 2.24. — Let there be two circles lying outside one another, 
equal or unequal. If a straight line is a common tangent to the two circles, 
it is known.  

We may note that the figures provided in the text show circles that lie 
outside one another; this condition is not necessary in investigating the 
external common tangent. 

1. External common tangents 
Let there be C1 (E, EA) and C2 (G, GD) two circles, and A and D the 

points of contact. So in this case we have EA  || GD  and in the same sense. 
 
1.1. Equal circles 
AEDG is a rectangle that can be constructed immediately, we have 

AD = EG; so AD is known. 
What we have is a translation EG . 

 
Fig. 2.2.24a 

 
1.2. Unequal circles 
The straight lines DA and GE cut one another in H which lies beyond E 

and we have GH
HE

=
GD

EA
=
R

r
. So the point H is known. 

 
Fig. 2.2.24b 
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What we have is a homothety h H,  
R

r
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

 
2. Internal common tangent  
2.1. Equal circles 
The reasoning is the same.  
This time what we have is a central symmetry h (H, – 1). 
 

 
Fig. 2.2.24c 

 
2.2. Unequal circles 
EA  and GD  are parallel and have opposite senses, AD cuts EG in H 

between E and G and we have EH
HG

=
EA

GD
=
R

r
. So the point H is known. 

What we have is a homothety h H,  – R
r( ) . 

 
Fig. 2.2.24d 

 
In all cases, the construction of the tangent reduces to the construction 

of a point, for example D. In 1.1, the point D is at the intersection of the 
given straight line EG and the perpendicular, and in the other cases, it is at 
the intersection of the given circle with centre G and the circle with 
diameter GH. 
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TREATISE BY AL-ḤASAN IBN AL-ḤASAN IBN AL-HAYTHAM  
 

On the Knowns 
 
 
 
Knowledge is an opinion which does not change, and opinion is belief 

in a certain notion. So knowledge is belief in a certain notion, as it is, and it 
is, moreover, a belief that does not change, as when we believe that the 
whole is greater than the part. But belief cannot occur without there being 
someone who believes, and a notion that is believed. Now belief cannot be 
unchanging except if the notion that is believed does not change. If this is 
so, then knowledge is belief in a notion that does not admit of change. A 
known is the notion in which one believes that does not admit of change, 
and the person who knows is the one who believes a notion that does not 
admit of change. On the other hand, believing notions that change cannot 
be considered to be knowledge, because these latter are not fixed according 
to one single attribute, as when one believes that Zayd is standing upright: 
it is possible that he is not standing upright at the moment when we believe 
[this], and that he is standing upright at other moments. So if we situate it 
in time, as when we believe that Zayd is standing upright at this time, or 
that he was standing upright at some particular moment, our belief can be 
true; if one is certain that it is a true belief, its being called ‘knowledge’ 
will come about as a metaphor, since it [the belief] resembles knowledge 
on account of the correctness of the belief. But knowledge, itself, does not, 
in truth, admit of change at any moment. If knowledge is a belief, and if 
belief can occur only for someone who believes, then knowledge can occur 
only when there is a person who knows. 

Further, belief in a notion that does not admit of change may be 
divided into two kinds1: on one hand, when we believe a notion that does 
not change, while knowing that this notion does not change; on the other 
hand, when we believe a notion that does not change, without knowing that 
it does not change. Believing a notion is indeed separate from belief in 
whether this notion changes or not. Someone who believes a notion which 

 
1 Lit.: parts. 
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does not change, while knowing that it does not change, has knowledge of 
that notion. Moreover, he knows that he has knowledge of it, because in 
believing that notion that does not admit of change, he has knowledge of 
that notion, and in knowing that it does not admit of change, he knows that 
he has knowledge of it. But someone who believes a notion that does not 
change, without knowing that it does not change, has knowledge of that 
notion, but does not know that he has knowledge of it, because he does not 
know if this notion admits of change or not. And someone who believes 
with this kind of belief believes a notion without proof or necessity, but by 
hearsay and imitation, taking it on trust, or by intuition. It is legitimate to 
say that he has knowledge of that notion, because he believes a notion that 
does not admit of change, which is the definition of knowledge.  

Knowledge is divided into two parts: knowledge in actu, and know-
ledge in potentia. Knowledge is in actu when it has become a belief for 
someone who believes; knowledge is in potentia when it can become a 
belief for someone who believes. 

If knowledge is a belief, [and] if belief cannot occur without someone 
who believes and a notion that is believed, that is to say the known, and if 
knowledge is divided into two parts, knowledge in actu and knowledge in 
potentia, then the known is also divided into two parts: a known in actu 
and a known in potentia. A known in actu has become known by someone 
who has knowledge of it; a known in potentia is one that can become 
known by someone who has knowledge of it. But we have shown that a 
known is a notion that does not admit of change; notions that do not admit 
of change are thus divided into two parts: some are beliefs for someone 
who believes; the others can be beliefs for someone who believes. These 
two parts can be known only if the notions belonging to these two parts do 
not themselves admit of change. If all of what we have said is true, a 
known is in truth any notion that does not admit of change, whether or not 
it is believed by someone who believes. 

All known notions are divided up into two kinds: one is concerned 
with quantity and the other is not concerned with quantity. Our treatise will 
deal only with known notions that are concerned with quantity.  

Quantity is divided up into two parts: one is discrete quantity and the 
other is continuous quantity. Discrete quantity is divided up into two parts, 
which are: the letters of words and numbers. Continuous quantity is divi-
ded up into five parts, which are: line, surface, solid, weight and time.  

The known notions contained in this treatise are those concerning let-
ters of words, those which concern number, those which concern lines, 
those which concern surfaces, those which concern solids, those which 
concern weights and those which concern time.  
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The notions which concern the letters of words are divided into three 
parts: one is concerned with the essence of the letters; another is concerned 
with the quantity of the number of the letters – that part reduces to what 
concerns number; and the third part is that which concerns the arrange-
ments of the letters and the combinations of them among themselves, 
which are words.  

The notions concerning number are divided up into four parts: one 
concerned with the essence of number; another concerned with the quantity 
of number; the third concerned with the properties of number, [such] as 
those that concern numbers that are perfect, abundant or deficient, squares, 
cubes or numbers like them which are properties of the nature of number; 
the fourth part is concerned with the association of numbers one with 
another as in commensurability, ratios, augmentation, diminution and <the 
relation> of the whole and the part.  

Notions concerning lines are divided up into seven parts: one is 
concerned with the essence of a line; another is concerned with the end-
point of a line which is a point; the third is concerned with the figure of a 
line; the fourth is concerned with magnitudes of lines; the fifth is concer-
ned with positions of lines, that is to say their situation2 – that part is 
divided up into seven parts: one is the position of the line with respect to 
fixed points, the second is the position of the line with respect to a single 
fixed point, the third is the position of the line with respect to a moving 
point or with respect to <several> moving points, the fourth is the position 
of the line with respect to a fixed line, the fifth is the position of the line 
with respect to a moving line, the sixth is the position of the line with 
respect to a fixed surface, and the seventh is the position of the line with 
respect to a moving surface. The sixth part of the first system of division is 
concerned with ratios of magnitudes of lines, one to another, and the 
seventh part is concerned with the composition of a group of these lines 
when some of them meet with one another. 

Notions concerned with surfaces are divided up into parts like those 
into which the notions concerned with lines are divided up, except the one 
that is concerned with endpoints, because the boundaries of surfaces are 
lines.  

In the same way, notions concerned with solids are divided up into 
parts, like those into which notions concerned with surfaces were divided 
up, except for the last part, which is concerned with composition, because 
composition of solids arises only from composition of the positions of their 

 
2 We use this term to translate the Arabic term naṣba that is reguarly used to 

translate the Greek θέσιϛ.  
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surfaces; similarly, positions of solids with respect to anything one can use 
to situate them are the positions of the surfaces of the solids. 

Notions concerned with weights are divided up into three parts: one is 
concerned with the essence of weight, the next is concerned with magni-
tudes of weights and the third is concerned with the ratios of weights one to 
another. 

Notions concerned with time are divided up into three parts: one is 
concerned with the essence of time, the second is concerned with the 
magnitude of time and the third is concerned with ratios of intervals of 
time one to another. 

The known concerned with the essence of the letters of a word, that is 
the ordinary letters used in all languages, and whose forms and sound do 
not change from one language to another. The essence of the letters of a 
word is, in fact, the separate sounds, used in the words of dialogues and 
conversations, in all languages; but the words of the languages are different, 
depending on the difference in character of the people who speak these lan-
guages, and all the different words, in all the different languages, there are 
combined letters. Among the composite letters, some are common to all the 
languages, the others are peculiar to one language, and not to another. 
What is common to all the languages has a form and figure that do not 
change; so this is known because it does not change in all the words there 
are in all the languages. Among these letters, what is not common [to all 
languages] has a form that can change in the [different] languages; some of 
them are to be found in some languages and are not to be found in the other 
languages, and some are found in one of the languages with a [particular] 
property and in another language they have another property. Thus, for the 
letters of a word, the known concerned with the essence of the letters is the 
letters that are common to all the languages. 

As was mentioned earlier, the known concerned with the number of the 
letters reduces to that concerned with the quantity of the number.  

As for the known concerned with the arrangement of letters and the 
combination of letters one with another, this is the words used in all lan-
guages. In fact, words are letters put together, combined with one another, 
but not every combination of letters is a word used in a language, further, 
the majority of the combinations of letters do not make a word that is used. 
The forms and the arrangement in the words that are used do not change, 
but any word that is used in a language always takes the same shape and 
does not change in the language in which it is used. As for the known 
concerned with the combination of letters in a word, this is the words used 
in all languages. 
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As for the known concerned with the essence of number, it is merely 
unity. In fact, the essence of number is unity and what is generated from 
repeating it. Every number involves nothing more than unity and repetition. 
In a number the repetition is not [always] one and the same repetition, but a 
repetition that increases and that decreases, so it is touched by change, 
whereas unity is not susceptible of change in any way. So the known 
concerned with the essence of number is only unity. 

The known concerned with the quantity of a number is that every num-
ber has a finite plurality, which does not change either by increasing or by 
decreasing. This type of number is subdivided into two parts: one is where 
the number is limited by necessity and the other is where it is limited by 
hypothesis. What is limited by necessity is as in the number of the planets, 
the number of the orbs, the number of the elements, and similar things, that 
is to say any numbers for which the counted numbers3 neither increase nor 
decrease. If the thing that is numbered neither increases nor decreases, then 
its number does not change either by increasing or by decreasing, but num-
ber does not undergo change except by increasing and decreasing. If the 
numbered does not lend itself either to increasing or to decreasing, its 
number does not lend itself either to increasing or to decreasing, this part of 
number is that which applies to a quantity limited by necessity. As for the 
other part, it is that limited by hypothesis, that is to say that in his imagina-
tion, or in a numerical problem that he poses by hypothesis, a human being 
gives himself a certain number; he supposes that it does not change, or he 
assumes determinate numbers in the world of sensation and in existence; 
thus, by way of hypothesis, he will have taken a number that does not 
change. It is in these two ways that the quantity of a number is known.  

The known concerned with the properties of numbers, such as the pro-
perties of a square, of a cube, of a surface, of a solid, of a perfect number, 
of an abundant number, of a deficient number and numbers like them, it is 
the form of each of these numbers from which its properties have been 
constituted, as the form of the square from which its properties have been 
constituted, that is to say as the product of a number with itself. The known 
notion of a square concerned with the properties of the square is the prod-
uct of a number with itself. This notion is [to be found] in every square and 
it is a notion that does not change for any square, despite a change in the 
sides of the squares and change in the sizes of the squares; every property 
of every square is, in fact, constituted from the multiplication of a number, 
which is its side, by itself. Similarly, the form of the cube, from which its 
properties are constituted, is the multiplication of a number by what is 
obtained by multiplying it by itself. Similarly, the form of a surface is the 

 
3 See Aristotle, Physics, IV, chap. XI, 219b 7–10. 
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multiplication of a number by a number. Similarly, the form of a solid is 
the multiplication of a number by what is obtained from the multiplication 
of a number by a number. The form of a perfect number is that it is equal to 
the sum of its aliquot parts. The form of an abundant number is that the 
sum of its aliquot parts exceeds it. The form of a deficient number is that 
the sum of its aliquot parts is less than it. Similarly, every number like this 
has a form from which its properties are constituted. The known for any 
number that has a property or properties is the form it has from which its 
property or properties are constituted, because this form does not change in 
any of the numbers of that species, despite a change in its quantity and 
change in its aliquot parts and its sides. 

The known concerned with the combination of numbers with one 
another is divided up into six parts: one of them – and it is the first – is the 
equality of every unity, in every number, to every unity, in every number; 
the second part is that every number is a multiple of every unity that is in it, 
and a multiple of every unity in every number that is combined with it; the 
third part is that two arbitrary numbers are commensurable through unity 
and that unity measures each of them; the fourth part is that any number is 
[one] of the parts of any number that is combined with it; the fifth part is 
that two different arbitrary numbers are such that one is greater than the 
other and that other is smaller than the first. These notions hold for all 
numbers and do not change for any numbers. As for the sixth part, that is 
ratios; every numerical ratio is between two numbers; a numerical ratio is 
the measure of the quantity of the number expressed in terms of the quan-
tity of the number with which its ratio is set up. A known ratio is the ratio 
of two numbers one to the other, whose quantity is known, as well as the 
ratio of two numbers that are equimultiples of two numbers whose quantity 
is known, or of parts, in equal number, of two numbers whose quantity is 
known, or two homologous parts of two numbers whose quantity is known. 
Two arbitrary numbers are the two smallest numbers in their ratio or are 
equimultiples of the two smallest numbers in their ratio; two arbitrary num-
bers, that are the two smallest numbers in their ratio, in fact measure two 
numbers in the ratio of equality: the smaller measures the smaller and the 
greater measures the greater. It is possible that two other numbers that are 
equimultiples of the two smallest numbers in their ratio measure the two 
numbers that are measured.4 If this is the case, then two arbitrary numbers, 
which are not the two smallest numbers in their ratio, are equimultiples of 
the two smallest numbers in their ratio, because they are measured by the 
two smallest numbers in their ratio; it is possible that these two numbers 
are equimultiples of multiples of the two smallest numbers in their ratio. If 

 
4 That is measured by the smallest. 
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the two numbers which are the measure are known, then the ratio of one to 
the other is known and it is the ratio of the two numbers that are measured; 
the ratio of two numbers that are measured, one to the other, will then be 
known even if their quantities are not known. But if the quantity of the two 
numbers that are measured is known, then the ratio of the two numbers that 
are measures, one to the other, is also known, because the ratio of the parts 
is equal to the ratio of their equimultiples. So the known ratio is the ratio of 
two numbers, one to the other, whose quantity is known; it is the ratio of 
two numbers, which are multiples of two numbers whose quantity is 
known; it is the ratio of two homologous parts of two numbers of known 
plurality, and it is the ratio of two numbers which are equal parts of two 
numbers whose plurality is known. In general, the known numerical ratio is 
that of two numbers of known quantity, or is equal to the ratio of two num-
bers of known quantity. So the known in a known numerical ratio is the 
quantity of each of the two numbers in the ratio one to the other – if each 
of them is known – or the quantity of two known numbers which are in 
their ratio. 

As for the known concerned with the essence of a line, it is that the line 
is a length without breadth, because this notion applies to all lines and does 
not change for any of them. The length of a line and its figure change with 
the lines, since, for lines, there are straight lines, circular ones, [and] curves 
with different kinds of curvature. So the known concerned with the essence 
of a line is that the line is a length without breadth. 

The known concerned with an endpoint of a line, which is a point, is 
made up of two notions: one relates to its essence, that is to say that it is 
not divisible, and the other to its position, that is to say its distance from 
another point or points that exist in the imagination, if this distance or these 
distances do not change. This notion is divided up into three parts: one is 
that this point, itself of known position, is fixed, and that the point or the 
points that exist in the imagination are also fixed and that none of them 
moves with any sort of motion; the second part is that the point that exists 
in the imagination is fixed, whereas the point of known position is free to 
move about the fixed point, with a circular motion, and the distance 
between them [sc. the two points] does not change; and the third part is that 
the point of known position is at a distance that does not change from a 
point that exists in the imagination or is at distances that do not change 
from points that exist in the imagination and are such that the two points, 
or all the points, are free to move with one equal motion, all together, and 
that the distances that lie between the point of known position and the 
points, do not change. These two notions are known and concerned with a 
point which is the endpoint of a line. 
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As for the known concerned with the figure of the line, it is the notion 
which constitutes the essence of the line; for the straight line, it is its two 
endpoints, plus the fact of being the shortest distance. In fact, a straight line 
is the distance there is between its two endpoints, on condition that this dis-
tance is the shortest distance between its two endpoints; so what constitutes 
its essence is its two endpoints, because it is its two endpoints which 
delimit the distance that there is between them. If we make the further 
demand of the distance that it shall be the shortest, this distance will be a 
straight line. The known notion concerned with the figure of the straight 
line which does not change for any of the straight lines, is the two 
endpoints, plus the fact of being the shortest. As for a circular line, what 
constitutes its essence is the circular surface of which the line is the 
boundary; but what constitutes the essence of that circular surface is the 
centre together with the distance between the centre and the circumference. 
So what constitutes the essence of the circular line – and is its prime 
constituent – is its centre and the distance between the line and its centre. 
The known notion concerned with the figure of the circular line is the 
centre and the semidiameter. If the magnitude of the semidiameter does not 
change, the circular line is a whole circle or an arc of a circle, whether the 
arc or the circumference of the circle is convex or concave. As for curved 
lines that can have a known figure, these are the ones which are in an 
arrangement, an order, and a notion which constitutes their essence and 
which does not change for any line their [various] species. For a curved 
line, the known notion concerned with its figure is the notion which 
constitutes its essence. So a line of known figure is a line for which the 
notion that constitutes its essence is known. 

As for the known concerned with magnitudes of lines, it is the value of 
the length of the line. But we have knowledge of the value of the length of 
the line from the fact that we have knowledge of the distance there is 
between its two endpoints, while knowing the figure of the line. Thus, a 
finite line of known magnitude is one for which the distance between its 
two endpoints does not change, that is to say does not increase or decrease, 
and which is such that its figure does not change. In fact, there is an 
infinity of lines with different figures between two points, each of which 
[lines] is called a distance, and we cannot imagine any one of them by 
imagining only its two endpoints, apart from the straight line, because it is 
the shortest line to join two points. But since the form of linearity is 
established in the imagination, and the figure of linearity is no different 
from one straight line to another and it does not change, accordingly a 
straight line of known magnitude is one for which the shortest distance 
between its two endpoints does not change.  
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A circular line is also the distance between its two endpoints if it is an 
arc; but it is not the shortest distance and, in addition, its magnitude is not 
limited by its two endpoints because it is possible that, between its two 
endpoints, there are many circular lines of different magnitudes, none 
being equal to any other nor having a ratio to it; in consequence, the 
magnitude of a circular line will not be known unless its semidiameter is 
known, that is to say unless the magnitude of the latter does not change. 
But if its semidiameter is known, then its figure will be known because its 
semidiameter is what constitutes its essence. A finite circular line has a 
known magnitude only if the distance between its two endpoints is of 
known magnitude – that is to say the straight line which is its chord – and 
if, in addition, its figure is known.  

Similarly, a curved line is of known magnitude only if its figure is 
known, but its figure will not be known unless we know the notion which 
constitutes its essence, because between two points there are many curved 
lines, none being equal to any other nor having a ratio to it. So, a finite 
curved line is of known magnitude only if the distance between its two 
endpoints – that is to say the straight line that is its chord – is of known 
magnitude and if, in addition, the figure of the curved line is known. 

A finite line of known magnitude is one for which the distance be-
tween its two endpoints is of known magnitude and one whose figure is 
also known. 

A circular line which is a whole circle and which is of known magni-
tude is one whose semidiameter is of known magnitude, because, if its 
semidiameter is of known magnitude, then the magnitude of the circular 
line does not change and its figure does not change. 

A curved line, if it is closed,5 is of known magnitude only if the dis-
tance from each point taken on the line to its centre, or to a fixed point that 
lies inside it, is of known magnitude, that is to say the straight lines. 

As for the known concerned with the position of a line with respect to 
fixed points, it is the distances from the points, which are on the line, to 
each of the two [fixed] points, or more than two fixed points. If these dis-
tances do not change, and if the line that has this property is a line which 
does not move with any kind of motion, except for increasing and decreas-
ing,6 then it does not change its position, but changes only its magnitude. A 
line which does not move with any kind of motion is known in position 
with respect to fixed points, because if the distance from each point taken 
on the line to each of the two [fixed] points, or more than two fixed points, 
is a distance which does not change, then this line does not move with any 

 
5 Lit.: if it surrounds perfectly. 
6 That is extension and shortening. 
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kind of motion, whether the line is straight, circular or of an arbitrary 
figure. If the line moves along a rectilinear path, the distance of each of its 
points changes with respect to any fixed point, whether the line is straight 
or not straight. Similarly, if the line moves along a curvilinear path or if it 
moves along a circular path, then the points that lie on the line can preserve 
the distance between each of them and a single point if the line is moving 
round that single point. As for the remaining fixed points, the distances 
between them and the points that lie on the line change in every case. 

A line of known position with respect to fixed points is a line which 
does not move with any kind of motion, except for increasing and decreas-
ing, and it is one for which the distances from points that lie on it to each of 
the two [fixed] points, or more than two fixed points, are distances that do 
not change. The line that has this property is said to be known in position 
absolutely, without any condition or addition, whether the line is straight or 
not straight. A straight line known in position absolutely is one that does 
not move with any kind of motion, except for increasing and decreasing. A 
circular line known in position absolutely is one whose centre known in 
position, and whose semidiameter is of known magnitude.7 As for the 
known for this line, it is the distances between the points that lie on it and 
the fixed points, because these distances do not change.  

As for the known concerned with the position of a line with respect to 
a single fixed point, it is the distances between each point taken on the line 
and the fixed point, if the distances do not change. The line that has this 
property is said to be known in position with respect to the fixed point, and 
this line is not known in position absolutely, because the line can preserve 
the distances that lie between it and the fixed point, even if it is moving; in 
fact, this line can move round the fixed point in such a way that the dis-
tances between the points on it and the fixed point do not change; indeed if 
we join its two endpoints to the fixed point with two straight lines and if 
the triangle generated by the line and the two straight lines drawn from its 
two endpoints to the fixed point is put in motion about the fixed point, then 
the distances between the points that lie on the line and the fixed point do 
not change, and the line will, however, be in motion, whether the line is 
straight or not straight. If the line is a circumference of a circle and is in 
motion about its centre, then the distances from points that lie on it, to the 
fixed point, which is its centre, do not change. So a straight line known in 
position with respect to a single fixed point is the line for which the dis-
tances from the points that lie on it to the fixed point are distances which 
do not change, whether the line is fixed, immobile or mobile, rotating 
about the fixed point and whether the line is straight or not straight. 

 
7 Compare Euclid, Data 6. 
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As for the known concerned with the position of a line with respect to 
a moving point or to moving points, it is the distances between each point 
taken on the line and the moving point or moving points, if the distances 
between the points are known and if the line moves with a motion equal to 
the motion of the moving point or moving points, and in the direction in 
which the point or points move. A line known in position with respect to a 
moving point or moving points is a line for which distances from its points 
to the moving point or the moving points are distances which do not 
change, and which [sc. the line] moves, despite this, with a motion equal to 
the motion of the moving point or the moving points, and in the direction 
of their motion, whether the line is straight or not straight. 

The known concerned with the position of a line with respect to a fixed 
line is the angle enclosed by that line and the fixed line, if the two lines 
intersect, and it is the angle formed if we extend these two lines until they 
meet one another – if the two lines are ones which can meet one another – 
and if they do not intersect. A line known in position with respect to a fixed 
line is – if the two lines are such that they can intersect one another – a line 
which encloses a known angle with the fixed line, whether the line known 
in position is also fixed and does not move with any kind of motion, or 
whether it is moving, but at the same time preserving the form of the angle 
enclosed by the line known in position itself and the fixed line to which it 
is compared. 

A straight line known in position with respect to a fixed line, if it cuts 
the fixed line or if it can cut it, is a straight line which encloses a known 
angle with the fixed line; it can be fixed motionless or it can move as a 
whole, while preserving the angle, or it can increase or decrease. A straight 
line that has this property does not, in fact, change in position with respect 
to the fixed line, because the angle enclosed by the two <lines> does not 
change, whether the fixed line is straight or not straight. The known for the 
position of this line is the known angle. 

A circular line of known position with respect to a fixed line – if the 
fixed line cuts it or can cut it if it is extended indefinitely – is the circular 
line which encloses with the fixed line a known angle; it can be fixed, 
motionless or in motion about its centre, its centre being fixed, motionless, 
whether the fixed line is straight or not straight, or in motion along the 
fixed line, but with the angle enclosed by the two lines not changing. This 
can take place if the fixed line is straight or circular. The position of the 
circular line that has this property does not change with respect to the fixed 
line because the angle between it and the fixed line does not change; the 
known is the angle. 
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If the line does not cut the fixed line or cannot cut it, it will then be of 
known position with respect to the fixed line when, once it has been cut by 
a straight line which makes a known angle with one of the two lines, this 
latter encloses a known angle with the other line, whether the line of 
known position is fixed, motionless or in motion, while preserving the 
form of the angle formed between it and the line that cuts it, when that is 
possible for it. What is known for the line that has this property is the two 
angles formed by the intersection of each of the two lines with the line that 
cuts them. 

A curved line of known position with respect to a fixed line is a line 
which does not move with any kind of motion, whether the fixed line is 
straight or not straight, or the curved line that is moving with respect to the 
fixed line, if the fixed line is straight or circular, and whether the point on 
the curved line which lies on the straight or circular line does not change, 
and if the angle enclosed by it and the straight or circular line does not 
change; this, if the curved line cuts the fixed line. If it does not cut it, it will 
be of known position if its relation with the straight line which cuts it, as 
well as the fixed line in accordance with two known angles, is the relation 
described earlier in regard to the fixed line. 

The known concerned with the position of the line with respect to a 
moving line is the known, in the preceding paragraph, without any differ-
ence between them concerning the angles or the division <into cases>. The 
only difference between this line and the preceding line is that the line to 
which the position is referred is fixed for the first line, whereas it is moving 
for the latter one, and that, with respect to that reference line, the line 
moves with its own motion and in the direction of the motion of the latter 
line, whether the line of known position is straight or not straight. 

The known concerned with the position of the line with respect to a 
fixed surface is the right angle, if the line is perpendicular to the fixed sur-
face or to the plane tangent to the fixed surface at the endpoint of the 
perpendicular, if the fixed surface is convex or concave, or the angle 
enclosed by that line and the perpendicular drawn from a point on the line, 
perpendicular to the surface or perpendicular to the plane tangent to the 
fixed surface at the endpoint of the perpendicular, if the angle is known. 
The line known in position with respect to a fixed surface is the perpen-
dicular erected on the fixed surface or on the plane tangent to the fixed 
surface at the foot of the perpendicular, or the one that encloses a known 
angle with the perpendicular, whether the line known in position is fixed, 
motionless or in motion with respect to the fixed surface, while preserving 
the right angle or the known [angle]. The known is the angle. 
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The known concerned with the position of a line with respect to a mov-
ing surface is the known in the preceding paragraph, that is to say the angle. 
The only difference between this line and the preceding line is that the sur-
face to which the position of the line is referred is fixed for the first line, 
and is in motion for the latter, and that the line, whose position is referred 
to the surface, moves with a motion equal to its motion and in the direction 
of its motion, whether the line is straight or nor straight. A line known in 
position with respect to a moving surface is a line perpendicular to the 
moving surface or to the plane tangent to the moving surface at the foot of 
the perpendicular, or a line which encloses with the perpendicular drawn 
from a point of the line, perpendicular to the moving surface or to the plane 
tangent to the moving surface at the endpoint of the perpendicular, a 
known angle, if the line is moving with a motion equal to the motion of the 
surface and in the direction of this motion. 

The known concerned with ratios of magnitudes of lines, the one to the 
other, includes two notions: one is the figure of the two lines one of which 
is referred to the other; the second is the quantity of each of the two lines; 
in fact, of two lines, one cannot have a ratio to the other, and there cannot 
be a ratio between the two lines, unless they are of the same species and 
what constitutes their essence is the same notion, as [when there are] two 
straight lines or two arcs of the same circle or of two equal circles. It is for 
only these two species of line that there can be ratios between the magni-
tudes of individuals. As for the species of lines, other than those two, there 
is no ratio between their magnitudes. So the known ratio between the lines 
is the one between two straight lines or two circular lines of the same spe-
cies, and such that the magnitude of each of them is known, or one that is 
equal to the ratio of two lines of their species such that the magnitude of 
each of them is known. The known of two straight or circular lines that are 
of the same species, and whose ratio one to the other is known, is the 
magnitude of each of the two lines, if each of them is known, or the magni-
tude of each if the two lines of known magnitude, [lines] for which the 
ratio of one to the other is equal to the ratio of the two lines for which the 
ratio of one to the other is known. The two lines for which the ratio of one 
to the other is known are straight lines or circular <lines>, for which the 
magnitude of each of them is known, or the magnitude of each of the two 
lines of known magnitude for which the ratio of one to the other is equal to 
the ratio of two lines whose ratio one to the other is known. The known 
ratio between two lines is that between two known lines, because the ratios 
between the known magnitudes does not change, it being given that, for 
known magnitudes, their magnitudes do not change, so the magnitude of 
one does not change when it is measured by the magnitude of the other. 
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The known concerned with figures made up of lines that meet one 
another is their form. It is a notion made up of their angles and their 
magnitudes, measured one by another, <measures> that are the ratios of 
one to another, if the sides are straight lines or arcs of equal circles. If the 
angles of a figure are known – that is to say that they do not change – if we 
know that they do not change and if the ratio of the quantity of each of the 
sides to each of the sides that remain is a known ratio, then the form of the 
figure does not change, whether the magnitude of each of the sides is 
known and does not change or whether the magnitudes of the sides change, 
while preserving the ratios between them and the angles that they form, 
whether all the sides are straight or whether all the sides are circular, 
<belonging to> equal circles, or whether some of them are straight and the 
others circular, if the ratios of those that are straight to the straight ones do 
not change and if the ratios of the circular ones to the circular ones do not 
change. A figure of known form, enclosed by straight lines or arcs of equal 
circles, is one whose angles are known and one in which the ratios of the 
sides one to another are known. 

Figures of known form, made up of curved lines, are those in which 
only the angles are known because there cannot be ratios between the 
magnitudes of the curved lines, except when they are equal, because the 
parts of a curved line are not measured by a single magnitude, and none of 
them can be superposed on another and the parts of one of them do not 
have similar forms, but, on the contrary, two parts of the same curved line 
always have different forms. A figure enclosed by curved lines or by lines 
some of which are curved is thus of known form, if only its angles are 
known. 

The known concerned with the essence of a surface is that the surface 
is only a length and a width, because this notion holds for all surfaces and 
does not change in any of them. As for the quantity of the length of the sur-
face, of its width and of its shape, it changes from one surface to another, 
because surfaces have different figures and shapes, in regard to their plane 
<shape>, their being convex and their being concave. The known con-
cerned with the essence of surfaces is that a surface is only a length and a 
width.  

The known concerned with the figure of a surface, that is to say the 
shape of the surface, is the notion that constitutes its essence; so for a plane 
surface the latter is the edges which enclose it, in addition to its smallness 
because a plane surface is the smallest surface enclosed by its edges. The 
known notion concerned with the figure of a plane surface that does not 
change for any plane surface, is the edges of the surface [together] with its 
smallness. 
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What constitutes the essence of a spherical surface is the spherical 
solid; what constitutes the essence of the spherical solid is its centre and its 
semidiameter, so what constitutes the essence of the spherical surface, 
which is the primary cause, is its centre and its semidiameter, whether the 
spherical surface is a complete sphere or a portion of a sphere, convex or 
concave.  

As for non-spherical convex or concave surfaces, which can be of 
known figure, they are those that have a [spatial] arrangement, ordered and 
have a notion that constitutes their essence and ones that do not change in 
any of their species. The known notion for a non-spherical convex or con-
cave surface which is concerned with its figure is the notion that constitutes 
its essence. So a surface of known shape is one for which the notion that 
constitutes its figure is known.  

The known concerned with the magnitudes of surfaces is the quantity 
of the area of the surface, if the area of the surface does not change either 
by increasing or by decreasing. So a surface of known magnitude is the 
surface such that the quantity of its area does not change. As for what the 
area of a surface is and how to have knowledge of the area of a surface, we 
have set it out in our book On Measurement,8 [where] we have explained it 
in an exhaustive manner, and it is not appropriate to explain, in this book, 
how to <find> the area. 

The known concerned with the position of a surface with respect to 
fixed points is the distances from each point taken on the surface to two 
fixed points, or more than two fixed points, if these distances do not chan-
ge. A surface that has this property is a surface that does not move with any 
kind of motion, apart from increasing and decreasing; this, in fact, does not 
change its position, but changes its magnitude because, if the distances 
from the points that lie on the surface to two [fixed] points, or more than 
two fixed points, are distances that do not change, then the surface does not 
move with any kind of motion, whether the surface is plane, convex or 
concave. In fact, if the surface moves along a rectilinear path or along a 
curvilinear path, then it is necessary that the distances between its points 
and the fixed points change; but if it moves along a circular path,9 then it is 
possible for it to preserve the distances between its points and only one 
point among the fixed points, if the surface moves around this single point. 
A surface of known position with respect to fixed points is thus one which 
does not move with any kind of motion, except for increasing and 
decreasing. A surface that has this property is said to be known in position 

 
8 See Les Mathématiques infinitésimales, vol. III, chap. IV. 
9 See the commentary in our discussion of the position of a line with respect to 

fixed points, p. 329. 
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absolutely, unconditionally, whether the surface is plane, convex or 
concave. 

The known concerned with a position of the surface with respect to a 
single fixed point is the distances between each point taken on the surface 
and the fixed point, if these distances do not change. A surface that has this 
property is said to be of known position with respect to the fixed point; this 
surface will not be known in position absolutely because the distances 
between points of this surface and the fixed point can be known without 
their magnitudes changing, even if the surface moves when its motion is 
around this fixed point. A surface of known position with respect to a sin-
gle fixed point is thus a surface for which the distances from its points to 
the fixed point are distances that do not change, whether the surface is 
fixed, motionless or in motion along a circular path around the fixed point, 
[and] whether the surface is plane, convex or concave. 

The known concerned with a position of a surface with respect to a 
moving point is the distances which lie between the points of the surface 
and the moving point, if the distances are known; the surface moves with a 
motion equal to the motion of the point, and in the direction of its motion. 
A surface of known position with respect to a moving point is a surface for 
which the distances from its points to the moving point are known dis-
tances, if, in addition, the surface moves with a motion the same as that of 
the moving point, and in the direction of its motion, whether the surface is 
plane, convex or concave. It is the same for a surface of position known 
with respect to moving points. 

The known concerned with the position of a surface with respect to a 
fixed line is a right angle, if the line is perpendicular to the surface or 
perpendicular to the plane tangent to the surface at the endpoint of the 
perpendicular, if the surface is convex or concave, or the angle enclosed by 
the fixed line and the perpendicular drawn from the point on the fixed line, 
perpendicular to the surface or to the plane tangent to the surface at the 
endpoint of the perpendicular. A surface of known position with respect to 
a fixed line is thus a surface to which the fixed line is perpendicular, or 
perpendicular to the plane tangent to the surface at the foot of the perpen-
dicular, or the surface such that the fixed line encloses a known angle with 
the perpendicular, whether the surface is plane, convex or concave, [and] 
whether the surface is fixed, immobile or in motion along a circular path 
around the fixed line. So the known is the angle. This case is similar to that 
of the line [considered] with respect to a fixed surface. 

The known concerned with the position of a surface with respect to a 
moving line is the same known as that in the paragraph before this one, that 
is to say the angle. The only difference between this surface and the pre-
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ceding surface is that the reference line for the position of the preceding 
surface was fixed and immobile, whereas the reference line for the position 
of this surface is moving, and that, in addition, the surface moves with a 
motion equal to its motion and in the direction of its motion, whether the 
surface moves with that motion alone or whether it moves with this motion 
while [also] moving with a circular motion about the moving line. So a sur-
face of known position with respect to a moving line is the surface to 
which the moving line is perpendicular, or perpendicular to the plane tan-
gent to the surface at the endpoint of the perpendicular, or the surface such 
that the perpendicular to the surface or to the plane that is tangent to it 
encloses a known angle with the moving line and is such that the surface 
moves with a motion equal to the motion of the moving line and in the 
direction of its motion, or moves with this motion or also with a circular 
motion about the moving line; the known is the angle. 

The known concerned with the position of a surface with respect to a 
fixed surface is the angle at which the two surfaces cut one another, if this 
angle is known, that is to say the angle enclosed by the two lines drawn in 
the two surfaces from a point on the [line of] intersection, [lines] that cut 
one another, if these two lines are perpendicular to the [line of] intersection, 
this when the two surfaces are plane. If the two surfaces are not plane, then 
the surface will be of known position with respect to the other surface if the 
surface10 which cuts them and which is perpendicular to each of them gives 
rise, at the intersection, to a known angle enclosed by the two intersections 
generated by the surface perpendicular to the two surfaces, the angle will 
be at a known point of the intersection, this if the two surfaces cut one 
another; if the two surfaces do not cut one another and one does not meet 
the other, then one will be known in position with respect to the other if 
each of them is known in position with respect to the surface11 which cuts 
both of them and which is perpendicular to each of them, the known for 
each of these surfaces will be the known angle or the two known angles. So 
a surface known in position with respect to a fixed surface is the surface 
that encloses a known angle with the fixed surface at the intersection of the 
two surfaces, or that encloses a known angle at the intersection of the sur-
face of known position and the surface that is perpendicular to it and 
perpendicular to the fixed surface. 

The known concerned with the position of a surface with respect to a 
moving surface, is like <the known for> a position of the surface we have 
already mentioned. The only difference between the two is that the refer-

 
10 Ibn al-Haytham does not indicate explicitly here whether we are concerned with 

a plane surface. 
11 Idem. 
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ence surface for the position was fixed for the first surface, whereas it is 
moving for this latter surface, and that the surface of known position 
moves with a motion equal to its motion and in the direction of its motion. 
A surface of known position with respect to a moving surface is thus one 
which encloses a known angle with the moving surface, at the intersection 
between the two surfaces, or one which encloses a known angle at its 
intersection with the surface that is perpendicular to it and perpendicular to 
the moving surface, if the moving surface moves with a motion equal to the 
motion of the reference surface for its position, and in the direction of its 
motion. 

As for the known concerned with ratios of magnitudes of surfaces the 
one to the other, there are two notions; one is the figure of the two surfaces, 
one of which is referred to the other, the second is the quantity of each of 
the two surfaces, that is to say the area of each of them. In fact, for two 
arbitrary surfaces, one does not necessarily have a ratio to the other, and 
there is not necessarily a ratio between the two surfaces, except if they are 
of the same species and if the notion that constitutes their essence is the 
same, as for two plane surfaces or two spherical surfaces from the same 
sphere or from two equal spheres. It is for these two species of surface only 
that there can be ratios between magnitudes of the individuals belonging to 
them. The known for two plane surfaces or spherical [ones] of the same 
species, whose ratio one to another is known, is thus the magnitude of each 
of the two surfaces – if each of them is known – or the magnitude of each 
of two surfaces of known magnitude, whose ratio one to another is equal to 
the ratio of the two surfaces, whose ratio one to another is known. So two 
surfaces whose ratio one to another is known are two plane or spherical 
surfaces for which the magnitude of each is known; or the magnitude of 
each of two surfaces of known magnitude, whose ratio one to another is 
equal to the ratio of the two known surfaces, one to another. A known ratio 
between two surfaces is one which is between two surfaces of known 
magnitude, because the ratios between known magnitudes do not change; it 
being given that the magnitudes are known, their magnitudes do not change, 
so the magnitude of one does not change when it is measured by the other. 

The known concerned with figures made up of surfaces which meet 
one another, which are solids, are the shapes of surfaces that meet one 
another. So if each of the surfaces that enclose the solid is of known shape, 
then the solid is of known shape. So a solid figure of known shape is one 
which is enclosed by surfaces of known shape, whether each of these sur-
faces is of known magnitude or is not of known magnitude, on condition 
that it preserves its shape. 
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The known concerned with the essence of a solid is that it has three 
dimensions, because this notion is to be found in all solids and does not 
change in any of them. As for the quantity of the length of the solid, of its 
width and of its depth, it changes depending on the solids. Similarly, the 
figures of solids change depending on the solids. So the known concerned 
with the essence of a solid is that it has three dimensions.  

The known concerned with the figure of a solid is the notion that 
constitutes the figure of the solid, that is to say its boundaries which are the 
surfaces that enclose it. So a solid of known figure is one for which the 
surface or the surfaces which enclose it are of known figure.  

The known concerned with magnitudes of solids is the quantity of the 
volume of the solid, if the quantity of the volume of the solid does not 
change, either by increasing or by decreasing. So a solid of known magni-
tude is one such that the quantity of its volume does not change. 

The known concerned with positions of solids with respect to fixed 
points or to one fixed point, or to a point or points that move, to a fixed 
straight line or to a moving straight line, to a fixed surface or to a moving 
surface, is the positions of the surfaces of the solids with respect to these 
things, so it is the positions of the surfaces which we have already dis-
cussed, because if the position of the surface of the solid is known, that is 
to say that it does not change, then the position of the solid does not change. 
So a solid of known position is one whose surface or surfaces are of known 
position, whatever thing it is to which the position has been referred. 

The known concerned with ratios of magnitudes of solids one to 
another, is thus the magnitude of each of the two solids, one of which bears 
a ratio to the other, if each of them is known, or it is the magnitude of each 
of two solids of known magnitude, whose ratio one to another is equal to 
the ratio of the two solids whose ratio one to another is known. 

The known concerned with the essence of a weight is the force that 
moves [it] towards the centre of the Universe, because that notion does not 
change for any weight. It is this force which is called weight. 

The known concerned with magnitudes of weights is the quantity of 
the weight. But the quantity of the weight is known by its ratio to the size 
of the measure12 by which the size of weights is measured is known: the 
raṭl, the manā, the mithqāl and the weight of darāhim13 and things like 
them. If the ratio of the quantity of the weight to the size of the weight of 
the measure is a known ratio, then the magnitude of the weight is known, 

 
12 Measure (miqyās): a unit chosen for measuring weight. 
13 raṭl = 144 dirham = 450 gr.; manā = 2 raṭl = 2,130 dirham = 812,5 gr.; mithqāl 

= 4,464 gr.; dirham = 3,125 gr. See Walther Hinz, Islamische Masse und Gewichte 
umgerechnet ins metrische System, Leiden, 1955. 
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as it does not change because of the fact that the weight of the measure 
does not change and the known ratio does not change; so this ratio is a 
numerical ratio. Now, we have proved earlier how a numerical ratio is 
known. But the ratios of weights can be non-numerical ratios, these are the 
irrational ratios which are ratios of an actual weight that does not change to 
an actual weight that does not change, without either of the two weights 
having a [numerical] ratio to the measure. It remains that what we use for 
weights is only a numerical ratio. So a weight of known magnitude is one 
for which the ratio of its quantity to the size of the weight of the measure is 
a known ratio. 

The known concerned with ratios of magnitudes of weights one to 
another is the quantity of each of the two weights, one of which is com-
pared with the other, if each of them is of known magnitude, or it is the 
magnitude of each of the two weights of known magnitude, whose ratio to 
one another is equal to the ratio of the two weights whose ratio one to 
another is known. 

The known concerned with the essence of time is the interval that 
elapses between two instants, because the essence of the interval does not 
change for arbitrary times, but it is the magnitudes of the times which 
differ. 

The known concerned with the magnitude of time, that is the quantity 
of time, and the quantity of time is known in relation to the motion of the 
celestial sphere, because the revolution14 of the celestial sphere is the mea-
sure15 by which we measure time. So a time of known magnitude is the 
time whose ratio to the revolution of the celestial sphere is a known ratio.  

The known concerned with ratios of the parts of time one to another is 
the quantity of each of two times, one of which is compared with the other, 
if each of them is of known magnitude; or it is the magnitude of each of 
two times of known magnitude, whose ratio one to another is equal to the 
ratio of the two times whose ratio one to another is known. 

These notions which we have set out are all the knowns which are 
concerned with quantity in a detailed and precise manner. We are not 
aware of any predecessor who has given details of them in this way and 
made them precise in this fashion. These notions are pieces of knowledge 
each of which stands up in its own right and anyone who seeks to under-
stand the sciences that deal in truths needs to know them. These notions are, 
in addition, the rules and premises used to solve mathematical problems; 
the solution of mathematical problems is completed only with their help. 

 
14 In the plural in the original. 
15 The sidereal day, whose duration is that of a revolution of the celestial sphere, is 

taken as the unit of time. 
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For solving these problems, we may need other notions of the same 
kind as those in The Knowns which were not mentioned by Euclid in his 
book devoted to Data, and which were not mentioned by any of [our] 
predecessors. We set them out in this treatise so that this treatise may 
gather together all that has not been mentioned by [our] predecessors 
regarding knowns. 

The notions that we set out now are divided into two parts; one of the 
two parts concerns notions that have not been mentioned by any of [our] 
predecessors, these [predecessors] have not mentioned anything of the 
kind; the second part is of the kind of thing that Euclid mentioned in the 
Data, though without anything about them being mentioned in the book of 
the Data. 

For this let us introduce premises constructed on what we said earlier 
in this book of The Knowns, so that we could use it later on, following the 
premises. 

We have already reminded ourselves that a known ratio is one which is 
between two known magnitudes or two magnitudes in the ratio of two 
known magnitudes. If this is so, then by composition of the separated 
known ratio, it will be known because the known ratio that has been iso-
lated is equal to the ratio of two known magnitudes, one to the other; so by 
composition of the ratio that has been isolated, it will become equal to the 
ratio of the sum of two known magnitudes to one of them. But the sum of 
two known magnitudes is a known magnitude; so by composition of the 
known ratio that has been isolated, it will become equal to the ratio of two 
known magnitudes, one to the other; it is a known ratio. Similarly, by 
separation of a known composed ratio, it will become known, because its 
separation will be equal to the ratio of two known magnitudes composed, if 
they are separated. The same holds for a known ratio, if it is inverted.  

Similarly, if we have a known ratio between two magnitudes and if one 
of the two magnitudes is known, it follows that the other is known, because 
a known ratio is one that exists between two known magnitudes. So the 
ratio of one known magnitude to the other magnitude is equal to the ratio 
of two known magnitudes, one to the other. But the ratio that exists 
between two known magnitudes does not change, thus the ratio of the 
known magnitude to the other magnitude is a ratio that does not change. So 
the second magnitude does not change, because if it changed, the ratio of a 
known magnitude to it would change, because the true nature of a ratio is 
to measure the quantity of a magnitude against the quantity of a magnitude. 
So if the quantity of a known magnitude does not change and its ratio to 
the other magnitude does not change, then the quantity of the other 
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magnitude does not change. Thus, for two magnitudes such that the ratio of 
one to the other is known, if one is known, then the other is known. 

Similarly, if we have two straight lines of known magnitude which 
enclose a known angle, then the straight line which joins their two end-
points is of known magnitude and with each of the two straight lines [it] 
encloses a known angle. Yet it is of known magnitude, since its two end-
points do not change – because they are the endpoints of two straight lines 
of known magnitude – and since the position of one with respect to the 
other does not change. But the line encloses a known angle with each of 
the two straight lines, since the distance to each of the two endpoints from 
each point of the other straight line does not change, accordingly the 
position of the straight line which joins the two endpoints does not change 
with respect to each of the two straight lines, because if the distance from 
each of the endpoints of the straight line to a single point does not change, 
then the distance from each point of the straight line to this point does not 
change. It follows that the position of the straight line that joins the two 
endpoints with respect to each of the two straight lines does not change. So, 
if the position of the straight line that joins the two endpoints does not 
change with respect to each of the two straight lines, then it encloses a 
known angle with each of the two straight lines. It follows also that the 
ratio of the sides of the triangle that is formed, one to another, is known, 
because their magnitudes are known. 

Similarly, we have already reminded ourselves that a straight line 
known in position absolutely is one that does not move with any kind of 
motion, except increasing and decreasing; and that a circular line known in 
position absolutely is one whose centre is known and whose semidiameter 
is known. If this is so, it does not move with any kind of motion. The same 
holds for any line known in position absolutely which does not move with 
any kind of motion. It follows that if two lines known in position abso-
lutely cut one another, then the point of intersection is known in position, 
because it does not undergo displacement, or change, whether the two lines 
are straight, circular, curved or of two different species. 

Similarly, we have already reminded ourselves that a straight line of 
known magnitude is one whose length does not increase or decrease and its 
magnitude does not change. It follows that a straight line known in magni-
tude and in position is one that does not change by any kind of change. 

Similarly, we have already reminded ourselves that a straight line of 
known position with respect to another straight line is one that encloses a 
known angle with the other straight line. 

These notions were proved by Euclid in his book the Data using meth-
ods different from those we have set out here. We have proved them from 
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knowns that we have given earlier in this book, in order that this book shall 
have no need of what Euclid set out in his book the Data. 

Now that we have introduced these premises, let us begin by proving 
the notions that we have decided to include in this book, and which are 
needed for solving the problems, which divide up into two parts, as we 
have shown. 

  
 

FIRST PART 
 
These are the notions that none of the ancients has set out, and they 

have not set out anything of this kind. 
 
– 1 – If from a point of known position we draw a straight line of 

known magnitude, then its endpoint will lie on the circumference of a cir-
cle of known position. 

Example: Let there be a point A of known position; we draw from this 
point the straight line AB which is of known magnitude. 

I say that the point B lies on the circumference of a circle known in 
position. 

 
Fig. II.2.1.1 

 
Proof: Let us make point A a centre and with the distance AB let us 

draw a circle; let the circle be BC. Since the circle BC has a centre known 
in position, the surface of the circle does not move in any way; and since 
the semidiameter of the circle is of known magnitude, the position of its 
circumference does not change in any way. So the circumference of the 
circle BC is known in position, so the point B lies on the circumference of a 
circle known in position, which is the circle BC. This is what we wanted to 
prove. 

 
– 2 – If from the centre of a circle known in magnitude and in position 

we draw, as far as its circumference, a straight line which is then inclined 
at a known angle, and is such that the ratio of the first straight line to the 
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second is known, then the endpoint of the second straight line lies on the 
circumference of a circle of known position. 

Example: Let there be the circle AB, known in magnitude and in posi-
tion, whose centre is C; from the point C we draw the straight line CB 
which is turned to lie along the straight line BD, so that the angle CBD is 
known and the ratio of CB to BD is known.16  

I say that the point D lies on the circumference of a circle of known 
position. 

 
Fig. II.2.1.2 

  
Proof: The circle AB is known in magnitude and in position, so the 

straight line CB is of known magnitude and its ratio to BD is known, so the 
straight line BD is of known magnitude, as has been proved in the premises. 
But since angle DBC is known, the straight line BD is known in position 
with respect to the straight line CB; since the straight line CB is of known 
magnitude, the position of the point B with respect to the point C is a 
known position that does not change; the same holds for the position of the 
point D with respect to the point B. Now, since the position of the point D 
with respect to the point B does not change – that is to say that one does 
not move away from or towards the other – similarly the position of the 
point B with respect to the point C does not change, and the angle CBD 
does not change – that is to say that, with respect to the straight line BC, 
the straight line BD does not incline in any direction – and similarly, with 
respect to the straight line BD, the straight line CB does not turn in any 
direction, then the position of the point D with respect to the point C does 
not change. We join CD; it will be of known magnitude because the 
position of its two endpoints, one with respect to the other, does not change. 
But since the point C is known in position and the straight line CD is of 
known magnitude, the point D will lie on the circumference of a circle 

 
16 In Euclid, Data 51, the triangle CBD is said to be ‘given in species’. 
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known in position, as has been proved in the preceding proposition. We 
make C a centre and with distance CD we draw the circle DE, then it will 
be known in position, and thus the point D will lie on the circumference of 
a circle known in position. This is what we wanted to prove. 

 
– 3 – In the plane of a circle of known magnitude and position, if from 

a known point, that is not its centre, we draw a straight line to meet the 
circumference of the circle and if we extend it so that the ratio of the first 
straight line to the second straight line is known, then the endpoint of the 
second straight line lies on the circumference of a circle known in position. 

Example: Let there be a circle AB known in magnitude and in position, 
and the known point C which is in the plane of the circle, but which is not 
at its centre; from the point C we draw the straight line CA as far as the 
circumference of the circle and we extend it to [the point] D such that the 
ratio of CA to AD is known.  

I say that the point D lies on the circumference of a circle of known 
position. 

 

 
Fig. II.2.1.3 

 
Proof: We mark off the centre of the circle, let it be E, and we join CE; 

it will be of known magnitude because its two endpoints are known. We 
extend it in the direction of E, we join EA in our imagination, and we 
imagine DG parallel to the straight line AE; so the ratio of GD to EA will 
be equal to the ratio of DC to CA and equal to the ratio of GC to CE and 
the ratio of DA to AC will be equal to the ratio of GE to EC. But the ratio 
of DA to AC is known because the ratio of CA to AD is known, so the ratio 
of GE to EC is known; now EC is of known magnitude, so GE is of known 
magnitude and GC is of known magnitude,17 as has been proved in the 
premises, so the ratio of GC to CE is known as has also been proved in the 

 
17 So the point G is known in position. 
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premises. Now the ratio of GC to CE is equal to the ratio of GD to EA, so 
the ratio of GD to EA is known and EA is of known magnitude, so the 
straight line GD is of known magnitude. We make point G a centre and 
with distance GD we draw a circle, let it be the circle DHI; the circle DHI 
is then known in magnitude and in position because its centre is of known 
position and its semidiameter is of known magnitude, so the point D lies on 
the circumference of a circle known in position. This is what we wanted to 
prove. 

Starting out from this proof, we prove that: if an arbitrary straight line 
from the point C cuts two circles AB and HI, then the ratio of its two parts, 
one to the other, is equal to the ratio of the two parts of the straight line CD 
one to the other, because for every straight line [drawn] from the point C 
and which cuts the two circles, if from the two centres E and G we draw 
two straight lines to the two points of intersection, then the ratio of the two 
straight lines drawn from the two centres to the two points of intersection, 
one to the other, is equal to the ratio of GC to CE; these two straight lines 
will thus be parallel,18 and the ratio of the two parts of the straight line 
which cuts the two circles, one to the other, is then equal to the ratio of the 
two parts of the straight line CD one to the other. 

 
– 4 – In the plane of a circle known in magnitude and in position, if 

from a point of known position, which is not the centre, we draw a straight 
line to the circumference of the circle, which is inclined at a known angle, 
in such a way that the ratio of the first straight line to the second is known, 
then the endpoint of the second straight line will lie on the circumference 
of a circle known in position. 

 
Fig. II.2.1.4 

 

 
18 See commentary, pp. 310–12. 
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Example: Let there be a circle AB of known magnitude and position 
whose centre is C, and the point D of known position, DE comes out from 
it and is inclined at a known angle which is the angle DEG, in such a way 
that the ratio of DE to EG is known. 

I say that the point G lies on the circumference of a circle known in 
position. 

Proof: We join DC, it will be known in magnitude and in position 
because its two endpoints are known in position. We make the angle DCH 
equal to the known angle DEG; we make the ratio of DC to CH equal to 
the known ratio of DE to EG and we join the two straight lines CH and DG, 
then the two triangles DCH and DEG are similar, so the angle CDH is 
equal to the angle EDG, so the angle HDG is equal to the angle CDE and 
the ratio of CD to DH is equal to the ratio of ED to DG. But since the 
straight line DC is of known magnitude and position and the angle DCH is 
known, the straight line DH will be known in position. Since the ratio of 
DC to CH is known and the straight line DC is of known magnitude, the 
straight line CH is of known magnitude. Since the two straight lines DC 
and CH are known in magnitude and position, and since the angle DCH is 
known, the straight line DH will be known in magnitude and in position, 
because its two endpoints do not change. We join CE and HG. Since the 
ratio of CD to DH is equal to the ratio of ED to DG, the ratio of CD to DE 
will be equal to the ratio of HD to DG. But the angle CDE is equal to the 
angle HDG, so the triangle CDE is similar to the triangle HDG and the 
ratio of DC to CE is equal to the ratio of DH to HG. But the ratio of CD to 
DE is known, because they are both of known magnitude, so the ratio of 
DH to HG is known. But DH is of known magnitude, so the straight line 
HG is of known magnitude and the point H is known, because it is the 
endpoint of the straight line CH of known magnitude and position. With 
centre H and distance HG let us draw a circle GI, then it will be known in 
magnitude and in position, because its centre is known in position and its 
semidiameter is of known magnitude. So the point G lies on the 
circumference of a circle known in position, which is the circle GI. By this 
same proof, we [can] prove this proposition for the case in which the 
straight line DC passes through the point E. This is what we wanted to 
prove. 

By an analogous proof, we prove that for every straight line from the 
point D which ends on the circumference of the circle AB and which is 
inclined at an angle equal to the angle DEG, in such a way that the ratio of 
the first straight line to the second straight line is equal to the ratio of DE to 
EG, the endpoint of the second straight line will lie on the circumference of 
the circle GI, [at the position] where there is the point E with respect to the 
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circle AB, because the proof of this results in the straight line which joins 
the point H to the endpoint of the second straight line being equal to the 
straight line HG. It necessarily follows that, for every straight line from the 
point D which ends on the circumference of the circle AB, a straight line 
which is inclined at an angle equal to the angle DEG and which ends on the 
circle GI, the ratio of the two straight lines, one to the other, will always be 
equal to the known ratio of DE to EG. 

 
– 5 – If, from a point of known position, we draw to a straight line 

known in position a straight line which is inclined at a known angle, in 
such a way that the ratio of the first straight line to the second is known, 
then the endpoint of the second straight line will lie on a straight line 
known in position. 

Example: Let there be a point A of known position and the straight line 
BC of known position; from the point A we draw the straight line AD 
which is inclined at a known angle, say the angle ADE, so that the ratio of 
AD to DE is a known ratio.  

I say that the point E lies on a straight line known in position. 

 
Fig. II.2.1.5 

 
Proof: From the point A we draw a perpendicular to the straight line 

BC, let it be AG. Since the straight line BC is known in position and the 
point A is known in position, the distances between the point A and each 
point of the straight line BC do not change and the straight line AG is the 
shortest distance between the point A and the straight line BC, so the 
straight line AG does not change and the point G does not change; so the 
straight line AG is of known magnitude, because it does not change. Now, 
the point A is known in position, the straight line AG does not change and 
the point G does not change, so the straight line AG is known in magnitude 
and in position. We make the angle AGK equal to the angle ADE and we 
make the ratio of AG to GK equal to the known ratio of AD to DE, then the 
straight line GK is of known magnitude because AG is of known magnitude. 
Now, since the angle AGK is known, the straight line GK is known in 
position because the straight line AG is known in position – in fact if the 
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position of the straight line GK changed, the angle KGA would change – so 
the straight line GK is known in magnitude and in position. So the point K 
does not change and the point A does not change. We join AK, it will be 
known in magnitude and in position and the angle GAK will be known, as 
has been proved in the premises. We join AE. Since the ratio of AG to GK 
is equal to the ratio of AD to DE and the angle AGK is equal to the angle 
ADE, the triangle ADE will be similar to the triangle AGK. So their angles 
are equal, so the angle DAE is equal to the angle GAK and the ratio of DA 
to AE is equal to the ratio of GA to AK. We join KE. Since the angle DAE 
is equal to the angle GAK, the angle GAD is equal to the angle KAE. Since 
the ratio of GA to AK is equal to the ratio of DA to AE, the ratio of GA to 
AD is equal to the ratio of KA to AE. Since the angle GAD is equal to the 
angle KAE and the ratio of GA to AD is equal to the ratio of KA to AE, the 
triangle KAE is similar to the triangle GAD. So the angle AKE is equal to 
the angle AGD; but the angle AGD is a right angle, so the angle AKE is a 
right angle. But the straight line AK is known in magnitude and in position 
and the angle AKE is a right angle, so the straight line KE is known in 
position – in fact, if its position changed, the right angle would change; but 
since the angle is a right angle, the position of the straight line KE does not 
change. So the straight line KE is known in position and the point E lies on 
the straight line KE, so the point E lies on a straight line known in position, 
which is the straight line KE. This is what we wanted to prove. 

 
– 6 – If, from two points known in position, we draw two straight lines 

which meet one another in a point and which, at this point, enclose a 
known angle, then this point lies on the circumference of a circle known in 
magnitude and in position. 

Example: Let there be two points A and B known in position, from 
which we draw two straight lines AC and BC, in such a way that the angle 
ACB is known. 

I say that the point C lies on the circumference of a circle known in 
magnitude and in position. 

 

 
Fig. II.2.1.6 
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Proof: We join AB and we imagine a circle circumscribed about the 
triangle ACB, let the circle be ACB; and let its centre be D. We join AD and 
BD, then the angle ADB is known, because it is double the angle ACB; 
there remain the two known angles DAB and DBA which are equal because 
the two straight lines AD and BD are equal, so the angle BAD is known and 
the straight line AB is known in magnitude and in position because its two 
endpoints are known. So the straight line AD is known in position because 
its point A is known and the angle BAD is known – if its position changed, 
the angle BAD would change. Similarly, we [can] prove that the straight 
line BD is known in position, so each of the straight lines AD and BD is 
known; neither of the two straight lines AD and BD moves with any kind of 
motion; the point D, which is the point of intersection, thus does not 
change in any way;19 so the point D is known in position and the point A is 
known in position, so the straight line AD is known in magnitude, and the 
straight line BD is also. So each of the two straight lines DA and BD is 
known in magnitude and in position and the point D is the centre of the 
circle ACB. So the circle ACB is known in magnitude and in position and 
the point C lies on the circumference of this circle. So the point C lies on 
the circumference of a circle known in magnitude and in position, which is 
ACB. This is what we wanted to prove. 

 
– 7 – If, from two points known in position, we draw two straight lines 

which meet one another in a point and which enclose a known angle, if we 
then extend one of the two straight lines in such a way that the ratio of the 
first straight line to its extended part is a known ratio, then the endpoint of 
the second straight line lies on the circumference of a circle known in posi-
tion. 

 
Fig. II.2.1.7 

 
19 Ibn al-Haytham insists on the fact that the position of D is the same irrespective 

of the point C that is proposed as a solution of the problem. 
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Example: Let there be the two points A and B known in position, from 
which we draw two straight lines AC and BC which meet one another at the 
point C, in such a way that the angle ACB is known. We then extend the 
straight line AC to D in such a way that the ratio of AC to CD is a known 
ratio. 

I say that the point D lies on the circumference of a circle known in 
position. 

Proof: We join AB, thus it will be of known magnitude and position 
because its endpoints are known; we extend it in the direction of B to E and 
we make the ratio of AB to BE equal to the known ratio of AC to CD; BE 
will thus be known in magnitude. But it is known in position because it lies 
on the extension of the straight line AB, known in position. So the whole 
straight line AE is known in magnitude and in position; its endpoints, 
which are A and E, are known. We join DE, thus it is parallel to the straight 
line CB because the ratio of AB to BE is equal to the ratio of AC to CD. So 
the angle ADE is equal to the known angle ACB, so the angle ADE is 
known. So, from the two points A and E known in position, we have drawn 
the two straight lines AD and ED which enclose a known angle, which is 
the angle ADE. So the point D lies on the circumference of a circle known 
in position, as has been proved in the preceding proposition. This is what 
we wanted to prove. 

 
– 8 – If, from two points known in position, we draw two straight lines 

which meet one another in a point, in such a way that they are equal, then 
the point where they meet lies on a straight line known in position. 

Example: Let there be the two points A and B known in position, for 
which we draw the two straight lines AC and BC which meet one another at 
the point C in such a way that they are equal.  

I say that the point C lies on a straight line known in position. 

 
Fig. II.2.1.8 

 
Proof: We join the straight line AB, thus it will be known in magnitude 

and in position because its two endpoints do not change. Let us divide it 
into two halves at the point D; so the point D is known because it does not 
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change. We join CD. Since the two straight lines AD and DC are 
<respectively> equal to the two straight lines BD and DC and the base AC 
is equal to the base BC, accordingly the angle ADC is equal to the angle 
BDC, so they are right angles. So the straight line DC is known in position, 
because the two angles which are on either side of this straight line do not 
change; and the point D does not change, so the point C lies on a straight 
line known in position, which is the straight line DC. This is what we 
wanted to prove. 

 
– 9 – If, from two points of known position, we draw two straight lines 

which meet one another in a point, in such a way that the ratio of one to the 
other is known and there is a ratio of a greater to a smaller, then the point 
where they meet lies on the circumference of a circle known in position. 

Example: Let there be the two points A and B known in position, from 
which we draw the two straight lines AC and BC which meet one another at 
the point C, in such a way that the ratio of AC to CB is known, and it is a 
ratio of a greater to a smaller. 

I say that the point C lies on the circumference of a circle known in 
position. 

 
Fig. II.2.1.9 

 
Proof: We join AB and we extend it in the direction of B to D; we 

imagine AC extended in the direction of C to G and we imagine the angle 
ACE equal to the angle CBD. Since AC is greater than CB, the angle CBA 
will be greater than the angle CAB; now, since the angle ACE is equal to 
the angle CBD, the angle ECG is equal to the angle CBA, so the angle ECG 
is greater than the angle CAB; now the angle ACE is common, so <the 
sum> of the two angles ECG and ACE is greater than <the sum> of the two 
angles CAB and ACE; now <the sum> of the angles ECG and ACE is equal 
to two right angles, so the two angles CAB and ACE <have a sum> less 
than two right angles, so the two straight lines AB and CE meet; let them 
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meet at the point D. Thus, the two triangles ACD and CBD are similar 
because the angle ACD is equal to the angle CBD and the angle CDB is 
common, and there remains the angle CAD [which is] equal to the angle 
BCD. So the ratio of AD to DC is equal to the ratio of CD to DB and is 
equal to the ratio of AC to CB. But the ratio of AC to CB is known, so the 
ratio of AD to DC is known and the ratio of CD to DB is known. But the 
ratio of AD to DB is equal to the ratio of the square of AD to the square of 
DC, and the ratio of the square of AD to the square of DC is known, 
because the ratio of AD to DC is known, so the ratio of AD to DB is known. 
We make DH equal to DC, then the ratio of AD to DH is known, the ratio 
of HD to DB is known, and there remains the ratio of AH to HB [which is] 
known. But since the ratio of AD to DB is known, the ratio of AB to BD is 
known; but AB is of known magnitude, so the straight line BD is of known 
magnitude; now point B on it is known, so the point D is known. Since the 
ratio of AD to DH is known and AD is of known magnitude, accordingly 
DH is of known magnitude. But DH is equal to DC. We make D a centre 
and with distance DH we draw a circle, so it passes through the point C; let 
the circle be HCI. So the circle HCI is known in magnitude and in position 
because its centre is known in position, being the point D, and its 
semidiameter is of known magnitude, being the straight line DH. So the 
point C lies on the circumference of a circle known in position, which is 
the circle HCI. This is what we wanted to prove. 

Starting out from this proof, we prove that for two straight lines from 
two points A and B, which meet in a point that lies on the circumference of 
the circle HCI, the ratio of one to the other is equal to the ratio of AC to 
CB; and this because if, from the two points A and B, we draw two straight 
lines which meet one another in [D], an arbitrary point on the circumfer-
ence of the circle HCI and if, from the point D, we then draw a straight line 
to this point, two triangles are formed whose [common] vertex is this point, 
and which are such that the ratio of AD to the straight line extended from 
the point D to this point is equal to the ratio of this straight line to the 
straight line DC. Accordingly, the two triangles are similar and the ratio of 
one of the straight lines to the other is equal to the ratio of AD to DH which 
is equal to the ratio of AC to CB. So for two straight lines drawn from the 
two points A and B and which meet one another in a point on the 
circumference of the circle HCI, the ratio of one to the other is equal to the 
ratio of AC to CB.  

 
– 10 – If, from two points of known position, we draw two straight 

lines which meet one another in a point, and if we join the two points with 
a straight line in such a way that the triangle that is formed is of known 
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magnitude, then the point where they meet lies on a straight line known in 
position. 

Example: Let there be two points A and B, known in position, from 
which we draw the two straight lines AC and BC which meet at the point C, 
in such a way that the triangle ACB is of known magnitude.  

I say that the point C lies on a straight line known in position.20 

 
Fig. II.2.1.10 

 
Proof: We join AB, it will be of known magnitude, and we draw the 

straight line AD at a right angle [to AB]; so the straight line AD is known in 
position because the angle BAD does not change and its point A does not 
change. We make the area enclosed by these two straight lines BA and AD 
equal to double the triangle ACB of known magnitude; this is possible. So 
AD will be of known magnitude, because if its magnitude changed, the area 
enclosed by the two straight lines BA and AD would change; but this area 
does not change, because it is of known magnitude. So the straight line AD 
is known in magnitude and known in position, and its point A is known, so 
the point D is known. We join BD, so the triangle BDA is known in 
magnitude and it is equal to the triangle ACB. We join DC, so it will be 
parallel to the straight line AB because the two triangles ACB and ADB are 
equal and their two bases are equal,21 thus the angle ADC is a right angle, 
the straight line AD is known in magnitude and in position and its point D 
is known; so the straight line DC is known in position and the point C lies 
on a straight line known in position. This is what we wanted to prove. 

 
– 11 – If, between two equal circles, we draw a straight line parallel to 

the one that joins the centres of these two circles, in such a way that its 
endpoints are in two similar directions,22 then this straight line is equal to 
the straight line between the two centres. 

 
20 Two straight lines parallel to AB provide a solution to the problem. 
21 Euclid, Elements, I.39. 
22 If a parallel to the line of centres cuts the circles, it cuts each of them in two 

points. With each of the two points of the first circle we can associate one or other of 
the two points of the second, and consequently two segments. Ibn al-Haytham makes it 
precise how to choose which points to associate. 
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Example: Let there be the two circles AB and CD whose centres are E 
and G; we join EG and we draw the straight line BC parallel to the straight 
line EG. 

I say that the straight line BC is equal to the straight line EG. 
 

 
Fig. II.2.1.11 

 
Proof: We join the two straight lines EB and GC, they will be equal; 

we erect the two perpendiculars EI and GH, they will be equal and parallel. 
But the two straight lines EB and GC are equal and are in two similar 
directions with respect to the two perpendiculars EI and GH; so they are 
parallel, because the two triangles BEI and CGH are equal, so the angle 
EBI is equal to the angle GCH,23 and the straight line BI will be equal to 
the straight line CH; IC is common, so the straight line BC is equal to the 
straight line IH; but the straight line IH is equal to the straight line EG, so 
the straight line BC is equal to the straight line EG. This is what we wanted 
to prove. 

 
– 12 – If, between two equal circles known in magnitude and in posi-

tion, we draw a straight line parallel to the straight line that joins their cen-
tres; if we then extend it in one of the two directions and if we put its ratio 
to the extended part, a known ratio, then the endpoint of the second straight 
line lies on the circumference of a circle known in position. 

Example: Let there be two equal circles AB and CD, known in magni-
tude and in position, and let their centres be E and G; we join EG, we draw 
the straight line AC parallel to the straight line EG and we extend it to I, in 
such a way that the ratio of AC to CI is a known ratio. 

I say that the point I lies on the circumference of a circle known in 
magnitude and in position. 

 
23 The following gloss is found in the margin of manuscript [B]: ‘Known from the 

proof of Proposition 7 of Book VI of the Elements’. 
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Fig. II.2.1.12 

 
Proof: We extend the straight line EG and we put the ratio of EG to 

GH equal to the known ratio of AC to CI. So the straight line GH will be 
known in magnitude because the straight line EG is known in magnitude, 
from what has been proved in the premises. Now the point G is known, so 
the point H is known. We join HI and GC. Since AC is parallel to the 
straight line EG and it is equal to it, and since the ratio of AC to CI is equal 
to the ratio of EG to GH, the straight line CI is equal to the straight line GH 
and it is parallel to it, so the straight line HI is equal to the straight line GC 
and is parallel to it. But the straight line GC is known in magnitude, so the 
straight line IH is known in magnitude and the point H is known. We take 
H as a centre and with distance HI we draw the circle IK; it will be known 
in magnitude and in position, so the point I will lie on the circumference of 
a circle known in magnitude and in position, which is the circle IK. This is 
what we wanted to prove. 

 
– 13 – If, from a known point, we draw to a straight line known in 

magnitude and in position a straight line which cuts it, [and] if we then 
extend it in such a way that the ratio of the first straight line to the second 
straight line is equal to the ratio of the two parts of the straight line known 
in magnitude and in position, then the endpoint of the second straight line 
lies on a straight line known in position. 

 
Fig. II.2.1.13 

 
Example: Let there be a straight line AB known in magnitude and in 

position and a known point C; from the point C, we draw to the straight 
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line AB the straight line CD, which we extend to E in such a way that the 
ratio of CD to DE is equal to the ratio of AD to DB.  

I say that the point E lies on a straight line known in position. 
Proof: We join AC, it is known in magnitude and in position. We join 

BE. Since the ratio of CD to DE is equal to the ratio of AD to DB,24 the 
straight line BE is parallel to the straight line AC. But the straight line AC is 
known in magnitude and in position and the straight line AB is known in 
position, so the angle CAB is known and it is equal to the angle ABE, so the 
angle ABE is known. Now, the straight line AB is known in position and its 
point B is known, so the straight line BE is known in position and the point 
E lies on a straight line known in position, which is the straight line BE. 
This is what we wanted to prove. 

 
– 14 – If, from a known point, we draw to a straight line known in 

magnitude and in position a straight line which cuts it; if we then extend 
this straight line, in such a way that the product of the first part and the 
second is equal to the product of the two parts of the straight line known in 
magnitude and in position, one with the other, then the endpoint of the 
second straight line lies on the circumference of a circle known in position. 

Example: Let there be the straight line AB known in magnitude and in 
position, and the known point C; from the point C we draw the straight line 
CD which we extend to E, in such a way that the product of CD and DE is 
equal to the product of AD and DB. 

I say that the point E lies on the circumference of a circle known in 
position. 

 
Fig. II.2.1.14 

 
Proof: We join AC, CB and AE; the ratio of CD to DB is equal to the 

ratio of AD to DE and the two angles at the point D are equal, so the two 

 
24 The following gloss is found in the margin of manuscript [B]: ‘the two angles at 

D are equal, so the two triangles are similar from the Proof 6 of <Book> VI of the 
Elements, so the angle A is equal to the angle B’. 
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triangles AED and CBD are similar and the angle AEC is equal to the angle 
CBD. We draw a circle to circumscribe the triangle ABC, thus it passes 
through the point E; let the circle be ACBE. Since the two points A and C 
are known, the straight line AC is known in magnitude and in position; and 
since the points A, B and C are known, the angle ABC is known; but since 
the angle ABC is known and the two points A and C are known, the circle 
ACBE is known in magnitude and in position, as has been proved in 
Proposition 6 of this treatise. So the point E lies on the circumference of a 
circle known in magnitude and in position. This is what we wanted to 
prove. 

 
– 15 – If from two known points we draw two straight lines to a circle 

known in magnitude and in position, if they cut one another in a point 
inside the circle and if they are extended to end on the circumference of the 
circle, in such a way that the product of the two parts of one of the two 
straight lines, one with the other, is equal to the product of the two parts of 
the other straight line, one with the other; if, with a straight line, we join 
the first two points in which the two straight lines cut the circle, then this 
straight line is parallel to the straight line that joins the first two points. 

Example: Let there be two points A and B known in position and the 
circle CDEG known in magnitude and in position; from the two points A 
and B we draw two straight lines ACHG and BDHE which cut one another 
at the point H – the point H being inside the circle – in such a way that the 
product of AH and HG is equal to the product of BH and HE. We join CD 
and AB. 

I say that the straight line CD is parallel to the straight line AB. 

 
Fig. II.2.1.15 

 
Proof: The product of AH and HG is equal to the product of BH and 

HE, so the ratio of AH to HB is equal to the ratio of EH to HG. But the 
product of CH and HG is equal to the product of DH and HE,25 so the ratio 
of EH to HG is equal to the ratio of CH to HD. In consequence, the ratio of 
AH to HB is equal to the ratio of CH to HD, the triangle AHB is thus 

 
25 The power of a point inside a circle (Euclid, Elements, III.35). 
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similar to the triangle CHD, so their angles are equal, so the straight line 
CD is parallel to the straight line AB. This is what we wanted to prove. 

 
– 16 – If from two known points we draw two straight lines to <the 

circumference of> a known circle, if they cut one another in a point inside 
the circle and if, at the point of intersection, they divide one another in the 
same ratio, then the first two points in which the two straight lines cut the 
circle lie on the circumference of a circle that passes through the two 
known points. 

Example: Let there be two points A and B from which we draw, to a 
circle CDGE, the two straight lines ACHG and BDHE, which cut one 
another at the point H, in such a way that the ratio of AH to HG is equal to 
the ratio of BH to HE. 

I say that the two points C and D lie on the circumference of a circle 
which passes through the two points A and B. 

 
Fig. II.2.1.16 

 
Proof: We join AD and BC. Since the ratio of AH to HG is equal to the 

ratio of BH to HE, the ratio of AH to HB is equal to the ratio of GH to HE. 
But the ratio of GH to HE is equal to the ratio of DH to HC because the 
product of CH and HG is equal to the product of DH and HE, so the ratio 
of AH to HB is equal to the ratio of DH to HC. Now, the angle AHB is 
common to the two triangles AHD and BHC, so the two triangles AHD and 
BHC are similar and the angle HDA is equal to the angle HCB; so the angle 
ADB is equal to the angle ACB. We imagine a circle circumscribed about 
the triangle ACB, it passes through the point D, let the circle be ACDB. The 
two points C and D lie on the circumference of a circle that passes through 
the two points A and B. This is what we wanted to prove.  

 
– 17 – If from two points known in position we draw two straight lines 

to a circle known in magnitude and in position, if they meet one another on 
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the circumference of the circle, if they also reach as far as the circumfer-
ence of the circle and if they divide one another in the same ratio, then the 
ratio of the product of one of the two straight lines and the part of it that 
lies inside the circle to the product of the other straight line and the part of 
it that lies inside the circle is a known ratio.26 

Example: Let there be two known points A and B and the circle CDE 
known in magnitude and in position; from the two points A and B we draw 
the two straight lines ACD and BCE which cut one another at the point C, 
in such a way that the ratio of AC to CD is equal to the ratio of BC to CE.  

I say that either the product of AD and DC is equal to the product of 
BE and EC or its ratio to it is a known ratio. 

 
Fig. II.2.1.17 

 
Proof: The point A is known and the circle is known in magnitude and 

in position, so the straight line drawn from the point A to the centre of the 
circle CDE and which ends on its circumference is known in magnitude 
and in position and the part of it that lies outside the circle is of known 
magnitude because its point of intersection with the circumference of the 
circle is known; the product of the whole straight line and the part of it that 
lies inside the circle is thus known, since it is enclosed27 by two known 
straight lines. But the product of this straight line and the part of it that lies 
outside the circle is equal to the product of DA and AC, so the product of 
DA and AC is known. Similarly, we [can] prove that the product of EB and 
BC is known. So these two products28 are known. Either they are equal, or 
the ratio of one to the other is known. So the ratio of AC to CB is equal to 
the ratio of EB to AD or to a straight line whose ratio to AD is known. But 
the ratio of AC to CB is equal to the ratio of DC to CE, so the ratio of DC 

 
26 The text seems to assume that the given points lie outside the circle. 
27 The product of the lengths of two segments is the area of the rectangle 

‘enclosed’ by the two segments. 
28 Lit.: surfaces. 
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to CE is equal to the ratio of EB to AD or to a straight line whose ratio to 
AD is known. If the ratio of DC to CE is equal to the ratio of EB to AD, 
then the product of AD and DC is equal to the product of BE and EC; if it is 
equal to the ratio of EB to a straight line whose ratio to AD is known, then 
the ratio of the product of AD and DC to the product of BE and EC is 
known. This is what we wanted to prove. 

 
– 18 – For two known circles that are tangent, one inside the other, if 

we draw a straight line that cuts the two circles in whatever way, and if we 
join the point of intersection of the smaller circle to the point of contact 
with a straight line, then the ratio of the product of the two parts of the 
straight line that cuts the greater circle, one with the other, to the square of 
the straight line that joins the point of intersection and the point of contact, 
is known. 

Example: Let there be two circles ABC and ADE tangent at the point A; 
we draw the straight line BDG which cuts the two circles and we join AD. 

I say that the ratio of the product of BD and DG to the square of DA is 
known. 

 
Fig. II.2.1.18 

 
Proof: We draw the common diameter to the two circles, let the 

diameter be AEC; we extend AD to H and we join DE and HC. The two 
angles ADE and AHC are right angles, so the straight line DE is parallel to 
the straight line CH. So the ratio of HD to DA will be equal to the ratio of 
CE to EA. But the ratio of HD to DA is equal to the ratio of the product of 
HD and DA to the square of DA, so the ratio of the product of HD and DA 
to the square of DA is equal to the ratio of CE to EA. But the product of 
HD and DA is equal to the product of BD and DG, so the ratio of the 
product of BD and DG to the square of DA is equal to the ratio of CE to EA. 
Now the ratio of CE to EA is known because each of them is known. So the 
ratio of the product of BD and DG to the square of DA is known. This is 
what we wanted to prove. 
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And at this point it becomes clear that if a straight line is drawn from a 
point of contact and if it cuts the two circles, then it is divided by the 
smaller circle in a known ratio, let it be the ratio of AE to EC. 

 
– 19 – For two known circles tangent internally, if we draw a straight 

line touching the smaller circle, which ends on the greater circle, and if we 
draw a straight line from the point of contact of the two circles to the end-
point of the tangent straight line, then its ratio to the tangent straight line is 
known. 

Example: Let there be two circles ABC and ADG tangent at the point A; 
we draw the straight line DB tangent to the smaller circle and we join AEB. 

I say that the ratio of AB to BD is known. 
 

 
Fig. II.2.1.19 

 
Proof: We draw the common diameter, which is AGC, thus the ratio of 

AG to GC is known and is equal to the ratio of AE to EB,29 so the ratio of 
AE to EB is a known ratio. So the ratio of AB to BE is known and the ratio 
of the square of AB to the product of AB and BE is known. But the product 
of AB and BE is the square of BD, so the ratio of the square of AB to the 
square of BD is known and is equal to the known ratio of AC to CG; so the 
ratio of AB to BD is known. This is what we wanted to prove. 

If we draw BD in the other direction to H and if we join AH, we [can] 
prove, as has been shown earlier, that the ratio of AH to HD is known, that 
the ratio of the square of AH to the square of HD is equal to the ratio of AC 
to CG, and thus that the ratio of AB to BD is equal to the ratio of AH to HD. 
This is what we wanted to prove. 

Starting from this, we prove that the ratio of the sum of the two straight 
lines BA and AH to the straight line BH is known.  

 
– 20 – Let us draw the circle again. We draw the straight line BDH tan-

gent to the smaller circle, we join AD and we extend it to I. 
I say that the point I divides the arc BIH into two halves. 
 
29 From the comment made at the end of Proposition 18. 
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Fig. II.2.1.20 

 
Proof: We join AB and AH; then the ratio of AB to BD is equal to the 

ratio of AH to HD. By permutation, the ratio of BA to AH will then be 
equal to the ratio of BD to DH. So the straight line AD has divided the 
angle BAD into two halves, so the angle BAD is equal to the angle DAH 
and the arc BI is equal to the arc IH. This is what we wanted to prove. 

 
– 21 – Let there be two known circles tangents internally; if from their 

point of contact we draw the common diameter and if from the endpoint of 
the diameter on the smaller circle we draw a straight line which cuts the 
smaller circle, then it is divided into two parts such that the product of one 
and the other plus a square, whose ratio to the square of the straight line 
inside the smaller circle is a known ratio, is known in magnitude. 

 

 
Fig. II.2.1.21 
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Example: Let there be two circles ABC and ADE tangent at the point A; 
we draw the diameter AEC and from the point E we draw the straight line 
EDBG. 

I say that the product of GD and DB plus a square, whose ratio to the 
square of DE is known, is known in magnitude. 

Proof: We join AD; then the ratio of the product of GD and DB to the 
square of DA is equal to the known ratio of CE to EA. Let the ratio of the 
square of the straight line H to the square of the straight line DE be equal to 
the ratio of CE to EA; the ratio of the product of GD and DB, plus the 
square of H, to <the sum> of the squares of AD and DE is thus equal to the 
ratio of CE to EA. But <the sum> of the two squares of AD and DE is equal 
to the square of AE because the angle ADE is a right angle. So the ratio of 
the product of GD and DB, plus the square of H, to the square of AE is 
equal to the ratio of CE to EA which is equal to the ratio of the product of 
CE and EA to the square of EA, so the product of GD and DB, plus the 
square of H, is equal to the product of CE and EA which is known. But the 
ratio of the square of H to the square of DE is known, because it is equal to 
the ratio of CE to EA. The product of GD and DB plus a square, whose 
ratio to the square of DE is known, is thus known in magnitude. This is 
what we wanted to prove. 

 
– 22 – If in a circle known in magnitude and in position, we draw a 

diameter known in position on which we take two points on either side of 
the centre, such that their distances to the centre are two equal distances, 
and if from these two points we draw two arbitrary straight lines that meet 
one another in a point on the circumference of the circle, then the sum of 
their two squares is known and is equal to the sum of the squares of the two 
parts of the diameter. 

 
Fig. II.2.1.22 

 
Example: Let there be a circle ABC known in magnitude and in posi-

tion, in which we draw the diameter AC known in position; let its centre be 
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G; on the diameter we take two points E and D, we put EG equal to DG 
and we draw the two straight lines EB and DB. 

I say that the sum of the squares of the two straight lines EB and DB is 
equal to the sum of the squares of the two known straight lines AD and DC. 

Proof: On the straight line ED we draw a semicircle; let the semicircle 
be HI; let it cut the two straight lines at the points H and I.30 We join EI, 
DH and we draw the perpendicular BK. Since the arc EHID is a semicircle, 
the angle EHD is a right angle and the angle EID is a right angle. But since 
BK is perpendicular, the angle BKD is a right angle, so the circle circum-
scribed about the triangle BKD passes through the point H. So the product 
of DE and EK is equal to the product of BE and EH. But since each of the 
angles BKE and BIE is a right angle, the circle circumscribed about the 
triangle BKE passes through the point I, so the product of BD and DI is 
equal to the product of ED and DK, so the square of ED is equal to the 
product of BE and EH, plus the product of BD and DI. We extend BD to L 
and we draw the perpendicular GM, then M divides DI into two halves and 
divides BL into two halves. So the straight line BI is equal to the straight 
line DL and the product of DB and BI is equal to the product of BD and DL. 
But the product of BD and DL is equal to the product of AD and DC. So the 
product of DB and BI is equal to the product of AD and DC. But the 
product of EB and BH is equal to the product of DB and BI. The product of 
EB and BH, plus the product of DB and BI, is thus equal to twice the 
product of AD and DC. The sum of the products31 of BE and EH, of BD 
and DI, of DB and BI and of EB and BH is equal to the square of ED, plus 
twice the product of AD and DC. But the sum of these four products32 is 
the sum of the squares of EB and of DB. So the sum of the squares of EB 
and DB is equal to the square of ED, plus twice the product of AD and 
DC.33 Twice the product of AD and DC is equal to twice the product of EC 
and CD. But twice the product of EC and CD, plus the square of ED, is 
equal to the square of EC, plus the square of CD which is equal to the 
square of AD, plus the square of DC. So the sum of the squares of EB and 
BD is equal to the sum of the squares of AD and DC which are known. 
This is what we wanted to prove.  

Whatever the position we have given to the two straight lines EB and 
DB, the sum of their squares is equal to the sum of the squares of the two 

 
30 The points H and I do not need to lie on the same semicircle of diameter ED. 

The argument remains valid. 
31 Lit.: surfaces (suṭūḥ). 
32 Lit.: surfaces. 
33 The following gloss appears in the margin in manuscript [B]: ‘But, by Proof 7 of 

<Book> II of the Elements’.  
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parts of the diameter, and the proof for all positions is the one that we have 
set out and differs only in regard to differences in the position of the two 
points H and I. It is in fact possible for one of the two straight lines EB and 
BD to be a tangent to the smaller circle at the endpoint of its diameter or to 
cut the other half of the semicircle of the smaller circle. For each of these 
positions, the sum of the squares of the two straight lines EB and DB will 
be equal to the sum of the squares of the two parts of the diameter. 

 
– 23 – If from two points we draw two straight lines which meet in a 

point and enclose an acute angle in such a way that the sum of their squares 
is known, then the point where they meet lies on the circumference of a 
circle known in magnitude and in position. 

Example: From two points A and B we draw two straight lines AC and 
BC which meet one another at the point C and which enclose an acute 
angle that is the angle ACB, and are such that the sum of their squares is 
known. 

I say that the point C lies on the circumference of a circle known in 
magnitude and in position. 

 
Fig. II.2.1.23 

 
Proof: We join AB; it is known and its square will be smaller than the 

sum of the squares of AC and CB because the angle ACB is acute; the 
excess <of the sum> of the squares of AC and CB over the square of AB is 
known. We put twice the product of AE and EB equal to the excess <of the 
sum> of the squares of AC and CB over the square of AB. We put AG equal 
to BE and on GE as diameter we draw a circle; let it be the circle GHE. 

I say that the circle GHE passes through the point C. 
If it does not pass through the point C, then we divide the angle ACB 

into two halves with the straight line CI. We extend IC to H and we join 
AH and HB, then the [sum of the] squares of AH and HB exceeds the 
square of AB by twice the product of AE and EB, as has been proved in the 
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previous proposition. But the [sum of the] squares of AC and CB exceeds 
the square of AB by twice the product of AE and EB, so <the sum> of the 
squares of AH and HB is equal to <the sum of> the squares of AC and CB. 
But the angle ACI is acute, so the angle HCA is obtuse, so the straight line 
HA is greater than the straight line AC. Similarly, we [can] prove that the 
straight line HB is greater than the straight line BC. So the two straight 
lines AH and HB are greater than the two straight lines AC and CB. <The 
sum of> the squares of the two straight lines AH and HB is greater than 
<the sum of> the squares of AC and CB; but they are equal, which is 
impossible. So the point C lies on the circumference of the circle GHE and 
the circle GHE is known in magnitude and in position, because its diameter, 
which is GE, is known in magnitude and in position. So the point C lies on 
the circumference of a circle known in magnitude and in position. This is 
what we wanted to prove. 

 
– 24 – If, in a circle known in magnitude and in position, we draw an 

arbitrary chord which we divide into two parts in such a way that the 
product of one of the two parts and the other is known, then the point of 
division lies on the circumference of a circle known in position and in 
magnitude. 

 
Fig. II.2.1.24 

 
Example: Let there be a circle ABC known in magnitude and in 

position in which we draw the arbitrary chord AC which we divide at the 
point D, in such a way that the product of AD and DC is known. 

I say that the point D lies on the circumference of a circle known in 
magnitude and in position. 

Proof: Indeed, let us name the centre of the circle, say as the point E. 
We join ED and we extend it in both directions to B and H, then the 
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product of HD and DB is equal to the product of AD and DC.34 But the 
product of AD and DC is known, so the product of HD and DB is known. 
But the diameter HB is known, so half of it, which is EB, is known; there 
remains the square of ED, which is known, so the straight line ED is 
known. 

We make E a centre and with the known distance ED we draw a circle, 
let the circle be DG. So the circle DG is known in magnitude and in 
position because its centre is known in position and its semidiameter is of 
known magnitude. So the point D lies on the circumference of a circle 
known in magnitude and in position. This is what we wanted to prove. 

  
 

SECOND PART 
 
The work in this part is of the same kind as what was set out by Euclid 

in his book the Data, although nothing in this part is to be found in the 
book the Data. 

 
– 1 – If, from a known point, we draw to a circle known in magnitude 

and in position, a straight line which cuts the circle; if the point lies outside 
the circle and if the ratio of the part that is outside [the circle] to the part 
that lies inside the circle is a known ratio, then the straight line is known in 
position. 

 
Fig. II.2.2.1 

 
Example: Let there be a known point A and a circle BC known in 

magnitude and in position; we draw the straight line ABC in such a way 
that the ratio of AB to BC is known. 

I say that the straight line ABC is known in position. 
Proof: The point A is known and the circle BC is known in magnitude 

and in position, so the straight line drawn from the point A to the centre of 
the circle, and which ends on its circumference, is known in magnitude and 
in position; the part which lies outside the circle is of known magnitude, so 

 
34 Euclid, Elements, III.35. 
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the product of CA and AB is of known magnitude and the ratio of CA to AB 
is known; but it is equal to the ratio of the product of CA and AB to the 
square of AB. So the square of AB is known and the straight line AB is of 
known magnitude. But the point A is known, so the point B lies on the 
circumference of a circle known in position, as has been proved in the first 
proposition of this book; let the circle be BD. The circle BD is known in 
position and the circle BC is known in position, so the point B is known 
and the point A is known, so the straight line AB is known in position, so 
the straight line ABC is known in position. This is what we wanted to prove.  

 
– 2 – If, from a known point, we draw to a circle known in position, a 

straight line which cuts off from the circle a known segment,35 then the line 
is known in position. 

Example: Let there be a known point A and a circle BC known in posi-
tion; we draw the straight line ABC in such a way that the segment BC is 
known.  

I say that the straight line ABC is known in position. 

 
Fig. II.2.2.2 

 
Proof: The point A is known, so the product of CA and AB is known. 

But since the segment BC is known and the circle is known, the straight 
line BC is known.36 So the straight line BC is known and the product of CA 
and AB is known. The ratio of twice the product of CA and AB to the 
square of BC is thus known. We divide BC into two halves at the point D, 
then the ratio of the product of CA and AB to the square of BD is known, so 
the ratio of the square of AD to the square of DB is known. So the ratio of 
AD to DB, that is DC, is known. So the ratio of AC to CB is known, so the 
ratio of AB to BC is known. But the point A is known and the circle BC is 
known, so the straight line ABC is known in position. This is what we 
wanted to prove. 

 

 
35 Euclid, Definitions 7 and 8 of the Data. 
36 Euclid, Data, 88 and 89. 
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– 3 – If, from a known point, we draw to a straight line known in 
magnitude and in position, a straight line such that its ratio to what it cuts 
off from the <first> straight line is a known ratio, then the straight line that 
has been drawn is known in position. 

Example: Let there be a known point A and a straight line BC known in 
magnitude and in position; we draw the straight line AD in such a way that 
the ratio of AD to DC is a known ratio. 

I say that the straight line AD is known in position. 

 
Fig. II.2.2.3 

 
Proof: The two points A and C are in fact known and the ratio of AD to 

DC is known, so the point D lies on the circumference of a circle known in 
position, as has been proved in Proposition 9 of this treatise. So the point D 
lies on the circumference of a circle known in position and it lies on the 
straight line BC [which is] known in position; so the point D is known and 
the point A is known, so the straight line AD is known in position. This is 
what we wanted to prove. 

 
– 4 – If, from a known point, we draw to two parallel straight lines 

known in magnitude and in position, a straight line which cuts off two 
alternate straight lines,37 in such a way that the ratio of one to the other is 
known, then the straight line that is drawn is known in position. 

Example: Let there be a known point A and two straight lines BC and 
DE known in position38 and parallel; we draw the straight line AHG in such 
a way that the ratio of HC to DG is known.  

I say that the straight line AG is known in position. 
 

 
37 Here ‘alternate’ is the translation of mutabādilayn, which refers to the two 

segments DG and CH which lie on either side of HG. 
38 We need to assume that CB and DE are parallel segments and in contrary senses 

so that CH and DG will be so too. We may note that the points B and E play no part in 
what follows. 
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Fig. II.2.2.4 

 
Proof: We join DC, it is known in magnitude and in position because 

its two endpoints are known, and it cuts the straight line HG; let it cut it at 
the point I. So the ratio of CI to ID is known, so the ratio of CD to DI is 
known. But CD is known, so DI is known. But the point D is known, so the 
point I is known. But the point A is known, so the straight line AIG is 
known in position. This is what we wanted to prove. 

 
– 5 – If, from a known point, we draw to a straight line known in posi-

tion and in magnitude, a straight line such that, added to what it cuts off 
from the known straight line, <it gives a sum that is> known, then it is 
known in position. 

Example: Let there be a known point A and a straight line BC known in 
magnitude and in position; we draw the straight line AD in such a way that 
AD plus DC is known. 

I say that AD is known in position. 
 

 
Fig. II.2.2.5 

 
Proof: AD plus DC is a known <sum>; BD plus DC is a known <sum>, 

so either the two straight lines AD and DB are equal, or one is greater than 
the other by a known magnitude. 

If they are equal, then from the two known points A and B we have 
drawn two equal straight lines AD and DB, so the point D lies on a straight 
line known in position, as has been proved in Proposition 8 of this treatise. 

If one is greater than the other by a known magnitude, let BE be that 
excess; so BE is known, so the point E is known, and the straight line AD is 

A

E

B
C

D

I

H

G

A

E BC D



 CHAPTER II: AL-ḤASAN IBN AL-HAYTHAM 414 

equal to the straight line DE; so the two points A and E, from which we 
drew the two equal straight lines AD and DE, are known. So the point D 
lies on a straight line known in position and it lies on the straight line EC, 
which is known in position; so the point D is known. But the point A is 
known, so the straight line AD is known in position. This is what we 
wanted to prove. 

 
 – 6 – If, from two points known in position, we draw to a straight line 

known in position two straight lines that enclose a known angle, then they 
are known in position and in magnitude. 

Example: Let there be two known points A and B and the straight line 
CD known in position; we draw two straight lines AE and BE which 
enclose a known angle; let it be the angle AEB.  

I say that the two straight lines AE and BE are known in magnitude 
and in position. 

 
Fig. II.2.2.6 

 
Proof: The two points A and B are known, from them we have drawn 

two straight lines AE and BE which enclose a known angle; then the point 
E lies on the circumference of a circle known in position, as has been 
proved in Proposition 6 of the first section of this treatise. So the point E 
lies on the circumference of a circle known in position; but it lies on the 
straight line CD known in position, so the point E is known. But each of 
the two points A and B is known, so the two straight lines AE and BE are 
known in magnitude and in position. This is what we wanted to prove.  

 
– 7 – If, from two known points we draw, to a straight line known in 

position, two straight lines in such a way that the ratio of one to the other is 
known, then the two straight lines are known in position and in magnitude. 

Example: Let there be two known points A and B and the straight line 
CD known in position; we draw the two straight lines AE and BE in such a 
way that the ratio of one to the other is known. 

A

E

B

CD



 ON THE KNOWNS 415 

I say that each of the two straight lines AE and BE is known in magni-
tude and in position. 

 
Fig. II.2.2.7 

 
Proof: The point E lies on the circumference of a circle known in posi-

tion, as has been proved in Proposition 9 of the first section of this treatise. 
But it lies on the straight line DC, so the point E is known and the two 
straight lines AE and BE are known in magnitude and in position. This is 
what we wanted to prove. 

 
– 8 – If we have two parallel straight lines known in position, if we 

take two points on one [of them] and if we draw from these two points two 
straight lines which meet one another in a point on the other parallel 
straight line in such a way that the product of one of the two straight lines 
[we have] drawn and the other is known, then the two straight lines are 
known in magnitude and in position. 

Example: Let there be two parallel straight lines AB and CD, known in 
position; on the straight line AB we take two points E and G and from these 
points we draw two straight lines EH and GH in such a way that the prod-
uct of EH and HG is known. 

I say that the two straight lines EH and GH are known in magnitude 
and in position. 

Proof: We imagine an angle GHI equal to the angle HEG, then the 
straight line HI meets the straight line GA, because <the sum> of the two 
angles IHG and IGH is smaller than two right angles; let it meet it at the 
point I. The triangle IHG is then similar to the triangle HEG, so the angle 
HIG is equal to the angle EHG, the ratio of IG to GH is equal to the ratio of 
HG to GE and it is equal to the ratio of IH to HE, so the ratio of IH to HE 
is equal to the ratio of HG to GE and the product of HI and EG is equal to 
the product of EH and HG. But the product of EH and HG is known, so the 
product of IH and EG is known. But EG is known, so IH is known, because 
if two straight lines enclose a known area with a right angle and if one of 
the two straight lines is known, then the other straight line is known, 
because the magnitude of the area does not change and the angle of the 
area does not change, so the magnitude of the other straight line does not 
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change, so the straight line IH is known. We take an arbitrary point on the 
straight line CD, let it be D; from the point D, at a right angle, which is the 
angle CDB, we draw the straight line DB; thus it will be known in position. 
But the straight line AB is known in position, so the point B is known, then 
the straight line DB is known in magnitude, so it is either equal to the 
straight line HI or smaller than it. 

 
                    Fig. II.2.2.8a               Fig. II.2.2.8b 

 
If it is equal, then the straight line HI is perpendicular and the angle 

HIG is a right angle. But it is equal to the angle EHG, so the angle EHG is 
a right angle. If the straight line DB is smaller than the straight line HI, we 
make the straight line DL equal to the straight line HI. We make D a centre 
and with distance DL we draw the circle LKN. So this circle is known in 
position. But the straight line AB is known in position, so the point K is 
known. We join DK, thus it is known in magnitude and in position, because 
the two points D and K are known; but the straight line DK is equal to the 
straight line HI; either they are parallel or they meet one another. If they 
are parallel, then the angle HIG is equal to the angle DKB. But the angle 
DKB is known, because the two straight lines DK and KB are known in 
position, so the angle HIG is known, so the angle EHG is known. And if 
the two straight lines IH and KD meet one another, let them meet one 
another at the point M. So the ratio of IM to MK is equal to the ratio of IH 
to KD; but IH is equal to KD, so IM is equal to MK, so the angle MIK is 
equal to the angle MKI; but the angle MKI is known, so the angle MIK is 
known, so the angle EHG is known. 

In all cases, the angle EHG is thus known and the two points E and G 
are known, so the point H lies on the circumference of a circle known in 
position, as has been proved in Proposition 6 of the first section of this 
treatise. But the point H lies on the straight line CD which is known in 
position, so the point H is known, so each of the straight lines EH and GH 
is known in magnitude and in position. This is what we wanted to prove. 

 
– 9 – If we have two parallel straight lines known in position, if we 

take two points on one of them and if from these two points we draw two 
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straight lines which cut the second straight line, traverse it and meet one 
another in a point in such a way that the triangle that is formed is of known 
magnitude, then the straight line traversed by the two straight lines that 
start on the second parallel straight line is of known magnitude. 

Example: Let there be two parallel straight lines AB and CD known in 
position; we take two arbitrary points on the straight line AB, which are the 
two points E and G, and from the two points E and G we draw two straight 
lines EIH and GKH which meet one another at the point H in such a way 
that the triangle EHG is known in magnitude.  

I say that the straight line IK is known in magnitude. 

 
Fig. II.2.2.9 

 
Proof: The two points E and G are known, from them we have drawn 

the two straight lines EH and GH, and thus we have formed the triangle 
EHG which is known in magnitude; so the point H lies on a straight line 
known in position, parallel to the straight line EG, as has been proved in 
Proposition 10 of the first section of this treatise; let this straight line be the 
straight line LH. We draw the perpendicular ACL; it will thus be known in 
magnitude. Since the straight line AL is known in position and the straight 
line LH is known in position, accordingly the point L is known; but the 
point A is known, so the straight line AL is known in position and in 
magnitude. 

Similarly, we [can] prove that the straight line LC is known in magni-
tude and in position; so the ratio of AL to LC is known and the ratio of EH 
to HI is known; the ratio of EG to IK is thus known and EG is known, so 
IK is known. So the straight line IK is known in magnitude. This is what 
we wanted to prove. 

 
 – 10 – If, from the endpoints of a straight line known in position, we 

draw two straight lines [that are] at two known angles and which meet one 
another in a point, then they are known in magnitude and in position.  
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Example: Let there be a straight line AB known in magnitude and in 
position; from its endpoints we draw the two straight lines AC and BC [that 
are] at two known angles, and which meet one another at the point C. 

I say that the two straight lines AC and BC are known in magnitude 
and in position. 

 
Fig. II.2.2.10 

 
Proof: The straight line AB is known in position and its point A is 

known; we draw the straight line AC at a known angle, so the straight line 
AC is known in position. Similarly, the straight line BC is known in posi-
tion. Each of the two straight lines AC and BC is thus known in position, so 
the point C is known. But the two points A and B are known, so each of the 
two straight lines AC and BC is known in magnitude and in position. This 
is what we wanted to prove. 

If each of the straight lines AB, AC and BC is of known magnitude, 
then the ratio of each of them to one of the two others is known. We shall 
prove from this proof that for any triangle with known angles, the ratios of 
its sides, two by two,39 are known. In fact, if the angles of the triangle are 
known, if we take a straight line known in magnitude and in position and if 
from its endpoints we draw two straight lines at angles equal to two of the 
angles of the triangle whose angles are known, a triangle is formed whose 
sides are known; the ratios of its sides, two by two,40 are known, as has 
been proved in this proposition, and the triangle formed is similar to the 
triangle whose angles are known; it follows that the ratios of the sides of 
the triangle, two by two,41 [in the triangle] whose angles are known, are 
known. 

 
– 11 – If we extend one of the sides of a triangle whose sides are 

known in magnitude and in position, if we take a known point on the 
extension and if from this point we draw a straight line that intersects the 
triangle and cuts off from its two sides two straight lines on the side 

 
39 Lit.: the ones to the others. 
40 Lit.: the ones to the others. 
41 Lit.: the ones to the others. 
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towards its base in such a way that the ratio of one to the other is known, 
then the straight line is known in position. 

Example: Let there be a triangle ABC whose sides are known in magni-
tude and in position; we extend one of its sides, which is BC; on the exten-
sion we take a point D and from the point D we draw the straight line DEG 
in such a way that the ratio of GC to EB is known. 

I say that the straight line DEG is known in position. 

 
Fig. II.2.2.11 

 
Proof: We draw the straight line BH parallel to the straight line AC; the 

ratio of GC to HB is thus equal to the ratio of CD to DB. But the ratio of 
CD to DB is known, because each of them is of known magnitude; so the 
ratio of GC to BH is known. But the ratio of GC to EB is known, so the 
ratio of EB to BH is known, since the ratios of GC, EB and HB, two by 
two,42 *are known ratios of three magnitudes, two by two, so the ratio of 
EB to BH is the known ratio of two magnitudes one to the other,*43 so the 
ratio of EB to BH is known and the angle EBH is known because it is equal 
to the angle BAC which is known, so the angle BHE is known as has been 
proved in the premises. So the angle BHE is known and the angle HBD is 
known because it is equal to the angle ACB; there then remains the angle 
HDB [which is] known, so the straight line DG is known in position and 
the straight line AC is known in position, so the point G is known and the 
point D is known, so the straight line DEG is known in magnitude and in 
position. This is what we wanted to prove. 

 
– 12 – If we have a circle known in magnitude and in position and a 

straight line known in position and if we draw a straight line tangent to the 
circle, which ends on the straight line known in position, and which is 
known in magnitude, then it is known in position. 

 
42 Lit.: the ones to the others. 
43 *...* In the text, we may read: ‘are the ratios of three known magnitudes, two by 

two, then the ratio of EB to BH is the ratio of two known magnitudes one to the other’. 

A

E

BC D

H

G



 CHAPTER II: AL-ḤASAN IBN AL-HAYTHAM 420 

Example: The circle AB is known in magnitude and in position and the 
straight line DC is known in position; we draw the straight line BE tangent 
to the circle such that BE is known in magnitude. 

I say that it is known in position. 

 
Fig. II.2.2.12 

 
Proof: We mark off the centre of the circle, let it be H, and we join HB 

and HE. Since the circle is known in magnitude and in position, the straight 
line HB is known in magnitude. Since the straight line BE is a tangent, the 
angle HBE is a right angle. Since BE is known in magnitude, the ratio of 
the straight line HB to the straight line BE is known. Since the angle HBE 
is a right angle, the position of the straight line BE with respect to the 
straight line BH is known. Since the straight line HB is known in magni-
tude, and its ratio to the straight line BE is known and the angle HBE is a 
right angle, the angle HEB is known and the straight line HE is known in 
magnitude, as has been proved in the premises. Since the point H is known 
and the straight line HE is known in magnitude, the point E lies on the 
circumference of a circle known in position, as has been proved in the first 
proposition of this treatise. Since the point E lies on the circumference of a 
circle known in position and it lies on the straight line CD known in 
position, the point E is known. But the point H is known, so the straight 
line EH is known in position. But the angle HEB is known, so the straight 
line EB is known in position. This is what we wanted to prove. 

 
– 13 – If we have a circle known in magnitude and in position and a 

straight line known in position, if from <the circumference> of the circle 
we draw a straight line to the straight line known in position which 
encloses a known angle with the latter and if the straight line we have 
drawn is known in magnitude, then it is known in position. 

Example: Let there be a circle AB known in magnitude and in position 
and a straight line CD known in position; we draw the straight line BE 
which encloses with the straight line CD a known angle which is the angle 
BEC, in such a way that BE is known in magnitude. 

I say that it is known in position. 

AE

B
C

D

H



 ON THE KNOWNS 421 

     
  Fig. II.2.2.13a     Fig. II.2.2.13b 
 
Proof: We mark off the centre of the circle; let it be the point H. From 

the point H we draw a straight line HG which encloses with the straight 
line CD an angle equal to the known angle BEC, which is the angle HGC. 
We join HB; either it is parallel to CD or it meets it. If HB is parallel to the 
straight line CD, the area HBEG is a parallelogram. But since the point H is 
known and the angle HGC is known, the straight line HG is known in 
magnitude and in position, because if we take the point C as known, the 
two points H and C are known, the point G will thus lie on the circumfer-
ence of a circle known in position. But it lies on the straight line CD known 
in position, so the point G is known and the point H is known; so the 
straight line HG is known in magnitude and in position. And if HB is paral-
lel to CD, the angle GHB is known because it is equal to the known angle 
DGH; so the straight line HB is known in position and the circle AB is 
known in position, so the point B is known. But from this latter we have 
drawn the straight line BE at a known angle, which is the angle HBE, 
because it is equal to the angle HGE; so the straight line BE is known in 
position. 

If the straight line HB meets the straight line CD – let it meet it at the 
point C – the ratio of HG to BE is then equal to the ratio of HC to CB. But 
the ratio of HG to BE is a known ratio because each of the two straight 
lines is known, so the ratio of HC to HB is known, the ratio of HB to BC is 
then known. But HB is known in magnitude, so the straight line BC is 
known in magnitude and, in consequence, the straight line HC is known in 
magnitude, so the point C lies on the circumference of a circle known in 
position and it lies on the straight line CD known in position; so the point 
C is known; and the point H is known, so the straight line HC is known in 
magnitude and in position. But the straight line HG is known in position, 
so the angle CHG is known. So the angle HBE is known and the straight 
line HB is known in position, so the straight line BE is known in position. 
This is what we wanted to prove.  
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– 14 – If, between two parallel straight lines known in position, we 
take a point from which we draw a straight line which cuts the two straight 
lines in such a way that the product of one of the two parts and the other is 
known, then the straight line is known in position. 

Example: The two straight lines AB and CD are parallel and known in 
position; we take a point E between them and from the point E we draw the 
straight line EGH in such a way that the product of GE and HE is known in 
magnitude. 

I then say that the straight line GH is known in position. 
 

 
Fig. II.2.2.14 

 
Proof: We take a point I on the straight line AB and we join EI; it will 

be known in magnitude and in position. We extend IE to K, so EK will be 
known in position. But the straight line CD is known in position, so the 
point K is known. But the point E is known, so the straight line EK is 
known in magnitude and in position, the ratio of IE to EK is then known 
and is equal to the ratio of HE to EG. So the ratio of HE to EG is known; in 
consequence, the ratio of the product of HE and EG to the square of EG is 
known; but the product of HE and EG is known, so the square of EG is 
known. So the straight line EG is known in magnitude, the point G thus lies 
on the circumference of a circle known in position; now it lies on the 
straight line CD, which is known in position; so the point G is known, so 
the straight line GEH is known in position. This is what we wanted to 
prove. 

 
 – 15 – Let there be a triangle with known sides and angles; if we draw 

a straight line from its vertex to its base, in such a way that the ratio of the 
square of the straight line [we have] drawn to the product44 of the two parts 
<cut off> on the base is a known ratio, then the straight line [we have] 
drawn is known in position. 

 
44 Lit.: surface. 
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Example: The triangle ABC has known sides and angles; we draw 
inside this triangle the straight line AD in such a way that the ratio of the 
square of AD to the product of BD and DC is a known ratio. 

I say that the straight line AD is known in position. 

 
Fig. II.2.2.15 

 
Proof: We circumscribe a circle about the triangle ABC; let the circle 

be ABC, and we extend AD to G; the product of AD and DG is then equal 
to the product of BD and DC. So the ratio of the square of AD to the 
product of AD and DG is known and is equal to the ratio of AD to DG. So 
the ratio of AD to DG is known; let it be equal to the ratio of AC to CE; so 
CE is known. We join EG, it will be parallel to the straight line CD and the 
angle AEG will be equal to the known angle ACD, so the angle AEG is 
known and the straight line CE is known in magnitude and in position; so 
the straight line EG is known in position; but the circle ABC is known in 
position, so the point G is known. But the point A is known, so the straight 
line AG is known in position and, in consequence, the straight line AD is 
known in position. This is what we wanted to prove. 

 
– 16 – Let there be two straight lines which cut one another and which 

are known in position; if we take a point between them and we draw from 
this point a straight line which cuts the two straight lines known in position 
in such a way that the ratio of one of the two parts to the other is known, 
then the straight line is known in magnitude and in position. 

Example: Let there be two straight lines AB and AC known in position 
and a given point D; from the point D we draw a straight line EDG in such 
a way that the ratio of ED to DG is known. 

I say that the straight line EG is known in magnitude and in position. 
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Fig. II.2.2.16 

 
Proof: We draw from the point D a straight line DH parallel to the 

straight line AB, then the angle DHG is equal to the known angle BAC and 
the straight line DH is thus known in position. But the straight line AC is 
known in position, so the point H is known and the straight line AH is 
known in magnitude. But the ratio of AH to HG is equal to the ratio of ED 
to DG which is known, so the ratio of AH to HG is known. But AH is 
known in magnitude, so the straight line HG is known in magnitude. But 
the point H is known, so the point G is known. But the point D is known, 
so the straight line GD known in magnitude and in position and its ratio to 
DE is known, so the straight line DE is known in magnitude; so the straight 
line GDE is known in magnitude and in position. This is what we wanted 
to prove.  

 
– 17 – Let there be two straight lines which cut one another and which 

are known in position; if we take a point between them and we draw from 
this point a straight line which cuts the two straight lines known in position 
in such a way that the product of one of the two parts and the other is 
known, then the straight line is known in magnitude and in position. 

Example: The two straight lines AB and AC are known in position and 
the point D is known; we draw the straight line DGE in such a way that the 
product of DE and DG is known. 

I say that the straight line EG is known in magnitude and in position. 
Proof: We join AD; it will be known in magnitude and in position. We 

put the product of AD and DH equal to the product of ED and DG which is 
known, then the product of AD and DH is known. But AD is known, so DH 
is known, as has been proved in Proposition 10 of the first section of this 
treatise. But the point D is known, so the point H is known. We join GH, so 
we shall have the ratio of AD to DE equal to the ratio of GD to DH; so the 
triangle DGH is similar to the triangle AED and the angle EAD is thus 
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equal to the angle DGH; but the angle EAD is known, so the angle DGH is 
known. But the straight line DH is known in magnitude and in position, so 
the point G lies on the circumference of a circle known in position, as has 
been proved in Proposition 6 of the first section of this treatise. 

 
Fig. II.2.2.17 

 
But the point G lies on the straight line AC which is known in position, 

so the point G is known; but the point D is known, so the straight line DG 
is known in magnitude and in position, its product with DE is known, so 
the straight line DE is known in magnitude and in position and, in conse-
quence, the straight line EDG is known in magnitude and in position. This 
is what we wanted to prove. 

 
– 18 – Let there be a circle known in magnitude and in position in 

which we draw a chord which cuts off a known segment from it; if we then 
take a point on one of the two arcs, not its mid point; if from this point we 
draw a straight line to the other segment and if we join the two endpoints 
of the chord to the endpoint of the straight line with two straight lines in 
such a way that the ratio of the sum of these two straight lines to the first 
straight line is a known ratio, then the first straight line is known in magni-
tude and in position. 

Example: Let there be the circle ABCD known in magnitude and in 
position; in this circle we draw the chord AC which cuts off a known seg-
ment from it; we take a point D on the arc ADC in such a way that the two 
arcs AD and DC are different, we draw the straight line DB and we join the 
two straight lines AB and CB in such a way that the ratio of the sum of the 
two straight lines AB and CB to the straight line DB is known. 

I say that the straight line DB is known in magnitude and in position. 
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Fig. II.2.2.18 

 
Proof: We cut the arc ADC into two halves at the point E and we join 

AE, thus it will be known in magnitude and the triangle ABE will be similar 
to the triangle AEG, because the angle EAG is equal to the angle ABE; so 
the ratio of BE to EA is equal to the ratio of BA to AG which is equal to the 
ratio of the sum of AB and BC to AC and the ratio of BE to EA is equal to 
the ratio of the sum of AB and BC to AC; so the ratio of the sum of AB and 
BC to BE is equal to the known ratio of CA to AE, so the ratio of the sum of 
AB and BC to BE is known; but the ratio of the sum of AB and BC to BD is 
known, so the ratio of EB to BD is known. But the angle EBD is known, 
because the arc DE is known, so the angle EDB is known, as has been 
proved in the premises.45 But the straight line ED is known in magnitude 
and in position, so the straight line DB is known in position; but the circle 
ABC is known in position, so the point B is known, so the straight line DB 
is known in magnitude and in position. This is what we wanted to prove.  

 
– 19 – Let there be a known angle of a triangle; from the known angle 

we draw a straight line which divides the known angle into two known 
parts, then the ratio of the two parts of the base, one to the other, is equal to 
the ratio of one of the sides which enclose the known angle to a straight 
line whose ratio to the remaining side is known. 

 
45 The comment made in the premises (p. 384) applies to a triangle in which we 

know two sides and the angle between them: so we necessarily know the ratio of these 
two sides. But here the result: ‘so the angle EDB is known’, derives from the fact that 
the triangle BDE is defined up to similarity (Euclid, Data, 51); so its other angles are 
known (Euclid, Elements, IV.6). 
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Example: Let there be a triangle ABC whose angle BAC is known; we 
draw the straight line AD in such a way that one of the two angles BAD and 
DAC is known.46 

I say that the ratio of CD to DB is known and that it is equal to the ra-
tio of CA to a straight line whose ratio to AB is known. 

 
Fig. II.2.2.19 

 
Proof: We make the angle ABE equal to the known angle BAD, so the 

straight line BE will be parallel to the straight line AD. We draw the 
straight line CA to meet it; let it meet it at the point E. So the angle BEA 
will be equal to the known angle DAC. So each of the angles of the triangle 
ABE will be known, the ratios of its sides, two by two,47 are thus known, as 
has been proved in Proposition 10 of the second section of this treatise. So 
the ratio of EA to AB is known. But the ratio of CD to DB is equal to the 
ratio of CA to AE, so the ratio of CD to DB is equal to the ratio of CA to a 
straight line whose ratio to AB is known. This is what we wanted to prove. 

 
– 20 – Let there be a triangle with known angles; 

from one of its angles we draw a straight line which 
divides its base in a known ratio, then this straight line 
is known in position. 

Example: The triangle ABC has known angles and 
we draw the straight line AD in such a way that the 
ratio of CD to DB is known. 

I say that the straight line AD is known in position.  
 

Fig. II.2.2.20 
 
 
 
46 If one of these angles is known, the other is also known, because the angle BAC 

is known and AD is inside that angle. 
47 Lit.: one to the other. 
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Proof: We put the ratio of CA to AE equal to the ratio of CD to DB 
which is known. We join BE, it will be parallel to the straight line AD; so 
the angle BEA will be equal to the angle DAC. But since the angles of the 
triangle ABC are known, the ratio of CA to AB is known. But the ratio of 
CA to AE is known, so the ratio of BA to AE is known, because these two 
ratios can only be between three magnitudes, so the ratios of each of them 
to the two others are known. But since the ratio of BA to AE is known and 
the angle BAE is known, the triangle BAE has known angles, as was proved 
in the premises. So the angle BEA is known and it is equal to the angle 
DAC, so the angle DAC is known; in consequence, the straight line AD is 
known in position with respect to the straight line AC and to the straight 
line AB. So the straight line AD is known in position. This is what we 
wanted to prove. 

  
– 21 – Let there be a circle known in magnitude and in position, we 

take two points on its circumference; if from these two points we draw two 
straight lines which meet one another in a point on the circumference of the 
circle, and if we join the two points with a straight line in such a way that 
the triangle that is formed is known in magnitude, then each of the two 
straight lines drawn from the two points is known in magnitude and in 
position. 

 
Fig. II.2.2.21 

 
Example: The circle ABC is known in magnitude and in position; on its 

circumference we take the two points A and B from which we draw the two 
straight lines AC and BC, and we join AB in such a way that the triangle 
ACB is known in magnitude. 

I say that each of the two straight lines AC and BC is known in magni-
tude and in position. 

Proof: From the point B we draw the straight line BD at a right angle 
and we construct the rectangle enclosed by the two straight lines AB and 
BD [to be] equal to double the triangle ACB which is known in magnitude. 
The straight line BD will thus be known in magnitude, because AB is 
known in magnitude. We join AD, so the triangle ADB will be equal to the 
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triangle ACB. We join DC; DC will be parallel to the straight line AB. So 
the angle BDC is a right angle, so the straight line DC is known in position. 
But the circle ACB is known in position; accordingly the point C is known. 
But each of the two points A and B is known, so each of the straight lines 
AC and BC is known in magnitude and in position. This is what we wanted 
to prove. 

 
– 22 – Let there be a circle known in magnitude and in position; we 

take two points on its circumference and we draw from these two points 
two straight lines which meet one another in a point on the circumference 
of the circle in such a way that their product with one another is known, 
then each of them is known in magnitude and in position.  

Example: The circle ABC is known in magnitude and in position; we 
take the two points A and B on its circumference, from which we draw the 
two straight lines AC and BC in such a way that the product of AC and CB 
is known. 

I say that each of the straight lines AC and BC is known in magnitude 
and in position. 

 
Fig. II.2.2.22 

 
Proof: We draw the perpendicular AD. Since the two points A and B 

are known, the segment ACB is known, so the angle ACB is known. But the 
angle ADC is a right angle, so the angles of the triangle ACD are known, so 
the ratio of CA to AD is known, and the ratio of the product of AC and CB 
to the product of AD and CB is known. But the product of AC and CB is 
known, so the product of AD and CB is known. Now the product of AD and 
CB is double the triangle ACB; so double the triangle ACB is known and, in 
consequence, the triangle ACB is known. But the two points A and B are 
known, so the point C is known, as has been proved in the preceding 
proposition; so each of the straight lines AC and BC is known in magnitude 
and in position. This is what we wanted to prove. 

 
– 23 – Let there be a circle known in position and a straight line known 

in position; we draw a straight line which cuts the circle and which ends on 
the [first] straight line and is such that it is divided by the circumference of 
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the circle in a known ratio and encloses with the [first] straight line a 
known angle, then this straight line is known in magnitude and in position. 

Example: The circle AB is known in magnitude and in position and the 
straight line CD is known in position; we draw the straight line ABE in 
such a way that the ratio of AB to BE is known and the angle BEC is 
known. 

I say that the straight line AB is known in magnitude and in position. 
 

 
   Fig. II.2.2.23a        Fig. II.2.2.23b 
 
Proof: We mark off the centre of the circle, let it be the point H, and 

we draw the perpendicular HI; it divides AB into two halves, so the ratio of 
IB to BE is known. We draw HG such that the angle HGC is equal to the 
angle BEC which is known, then the straight line HG will be known in 
position, because if we make C a known point and we join HC, the point G 
lies on the circumference of a circle known in position, so the point G is 
known. But the point H is known, so the straight line HG is known in 
magnitude and in position. If the straight line HI is parallel to the straight 
line DC,48 then the straight line IE will be equal to the straight line HG, so 
it is known in magnitude. So the straight line BE is known in magnitude 
and the angle BEC is known, so the straight line BE is known in position, 
as has been proved in Proposition 13 of the second section of this treatise; 
in consequence, the straight line ABE is known in magnitude and in 
position. 

If the straight line HI is not parallel to the straight line DC, it meets it; 
let it meet it at the point C. Since the angle CIE is a right angle, the angle 
CHG is a right angle and the straight line HG is known in magnitude and in 
position. But the straight line HI is known in position and the straight line 
CD is known in position, so the point C is known. We join CB and we 

 
48 This happens if the known angle BEC is a right angle. 

G

E B

C

D

I

HK

A
C

B

D

E

H

I

G



 ON THE KNOWNS 431 

extend it to K. So the ratio of HK to KG is equal to the ratio of IB to BE, 
which is known; the ratio of HK to KG is thus known. But the triangle 
HCG has known angles and from its vertex we drew the straight line CK 
which divided the straight line HG in a known ratio; so the straight line CK 
is known in position, as has been proved in Proposition 20 of the second 
section of this treatise. But the point K is known because it divides the 
known straight line HG in a known ratio. So from the point K we have 
drawn a straight line KC known in position, which cuts the known circle 
AB in a point B; so the point B is known. So we have drawn the straight 
line BE at a known angle; in consequence, BE is known in position since 
the point E lies on the circumference of a circle known in position; the 
point E is thus known. But the point B is known, so the straight line BE is 
known in magnitude and in position and its ratio to BA is known; so the 
straight line ABE is known in magnitude and in position. This is what we 
wanted to prove. 

 
– 24 – Let there be two circles known in magnitude and in position; we 

draw a straight line tangent to the two circles; it is known in magnitude and 
in position. 

Example: The two circles AB and CD are known in magnitude and in 
position; we draw a straight line AD which touches them. 

I say that the straight line AD is known in magnitude and in position. 
Proof: We mark off the two centres, let them be E and G, and we join 

EG. The circles AB and CD are either equal or different. 
 

 
Fig. II.2.2.24a 

 
Let them first be equal, the straight line AD touches the two circles 

either in two similar directions as in the first figure49 or in two different 
directions as in the second figure. If the contact is as in the first figure, then 
we join EA and GD, so the two angles at the points A and D are right 
angles, so the two straight lines EA and GD are parallel and they are equal. 

 
49 Ibn al-Haytham distinguishes between two cases for equal circles: an exterior 

common tangent (Fig. II.2.2.24a) and an interior common tangent (Fig. II.2.2.24c). 
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Then the straight line AD is equal to the straight line EG and is parallel to it, 
so the angle GEA is a right angle, so the straight line EA is known in posi-
tion; now, it is known in magnitude, so the point A is known. But the angle 
EAD is a right angle, so the straight line AD is known in position and it is 
equal to the straight line EG which is known in magnitude; so the straight 
line AD is known in magnitude and in position. 

 

 
Fig. II.2.2.24b 

 
If the two circles AB and CD are different, then the two straight lines 

GD and EA are different50 and they are parallel, so the straight line DA 
meets the straight line GE in the direction towards the smaller circle – let it 
be the circle AB; let the straight lines meet at the point H. So the ratio of 
GH to HE is equal to the ratio of GD to EA. But the ratio of GD to EA is 
known, because each of these straight lines is known, so the ratio of GH to 
HE is known, so the straight line EH is known, the point H is consequently 
known, and the straight line HG is known in magnitude and in position. 
But the angle HDG is a right angle, so the point D lies on the circumfer-
ence of a circle known in position, whose diameter is HG, and it [the point 
D] lies on the circumference of the circle CD known in position. So the 
point D is known. But the point H is known, so the straight line HD is 
known in magnitude and in position and the ratio of HD to DA is known, 
so the straight line AD is known in magnitude and in position. This is what 
we wanted to prove. 

 
50 See Fig. II.2.2.24b. 
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  Fig. II.2.2.24c   
 

 
Fig. II.2.2.24d 

 
If the contact is in two different directions, as in this figure,51 we mark 

off the two centres; let them be E and G, and we join EG; so it will be 
known in magnitude and in position. We join EA and GD, the two angles at 
the two points A and D are then right angles and are in two different 
directions with respect to the straight line EG; the two points A and D will 
then lie to either side of the straight line EG. So the straight line AD cuts 
the straight line EG; let it cut it at the point H; so the two straight lines EA 
and GD will be parallel and the two triangles EAH and HDG are similar. 
So the ratio of EH to HG is equal to the ratio of EA to GD which is known, 
because each of the two straight lines EA and GD is known in magnitude. 
So the ratio of EH to HG is known and the straight line EG is known in 
magnitude, each of the two straight lines EH and HG is known in magni-
tude and the angle EAH is a right angle. So the point A lies on the circum-
ference of a circle known in position whose diameter is EH and it is the 
circumference of the circle AB, so the point A is known. Similarly, we 
[can] prove that the point D is known. 

So the straight line AD is known in magnitude and in position, whether 
the two circles are equal or unequal. This is what we wanted to prove. 

 
 
51 See Figs II.2.2.24c and II.2.2.24d. 
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The notions we have set out are notions that are of great use in solving 
geometrical problems. They are notions that none of our predecessors has 
set out. What we have set out regarding these notions is sufficient for our 
purpose, and here we end this treatise. 

 
<The treatise on the> Knowns is completed. 

Praise be to God, Lord of the worlds. 
 



 

 

 
 

III. ANALYSIS AND SYNTHESIS:  
EXAMPLES OF THE GEOMETRY OF TRIANGLES 

 
 
 
According to the tenth-century biobibliographer al-Nadīm, Archimedes 

composed two books devoted exclusively to the geometry of triangles: The 
Book on Triangles and The Book on the Properties of Right-angled 
Triangles.1 Again according to al-Nadīm, Menelaus too was the author of a 
Book on Triangles, of which ‘a small part has been translated into Arabic 
(wa-kharaja minhu ilā al-‘arabī shay’ yasīr)’. 2  On the basis of this 
testimony, it seems that ancient mathematicians had singled out triangles 
by dedicating specialised texts to them, and that at least two of these were 
translated into Arabic. Given its association with the illustrious name of 
Archimedes, there was every chance that the subject would be taken up by 
his successors, in particular by the mathematicians of the tenth century; but 
the historical research required to establish the details still remains to be 
done. For the time being, al-Sijzī provides an example that supplies a 
partial answer to our questions. He too wrote a book called On Triangles.3 

So we would expect that Ibn al-Haytham, who wrote a monograph on 
the ‘properties of circles’ and a treatise on the ‘properties of conic sections’, 
would also have written a book about triangles. He did not do so expressly, 
but he did write two short treatises on the geometry of triangles. One has 
come down to us under the simple title On a Geometrical Problem and the 
other under the more explicit title On the Heights of Triangles or On the 
Properties of the Triangle in Regard to Height. In both of these texts, Ibn 
al-Haytham’s work follows on from what was done by his predecessors; in 
the first treatise, his immediate predecessors – Ibn Sahl and al-Sijzī, and in 
the second one those he calls the ancients. In the former treatise he 
proceeds by analysis and synthesis, whereas in the second he gives only the 
synthesis. 

 

 
1 Al-Nadīm, Kitāb al-fihrist, ed. R. Tajaddud, Teheran, 1971, p. 326. 
2 Ibid., p. 327. 
3 Al-Sijzī refers several times to this book. For instance, in his Anthology of Prob-

lems (ms. Dublin, Chester Beatty 3652), he refers ‘to our book on triangles’ (Problem 9, 
Proposition 20), and similarly in Problem 45, Proposition 72; Problem 50, Proposition 
80; Problem 53, Proposition 86. See R. Rashed and P. Crozet, Al-Sijzī: Œuvres mathé-
matiques, forthcoming. 
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1. On a geometrical problem: Ibn Sahl, al-Sijzī and Ibn al-Haytham 
 
In his treatise on analysis and synthesis, Ibn al-Haytham makes use of a 

series of distinctions that he presents as being valid in all the mathematical 
disciplines of the quadrivium. The principal distinction is that between 
theoretical analysis and practical analysis (‘amalī). Theoretical analysis is 
applicable to propositions and theorems; practical analysis deals with con-
structions and the determination of an unknown magnitude or number. This 
distinction, which was already introduced by Thābit ibn Qurra and was 
taken up by his successors, reappears here. Practical analysis is not in any 
way to be identified with the ‘problematic’ analysis of Pappus, and this for 
two related reasons. On the one hand it in fact also includes geometrical 
constructions as well as the determination of unknown magnitudes and 
numbers; on the other hand, it is applicable to all the mathematical disci-
plines and not only to geometry. This practical analysis can in turn be 
subdivided into several types: when there is a single solution, when there 
are several solutions, when there may be an infinite number of solutions; 
when there is no diorism (that is, no discussion), when there is a diorism, 
and so on. Now, investigating the conditions for passing from one of these 
types to another is an interesting logical problem and one that is very fertile 
in yielding mathematical insights; it in fact requires that we return to the 
conditions for the problem and those for the construction, in order to 
change them. This change in the conditions from one type to another in 
turn constitutes a valuable method of invention; Ibn al-Haytham carries this 
out, as well as the transformation of a problem of the geometry of triangles 
that had already been considered, successively, by his direct predecessors 
Ibn Sahl and al-Sijzī. 

One of the problems proposed by Ibn Sahl, and for which he provides 
the synthesis,4 is that of the construction of a triangle such that one of its 
sides is equal to a given straight line DC = 2c, and the sum of the other two 
sides is equal to a given straight line AB = 2a. Ibn Sahl imposes a supple-
mentary condition, namely that all the angles of the triangle should be 
acute. 

We know from the outset that it is necessary to have a > c. Ibn Sahl 
accordingly considers the ellipse with major axis AB = 2a, centre E, foci C 
and D, where EC = ED = c. Let us put IK = 2b as the minor axis (EK = b). 

 
4 See R. Rashed, Géométrie et dioptrique au Xe siècle. Ibn Sahl, al-Qūhī, Ibn al-

Haytham, Paris, 1993; English version: Geometry and Dioptrics in Classical Islam, 
London, 2005; and ‘Ibn Sahl et al-Qūhī: Les projections. Addenda & corrigenda’, 
Arabic Sciences and Philosophy, vol. 10.1, 2000, pp. 79–100. 
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Any point X on this ellipse gives a triangle with base CD = 2c, and 
XC + XD = 2a. Thus, the problem has an infinite number of solutions. 

The supplementary condition – that the triangle must have only acute 
angles – leads Ibn Sahl to consider the perpendiculars to the axis AB at C 
and D and the circle with diameter CD, in order to find the arcs of the 
ellipse on which to take X so as to ensure the triangle XCD satisfies the 
three conditions. 

By hypothesis a > c and a > b; but we can have b > c, b = c, or b < c, 
which are the three cases Ibn Sahl investigates. The circle C with diameter 
CD cuts the straight line IK in K'. 

 
• b > c,   K' lies inside the ellipse. 

 
Fig. 2.3.1 

 
For any point X on the arc GKH of the ellipse, X lies outside the circle 

C, DX̂ 'C  = 1 right angle, so ˆ X  is acute. We also have that ˆ D  and ˆ C  are 
acute and XC + XD = 2a = AB, except if X is at G or at H. 

 
• b = c  K = K'. 

 
Fig. 2.3.2 

 
Any point X on the arc GKH, except for G, K and H, makes ˆ X  acute, 

because X lies outside the circle; ˆ C  and ˆ D  are acute. 
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• b < c  K' lies outside the ellipse. 

 
Fig. 2.3.3 

 
The circle cuts the ellipse in L and M. Any point X on the arcs LG and 

HM, excluding the endpoints, lies outside the circle and makes ˆ X , ˆ C  and 
ˆ D  acute. 

This is Ibn Sahl’s solution, as given by al-Sijzī. It is clear that the idea 
of using an ellipse gives a solution immediately. But one can find a con-
struction for such a triangle by means of straightedge and compasses, as al-
Sijzī indeed noted. This is precisely what he says in a letter to Naẓīf ibn 
Yumn,5 to whom he communicates his own construction. But before we 
examine al-Sijzī’s solution, let us look in more detail at the one by Ibn Sahl. 

If a point X provides a solution to the problem, that is if XCD is the 
triangle constructed with XC + XD = 2a and CD = 2c, which are given 
lengths, and if we extend CX by a length XM = XD, we have CM = 2a. The 
point M lies on the circle with centre C and radius 2a. Conversely, to any 
point M of this circle there corresponds a point X, the point of intersection 
of the straight line CM and the perpendicular bisector of MD,6 and the 
triangle CXD that we obtain satisfies the two given conditions. 

But Ibn Sahl imposes a supplementary condition: the triangle CXD 
must have all its angles acute. Let us examine its three angles. 

 
1. The angle DCX. It is acute if the straight half line [CX) lies within 

the angle FCE (E is the point of intersection of the circle (C, 2a) and the 
straight half line [CD)). Consequently, the angle DCX is acute if M is any 
point on the arc FE, apart from its endpoints (to the endpoint F there 
corresponds the point X', the point of intersection of CF and the perpen-
dicular bisector of DF).  

 
5 See p. 623. 
6 This is the method used in the point by point construction of the ellipse with foci 

C and D and major axis 2a. 
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Fig. 2.3.4 

 
2. The angle CDX. The perpendicular to CD at D cuts the circle in H. 

We shall have CD̂H  = 1 right angle; if X is at X1 on the straight line DH, 
the point M then lies on the arc HE at the point M1 such that M1X1D is an 
isosceles triangle. In the triangle CM1D we have CD̂M1  = 1 right angle + 
M̂1 , so 

sin Ĉ1

2�
=

sin  1 right angle+ Ĉ1( )
2D

=
cosĈ1

2D
, 

hence 
 tan M̂1 =

c
a
= tan DF̂C . 

 
So we have HD̂M1 = M̂1 = DF̂C = FD̂H . The straight line HD bisects 

the angle FDM1. When M lies on the arc FM1, but not at either of its 
endpoints F and M1, then both XĈD  and XD̂C  are acute.  

 
Fig. 2.3.5 

 
3. The angle CX̂D . We have CX̂D  = 2 CM̂D  (Fig. 2.3.4); so for CX̂D  

to be acute, we must have CM̂D  < 45°. Consequently, the point M must lie 
outside the arc that subtends 45° constructed on CD. This arc cuts the 
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straight line DH in a point K whose position in regard to the point H 
depends on the given lengths 2a and 2c. 

 
We have CDK, a right-angled triangle that is isosceles (because 

DK̂C  = 45°), so DK = 2c and CK = 2c√2; CK is a diameter of the circle, on 
which we find the subtending arc. Moreover, by hypothesis we have CH = 
2a and a > c, hence there are three possibilities: 

 
• If c√2 < a, we have CK < CH (Fig. 2.3.6). The subtending arc lies 

completely inside the circle (C, 2a), so any point on the arc FM1, apart 
from the endpoints, gives a solution. 

 
Fig. 2.3.6 

 
• If c√2 = a, we have CK = CH (Fig. 2.3.7). The subtending arc and the 

circle (C, 2a) touch one another at the point H (K = H), so any point on the 
arc FM1, apart from the points F, H and M1, gives a solution.  

 
Fig. 2.3.7 

 
• If c√2 > a, we have CK > CH (Fig. 2.3.8). The subtending arc cuts the 

circle (C, 2a) in two points M2 and M3 symmetrical with respect to the 
straight line CK, and it cuts the straight line CF in a point K' such that CK' 
= DK = DC = 2c. If a point describes the subtending arc from the point K to 
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the point K', its distance from the point C decreases from CK = 2c√2 to CK' 
= 2c; so at one moment this distance takes the value 2a (because 2c < 2a < 
2c√2); so the subtending arc cuts the arc HF of the circle with centre C at 
the point M2 and cuts the arc HE of the circle at the point M3. So we must 
investigate the positions of the points M1 and M3 that both lie on the arc HE. 
The triangles M1DC and M3DC have a common side CD, of length 2c, and 
the sides M1C and M3C are of equal length 2a. The angles M1DC and 
M3DC are obtuse; in triangle M3DC, we have 

sinM3D̂C
2a

=
sinDM̂3C

2c
=
sin π

4
2c

,  

and in triangle M1DC,  
sinM1D̂C
2a

=
sinDM̂1C
2c

.  

 
Now, we have seen that DM̂1C  = DF̂C  (Fig. 2.3.5) and in the present 

case DF̂C  < π
4

 because F lies outside the subtending arc. So we have  

sin M1 D̂C < sin M3 D̂C and consequently M1 D̂C > M3 D̂C (because the 
angles are obtuse). We then have that M3 lies between M1 and H. So, if 
c√2 > a, to any point M on one or other of the arcs FM2 or M3M1 (apart 
from the endpoints) there corresponds a point X that gives a solution to the 
problem. 

 
Fig. 2.3.8 

 
Thus, the straightedge and compasses construction is possible and, in 

all cases for the figure, it leads to an infinity of solutions. The method 
employed here in the discussion that arises when we have the condition that 
the triangle should be ‘acute-angled’ leads us to consider the relative 
positions of a subtending arc and a circle. 
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However, Ibn Sahl’s method involves the relative positions of a circle 
and an ellipse, and, in the last case for his figure, the circle cuts the ellipse 
at the points L and M, for which Ibn Sahl gives no construction. We may 
also note that the three cases for the figure that are considered here 
(a > c√2, a = c√2 and a < c√2) correspond to the three cases examined by 
Ibn Sahl: b > c, b = c and b < c. In fact, given a2 = b2 + c2, if b = c, a2 = 2c2. 
The point X which lies on the ellipse can be found from the point M which 
lies on the circle with centre C and radius 2a. To the points F, M2, M3, M1 
that come into play when M lies on the circle there correspond, for X, the 
points X', X2, X3, X1 that are none other than the points G, L, M, H of the 
ellipse in the text by Ibn Sahl (Fig. 2.3.3 in this text). In fact, the circle with 
centre C and radius 2a is the ‘director circle’ of the ellipse; the latter is the 
locus of the centres of the circles that pass through D and touch the director 
circle at M. 

 
Fig. 2.3.9 

 
So at the request of Naẓīf ibn Yumn, al-Sijzī looks again at Ibn Sahl’s 

problem. He makes his preference clear: he prefers not to have recourse to 
the intersection of two conics when the problem can be solved with 
straightedge and compasses. So he proceeds to construct an acute-angled 
triangle ABG whose base AB is given in position and in magnitude, and in 
which the sum of the two other sides is known (let AB = 2c and BG + AG = 
2a). Al-Sijzī’s response is synthetic, but we can imagine how his analysis 
went. 

Let ABG be a triangle that provides a solution to the problem; we 
extend AG by a length GE = GB; so we have AE = 2a, a known length. 
Moreover, the triangle GBE is isosceles, hence GB̂E  =  BÊG . So we have 
BĜA  = 2BÎA , so angle BGA being acute corresponds to BÎA < 45°. So 
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the point E lies on the circle with centre A and radius 2a, and outside the 
arc subtending 45° constructed on AB. 

 

     
         Fig. 2.3.10a      Fig. 2.3.10b 
 

 
Fig. 2.3.10c 

 
Al-Sijzī does not mention the ellipse with foci A and B and major axis 

2a on which the point G lies. But it is clear that the whole problem is 
connected with constructing this ellipse point by point. Using the 
subtending arc leads to distinguishing the different cases for the figure, but 
al-Sijzī does not show that these different cases correspond to the equality 
or inequality of the lengths a and c√2. 

Al-Sijzī’s discussion is incomplete; he does not in fact mention the 
angles A and B of the triangle ABG (the angles that must be acute) except 
in the last lines of his letter. He refers to the straight lines from A and B and 
concludes: ‘so let us take the triangle lying between the straight lines AC 
and BD which are parallel’. The point G obviously indeed lies between 
these straight lines, but the point E can move beyond the straight line 
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perpendicular to AB at the point B. If we take E between the two straight 
lines AC and BD, we have a condition that is sufficient but not necessary. 

However, as can be seen from the preceding commentary, using the 
method presented by al-Sijzī, we can provide a complete discussion which 
produces the results obtained by Ibn Sahl. 

Ibn al-Haytham very probably knew the problem set out by Ibn Sahl, as 
well as the solutions proposed by him and by al-Sijzī. In any case, Ibn al-
Haytham deals with this same problem, while substituting for the condition 
that the triangle has acute angles the condition that the triangle has a given 
area, S; which reduces to saying that the height XH (Fig. 2.3.11) measured 
from the base CD is of magnitude h = 2S

CD
=
S

c
; so h is thus a known length. 

 
Fig. 2.3.11 

 
Let us return to the preceding solution, that of Ibn Sahl; we have 

EK = b = a2 − c2 . We know that EK = b is the maximum ordinate for the 
points of the ellipse. If we now draw a straight line parallel to AB at a 
distance h from that straight line, we shall have the following cases: 

 
h > EK, the parallel line does not meet the ellipse; no point of the 

ellipse provides a solution to the problem; 
 
h = EK, the required point X is at K and the triangle is isosceles; 
 
h < EK, the parallel line cuts the ellipse in two points X and X' which 

give two triangles that provide a solution to the problem. These triangles 
are equal. 

So the necessary and sufficient condition for X to exist is h ≤ EK; now 
 
  EK 2 = a2 [ c2� ]� h2 + a2 [ c2� ]� 4a2 ≥ 4h2 ≤ 4c2− ⇔  
      ⇔ AB2 ≥ 4h2 +DC2 = DC2 +

16S2

DC2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
. 

 
This condition, which is not mentioned by Ibn Sahl or al-Sijzī, is the 

one that Ibn al-Haytham gives in his diorism. 
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Ibn al-Haytham seems in fact not to have forgotten al-Sijzī’s 
recommendations. He returns to the problem using the inscribed circle of 
the triangle or the circumscribed one. So all the constructions he proposes 
can be carried out with straightedge and compasses. 

Ibn al-Haytham gives five analyses of the transformed problem, one 
after the other. In the first four, he employs the inscribed circle of the 
triangle and in the fifth the circumscribed circle. 

 Let us summarise these analyses.  
In the first four, let us call the triangle ABC, the centre of the inscribed 

circle I, let AB, BC, CA be the sides and their points of contact with the 
circle E, G and D respectively. Let us put BC = a the known side, AB + AC 
= l a known length, let S be the area of the triangle, a known area.  

 

Analysis 1: The known lengths allow us to calculate AE =
l − a

2
 and 

IE =
2S

l + a
= r , the radius of the circle; tan IÂE  = IE

AE
 is known and the angle 

IAE is also known; so CÂB  = 2 IÂE  is known. We take K on BC such that 
AK̂C  =  BÂC ; we prove that AK is known and that the triangles ABC and 
AKC are similar; hence AK · BC = AB · AC, so AB · AC is known. So we 
have that the sum l and the product p of the two sides are known, so the 
two sides are known. 

 
Fig. 2.3.12 

 
Note: Ibn al-Haytham does not carry out the synthesis corresponding to this 
analysis. We may note that AB and AC are the roots of the equation x2 – lx 
+ p = 0, where Δ = l2 – 4p. These roots are real if l2 ≥ 4p, that is if 
l2 ≥ a2 + 4h2, where h = AH the perpendicular to BC at H. In fact, we have 
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S =
ah

2

  
and p = ah

sinBÂC
. 

 
Now  

BÂC = 2 IÂB  and  tan IÂB = t = 
IE

AE
=

ah

l + a
.
2

l − a
, 

 
so  

t =
2ah

l2 − a2
. 

 
Moreover,  

sinBÂC = 2t
1+ t2

, 

 
hence 

 
p =

l2 − a2( )2 + 4a2h2
4 l2 − a2( ) ;

 
 

and we have 
l2 ≥ 4p⇔ l2 ≥ l2 − a2 +

4a2h2

l2 − a2
⇔ l2 ≥ a2 + 4h2 ,

  
 

a condition that Ibn al-Haytham gives in the course of the synthesis for the 
fifth analysis. 

 
Analysis 2: As in the first analysis the angles IAC and BAC are known. 

If we use the letter K to designate the point of intersection of the height AH 
and the line drawn through I parallel to BC, we prove that the angle IAK is 
known (cos IÂK = ��

��
); from this we deduce the angles KAE and ABC. Ibn 

al-Haytham draws his conclusion in two ways: 
 

• AB = AH
cosHÂB

, so AB is known and AC = l – AB is also known. 

 
• We know that BÂC  =  2 IÂB  and AB̂C ; so the triangle ABC is of 

known shape and the ratio AB
AC

 is known. Thus, the lengths AB and AC 

whose sum and ratio are known are themselves known. 
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Fig. 2.3.13 

 
Note: As before, IE = 2S

l + a
= r =

ah

l + a
 and AE =

l − a

2
, hence 

 

AI2 =
4a2h2 + l2 − a 2( )2

4 l + a( )2
. 

 
Moreover, 

AK = AH − IG = h − r =
hl

l + a
, 

 
hence 

 cos IÂK = 2hl

4a2h2 + l2 – a2( )
2

, 

 
hence  

cos IÂK ≤ 1 <=> 4a2h2 + (l2 – a2)2 ≥ 4h2l2 <=> l2  ≥  a2 + 4h2, 
 

a condition that Ibn al-Haytham gives in the course of the fifth analysis. 
 

Analysis 3: If we extend BA by a length AF = AC, the length BF = l is 
known and we have CF || AI. We then prove that the triangle BCF is of 
known shape (that of BAH, in which we know the angles BAH [see 
Analysis 1] and ABH [see Analysis 2]), so the length CF is known. So the 
triangle AFC is also of known shape, and the ratio FC

CA
 is known. So we 

know the length CA and from it we deduce AB = l – CB.  
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Note: Here one recognises a construction similar to that of al-Sijzī. The 
straight line FC is parallel to AH, the bisector of the angle BAC, a known 
angle, as we have seen in Analysis 1. If we put BÂC  = 2α, we have 
AF̂C  =  FĈA =  CÂH  = α. Now  
 

BF
BC

= l
a

 and BF
BC

= sinFĈB
sinAF̂C

, 

 
so sin FĈB  = l sinα

a
 and angle FCB is thus known and we have 

 

 sinFĈB ≤1⇔ l
a
sinα ≤1⇔ 2hl

4a2h2 + l2 − a2( )
2
≤1⇔ l2 ≥ a2 + 4h2 , 

 
a condition that Ibn al-Haytham gives in the synthesis of the fifth analysis. 

 
Fig. 2.3.14 

 
Analysis 4: S, the area of the triangle ABC, is given and the angle BAC 

can be determined as in the first analysis. The product AB ·AC = 2S
sinBÂC

 is 

known. As, by hypothesis, we also know the sum AB + AC, we can find 
each of the sides, as in the first analysis. In the same way, we can derive 
the necessary and sufficient condition.  

 
Analysis 5: Ibn al-Haytham considers the circle circumscribed about 

triangle ABC. The bisector of the angle BAC cuts BC in E and the circle in 
D. Using the property of E, as the foot of the bisector: EB

EC
=
AB

AC
, and the 

fact that the triangles ABD and BDE are similar, we prove that the ratio AE
��

 

is known, and from it we deduce that the lengths DG (G is the mid point of 
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BC; we have AH
DG

=
AE

ED
 and AH is known), DB, DA, AE and ED are known. 

Now the power of the point E with respect to the circle gives EA · ED = 
EB · EC, so the product EB · EC is known; as we know that EB

EC
=
AB

AC
, we 

deduce that the product AB · AC is known; but since, by hypothesis, the 
sum is also known, each of the straight lines AB and AC is thus known. 

 

 
Fig. 2.3.15 

 
Synthesis of 5: The base given for the construction is AB; the required 

vertex is the point M. The given lengths are GH and CD such that 
 
(1) GH = MA + MB 
(2) Area (AMB) = AB · CD. 
 
So the height from M is MN = 2 CD = DE. 
 

On GH we take a point I such that AB
HI

=
GH

AB
. Let K be the mid point of 

AB and let L be a point on the perpendicular bisector of AB such that 
ED

KL
=
GI

IH
. We draw the circumscribed circle of triangle ABL. On the 

straight half line LA, we take P such that PA
AL

=
ED

KL
. If the line drawn 

through P parallel to AB cuts the circle at the point M, then the triangle 
AMB is the triangle we require. 

 
Proof: By hypothesis, we have  
 

GH
AB

= AB
HI

 and ED
KL

= PA
AL

.
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We draw MN perpendicular to AB, and ML, which cuts AB in F; we 
have 

MN

KL
=
MF

FL
=
PA

AL
=
ED

KL
,  

 
hence MN = ED. 

 
Fig. 2.3.16 

 
So we then have area (MAB) = 1

2
 MN · AB = CD · AB, and (2) is 

satisfied. The point L is the mid point of the arc AB, hence arc BL = arc AL 
which implies BM̂L  =  AM̂L  =  BÂL ; so the triangles AML and AFL are 
similar, and we have 

 
(1) 

ML

AL
=
AL

LF
=
MA

AF
; 

 
moreover, 
 

(2) 
MA

AF
=
MB

BF
,  

 
because F is the foot of the bisector of the angle BMA. 

From (1) we deduce LA2 = ML · LF, and from (1) and (2) we deduce 
 

MA +MB

AB
⎛ 
⎝ 

⎞ 
⎠ 

2

=
ML2

LA2
=
ML

LF
;  

 
but  

MF

LF
=
GI

IH
,
 

 
so 
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ML

LF
=
GH

HI
, 

  
but  

GH ·HI = AB2 and
 
GH
HI

= AB
2

HI 2
= GH

2

AB2
,
 

 
hence 

MA + MB

AB
=
GH

AB
 
 

 
and finally MA + MB = GH. 

So if the line parallel to AB cuts the circle in M, the triangle MAB 
provides a solution to the problem. 

But, in this line of reasoning, we assume that the line drawn through P 
parallel to AB cuts the circle in M, which requires a discussion of the 
existence of this point M, a discussion to which Ibn al-Haytham turns his 
mind. 

 
Fig. 2.3.17 

 
Ibn al-Haytham then gives the condition GH2 ≥ AB2 + 4ED2. He first 

proves that if GH2 < AB2 + 4ED2, the problem is impossible. Next he 
proves a property which holds for any triangle, a property from which the 
condition (1) follows. He then returns to the discussion and proves that if 
GH2 = AB2 + 4ED2, we have ED = MN = KQ; M is at Q and the required 
triangle is isosceles. 

Finally, he proves that if GH2 > AB2 + 4ED2, we have ED < KQ. 
The straight line drawn through P parallel to AB cuts the straight line 

LQ between K and Q; so it cuts the circle in a point M of the arc QA and in 
a point M' of the arc QB; the points M and M' give the triangles MAB and 
M'AB, equal triangles, which are solutions to the problem. Ibn al-Haytham 
gives only the point M. 
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Fig. 2.3.18 

 
Note: In the course of the discussion Ibn al-Haytham notes that any triangle 
AMB can be inscribed in a circle and proves that if we have GH = MA + 
MB and ED = MN (MN being the height of the triangle) and if LQ is the 
diameter perpendicular to the base AB at K, we have  
 

ED

KL
=
GH2 − AB2

AB2
. 

 
From this equality we can deduce 
 

ED ·KQ
KL ·KQ

= GH
2 − AB2

AB2
. 

 
Now  

KL ·KQ = AK 2 = AB
2

4
, 

 
so we have 

 4ED ·KQ
AB2

= GH
2 – AB2

AB2
,  

 
hence 

KQ =
GH2 − AB2

4ED
. 

 
Constructing the point M is possible only if MN ≤ KQ (Euclid, 

Elements, III.15). Now 

MN = ED, ED ≤ KQ⇒ ED ≤ GH
2 − AB2

4ED
⇒ 4ED2 ≤GH 2 − AB2 , 

the necessary and sufficient condition.  
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We may ask ourselves why Ibn al-Haytham did not put the paragraph 
that begins ‘Indeed, in every case a triangle is inscribed in a circle …’ 
(p. 483) at the beginning of the discussion, and why he has not proved that, 
from the equality he has established, ED

KL
=
GH2 − AB2

AB2
, we can deduce the 

condition GH2 > AB2 + 4ED2 which he gives at the beginning of the 
discussion without explaining how it has been obtained. Perhaps it is a 
simple question of editing. Starting, as we have seen, from a problem 
proposed by Ibn Sahl, who solved it by using the intersection of conic 
sections, a problem then picked up by al-Sijzī, who looked for a solution by 
straightedge and compasses, Ibn al-Haytham transforms the problem and 
thus moves from one kind of analysis to another: from an indeterminate 
practical analysis to a determinate practical analysis. The obligation he 
adopts deliberately and almost systematically that, when it is required, he 
should give a proof of existence, led him to establish the existence of the 
point M, and then to prove the necessary and sufficient condition for there 
to be a solution to the problem. Thus, everything seems to point to the 
passage from one kind of analysis to another being one of the procedures in 
mathematical invention. Indeed, this research leads Ibn al-Haytham to 
discover new properties of the triangle in relation to its inscribed circle and 
its circumscribed circle. 

 
 

2. Distances from a point of a triangle to its sides 
 
In a second treatise with the title On the Properties of the Triangle in 

Regard to Height, Ibn al-Haytham proposes to study the sum of the 
distances from a point on one of the sides of the triangle or lying inside it, 
to the sides of the same triangle. The treatise is purely synthetic. In the 
preamble Ibn al-Haytham gives a clear explanation of his intention and its 
development. He starts by referring to the fact that the ancients had 
considered this problem for the case where the triangle is equilateral, and 
he gives the two propositions they had established. In regard to other 
triangles, no results had been found. Ibn al-Haytham accordingly takes up 
the problem for isosceles triangles, then for arbitrary triangles. He states 
that he has found, for one and the other variety ‘a uniform order’ (niẓām 
muṭṭarid, see below, p. 485), that is a formula sufficiently general to define 
the character of each class. We shall see that this is indeed so. Nonetheless, 
despite these interesting results, readers familiar with Ibn al-Haytham’s 
writings cannot but be disconcerted by this treatise. Ibn al-Haytham has 
indeed accustomed us to works that break new ground, always innovative 
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and profound; now this text, although not entirely lacking in interest, 
nevertheless does not rise to such heights. The fact remains that this 
relatively modest contribution is shaped by the same principle that 
governed the composition of other, incomparably more important, works: 
the purpose is to complete what his predecessors had begun and to exploit 
all the potentialities to be found in their research. And in fact, this problem 
of the distance from a point of a triangle to its sides presents itself to Ibn al-
Haytham as given prestige by the participation of the ‘ancients’ – 
somewhat like the example of the problem of the regular heptagon.7 But we 
may ask why Ibn al-Haytham chose the generic term, ‘the ancients’ (al-
mutaqaddimūn), whereas he is not usually sparing in using names when he 
is dealing with authors as highly esteemed as Archimedes. In short, we may 
wonder which ancients he is referring to. 

 
A manuscript copied at the beginning of the thirteenth century informs 

us of the existence of a text attributed to Archimedes, with the title On the 
Foundations of Geometry (Fī al-uṣūl al-handasiyya), a work translated by 
Thābit ibn Qurra. The attribution to Archimedes appears in the title, 
together with the name of the translator, and it is repeated in the colophon.8 
This is a treatise that includes nineteen propositions, the first of which is 
proved twice. Better still, in the title we find not only the name of the 
mathematician of Syracuse and that of the prestigious translator, but also 
the name of the person who commissioned the translation: Abū al-Ḥasan 
‘Alī ibn Yaḥyā, the friend and protégé of the Caliph al-Mutawakkil and the 
son of Caliph al-Ma’mūn’s astronomer Yaḥyā ibn Abī Manṣūr. So we are 
given a set of pieces of information that is perfectly coherent and plausible. 
Now this is the book in which we meet this problem of the distance from a 

 
7 See Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-

Haytham. Théorie des coniques, constructions géométriques et géométrie pratique, 
London, 2000, Chap. III; English translation by J. V. Field: Ibn al-Haytham’s Theory of 
Conics, Geometrical Constructions and Practical Geometry, A History of Arabic 
Sciences and Mathematics, vol. 3, Culture and Civilization in the Middle East, London, 
2013. 

8 See mss Istanbul, Aya Sofya 4830/5 and Khuda Bakhsh 2519/28 (=2468/28) and 
below, Appendix, Text 4. This book has been published, but not in a critical edition: 
Rasā’il Ibn Qurra, Osmania Oriental Publications Bureau, Hyderabad, 1947. 
H. Hermelink has noted that under the title in the manuscript 4830, fols 91v–92r (Kitāb 
al-mafrūḍāt li-Aqāṭun) there is a fragment of the text on the foundations of geometry 
attributed to Archimedes and translated by Thābit ibn Qurra. Further, he discusses Van 
Schooten’s possible knowledge of this text via Golius (H. Hermelink, ‘Zur Geschichte 
des Satzes von der Lotsumme im Dreieck’, Sudhoffs Archiv für Geschichte der Medizin 
und der Naturwissenschaften, Band 48, 1964, pp. 240–7). 
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point of a triangle to its sides in the single case of the equilateral triangle, 
as it was cited by Ibn al-Haytham as according to the ancients.9 We are 
only one easy step away from a claim that it is this treatise that Ibn al-
Haytham was using. But on the other hand, no tenth-century source, 
biobibliographical, historical or mathematical, provides evidence that 
Archimedes wrote such a book, or that Thābit ibn Qurra translated a work 
with such a title into Arabic. 

But yet another fact contributes to confusing a picture that has so far 
seemed to be clear. Another manuscript, also dating from the beginning of 
the thirteenth century, a manuscript of a book called Kitāb al-mafrūḍāt 
(Book of Hypotheses), contains all the propositions of the previous one plus 
twenty-four supplementary propositions; this time the whole thing is 
attributed to a certain Aqāṭun. The common propositions – nineteen or 
twenty depending on whether we count the first as one proposition or as 
two – are the same despite variations in the editing.10 As for the author, 
Aqāṭun, not only is he unknown, but there is no proof he ever existed. 
Furthermore, there is no ancient testimony to confirm that a book with such 
a title existed or was translated. But such a case is not unique, and other 
books are translated from Greek without our knowing the translator and 
without their being cited by early biobibliographers. In this particular case, 
however, careful examination shows that we in fact have a compilation by 
a late author, put together from several sources, mainly Greek. This is 
indeed the conclusion which those who have studied this book seem 
inclined to draw.11 So, rather than helping us to know ‘the ancients’ better, 
this book tends to complicate the situation. 

But we are presented with two other testimonies, which make the 
situation even more complicated. The first comes from al-Nadīm, the early 
biobibliographer. He tells us that Thābit ibn Qurra did indeed translate a 
treatise with exactly this title, a work in three books. This work is not 
attributed to Archimedes but to Menelaus. 12  Moreover, several other 
sources inform us of the existence of a work with this title and its 
translation into Arabic.13 To add to this precise information we have 

 
9 See p. 485 and Appendix, Text 4: Two Propositions of the Ancients. 
10 See Appendix, Text 4: Two Propositions of the Ancients. 
11  Y. Dold-Samplonius, Book of Assumptions by Aqāṭun, Thèse de doctorat, 

Université d’Amsterdam, 1977. 
12 Al-Nadīm, Kitāb al-fihrist, ed. R. Tajaddud, Teheran, 1971, p. 327: Kitāb fī uṣūl 

al-handasa ‘amilahu Ibn Qurra (thalātha maqālāt). 
13 Al-Bīrūnī, Risāla fī istikhrāj al-awtār fī al-dā’ira, Hyderabad, 1948, p. 49; ed. 

A.S. Demerdash, Le Caire, 1965, p. 90. 
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another testimony, from al-Sijzī one of the immediate predecessors of Ibn 
al-Haytham. 

Not only has al-Sijzī had a copy of this book by Menelaus in his hands, 
but he also informs us about a part of its content that is of interest here: 
according to al-Sijzī, at the beginning of his book On the Foundations of 
Geometry (Fī al-uṣūl al-handasiyya) Menelaus considered the problem of 
the property of equality working from the perpendiculars drawn in the 
equilateral triangle to its perimeter. Not satisfied by the proof given by 
Menelaus, al-Sijzī proposes to work through all possible cases – for the 
equilateral triangle – when the point lies inside or outside the triangle.14 In 
his account, he presents, with his own proof, the propositions that Ibn al-
Haytham attributes to the ‘ancients’. 

This rather complicated situation and the small amount of available 
evidence merely increases the number of possibilities. For example, we 
might suppose that the Pseudo-Archimedes, the translation of whose work 
is attributed to Thābit ibn Qurra, formed part of an authentic Menelaus. we 
might also suppose that the compilation made by Aqāṭun contained part of 
the work in three books by Menelaus. Obviously, to become plausible, such 
a conjecture would require us to start by establishing critical editions of all 
these texts – something that has not yet been done – and to carry out a 
rigorous study of the history of the text. For the moment, it is enough to 
know that Ibn al-Haytham had access to the writings attributed to the 
ancients – Pseudo-Archimedes or genuine Menelaus – which had raised the 
question in regard to the equilateral triangle. The text by Menelaus had 
already been studied by al-Sijzī who had generalised the problem by 
discussing the case of points lying outside the equilateral triangle. Ibn al-
Haytham, who probably knew about this work, wanted to go further still by 
investigating the case of other triangles – isosceles and scalene – but 
limiting himself to considering points lying inside the triangles, so as to be 
able to arrive at what we might call a canonical rule. But why did he not, 
like al-Sijzī, consider points lying outside the triangle? Even if he did not 
know al-Sijzī’s text, it would have been entirely natural for him to think 
about such points. Perhaps he wanted to look only at generalising the 
problem under exactly the conditions found in the ancients, that is only for 
points lying inside the triangle. We shall see later how easy it is to discuss 
the case of points that lie outside the triangle. 

Thus, having readopted the case investigated by the ancients, Ibn al-
Haytham considers the same question for an isosceles triangle, then for a 
scalene triangle. In this last case, he seems to stop at the investigation of 

 
14 See Appendix, Text 4: On the Properties of the Perpendiculars, p. 630. 
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the distances from an arbitrary point on one side of the triangle to the two 
other sides. However, Ibn al-Haytham’s treatise ends with the case of an 
arbitrary point that lies inside the scalene triangle. This final proposition 
contains an error that is, to say the least, surprising: not that Ibn al-
Haytham never makes a mistake – that, obviously, happens to him as it 
does to everyone – but this type of error is one he never commits. The only 
reasonable suggestion is that a reader took it upon himself to complete Ibn 
al-Haytham’s treatise by adding a proposition, when the eminent mathe-
matician intended to go no further. The single surviving manuscript of this 
text does not provide a basis for any textual argument that might put such a 
conjecture to the test. So all we have to go on is our knowledge of Ibn al-
Haytham’s style and his mathematical works. 

Ibn al-Haytham begins by setting out the two propositions established 
by the ancients with the proofs they provided, which he will use as lemmas: 

 
a) Let there be an equilateral triangle ABC, and an arbitrary point D 

on one of the sides – for example AB –, then the sum of the distances DE 
and DG to the two sides BC and AC is constant and equal to the height of 
the triangle.  

    
      Fig. 2.3.19      Fig. 2.3.20 
 
b) The sum of the distances from an arbitrary point D inside an 

equilateral triangle ABC to the sides AB, BC, AC is constant and equal to 
the height of the triangle. 

 
According to Ibn al-Haytham, these results were, so far, the only ones 

known. So the great question is to know how to extend them, with the 
necessary rigour, to the case of an isosceles triangle, then to an arbitrary 
one. So it is a matter of finding a similar property, even if it does not 
involve a constant as in the case of the equilateral triangle; which in fact 
means finding an expression for the sum of the distances in terms of a 
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parameter. Ibn al-Haytham will first establish that the sum of the distances 
from a point D on one of the sides of an isosceles triangle, or inside it, to 
the sides of the triangle is constant for any point lying on a line parallel to 
the base of the triangle; the sum depends on the distance x from the parallel 
line to the base of the triangle. Then, as we shall see later, he looks at the 
scalene triangle.  

Ibn al-Haytham begins by establishing two lemmas: 
 

Proposition 1.— In any triangle, the heights are inversely proportional to 
the sides on which they stand. 

 
Proposition 2.— Let ABC be a scalene triangle with a right angle at A; 
we draw the height AD, we take a point E on BC such that CD = DE and 
we draw AG, the bisector of the angle EAB; then GD = AD. 
 

 
Fig. 2.3.21 

 
After these lemmas, Ibn al-Haytham proves six propositions on the 

distances. The first four propositions relate to an isosceles triangle. 
 

Proposition 3.— For any isosceles triangle ABC with vertex A, the sum of 
the distances from an arbitrary point D, taken on BC, to the sides AB and 
AC, is equal to the height drawn from the endpoints of the base. 

For this proposition there are three cases for 
the figure depending on whether angle A is acute, 
a right angle or obtuse (see figures of the text, 
p. 489). Here we shall consider only one of the 
cases for the figure, to make the underlying ideas 
clear; the reasoning is identical in all the cases. 

Let us put BC = a, AC = b, AB = c, AH = hA, 
CH = hC, DC = u, 0 < u < a. We have 

 
DE = (a – u) sin ˆ B , DG = u sin ˆ C  = u sin ˆ B ,  

               Fig. 2.3.22 
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hence 
S = DG + DE = a sin ˆ B  = CH. 

We can write 
 
(1) S = hA

a

b
= hC = hB   (from lemma 1). 

 
In the previous proposition Ibn al-Haytham considered an arbitrary 

point on the base of the triangle, in the following proposition he considers 
an arbitrary point on one of the equal sides of the isosceles triangle. 

 
Proposition 4.— Let ABC be an isosceles triangle, D an arbitrary point on 
AB; we draw DG ⊥ BC and DH ⊥ AC. Let AE be the height from A, on 
which we define the two points I and L such that 

 

(1) 
 
AE

EI
=
AB

BD
   and (2) AI

IL
=
AC

CB
=
AB

CB
; 

 
we then have  

DG + DH = LE. 
 

For this proposition there are again three cases for the figure; let us 
take one of them to make the underlying ideas clear. 

The position of D on AB can be described by DG = x, DG = IE, so AI = 
hA – x. Now 

AI

��
=
b

a
  

 

 
Fig. 2.3.23 

 
implies 

IL =
a

b
hA − x + ; 
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but 
EL = EI + IL = x +

a

b
hA − x( ) ; 

 
now 

DK

BC
=
hA − x

hA
,  

 
hence 

 DK =
a

hA
hA − x + . 

 
But 

DH = DK sin ˆ K  = DK sin ˆ C  = DK · hA
D

,  

 
so 

 DH =
a

b
hA − x += IL ,  

 
and 

(2) S = DG + DH = x + 
a

b
hA − x( ) =

a

b
hA + x 1−

a

b
⎛ 
⎝ 

⎞ 
⎠ = hB + x 1−

a

b
⎛ 
⎝ 

⎞ 
⎠ . 

 
We may note that, if a = b, the triangle is equilateral and we then find 

DG + DH = hA, the result (a) obtained by Ibn al-Haytham’s predecessors. 
In the following proposition, Ibn al-Haytham considers an arbitrary 

point inside the isosceles triangle and investigates the sum of its distances 
from the three sides; he proves that for any point on a line parallel to the 
base, the sum of the distances can be expressed in terms of the distance of 
the parallel from the base of the triangle. 

For this proposition also there are three cases for the figure (see text, 
p. 490); let us take one of them to make the underlying ideas clear. 

 
Proposition 5.— Let there be an isosceles triangle ABC; through an 
arbitrary point D inside the isosceles triangle we draw DE ⊥ AB, 
DG ⊥ AC, DH ⊥ BC. Let AK be the height of ABC. The line through D 
parallel to BC cuts AB in M, AK in I and AC in L. Let N be a point on the 
straight line AK such that AI

IN
=
AB

BC
=
AM

ML
; we prove that DE + DG + DH = 

NK. 
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Fig. 2.3.24 

 
We can see at once that the length KN depends on the position of the 

straight line LM but not on the position of D on this straight line. So let us 
work out the length of this segment KN. 

Let us put DH = x and let us use the same lettering as before. We have 
AK = hA  and IK = DH = x; hence AI = hA – x. But 

 
AI

IN
=
c

a
=
b

a
, 

 
hence 

IL =
a

b
hA − x + . 

 
Now 

LM

BC
=
AI

AK
,  

 
hence 

LM = a
hA − x

hA
; 

 
moreover, 

LF = LM sin ˆ B  = LM · hA
b
=
a

b
hA − x + , 

 
so  

LF = IN. 
 

Now DE + DG = LF, from Proposition 3; so  
 

DE + DG = IN 
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and 
S = DE + DG + DH = IN + IK = KN = 

a

b
hA − x( ) + x =

a

b
hA + x 1 −

a

b
⎛ 
⎝ 

⎞ 
⎠ ; 

 
and by lemma 1 we have 

 

(3) � = �A + x 1−
a

b
⎛ 
⎝ 

⎞ 
⎠ . 

 
We may note that 
• if a = b in (3), triangle ABC is equilateral and we obtain the result (a) 

obtained by Ibn al-Haytham’s predecessors: S = h. 
• if x = 0, D lies on BC, the base of the isosceles triangle, and we have 
    S = DE + DG = a

b
hA = hC  (the height from C). 

• if x ≠ 0, D lies on one of the two sides or on a straight line parallel to 
the base, and we have the relation (3). 

 
Proposition 6. — This proposition is a corollary to Proposition 5. We 
consider BE the bisector of the angle B; we have 

 
GA

GD
=
EA

EC
=
BA

BC
=
CA

BC
=
b

a
; 

 

 
Fig. 2.3.25 

 
If we put GD = x, we have GA = hA – x = x b

a
, hence  

 
a

b
hA − x + = x   
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and from formula (3) we have 
 
(4) S = 2x. 

 
In Propositions 3, 4, 5, 6 Ibn al-Haytham derived a formula for finding 

the sum of the distances from a point on the equal sides of an isosceles 
triangle or inside it. He has proved that this sum depends on a parameter. It 
is constant only for the equilateral triangle and in the obvious case where 
the parameter is zero in the isosceles triangle, when the point lies on its 
base. 

In the following proposition, Ibn al-Haytham deals with another 
property of the isosceles triangle. Starting from the height CE measured 
from the side AB, he proves that there are three magnitudes that are in 
continuous proportion. 
 
Proposition 7. — Let ABC be an acute-angled isosceles triangle with 
AB = AC; we draw the heights AD and CE; then AB – CE, CE – EB and 
2EB are in continuous proportion. 

 
Fig. 2.3.26 

 
Then, next, Ibn al-Haytham deals with an arbitrary triangle. He knows 

perfectly well that formula (3) does not apply in a more general case. He 
establishes in what cases this formula still holds, that is when the point is 
taken on one of the sides. 

 
Proposition 8. — The sum of the distances from a point on a side of the 
scalene triangle to the two other sides is given by 

 

S = hA + x 1 −
a

b
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ , 
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where x = DE, the distance from D to the side AC. 
In the proof, the height used this time is the height from B. 
Let us put BH = hB; we then have KB = hB – x. 
 

 
Fig. 2.3.27 

 
Let us put  

BK

KN
=
a

b
,  

 
hence 

KN =
b

a
hB − x + .  

 
Moreover, 
     

a

b
=
BI

ID
=
BK

DG
   (by Proposition 1),  

 
so KN = DG; and it follows that 
 

S = DE + DG = x + 
b

a
hB − x( ) = hA + x 1−

b

a
⎛ 
⎝ 

⎞ 
⎠ . 

 
If we consider the height from A (as in Propositions 4 and 5), we then 

take DG as an unknown line parallel to that height (we interchange the 
roles of BC and AC as well as the letters a and b), and we have 

 

     S =
a

a
hA + x 1−

K

a
⎛ 
⎝ 

⎞ 
⎠ ,   where x = DG 

hence 
(5)  S = hB + x 1−

a

b
⎛ 
⎝ 

⎞ 
⎠ . 
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Following this proposition, there is a ninth proposition in which an 
effort is made to establish that this property holds for an arbitrary point. Let 
us first examine the content of this proposition before raising the question 
of its authenticity. 

Let us start by presenting it as it appears in the manuscript. 
 

Proposition 9. — Through a point D inside the scalene triangle ABC we 
draw DE ⊥ AB, DG ⊥ AC, DH ⊥ BC, LM || BC which cuts the height AK 
in I. We take N on AI such that AI

IN
=
BC

CA
; we prove that  

 
DE + DG + DH = NK. 

 
It is true – apart from one correction: IN

AI
=
CB

CA
 instead of AI

IN
=
CB

CA
 –, 

that 
LM || BC ⇒

LM

MA
=
BC

��
,  

 
so 

LM

MA
=
IN

AI
. 

 

Even with this correction, the remainder of the proof is false. 

 
Fig. 2.3.28 

 
In the statement of Proposition 9, the point I is defined by the equality 

AI

IN
=
CB

CA
; then we have AI

IN
=
LM

MA
 in the triangle ALM with height AI. In 

Proposition 8 on which Proposition 9 depends in the mind of the editor, the 
reasoning brings in the scalene triangle BDI with height BK, and the point 
N on BK defined by BK

��
=
BC

CA
, and we have BK

BN
=
BI

ID
 (see Fig. 2.3.26). But 

in Proposition 9 the height AI goes to LM and in Proposition 8 the height 
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BK goes to ID. Further, in 8 the point D is a vertex of the triangle IBD and 
in 9 the point D is an arbitrary point of LM, the base of the triangle ALM. 
One cannot refer back to 8 to prove 9, though this is indeed what is done by 
the editor of the text. 

If we correct the text and put IN
AI

=
BC

CA
, we return to the condition 

imposed in Proposition 5 in the case of an isosceles triangle ABC. Further, 
the figures for Propositions 5 and 9 are constructed in the same way, with 
the same lettering, and in 9 the expression ‘as it was proved earlier’ is 
undoubtedly a reference to Proposition 5. But the result DE + DG = IN is 
proved in 5 starting from the conclusion of Proposition 3 in which use is 
made of the similar triangles DLG and DME (DLE and DMG respectively 
in 9). The fact that these triangles are similar derives from the equality 
ˆ B = ˆ C  that implies ˆ L = ˆ M ; now in 9, ˆ B ≠ ˆ C , so in Proposition 9 one cannot 

have DE + DG = IN. Let us find what this sum is. 
We have  

DG · AM = AI · MD and AL · DE = AI · DL, 
 

hence  
    DG + DE = AI MD

AM
+
DL

AL
⎛ 
⎝ 

⎞ 
⎠   where AM ≠ AL;  

 
so this sum depends on the position of D on ML. 

Now if we define N by IN
AI

=
BC

CA
, we have IN = AI · ML

��
. So, in 

Proposition 9, for a scalene triangle we necessarily have DE + DG ≠ IN and 
DE + DG + DH ≠ KN. It is not exactly controversial to say that this type of 
error is not the kind that Ibn al-Haytham might have committed. So it is 
likely that some editor thought he could complete Ibn al-Haytham’s text in 
this way. 

If this is so, we need to find a plausible explanation why Ibn al-
Haytham did not present a proposition on the sum of the distances to the 
sides from a point inside a scalene triangle. Perhaps it is because this time 
the formula does not involve only a single parameter but two at a time, 
which makes it considerably less interesting. To illustrate this let us find 
the sum DE + DG in terms of what is given and the parameters that 
determine the position of D. 

As before, let us put BC = a, AB = c, AC = b, AK = hA, DH = x, DL = y 
(see previous figure). We have 

 

AI = hA − x,
AM

AC
=
AL

AB
=
LM

BC
=
hA − x

hA
, 
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hence 

AM =
b hA − x +

hA
,  AL =

c hA − x +
hA

,  LM =
a hA − x +

hA
. 

 
But 

MD = LM – y = 
a hA − x( ) − hA y

hA
; 

 
we have 

DG + DE = AI
MD

AM
+
DL

AL
⎛ 
⎝ 

⎞ 
⎠ =

ac hA − x( ) + hAy b − c( )
bc  

 
and 

 

(6)  DG + DE + DH = 
aShA + S b − a( )x + b − S( )hAy

bc
. 

 
Thus, the sum depends on the three sides of the triangle, on a height 

and on two parameters. 
 

Notes: 
1. If D lies on AB as in 8, we have y = 0 and DE = 0, and we return to 

(5) starting from (6). In fact, (6) can be rewritten 
a

b
hA +

b − a

b
x = hB + x 1−

a

b
⎛ 
⎝ 

⎞ 
⎠ , 

a result that depends on a single parameter. 
2. If the triangle is isosceles, we have b = c and we obtain (3) starting 

from (6), a result that depends on a single parameter. 
3. If in (6) we take the parameter x as given, which is the same as 

taking LM as given, the sum DG + DE + DH depends on the parameter y, 
that is it depends on the position of D on LM; so it will not be a sum that is 
constant, and it could not be represented by a segment such as the segment 
KN that appears in the text. 

Perhaps these difficulties encountered in trying to provide a usable 
generalisation of a formula that describes the sum of the distances, to 
include the case of a point inside a scalene triangle, prevented Ibn al-
Haytham from providing a proposition, which as presented here seems to 
be the work of an editor who was much less expert than Ibn al-Haytham; 
unless, perhaps, we should consider the possibility that we are dealing with 
a rather naïve investigation dating from his youth. Only further manuscript 
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copies, from a manuscript tradition different from that of the copy we have, 
would allow us to return to this question. 

4. There is, however, a linear combination of the three distances DE, 
DG and DH that remains constant, that is independent of the position of D, 
an arbitrary point inside the triangle or on one of its sides: this is 
c · DE + b · DG + a · DH which is always equal to the area of the triangle 
ABC. If D lies outside the triangle, we need to attach a suitable sign to each 
of the terms in the preceding sum in order to make it remain equal to the 
area of ABC. 

 
Finally, let us turn to the question of the distances from exterior points 

to an equilateral triangle that was examined by al-Sijzī15 but was not 
considered by Ibn al-Haytham. The part of the plane outside the equilateral 
triangle ABC can be divided into six parts obtained by extending its sides. 
We have the three straight lines XBAX', YCAY' and ZCBZ'. With the vertex 
A we associate the region IA, or (XBCY), lying beyond BC; and the region 
IIA, enclosed by the angle X'AY'. In the same way to the point B there 
correspond the regions IB and IIB, and to the point C the regions IC and IIC. 

 

 
Fig. 2.3.29 

 

 
15 Qawl Aḥmad ibn Muḥammad ‘Abd al-Jalīl al-Sijzī fī khawāṣṣ al-a‘mida al-

wāqi‘a min al-nuqṭa al-mu‘ṭā ilā al-muthallath al-mutasāwī al-aḍlā‘ al-mu‘ṭā bi-ṭarīq 
al-taḥdīd, mss Dublin, Chester Beatty 3652, fols 66r–67r; Istanbul, Reshit 1191, fols 
124v–125v. See J. P. Hogendijk, ‘Traces of the lost geometrical elements of Menelaus in 
two texts of al-Sijzī’, Zeitschrift für Geschichte der arabisch-islamischen Wissenschaf-
ten, Band 13, 1999–2000, pp. 129–64, p. 142 sqq; and P. Crozet, ‘Geometria: La 
tradizione euclidea rivisitata’, in R. Rashed (ed.), Storia della scienza, vol. III: La civiltà 
islamica, Rome, 2002, pp. 326–41. 
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Triangle ABC is equilateral, each of its sides is equal to the length a 

and the heights are each equal to h = 3
2

a. So it is sufficient to investigate 

the sum of the distances for any point situated in IA or IIA. 
 
1. First let M be a point in IA, that is in the region (XBCY) and let the 

three distances be ME, MK, MI. Let AH be the height from A (AH = h); the 
line drawn through M parallel to BC cuts AX in B1, AY in C1 and AH in H1. 
Let us put ME = x, a parameter that determines the position of the straight 
line B1C1; we have AH1 = h + x. Moreover,  

FK =MC1 sinĈ1 =MC1 ⋅
3
2

 

 
and 

MI =MB1 sin B̂1 =MB1 ⋅
3
2

, 

 
so 

MK +MI = B1C1
3
2
= AH1 = h+ x . 

 
In fact, triangle AB1C1 is equilateral with height AH1 and M is a point 

on its base; we know from Lemma (b) (p. 457) that MK + MI = AH1.  
We have that the sum  
 
(1)  S = ME + MK + MI = h + 2x. 
 
This sum is the same for any point M of the segment B1C1, including 

the endpoints. If x = 0, M is at E on BC and we have MK + MI = h, a result 
proved earlier. 

So it follows that for any point M in the region XBCY, including the 
edges, the required sum depends on a parameter that is the distance from M 
to the straight line BC. 

 
2. Now let there be a point N lying within the angle X'AY', that is in the 

region IIA and NE ⊥ BC, NK' ⊥ AC, NI' ⊥ AB. The line drawn through N 
parallel to BC cuts AX' in B', AY' in C' and AH in H'. Let us put NE = x > h; 

we have AH' = x – h. Moreover, we have NK' = NC' 3
2

, NI' = NB' 3
2

, so  
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� ′� +� ′I = ′D ′H 3
2
= A ′H = x − h . 

 
In fact, triangle AB'C' is equilateral with height AH' and N is a point on 

its base, so NK' + NI' = AH' = x – h, from the lemma mentioned earlier, and  
 
(2)  S = NE + NI' + NK' = 2x – h. 

 
Fig. 2.3.30 

 
This sum is the same for any point N of the segment B'C'. If the point N 

is at A, we have x = h, NK' = 0, NI' = 0 and the sum is equal to AH = h. 
It is obvious that the same method can be applied for the points in the 

regions IB and IIB or IC and IIC and leads to the same result. 
So the sum we are examining can be expressed in terms of h, the height 

of the equilateral triangle, and a single parameter x that is the distance from 
the point we are considering to a side of the triangle, that is the distance to 
BC if M is in one of the regions IA or IIA, the distance to AC if M is in one 
of the regions IB or IIB, and the distance to AB if M is in one of the regions 
IC or IIC. So we have two different results for the sum S. 

 
• M in IA, IB, IC, we have S = h + 2x 
• M in IIA, IIB, IIC, we have S = 2x – h. 
 
It is clear that nothing in the above procedure could be unknown to Ibn 

al-Haytham, nor inaccessible to him. If he did not wish to consider these 
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cases, perhaps it is, as we have said, in order to remain within the 
framework of the hypotheses of the ancients: considering only interior 
points. Al-Sijzī, on the other hand, had thought about these exterior points. 
Ibn al-Haytham’s predecessor, al-Sijzī, considered the cases of a point at 
the vertex of an equilateral triangle, on one of its sides or inside it; in all 
cases, we have S = h, a result established by the ancients and, according to 
him, by Menelaus. Next he considered the points in the region IA investiga-
ting various positions for the point and he determined S1, the sum of the 
distances to the two sides AB and AC of the triangle. In fact, if x is the 
distance from the point to the base BC, we have in all cases that 

 
S1 = AD + x = h + x. 

 
And consequently 

S = h + 2x. 
 
However, al-Sijzī does not examine the case where the point is in the 

region II and he does not complete the generalisation he began. Perhaps he 
was interested only in the relation between the three perpendiculars D1, D2 
and D3 from the point D. In the case he considers, we have D1 + D2 
= D3 + h. But he would then have been able to deduce from this that 
D1 + D2 – D3 is constant in the case concerned, which he did not do. 

In conclusion, it is clear that the chief concern in these investigations 
carried out by al-Sijzī, and above all in those by Ibn al-Haytham, is the 
search for a quantity that remains constant. But the weight of the tradition 
stemming from the ancients led them to consider only the sum of the 
distances from a point to the sides of a triangle instead of, in a more 
algebraic way, thinking about a suitable linear combination of the distances. 

 
 

3. History of the texts 
 

3.1. On a Geometrical Problem 
Ibn al-Haytham’s first treatise, On a Geometrical Problem (Fī mas’ala 

handasiyya), appears in two old lists of his writings: we find it mentioned 
by al-Qifṭī and by Ibn Abī Uṣaybi‘a.16 The treatise itself has come down to 
us in two manuscripts. It in fact forms part of two particularly important 
manuscript collections, each of which includes several treatises by Ibn al-

 
16 See Les Mathématiques infinitésimales, vol. II, pp. 526–27. 



 CHAPTER II: THE ANALYTICAL ART 

 

472 

Haytham. The first is the collection in the Oriental Institute in 
St Petersburg, whose former number is B 1030 and its present one 89. This 
collection contains twelve treatises, eleven by Ibn al-Haytham and the 
twelfth by al-‘Alā’ ibn Sahl. The treatise that is of interest to us here is the 
eighth. This collection is one we have come across several times;17 it was 
copied about 750/1349 – the date when it was revised by comparing it with 
its original. It is all in the same hand, in nasta‘līq script. The treatise on a 
geometrical problem, which covers folios 102r–110v, has neither additions 
nor glosses. The only addition (fol. 107v) has been made in the hand of the 
copyist – in the course of making the copy or during its revision against the 
original – so as to remedy the omission of a term in a proposition. The 
figures are drawn by the copyist. The only peculiarity in the copy is the 
repetition of the text of a page, but not of the figure that accompanies it. 
The copyist noticed this error, and at the top of the page wrote the word 
mukarrara (repeated). Here this collection is referred to as L.  

The second collection is found in the Bodleian Library, Oxford, Seld. 
A 32. It too contains eight treatises by Ibn al-Haytham, the one that 
interests us here being the fifth (fols 115v–120r). We have already come 
across this collection.18 It is written in naskhī. The copyist does not give 
either the place or the date; he has drawn the figures and compared his 
copy with its original, as is indicated by additions in the margin in the same 
hand. We may note, however, that there are some glosses in a different 
hand (fol. 117r). Here this collection is referred to as O. 

These two manuscripts are fully independent. Thus, three words that 
are missing in L are present in O, while, in relation to L, O is missing six 
words and a sentence. If such confirmation were needed, other peculiarities, 
grammatical errors, errors in letters, and so on, further confirm that the two 
are independent. 

As far as we know, this treatise was edited and translated for the first 
time in our French edition of 2002 and appears here in English for the first 
time.19 Nor do we know of any serious and comprehensive study of its 
content. 

 
17 Ibid., vol. II, pp. 24, 26, 27. 
18 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-Haytham. 

Théorie des coniques, constructions géométriques et géométrie pratique, London, 2000, 
p. 535. English translation: Ibn al-Haytham’s Theory of Conics, Geometrical Construc-
tions and Practical Geometry. A History of Arabic Sciences and Mathematics, vol. 3, 
Culture and Civilization in the Middle East, London, 2013. 

19 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: Méthodes géo-
métriques, transformations ponctuelles et philosophie des mathématiques, London, 
2002, pp. 619–33. 
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3.2. On the Properties of the Triangle 
The second treatise On the Properties of the Triangle in Regard to 

Height (Fī khawāṣṣ al-muthallath min jihat al-‘amūd), which is also 
mentioned by al-Qifṭī and by Ibn Abī Uṣaybi‘a,20 has come down to us in a 
single manuscript that forms part of the collection 2519 of the Library of 
Khuda Bakhsh (Patna, India). This important collection, which we have 
already mentioned,21 consists of 42 treatises on mathematics (Archimedes, 
al-Qūhī, Ibn ‘Irāq, al-Nayrīzī and others); it has 327 folios (32 lines per 
page, dimensions 24 × 15 cm, and 20 × 12.5 cm for the text) and it was 
copied in 631–632 of the Hegira, that is in 1234–1235 AD, at Mosul, in 
naskhī. The text by Ibn al-Haytham was transcribed in 1235 and occupies 
folios 189r–191r; it has neither additions nor marginal annotations. Here it 
is referred to as H. 

An edition of this text, but a not a critical one, was printed in 
Hyderabad in 1948; we have referred to it as Kh. 

This treatise was edited and translated for the first time in our French 
edition of 200222 and appears here in English for the first time. The inade-
quate Hyderabad edition was translated into English by F. A. Shamsi, with 
a commentary, under the title Properties of Triangles in Respect of Perpen-
diculars, in Hakim Mohammed Said (ed.), Ibn al-Haytham, Proceeding of 
the Celebrations of 1000th Anniversary, Karachi, n.d., pp. 228–46. 

 

 
20 Ibid., vol. II, pp. 522–3. 
21 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fondateurs et 

commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, Ibn al-
Samḥ, Ibn Hūd, London, 1996, p. 680; English trans. Founding Figures and Comment-
ators in Arabic Mathematics, A History of Arabic Sciences and Mathematics, vol. 1, 
Culture and Civilization in the Middle East, London, 2012. 

22 Les Mathématiques infinitésimales, vol. IV, pp. 635–53. 
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In the name of God, the Compassionate the Merciful 
 
 
 

TREATISE BY AL-ḤASAN IBN AL-ḤASAN IBN AL-HAYTHAM 
 

On a Geometrical Problem 
 
 
 
Let there be a triangle ABC of known magnitude whose side BC is 

known and in which the sum of the two sides BA and AC is known; we 
wish to know each of the sides BA and AC. 

 
Fig. II.3.1.1 

 
We imagine that in this triangle there is a circle touching its sides; let 

the circle be DEG; let its centre be I. We draw from the centre I straight 
lines to the points of contact; let the straight lines be IE, ID, IG. They are 
perpendicular to the sides of the triangle and they are equal. The product of 
IE and half of the perimeter of the triangle is thus known, because it is 
equal to the area of the triangle; but the area of the triangle is known and 
half of the perimeter of the triangle is known, because the perimeter of the 
triangle is known, so the straight line IE is known. But since these 
perpendiculars make the two straight lines that enclose an angle of the 
triangle to be equal, the sum of the straight line BC and the straight line AE 
is half of the perimeter of the triangle, so the sum of the straight line BC 
and the straight line AE is known; now BC is known, so the straight line AE 
is known. But EI is known, so the ratio of AE to EI is known. Let us join 
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AI; the triangle AEI is thus of known shape, because the angle AEI is a right 
angle. So the angle EAI is known and the angle DAI is equal to it, so the 
angle BAC is known. We draw the perpendicular AH, it is known, because 
its product with half of BC which is known is the area of the triangle which 
is known. We draw the straight line AK in such a way that the angle AKC is 
equal to the angle BAC which is known; the triangle AKH is thus of known 
shape, so the ratio of HA to AK is known and AH is known, so AK is known 
and the product of AK and BC is known. But the product of AK and BC is 
equal to the product of BA and AC, so the product of BA and AC is known. 
But the sum of BA and AC is known, so each of the straight lines BA and 
AC is known. This is what we wanted to prove. 

 
In another way 

We return to the triangle and the circle and we draw the perpendicular 
AH; it is known. From the point I we draw a straight line parallel to the 
straight line BC; let the straight line be IK; then HK is known, because IG 
is known, and there remains AK which is known. But the straight line IA is 
known, because its ratio to IE is known, so the ratio of IA to AK is known; 
now the angle K is a right angle, so the triangle AIK is of known shape, so 
the angle IAK is known; now the angle IAB is known, so the angle HAB is 
known. But the angle H is a right angle, so the angle B is known, the 
triangle ABH is of known shape and the ratio of BA to AH is known. But 
AH is known, so BA is known and there remains AC which is known. 

 
Fig. II.3.1.2 

 
Further, the angle C is also known, because each of these angles B and 

A is known, so the triangle ABC is of known shape and the ratio of BA to 
AC is known; but the sum of BA and AC is known, so each of the straight 
lines BA and AC is known. This is what we wanted to prove.  
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In another way 
We return to the triangle and the circle, we extend BA and we cut off 

AF equal to AC. We join FC and we extend AI to H; then it is parallel to 
the straight line FC, because the angle BAH is half the angle BAC. But the 
angle AFC is equal to half of the angle BAC, so the angle BFC is known 
because the angle BAH is known. But the ratio of BF to BC is known, 
because each of them is known, so the triangle BFC is of known shape and 
the ratio of BF to FC is known; but BF is known, so FC is known. 
Similarly, the triangle AFC is of known shape, so the ratio of FC to CA is 
known; but CF is known, so CA is known and there remains AB which is 
known. This is what we wanted to prove. 

 
Fig. II.3.1.3 

 
In another way 

We return to the triangle and the circle; we prove that the angle BAC is 
known, so the ratio of the product of BA and AC to <the area of the> 
triangle is known. But <the area> of the triangle is known, so the product 
of BA and AC is known and each of the straight lines BA and AC is known. 
This is what we wanted to prove. 

 
In another way 

We take the triangle and we draw the circumscribed circle; let it be the 
circle ACDB. We divide the arc BDC into two halves at the point D and we 
join DEA; it divides the angle BAC into two halves. So the ratio of BA to 
AC is equal to the ratio of BE to EC, so the ratio of AB to BE is equal to the 
ratio of AC to CE and it is equal to the ratio of the sum of BA and AC to the 
whole of BC. But the ratio of the sum of BA and AC to BC is known, 
because the sum of BA and AC is known, so the ratio of AB to BE is known. 
We join DB; the angle DAC is equal to the angle CBD. So the angle BAD is 
equal to the angle CBD, so the triangle ABD is similar to the triangle DBE, 
so the ratio of AD to DB is equal to the ratio of BD to DE and is equal to 
the ratio of AB to BE. But the ratio of AB to BE is known, so the ratio of 
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AD to DB is known and the ratio of BD to DE is known, so the ratio of AD 
to DE is known and the ratio of AE to ED is known.1 We draw the 
perpendicular AH; it is known because its product with BC is double <the 
area> of triangle ABC which is known. We draw from the point D the 
perpendicular DG; it is parallel to the perpendicular AH, so the ratio of AH 
to DG is equal to the ratio of AE to ED which is known and the perpen-
dicular DG is known; now DG divides the straight line BC into two halves, 
so the straight line BG is known and the angle G is a right angle; so the 
straight line BD is known. But the ratio of AD to DB is known, so the 
straight line AD is known; but the ratio of AE to ED is known, so each of 
the straight lines AE and ED is known, the product of AE and ED is known, 
the product of BE and EC is known, the ratio of AB to BE is known and the 
ratio of AC to CE is also known. So the ratio of the product of BA and AC 
to the product of BE and EC is known. Now the product of BE and EC is 
known, so the product of BA and AC is known. Now the sum of BA and AC 
is known, so each <of the straight lines> BA and AC is known. This is what 
we wanted to prove. 

 
Fig. II.3.1.4 

 
Further, each of the straight lines BE and EC is known, the ratio of AB 

to BE is known, the ratio of AC to CE is known and each <of the straight 
lines> BA and AC is known. 

Once this proposition2 has been proved in several ways, it remains to 
carry out the synthesis of this problem and to make it [sc. the problem] 
constructible. 

We can carry out the synthesis in each of the ways that we have shown; 
but we shall limit ourselves to carrying out the synthesis in one of the ways 
so as not to lengthen our account. So we shall carry out the synthesis in the 
last way. The synthesis in the last way is as we shall describe it. 

 
1 See the justification in the commentary. 
2 The Arabic term is ma‘nā, which Latin translators render as intentio, a word that 

conveys both the subject matter and the desired result. See also p. 221, n. 1. 
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We wish to construct on a known straight line a triangle [of area] equal 
to a given area and such that the sum of its two remaining sides is equal to 
a known straight line. 

Let the known straight line on which we wish to construct the triangle 
be AB, let the known area to which we wish the [area of] the triangle to be 
equal be the area enclosed by the straight lines AB and CD, and let the 
straight line to which the sum of the two remaining sides of the triangle is 
equal be the straight line GH. We put the ratio of GH to AB equal to the 
ratio of AB to HI. We divide the straight line AB into two halves at the 
point K and we draw from the point K the perpendicular to the straight line 
AB; let it be KL. We put CE equal to CD and we put the ratio of ED to KL 
equal to the ratio of GI to IH. We join AL and BL and we circumscribe a 
circle about the triangle ALB; let the circle be ALBM. We extend the 
straight line LA and we put the ratio of PA to AL equal to the ratio of ED to 
KL. We draw from the point P a straight line parallel to the straight line AB, 
let it be PM; let it cut the circle at the point M. We join AM and BM. 

I say that [the area of] the triangle AMB is equal to the area enclosed by 
the straight lines AB and CD and that the two straight lines AM and MB 
have a sum equal to the straight line GH. 

 
Fig. II.3.1.5 

 
Proof: We join the straight line LFM and we draw the perpendicular 

MN; the ratio of MN to KL is then equal to the ratio of MF to FL. But the 
ratio of MF to FL is equal to the ratio of PA to AL and the ratio of PA to AL 
is equal to the ratio of ED to KL, so the ratio of MN to KL is equal to the 
ratio of ED to KL, the straight line MN is equal to the straight line ED and 
the product of AB and half of MN is equal to the product of AB and CD. 
Now the product of AB and half of MN is the magnitude of the triangle 
AMB, so the triangle AMB is equal to the area enclosed by the straight lines 
AB and CD; which is one of the <conditions> we sought. 

In the same way, the angle BML is equal to the angle BAL and the 
angle BML is equal to the angle AML, because the arc AL is equal to the arc 
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LB, so the angle BAL is equal to the angle AML. So the triangle AML is 
similar to the triangle ALF, so the ratio of ML to LA is equal to the ratio of 
AL to LF and is equal to the ratio of MA to AF. But the ratio of MA to AF is 
equal to the ratio of MB to BF, because these two angles which are at the 
point M are equal, so the ratio of the sum of AM and MB to the straight line 
AB is equal to the ratio of ML to LA. The ratio of the square of the sum of 
AM and MB to the square of AB is thus equal to the ratio of the square of 
ML to the square of LA, which is equal to the ratio of ML to LF, which is 
equal to the ratio of GH to HI. The ratio of the square of the sum of AM 
and MB to the square of AB is thus equal to the ratio of GH to HI. But the 
ratio of GH to HI is equal to the ratio of the square of GH to the square of 
AB. The ratio of the square of the sum of AM and MB to the square of AB is 
thus equal to the ratio of the square of GH to the square of AB, so the ratio 
of the sum of AM and MB to AB is equal to the ratio of GH to AB, so the 
sum of the straight lines AM and MB is equal to the straight line GH. 

Now we have proved that <the area> of the triangle AMB is equal to 
the product of AB and CD. So we have constructed on the straight line AB a 
triangle that satisfies the required condition; let the triangle be AMB. This 
is what we wanted to construct. 

 
It remains to give a discussion for this problem because the straight line 

PM, which is parallel to the straight line AB, may not meet the circle. 
The discussion for this problem is that the straight line GH is not 

smaller than the straight line which, in the power, is equal to the straight 
line AB plus four times the straight line CD.3 

Proof: We return to the figure and we extend the straight line LK until 
it ends on the circumference of the circle; let it meet the circle at the point 
Q. We suppose that the straight line GH is smaller than the straight line 
which, in the power, is equal to the straight line AB plus four times the 
straight line CD. I say that the straight line PM parallel to the straight line 
AB does not meet the circle and that the construction of the triangle cannot 
be completed in accordance with the required condition. 

The straight line PS meets the straight line LQ in all the cases of the 
figure, if we extend LQ; let it meet it at the point S. So the ratio of SK to KL 
is equal to the ratio of PA to AL which is equal to the ratio of ED to KL, so 
the straight line SK is equal to the straight line ED and the ratio of SK to KL 
is equal to the ratio of GI to IH. So the ratio of SL to LK is equal to the ratio 
of GH to HI. But the ratio of GH to HI is equal to the ratio of the square of 

 
3 It is necessary that GH2 ≥ AB2 + (4CD)2; but 2CD = ED, so it is necessary that 

GH2 ≥ AB2 + 4ED2 (see Note, p. 452). 



 ON A GEOMETRICAL PROBLEM 483

GH to the square of AB which is smaller than the ratio of the square of 
twice ED plus the square of AB to the square of AB, so the ratio of SL to LK 
is smaller than the ratio of the square of twice ED plus the square of AB to 
the square of AB, so the ratio of SK to KL is smaller than the ratio of the 
square of twice ED to the square of AB which is the ratio of the square of 
ED to the square of AK and the ratio of SK to KL is smaller than the ratio of 
the square of ED to the square of AK. But SK is equal to ED, so the ratio of 
SK to KL is smaller than the ratio of the square of SK to the square of AK. 
So the ratio of SK to KL is equal to the ratio of the square of SK to a square 
greater than the square of AK. So the product of SK and KL is greater than 
the square of AK and the product of QK and KL is equal to the square of 
AK, so the straight line SK is greater than the straight line QK. So the point 
S is outside the circle and the height ED is greater than the straight line QK 
which is the greatest perpendicular that is in the segment AQB.4 So if the 
square of GH is smaller than the square of twice ED plus the square of AB, 
then the construction of the triangle cannot be completed in accordance 
with the given condition.  

 
Fig. II.3.1.6 

 
Indeed, in every case a triangle is inscribed in a circle; if a circle is 

circumscribed about it, if we divide the arc subtended by the straight line 
AB into two halves and if we join its mid point and the vertex of the trian-
gle with a straight line, then that straight line is divided by the straight line 
AB into two parts such that the ratio of one of the parts to the other is equal 
to the ratio of the perpendicular dropped from the vertex of the triangle to 
its base – which is the straight line AB – to the perpendicular dropped from 
the mid point of the arc subtended by the straight line AB to the straight 
line AB and that the ratio of the two parts of the straight line which joins 
the mid point of the arc and the vertex of the triangle, the one to the other, 
is equal to the ratio of the excess of the square of the sum of the two 

 
4 Euclid, Elements, III.15. 
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adjacent sides at the vertex of the triangle, over the square of AB, also to 
the square of AB, because the ratio of the square of the sum of the two sides 
to the square of AB is always equal to the ratio of the straight line which 
joins the mid point of the arc to the vertex of the triangle to the part of it 
which is on the side towards the mid point of the arc. So the ratio of ED, 
which is the height of the triangle, to KL, which is the other height, is 
always equal to the ratio of the excess of the square of the sum of the two 
sides – which in the example is GH – over the square of AB, to the square 
of AB. 

So if the ratio of the excess of the square of GH – which is equal to the 
sum of the two sides – over the square of AB to the square of AB is equal to 
the ratio of the square of twice ED – which is the height – to the square of 
AB, then the ratio of ED to KL is equal to the ratio of the square of ED to 
the square of AK. So we have the product of ED and KL equal to the square 
of AK; so the straight line PS meets the circle at the point Q and the 
construction is completed. 

If the ratio of the excess of the square of GH over the square of AB to 
the square of AB is greater than the ratio of the square of ED to the square 
of AK, the ratio of ED to KL is greater than the ratio of the square of ED to 
the square of AK, the product of ED and KL will be smaller than the square 
of AK and ED will be smaller than QK, so the straight line PS will meet the 
straight line QK in a point between the two points Q and K and the straight 
line PS thus cuts the circumference of the circle; the construction of the 
triangle is completed. 

If the ratio of the excess of the square of GH over the square of AB to 
the square of AB is smaller than the ratio of the square of ED to the square 
of AK, then the straight line PS meets the straight line QK in a point outside 
the circle, so the straight line PS does not meet the circle, as we have 
established by the proof, and the construction of the triangle cannot be 
completed. 

The discussion of this problem is that the straight line GH is not smal-
ler than the straight line which, in the power, is equal to the straight line AB 
plus four times the straight line CD. This is what we wanted to prove. 

Starting from this discussion we have proved that for two of the sides 
of a triangle, the square of their sum, if they are made into a straight line, is 
not smaller than the square of the remaining side plus four times the square 
of the perpendicular dropped from the angle enclosed by these two sides, 
onto the side that remains. 

The treatise is completed. 



 
 

In the name of God the Compassionate the Merciful 
From Him comes success 

 
 
 

TREATISE BY IBN AL-HAYTHAM 
 

On the Properties of the Triangle in Regard to Height 
 
 
 
The ancient geometers examined the properties of the equilateral trian-

gle. It thus became clear to them that for any given point on one of the 
sides of the equilateral triangle, if we draw from that point two perpendicu-
lars to the two remaining sides, then their sum is equal to the height of the 
triangle. They have written this down and proved it in their books. They 
examined the heights of other triangles and for them they found neither a 
complete order, nor an arrangement and thus they did not give any account 
of them. Since this was how matters stood, necessity encouraged us to 
investigate the properties of triangles; then we found a uniform order for 
the heights of the isosceles triangle, and we similarly found an order for the 
heights of the scalene triangle and a uniform arrangement. When this 
became clear to us, we composed this treatise. 

We first present what the ancients said about the properties of the 
heights of the equilateral triangle.1 We then move on with what we our-
selves have determined about the properties of the heights of other triangles 
so that the properties of the heights of all triangles might be gathered 
together in this treatise. 

 
<I> What the ancients said is as follows. For any equilateral triangle, if 

on one of its sides we take a point from which we draw the perpendiculars 
to the other two sides, then their sum is equal to the height of the triangle. 

Example: The triangle ABC is equilateral; on the side AB we take a 
point D, from this we draw the perpendiculars DE and DG and we draw the 
height AH; then the sum of the two perpendiculars DE and DG is equal to 
the height AH. 

 
1 See Appendix, Text 4: Two Propositions of the Ancients. 
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Fig. II.3.2.1 

 
Proof: Let us draw from the point D a straight line parallel to the 

straight line BC; let it be DIK. The triangle ADK is equilateral because it is 
similar to the triangle ABC, so the perpendicular DG is equal to the perpen-
dicular AI and the perpendicular DE is equal to the perpendicular IH, so 
<the sum> of the perpendiculars DE and DG is equal to the height AH. 
This is what we wanted. 

 
<II> The ancients also said that if we take a point inside an equilateral 

triangle and if we draw from this point perpendiculars to the sides of the 
triangle, then the sum of these perpendiculars is equal to the height of the 
triangle. 

Example: The triangle ABC is equilateral; inside if we take a point D 
from which we draw the perpendiculars DE, DG and DH and we draw the 
height AI, then the sum of the perpendiculars DE, DG and DH is equal to 
the height AI. 

 
Fig. II.3.2.2 

 
Proof: We draw from the point D a straight line parallel to the straight 

line BC; let it be KML. Then the triangle AKL is equilateral, so the sum of 
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the two perpendiculars DH, DG is equal to the perpendicular AM, as 
before; but the perpendicular DE is equal to MI, so the sum of the 
perpendiculars DE, DG, DH is equal to the height AI. 

This is what the ancients said about this idea (ma‘nā).2 As for what we 
ourselves have determined, this is what we shall now describe. 

 
<1> For any triangle, if we draw from its angles the perpendiculars to 

its sides, then the ratio of the perpendicular to the perpendicular is the 
inverse of the ratio of the side to the side. 

Example: In the triangle ABC we have drawn the perpendiculars AD, 
BE and CG. 

I say that the ratio of the perpendicular AD to the perpendicular BE is 
equal to the ratio of AC to CB and that the ratio of the perpendicular AD 
to the perpendicular CG is equal to the ratio of AB to BC. 

 
 Fig. II.3.2.3a       Fig. II.3.2.3b  Fig. II.3.2.3c 

 
Proof: Each of the angles D and E is a right angle and the angle ACD is 

common, so the triangle ACD is similar to the triangle BCE, so the ratio of 
AC to CB is equal to the ratio of AD to BE. In the same way, we prove that 
the ratio of AB to BC is equal to the ratio of AD to CG. If the triangle has 
acute angles, all three of the feet of the perpendiculars are inside the 
triangle,3 as in the first case of the figure. 

If the triangle has an obtuse angle, then one of the perpendiculars lies 
inside the triangle and the other two perpendiculars are outside the triangle, 
as in the second case of the figure. 

If the triangle is right-angled, then the two perpendiculars drawn from 
the two acute angles are the two sides of the triangle that enclose the right 

 
2 See p. 480, n. 2. 
3 They lie on the sides of the triangle and not on their extensions. 
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angle, so the feet of the perpendiculars, which are G and E, are at the point 
A, as in the third case of the figure. 

We prove this proposition using a different proof. The product of each 
of the sides and the perpendicular that falls on it is twice <the area> of the 
triangle, so the ratio of each of the sides of the triangle to another side is 
the ratio of the perpendicular that falls on the second side to the 
perpendicular that falls on the first side. This is what we wanted to prove. 

 
<2> In the same way, if in a scalene right-angled triangle we draw 

from its right angle the perpendicular to the base, then we cut off from the 
greater of the two parts of the base a part equal to the smaller one; if we 
join its endpoint to the right angle with a straight line, then we divide the 
angle that remains over from the right angle into two halves, then the part 
cut off from the base between the straight line that divides the angle that 
remains and the foot of the perpendicular is equal to the height. 

Example: Let there be the triangle ABC whose angle A is a right angle; 
we draw from this the perpendicular AD, we cut off DE equal to DC, we 
join AE, we divide angle BAE into two halves with the straight line AG. 

I say that GD is equal to DA. 
 

 
Fig. II.3.2.4 

 
Proof: The angle EAD is equal to the angle DAC, so the angle EAD is 

half the angle EAC. But the angle EAG is half the angle EAB, so the angle 
GAD is half the angle BAC. But the angle BAC is a right angle, so the angle 
GAD is half a right angle; but the angle ADG is a right angle, so the angle 
AGD is half a right angle, so the straight line GD is equal to the straight 
line DA. This is what we wanted to prove. 

 
<3> If on the base of an isosceles triangle we take an arbitrary point, 

from which we draw the perpendiculars to the two [equal] sides of the 
triangle, then their sum is equal to the perpendicular drawn from one 
endpoint of the base to the side of the triangle, whether the angle of the 
triangle enclosed by the two equal sides be acute, obtuse or a right angle. 
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Example: Let there be the isosceles triangle ABC whose sides AC and 
BA are equal and whose base is BC. On the base BC we take a point D from 
which we draw the two perpendiculars DE and DG. 

I say that their sum is equal to the perpendicular CH. 

 
  Fig. II.3.2.5a      Fig. II.3.2.5b      Fig. II.3.2.5c 

 
Proof: The two angles B and C are equal, the two angles E and G are 

equal because they are right angles, so the two triangles BED and DGC are 
similar and the ratio of CD to DB is equal to the ratio of GD to DE. By 
composition, the ratio of the sum of GD and DE to DE is equal to the ratio 
of CB to BD. But the ratio of CB to BD is equal to the ratio of CH to DE,4 
so the ratio of the sum of GD and DE to DE is equal to the ratio of CH to 
DE, so the sum of the two perpendiculars GD and DE is equal to the per-
pendicular CH. 

This proof is the same whatever the properties of the triangle. This is 
what we wanted. 

 
<4> In the same way, we return to the figure and the given point on the 

side AB; let it be D. We draw the perpendiculars DG and DH, we draw the 
perpendicular AE, we put the ratio of AB to BD equal to the ratio of AE to 
EI and we put the ratio of AI to IL equal to the ratio of AC to CB. 

I say that the sum of the perpendiculars DG and DH is equal to the 
perpendicular LE. 

Proof: We join DI and we extend it to K, then DK is parallel to the 
straight line BC. But since the ratio of AB to BD is equal to the ratio of AE 
to EI, then the ratio of AC to CB is equal to the ratio of AK to KD. But the 
ratio of AC to CB is equal to the ratio of AI to IL, so the ratio of AK to KD 
is equal to the ratio of AI to IL. But the ratio of AK to KD is equal to the 

 
4 Because the triangles BDE and BCH are similar. 
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ratio of AI to DH, as has been proved in Proposition 3 of this treatise. So 
the perpendicular DH is equal to LI and DG is equal to EI, so <the sum> of 
the perpendiculars DG and DH is equal to the perpendicular LE. This is 
what we wanted to prove. 

 
        Fig. II.3.2.6a   Fig. II.3.2.6b   Fig. II.3.2.6c 

 
<5> In the same way, we return to the isosceles triangle; let the point 

lie inside the triangle. Let there be the triangle ABC and the point D which 
is inside the triangle; let us draw from this point the perpendiculars DE, DG, 
DH. We draw from the point D a straight line parallel to the straight line 
BC; let it be MDL. We draw the perpendicular AIK and let us put the ratio 
of AI to IN equal to the ratio of AB to BC, which is equal to the ratio of AM 
to ML. 

I say that the sum of the perpendiculars DE, DG and DH is equal to the 
perpendicular NK. 

 
     Fig. II.3.2.7a  Fig. II.3.2.7b        Fig. II.3.2.7c 

 
Proof: We draw the perpendicular LF. Since the ratio of AI to IN is 

equal to the ratio of AM to ML, we have IN equal to LF. Now we have 
proved that the sum of the perpendiculars DE and DG is equal to the 
perpendicular LF. <The sum> of the two perpendiculars DE and DG is thus 
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equal to the perpendicular NI and the perpendicular DH is equal to the 
perpendicular IK, so the sum of the three perpendiculars DE, DG and DH is 
equal to the perpendicular NK. This is what we wanted to prove. 

This proof is the same for all isosceles triangles, whether they are 
acute-angled, or have an obtuse angle or a right angle. 

 
<6> In the same way, we return to the isosceles triangle; let the triangle 

be ABC. We divide the angle ABC into two halves with the straight line BE, 
we draw EH parallel to the base BC and we draw the perpendicular AGD. 

I say that if from a given point on the straight line EH we draw two 
perpendiculars to the straight lines AE and AH, then their sum is equal to 
the perpendicular GD. On the straight line EH we take a point I from 
which we draw the perpendiculars IK and IL. I say that the sum of IK and 
IL is equal to the perpendicular GD. 

 
Fig. II.3.2.8 

 
Proof: We draw the perpendicular EM. Since EH is parallel to the 

straight line CB, the angle HEB is equal to the angle EBC. But the angle 
EBC is equal to the angle EBH, so the angle HEB is equal to the angle 
EBH; so the straight line EH is equal to the straight line HB. So the ratio of 
AH to HB is equal to the ratio of AH to HE; but the ratio of AH to HB is 
equal to the ratio of AG to GD and the ratio of AH to HE is equal to the 
ratio of the perpendicular AG to the perpendicular EM,5 so the ratio of AG 
to GD is equal to the ratio of AG to EM and the perpendicular EM is equal 
to GD; but the perpendicular EM is equal to the sum of the perpendiculars 

 
5 Proposition 1. 
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IK and IL, as before.6 The sum of the two perpendiculars IK and IL is thus 
equal to the perpendicular GD. 

This proof is the same for all isosceles triangles. 
 
<7> For any acute-angled isosceles triangle, the excess of its side – one 

of the two <equal> sides – over its height – the one that falls on this side – 
the excess of this height over the segment that it cuts off on the side 
towards the base and twice this segment are all three in continued 
proportion. 

Let there be a triangle ABC whose sides AB and AC are equal and 
whose three angles are acute. Let us draw in this triangle the perpendicular 
CE. 

I say that the excess of AB over CE, the excess of CE over EB and 
twice EB are all three in continued proportion. 

 

 
Fig. II.3.2.9 

 
Proof: We draw the perpendicular AD and the perpendicular DH, 

which makes7 HE equal to HB. We join ED and let us divide the angle 
ADE into two halves with the straight line DG, then GH is equal to HD, as 
we have proved in Proposition 4 of this treatise.8 Since CB is twice BD and 
EB is twice BH, CE is parallel to DH and is twice DH. Since the product of 
AH and HB is equal to the square of HD, the product of AH and HE is 
equal to the square of HG, so the ratio of AH to HG is equal to the ratio of 

 
6 Proposition 3. 
7 In the manuscript, we read ‘and we make’. 
8 In fact, ADB is right-angled and scalene. 
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HG to HE and is equal to the ratio of AG to GE.9 But HG is greater than 
HE, because GH is greater than HB. But given that AD is greater than DB; 
the angle BAC is in fact acute, so the straight line AG is greater than the 
straight line GE. We put GI equal to GE, then the ratio of AG to GI is equal 
to the ratio of GH to HE, so the ratio of AI to IG is equal to the ratio of GE 
to EH, so the product of AI and HE is equal to the square of GE, twice the 
product of AI and HB is equal to twice the square of EG and twice the 
product of AI and BE is equal to the square of EI. Since GE is equal to GI 
and EH is equal to HB, thus IB is twice HG. But HG is equal to HD and CE 
is twice HD, so the straight line IB is equal to the perpendicular CE, thus AI 
is the excess of AB over the perpendicular CE. But IB is equal to the 
perpendicular CE and IE is the excess of IB over EB. Now AI, IE and twice 
EB, which is the part cut off by the perpendicular CE, are in continued 
proportion, so the excess of AB over the perpendicular CE, the excess of 
the perpendicular CE over EB – which is the part that it cuts off on the side 
<AB> – and twice EB are all three in continued proportion. This is what we 
wanted to prove. 

 
<8> In the same way, let the scalene triangle be ABC; on any one of its 

sides, let us take a point; let it be the point D. Let us draw from the point D 
the two perpendiculars DE and DG. We draw the perpendicular BH, we 
draw DKI parallel to the straight line AC and we put the ratio of BK to KN 
equal to the ratio of BC to CA. 

I say that the sum of the perpendiculars DE and DG is equal to the 
perpendicular NH. 

 
Fig. II.3.2.10 

 
Proof: The ratio of BI to ID is equal to the ratio of BC to CA; but the 

ratio of BC to CA is equal to the ratio of BK to KN, so the ratio of BI to ID 
is equal to the ratio of BK to KN. But the ratio of BI to ID is equal to the 

 
9 See commentary, p. 463. 
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ratio of BK to DG, so the perpendicular DG is equal to the perpendicular 
KN and the perpendicular DE is equal to the perpendicular KH. So the sum 
of the perpendiculars DG and DE is equal to the perpendicular NH. This is 
what we wanted to prove. 

 
<9> Let us return to the scalene triangle; let it be ABC. Let us take an 

arbitrary point D inside it. Let us draw from this point the perpendiculars 
DE, DG, DH. We cause to pass through the point D a straight line parallel 
to the straight line BC; let it be LDM. We draw the perpendicular AIK and 
we put the ratio of AI to IN equal to the ratio of BC to CA. 

I say that the sum of the three perpendiculars DE, DG and DH is equal 
to the perpendicular NK. 

 
Fig. II.3.2.11 

 
Proof: The ratio of LM to MA is equal to the ratio of BC to CA; but the 

ratio of BC to CA is equal to the ratio of AI to IN, so the ratio of AI to IN is 
equal to the ratio of LM to MA. The sum of the perpendiculars DE and DG 
is thus equal to the perpendicular NI, as it was proved earlier. Now the 
perpendicular DH is equal to the perpendicular IK, so the sum of the per-
pendiculars DE, DG and DH is equal to the perpendicular NK. 

This proof is the same for any triangle, right-angled, acute-angled or 
with an obtuse angle, scalene, isosceles or equilateral. This is what we 
wanted to prove. 

 
The treatise on the heights of triangles is complete. 

Thanks be given to God and blessings upon our Prophet Muḥammad 
and those that are His. 

I completed transcribing it at Mosul, the Protected city,  
in the month Ṣafar 632. 
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CHAPTER III 
 

IBN AL-HAYTHAM AND THE GEOMETRISATION OF PLACE 
 

 
 
As we have seen, the emergence of geometrical transformations – the 

operations as well as the transformed objects of geometry – spurred Ibn al-
Haytham into conceiving a new mathematical discipline: the discipline of 
the knowns. This discipline was designed to justify the operations, and to 
provide a basis for the existence of the objects by its introduction of motion. 
And the same is true of its method: the technique of analysis. In truth 
Euclid’s Common Notions, Postulates and Definitions seem no longer to be 
enough, being unsuitable for the new representation of the objects of 
geometrical knowledge that are envisaged. In the Elements, this object was 
simply the figure, without any consideration either of its place or, in gen-
eral, of the space that contained it. From now on, figures are no longer the 
sole objects of geometry; moreover, a figure can move, undergo translation, 
dilatation, contraction, inversion and projection. Thus, the figure moves, 
and motion even comes into the way the object is conceived. For example, 
it is relevant to the concept of parallelism, and for the process of deriving 
figures by the transformation of other figures. So it is clear that it was no 
longer possible to think about the relationships between elements of a sin-
gle figure, any more than about the relationships between figures and still 
less about the relationships used in finding these figures, without raising 
questions about the notion of spatial relationships itself. This is precisely 
what Ibn al-Haytham is doing in the treatise On Place. 

But, in the tenth century, reflections on the nature of spatial relation-
ships were common currency among philosophers 1  and philosopher-
theologians.2 It was, clearly, not an idea of space, such as we encounter 

 
1 For example al-Fārābī’s text on the void: Risāla fī al-khalā’, edited and translated 

by Necati Lugal and Aydin Sayili in Türk tarikh yayinlarindan, XV.1, Ankara, 1951, 
pp. 21–36. In his lost Physics, al-Fārābī must certainly have dealt with this subject. See 
also the Physics of al-Shifā’ by Avicenna, ed. Ja‘far Āl-Yāsīn, Beirut, 1996, Chapters 5 
to 9; and al-Najāt by Avicenna, ed. M. S. al-Kurdī, Cairo, 1938, pp. 118–24. 

2 Later philosopher-theologians were able to pass on to their own time the theses 
discussed by their predecessors, notably the discussion in the School of Baṣra from Abū 
al-Hudhayl al-‘Allāf and his nephew al-Naẓẓām, as well as later Abū ‘Alī al-Jubbā’ī 
and his son Abū Hāshim. See for example Ibn Mattawayh, al-Tadhkira, ed. Samīr Naṣr 
Luṭf and Faysal Badīr ‘Aūn, Cairo, 1975, especially p. 116. See also Abū Rashīd al-
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after Newton, but rather a reflection on place and the void. Indeed, it is in 
connection with these two concepts that ideas about spatial relationships 
were formulated. The framework was already to be found in Aristotle’s 
Physics and it remained current because of that work’s longevity: a theory 
of place based on the everyday experience that every perceptible body is in 
some location. In any case, it is in this same intellectual context and in the 
same language that Ibn al-Haytham returns to the question of space, but he 
bases himself upon the new concerns generated by a considerable revival in 
geometry. 

The notions of place and of the void had been discussed by Aristotle in 
several treatises and in some detail in Book IV of the Physics.3 From then 
on, treatises on physics include a chapter about place and the void in which 
Aristotle’s theory is adopted, improved upon or refuted. Among the 
ancients, we have Alexander of Aphrodisias, Themistius, Philoponus and 
Simplicius; in Ibn al-Haytham’s time the important names are those of al-
Fārābī, Avicenna and the members of the Baghdad School, as well as the 
philosopher-theologians.4 The ancients’ principal writings on this subject 
were known in Arabic5 and were thus, like the works composed by the phi-
losophers of their own time, available to Ibn al-Haytham and his contempo-
raries. It is no doubt the wide diffusion of these theories, and the interest 
taken in ideas about place and the void, that allowed Ibn al-Haytham to 
dispense with setting out their nature in detail. He confines himself with 
merely referring to them. 

Of these numerous theories and their ramifications, Ibn al-Haytham 
chose only the two principal ones, whose theses he summarises very briefly, 
without the argumentation that supports them. He begins by returning to 
                                         
Nīsābūrī, Kitāb al-Tawḥīd, ed. Muḥammad ‘Abd al-Hādī Abū Rīda, Cairo, 1965, pp. 
416 sqq. See Alnoor Dhanani, The Physical Theory of Kalām, Leiden, 1994, pp. 62–89. 

3 It is above all in the first six chapters if Book IV of the Physics that Aristotle 
develops his arguments and his theory of place. See Aristotle, Physics, Books III and 
IV, trans. by E. Hussey, Clarendon Aristotle Series, Oxford, 1983 and trans. P. H. 
Wicksteed and F. M. Cornford, London and Cambridge (Mass.), 1970, 211a–213a. On 
the important problem of the place of the Whole, see Marwan Rashed, ‘Alexandre et la 
“magna quaestio”’, Les Études classiques, 63, 1995, pp. 295–351, especially pp. 303–5. 
On the problem of place in Aristotle, see the now classic study by V. Goldschmidt, ‘La 
théorie aristotélicienne du lieu’, in Écrits, Paris, 1984, vol. I, pp. 21–61. 

4 See p. 495, n. 1 and 2. 
5 See the translation of Aristotle’s Physics with commentaries by Ibn al-Samḥ, by 

Mattā ibn Yūnus, by Ibn ‘Adī and by Abū al-Faraj ibn al-Ṭayyib, edited by ‘A. Badawi 
in Arisṭūṭālīs, al-Ṭabī‘a, vol. I, Cairo, 1964; vol. II, Cairo, 1965, especially Book IV, 
vol. I, pp. 271 sqq. See also E. Giannakis, ‘Yaḥyā ibn ‘Adī against John Philoponus on 
Place and Void’, Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften, 
Band 12, 1998, pp. 245–302. 
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Aristotle’s theory, according to which the place of a body is the enclosing 
surface that envelopes the body.6 The second thesis considered is that of 
one of Aristotle’s critics, Philoponus, who maintains that the place of a 
body is the void filled by the body. Having described these theories, Ibn al-
Haytham at once goes on to say that the question of place has not yet 
received the rigorous attention it deserves and to prove, by his critique, that 
both of these theses seem equally ill adapted to his purpose and his require-
ments. And indeed, while these theories were an integral part of books and 
commentaries on physics, Ibn al-Haytham does not intend that his own 
treatise shall be a work concerned only with physics, but writes above all as 
a mathematician; and it is a mathematical notion of place that he proposes 
to develop in his treatise. It is with exactly this purpose that he composes 
one of the first treatises entirely and exclusively devoted to the notion of 
place, at the least the first of its kind. Although his use of philosophers’ 
terms – that is of the language of the time – has been a cause of misunders-
tanding,7 Ibn al-Haytham nevertheless does not go so far that he disguises 
the novelty of what he proposes to do, the more so since his text does not 
contain anything beyond mathematics. Thus, we find no allusion to a subs-
tantial discussion of the perception of place that he had already completed, 
in his famous Book on Optics. 

In constructing his mathematical theory of place, Ibn al-Haytham 
begins by criticising the Aristotelian thesis. His intention is, however, less 
that of pointing out its weaknesses than that of laying the foundations for 
his own theory. When we come to examine it we see that, even if it some-
times does not genuinely refute Aristotle, this critique allows Ibn al-
Haytham, as a mathematician, to free the notion of place from any discus-
sion of material existence, that is to free it of its physical and cosmological 
connections. In contrast, the refutation of Philoponus’ thesis seems to have 
two purposes. Ibn al-Haytham seems to want to, as it were, put us on our 
guard against rapidly assimilating his own thesis into that theory. Indeed it 
is as if he wished to warn us in advance against a mistake that would in 

 
6 See Aristotle, Physics IV, 212a; cf. trans. Hussey, p. 28. 
7 In fact, here, as in the Analysis and Synthesis as well as in The Knowns, that is in 

the treatises preceded by a theoretical introduction containing a mixture of philosophical 
and mathematical considerations, Ibn al-Haytham makes use of the language of the 
philosophy of his time, which has an Aristotelian look. We encounter terms such as 
‘essence’, ‘in actu’, ‘in potentia’, ‘form’, ‘place’, ‘demonstrative syllogism’, and so on. 
Although for a historian versed in Ibn al-Haytham’s mathematics, optics or astronomy 
this terminology does not impede understanding Ibn al-Haytham’s actual intentions and 
ideas, it may happen that it misleads a historian of philosophical theories. Such a reader 
can indeed see here a trace of Aristotelianism, whereas Ibn al-Haytham thinks very 
differently. This is exactly the mistake made by the philosopher al-Baghdādī, see p. 500. 
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reality be made by some commentators, such as ‘Abd al-Laṭīf al-Baghdādī8 
and other more recent ones.9 But thanks to this critique he can also deter-
mine the conditions for constructing the geometrical concept of place, and 
it is at this stage that Ibn al-Haytham’s intention becomes clear: we have 
nothing less than the first known geometrisation of the notion of place. The 
project is so innovative and so strange in its time that even an Aristotelian 
philosopher saw it that way, though without being able to understand its 
exact significance.10 Let us examine Ibn al-Haytham’s procedure.  

In Aristotle, place is the place of a body, and its existence is given as 
something immediately obvious that does not stand in need of proof. To 
convince oneself of this, it is enough to show what it is not and then go on 
to investigate what it is, its particular attributes: all of them refer to some-
thing that exists. Upwards and downwards are not merely relative to one 
another, but represent the places towards which certain bodies naturally 
move. So the true difficulty in the problem of understanding place is con-
nected not with its existence, but with its essence and its definition. 
Accordingly, we must start by looking for attributes of the essence: all of 
them arise from a primary relationship ‘between what is contained and 
what contains it, that is between two things united by a relationship of 
exteriority; so it is this relationship that makes it possible to determine the 
essence of place’.11 Thus, Aristotle finds the essence in this primary rela-
tionship between the container and that which is contained, what encloses 
and what is enclosed, and defines place as the first envelope of each body, 
which does not belong to the body itself but has another body of its own 
that encloses the former one. Or, as he expresses it: ‘the limiting surface of 
the body continent – the content being a material substance susceptible of 
movement by transference’.12 So we are concerned with the inner surface 
of the containing entity lying next to that which is contained, in which the 

 
8 See Appendix III in Les Mathématiques infinitésimales, vol. IV. 
9 Thus, A. Dhanani writes: ‘In the end he [Ibn al-Haytham] endorsed this view of 

space (which derives ultimately from John Philoponus)’ (The Physical Theory of 
Kalām, p. 69). This error does not affect the value of A. Dhanani’s work, because Ibn 
al-Haytham is not an example of the theologian philosopher – the true subject of the 
book. 

10  Al-Baghdādī, like al-Rāzī, has not grasped the essential point of Ibn al-
Haytham’s theory, namely the one-to-one correspondence between two sets of different 
distances. 

11 ‘entre le contenu et le contenant, c’est-à-dire entre deux choses unies par une 
relation d’extériorité; c’est donc celle-ci qui permettra de déterminer l’essence du lieu’ 
(V. Goldschmidt, ‘La théorie aristotélicienne du lieu’, p. 28). 

12 Aristotle, Physics, Book IV, 212a, trans. P. H. Wicksteed and F. M. Cornford, 
p. 313; cf. trans. E. Hussey, p. 28. 
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body is positioned, in accordance with its nature and in accordance with the 
order of the cosmos, even if the body can be removed from its place. In 
short, as Aristotle says, ‘Further, place is coincident with the thing, for 
boundaries are coincident with the bounded’.13 The image of the inner 
surface of a vase provides a good illustration of such a representation of 
place. Thus, place is the whole of the surface adjacent to what encloses the 
whole of the body whose place it is.  

Ibn al-Haytham marshals several arguments against Aristotle’s theory  
– counter-examples, most of them mathematical. We observe that, in all 
these counter-examples, the only property of the body that the mathemati-
cian retains is extension, itself conceived as made up of distances, which is 
a preparation for a formal idea of place. In short, place becomes ontologi-
cally neutral.14 

Let us begin by examining the least mathematical of all these counter-
examples, one that might be found in the writings of commentators on 
Aristotle and those of his critics. We take a goatskin filled with water; if we 
press it, the water overflows through the spout and the surface of the goat-
skin encloses the remainder of the water. If we repeat this several times, the 
surface of the goatskin will enclose less and less water and thus will be the 
place of several volumes of water. Thus, we have the same place for differ-

 
13 Aristotle, Physics IV, 212a29–30, ed. and trans. Ross. 
14 We may, moreover, ask ourselves whether one or another of Ibn al-Haytham’s 

mathematical predecessors had already made a move towards stripping the idea of place 
of ontological elements. In other words, we may wonder whether there was a movement 
to ‘de-ontologise’ place, a movement of which Ibn al-Haytham was part. This conjec-
ture stems from a thesis attributed to Thābit ibn Qurra, to be found in a text that is no 
longer extant.  

According to the testimony of the philosopher-theologian Fakhr al-Dīn al-Rāzī, 
Thābit ibn Qurra, unlike the philosophers, was notable for having a thesis of his own: 
one that contradicted the Aristotelian theory of natural place. Al-Rāzī wrote as follows: 
‘the philosophers are in agreement about it (every body has a natural place); never-
theless I have seen in some chapters attributed to Thābit ibn Qurra a surprising theory 
which he has chosen for himself’ (al-Mabaḥīth al-mashriqiyya, Tehran, 1966, vol. II, 
p. 63). Al-Rāzī quotes Thābit ibn Qurra before going on to criticise this theory: ‘Thābit 
ibn Qurra has said: he who believes that the Earth is seeking for the place in which it is 
to be found, has a false opinion; because there is no need to imagine in any place 
whatsoever a state that is proper to it making it unlike others. But, on the contrary, if 
one had imagined all places to be empty and then that the whole Earth arrives at any one 
of them, it necessarily stops there and does not move away towards another [place], 
because this one and all the places are equivalent’ (ibid., p. 63).  

On the theory of natural place and the attraction of the Earth, see Marwan Rashed, 
‘Kalām e filosofia naturale’, in R. Rashed (ed.), Storia della scienza, vol. III: La civiltà 
islamica, Rome, Istituto della Enciclopedia Italiana, 2002. 
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ent volumes. Even though an Aristotelian philosopher can always reply that, 
in this case, the form of the goatskin changes, the argument is not entirely 
lacking in force and, at the least, refers us back to a difficulty in the theory 
of combined matter and form. 

All the other counter-examples are geometrical in nature and reduce to 
the fact that a body can have a change in the surface that bounds it without 
changing in volume, or can even increase in its outer surface while dimi-
nishing in volume. 

The first example is that of a parallelepiped that we cut into slices with 
faces parallel to two of its original faces; we rearrange these slices so that 
the parallel faces make up the faces of a new parallelepiped. The volume 
remains unchanged, whereas the area of the outer surface that encloses it, 
and thus the place, has greatly increased. 

Furthermore, if we consider a body with plane faces, which we hollow 
out so as to give its interior, for example, the form of a concave sphere its 
volume diminishes whereas its enclosing surface increases. If on the other 
hand we consider a wax cube that we model into a sphere, its surface area 
diminishes without its changing its volume, in accordance with the proper-
ties of bodies with the same surface area (isepiphanic bodies) established 
by Ibn al-Haytham in another treatise.15 

If, again, we model the cube into a regular polyhedron with twelve 
faces, then this polyhedron has a surface area – and thus a place – greater 
than that of the initial cube. Ibn al-Haytham had in fact proved that if there 
are two regular polyhedra with similar faces that have the same total area, 
then the polyhedron that has the greater number of faces has the greater 
volume.16 So if the cube and the polyhedron with similar faces have the 
same surface area, the volume of the polyhedron would be greater than that 
of the cube, which is contrary to what was assumed. 

An Aristotelian would certainly not find himself at a loss as to how to 
reply to Ibn al-Haytham’s criticisms. He could indeed object that the 
‘individual’ body is no longer the same since in one case it is the form that 
has been altered and in the other case it is the matter that has been changed. 
This is indeed the way that the philosopher and physician ‘Abd al-Laṭīf al-
Baghdādī replies to the mathematician.17 But this reply would not have 
affected Ibn al-Haytham’s opinion, which was based on other grounds, 

 
15 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-Haytham, 

London, 1993, Chap. III; English trans. Ibn al-Haytham and Analytical Mathematics. A 
History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in the 
Middle East, London, 2012, pp. 289–95. 

16 Ibid., vol. II, p. 339 and pp. 444–51; English trans. pp. 249 and 336–9. 
17 See Appendix III in Les Mathématiques infinitésimales, vol. IV. 
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lying outside Aristotelianism. We have seen that he gives a different mean-
ing to the word ‘body’; he also gives another meaning to the expression 
‘adjacent surface’. Like the body, this entity has in fact no other quality 
except extension in three dimensions. The body and the adjacent surface 
have now been stripped of any physical or cosmological quality. So there is 
every indication that in his critique of the Aristotelian theory, Ibn al-
Haytham is setting out not so much to mount an effective attack but rather 
to prepare the ground for a deliberately more abstract conception of the 
idea of place. It is in the course of his critique of the theory of place of the 
type put forward by Philoponus that Ibn al-Haytham set about constructing 
his own concept of place. 

We may first observe that it is in the light of this theory, but also 
predominantly against it, that Ibn al-Haytham constructs his concept of 
place. Nevertheless, Ibn al-Haytham does not approach the theories as a 
historian and it can happen that in criticising certain notions he introduces 
into them meanings slightly different from their original ones. All the same, 
since he does not cite any names or any book titles, we need to be prudent.  

In his commentary on Aristotle’s Physics and especially in his 
Corollaries on Place and the Void,18 Philoponus develops the theory that 
place is an extension in three dimensions, empty by definition, and thus 
distinct from the bodies that may occupy it. He expresses his idea as 
follows: 

That place is not the limit enclosing a body is adequately clear from what has 
just been said; that it is a certain three-dimensional interval, distinct from the 
bodies that are to be found in it (because place and the void are in reality the 
same in regard to their substance), we might show this by elimination of the 
other possibilities: indeed if it is not the matter nor the form nor the limit of 
the enclosing body, there remains only that place is the interval.19  

As to the meaning of this key concept of extension, Philoponus writes:  
And I certainly do not say that this interval has ever been or could be empty 
of all body. Absolutely not, but I state that it is something other than the bod-
ies that are to be found in it, that it is empty as regards its own definition, but 
that it is never separated from a body, rather as we say that matter is some-
thing other than forms, but that it can nevertheless never be separated from a 
form. So in this way we agree that an interval is something other than any 
body, empty as regards its own definition but there are, continually, new 
bodies which come to be found in it, itself remaining immobile, as a whole 
and in regard to its parts, as a whole because the cosmic interval which 
 
18 See Ioannis Philoponi in Aristotelis Physicorum libros quinque posteriores 

commentaria, ed. H. Vitelli, CAG XVII, Berlin, 1888. 
19 Philoponus, In Phys. 567, 29–568, 1. 
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admitted the body of the whole Universe can never be moved, in regard to its 
parts because it is impossible that the interval, incorporeal and empty by its 
own definition, can move.20  

For Philoponus, extension exists (‘an interval is something other than 
the bodies that are to be found in it, but it is never without bodies’);21 it is 
empty by definition. To sum up, what Philoponus means by ‘place’ is 
extension in three dimensions, empty but possessing existence, even if one 
might say that existence is not ‘in actu’.  

There remains the question of knowing how, starting from dimensions 
that are empty and of necessity abstract, we can observe a variety of differ-
ent bodies. It is this question and the difficulty that it raises which, it seems, 
persuaded Ibn al-Haytham to move away from Philoponus’ theory. This 
theory is, indeed, incapable of explaining how an extension, defined in this 
way, is the place even of a body – if not of a family of different bodies – 
unless we suppose that we are concerned simply with extension conceived 
in relation to the body. A static theory, if one may call it so, that Ibn al-
Haytham makes an effort to turn into a dynamic one, but at the cost of 
subjecting it to considerable modifications. 

From the theory of place put forward by Philoponus, Ibn al-Haytham 
retains the idea of empty extension and that of the existence of place inde-
pendently of any body to be found in it. But, as a mathematician, Ibn al-
Haytham gives these two ideas a sense different from that given by the 
philosopher of nature. He begins by assigning empty extension a level of 
existence, that of mathematical concepts: it is ‘imagination’ which, as we 
have already seen, for Ibn al-Haytham is an act of thinking by which, 
stating from the traces left by objects, we separate out intellectual forms 
that are unchanging.22 So we are concerned with an ‘imagined void’, appre-
hended by this act that starts from the traces of bodies that move from one 
position to another. After that we can take this position to be empty, even if 
it is never empty because it will at once be filled by another body. The act 
of imagination separates out unchanging intellectual form from this void: 
the distances between all the imagined points, distances that are themselves 
imagined because they are not material entities; they are in fact the 
imagined distances between all the points of the surface of a region of 
space. This manner of conceiving extension presents two advantages: Ibn 
al-Haytham does not need to give a purely conventional definition of the 
void; on the other hand he is in a position to present a mathematical notion 
of the void without having to believe in the existence of a physical void. So, 

 
20 Philoponus, In Phys. 569, 7–17. 
21 Philoponus, In Phys. 569, 19–20. 
22 See Introduction, pp. 11–12. 
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by employing the adjective ‘imagined’, Ibn al-Haytham ensures that the 
mathematical notion of place has a level of existence.  

But we need to know how this imagined void becomes the place of a 
body, or of a variety of bodies. In this, Ibn al-Haytham clearly departs from 
all his predecessors. He does not propose a single set of imagined distances, 
but two. First, the distances that are ‘fixed, intelligible, imagined’ (al-
thābita al-ma‘qūla al-mutakhayyala)23 in this void-extension, in this region 
of space. On the other hand, the set of imagined distances between all the 
points of an arbitrary body. For Ibn al-Haytham these distances, those in 
both sets, are segments of straight lines. So we shall say that an imagined 
void is the place of a certain body if and only if the imagined distances 
from this body ‘can be superimposed on and can be identified with’ the dis-
tances from the imagined void. 

These two sets of distances and this ‘perfect superposition’ are the 
essential elements of this new conception of place. The end result of the 
superposition is another set of distances, since we are dealing with seg-
ments of straight lines, and thus with lengths without breadth; or, as we 
shall read later:  

But if on every imagined distance we superimpose an imagined distance, 
together they will be a single distance, because the imagined distance is 
simply the straight line which is a length without width. Now if on the 
straight line which is a length without width we superimpose a straight line 
which is a length without width, together they become a single straight line, 
because from their superposition there results no width, nor a length which 
exceeds the length of one of them. If one of the two imagined straight lines is 
superimposed upon the other, they become a single straight line which is a 
length without width. The imagined void filled by the body is thus imagined 
distances, on which there are superimposed the distances of the body, and 
which have become the single and same distances.24  

Ibn al-Haytham’s conception is unequivocal, and is sharply different 
from that of Philoponus. We now know why, from the beginning of the 
treatise, he has made a point of warning us against hastily assuming the two 
are the same. Let us assess Ibn al-Haytham’s ideas on this matter using 
words other than his own, to try to make clear both Ibn al-Haytham’s 
intentions and the nature of his contribution. 

Ibn al-Haytham simply jettisons the idea found in all his predecessors, 
that of regarding a body as a whole, and substitutes for it a view of a body 
as a set of points joined up by segments of straight lines. Thus, of all the 
qualities a body can have, he retains only its extension, itself understood as 

 
23 See p. 515. 
24 See p. 513. 
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a set of line segments. Moreover, the imagined void is also a set of 
unchanging line segments joining the points of a region of three-
dimensional space, independent of any body. Thus, the imagined void, that 
is place, is conceived from the first as a region of Euclidean space with its 
intrinsic metric. In other words, let C be the body concerned; with it we 
associate an abstract construct – place – which is V, the set of the distances 
(V is the imagined void), with a one-to-one correspondence C  V. The 
distances which define V do not depend on the body C that fills them: they 
are unchanging in magnitude and in position. This place is called the place 
of the body C if and only if we establish the isometric one-to-one corres-
pondence mentioned above. Place has a reality that is independent of any 
body: it is the family of imagined distances. This latter is obviously con-
ceived more geometrico, within the framework of Euclidean geometry. 
Finally, the place of a body is defined, as we shall see later, as being the 
metric of the part of Euclidean space occupied by the body, which is itself 
conceived in the same way, and the two are connected by an isometric one-
to-one correspondence. In such a scheme, it is clear that Euclidean space, a 
universal void, serves as a substrate for the unchanging distances between 
all the points, even though that is not stated in so many words. This sub-
strate is indispensable for the coherence of the fixed distances that are 
considered in one or another region of the space, that is at the point, and 
thus to the conception of places as regions, or parts, of this space. It was 
not until Descartes, it seems, that it was to be stated, this time explicitly, 
that space is logically anterior to points.25 Although it is succinct, Ibn al-
Haytham’s treatise geometrises the notion of place and mathematises the 
notions connected with it. It is, as far as I know, the first treatise that 
includes an attempt of this kind, and this is the direction that will later be 
followed by seventeenth-century mathematicians, notably by Descartes and 
Leibniz.26 

 
25 Descartes writes in his Discours de la méthode: ‘[…] the geometers’ object, 

which I conceived as being a continuous body, or a space indefinitely extended in 
length, width and height or depth, divisible into various parts, which could have various 
shapes and magnitudes, and could be moved or transposed in any way’ (Œuvres de 
Descartes, publiées par C. Adam and P. Tannery, Paris, 1965, vol. VI, p. 36). 

26 One simply cannot avoid noticing that it is this direction that the seventeenth-
century mathematicians will take, each in his own way, and with differences that need 
to be pointed out on each occasion. For example, let us look at what Leibniz wrote in 
Geometrical Characteristic, where he represents place as a fragment of geometrical 
space. Place is a situs in Leibniz’s sense, that is a relation between different points of a 
configuration (of an object) and Leibniz indicates it with a ‘.’. As for example A.B: 
‘A.B represents the mutual situation of the points A and B, that is an extensum 
(rectilinear or curvilinear, it does not matter which) that connects them and remains the 
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Now this conception allows Ibn al-Haytham to do what was forbidden 
to his predecessors: he can compare different geometrical solids, and also 
diverse figures, which occupy the same place, as well as the places that 
they occupy. From now on it is legitimate for him to think about their 
observable relationships, their positions, their shapes and their magnitudes, 
as he planned to do in The Knowns. It is now possible to make a rigorous 
comparison between a solid – for example a sphere – or an arbitrary figure, 
such as a circle, and so on, and its transformed version, as well as to com-
pare their respective places, as it is possible to compare each to the other or 
to a third entity in a different place. He needed something like this new 
conception of place in order to investigate geometrical transformations. 

So Ibn al-Haytham’s treatise has close links with the new discipline of 
the Knowns. It is a book on geometry, or, we might say, on the philosophy 
of geometry. It consciously positions itself outside the tradition of investi-
gations of place as they appear in Aristotle’s Physics, or in the works of his 
critics and commentators, Greek and Arabic. So we should be risking 
serious misunderstanding if we were to discuss Ibn al-Haytham’s theses 
without being aware that we need to see him as deliberately setting out to 
conceive place in terms that are mathematical and abstract. This kind of 
mistake was, however, made by, for example, ‘Abd al-Laṭīf al-Baghdādī. 

 
 

HISTORY OF THE TEXT  
 
The treatise On Place (Fī al-makān) by Ibn al-Haytham appears on the 

lists of his writings drawn up by al-Qifṭī and Ibn Abī Uṣaybi‘a.27 In this 
same treatise, Ibn al-Haytham refers to his book on isoperimetric figures. 
Further, in a treatise we have edited in Les Mathématiques infinitésimales 
(vol. IV, Appendix III), al-Baghdādī quotes at length from this text by Ibn 
al-Haytham. The philosopher-theologian Fakhr al-Dīn al-Rāzī also refers to 
it more than once. That is to say that we have a superabundance of 
evidence for the authenticity of the attribution of this text. 

The treatise itself has come down to us in five manuscripts. 
The first, which we shall call C, belongs to the collection 2823 in Dār 

al-Kutub in Cairo, fols 1v–5v. This same collection includes another treatise 
by Ibn al-Haytham, on the direction of the Qibla (Fī samt al-qibla). This 
latter is copied in the same hand; we read in the colophon ‘copied from a 

                                         
same as long as that situation does not vary’ (La Caractéristique géométrique, text 
edited and with introduction and notes by Javier Echeverría; French translation with 
notes and postface by Marc Parmentier, coll. Mathesis, Paris, 1995, p. 235). 

27 See Les Mathématiques infinitésimales, vol. II, p. 524; English trans. p. 408. 



506 CHAPTER III 

  

copy in the hand of Qāḍī Zādeh’ (fol. 5v), that is the hand of the famous 
astronomer and mathematician in the employ of Ulugh Beg, during the first 
half of the fifteenth century. The writing is in nasta‘līq. We can find four 
omissions of a word and two omissions of a sentence of more than three 
words. 

The second manuscript, which we shall call T, belongs to the collection 
2998, fols 166–74, in the library of Majlis Shūrā in Tehran. This collection 
also includes several other treatises on optics by Ibn al-Haytham: On Light, 
On Shadows, On the Light of the Heavenly Bodies. This collection is in the 
same hand, in nasta‘līq script. 

We note five omissions of a word and one omission of a sentence of 
three words, with a relatively large number of errors. C and T have two 
omissions of a word in common. 

The third manuscript forms part of the collection 2196, fols 19v–22r, in 
the Salar Jung Museum at Hyderabad (India), we shall call it H. 

The fourth manuscript – called L – belongs to the collection no. 1270, 
fols 25v–27v in the India Office Library in London. We do not know the 
date of the copy, which could be the tenth century of the Hegira. Examina-
tion shows that it has one omission of a word and six errors. Apart from 
these omissions peculiar to each of the manuscripts H and L, they share 
three omissions of a word and twenty errors. 

The fifth manuscript belongs to the collection Fātiḥ 3439, fols 136v–
138r, in the Süleymaniye library in Istanbul – we have called it F. This 
collection includes several treatises by Ibn al-Haytham. The manuscript 
was copied in 806/1403–4. It is difficult to read because the ink has faded 
and it contains a significant number of omissions. 

Comparing these five manuscripts two by two, we can divide them into 
two groups: H and L on the one hand and C and T on the other, while F, on 
account of its omissions and its errors, remains separate. The probable 
stemma is particularly simple merely on account of our drastic lack of 
information. 

   
 
This text by Ibn al-Haytham was published at Hyderabad, by the 

Oriental Publications Bureau, in a non-critical edition by Osmania based 
only on manuscript L. 
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In the name of God, the Compassionate the Merciful 
 
 
 

TREATISE BY AL-ḤASAN IBN AL-ḤASAN IBN AL-HAYTHAM 
 

On Place 
 
 
 
Men of learning, concerned to attain certainty in the search for truth 

about things that exist, are in disagreement on the essence of ‘place’. Some 
have said that the place of a body is the surface that encloses the body; 
others have said that the place of a body is the imagined void filled by the 
body. However we have not found in any of our predecessors an exhaustive 
discussion of the essence of place, nor clear evidence to reveal the reality 
of place. Since this is how things stand, we thought we should search for 
the essence of place in an exhaustive manner, a search which shows what it 
is and reveals its reality, and which wipes away the disagreement and abol-
ishes the ambiguity. 

We say: place is a common name which is applied to several things 
each of which is called a place. In fact, the ‘place’ is the answer one gives 
to someone who enquires after the place of a body. The answer to someone 
who enquires after the position of a body can be one among many things. If 
someone in fact enquires after a man, among others, and says: ‘so-and-so, 
in what place is he?’ – and if that man is absent from his country – the 
answer is that he is in such-and-such a country. That is indeed an indication 
that a country can be called a place. Similarly, if someone enquires and 
says: ‘so-and-so, in what place does he live?’, the answer is: he is in such-
and-such a district. That is indeed an indication that the district, which is a 
part of the city, can be called a ‘place’. Similarly, if someone enquires after 
a man when he is in the house of that man, and says: ‘so-and-so, in what 
place is he?’, the answer is: he is in such-and-such a room or in such-and-
such a chamber. That is indeed an indication that a room can be called a 
‘place’ and that a chamber can be called a ‘place’. And, for each of these 
locations, no one disputes that one can call them places, whether the object 
of the enquiry is a man or any other body that is not a man. A single point 
can remain a matter of disagreement, it is the place of the body whose 
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dimensions do not exceed the dimensions of that body: this is the notion 
that we must investigate.  

We say: for any body, there are two things that can be called ‘place’. 
One is the surface enclosing the body. That is the surface of the air enclos-
ing a body which is in the air, the surface of the water enclosing a body 
which is in the water and the surface of any body inside which there is a 
body which is distinct from it. It is for this that one of the two groups 
which are in disagreement has opted. The other notion is the void imagined 
as filled by the body. If indeed a body moves from the position it occupies, 
the enclosing surface by which it was surrounded can be imagined as 
empty, without a body in it, even if it has been filled with air or water, or 
with a body different from the one that was in it. By ‘position’ I mean one 
of the places mentioned before, each of which is by convention called 
‘place’.  

The imagined void, these are the imagined distances, without matter in 
them, between the opposite points that belong to the surface enclosing the 
void. It is for this that the other group has opted. It is not inadmissible to 
call each of these two notions ‘place’, but it remains to examine them, 
along with the properties of each of them, to make it clear whether one 
deserves this name more than the other, or whether neither deserves it. 

The method used for this investigation consists of considering each one 
individually, and examining whether it necessarily leads to abhorrent 
ambiguities and irremovable doubts. If one of them is free of ambiguities 
and doubts, it will be more credible than its companion; but if, for each of 
them, there arise ambiguities and doubts, the one which carries fewer 
ambiguities and doubts deserves the name ‘place’ more than the other one 
does. 

Among the ambiguities that appear in connection with the surface, 
there is this one: if the shape of the body changes, the shape of the enclos-
ing surface changes. 

Among bodies, there is the one which is such that, if its shape changes, 
the shape of its enclosing surface changes; and in addition, the area of the 
enclosing surface increases whereas the volume of the body remains as it 
was, unchanged. 

Among those, there is the parallelepiped. If we divide it up into slices 
with faces parallel and parallel to two of its faces,1 and we order and then 
recombine its parts in such a way that each of its parts is placed alongside 
the other so that the parallel faces become two parallel surfaces; if we join 
the parts of the body, the one to the other, then the surface enclosing the 

 
1 Lit.: if we divide it up with parallel surfaces. 



 ON PLACE 511 

body will be greater than the first surface which enclosed the body before it 
was divided up. By its being divided up, numerous surfaces are in fact pro-
duced, each of them being equal to each of the two faces which were paral-
lel and parallel to the surfaces generated, and one part of the two surfaces 
perpendicular to the two parallel faces is removed from the surfaces of the 
body. So the place of the body will be the surface of the air which encloses 
the body, superimposed on the surface of the body, which is a multiple of 
the first surface. Thus, in the second state the place of the body is a 
multiple of its first place, whereas the body in itself has not been increased 
at all. This is an unacceptable notion: the place of the body becomes larger 
whereas the body has not become larger, and has not increased at all. 

Among such [bodies] again, there is water: if it is in a goatskin, the 
inner surface of the goatskin is the place of the water. If we press the goat-
skin, the water overflows from the spout of the goatskin, and the surface of 
the goatskin encloses what remains of the water. Then, as we press on the 
goatskin, the water comes out, and the surface of the goatskin encloses 
what remains of the water. Thus, the body does not cease becoming smaller, 
and the place of what remains of it is its original place. It follows that the 
same place, the inner surface of the goatskin will be the place for bodies of 
different magnitudes, and considerably different ones: the surface of the 
goatskin will sometimes enclose the greater, sometimes it will enclose the 
smaller, and sometimes it will enclose something in between. This is an 
unacceptable absurdity. 

Similarly for any body enclosed by plane surfaces: if in each of its sur-
faces we dig out a concave hole – be it spherical or cylindrical, or a circular 
pyramid or a rectilinear pyramid – then each of the concave surfaces that 
are generated is greater than its plane base which has been removed; thus, 
what remains of the body, once pieces have been dug out of it, is much 
smaller than the original solid itself; and the place of this remainder would 
be greater than the place of the original body. So the body would have 
become smaller and its place greater. But this is one of the most unaccept-
able of absurdities. 

From all this it follows necessarily that the same body would be able to 
occupy many places of different magnitudes, while the magnitude of the 
body does not change. In fact, a body that is such as to suffer action from 
another body, such as wax, lead, water and any liquid body, can take differ-
ent shapes, without anything being added to it or removed from it. For 
example, if wax – or something like it – has the shape of a cube, its enclos-
ing surface will be its place; if we then fashion this same body into a sphere, 
its place will be the spherical surface which encloses it. But the spherical 
surface is always smaller than the sum of the faces of the cube, if the body 
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of the sphere is equal to the body of the cube. We have proved this result in 
our book On the Sphere which is the Largest of all Solid Figures having 
Equal Perimeters.2 Similarly, we give this body twenty [regular] faces, the 
sum of its faces will be smaller than the sum of the faces of the cube, 
because if the one that has twenty faces has the sum of its faces equal to the 
sum of the faces of the cube, its body will be greater than the body of the 
cube, since we have also proved that in the book we have just mentioned.  

If, similarly, we make it into a body with twelve faces or with eight, or 
cylindrical, or pyramidal with a circular base or a rectilinear pyramid, then 
the magnitude of the body will be the same, while the enclosing surfaces 
will be different. If this is so, the same body, of known magnitude, for 
which the measure3 of its magnitude does not change, could be enclosed, at 
different moments, by surfaces of different magnitudes. So if the place of 
the body is the surface enclosing this body, then the place of the body will 
be places of different magnitudes, of infinite number, none of which 
deserves more than all the others to be a place of this body. And neverthe-
less there are not several places for a single body.  

None of the ambiguities that we have noted can be removed in any way 
at all. So it is not necessary that the surface enclosing the body shall be the 
place of the body. And if we call it ‘place’, it is by way of metaphor and 
not in an exact manner, as for example when one calls the house, the dwell-
ing, the district, the city, the ‘place of a body’. 

As for the void imagined as filled by the body, in this case an ambigu-
ity appears when we say that no void exists in the Universe. So if we say 
that the place of the body is the void, it follows necessarily that the place of 
the body is a thing which does not exist. And yet the body exists, and any 
body that exists is in a place. If what is in a place exists, its place exists. It 
follows necessarily that the void exists; now this is an unacceptable state-
ment in the mouth of someone who claims that the void does not exist. We 
remove this ambiguity by means of what we are about to describe. 

If, to reply to this statement, we say: the void is nothing but distances 
lacking matter; the imagined void which has been filled by the body is the 
imagined distances equal to the distances of the body, if we imagine them 
lacking matter, the imagined void which has been filled by the body is thus 
imagined distances equal to the distances of the body, on which have been 

 
2 See Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-

Haytham, London, 1993, p. 384, n. 1; English trans. Ibn al-Haytham and Analytical 
Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture and 
Civilization in the Middle East, London, 2012, p. 305, n. 1. We might also translate this 
as ‘the greatest of solid isepiphanic figures’. 

3 Lit.: the quantity. 
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superimposed the distances of the body imagined in the body. But if on 
every imagined distance we superimpose an imagined distance, together 
they will be a single distance, because the imagined distance is simply the 
straight line which is a length without width. Now if on the straight line 
which is a length without width we superimpose a straight line which is a 
length without width, together they become a single straight line, because 
from their superposition there results no width, nor a length which exceeds 
the length of one of them. If one of the two imagined straight lines is 
superimposed upon the other, they become a single straight line which is a 
length without width. The imagined void filled by the body is thus imag-
ined distances, on which there are superimposed the distances of the bodies, 
and which have become the single and same distances. The imagined void 
filled by the body will not be anything but the distances of the body, so that 
if the person who imagines forms in his imagination distances equal to the 
distances of the body, similar to the figure of the body – the figure that is in 
the imagination, separate from the body, will not be the place of the body. 
But the place of the body is no more than the distances on which are 
superimposed the distances of the body, with which they have been united, 
and to which the figure that is in the imagination is similar. And if the dis-
tances filled by the body do not exist in isolation, when empty of matter, 
before being filled by the body, it does not follow necessarily that the body 
does not fill imagined distances, because the distances can be imagined as 
being in isolation, lacking matter, even if they are never empty of a body 
which fills them. We shall explain this concept with the help of an example 
which reveals the form of place. 

We say: for any hollow body, such as a goblet, a bowl, a pitcher and 
things like them, between two opposite points of the surface inside it, 
which is a concave surface, there is an imagined distance, conceived as 
unchanging. In the same way, it contains imagined distances, perpendicular 
to the base of its concavity or oblique. The set of the distances for the inner 
surface of a goblet, between opposite points of it, are fixed distances, 
which do not change. So if there is air in the goblet, which fills the inside 
of the goblet, these distances are the distances of the air that is inside the 
goblet; if we then fill the goblet with water, the distances between the 
opposite points of the inner surface of the goblet are the distances of the 
water which is inside the goblet. If we then pour the water out of the goblet, 
and we fill the goblet with a drink, the distances between the opposite 
points of the inner surface of the goblet will be the distances of the drink 
that is in the goblet. In the same way, for any body with which we fill the 
goblet, the distances between the opposite points of the inner surface of the 
goblet will be the distances for it. The distances between the opposite 
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points of the inner surface of the goblet will sometimes be the distances of 
the air, sometimes the distances of the water, sometimes the distances of 
the drink, and they will be the distances of all the bodies which fill the gob-
let, which are bodies of different substances and different qualities. But the 
distances inside the goblet are intelligible distances, understood, and are 
fixed in a single state, and do not change; and their magnitude does not 
increase or decrease. But each of the bodies which fill the goblet has dis-
tances that are proper to it, which do not leave it, and whose magnitude 
does not increase or decrease while the body keeps the form of its sub-
stance, even if the figure of the distances changes, and some of them 
increase while the others decrease. The distances of each of the bodies 
which fill the goblet are distinct from the distances of the other bodies. If 
we empty one of the bodies out of the goblet, its distances depart with it, 
while the distances inside the goblet remain as they were and do not depart 
with the departing body. If another body comes into the goblet, it comes 
with distances other than the distances inside the goblet. If it then enters 
into the goblet, the distances inside the goblet become distances for it. This 
shows clearly that the distances of any body which fills the goblet are 
superimposed upon the distances inside the goblet, are identified with them, 
and become distances of the body which fills the goblet; but the distances 
inside the goblet are identical with themselves and do not vary.  

In the same way, any body such as to suffer action from another, such 
as air, water, drinks or other bodies such as to suffer action from another, is 
susceptible of having a different figure and of varying forms – however, 
the distances are inseparable from the body and their figure and their form 
do not change except by a decrease of some of their distances and an 
increase in some others, because their measure, that is the measure4 of their 
magnitude, does not vary with the variation in their figure and in their form, 
as long as their substance preserves its form. If a particular liquid body 
such as to suffer action from another, such as water and the like, is in ves-
sels of different shapes; if we then pour successively from each of them 
into a goblet enough to fill the goblet; then the shapes of what comes from 
them into the goblet, before it comes into the goblet, are different shapes; 
then, once each of them has come into the goblet, in succession they all 
take the same shape, whose configuration does not differ in any way. From 
this we see clearly that there is something which maintains the forms of all 
these bodies and which moulds them all into the same shape and the same 
form. And the same form that will have become the form of each of these 
bodies that come into the goblet is the form of the inside of the goblet; but 

 
4 Lit.: quantity. 
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the form of the inside of the goblet is the form of the distances of the inside 
of the goblet; so that is the form of the distances of the inside of the goblet 
which maintains the forms of all the bodies which fill the goblet in one and 
the same form. This indeed manifestly shows that inside the goblet there 
are fixed distances which do not change, and that the distances of the bod-
ies which succeed one another in the goblet, which are bodies that are 
different in regard to their substance, in regard to their shape and their form 
before coming into the goblet, the distances of each of them are superim-
posed onto these fixed distances and take their form; and each of the dis-
tances of the bodies becomes one with the distance inside the goblet, [the 
distance] onto which that distance has been superimposed.  

If we say that what maintains the shape of the body and its form is the 
inner surface of the goblet and not the distances between the opposite 
points of the surface, then the answer is that the body which comes into the 
goblet comes in between the opposite points of the inner surface of the 
goblet; so its distances are superimposed upon the distances between the 
opposite points of the inner surface of the goblet or5 upon the set of them. 
And for any body which comes into the inside of the goblet, in all cases its 
distances are superimposed upon the distances of the inside of the goblet, 
distances which are fixed and unchanging. 

But the fixed distances, which are inside the goblet, are the imagined 
voids filled by each of the bodies which fill the goblet, even if these dis-
tances do not lack a body which fills them; but they are in the imagination 
lacking matter, and in sensible existence they are associated with one [spe-
cific type of] matter, and the [types of] matter succeed one another. 

But every body is enclosed by a body, so the surface of the body which 
encloses the body which is inside it encloses the imagined distances, 
known and fixed, which do not change, onto which the distances of the 
enclosed body are superimposed, and with which they become one. So if 
we take the enclosed body out of this position, and if another body comes 
into its place, the distances of the second body are superimposed upon the 
distances fixed, intelligible, imagined, onto which the distances of the first 
body had been superimposed. 

It is clear, from all that we have shown, that these imagined distances 
between the opposite points of the surface enclosing the body, which are 
the imagined void filled by the body, are more deserving of being [consid-
ered as] the place of the body than is the surface which encloses the body, 
given that <the hypothesis of> the surface necessarily implies unacceptable 

 
5 ‘or’ in the sense of ‘that is to say’. 
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ambiguities and abominable horrors; 6  whereas the imagined distances 
between the opposite points of the surface enclosing the body – which are 
the imagined void filled by the body – do not imply anything abhorrent and 
do not suffer from any ambiguity. The imagined distances between oppo-
site points of the surface enclosing the goblet are the place in which the 
body has its position, and which in magnitude does not exceed that of the 
body. But since these distances – once the body is in position in them and 
once the distances of the body have been superimposed upon them – 
become one with the distances of the body and become distances for the 
body, the imagined void equal to the body which has been filled by the 
body is the distances of the body themselves. If this is so, then the place of 
the body is the distances of the body. 

If we say that the void is a body, that the body in position in the place 
is a body, and that it is not permitted for a body to interpenetrate another 
body and that both become a single body, then the answer is that a body 
does not interpenetrate a body, if each of them is material – now in matter 
there is a resistance and an impediment; each of the two impedes the other 
from coming into its place, while it is fixed in its place. But a void has no 
matter, and has no resistance. [As for] the void, it is only distances, assem-
bled to receive matter. A physical body is matter that the imagined dis-
tances are assembled to receive with the distances. Now all the distances 
are assembled to receive any matter and any distance; so they have nothing 
with which to prevent the distances from being superimposed upon the 
void. So nothing prevents the distances of the physical body that the void is 
configured to receive being superimposed upon the distances of the void 
which are lengths without width, and which have nothing that resists. 
Given that this is so, then the assertion that a physical body does not pene-
trate into the void, because these are two bodies, becomes null. 

Since all that we have shown has been explained, accordingly the place 
of a body, that is the distances of the body which, abstract in the imagina-
tion, are a void without matter, equal to the body, with a shape similar to 
that of the body, which is what we wanted to prove in this treatise. 

 
The treatise by al-Ḥasan ibn al-Ḥasan ibn al-Haytham on place  

is finished. 
Thanks be given to God, Lord of the worlds, and blessing upon 

Muḥammad his prophet and all his family. 
 

 
6 The colourful phrase of the original has been translated literally. The horrors in 

question are logical, that is propositions that are logically untenable. 



 
 

APPENDIX 
 

THE ARS INVENIENDI: THĀBIT IBN QURRA AND AL-SIJZĪ 
 
 
 
It is because of Ibn Sinān’s research on analysis and synthesis in 

geometry, but also in opposition to it, that Ibn al-Haytham conceived of the 
art of analysis. It is also, as we have indicated, following on from the ars 
inveniendi proposed by al-Sijzī, and in opposition to it, that Ibn al-
Haytham developed this art. We have seen that Ibn al-Haytham’s novel 
conception can be understood in the light of new demands in geometry. 

But Ibn Sinān, and his successor al-Sijzī, both started out from a short 
essay by Thābit ibn Qurra. Thus, a historical picture emerges, or at least the 
parts of it that have survived the vicissitudes of time; it suggests that if we 
wish to get a clearer idea of where Ibn al-Haytham’s contribution fits in, 
we need to make a careful examination of the writings of Thābit ibn Qurra, 
Ibn Sinān and al-Sijzī. Studies of Ibn Sinān’s book and of his other works 
have already been carried out.1 So there remain the essay by Thābit ibn 
Qurra and the treatise by al-Sijzī. It is to these last two works that the fol-
lowing pages will be dedicated, with the purpose of understanding how a 
new area of study emerged and how it developed before Ibn al-Haytham, 
so that we can take the measure of the step forward that he made.  
 
 
I. THĀBIT IBN QURRA: AXIOMATIC METHOD AND INVENTION 
 

We might say that in the beginning there was the translation of 
Euclid’s Elements. In the eyes of the mathematicians of the ninth century, 
as in those of their successors, this book was a model of organisation, but it 
rather rapidly became the source of a multitude of topics for reflection. 
There is a whole book to be written on this double part the Elements played 
in Arabic mathematics. Let us remind ourselves that hardly had the 
Elements been translated before they became the object of numerous com-
mentaries that tried to describe the author’s intentions, to discuss the 
organisation of the work, to correct some of the propositions and to rewrite 

 
1 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe siècle, 

Leiden, 2000. 
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some of the proofs. This is how it happens that in the mid ninth century the 
famous philosopher al-Kindī wrote two books whose titles are particularly 
eloquent: On the Rectification of the Book by Euclid and On the Intentions 
of the Book by Euclid. Others, such as al-Jawharī, wrote commentaries on 
Euclid’s book, and were interested in some of the difficulties it presented, 
notably the question of the fifth postulate. Others again, such as al-Māhānī, 
wanted to replace proofs by reductio ad absurdum with direct proofs. We 
could indeed cite many more authors and book titles that bear witness to 
the central position occupied by the Elements, not only at the heart of 
mathematical activity, but also, more generally, in the intellectual life of 
the time. Mathematicians who were geometers, but also some who were 
algebraists, philosophers and intellectuals, quickly began to take an interest 
in the treatise, in its organisation, its order and its style. Among the intel-
lectuals, we find a state official, a member of a dynasty of great adminis-
trators of the Empire: Ibn Wahb.2 He was, no doubt, an alert reader of the 
Elements, and as such he raises the major question regarding the axiomatic 
method and discovery. In Ibn Wahb’s terms, the question takes the form: in 
his order of exposition of the propositions, Euclid has regard only to the 

 
2 Thābit ibn Qurra addresses this letter to Ibn Wahb; but which one? The family of 

the Banū Wahb, a family of ministers, secretaries of state and men of letters, had moved 
in the circles of power in Baghdad for at least a century. Except for the founder, Wahb 
himself, secretary of the famous Barmecide and a minister of Hārūn al-Rashīd, Ja‘far 
(d. January 803), all the others, his sons, grandsons and great grandsons, could have 
been the Ibn Wahb to whom Ibn Qurra refers. Ibn Qurra does nothing to help us: he 
does not give any date for his letter, nor the first name or title of his correspondent. 

A first possible candidate is Sulaymān ibn Wahb (d. 885). Thābit was already in 
Baghdad and, with his protectors and teachers, the Banū Mūsā, moved in the circles of 
power. Two other possible candidates are the two sons of Sulaymān: Aḥmad, secretary 
of state for taxations, celebrated literary expert and poet, the subject of a brief 
biography by Yāqūt in his Mu‘jam al-Udabā’ (ed. Būlāq, Cairo, n.d., vol. III, pp. 54–
63); or ‘Ubayd Allāh, a minister of the Caliph al-Mu‘taḍid for about a decade, who died 
in 900, and was thus also a contemporary of Thābit ibn Qurra. It is also possible that 
Thābit is addressing this letter to al-Qāsim, the son of ‘Ubayd Allāh, with whom he 
shared ministerial responsibilities before himself becoming a minister on his father’s 
death. It was exactly for this same al-Qāsim that Ibn Qurra wrote his Talkhīṣ (summary) 
of Aristotle’s Metaphysics. This latter essay has the title Treatise by Thābit ibn Qurra 
on the Summary of what Aristotle Presents in his Book on Metaphysics … written for 
the Minister Abū al-Ḥusayn al-Qāsim ibn ‘Ubayd Allāh. It is possible that this same al-
Qāsim, who was interested in metaphysics, might be the person who was interested in 
Euclid’s Elements, and above all in the method of discovery. In any case, in the present 
state of knowledge, this last suggestion seems the best one (see for example D. Sourdel, 
Le Vizirat abbaside, Institut Français de Damas, Damascus, 1959–60, vol. I, pp. 300–1, 
pp. 329–57; vol. II, p. 745). 
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requirements of proof, so he brings forward the position of certain proposi-
tions while he puts back others, irrespective of their significance. So, in the 
Elements, Euclid opted simply for syntactic order, ignoring semantics. This 
order, Ibn Wahb admits, is suitable for training an apprentice in geometry; 
but when it is a matter of carrying it through into research, what one has 
learned shows itself to be inadequate: we need another order, that of dis-
covery. This question formulated by Ibn Wahb in the ninth century is 
brought up again centuries later by Petrus Ramus,3 Antoine Arnauld and 
Pierre Nicole,4 among many others.  

But the fact that this topic is a perennial one is an indication of the 
intimate links it has with the actual style of the Elements, that is the axio-
matic method (in Euclid’s sense, of course) that governs the work. The 
Elements, a model of organisation for mathematicians, not only in the ninth 
century but for more than two millennia, is also a model in the sense of 
being something to be imitated as well as representing an ideal. This dou-
ble validity as establishing a norm derives from the application of the axi-
omatic method. But, in the context of Euclid’s work, this application is 
itself possible only insofar as the geometrical object – the figure – is the 
object of knowledge that is subordinate to hypotheses and to construction 
processes that take place in the imagination. The question of discovery 
might thus, in such a context, seem to be a meta-geometrical one. Discov-
eries would be at most a matter of circumstance, for the most part resulting 
from applying the axiomatic method to verifying a proof or to assessing the 
limits of its validity. 

In any case, Ibn Wahb is writing to Ibn Qurra to ask him to devise a 
method, different from the axiomatic method, that is capable of meeting 
the requirements for discovery. So the intention is clear: to provide the 
reader, presumed to be familiar with the axiomatic method, with a second 
method that will allow him to discover new propositions and to carry out 
new constructions. It seems that Ibn Wahb’s decision was not actuated 
solely by Thābit ibn Qurra’s eminence as a geometer; Thābit also had first 
hand knowledge of the Elements because he had made a revised version of 

 
3 Ramus (Pierre de la Ramée) had questioned the order propositions in Euclid’s 

Elements: ‘Ordo Euclidis displicuit Petro Ramo, quemadmodum ex iis intelligitur, quae 
in Scholis Mathematicis lib. 6 et sqq., contra Euclidem passim disputat’, quoted in 
Antoine Arnauld and Pierre Nicole, La Logique ou l’art de penser, contenant, outre les 
règles communes, plusieurs observations nouvelles, propres à former le jugement, a 
critical edition with an Introduction by Pierre Clair and François Girbal, coll. Le 
mouvement des idées au XVIIe siècle, Paris, 1965. 

4 La Logique ou l’art de penser, reference in the previous note. 
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the third Arabic translation of the work, the translation by Isḥāq ibn 
Ḥunayn.  

By way of replying to Ibn Wahb, Thābit ibn Qurra composed a short 
text – which is translated here.5 We may note, briefly, that this short work 
has a simple structure. In the first section, which is introductory, the author 
takes up the question of the axiomatic style of exposition employed in the 
Elements and that of the order which should be followed for discovery, and 
presents a classification of geometrical concepts. The second part, 
consisting of examples that provide illustrations for the first part, might 
thus be said to supply ‘exercises in invention’. 

The first part of the essay opens with two interesting observations. Ibn 
Qurra’s immediate purpose is to think out the rules for a method that will 
lead to the discovery of new propositions and constructions, this for a 
mathematician who has a grasp of the axiomatic method and an adequate 
knowledge of mathematics. But Ibn Qurra does not stop there: the method 
must be applicable in ‘any apodeictic science’ (fī kull ‘ilm burhānī). So it is 
obvious that we are looking at a pragmatic approach. Moreover, it requires 
us to proceed by classifying concepts so as to be able to distinguish 
between different species, in order to group them together later into species 
and thus bear them all in mind when required. Now, to identify the 
different species, Ibn Qurra begins by distinguishing three kinds of 
geometrical investigation: geometrical constructions making use of 
instruments – for example using ruler and compasses for constructing an 
equilateral triangle; propositions referring to an unknown magnitude or 
state – for example to determine the area of a triangle whose sides are 
known, or to find a perfect number; and finally general statements 
concerning the nature of the object – or concerning a specific property of 
the object – for example, when the object is a triangle: the sum of its angles 
is equal to two right angles. Ibn Qurra points out that the first type requires 
a knowledge of the two others, but the converse is not true. 

The first rule of the method is more or less self-evident: it consists of 
beginning by finding out which type or which grouping the concept we are 
looking for belongs to. But each of these three groupings includes princi-
ples and results established by means of these principles, together with 
some supplementary ones. By principle (aṣl), Ibn Qurra means something 
in the tradition of the Posterior Analytics (I, 10). It is, as he says, a matter 
of ‘common notions’, of postulates and definitions. For the latter, these are 
only the definitions that refer to the essence of the concept we seek. Once 

 
5 For the editio princeps of the Arabic text together with a French translation, see 

Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: Méthodes géomé-
triques, transformations ponctuelles et philosophie des mathématiques, London, 2002. 
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the mathematician has distinguished, for each of the preceding types, 
between axioms, postulates and definitions on the one hand and proposi-
tions on the other, he is in a position to ‘bring to mind’ all the ideas that are 
necessary for forming a conception of the required object: this is the 
second rule for the method. 

The third rule, which Ibn Qurra does not identify by name, is analysis: 
to start from the necessary conditions for the required object, then work 
from the necessary conditions for these conditions, and so on. To illustrate 
this analysis, he examines three constructions in which, in each example, 
we see how to carry out the analysis. This choice of examples is influenced 
by a somewhat didactic purpose, as well as a particular interest in the form 
of analysis that is called ‘problematic’ in geometry. We may, however, 
note that by singling out the particular class of propositions that deal with 
determining a magnitude or a number, Ibn Qurra distances himself from 
the classic opposition between ‘theoretical analysis’ and ‘problematic 
analysis’. 

As the first text on the method of discovery, the context of Ibn Qurra’s 
short essay sheds light on the emergence of the topic of discovery in math-
ematics which, in the work of his successors, will move away from its ori-
gins and will acquire a quite different scope. But the importance of this 
essay does not relate only to the fact that it contains the first discussion of 
this topic; it was also responsible for encouraging its readers to carry out 
further research in the light of the new mathematical insights it provided. 

 
 

II. AL-SIJZĪ: THE IDEA OF AN ARS INVENIENDI 
 

1. Introduction 
 
To establish ‘a method intended for students, which includes all that is 

necessary for the solution of problems in geometry’.6 This is the expression 
used by Ibrāhīm ibn Sinān (296/909–335/946) when committing himself to 
fulfilling his grandfather’s promise, Thābit ibn Qurra. But the math-
ematical context has been in continual change since his time, following the 
path already mapped out by Thābit’s teachers, the Banū Mūsā. The effect 
of new research in the geometry of measurement and in the geometry of 
position and of shape, the emergence of a new mathesis from the impact of 
algebra, all these had, as Ibn Sinān himself tells us, spurred mathematicians 

 
6 R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe siècle, 

p. 96. 
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into returning to the traditional question of analysis and synthesis, and, 
more generally, that of the philosophy of mathematics. As we have seen, 
Ibn Sinān’s intervention in this matter proved to be crucial: in the first 
known substantial treatment of analysis and synthesis, he works out a phil-
osophical logic that allows him to combine an ars inveniendi with an ars 
demonstrandi.7 His contribution was soon extended to provide a proper 
theory of proof, in which questions of logic take centre stage: the reversi-
bility of implications, auxiliary constructions, classification of propositions 
according to the number of variables and according to the number of 
conditions. 

Ibn Sinān’s successors repeatedly took up the question of analysis and 
synthesis, either in the course of their technical mathematical works, or, 
following Ibn Sinān’s example, though from a different point of view, 
dedicating complete treatises to it. Such is the case for Ibn Sahl, al-Qūhī 
and Ibn al-Haytham, among many others. Nor was this line of research 
neglected by philosophers who took an interest in mathematics: al-Fārābī 
discusses it and Muḥammad ibn al-Haytham also pays attention to it. 
Which is to say that, at least from the mid tenth century onwards, we see 
the development of a new field of research in the philosophical logic of 
mathematics, or more generally in the philosophy of mathematics, a meet-
ing place for professional mathematicians and philosophers of mathematics 
– a field of which ‘analysis and synthesis’, in their different forms, makes 
up the core. Now it is in exactly this domain that we come across al-Sijzī, 
and this is above all the context in which we must situate the book by him 
that concerns us here: To Smooth the Paths for Determining Geometrical 
Propositions. 

Al-Sijzī lived almost a generation after Ibn Sinān; he knew the latter’s 
writings well, in particular the treatise on analysis and synthesis, which he 
had himself transcribed.8 He was also familiar with the writings of Thābit 
ibn Qurra,9 notably with Thābit’s short work on methods for determining 
geometrical problems, which he had addressed to Ibn Wahb: one of the 
manuscripts of this short work was indeed written out by al-Sijzī.10 So 

 
7 Ibid., pp. 21–56. 
8 Ibn Sinān, Maqāla fī ṭarīq al-taḥlīl wa-al-tarkīb fī al-masā’il al-handasiyya, ms. 

Paris, Bibliothèque nationale, no. 2457, fols Av–18v. 
9 See R. Rashed and H. Bellosta, Ibrāhīm ibn Sinān. Logique et géométrie au Xe 

siècle, p. 89. 
10 Kitāb Thābit ibn Qurra ilā Ibn Wahb fī al-ta’attī li-istikhrāj ‘amal al-masā’il al-

handasiyya, ms. Paris, Bibliothèque nationale, no. 2457, fols 188v–191r; see Les 
Mathématiques infinitésimales, vol. IV, pp. 742–65, and below, pp. 581–9. 
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Thābit ibn Qurra and Ibrāhīm ibn Sinān provide us with the two clearest 
points of reference for assessing the place of al-Sijzī’s contribution.  

Al-Sijzī’s text is much more fully developed than that of Ibn Qurra and 
its purpose is different. It remains true, of course, that they have in com-
mon elements of their vocabulary, their intention and their organisation, 
which makes it reasonable to suggest these books were the first source of 
al-Sijzī’s inspiration. His own book is also made up of two parts: a first 
part that is introductory, followed by a second that is devoted to examples. 
In addition to this similarity in form, we have another similarity: like Ibn 
Qurra, al-Sijzī deals only with geometry, to the exclusion of all other 
branches of mathematics – and in fact both of them set up geometry as the 
model for any apodeictic science. Finally, the intention that animated both 
of them was at once didactic and logical. This intention is, of course, not 
absent in Ibn Sinān, but in his work the didactic element took second place 
to the task of developing a theory of proof. In al-Sijzī’s case, and in some 
sense thanks to his having read Ibn Sinān, this project is transformed into a 
true ars inveniendi, something that did not occur in the work of Ibn Qurra. 
Here we need to look at the direction al-Sijzī is taking and the novelty of 
what he proposes to do. To make this clear, we must comment on his trea-
tise in detail.  

 
 

2. A propaedeutic to the ars inveniendi 
 
The first part of al-Sijzī’s treatise opens with a propaedeutic to research 

into the methods that will form the main body of the ars inveniendi. This 
propaedeutic is itself made up of two short parts, in accordance with the 
author’s purposes for the work as a whole, which are both didactic and 
logical. Al-Sijzī starts with a theory of mathematical discovery, a sketchy 
one, certainly, but nevertheless one that contains the genesis of the psy-
chology of mind (to use a later term) that is connected with the ars inven-
iendi. According to this theory, invention in geometry is the offspring of a 
‘natural power’, of an innate gift and arduous training in principles as well 
as in methods and theorems. This latter is more important than having a 
gift, in the sense that, when the natural power is not at its height, it may 
happen that training will serve to remedy this relative weakness. However, 
the reverse is not true, since a natural power without training leads 
nowhere. Without training there is no invention. Under such conditions, 
there is room for a discipline to guide the geometer from training to dis-
covery: this discipline is the ars inveniendi. That is to say that the need for 
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this art is built into the didactic side of the discipline. So we are seeing a 
first manifestation of its being necessary. 

The second part of the propaedeutic is concerned with the preliminary 
procedures for any method, the operations one must carry out before 
choosing one method or another. In taking this approach, al-Sijzī in fact 
starts out from the conception of training in geometry. As he conceives it, 
the part training plays in invention makes it necessary for the beginner in 
geometry to start by learning the theorems (al-qawānīn) proved in the Ele-
ments. This very natural demand nevertheless raises some questions, which 
al-Sijzī considers. It is, moreover, in connection with these that he touches 
on certain logico-philosophical problems some of which he will return to in 
a later text.11 The first relates to logical ordering of proofs, the order 
adopted by Euclid in the exposition in the Elements. If we allow this same 
order for simple training, which al-Sijzī does, following the example of 
Thābit ibn Qurra, can we accept it as an ordering in training for research, 
that is training that leads to discovery? In either case, if we adopt a deduc-
tive system like that of Euclid, we should begin with the axioms (the com-
mon notions) rather than with theorems. Surely it is indeed more natural 
and more consistent to start with what is most basic. The more so because 
the theorems, as such, form part of what we are trying to establish. So the 
risk is that, if we start with the theorems, we may take the end for the 
means. To avoid this, it might be preferable to employ methods that begin 
from the axioms alone so as to determine the objects of research. In this 
treatise, once the question of the ordering appropriate for training in prepa-
ration for discovery has been raised, and once the didactic problem has 
been reduced to the logico-philosophical problem of the relations between 
axioms and theorems, al-Sijzī dismisses the possibility of following the 
order of proof, and recommends starting with the theorems. There are three 
reasons for this, with distinct origins. First of all, starting out with the axi-
oms alone would lengthen the journey towards discovery to an unreasona-
ble degree. In the second place, if we limit ourselves to only the axioms, it 
will be difficult, without theorems, to proceed to discovery. Finally, in his 
system, Euclid combined axioms and theorems in a balanced manner, 
which allows us to start out from the theorems he established. These argu-
ments, which are summarily listed by al-Sijzī, essentially belong to pro-

 
11 R. Rashed, ‘Al-Sijzī et Maïmonide: Commentaire mathématique et philoso-

phique de la proposition II–14 des Coniques d’Apollonius’, Archives internationales 
d’histoire des sciences, vol. 37, no. 119, 1987, pp. 263–96. See also P. Crozet, ‘Al-Sijzī 
et les Éléments d’Euclide: Commentaires et autres démonstrations des propositions’, in 
A. Hasnawi, A. Elamrani-Jamal and M. Aouad (eds), Perspectives arabes et médiévales 
sur la tradition scientifique et philosophique grecque, Paris, 1997, pp. 61–77. 
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grammatic and pragmatic logic. The problem itself is, as we have seen, 
much more significant, since it concerns the status of the theorem in a 
deductive system, when we are considering training designed to lead on to 
research and invention. As regards al-Sijzī’s preoccupations, this problem 
seems to lie in the background, sufficiently present for him to come back to 
it, but seen in a different light. 

Al-Sijzī notes that, in a deductive system, a theorem is at once a lemma 
and a consequence. He describes this state as mushtabah, that is as ambig-
uous. There is also an additional difficulty: the chain of implications can be 
unlimited. So the question is to find how, under these conditions, there can 
be training in regard to theorems; it might perhaps be better to confine our-
selves to axioms. Now it is at this very moment that al-Sijzī refers ‘to the 
equilibrium’ in Euclid’s exposition. 

In this treatise, al-Sijzī gives only very brief answers to the questions 
that he himself raises. He refers to a fear of excessive length, to the diffi-
culty and the equilibrium of Euclid’s exposition, all of which is no doubt 
significant, nevertheless leaves the discussion open. Further, he permits 
himself to relaunch the debate, since he returns to the question of axioms 
and theorems, more fully and in greater depth, in a later treatise, where he 
mentions the one we are concerned with here. This later treatise is his work 
on the asymptote,12 where with the help of the pair ‘conceive – prove’ he 
works out a classification for mathematical propositions thus distinguishing 
and illuminating the connections between axioms and theorems. He distin-
guishes five classes, in order: (1) Propositions that can be conceived direct-
ly from axioms; (2) Propositions that can be conceived before we proceed 
to prove them, that is ones that are close to the axioms; (3) Propositions 
that can be conceived when we form the idea of how to prove them; 
(4) Propositions that can be conceived only once they have been proved; 
(5) Propositions that are difficult to conceive even after they have been 
proved.13 Thus, in returning to his own work, al-Sijzī shows us what he 
was interested in when he was writing his first treatise. 

Thanks to this training, from the outset the geometer already has a 
store of theorems and lemmas, knows how to proceed, and is ready to 
embark upon research. The important question is to know how to put that 
readiness into action in such a way that it leads to discoveries. But, before 
deciding on a specific method, it is necessary to master a mass of faculties 
and knowledge that underlies all the methods. This underlying mass also 

 
12 Ibid. 
13 He considers the example of Proposition II.4 of the Conics, which concerns the 

asymptotes of a rectangular (equilateral) hyperbola. 
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includes, without distinction, many elements that are psychological and 
logico-philosophical.  

Once he has recognised what kind of object he requires, as well its 
specific properties, the geometer must first of all bring to mind the lemmas 
and theorems that apply to that kind of object, or to a kind of object con-
nected with it. This effort of imagining the lemmas and theorems is neces-
sary for both the classes of object that together constitute geometry: 
constructions and propositions. Al-Sijzī accordingly proposes some rules to 
guide us in this search for lemmas and theorems. To establish these rules, 
he begins by distinguishing two classes of propositions. The first class 
consists of the propositions that are in themselves possible but which, 
because of a lack of preliminary results (lemmas), it is impossible for us to 
prove. This is the class to which the squaring of the circle belongs. In other 
words, as al-Sijzī will say later, for us these propositions are conceivable 
but not demonstrable. In the other class, there are propositions that can be 
proved, and in this case we can proceed according to the following rules: 

1. For any proposition we think we can establish from a particular 
lemma, we can try to establish it by lemmas of the same class – that is ones 
that, at least, apply to the same objects – or to some of them. 

2. Any proposition we think we can establish from a lemma, or from 
lemmas, we can establish from lemmas of that lemma, or of these lemmas. 

3. Any proposition that we cannot establish from a series of successive 
lemmas could be established from many compound lemmas. Al-Sijzī later 
examines an example of this. 

These rules are applicable to all the methods that the geometer should 
adopt, and around which al-Sijzī’s treatise is organised. However, the 
application of one or other of them is by no means automatic; it in fact 
demands preliminary work which involves the faculties of the intelligence. 
This is, indeed, the way that these faculties are introduced into the ars 
inveniendi. Now there are two characteristics that distinguish these facul-
ties in al-Sijzī’s work: they belong to the intellect, and intelligence itself is 
not natural intelligence, but a power exercised in the art of geometry. All 
its faculties are, moreover, as it were formed by this art. Al-Sijzī lists them, 
and presents them at the head of the list of preliminary procedures. They 
are skill, intelligence informed by practice, and the faculty for calling to 
mind, instantly and simultaneously, the necessary conditions for the propo-
sition we wish to establish. These three faculties are concomitants in al-
Sijzī’s actual presentation. 

Next in this preparation for applying the rules and methods comes 
learning all the theorems and lemmas necessary for the object we require, 
and to learn them exhaustively. The third demand requires that these truths 
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already established become things counted among the intellectual faculties. 
At this stage, alongside the skill that comes directly from educated intelli-
gence, al-Sijzī mentions, both intuition and cunning. By ‘intuition’, al-Sijzī 
here once again means intuition informed by the art. No doubt what we 
have is an act of thought which immediately grasps the object of know-
ledge, an act that does not require the intermediate deductions. Cunning, or 
the faculty for finding ingenious procedures, is itself also obviously the 
fruit of informed intelligence, of long practice and intense application.  

These first three preparatory rules call upon all these considerations 
regarding intellectual faculties, thus introducing these faculties into the ars 
inveniendi. Exactly like his successors many years later, al-Sijzī obviously 
could not avoid these elements of a psychology of reason, the logic being 
what it was. The fourth and final rule is logical in nature: we are concerned 
with classifying theorems and lemmas according to what they have in 
common, their differences and their specific properties, that is the proper-
ties of the objects they apply to. 

Once this propaedeutic work has been done, the geometer, knowing the 
rules that apply to all methods, is now in a position to make use of one of 
the following three methods: (1) the method of transformation; (2) ‘analy-
sis and synthesis’; (3) ingenious procedures. 

These methods are neither of the same nature, nor do they have the 
same power, but they can be combined. We may note that in this part, as in 
the remainder of the treatise, al-Sijzī comes up against a difficulty part of 
which we have already pointed out, and one which he could not surmount. 
He in fact formulates the logical problems in a mixed language, that of tra-
ditional modal logic and that of the theory of proportions; thus he speaks of 
necessary and impossible propositions. On the other hand, as we shall see 
later, when he speaks of the logical implications among mathematical 
propositions, he compares them to ratios in the theory of proportions. This 
is not a matter of criticising al-Sijzī for not knowing the work of George 
Boole, or of regretting that he did not think of using the language of alge-
bra, but merely a matter of noting that his writing has an irremovable 
ambiguity, whose cause is to be found in the mixed form of expression. It 
seems that a psychology of reason being involved to form the basis of the 
ars inveniendi results in the absence of the logical language appropriate to 
discussion of the art of analysis. Later, Ibn al-Haytham would invent a new 
geometrical discipline, with the intention, among other things, of meeting 
this difficulty: the knowns. 
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3. The methods of the ars inveniendi and their applications 
 

As we have seen, al-Sijzī proposes three methods. The four methods 
that he presents before them are recommended as propaedeutic to these 
final three: transformation, analysis and synthesis and ingenious proce-
dures. We observe, however, that he presents all seven as on the same 
level, as if all of them carried the same weight. Further, his account of 
them is very brief, not to say incomplete. Transformation is merely named, 
‘analysis and synthesis’ are cited in ordinary, that is standard, terms; as for 
the ingenious procedures, they appear in connection with a rather vague 
reference to Hero of Alexandria. All the same, al-Sijzī gives a clear 
explanation of his reason for this choice of exposition, distinguishing 
between two possible styles for presenting this material, styles which for 
him are complementary: one is general, indicative and not demonstrative; 
the second consists of examining examples and giving detailed proofs. It is 
in the course of carrying out this second process that al-Sijzī presents these 
methods, as it were in action. All the same, this does not completely 
explain why his earlier account was short and somewhat allusive. 

If we examine al-Sijzī’s text more closely, we see that there is in fact 
only one method that is truly worthy of its title: ‘analysis and synthesis’. In 
this respect, al-Sijzī belongs to the tradition established by his predecessors 
and his contemporaries; but the task he has deliberately set himself is that 
of elaborating on this principal method by adding a group of special proce-
dures, mathematical procedures, theoretical and practical. These special 
methods are intended to increase the power of the principal method in the 
making of discoveries and thus to make its application easier. Thus, trans-
formation is a mathematical procedure that is theoretical in nature, ingen-
ious procedures are of a technical and practical nature, and all of them are 
means of bringing analysis to its conclusion and making it easier to carry 
out. It is the combining special methods with the principal method, for the 
purpose we have just described, that marks a break with tradition and is 
due specifically to al-Sijzī. Let us explain. 

As we have said, al-Sijzī’s purpose is to extend the power of analysis 
and synthesis by introducing theoretical and technical procedures. This is 
the approach he chose for instituting the ars inveniendi. It is in this context 
that he fully grasped the importance of point-to-point transformations in 
geometry, which had been used since al-Ḥasan ibn Mūsā,14 by giving them 

 
14 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fondateurs et 

commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, Ibn al-
Samḥ, Ibn Hūd, London, 1996, pp. 885 ff.; English trans. Founding Figures and 
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a name: al-naql.15 It is with this same aim that he develops various proce-
dures that spring from the idea of one element varying while all the others 
remain fixed. Al-Sijzī in fact notices that there are two ways to investigate 
the properties of geometrical objects. The first consists of looking for what 
remains fixed when all the other properties vary – an investigation carried 
out by imagination based on the senses. In following the second approach, 
we take the required property as given and look for the lemmas that are 
necessary for it. The first approach, that of variation, is one that al-Sijzī not 
only finds interesting, but also one he goes on to employ in its various 
forms. The most obvious form is that where the varia include an element of 
a figure, in which all the other elements remain constant. It is, so to speak, 
the paradigmatic form of the procedure. There is also the variation of con-
structions using a fixed figure; then there is the variation of methods for 
establishing a fixed property, and, finally, the variation of lemmas for a 
fixed proposition. As for the second approach, it is none other than that of 
analysis, as a theoretical procedure. In fact, for al-Sijzī, analysis in turn can 
be looked at in two, inseparable, ways, but not always in an explicit way: a 
method of discovery on a par with other special methods, and in this sense 
it is a mathematical procedure; that is, it is the method of discovery, sup-
ported by all other procedures, such as transformation, ingenious proce-
dures, variation, and so on. The boundaries that separate the two aspects of 
analysis are obviously not set solidly in place once and for all, but vary 
according to the complexity of what we seek to discover: for instance the 
number of lemmas, or the number of auxiliary constructions. Moreover, in 
the matter of appreciating the degree of this complexity, al-Sijzī calls upon 
not only the geometer’s skill and intelligence, but also his intuition. From 
this point onwards, intuition continues to play a central role, either alone, 

                                        
Commentators in Arabic Mathematics, A History of Arabic Sciences and Mathematics, 
vol. 1, Culture and Civilization in the Middle East, London, 2012. 

15 The term naql, from the verb naqala (to displace), which was already present in 
the lexicon in the ninth century. Thābit ibn Qurra uses it, first, to mean a displacement 
to superimpose two figures, and goes on to modify its meaning so that it signifies a 
displacement of a magnitude in a continuous motion, that is a transformation. See the 
text by Thābit ibn Qurra with title If we extend two straight lines at two angles less than 
two right angles, they meet one another (see R. Rashed and C. Houzel, ‘Thābit ibn 
Qurra et la théorie des parallèles’, in R. Rashed [ed.], Thābit ibn Qurra. Science and 
Philosophy in Ninth-Century Baghdad, Scientia Graeco-Arabica, vol. 4, Berlin, 2009, 
pp. 27–73, especially pp. 42–7). Al-Sijzī, who knew this text (since he made a copy of 
it), in turn modifies the meaning of the term, as in this treatise it is used for a similarity, 
thus confirming the tendency, already found in Thābit ibn Qurra, who uses the term 
naql for a geometrical transformation: translation or a similarity and so on. 
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or in combination with reasoning, to assess the degree of difficulty and 
judge what will be the shortest way of finding the necessary lemmas. 

Like his predecessors from Pappus and Proclus onwards, al-Sijzī dis-
tinguishes between two applications of analysis, depending on whether we 
have geometrical constructions or propositions that concern geometrical 
properties. Behind his brief explanations, we may recognise echoes of Ibn 
Sinān. Al-Sijzī does in fact point out, in passing, some problems raised and 
discussed in full by Ibn Sinān: the number of conditions or of lemmas; the 
number of solutions. But he passes over these logical problems, and does 
not discuss them. This hint confirms his intentions and also reflects the 
deliberate choice of a style of exposition that privileges explanation 
through, and with the help of, studies of examples of the methods, of 
combinations and applications of them. All we now need to do is to follow 
al-Sijzī in his choice. 

 
 

3.1. Analysis and point-to-point transformation 
 

The first example al-Sijzī discusses concerns a geometrical construc-
tion, in which he proceeds by analysis. He shows how employing point-to-
point transformations makes the method simpler and discovery easier. So 
with the method of analysis he combines the geometrical procedure of 
transformation, obviously with the aim of increasing the power of the anal-
ysis. 

It is, al-Sijzī writes, a matter of constructing a figure:  
How to find two straight lines proportional to two given straight lines one of 
which is a tangent to a given circle and the other meets the circle and is such 
that, if it is drawn inside the circle, it passes through its centre?16 

Let us proceed by analysis and let us suppose that the figure has been 
constructed. So we must find the necessary lemmas. 

 
The problem is: given a circle CED with centre H and diameter CD, 

and a ratio A
B

, to construct EG, a tangent to the circle, in such a way that 

the ratio GE
GC

 is equal to A
B

. 

 

 
16 See p. 596. 
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Fig. 1 

 
The difficulty in this construction, pointed out by al-Sijzī himself, lies 

in the fact that the angle EGH of the triangle is unknown. To determine this 
angle, we construct an auxiliary figure IKMN similar to the figure GEHC. 
In other words, we try to find a triangle IKM with a right angle at K and a 
point N on the hypotenuse such that MN = MK and satisfying  

 
     IN

IK
=
GC

GE
=
B

A
  (a given ratio). 

 
Since the straight line IK is known in position and magnitude, and B 

and A are two known magnitudes, the straight line IN is of known magni-
tude. So the point N lies on a circle with centre I and radius IN. The first 
figure in the manuscript illustrates this situation. 

      
   Fig. 2     Fig. 3 

 
To construct the point N, we choose a point L on the circle and we 

rotate the straight line IL about I until the distance from N, the new position 
of L, to M, the point of intersection of the extended line IN with KM, the 
perpendicular to IK at K, is equal to KM. The point L is then at the point N 
and we have NM = KM. 
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If we extend IN to the point S such that MS = MN = MK, we have 
IS · IN= IK2, so IS is of known magnitude, as is IM =

IS + IN

2
. So the point 

M lies at the intersection of the circle with centre I and radius IM and the 
perpendicular KM; from which we find the points N and S. 

We take the point N on IM such that IN =
B

A
IK ; it only remains to 

construct the triangle GEH similar to IKM with a ratio of similarity equal 
to HE

MK
 (where HE is the radius of the given circle). 

 
Thus, in essence the method consists of displacing the problem by sup-

posing the segment IK is given and seeking to find the circle NKS that 
touches IK at K. We then return to the problem of the similarity. This is the 
sense of the term ‘transformation’ in the context of analysis. 
 

Many mathematicians of the time had made use of a point-to-point 
transformation, when working by analysis and synthesis, among them 
some scholars well known to al-Sijzī, such as al-Qūhī. We may cite the 
example of the construction of the regular heptagon: we construct a trian-
gle of type (1, 2, 4) or (1, 1, 5), or other types; then in the given circle we 
construct a triangle homothetic with one of them.17 This technique was to 
be employed several times by al-Sijzī’s successor, Ibn al-Haytham, and we 
meet it again later on, for example when Fermat finds a tangent to 
Descartes’ folium at 45° to its axis. 

The essential point here is that of employing a point-to-point transfor-
mation in order to reduce a difficult problem, on which one is using 
analysis, to another problem that is less difficult. Thus, in this context, the 
point-to-point transformation serves two purposes: one mathematical 
(transformation of a figure) and the other logical (reduction to an easier 
problem). So we have increased the power of the analysis in two ways. 

 
 

 
17 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn 

al-Haytham. Théorie des coniques, constructions géométriques et géométrie pratique, 
London, 2000; English translation by J. V. Field: Ibn al-Haytham’s Theory of Conics, 
Geometrical Constructions and Practical Geometry. A History of Arabic Sciences and 
Mathematics, vol. 3, Culture and Civilization in the Middle East, London/New York, 
2013, Chap. III. 
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3.2. Analysis and variation of one element of the figure 
 

Being always in search of techniques to make analysis more powerful, 
al-Sijzī proposes continuous variation of one element of the figure while all 
the other elements remain fixed. He illustrates this search for new tech-
niques with a simple example: to establish a specific property of triangles, 
that of the sum of their angles being the same; to prove in a second stage 
that this sum is equal to two right angles. 

Al-Sijzī takes an arbitrary triangle ABC; the side AB of the angle BAC 
is fixed, while the vertex C can vary continuously on the straight line AC. 

 

 
Fig. 4 

 
If C comes to D where AD > AC, we have A�̂� <  �ŷ�  and 

��̂� >  ��̂y . We wish to establish that ��̂� +  ��̂� =  �ŷ� +  ��̂y , 
or that y�̂� +  y�̂� =  	ŷ� , which comes to the same thing, since 
	�̂� =  	�̂y  +  y�̂� . 

We draw DE parallel to CB, and by Elements I.29 (a necessary premise 
at this point), 
�̂H  =  
K̂B , AÊD =  AB̂C  and BD̂E  =  DB̂C . Thus, 

 
AĈB =  CD̂B +  BD̂E  =  CD̂B +  DB̂C   

 
and consequently 

��̂� +  ��̂� =  �ŷ� +  ��̂y . 
 

So the three angles of the two triangles ABC and ABD have the same 
sum. So al-Sijzī has established that if two triangles have a common angle, 
then the sum of their three angles is the same. From that we can establish 
that two arbitrary triangles have the same sum for their three angles; al-
Sijzī does not even mention this. 

Legendre gives an analogous argument, but without using I.29, to 
establish that if the sum of the angles of a single triangle is equal to two 

A

BC

D E
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right angles (respectively, the sum is more than/less than two right angles), 
the same is true for any triangle.18 

Al-Sijzī uses this same technique of the variation of one element of the 
figure to show that this sum is equal to two right angles. This time it is suf-
ficient to consider a special triangle, here the isosceles right-angled triangle 
ABC. We draw BD parallel to AC; by Proposition I.29 of the Elements, we 
have 

yB̂D =  AĈB  and AB̂D  is a right angle. 
 

 
Fig. 5 

 
We see that 

AB̂C  +  AĈB =  AB̂D  = 90°. 
 

It is clear that we can get to this result in the initial figure if we make 
the point D move away to infinity on AC, so that the side BD becomes par-
allel to AC. In the limit AD̂B  collapses and AB̂D  becomes the supplement 
of DÂB  (as before by Elements I.29). This is very probably the approach 
that al-Sijzī took. 
 
 
3.3. Analysis and variation of two methods of solution of a single problem 
 

This time al-Sijzī gives an example in which the problem is kept fixed 
and the methods of solution are allowed to vary. Thus, there are many 
roads to discovery, and they are not equivalent: not only are some easier 
than others, but there are also some that are more elegant. To illustrate this 
procedure, al-Sijzī considers the division of a triangle into three parts in 
given ratios. 

 
18 A. M. Legendre, ‘Réflexions sur les différentes manières de démontrer la théorie 

des parallèles ou le théorème sur la somme des trois angles du triangle’, Mémoires de 
l’Académie des sciences, 12, 1833, pp. 367–410. 
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The problem here is to divide a given triangle ABC into three triangles 
ABH, ACH and BCH whose areas are in given ratios: 
 

ABH

ACH
=
D

E
,       

ACH

BCH
=
E

G
. 

 

 
Fig. 6 

 
We first note that the ratio of the areas of ABH and BCH is equal to the 

ratio AI
CI

19 where I is the point of intersection of AC and the extension of 

BH. So we construct the point I on AC such that AI
CI

=
D

G
. We know that H 

must lie on BI. It remains for us to choose H on BI in such a way that the 
ratio of the areas of ACH and ABH is equal to E

D
. Now this ratio is equal to 

the ratio CL
BL

 where L is the point of intersection of BC and the extension of 

AH. So we construct L on BC such that BL
CL

=
D

E
, where H is the point of 

intersection of BI and AL. We are carrying out an analysis of the problem; 
the synthesis is self evident and the text passes over it in silence. 
 

Al-Sijzī proposes another method: we construct the ratio IH
BH

 in which 

the required point, H, divides BI; this ratio is equal to the ratio of the areas 
of triangles AIH and AHB. Now 
 

AIH

CIH
=
AI

CI
=
D

G
. 

 
19 The triangles ABH and CBH have a common base BH, so their areas are in the 

ratio of the heights AA' and CC' from A and C. Now A ′ A 

C ′ C 
=

AI

IC
 in the homothety with 

centre I. So ABH
CBH

=
AI

IC
=
D

G
. 

A

H
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I
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Let us divide the magnitude E into two parts X and Y such that the ratio  
 

X

Y
=
D

G
; 

 
the ratio AIH

ACH
 is thus equal to X

E
 (because ACH = AIH + CIH). Since  

 
ACH

ABH
=
E

D
, 

 
we see that  

AIH

ABH
=
X

D
. 

 
Accordingly  

IH

BH
=
X

D
. 

 
Which is what it was required to prove. Here again, the text presents 

only the analysis; the same holds for the third method, which follows. 
 

The third method is more elegant because it uses the theory of propor-
tions only for dividing one of the sides of the triangle, let it be AB, in the 
ratio of the three segments D, E, G: 
 

AI

IH
=
D

E
 and IH

HB
=
E

G
. 

 

 
Fig. 7 
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The three triangles ACI, ICH and HBC have areas in the required ratio. 
Through I we draw IK parallel to AC and through H we draw HK par-

allel to BC; then the area of the triangle AKC is equal to the area of the tri-
angle AIC, and in the same way the area of the triangle BKC is equal to the 
area of the triangle BHC. The areas of the triangles AKC, AKB and BKC 
are now in the ratios of the segments D, E, G. 
 

Al-Sijzī thus provides three methods – and he is at pains to point out 
that they are three among many – for constructing an object that has a 
given property. 
 
 
3.4. Analysis and variation of lemmas 
 

In the first part of the treatise, al-Sijzī recommended, as a useful rule in 
analysis and synthesis, that one should look back to the lemmas of the 
lemma that allowed the proposition to be proved. This rule is in turn based 
on the idea that the lemmas can be varied, at the least by working back up 
the chain of lemmas that are necessary for establishing the proposition. 
Here we are obviously concerned with an indirect approach, that is 
intended to increase the number of routes for making discoveries. Here al-
Sijzī gives an example that illustrates this rule, Proposition III.20 of the 
Elements:  

In a circle the angle at the centre is double of the angle at the 
circumference, when the angles have the same circumference as base.  
Euclid had proved this proposition from a lemma that required two 

other preliminary lemmas, that is I.32 (the exterior angle of a triangle), 
itself based on I.29 and I.31. Al-Sijzī proves the proposition directly from 
these last lemmas (see text). 
 
 
3.5. Analysis and variation of constructions carried out using the same 
figure 
 

In the first part of the treatise, al-Sijzī recommends that, as a prelimi-
nary approach, one should try to recognise the element which is common 
to the propositions that will be used in carrying out the analysis and syn-
thesis. He also advises us to grasp what it is that distinguishes these propo-
sitions one from another. An investigation that is the more necessary 
because these ‘contribute to one another’ (p. 607). Here al-Sijzī illustrates 
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this phenomenon by means of an example, from which he develops a 
supplementary procedure to make the analysis more powerful: We use the 
same figure to arrive at different constructions. That is, we fix the figure 
and we vary the constructions carried out with it. Let us return to al-Sijzī’s 
approach, whose text has been heavily corrupted by the copyist of the 
manuscript. 

Al-Sijzī starts with several propositions which he does not prove on 
division in extreme and mean ratio, which ‘contribute to one another’. Al-
Sijzī notes that they have in common the number five, it being given that 
‘the construction of the regular pentagon in fact involves the division of a 
straight line in mean and extreme ratio’.20 Let us return to al-Sijzī’s 
exposition. 
 

Proposition 1: We know from Euclid’s Elements that the construction 
of the regular pentagon starts with making a division in extreme and mean 
ratio. Thus, Book XIII of the Elements opens with some propositions on 
this division, on which al-Sijzī comments21 in Euclidean style. 

Using trigonometry, we find the side of the regular decagon inscribed 
in a circle of radius r: 

 

c = 2r  sin π
10

= r 5 −1
2

. 

 
 For the side of the regular pentagon we have  
 

C = 2r  sin π
5
= c 4− c

2

r2
= r 5 −1

2
5+ 5

2
. 

 

Proposition 2: The sum r + c = r 5 +1
2

 is divided in extreme and mean 

ratio by r and c: r + c
r

= r
c
= 5 +1

2
. 

 
Proposition 3: The ratio of D, the diagonal of the regular pentagon, to 

its side C is again equal to 5 +1
2

. In other words, the diagonal PN is 

divided in extreme and mean ratio at the point Q such that PQ = PM = C. 

 
20 See p. 607. 
21 See apparatus criticus in Les Mathématiques infinitésimales du IXe au XIe siècle, 

vol. IV, on p. 799, 16. 
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Fig. 8 

 
The isosceles triangles PMN and MQN are similar, so  
 

MN

PN
=
QN

PM
, 

 
or 

C

D
=
D − C

C
. 

 
Proposition 4: If a straight line of length 2a is divided in extreme and 

mean ratio, the greater part is a 5 −1( ) . So if we add to it a, half the whole 

straight line, the sum is a 5  and its square is five times the square of half 
the whole straight line. 
 

Proposition 5: If we divide a straight line into two parts in this ratio, 
and if to the greater part we add twice the smaller part, then the square of 
the whole straight line is five times the square of the first part.22 

Let a be the greater part; the smaller part accordingly has the value 
a 5 −1

2
. Twice this added to a gives a 5 , whose square is five times the 

square of a. 
 
 

Proposition 6: Let us continue to consider a straight line divided in 
extreme and mean ratio, whose greater part is 2a; and the smaller part is 
then a 5 −1( ) . If to this part we add a, half the greater part, we obtain a 5 , 

whose square is five times that of half the greater part. 
 

Proposition 7: Propositions 4 to 6 show how, starting from a division 
in extreme and mean ratio, we can construct two segments such that the 
square of one is five times the square of the other. Now, we carry out the 

 
22 See p. 607. 
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inverse procedure, starting from a square divided into five equal squares 
and proceeding so as to obtain a division in extreme and mean ratio. 

For example, if we are given a and a 5 , the sides of two squares, their 
sum a 1+ 5( )  (‘composition’), when divided by two, is in the ratio 1+ 5

2
 

with the first side a; in other words this side a divides half the sum in 
extreme and mean ratio. 

In the same way, the difference a 5 −1( )  (‘separation’), when divided 

by two, is in the ratio 5 −1
2

 with the first side a; in other words, half the 

difference divides this side in extreme and mean ratio. 
 

Here we propose a construction of the division in extreme and mean 
ratio that has several stages (‘propositions that participate in one another’). 
In the first stage, we construct two segments such that the square of one is 
equal to three times the square of the other; in the second stage, we use this 
construction to obtain the division in extreme and mean ratio. The two 
constructions are done with the same figure. 
 

Example: In this example, we consider a triangle AEB, right-angled at 
E, and we carry over the smallest side EB to be EG on the larger side EA. 

 

 
Fig. 9: 2AD2 = AB2; 3AE2 = (AG + AE)2 

 
We have  
  AB2  = AE2 + EB2 (Pythagoras’ theorem) 
   = AG2 + 2AG · GE + EG2 + EB2 = AG2 + 2EG · AE. 

 
As the first stage, we take AG such that 2AG2 = AB2; so we have  

 
2 AG2 = AB2 = AG2 + 2EG · AE, 

 
hence 

A B

D

EG

H
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AG2 = 2EG · AE 
and 

(AG + AE)2 = AG2 + 2AG · AE + AE2 = 3AE2, 
 
as we wished for the first part. 

The construction of G is carried out stating from AB as follows: we 
find AD such that 2AD2 = AB2 by dividing the semicircle ADB of diameter 
AB into two equal arcs. We must have AG = AD and angle AGB = π

2
+
π
4

 

(exterior angle of the right-angled isosceles triangle BEG); accordingly G 
lies at the intersection of the circle with centre A and radius AD and the arc 
subtending the angle AGB = 3π

4
. 

We then extend AG to E so as to make angle AEB a right angle; so this 
point is the intersection of the extension of AG and the circle of diameter 
AB. 

In the second stage, we use the same construction, but this time we 
suppose that 3AG2 = AB2 = AG2 + 2EG · AE. We then have AG2 = EG · EA 
and the straight line AE is divided in extreme and mean ratio at the point G. 

So the method consists of constructing AD such that 3AD2 = AB2 by 
using the first part, then constructing G as the point of intersection of the 
circle with centre A and radius AD and the arc subtending the angle AGB = 
3π
4

. We then complete the procedure as in the first stage: we extend AG to 

E, its point of intersection with the circle of diameter AB. We then have  
 

5AE2 = (AE + 2AG)2. 
 

  
Fig. 10: 3AD2 = AB2; 5AE2 = (2AG + AE)2 

     (Ae = AE, eB = AG in Fig. 9) 
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D
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Note: This construction provides a general method of constructing two 
segments such that the ratio of their squares is of the form 2n + 1. For n = 2, 
this ratio is 5 and the construction is equivalent to division in extreme and 
mean ratio. 

Let us suppose that (2n–1 + 1)AD2 = AB2. If AG = AD, as in the figure, 
we have: 

 (2n–1 + 1) AG2 = AB2 = AG2 + 2EG · AE, 
 
so 

2n–1 AG2 = 2EG · AE. 
 
Thus, 

  (2n–1 AG + AE)2 = 22n–2AG2 + 2nAG · AE + AE2 
     = 2nEG · AE + 2nAG · AE + AE2 
     = (2n + 1) AE2. 

 
So, to obtain a ratio of squares equal to 2n + 1, we repeat the construc-

tion n times. Each figure is obtained from the previous one:  
 

ABn = 2n–1AGn–1 + AEn–1 and ADn = AEn–1 
 

give  
ABn

2 = 2n +1( )AEn
2 . 

 
We are always dealing with the same figure, with a different choice for 

the point D. 
That is exactly the idea to which this text is trying to draw attention. 

The case we are considering has two parts since n = 2; that explains the 
jump to a later occurrence of the same word which has caused lacunae in 
the text. For each part, the figure is the same and the argument is identical 
and this is the sense in which to understand the term ‘participation’. 

Al-Sijzī then states that if, by a similarity-transformation, we draw GH 
parallel to EB, we have divided AB in the required manner, that is in such a 
way that  

AH

HB
=
AB

AH
; 

 
which is an application of Thales’ theorem. 
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3.6. Variations on a problem from Ptolemy 
 

Al-Sijzī returns to a problem in the Almagest. His investigation is both 
careful and detailed; he emphasises the difficulties he encountered in car-
rying out the analysis, providing four proofs, and thus showing that many 
different methods can be used to solve the problem. In the course of his 
discussion al-Sijzī demonstrates the part played by auxiliary constructions 
as well as showing, in each case, the purpose served by their use; but he 
does not mention, or even hint at, the questions of logic that are raised by 
there being multiple proofs for the same problem. His principal concern is 
always the same: to discover the best method of obtaining the required 
property. This is indeed his motive for providing multiple solutions. 

Ptolemy’s proposition23 shows that if in a given circle we take two un-
equal arcs AC and AB such that arc AC > arc AB, then 

 

. 

 
We take K on BA produced such that AK = AC 

and take G as the point of intersection of KC and a 
line through A parallel to BC. 

Since the arc AC is cut off by the angle 
AB̂C  =  KÂG  and the arc AB is cut off by the 
angle AĈB =  GÂC , we have 

 

. 

 
So we want to show that 

 

 
Fig. 11 

GB̂�
IB̂G

< BE
B�

= BE
BI

= G�
GI

= tr.(BEG)
tr.(BGI )

. 

 

 
23 Ibn al-Haytham takes up this proposition and varies the conditions; see 

R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. V: Ibn al-
Haytham: Astronomie, géométrie sphérique et trigonométrie, London, 2006; English 
translation by J. V. Field: Ibn al-Haytham. New Spherical Geometry and Astronomy, A 
History of Arabic Sciences and Mathematics, vol. 4, Culture and Civilization in the 
Middle East, London/New York, 2014. See also Géométrie et dioptrique, pp. 248 sqq. 

  

AC

AB
>

AC
AB

   

AC

AB
=

KÂG
GÂC
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Now the first ratio is equal to the ratio of the sectors GAI and GAE, and 
we have 

 
sect.(GAI) = sect.(HAE)24 and sect.(GAE) = sect.(AEH) + sect.(HGA). 

 
Moreover, 

tr.(AGC) = tr.(KAH) and tr.(KAG) = tr.(KAH) + tr.(HAG); 
 
since 

tr.(HAG) < sect.(HAG) and tr.(KAH) > sect.(HAE), 
 
we thus have 

sect.(GAI)

sect.(GAE)
<
tr .(AGC)

tr.(AGK)
, 

 
hence 

GB̂�
IB̂G

< tr.(BEG)
tr.(BGI )

, 

 
which is what it was required to 
prove. 

 
Note 1: We have presented 

the argument using Fig. 11, 
where the angles satisfy 
π
2

 > B̂  > Ĉ .  

Let us suppose AB̂C  is 
obtuse, with π > B̂  > π

2
 > Ĉ  

(Fig. 12). The symmetry we 
pointed out in the first case still 
exists and the reasoning is 
identical, because all the 
equations are satisfied. 
 

 
Fig. 12 

 

 
24 Triangle KAC is isosceles, so the perpendicular bisector of KC passes through A; 

it is the axis of symmetry of the triangle KAC and of the circle (A, AG); so KH = GC 
and arc HE = arc GI and parts KHE and CGI (curvilinear triangles) are equal. 
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Note 2: To express it differently, let us make β = AB̂C , γ = BĈB  and r 
the radius of the circle ABC. The arc AC is equal to 2 rβ and the arc AB is 
equal to 2 rγ; as for the chords, we have: AC = 2r sin β, AB = 2r sin γ. 
Ptolemy’s inequality is written as 

 
β
γ
>
sin β
sinγ

, 

 
that is  
      sinβ

β
<
sin γ
γ

    if β > γ. 

 
Thus, this inequality indicates that the function x→ sin x

x
 decreases 

over the interval 0 < x < π. 
 

Note 3: In another text by al-Sijzī (see below) we find a solution of this 
problem using a slightly different auxiliary construction, but employing the 
same reasoning. 
 

Al-Sijzī continues his discussion of this same problem from Ptolemy 
by proposing a second method of proving the same inequality. For this, he 
introduces the line CD, the bisector of the angle ACB,25 which gives him 
BC

AC
=
BD

DA
. If the extension of CD meets the circle circumscribed about the 

triangle ABC in H, we consider the circle with centre H that passes through 
D; it meets HA in E and HB in I. Since HA > HD, the point E lies between 
H and A. If I lay outside HB, the proof would be immediate because  

 
BD

DA
=
tr .(BDH)

tr.(DAH)
, tr.(BDH) < sect.(IHD) and tr.(DAH) > sect.(DEH); 

 
Fig. 13 

 

 
25 Note that the names of the points A and C are reversed in this new proof. 

I
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So we have 
tr. (BDH )
tr. (DAH )

<
sect. (IHD)
sect. (DHE)

= BÂC
AB̂C  

 
thus, 

. 

 

 
Fig. 14 

 
But Figure 13 is impossible because HB = HA and the point I thus lies 

between H and B, as the point E lies between H and A. Al-Sijzī then notes 
that the preceding reasoning is false. But understanding the nature of the 
error allows us to move forward along the road of discovery and to correct 
the reasoning. That is probably the point that al-Sijzī wanted to illustrate by 
this example. This is how he proceeds: 

Let G be the point where the circle with centre H and radius HD cuts 
the side AB. The triangles HDA and HGB are equal and the sectors DHE 
and GHI are also equal. Now we have 

 
tr.(GHD) < sect.(GHD) and tr.(DHA) > sect.(DHE), 

 
so 

tr .(GHD)

tr.(DHA)
<
sect.(GHD)

sect.(DHE)
; 

 
if we add unity to the two sides, that is by composition of the ratios, we 
obtain 

  
=

BC

AC

BC
AC

=
BC

AC

�A

B

CE

H D

G
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tr .(BHD)

tr.(DHA)
<
sect.(IHD)

sect.(DHE)
, 

 
and the proof is completed as above. 
 

We may note that, in another text, al-Sijzī gives the same solution, that 
is the same apart from some small variants, in the course of the proof. He 
in fact starts from the same figure with the same lettering and the same 
assumptions (see below). 

Al-Sijzī continues to give more variations on Ptolemy’s problem. This 
time he wants to take account of a special condition that is sufficient as 
Ptolemy proposes it, namely that .  

We introduce a point D on the circular arc ACB such that , 
and we call the point of intersection of AD with BC the point E. The circle 
with centre A and radius AE meets the extension of AC in G and the side 
AB in H. 

We have  
sect.(AGE) > tr.(ACE) and sect.(AEH) < tr.(AEB), 

 
so 

sect.(AGE)

sect.(AEH)
>
tr .(ACE )

tr.(AEB)
. 

 
By composition of the ratios, we have 
 

sect.(AGH)

sect.(AEH)
>
tr .(ACB)

tr.(AEB)
; 

 
the ratio on the left is equal to  

. 

 

Fig. 15 

  AB < π

  BD =CA
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Further  
tr .(ACB)

tr.(AEB)
=
BC

BE
, 

 
so  

. 

 
Al-Sijzī concludes by saying that BE = AE > AC; unfortunately that 

gives  
BC
BE

< BC
AC

, 

 
and one cannot draw any conclusion as he has inadvertently done. 

He also gives a fourth solution to this problem (see below). 
 

Al-Sijzī continues his variations on Ptolemy’s problem. He still starts 
with three points A, B, C on a given circle, with arc AC > arc CB; he draws 
CD ⊥  AB and wishes to show that  

. 

 

 
Fig. 16 

 
This time we have a problem of the same kind, even though al-Sijzī 

does not directly consider the chords of the arcs, but those of the segments 
associated with them.  

BC

AC
>

BC
BE

  

AD
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>
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We extend CD to the point E on the circle; we take I on BA such that 
EI = EB. The circle (E, ED) cuts the straight lines EB, EI and EA in G, K 
and H respectively.  

Al-Sijzī then says that 
 

  (1) . 

 
He does not prove this inequality, but deduces from it that 
 

, 

 
hence  

. 

 
This proof is correct, although it is simply indicative, since al-Sijzī has 

not proved (1). We can reconstruct the missing proof as follows: 
Let us draw DK; it cuts EA in L; through K let us draw a line parallel to 

EA, which cuts DA in M between I and A. We have  
 

KL

DK
=
MA

DM
<
IA

DI
,
 

so  
tr.(KEL)

tr.(DEK)
<
tr.(IEA)

tr.(DEI)
. 

 
Now 

tr.(KEL) > sect.(KEH) and tr.(DEK) < sect.(DEK); 

so 
sect.(KEH)

sect.(DEK)
<
tr.(IEA)

tr.(DEI)
. 

 
By composition of the ratios, we find 
 

sect.(DEH)

sect.(DEK )
<
tr .(DEA)

tr.(DEI)
=
tr .(ADE)

tr.(DBE)
; 

this is what we wanted to prove. 

   

tr.( ADE)
tr.(DBE)

>
HKD

DG

AD
DB

>
HKD

DG
=

AÊC
CÊB

=
AC

BC

  

AD
DB

>
AC

BC
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This proof is not only in al-Sijzī’s style but is faithful to the way he 
proceeds. To employ another style, one he did not know, we may let 
BÊD =α , ��̂C = β  and r = ED. The segments BD and DA are measured 

by r tan α and r tan β respectively; so their ratio is tan β
tan α

. The arcs AC and 

CB, intercepted by the inscribed angles CEA and CEB, are in the ratio β
α

. 

The inequality that has been proved means that tan β
tan α

> β
α

 if β > α. In other 

words, the function x→ tan x
x

 increases, for 0 ≤ x < π
2

. 

Making this translation might in fact shed light, at least indirectly, on 
the variations al-Sijzī imposes on Ptolemy’s problem. 

Al-Sijzī continues his variations on this problem. This time, instead of 
considering the ratio of the chords of the given arcs, he looks at the ratio of 
twice the chords of the given arcs. The discussion is, however, not 
complete. So let us return to the problem. 

Let us put  and  with γ > β. If AE, the diameter 
through A, cuts CB in D, we have 

 
AĈB =  β  and CÂD = π

2
−γ , 

hence 
AD̂C  = π

2
+γ −β , 

 
an obtuse angle; the same is true for the angle EDB and in consequence we 
have EB > ED. 

 
Fig. 17 

 

AB = 2β    AC = 2γ
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We draw the circle (E, ED); it cuts EB in H and EC in G.26 The posi-
tion of G in relation to the straight line CD depends on the lengths of EC 
and ED. We have the following cases: 

1. G lies beyond C, so it is above CD if ED > EC (Fig. 18). 
2. G is at C if ED = EC (Fig. 19). 
3. G is below C, so it is on EC, if ED < EC (Fig. 20). 

 
  Fig. 18          Fig. 19         Fig. 20 

 
In the triangle EDC, the greatest angle is opposite the greatest side: 

EĈD = π
2
−β  and ED̂C  = π

2
−γ +β . 

 
So we have the following conditions: 
1. ED > EC ⇔  EĈD > ED̂C  ⇔  π

2
 – β > π

2
 – γ + β ⇔  2β < γ, 

which is possible because γ > β. 
2. ED = EC ⇔  γ = 2β, which is also possible. 
3. ED < EC ⇔  γ < 2β, which would impose the condition β < γ < 2β; a 

condition that is necessary for G to be below C, and a condition which is 
not stated by al-Sijzī. His argument applies in cases 1 and 2. Thus, we have 

 
 
26 If the circle (E, ED) touches the straight line BC, we have CD ⊥  AE, so 

AD̂C  = 1 right angle and ; which is impossible because . 
The point G can lie below the straight line CD without 

the angle ADC being acute (see case 3); but that requires 
 

. 
 

The condition  was not considered by al-
Sijzī, and the proof that is given does not apply in this case. 
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sect.(HDE) < tr.(DBE) and sect.(DGE) > tr.(DCE), 
 
so 

tr. (DBE)

tr. (DCE)
>
sect. (HDE)

sect. (���)
. 

 
The triangles DBE and DCE have equal heights (same vertex and bases 

on the same straight line), so we have  
 

BD
DC

> HÊD
DÊG

 ; 

 
but 

, 

 
hence 

; 

 
which is what al-Sijzī wished to prove. 
 

However, the argument does not apply in case 3, as we can easily 
check. Let us proceed in the same style as al-Sijzī does: 

The triangle EDB is always greater than the sector EDH, but, in this 
case of the figure (Fig. 20), we do not know whether the triangle ECD is 
smaller or greater than the sector EGD. We know only that the triangle 
EXD is smaller than the sector EXD. But the triangle EXC is greater than 
the sector EXG; which does not allow us to draw any conclusions. We can, 
however, establish that the ratio tr.(EDB)

sect.(EDH)
 is greater than the ratio 

tr .(EXC)

sect.(EXG)
. 

 
Let us prove this inequality: let us construct a point C1 on DB such that 

DC1 = XC; the triangle EXC is equal to the triangle EDC1. As EC < EB, 
since arc EC < arc EB, we have EC1 = EC < EB, so DC1 < DB and C1 lies 
between D and B. 

   

HÊD
DÊG

=
AB

AC

  

BD
DC

>
AB

AC
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Fig. 21 

 
We draw the circle with centre E and radius EC1 = EC; it cuts EB in H1 

and ED in D1. We have  
 

tr.(EDC1) < sect.(ED1C1) and tr. (EC1B) > sect.(EC1H1), 
 

so 
tr .(EC1B)

tr.(EDC1 )
>
sect.(EC1H1 )

sect.(ED1C1 )
; 

 
by composition of the ratios, we have 
 

tr .(EDB)

tr.(EDC1 )
>
sect.(ED1H1 )

sect.(ED1C1)
=
sect.(EDH)

sect.(���1)
, 

 
where G1 is the point of intersection of EC1 with the circle GXDH. 

So we have 
tr .(EDB)

tr.(��� )
>
sect.(���)

sect.(��	)
; 

 
which is what we wished to establish. 

Thus, 

 
tr .(
��)

tr.(
��)
=
tr.(
��)

tr.(
��)
+
tr .(
��)

tr.(
��)
<
sect.(
��)

sect.(
��)
+
sect.(
��)

sect.(
��)
=
sect.(
��)

sect.(
�� )
. 

 
So finally we have  

 
tr.(��	)

tr.(ECD)
>
sect.(EDH)

sect.(�
	)
, 

 
the inequality we wished to prove. 
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This inequality is, moreover, equivalent to a decrease in the function 
x →  sin x

x
, as has been explained in the note on page 545. 

 
Al-Sijzī presents one last variation on Ptolemy’s problem, which is 

stated like this: Let there be two chords AC and BD in a given circle ADBC 
cutting one another in E; we have  

. 

 
The ideas in the proof are essentially the same as before. We begin 

with an auxiliary construction, of a circle (B, BA) that cuts the extension of 
the chord BD in H; the line through B parallel to AC cuts this circle in I and 
the extension of DA in G. We have 
 

tr.(ADB) < sect.(ABH) and tr.(AGB) > sect.(ABI); 
 

hence 
tr . (ADB)

tr. (AGB)
<
sect. (ABH )

sect. (ABI)
, 

 
hence 

AD
AG

< DB̂A
AB̂G

. 

 
But AB̂G  =  CÂB ; DB̂A  intercepts the arc AD and CB̂B  intercepts the 

arc BC, so 

; 

 
but  

AD

AG
=
ED

EB
 

 
because EA || BG; hence the conclusion.27 

 

 
27 We may note that the figure drawn in the manuscript, which is not very clear, 

seems to show a semicircle ACB. The argument is the same for a circle. We may have 
ACB ≤ π or ACB > π. 

DE
EB

<
AD

CB

AD
A�

<
AD

BC
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Fig. 22 

 
The preceding argument assumes that BA > BD; this is always true if 

the arc ADCB ≤ π, the points A, D, C, B being in that order. We then have 
AB > BD and AB < BG; we need to have H lying beyond D and I lying 
between B and G and the argument then applies (see Figs 22.1 and 22.2). 
 

  
  Fig. 22.1      Fig. 22.2 
 

But for the third case, the arc ADCB > π, we can have: AB > BD, 
AB = BD or AB < BD. 
 

In fact, let BB1 be the diameter (2r) and A1 such that the arc AB1 is 
equal to the arc B1A1. If a point D describes the arc AB1 from A towards B1, 
the length BD increases from BA to BB1 = 2r. If D describes the arc B1A1, 
the length BD decreases from 2r to BA1 = BA. If D describes the arc A1B, 
the length BD decreases from BA1 = BA to 0; hence 
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D A  B1  A1  B 
 
BD 

 
AB 

 
 

 
2r 

 
 

 
AB 

 
 

 
0 

 
So if we take D beyond A1, we shall have, as in the first two cases, 

 
BA > BD ⇒  BH > BD, 

 
where H lies beyond D and I lies between G and B; and the argument again 
applies. 

 
Fig. 22.3 

 
If we take D at the point A1, we have BD = BA, so D = H; we still have  
 

tr.(ABD) < sect.(ABH) and tr.(AGB) > sect.(ABI); 
 
and the argument still applies. 

 
If D is an arbitrary point on 

the arc AA1, we have BD > BA; in 
this case, H lies between B and D. 
But the position of the point I 
depends on the positions of D and 
C. Thus, if D lies between B1 and 
A1, the angle DAB is acute and the 
circle (B, BA) cuts AD between A 
and D (Fig. 22.4) and cuts BG in I 
between B and G.  

  
Fig. 22.4 
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The segment AD cuts the arc AH and we cannot make a comparison 
between the area of the triangle ABD and that of the sector ABH. The 
proposed method can no longer be applied. 
 

If D is at the point B1, the angle DAB is a right angle, the circle (B, BA) 
touches AD, the point G lies on AD and the point I again lies between B 
and G; the argument does not apply either, we have 
 

tr.(ABD) > sect.(ABH) and tr.(ABG) > sect.(ABI), 
 

and we thus cannot draw any conclusions (Fig. 22.5). 
 

 
Fig. 22.5 

 
But if D lies between B1 and A, the angle DAB is obtuse and the 

straight line AD cuts the circle (B, BA) again beyond A; in this case, 
depending on the position of D and that of the point C on the arc BC0 (arc 
BC0 = arc AD and arc BC < arc AD), we can have the point G between B 
and I, G = I, or I between B and G (Figs 22.6, 22.7 and 22.8 respectively). 

 
In cases 22.6 and 22.7, the point G lies between B and I or G = I; we 

have  
 

tr.(ADB) > sect.(ABH) and tr.(AGB) < sect.(ABI), 
 
so 

A
B

C
E

GI

H B = D1
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tr .(ADB)

tr.(AGB)
>
sect.(ABH )

sect.(ABI)
 

 
and in consequence 

AD
AG

> DB̂A
AB̂G

. 

 

 
Fig. 22.6 

 

 
Fig. 22.7 

 
 

AB

C
D

G I

HC

B

0

1

E

A

B

B

C
C

I=G

E

H

1

0
D



 THE ARS INVENIENDI: THĀBIT IBN QURRA AND AL-SIJZĪ 559 

We have BG || AE, hence  
AD

AG
=
ED

EB
, 

 
and we thus have  

, 

 
which is contrary to the conclusion stated earlier. 
 

 
 Fig. 22.8 

 
In case 22.8, we cannot compare the area of the triangle ABG with that 

of the sector ABI. 
All this discussion shows that, without stating this in so many words in 

his text, al-Sijzī seems to assume that he has simply accepted the hypothe-
sis that arc ADCB ≤ π, which indeed corresponds with the figure in the 
text. 

As readers will no doubt have noticed, al-Sijzī’s variations on 
Ptolemy’s problem do not relate only to the proofs, but also to deriving dif-
ferent statements and discovering other properties, such as that of the tan-
gent. Moreover, al-Sijzī makes a point, at least at the beginning of the dis-
cussion, of raising all the difficulties that the geometer encounters in the 
course of examining the problem. 
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3.7. Variations on the same problem from Ptolemy in other writings by al-
Sijzī 
 

In the manuscripts of al-Sijzī’s writings that have come down to us, we 
find three additional solutions of this same problem. Two of them differ 
only very slightly from the two solutions we have given here. The third is 
simpler, but the argument is based on the same idea. So let us start by 
looking at this last solution. 
 

1. We wish to prove that if arc CD > arc AB, then . 

The figure in the text as well as the argument that is presented assume 
AB || CD. But the result that is established in this case is valid whatever the 
position of the arcs.28 

Let H be the centre of the circle; the perpendicular drawn from H to 
CD cuts CD and AB in their respective mid points I and K and cuts the arc 
AB in L, the mid point of the arc AB. The straight line HL cuts AC in G. We 
have 

sect. (CHA)
sect. (AHL)

>
tr. (CAH )
tr. (AHG)

,
 

 
because tr. (CAH) < sect. (CHA) and tr. (AHG) > sect. (AHL). 

By composition, we have  
 

sect. (CHL)

sect. (AHL)
>
tr . (CHG)

tr. (AHG)
; 

 
now 

sect. (CHL)
sect. (AHL)

=

  
and

  
tr . (CHG)

tr. (AHG)
=
CG

AG
=
CI

AK
;
 

 
so we have 

 
28 In fact, let A'B' be an arc of the same circle such that the arc A'B' is equal to the 

arc AB, A'B' is not parallel to CD; then we have A'B' = AB. So  

 and CD
AB

=
CD

′ � ′ �
,  

and consequently 

.
 

  

CD

AB
>

CD
AB

   

CĈA
AĈ�

=
AB

A�
=

  

CL

AL

  

CD

AB
=

CD

′A ′B

  

CD

′A ′B
>

CD
′A ′B
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> CI
A�

;
 

 
hence 

> CD
AB

.
 

 
This solution is simpler than those we examined before. The diameter 

EL is an axis of symmetry for the given arcs and for their chords and the 
argument is based on the relations 

 

 
, KA =

 
1

2  
AB and IC =

 
1

2
 CD.

 
 

But, as in all the solutions al-Sijzī proposes, the argument rests on the 
inequality between the ratio of two sectors and the ratio of the two triangles 
associated with them and having their bases on the same straight line. In 
every case, it is from this inequality that the conclusion is deduced. It is 
only the auxiliary constructions that are different. 

The passage that supplies this solution forms part of the text Reply of 
Aḥmad ibn Muḥammad ibn ‘Abd al-Jalīl al-Sijzī to Geometrical Problems 
Raised by the People of Khurāsān (Jawāb Aḥmad ibn Muḥammad ibn ‘Abd 
al-Jalīl al-Sijzī ‘an masā’il handasiyya sa’ala ‘anhu Ahl Khurāsān). See 
the manuscripts Dublin, Chester Beatty Library 3652, fol. 57, and Istanbul, 
Süleymaniye Library, Reshit 1191, fol. 118. As we have shown,29 this last 
manuscript is a copy of the one in Dublin and from only that one 
manuscript. For this text, there is an edition comparable to that of the trea-
tise To Smooth the Paths for Determining Geometrical Propositions. It is 
this edition that was translated into English in 1996.30 

We wish to show that the ratio of the large arc to the small arc of a circle is 
greater than the ratio of the chord of the large arc to the chord of the small 
arc, using a method different from that of Ptolemy in his book, the Almagest. 
I have solved this problem by a different method and [using] proofs that can 
be found in the examples that I have given in the book: To Smooth the Paths 
 
29 See pp. 151–2. 
30 Al-Sijzī’s Treatise on Geometrical Problem Solving (Kitāb fī Tashīl al-Subul li-

Istikhrāj al-Ashkāl al-Handasiyya), translated and annotated by Jan P. Hogendijk, with 
the Arabic text and a Persian translation by Mohammad Bagheri, Tehran, 1996, Arabic 
p. 18; English trans. p. 31. Cf. our edition in Les Mathématiques infinitésimales, vol. 
IV, pp. 724–5. 
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for Determining Geometrical Propositions. Nevertheless, a proof by a 
method different from those that we have followed in this book is possible; it 
is as follows. 
Let there be two unequal arcs AB and CD. I say that the ratio of the arc CD, 
the greater [arc], to the arc AB, the smaller [arc], is greater than the ratio of 
the chord CD to the chord AB. 

 
Proof. Let the two chords be parallel. We draw from the centre the line HIK 
perpendicular to the two chords. We extend it on both sides to E and L. We 
join HC and HA and we extend CA and EL to meet one another in G. The 
ratio of the angle CHA to the angle AHL is equal to the ratio of the arc CA to 
the arc AL and is equal to the ratio of the sector CAH to the sector AHL. But 
the ratio of the sector CAH to the sector AHL is greater than the ratio of the 
triangle CAH to the triangle AHG. Thus, by composition, the ratio of the 
sector CHL to the sector AHL is greater than the ratio of the triangle CHG to 
the triangle AHG. But the ratio of the triangle CHG to the triangle AHG is 
equal to the ratio of CG to AG and to the ratio of CI to AK. The ratio of the 
arc CL – respectively31 CLD – to the arc AL – respectively ALB – is thus 
greater than the ratio of the straight line CI – respectively the chord CD – to 
the straight line AK – respectively the chord AB. Which is what it was 
required to prove. 

 
2. The two other solutions attributed to al-Sijzī are to be found in a text 

called Geometrical Glosses from the Book by Aḥmad ibn Muḥammad ibn 
‘Abd al-Jalīl al-Sijzī (Ta‘līqāt handasiyya min Kitāb Aḥmad ibn 
Muḥammad ‘Abd al-Jalīl al-Sijzī), which has come down to us in two 
manuscripts, one Dublin, Chester Beatty, no. 3045/14, fols 74r–89v; and the 
other Cairo, Dār al-Kutub, no. 699 riyāḍa, 35 pages. The latter is a copy of 
the former.  

 
31 Lit.: I mean. 
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The manner in which this book was composed raises an important 
problem: are we really dealing with a book by al-Sijzī or with a pot pourri 
made up of parts of his writings, notably from his Anthology of Problems? 
We discuss this question elsewhere,32 though we regard the matter as 
settled; here, we give these solutions, which in fact differ from those 
already given by al-Sijzī in his To Smooth the Paths … only in a slight 
modification of the auxiliary construction. 

Let us start by returning to the first of these two solutions. 
 
Proof of a proposition from the 
first book of the Almagest, [a 
proof] that we have established. 
The arc AC is greater than the arc 
AB; I say that the ratio of the 
chord of the arc AC to the chord of 
the arc AB is smaller than the ratio 
of the arc AC to the arc AB. 
Proof. We draw AC, AB, BC and 
we divide the angle CAB into two 
halves with the straight line AD.  

 
We draw CE parallel to AD and we extend BA to E; we draw AG parallel to 
BC, with centre A and distance AG we draw the arc IGHK and we join AH. 
Given that the angle B is greater than the angle ACB, AC will be greater than 
AB. But the triangle ACE is isosceles and AC is equal to AE, so AE is greater 
than AB. But the ratio of CG to GE is equal to the ratio of BA to AE, so CG 
is smaller than GE, and the angle AGE is acute. 
But the straight line AH is equal to the straight line AG, so the triangle AEH 
is equal to the triangle AGC and the ratio of the triangle AGC to the triangle 
AGE is greater than the ratio of the sector AGI to the sector AGK, because 
the sector AGH is greater than the triangle AGH of the segment HG. But the 
ratio of the triangle AGC to the triangle AGE is equal to the ratio of GC to 
GE, and the ratio of the sector AGI to the sector AGK is equal to the ratio of 
the angle CAG to the angle GAE; so the ratio of CG to GE is greater than the 
ratio of the angle CAG to the angle GAE. But the ratio of GC to GE is equal 
to the ratio of BA to AC, so the ratio of BA to AC is greater than the ratio of 
the angle CAG to the angle GAE; but the angle CAG is equal to the angle 
ACD and the angle GAE is equal to the angle ABD, so the ratio of BA to AC 
is greater than the ratio of the angle BCA to the angle CBA. Now the two 

 
32 R. Rashed and P. Crozet, Al-Sijzī, Œuvres mathématiques, forthcoming. 
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angles BCA and CBA intercept the arcs BA and AC, so the ratio of BA to AC 
is greater than the ratio of the arc BA to the arc AC. If we permute, then the 
ratio of AC to AB is smaller than the ratio of the arc AC to the arc AB. This is 
what we wanted to prove (ms. Dublin, Chester Beatty, no. 3045, fol. 81r-v). 

 
It is clear that this solution is the same as the one given before, the dif-

ference being merely that the hypothesis we make here corresponds to the 
conclusion in the solution given in the treatise; except that the two letters K 
and E are exchanged, the proof is the same in both cases. Thus, in the 
Treatise, we extend BA by a length AK = AC; the triangle KAC is isosceles 
and we then have KC || AD (AD is the bisector of the angle BAC). Here, we 
draw through C a line parallel to AD the bisector of the angle BAC; it cuts 
the extension of BA in E. We have CE || AD and we deduce that EAC is 
isosceles; hence EA = EC. For both constructions, we draw AG || BC. 

We may have a first draft of al-Sijzī’s solution, of perhaps a revised 
version of it. The question remains open. 

 
3. Return to the third solution. 
We have determined it in another 
manner. 
The arc CB is greater than the arc 
CA. I say that the ratio of the arc 
CB to the arc CA is greater than 
the ratio of the chord BC to the 
chord CA. 
Proof. We divide the arc AB into 
two halves at the <point> H, we 
draw AB, BH, AH and CH, and 
with centre H and with distance 
HD we draw the circle EDGI and 
we draw HG. HG is thus equal to 
DH (ms. Dublin, Chester Beatty, 
no. 3045, fol. 82r).  

 

The ratio of the arc GD to the arc DE is greater than the ratio of the straight 
line DG to the straight line DA.33 By composition, the ratio of the arc ID to 
 
33 We have  

=
sect. (GHD)
sect. (DHA)

>
tr. (GHD)
tr. (DHA)

,  

because  
sect. (GHD) > tr. (GHD) and sect. (DHE) < tr. (DHA).  
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the arc DE is greater than the ratio of the straight line DB to the straight line 
DA. But the ratio of DB to DA is equal to the ratio of CB to CA, and the ratio 
of the arc ID to the arc DE is equal to the ratio of the arc CB to the arc CA. 
This is what we wanted to prove. 

In this solution, as in the one in the Treatise, we make use of CH, the 
bisector of the angle ACB defined by the point H the mid point of the arc 
BA; the straight line CH cuts the chord AB in D. In both solutions – the one 
in the Treatise and the one given here – we make use of the property of the 
point D, the foot of the bisector of the angle ACB; we have  

 
CA

CB
=
DA

DB
. 

 
The figure drawn is the same in both cases, with identical lettering. 

The single slight difference to be found between the two versions is that, in 
the solution reproduced here, we give the inequality  

 

(1)   

 
without proof. Now it follows from the inequality  

 
 (2)  

tr . (GHD)

tr. (DHA)
<
sect. (GHD)

sect. (DHE)
.  

 
But here we are arguing from (1) by composition, whereas in the 

Treatise we proceeded from (2) by composition: 
 

(2)   ⇒
tr. (BHD)
tr. (DHA)

<
sect. (IHD)
sect. (DHE)

⇒ BD
DA

 . 

 
 

                                        
But  

tr . (GHD )

tr. (DHA )
=
GD

DA
,  

hence 

> GD
DA

. 

  

��

�E
>
��

�A

  
<
�C

�C
⇒

��

��
<
�C
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4. Analysis and synthesis: variation of the auxiliary constructions 
 

Without the slightest acknowledgement of making a transition, al-Sijzī 
then move on to ‘analysis and synthesis’ of two similar problems of the 
division of a straight line by a point that has a certain geometrical property. 
Why do we have these problems? And why here and now? In regard to 
these reasons and the order of his exposition, al-Sijzī himself, at least in the 
existing manuscript, says not a word. We may note, however, that, for 
these examples, he takes the trouble to give a formal exposition, that is he 
carries out an analysis and then a synthesis of the problems. Finally, the 
problems themselves are of the same kind as several others that his prede-
cessor Ibrāhīm ibn Sinān had considered in order to illustrate different spe-
cies of analysis and of synthesis. There is thus every indication that here al-
Sijzī is modelling his work on the study by Ibn Sinān. Better still, as is 
shown by the examples that are investigated, this second look is directed at 
one of the questions that most interested Ibn Sinān in his researches on 
analysis and synthesis: auxiliary constructions. Let us now turn to the 
example studied by al-Sijzī. 
 

 Problem 1: Al-Sijzī begins with a straight line AB; he wishes to divide 
AB in D such that 

 
 (1)  AB · BD + AD2 + C = AB2, 

 
where C is a given arbitrary square. 
 

 
Fig. 23 
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Let us suppose D is known and satisfies (1). Let us draw BG ⊥  AB, 
where BG = AB and DI || BG. We have area (DG) = AB · DB. We construct 
on AD the square AKID. For D to be a solution to the problem, we require 
area (KE') = KI · IE' = AD · DB = C. So it is necessary that l, the side of C, 
shall be less than or equal to AB

2
. 

 
Problem 2: This time al-Sijzī wishes to divide AB in D such that 

 
(2) AD · BD + AD2 + C = AB2. 

 
Let us suppose that D is known and satisfies (2). We take BK = AD and 

we construct the rectangle DK; we have area (DK) = AD · DB. We draw 
KHI || AD, so we have area (AH) = AD2; there remains area (IG) = C; so we 
require that IK · KG = C, that is that AB · BD = C. 

 

 
Fig. 24 

 
We draw the semicircle with diameter AB and from the point B we 

draw the chord BE = l; now we have EB2 = l2 = AB · BD, a construction 
that is always possible because l < AB.  

If we put AB = a and AD = x, the first problem can be written ax = x2 + 
c and the second one ax + c = a2. We may note that al-Sijzī has avoided 
making this algebraic translation. 

The synthesis of these analyses begins with the construction of E on 
the circle.  
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5. Two principal methods of the ars inveniendi 
 

We recollect that at the beginning of his treatise al-Sijzī gave a list of 
methods for facilitating invention in geometry; at least seven of them, 
according to the author. We showed that there is in fact one principal 
method, ‘analysis and synthesis’, and several special methods, which will 
provide the first method with actual means of making discoveries. These 
special methods all have in common the idea of transformation and of 
making variations in not only the figures but also the propositions and the 
procedures used for solution of problems. The set as a whole, including 
both the principal method and the special ones, suits al-Sijzī’s intellectual 
style, and also the list he proposes, but with the exception of one method 
that he mentions: that of ingenious procedures, procedures like those of 
Hero of Alexandria. Having mentioned this method at the beginning of his 
treatise, al-Sijzī in fact never refers to it again. Perhaps he had introduced it 
merely to make the list complete. Perhaps he had simply forgotten about it 
because it does not fit precisely into the ars inveniendi as he conceives it. It 
does not seem that this can be so, assuming that our analysis of al-Sijzī’s 
treatise is correct. Indeed if ‘analysis and synthesis’ is the principal 
method, and if all the others, its faithful auxiliaries, are there to serve it, the 
role of the mechanical procedures for discovery, however important it may 
be, is of a completely different order: it is that of an outside collaborator of 
a practical kind. It is al-Sijzī himself who suggests an interpretation along 
these lines. 

Near the end of the treatise, the author recapitulates the list of methods 
that he has just applied, and he indicates two principal methods. This is 
what he writes:  

Since an investigation of the nature of propositions (askhāl, singular shakl) 
and of their individual properties is always carried out in one of these two 
ways: either we bring to mind the necessity of their properties by consid-
ering a variety of species, [an act of] imagination that draws on sensation or 
on what is perceived by the senses; or we assume these properties and also 
the lemmas they make necessary, in succession, by geometrical necessity 
[…].34 

Al-Sijzī follows this conclusion with several examples.  
So for al-Sijzī the ars inveniendi essentially involves only two meth-

ods. All the special methods are grouped around the first method, and the 
second one is simply ‘analysis and synthesis’. Now it is exactly this dis-
tinction on the one hand, and the nature of the first method on the other 

 
34 See p. 619. 
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hand and, finally, this intimate relationship between the two of them, which 
characterise al-Sijzī’s conception and shows up the novelty of his contri-
bution.  

Moreover, we must note that the first of the two methods splits into 
two, in accordance with the two meanings of the term shakl. This word, 
which the translators of Greek mathematical writings35 chose to render as 
διάγραμμα, designates, as does the Greek, indiscriminately both the figure 
and the proposition. This double meaning is not too troublesome in causing 
ambiguity when the figure provides a translation of the proposition into 
graphic terms, in a static way (so to speak); in other words so long as 

 
35 Shakl was in fact the term the Arabic translators used to render διάγραμμα, when 

they met it, or, more frequently still, καταγραφή and θεώρημα. Thus, when Apollonius 
writes in Conics, I.53, ἐν τῷ μθ´ θεωρήματι, the Arabic translator writes fī shakl 49. 
Examples of this translation are too numerous to merit further discussion here.  

It remains that, in contexts like this, it has been possible for the same term 
θεώρημα to be rendered by the Arabic ṣūra (form). For example when Apollonius 
writes τοῦτο γὰρ δέδεικται ἐν τῷ ια´ θεωρήματι (Conics, I.52), the Arabic translator 
writes wa-qad tabayyana dhālika fī al-ṣūra 11 (this has been shown in the ṣūra 11); or 
again when he writes ταῦτα γὰρ ἐν τῷ ιβ´ θεωρήματι δέδεικται (Conics, I.54), what we 
read in the Arabic translation is kamā tabayyana fī al-ṣūra 12 (as was shown in the ṣūra 
12). The term ‘theorem’ has thus been rendered indifferently as shakl and as ṣūra. So in 
regard to terminology the situation is more complex than may at first appear. 

We may start by noting that there is some stability in Arabic geometrical 
vocabulary from about the mid ninth century onwards. This of course does not prevent 
a certain amount of innovation and a certain amount of adjustment. The terms shakl and 
ṣūra provide examples of adjustment. The first term, shakl, is stable, and retains its 
double sense in the geometrical lexicon. As for the term ṣūra, it keeps some links with 
its primary usage, whereas others are modified to apply to a geometrical drawing. Thus, 
in mathematical writings, ṣūra carries multiple meanings: 

1. The ‘form’ of an object, that is its essence; thus we speak of the form of a ratio, 
or of a number, and so on. 

2. The sense of a state of the proposition itself, for example universal or special. 
3. The sense of a case of the figure for a proposition which has several. 
4. The sense of a possible form of a geometrical object, for example the form of a 

triangle: isosceles, right-angled and so on. 
All these senses apply to propositions or geometrical objects, without any special 

reference to a figurative representation, that is to a drawing. 
5. Finally, there is the sense of ṣūra: form, as an image, and expressing the sense of 

a graphic representation. Thus we speak of ṣūrat shakl, the form of a figure, that is the 
drawing of a figure, or the figure as a representation. It seems, but this is conjectural, 
that after a time writers gave up using the term ṣūra to designate a theorem, but did so 
while retaining all its other senses. The result is that to the double meaning of shakl 
there is added the multiplicity of meanings of ṣūra, without any possibility of setting up 
an opposition between the two terms. The glossaries of the four previous volumes 
provide a sufficient number of occurrences of these meanings. 
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geometry remains essentially a study of figures. But everything becomes 
more complicated when we begin to transform figures to give variants of 
the figure, as is already happening in some branches of geometry in the 
time of al-Sijzī. The double significance then requires an explanation.36 Let 
us start with the first sense, that of ‘figure’. 

In this treatise, al-Sijzī recommends three times that we proceed by 
varying the figure: when we carry out a point-by-point transformation; 
when we vary one element of the figure, all the others remain fixed; 
finally, in the choice of an auxiliary construction. Now several elements 
are common to these different procedures. The purpose first of all: we are 
always looking to find, by means of transformation and variation, the 
invariant properties in the figure associated with the proposition, the prop-
erties that are its particular characteristics. Now these are, precisely, the 
invariant properties that are set out in the figure as a proposition. The 
second element also relates to purpose: variation and transformation are 
means to discovery insofar as they lead to these properties that do not 
change. It is here that the imagination intervenes, as a faculty of the soul 
capable of pulling out from among the multiplicity offered by the senses, 
among the variable properties of figures, those properties that do not 
change, the essences of things. The third common element is concerned 
with a particular role of the figure, this time as a representation, referred to 
a number of times by al-Sijzī, that of engaging the imagination, of helping 
it carry out its task when it is assessing the evidence of the senses. The 
fourth, no less important, is connected with the figure-proposition duality: 
there is no bi-univocal relationship. To one and the same proposition there 
may correspond a variety of figures; similarly to one single figure there 
may correspond a whole family of propositions. Al-Sijzī chose, moreover, 
to treat this last case at length. These new relationships between figure and 
proposition that al-Sijzī, as far as I know, was the first to point out, require 
that we think about a new area in the ars inveniendi: analysis of figures and 
of their relations to propositions. Now this is precisely what al-Sijzī seems 
to have initiated. 

As an example of the first method for the ars inveniendi, al-Sijzī does 
no more than refer back to one he has already considered: the equality, for 
any triangle, of the sum of its angles, a property grasped by the imagination 
on the basis of what is common to the senses. He also mentions another 
similar example. 

 
36 In this connection, see P. Crozet, ‘À propos des figures dans les manuscrits 

arabes de géométrie: l’exemple de Siǧzī’, in Y. Ibish (ed.), Editing Islamic Manuscripts 
on Science, Proceedings of the Fourth Conference of al-Furqān Islamic Heritage 
Foundation, 29th–30th November 1997, London, 1999, pp. 131–63, esp. pp. 140–3. 
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For the second method, that of analysis and synthesis in geometry, al-
Sijzī adds nothing of substance, but he emphasises the role of apprentice-
ship and of practice in strengthening the faculty for conceiving properties. 
He gives only several particularly simple examples to illustrate the proce-
dure. 
 

1. Let there be a circle in which two chords AB and CD cut one another 
at the point H. We wish to know the origin of the necessity of the equality 
AH · HB = CH · HD. Al-Sijzī begins by drawing CA and DB, and proves 
that the triangles HCA and HDB are similar; so we have CH

AH
=
BH

HD
, hence 

the result. But to show that the property is an invariant one, he begins again 
and draws another circle, EG, passing through H; as before we have that 
triangles CEH and DHG are similar, hence HE

HD
=
HC

HG
; hence the result. So 

the property does not depend on the choice of the chord, but on the simi-
larity of the triangles that are formed, and thus on the fact that the angles 
inscribed in the circle intercept the same arc. 

 
Fig. 25 

 
2. An arc of a circle is intercepted by an inscribed angle equal to the 

angle formed by the chord of that angle and the tangent to the circle at one 
end of that chord. Here again al-Sijzī takes his reader by the hand to show 
him how to find that the property does not vary. 

He draws the circle ABC with diameter AB, and BD the tangent at the 
point B. It is clear that AB̂D =  AĈB  because AĈB  intercepts a semicircle; 
so AĈB  = 1 right angle = AB̂D . Al-Sijzī then writes:  

we have to look for the variety of the species of that figure, and the necessity 
of their properties, by an investigation of their nature (p. 620). 
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Fig. 26 

 
He in fact proceeds by varying the angle B formed by the chord and the 

tangent, and proves that it is equal to any inscribed angle such as EX̂B  that 
also intercepts the arc EACB, ‘visually and geometrically’. 

Al-Sijzī concludes his treatise by returning to the didactic intentions he 
had stated so forcefully at the beginning of it, with an exercise in the way 
to carry out analysis, written for beginners. 
 
 
III. HISTORY OF THE TEXTS 
 
3.1. Book by Thābit ibn Qurra for Ibn Wahb on the Means of Arriving at 
Determining the Construction of Geometrical Problems 
 

Thābit ibn Qurra’s letter to Ibn Wahb appears in the list of his writings 
drawn up by Abū ‘Alī al-Muḥsin ibn Ibrāhīm al-Ṣābi’, and reproduced by 
al-Qifṭī, with the title Fī istikhrāj al-masā’il al-handasiyya (On the Deter-
mination of Geometrical Problems),37 it has come down to us under three 
different titles, the first of which is the closest to that given by al-Ṣābi’, and 
in five manuscripts.38 Thus, we have: 

1. Fī al-ta’attī li-istikhrāj ‘amal al-masā’il al-handasiyya (On the 
Means of Arriving at Determining the Construction of Geometrical Prob-

 
37 See Les mathématiques infinitésimales, vol. I, p. 145; al-Qifṭī, pp. 116–17. 
38 The multiple titles each of which, as we shall see, expresses one aspect of the 

letter, have been a cause of confusion for bibliographers. Some have believed we had 
three different texts by Thābit ibn Qurra and have catalogued them as such. Thus, 
F. Sezgin in his Geschichte des arabischen Schrifttums includes this same letter as 
numbers 4, 7 and 22, in the belief that he was dealing with three different treatises, 
pp. 268–70. 
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lems). This is the title of the letter in the copy in the hand of the tenth-
century mathematician al-Sijzī. This copy is part of the famous collection 
no. 2457 in the Bibliothèque nationale in Paris, fols 188v–191r, here called 
B. We have described this collection already.39 The point to remember here 
is merely that al-Sijzī checked his copy against his model, as he tells us 
himself in the colophon. 

2. Fī kayfa yanbaghī an yuslaka ilā nayl al-maṭlūb min al-ma‘ānī al-
handasiyya (How to Conduct Oneself so as to Obtain what one Requires 
among Geometrical Propositions). The same letter by Ibn Qurra has come 
down to us under this title in two manuscripts. The first belongs to the col-
lection Aya Sofya 4832, fols 1v–4r, in the Süleymaniye Library in Istanbul, 
here called A; the second is part of the collection 40, fols 155v–159v, here 
called C, of Dār al-Kutub in Cairo. These two manuscripts have also 
already been described.40 

3. Fī al-‘illa allatī lahā rattaba Uqlīdis ashkāl kitābihi dhalika al-
tartīb (On the Cause of Euclid’s Ordering of the Propositions in his Book 
according to this Order). The letter has come down to us, under this title, 
in two other manuscripts. The first belongs to the collection Aḥmadiyya 
16167, fols 86v–90v, in the Library of Tunis, here it is called T; the second 
is part of the famous collection Leiden, Or. 14, fols 380–388, here called L. 
We have described this collection and even discovered the models for 
twelve of the twenty-three treatises it comprises,41 that is the collection in 
Columbia University Library, Smith, Or. 45. So the only newcomer is the 
manuscript collection in Tunis. 

This collection of 90 folios – size 13 × 21.5 cm – each with 23 lines of 
about 13 words, in nasta‘līq – was copied before 971/1563, the date when 
it was bought by one of its owners. The copyist himself has not indicated 
either the date or the place of his copy. The collection comprises the fol-
lowing treatises: 

1. Commentary on Euclid’s Postulates by Ibn al-Haytham (Sharḥ 
muṣādarāt Uqlīdis), fols 1v–59v; folio 60r is blank. 

2. Additions by al-‘Abbās ibn Sa‘īd to Book Five of Euclid (Ziyādāt al-
‘Abbās ibn Sa‘īd fī al-maqāla al-khāmisa min Uqlīdis), fols 60v–61r. 

3. Remarks from the Commentary on Book Ten of the Work of Euclid, 
Composed by al-Ahwāzī (Kalimāt min sharḥ al-maqāla al-‘āshira min 
kitāb Uqlīdis), fols 61v–65r. 

 
39 See for instance Les Mathématiques infinitésimales, vol. I, pp. 147–8, 680; 

English trans. pp. 125, 465. 
40 Ibid., vol. I, pp. 147–9, 679; English trans. pp. 124–9, 464–5. 
41 Ibid., vol. III, pp. 532–4; English trans. pp. 506–8. 
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4. Commentary on the Introduction to Book Ten of Euclid by Abū 
Ja‘far Muḥammad ibn al-Ḥasan al-Khāzin (Tafsīr ṣadr al-maqāla al-
‘āshira min Uqlīdis li-Abī Ja‘far Muḥammad ibn al-Ḥasan al-Khāzin), fols 
65v–71r. 

5. Anonymous letter on the Fifth Postulate of Euclid, fols 71v–73r. 
6. Treatise by al-Fārisī who Makes Additions to al-Abharī’s Edition on 

the Famous Problem of the Book of Euclid (Maqāla li-al-Fārisī yuḍīfu ‘alā 
taḥrīr al-Abharī fī al-masā’il al-mashhūra min kitāb Uqlīdis), fols 73r–75r. 

7. Book by Abū Dāwud Sulaymān ibn ‘Iṣma on Binomials and Apo-
tomes in Book Ten of the Work by Euclid (Kitāb Abī Dāwud Sulaymān ibn 
‘Iṣma fī zawāt al-ismayn wa al-munfaṣilāt allatī [ms. alladhī] fī al-maqāla 
[ms. al-maqālāt] al-‘āshira min kitāb Uqlīdis), fols 76v–85v. 

8. A fragment, complementing the preceding book, fols 85v–86v. 
 

Now a detailed comparison of T with L allows us to show that treatises 
3, 4, 6, as well as the letter by Thābit, are respectively the sole models for 
treatises 19, 18, 20 and 21 of the Leiden collection, Or. 14. This important 
finding concerning the history of the text permits us to draw conclusions 
regarding 17 of the 26 treatises that make up L. We have already identified 
the single model transcribed by the copyist of L for twelve treatises.42 
Adding in these four extra treatises, we now know the models that were 
copied for 16 treatises. Further, the model for al-Ṭūsī’s edition of the last 
three books of Apollonius’ Conics, which is part of this collection, is also 
known. So we could have set aside the variants of L in establishing the text 
of Ibn Qurra’s letter; if we have noted them, it is because they provide evi-
dence for what we have just said, namely that T is the sole model for L for 
this treatise, as for the three others mentioned earlier. T and L have in 
common three omissions of a sentence and of twenty-three words, while L 
has eleven omissions of a word that are specific to it. 

If we now examine the relationships between the other manuscripts, we 
may note, among other results: 

• The copyist of A had two copies at his disposition. Thus, he writes in 
the colophon, fol. 4r: 

 قابلت ھذه المقالة بالنسخة التي كتبتھا منھا وبنسخة أخرى غيرھا وصححتھا بحسب ما كان
 فيھما.

 
So manuscript A is copied from two manuscripts A1 and A2. However, 

A is missing a sentence (kānat al-zāwiyatān al-bāqiyatān mutasāwatayn), 

 
42 Ibid., vol. III, p. 534. 



 THE ARS INVENIENDI: THĀBIT IBN QURRA AND AL-SIJZĪ 575 

fol. 2v. The copyist has indicated with a cross the place where this is 
missing, but has forgotten to transcribe the missing sentence. 

• The copyist of C – the famous Muṣṭafā Ṣidqī – writes in the colophon 
that he had transcribed the text from a copy in the hand of Avicenna: 
 

سينا.وقد استنسخ من نسخة كانت بخط الشيخ الرئيس حجة الحق أبي علي الحسين بن عبد الله بن   
 

We have discussed this relation of a somewhat legendary tale and 
shown that C and A have a common ancestor. In any case, for Ibn Qurra’s 
letter alone, they present twelve common omissions of a word, while C has 
two omissions of a word that are specific to it. As for the sentence omitted 
in A, Muṣṭafā Ṣidqī could easily have completed it, given his mathematical 
education. 

• Manuscript B in the hand of al-Sijzī contains five omissions of a 
word that are specific to it. 
 

Examining the variants – additions, errors, etc. – leads us to propose 
the following stemma: 

 
 
Ibn Qurra’s text has been edited from manuscript B alone by 

A.S. Saidan, in an edition we shall call S in the apparatus criticus; it has 
never been the subject of a translation or commentary. 
 
 
3.2. To Smooth the Paths for Determining Geometrical Propositions, by 
al-Sijzī 
 

Al-Sijzī’s treatise has come down to us in a single manuscript which 
belongs to the collection of Nabī Khān and Obaidur-Rahman Khan of 
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Lahore. This collection includes, among many other treatises by different 
mathematicians, six writings by al-Sijzī. All the treatises in this collection 
were copied in the Niẓāmiyya school in Mosul and in the school of 
Baghdad, between 554 and 557 of the Hegira (1159–62). As for the six 
texts by al-Sijzī, they were transcribed in Baghdad from the year 556 and 
in the course of the year 557. The book whose text is translated here 
appears before two short works by al-Sijzī: a letter to Naẓīf ibn Yumn, 
copied at the Niẓāmiyya school in Baghdad at the end of the month of 
Rabī‘ al-ākhir in the year 557 of the Hegira (bi-tārikh salkh shahr Rabī‘ al-
ākhir sanat sab‘ wa-khamsīn wa-khamsimi’at hijriya), that is in mid April 
1162; and the other one is on the two means and the trisection of an angle, 
transcribed in the same city and in the same school, at the beginning of 
Jumādā al-ūlā in the year five hundred and fifty-seven (bi-tārikh ghurrat 
Jumādā al-ūlā li-sanat sab‘ wa-khamsīn wa-khamsimi’at), that is at the end 
of April 1162. So it is very probable that the treatise whose text is 
translated here was transcribed at about that date, that is the end of 556-
beginning of 557, in the Niẓāmiyya school of Baghdad. This text covers 
folios 2–27 in nasta‘līq script; the figures are drawn carefully and the 
whole thing is done with care. There are neither additions nor glosses in the 
margins of the manuscript. The copyist wrote his name at the end of the 
other texts, but it remains illegible. 

The attribution of this treatise to al-Sijzī is not in doubt. The work in 
fact appears on both the lists of his writings that we possess: the first tran-
scribed by the copyist of the manuscript Chester Beatty 3652, fol. 2r, no. 
34, under the title Fī tashīl al-subul li-istikhrāj al-ashkāl al-handasiyya (To 
Smooth the Paths for Determining Geometrical Propositions); the second 
by the copyist of the manuscript from Lahore, fol. 371v, under the same 
title. Al-Sijzī himself cites it several times, as for example in his treatise 
On the Asymptotes to an Equilateral Hyperbola,43 or in his Reply to 
Geometrical Problems Raised by the People of Khurāsān (Jawāb al-Sijzī 
‘an masā’il handasiyya sa’ala ‘anhu Ahl Khurāsān), Chester Beatty 3652, 
fol. 57v. 

This text was published for the first time by A. S. Saidan in The Works 
of Ibrāhīm ibn Sinān, Kuwait, 1983, pp. 339–72. Our late friend, no doubt 
aware of the importance of this work by al-Sijzī, as of that of Thābit ibn 
Qurra, but in all probability pressed for time, may have wished to draw 
historians’ attention to these texts by getting them published, albeit in a 
form that is at best provisional (called S). It is this publication of al-Sijzī’s 

 
43 R. Rashed, ‘Al-Sijzī et Maïmonide: Commentaire mathématique et philoso-

phique de la proposition II–14 des Coniques d’Apollonius’, p. 288. 
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text that J. P. Hogendijk reproduced,44 while, however, adding some cor-
rections, the majority of which are due to comparing A. S. Saidan’s text 
with the only extant manuscript. This comparison, which was certainly 
necessary, would have been welcome had it not left unchanged not only 
most of the mistakes, but also the mutilations that the manuscript had 
undergone, and if the checking had not itself afforded an opportunity for 
new errors. The errors unfortunately remain excessively numerous and 
prevent a true understanding of al-Sijzī’s text. It is this publication (called 
H) which was translated into English, often in a free manner.45 
 
 
3.3. Letter of al-Sijzī to Ibn Yumn on the Construction of an Acute-
angled Triangle 
 

This text was edited from the autograph version by al-Sijzī, composed 
in the month of Ābān 339 of the era Yazdegerd,46 Bibliothèque nationale, 
Paris, no. 2457, fols 136v–137r, called B. We have also used another copy – 
Lahore, fols 28–30, called L – of this same text, although we knew this was 
not in any way necessary. 

J. P. Hogendijk has published an edition of this text that is comparable 
with the one he produced of the preceding treatise; in our apparatus criticus 
it will be called H. 

 
 
3.4. Two Propositions from the Ancients on the Property of Heights of an 
Equilateral Triangle: Ps-Archimedes, Aqāṭun, Menelaus 
 

The propositions of the ancients taken up by Ibn al-Haytham have 
come down to us in two versions, one attributed to Archimedes, translated 
by Thābit ibn Qurra (ms. Patna, Khuda Bakhsh 2519, fols 142v–143r);47 the 
other to a certain Aqāṭun (ms. Istanbul, Süleymaniye, Aya Sofya 4830, fols 

 
44 Al-Sijzī’s Treatise on Geometrical Problem Solving (Kitāb fī Tashīl al-Subul li-

Istikhrāj al-Ashkāl al-Handasiyya), translated and annotated by Jan P. Hogendijk. 
45 See the apparatus criticus in Les Mathématiques infinitésimales, vol. IV, and the 

review by P. Crozet in Isis, 90.1, 1999, pp. 110–11. 
46 The month persan of Ābān 339 of the era of Yazdegerd is between 20 October 

and 18 November 970 in our era. There are five Thursdays in that interval: the 20 and 
27 October and the 3, 10 and 17 November. Since ‘day’ can only refer to the 8th, 15th 
or 23rd day of this month, the date that is indicated can correspond to two days: 27 
October or 3 November 970. 

47 See the description of this manuscript p. 473. 
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91v–92r),48 as well as in a text by al-Sijzī with the title On the Properties of 
Perpendiculars Dropped from the Given Point to the Given Equilateral 
Triangle by the Method of Discussion (mss Dublin, Chester Beatty 3652, 
fol. 66v – called B; Istanbul, Reshit 1191, fols 124v–125r – called R).49 We 
have discussed50 the probable relations between these three texts, of which 
we give translations here. 

 
48 See p. 454, n. 8. 
49 See section 3.3. 
50 See pp. 453–4.  



 
 
 
 
 
 

TRANSLATED TEXTS 
 
 

1. Book of Abū al-Ḥasan Thābit ibn Qurra to Ibn Wahb on the Means of 
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In the name of God, the Compassionate the Merciful 
 
 
 

BOOK BY ABŪ AL-ḤASAN THĀBIT IBN QURRA TO IBN WAHB 
 

On the Means of Arriving at Determining the Construction of 
Geometrical Problems 

 
 
 
You have understood everything – Sire, may God give you long life 

and everlasting renown – when you have grasped what Euclid has truly 
done in composing the propositions of his work The Elements and of his 
statements, and in the ordering of them in many matters not classified 
according to their types1 and without each being connected with one that 
resembles it; and that his motive in doing this is that he needs to establish 
the proof of each of the statements and of each of the propositions, and the 
impossibility of establishing a proof, for many of them, without each being 
preceded by another which is not of its order and is out of position. To do 
this he had to bring forward things that should have been postponed and 
postpone things that should have been brought forward. You have then 
seen that this approach is necessary for anyone who wants to understand 
the contents of his book, when he studies it for the first time, that is to say 
in the state [of mind] he is in up to the point where he has understood, 
when he has become convinced by what this man says and sets out, and has 
acquired confidence in him through knowledge of the reliability of his 
proofs. 

If he gets to that point and learns this; if he then attains a second state, 
more expert than the previous one, and he needs to make use of what he 
has learned from him and employ it to find what he is trying to find in the 
different areas of this science and its problems, then he requires a different 
approach: as he wishes to find one of the propositions or another of the 
notions mentioned by the geometer,2 among those he wishes to determine 
and whose existence and construction he wishes to shed light on, he finds 
notions like those that are required by what he is looking for, ones he can 
grasp, gathered together in his soul, present in his understanding, at that 

 
1 Here we are translating the word jins as ‘type’. 
2 Lit.: the man of this art. 
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moment. Now this is what will happen if, in his thoughts and reflections, he 
investigates the notions required in this [particular] type among the types of 
propositions, or others, or those that necessarily follow from what is 
specific to this type or what includes it; thus he distinguishes them from the 
others and accordingly comes to understand them; then he examines them 
and turns his mind to them, and he takes from them what he needs for the 
notion he seeks. 

Since in this second state that you [Ibn Wahb] have mentioned we need 
to have recourse to this second approach, that you have described, in regard 
to the arrangement of notions and the manner in which they are established 
in the soul according to what is required by each of the types of things we 
seek, whereas3 in the first state what was needed was the opposite of this, 
you ordered me – may God give you glory – to bring this notion to mind 
and to draw attention to it in a text dedicated to it, to describe it; to attract 
the attention of anyone who is trying to determine something in areas of 
this science, still more, in any demonstrative science, on the way to arrive 
at it and on what he must establish in his soul and call to his mind, from 
among the principles and notions that are embedded in this science and 
thanks to which one can prepare the ground for discovery: perhaps all of 
them, perhaps those of them that are possible, as extensively as he can, in 
the knowledge that as he reaches further into the notions that are instru-
ments for reaching conclusions in what one seeks to find and to propose to 
attain what is sought, he will be better able to attain it; and you ordered me 
to describe by means of examples what method allows one to determine 
certain notions in geometry and to know them, [a method] to be a guide 
one imitates and a model one copies in other cases as providing a method 
of solution, it being given that there is no method that would deal with all 
of them one by one. I bowed to your command, may God support you. 

If we are concerned with one of the notions investigated in geometry or 
a problem we wish to solve, we need, first of all, to know that everything 
considered by geometers, what concerns them among the notions in regard 
to each type of proposition, and others they speak of, consists of three 
things: one is to describe one of the constructions that employ instruments, 
by means of which we learn how to shape one of the notions or to find it; 
the second is to construct a magnitude or a status for one of the notions, 
itself, with an unknown magnitude or status; and the third is peculiar to 
their nature or to the properties which define them and are their necessary 
concomitants or follow them or distinguish them, as for the theorems and 
the rules that are necessary for them. A description of one of the construc-
tions by which we know how to shape one of the notions or to find it, is for 

 
3 Lit.: in the same way as. 
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example the construction of an equilateral triangle or a square on a known 
straight line. Finding a magnitude or a status for one of the notions, itself, 
whose magnitude or status is unknown, is for example knowing the area of 
a triangle whose sides or heights are known, or determining a perfect num-
ber. To know what is peculiar to their nature or the properties which define 
them and are their necessary concomitants, or follow or distinguish them, 
as for theorems and the rules that are necessary for them, as for example 
knowing that, among rectilinear figures, the triangle is the only <figure> 
that can have [only] acute angles; that the angles of any triangle, if we take 
their sum, are equal to two right angles, and that circles that touch one 
another cannot have the same centre, any more than those that cut one 
another. 

So if one knows what we have set out on the classification of what is of 
concern to the geometer, one examines the thing one is investigating, 
whether it is a problem or one of the notions that is investigated, one asks 
oneself what kind of thing it is, with it one then addresses oneself to the 
kind of things it belongs with and one looks at the principles and lemmas 
that one expects in that kind of thing. In addition, one knows that the first 
of the three kinds we have set out necessarily requires the other two kinds 
because construction by the art [of geometry] must necessarily be preceded 
by knowledge of the natures of these things that are constructed. As for the 
two other kinds, they can almost, in themselves, do without the first kind. 
We know, also, that each of these three kinds which have been described 
includes things like its primary fundamentals and the principles by which it 
is known, as well as things determined from these first principles; and there 
are often, in addition, [other] principles that are taken into account.  

As for the first principles, they are taken as agreed without proof, and 
among them the definitions that indicate the essence of each of the figures, 
as well as what will be mentioned, such as the definition of the circle which 
indicates its essence, the definition of the triangle, and similar statements. 
Among others, the common notions, which can be called primary 
knowledge, such as: things equal to the same thing are equal. Among oth-
ers, the postulates as well as the constructions that are postulated and 
whose use we agree to, and other things, such as: it is possible to join any 
point to any point with a straight line, or with any centre and with any dis-
tance to construct a circle. 

If we do this, and if, for each thing we seek to determine, we direct our 
attention, as we have said, towards the one of the kinds that we have classi-
fied to which it belongs, and if the most significant element in what of this 
kind we are looking for, in this way we make the lemmas for the thing, 
then we must next do what I have mentioned: set out the lemmas and the 
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principles which are appropriate to the specific thing, [that is] in seeking it. 
We then seek to determine the thing starting from a problem or from a 
geometrical notion, and to distinguish these principles by separating them 
from the others. The way to achieve this is to assess the thing proposed for 
investigation: to what type it belongs among figures, and other things, what 
this type requires in general by way of rules and by way of theorems that 
are necessary for it, as well as for others, or which are appropriate to it, but 
not to the others, and which distinguish it; we call them to mind and we 
present them to our intellect. Next, we examine what is required by each of 
the conditions in the problem we seek to solve, [conditions] connected with 
this type [of problem], and each of the specific properties which we add to 
it; for any problem there is in fact one assumed thing which is sought, and 
certain conditions by which the [set of conditions in the] discussion is satis-
fied. Thus, if one of them cannot be employed, the problem will not be 
solved. So we have to use all the conditions for the problem, and what is 
made necessary by each condition, so as to specify it completely. If we 
obtain what we are looking for, so be it; if not, we take things the problem 
has caused us to arrive at as if they were the result we sought; we put them 
in the place of the first thing we sought, then in investigating them we fol-
low the same route that we mentioned [before]. We repeat this procedure, 
time after time, until we get to know the thing we wanted to know, if God 
wills it. 

For what I have written, I propose two or three examples, by which I 
prove what I have said, and to begin with I make the thing to be found an 
easy thing, so that our account shall not be a long one. 

First, we shall show how to construct a triangle in which one of the 
angles is double each of the two remaining angles. 

For what we are trying to do in this, we must direct our attention to the 
first of the three types we have described, which is one of constructions. 
But, as you must begin by knowing the status and nature of the thing con-
structed, as we have said, we must prepare our minds and organise within 
them the theorems and the rules that are demanded by the nature of the 
thing we seek and the type to which it belongs. The type of the thing pro-
posed for investigation is that of triangles. We first call to mind what this 
triangle makes absolutely necessary in regard to its sides, its angles and 
other things, such as: in any triangle, the sum of any two of its sides is 
greater than the third side; an angle exterior to it is greater than each of the 
interior <angles> opposite to it – but it is equal to the two if they are added 
together; <the sum> of any two of its angles is smaller than two right 
angles – but the sum of its three angles is equal to two right angles; any 
straight line that divides one of its angles and ends on the straight line that 
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subtends it divides it [the triangle] into two triangles whose bases lie in a 
straight line, and their analogues. But since in this proposition it is the 
angles that interest us, we must concentrate on them, as well as on what has 
been mentioned in connection with them. 

We next say that we require for the triangle that we seek, and have 
called to mind, all that is needed for everything of its type. Now this is not 
enough, [and] does not fulfill all the conditions of the problem, conditions 
without which the problem cannot be either discussed or made precise. So 
it remains for us to use the conditions it involves, namely that one of the 
angles of the triangle we seek is double each of the remaining angles. So 
we examine what that condition makes necessary. Thus, it makes necessary 
many things relating to comparing the angles each with the others and with 
their sum; among other things, that the sum of the three angles of the trian-
gle is double the large angle which we wish to be double the associated 
one; that half the large angle we have mentioned is equal to each of the two 
remaining angles; that the sum of its three angles is four times each of the 
remaining angles; that the two remaining angles are equal, it being given 
that each of them is half the large angle; that two sides of the triangle must 
be equal, and other similar things. Next we add and put together the things 
made necessary by this condition with the things made necessary by the 
type as a whole, that is to say the type of a triangle. We investigate which 
of these things is such that if we add it to the former, it will be of use to us 
in what we are aiming to do. We then find that more than one of them is 
such that if we add them each one to the others they give and produce what 
we wanted, or bring us nearer to discovering it. Among other things: when 
to the first statements about the triangle we add our statement that the sum 
of its angles is equal to two right angles to one of the statements made 
necessary by the condition, namely that the sum of the angles of the trian-
gle is equal to double its large angle, then we stop at these two statements 
and we know that its large angle is a right angle. So we know that in the 
triangle we need to construct a right angle; but since we want it to be equal 
to double each of the remaining angles, each of them is thus equal to half a 
right angle. Accordingly we know that if we can construct a right-angled 
triangle, in which each of the two remaining angles is half a right angle, 
then we have learned what we wanted to know.  

Now this is something that it is possible for us [to do], it being given 
that it has been shown in Euclid’s Elements how to construct a right angle, 
and that if from the two sides that enclose the right angle we cut off two 
equal straight lines, the two remaining angles will be equal and each of 
them will be half a right angle. We shall then have constructed the triangle 
we sought.  
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On the other hand if to the first statement that we mentioned – namely 
that the sum of the angles of a triangle is equal to two right angles – we add 
another of the statements required by the condition, namely that the sum of 
the angles of the triangle is four times each of the remaining angles,4 we 
stop and we conclude from these two statements that each of the two 
remaining angles is half a right angle. In consequence we must construct a 
triangle that includes two angles such that each is half a right angle. Now 
this is something that is possible for us [to do] starting from constructions 
set out by Euclid. It in fact remains for us to construct5 a right angle and 
divide it into two halves.  

So if we draw a straight line and erect two straight lines perpendicular 
to it at its two endpoints, if we divide each of the two angles that are 
formed into two halves with two straight lines which we extend to meet 
one another, we then obtain from them the triangle that we seek, by a 
construction different from the first one. 

If, alternatively, we take a third statement from among those required 
by the condition, namely that half of the large angle that we have men-
tioned is equal to each of the remaining angles, it is as if we were saying 
that the large angle is the angle ABC; if we divide it into two halves with 
the straight line BD, each of the two halves ABD and DBC is equal to each 
of the angles BAC and BCA. If we wish to add to the latter the statement: if 
we divide the angle of the triangle with a straight line and from that we 
form two triangles into which the triangle is divided, then their bases will 
lie in a straight line; from these two statements a consequence then follows. 
But if we examine what makes necessary this thing which has been 
required in the triangle, we find that it requires that the angle ADB, an exte-
rior angle of the triangle BDC, is equal to <the sum of> the two interior 
angles DBC and DCB. In the same way, the angle CDB is equal to the sum 
of the two angles DAB and ABD. This thing would thus have caused us to 
arrive at a thing such that, if we add it to the preceding one, it gives rise to 
a consequence. In fact, because of this and the preceding, it must be that 
the two angles ADB and CDB are equal. So on this account there will be 
two right angles. So if we draw AD in an arbitrary position and if we 
extend it to C and put CD equal to AD; if at the point D we erect a 
perpendicular DB and if we cut off from it a part equal to each of AD and 
CD, then we have what we wanted. But we have all these constructions at 
our disposal, and we can accordingly construct what we wanted with a 
third construction. We follow the same path for everything we wish to find.  

 

 
4 We are indeed dealing with angles for which each is half the third one. 
5 Lit.: find (najid). 
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Fig. 1 

 
In the same way, we present another example of something we wanted 

to find, namely: to show how to construct a triangle such that one of its 
angles is half of one of the two remaining angles and a third of the other 
angle. 

The method for finding this is similar to the preceding one. In fact, here 
what the triangle requires, absolutely, is the same thing that was required in 
what preceded this. As for the two conditions that we imposed here, we 
have required something different from what preceded this. The conditions 
have in fact required that the sum of the three angles is six times the first 
angle we mentioned, three times the second and double the third one. If we 
add each of these statements to the statement required by the type of every 
triangle, namely that the sum of its angles is equal to two right angles, it 
necessarily results and follows from these statements that the first angle is 
one third of a right angle, the second two thirds of a right angle and the 
third one is a right angle. So if we construct a triangle in which one of the 
angles is a right angle and the next is two thirds of a right angle or a third 
of a right angle, then we have what we wanted. The third, remaining, angle 
is in accordance with what we demanded, it being given that the three 
angles [taken together] are equal to two right angles. But the construction 
of a right angle is possible for us from what is described in the book by 
Euclid for drawing a perpendicular; and the construction of two thirds of a 
right angle is possible for us wherever we want, because it is equal to an 
angle of an equilateral triangle. So it remains for us to construct, at the two 
endpoints of a straight line, two angles in accordance with what we have 
mentioned; we extend their sides until they meet one another; we obtain the 
triangle that we wanted. 

In the same way, we propose a third example of what we wanted to 
find: namely to show how to construct a triangle such that one of its angles 
is three times each of the remaining angles. We follow a similar method; 
the lemmas and theorems which are required by the chosen type, which is 
the triangle, are those we mentioned before. In this problem, the condition 
itself requires something else, namely that the sum of the three angles is 

A
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five times each of the two remaining angles, and that it is also equal to one 
and two fifths times the large angle; and that each of the thirds of the large 
angle, if that is divided into three equal parts, is equal to each of the two 
remaining angles. If we add each of the first two statements to the state-
ment required by the type for every triangle, namely that the sum of its 
three angles is equal to two right angles, from this it results and is neces-
sarily true that each of the two small angles is two fifths of a right angle 
and that the remaining angle is a right angle plus a fifth. So we have: if on 
an arbitrary straight line we construct two angles of the magnitude we have 
mentioned, and if we extend their sides until they meet one another, the 
third angle remains in accordance with what we demanded; and we have 
constructed the triangle that we wanted. 

But that is possible for us if we can divide a right angle into five equal 
parts. We shall then have reduced the problem to another problem, we 
return to investigating it, as if it were our objective. 

 
Fig. 2 

 
In the same way, if we add the third statement required by the condi-

tion, namely that each of the thirds of the large angle, if this latter is 
divided into three equal parts, is equal to each of the two remaining angles 
of the triangle, it is as if we said that the large angle is the angle ABC, that 
the thirds of it are ABD, DBE and EBC and that each of these thirds is 
equal to each of the angles BAC and ACB. And we add to this what is 
required by the shape6 of the triangle as a whole, namely that it has been 
divided into three triangles whose bases lie in a straight line, which is AC. 
So it necessarily results that the bases of these triangles have been extended, 
and that thus each of the two angles BDE and BED is double each of the 
two angles ABD and CBE, which are equal to the angle DBE. And it is 
because of this that each of the two angles BDE and BED of the triangle 
DEB is double the angle CBE. So we have reduced the problem to another 
problem, we must return to investigating it, and it is to construct a triangle 
in which one of the angles is equal to double each of the two remaining 

 
6 The original Arabic word is khilqa which translators used for the Greek μορφή. 
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angles – were it not that Euclid has saved us the trouble and has shown the 
construction in Book IV of the work The Elements; and similarly what we 
have reduced this problem to by the preceding method; and it is easily 
determined from what is [said] in that place. 

What we have arrived at, thanks to these examples chosen by way of 
illustration, is sufficient for what we had in view, except that we have 
elected to add a notion to which we draw attention: it must not be allowed 
to escape notice that, for certain conditions that occur in problems, they can 
appear to be a single condition, whereas what they result in takes the place 
of two conditions; and similarly perhaps we think that the construction we 
have carried out includes a single condition for us, whereas two conditions 
are required in it and are involved in it. Example: what we have said in the 
first problem, that one of the angles of the triangle is double each of the 
two remaining angles; the result of this is two conditions. Similarly, in the 
construction of the second problem: if we construct a right angle and two 
thirds of a right angle on a straight line, and if we draw the sides of the two 
angles so that they meet one another, then we shall have constructed an 
angle of the triangle equal to a third of another angle of the triangle. That is 
one of the two conditions of the problem, but we did not carry out a 
construction [using] the other condition, namely that it should be equal to 
half of the other angle. But that condition is included in what we con-
structed, it being given that it necessarily results from it. So it is necessary 
to examine this and its homologues. 

 
The book by Thābit ibn Qurra on the means of arriving at determining 

geometrical problems is completed. 
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In the name of God, the Compassionate the Merciful 
May God give us His help 

 
 
 

THE BOOK BY AḤMAD IBN MUḤAMMAD IBN ‘ABD AL-JALĪL AL-SIJZĪ 
 

To Smooth the Paths for Determining Geometrical Propositions 
 
 
 
In this book of ours, we wish to list the theorems the knowledge and 

possession of which make it easier for the scholar to determine those 
geometrical constructions he wishes to determine, and to set out the meth-
ods and approaches which allow the scholar who employs them to improve 
his grasp of the ways of determining propositions.1 Some think there is not 
any means of knowing theorems in the course of determining them by 
repeated deductions, by practicing it, by learning it and by studying the 
fundamentals of geometry, if one does not have an innate natural power 
that allows one to grasp the deduction of propositions, because learning and 
practice do not provide what is needed. Now this is not so. Among man-
kind there are, indeed, some who are naturally gifted and have a good 
capacity for determining propositions, without much learning or having 
applied themselves to acquiring knowledge of these things; others are those 
who have applied themselves and acquire knowledge of the fundamentals 
and the methods, without being endowed with a good natural capacity. But 
when someone has an innate natural capacity, and applies himself to learn-
ing and one practices, then he is successful and distinguished. When, on the 
contrary, someone has not got that perfect power, but applies himself and 
learns, he can do exceptionally well thanks to his learning. As for someone 
who has the [natural] power and does not learn the fundamentals or prac-
tice doing geometrical constructions, he will not acquire any kind of profit 
without learning. If this is so, if anyone believes that geometrical deduction 
cannot be carried out except through an innate power, without learning, his 
belief is mistaken.  

 
1 The word is al-ashkāl (sing. al-shakl). Depending on the context, we translate it 

either as ‘figure’, or as ‘proposition’. See p. 569, n. 35. 
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What is required, first of all, by the beginner in this art, is to know the 
theorems which are set out order following the common notions, even if 
that is part of what he is aiming for, that is to say the propositions he seeks 
to deduce; our objective in this is indeed [finding] methods such that the 
path leading to them starts out from the theorems and not only from the 
common notions that precede the theorems. One may indeed speak at great 
length about these common notions, and Euclid has spared us this in his 
book the Elements, thanks to the theorems that he introduced, [and] that we 
have mentioned.  

As for the theorems preliminary to the objectives,2 it is difficult to 
separate them out, because they form part of those we describe as lemmas 
and necessary consequences, because of the fact that in geometry parts are 
interconnected one with another: the first of them are lemmas for the later 
ones, one after the other, as if they were linked to those that follow them up 
to a certain limit. Now here we are dealing with something equivocal; how-
ever we summarise what there is to say in an adequate way, following what 
Euclid set out in the Elements. If someone says: if this is so, how is it possi-
ble to obtain the theorems, while the question of deducing propositions has 
no end to it? Or: why does one not limit oneself to the common notions? I 
tell him that Euclid applied himself to obtaining these propositions, in a 
balanced way, because if he had limited himself to the common notions, it 
would have been difficult for the scholar to proceed to deduction starting 
from the common notions, without lemmas among the geometrical theo-
rems such as those Euclid has put in order after the common notions. Nor 
did he seek to make them especially numerous. Anyone whose objective is 
[to acquire] this art must obtain every one of the theorems Euclid produces 
in his book The Elements, because there is a considerable distinction 
between the thing and acquiring the thing; and he must get clear in his 
mind the types of the theorems and their properties3 in a way that is certain, 
so that, if he needs to seek for their properties, he will be equipped to find 
them, and if there is anything he needs to deduce, he will need to investi-
gate and to use his imagination to see the lemmas and the theorems which 
belong to the same type or to a type that is common to them all. 

Example: If we want to determine a figure of the type of the triangle, 
we shall have to think of all the properties of triangles, the theorems men-
tioned by Euclid and what necessarily follows for the properties of 
triangles, in regard to angles, arcs, sides, parallel straight lines, so as to 

 
2 That is, the propositions we seek. 
3 Throughout, we are concerned with specific properties. 
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make that easy for us4 and for us to be ready for determining them. Indeed, 
among figures, some have a property or properties in common, some have 
none in common, for some this community [of properties] is closer and for 
others it is more distant, depending on their degree of similarity, on their 
proportionality and on their homogeneity. 

If we are seeking to determine one of the propositions by means of a 
lemma – by ‘lemma’ we mean the proposition which precedes it and which 
is the starting point for determining it – and if it is difficult for us to deter-
mine it by means of this lemma, then we must try to do it with the help of 
lemmas associated with this lemma, assuming what we are looking for by 
means of this lemma is true. From this assertion it necessarily follows that 
every proposition determined by starting from one of the lemmas can be 
determined, in the way we have mentioned, starting from the lemmas 
associated with it or from some of them, according to the degree of 
correspondence [with the lemma or lemmas]. Among the properties of the 
propositions, there are ones it would be easy to determine by means of 
many lemmas, different ones, and by proceeding in many ways; some one 
can determine by means of a single lemma; ones that have no lemma, even 
if the truth of the proposition is imagined and defined as in accordance with 
nature. This is a necessary result of the closeness of the correspondence 
between the properties of the lemmas – or of their distance from them – in 
regard to the properties of the propositions. 

It is possible, in the same way, that the propositions have lemmas, and 
that their lemmas themselves also have lemmas and that one can determine 
these propositions starting from the lemmas of the lemmas. This property 
too results from what the propositions have in common, which we have 
mentioned. It is possible, again, that it is difficult to deduce the proposi-
tions – given that they require one to deduce successive lemmas – starting 
from a theorem or theorems, for which we shall later give some examples, 
God willing. Perhaps they need numerous theorems and numerous lemmas 
which are not successive, but composite, as we shall also mention, God 
willing. Perhaps there will occur to the scholar a method thanks to which it 
will be easy for him to determine many difficult propositions, [a method] 
which might be the transformation that we shall explain and of which we 
shall give examples, God willing.  

Another method will be easy for the scholar if he follows it: he assu-
mes the objective he has in view as if it had been constructed, if what is 
sought is a construction; or established, if he is seeking a property. He then 
analyses it in successive lemmas or composite lemmas, until he arrives at 

 
4 Lit.: him. 
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lemmas [already] established as true or false. If he arrives at lemmas that 
are true, it necessarily follows that he will find what he seeks; if he arrives 
at lemmas that are false, it necessarily follows that he will not find what he 
seeks. We call this method ‘analysis by inversion’ (al-taḥlīl bi-al-‘aks).  

This method is one of those most commonly used, compared with the 
other methods. We shall give an example of this later, God willing.  

Synthesis (tarkīb) is the inverse of analysis; synthesis in fact consists of 
employing the method leading to the result through the lemmas, whereas 
analysis consists of employing a method that will lead to the lemmas which 
produce what one seeks. 

It is a fact of geometry that, through it, the unknown becomes some-
thing either constructed or becomes known. From then on one has either 
constructions or properties. So the scholar must begin by thinking deeply 
about the question and the things that are sought. In fact, either the question 
is possible in itself and in accordance with nature but is not [possible] for 
us; or it is impossible for us to seek to decide it, from the lack of lemmas, 
as for the quadrature of the circle; or the responses to it are indeterminate 
and the examples for it innumerable – indeterminate things, that is to say 
ones lacking complete determinacy which would separate them out from 
other things; or something one can deduce, but nevertheless only through 
many lemmas, such as the final propositions of the book of the Conics, 
which are not easy without the lemmas that Apollonius introduced, and like 
the final propositions of the book On Circles;5 or something for which one 
needs intellectual skill, because one has to imagine, at the same instant, 
many figures as constructed, in addition to theorems and lemmas; in gen-
eral, that takes place when we are seeking properties. The man who carries 
out research in this way is called Archimedes in the language of the Greeks, 
we are referring to the Geometer. If his purpose is to deduce one of the 
propositions, the scholar must make the beginning of thought is the end of 
action and conversely, and inversely,6 as we have mentioned earlier, and 

 
5 This clearly refers to the Tangent Circles of Archimedes cited by al-Nadīm as 

among the writings of Archimedes (Kitāb al-Fihrist, p. 326); there is a non-critical 
edition in Rasā’il Ibn Qurra, Osmania Oriental Publications Bureau, Hyderabad, 1947. 

6 This expression (bi-al-‘aks), obviously an idiomatic one, seems to draw its 
original inspiration from Aristotle. In fact, in the production of a phenomena Aristotle 
distinguishes between νόησις (fikr), which concerns thinking about necessary condi-
tions, and ποίησις (‘amal), which refers to carrying out the construction (Metaphysics, 
Z, 7, 1032 b 15–30; The Motion of Animals, 7, 701 to 31). Al-Sijzī uses this expression 
to describe analysis and synthesis; which puts a considerable distance between him and 
the Aristotelian inspiration. Later, al-Samaw’al returns to this same expression in the 
sense in which it is used by al-Sijzī (see Al-Bāhir en algèbre d’As-Samaw’al, ed. 
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that by giving oneself the thing that is sought at the start of the procedure 
and by drawing out a necessary result from it, starting from the lemmas 
through which it has been analysed. 

Among the ancient geometers, some had recourse to subtle ingenious 
procedures, when it was difficult for them to deduce what they sought, such 
as the one whose objects of research were related to proportion, and in 
investigating them he made use of numbers and multiplication; or the one 
whose object of research was the area of a figure or equality, and for it he 
used a drawing on silk or paper, or weighing; he uses other ingenious 
procedures which are similar to these. Such are the methods of discovery in 
this art. We shall describe them one by one, so that the scholar may grasp 
them in his mind and gain possession of them by the will of God the All-
High and the goodness shown in His help. 

The first one is skill, thought, and the act of calling to mind the condi-
tions that have to be set up. 

The second is to acquire the theorems and the lemmas in a comprehen-
sive way. 

The third is to persist in using their7 methods in a comprehensive way, 
correctly, so as not to rely only on the theorems, the lemmas, their cons-
tructions and their ordering, which we have mentioned, but to combine 
with them skill, intuition and ingenious procedures.8 The nub of this art is 
in fact to do with the nature of the ingenious procedures and not only with 
the mind, but also the natural disposition of those who work, become prac-
ticed, become ingenious. 

The fourth is to know what they9 have in common, their differences 
and their properties. In fact, the properties, their resemblance and their 
opposition, are, according to this theory, different from listing the theorems 
and the lemmas. 

The fifth is the use of transformation (naql). 
The sixth is the use of analysis. 
The seventh is the use of ingenious procedures (ḥiyal), as they were 

used by Hero. 

                                         
S. Ahmad and R. Rashed, Damascus, 1972, p. 73 of the Arabic text). It is not as yet 
known whether this same expression had been used by any of the commentators on 
Aristotle. 

7 That is of the theorems and the lemmas. 
8 This term is used to describe the use of mechanical devices. See al-Fārābī, Iḥsā’ 

al-‛ulūm, ed. ‘Uthmān Amīn, Cairo, 1968. 
9 See n. 7. 
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Given that we have completed our account of these things, and we have 
set them out freely, let us now come to some examples for each of them, so 
that the scholar may grasp their substance. In fact, in this art we speak in 
one of these two ways: one is to use words freely, in the way of fantasy and 
imagination (takhayyul); the second is to set things out in full, in the way of 
exhibiting and presenting examples, so that one experiences them and 
grasps them perfectly. 

But since in this art one speaks only in these two ways, and we have 
finished [what we wanted to do] in one of them, and that in a general and 
sketchy way, we must now move on to the second style, the one that con-
sists of exhibiting things, of transmitting items of knowledge, of presenting 
examples in a comprehensive manner. It is God the All-High who aids us 
in the search for the truth and guides us on the path of rectitude. 

 
 

Examples 
 
Question regarding the construction of a figure: How to find two 

straight lines proportional to two given straight lines one of which is a tan-
gent to a given circle and the other meets the circle and is such that, if it is 
drawn inside the circle, it passes through its centre? 

We suppose, by analysis, that the figure has been constructed so that 
we are looking for its lemmas. Example: we suppose the ratio is the ratio of 
A to B, and the circle is the circle CD, and the two straight lines GE and 
GC are in the ratio of A to B – these are those that we seek; as if the figure 
were constructed and found and as if we had its construction from what we 
had set out, namely that if we draw GC in the circle to D, CD will be a 
diameter of this latter. We next seek to know from what construction and 
from what lemma we have found the construction for it. 

 
Fig. 1 
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Since the point G and the straight lines GC, GE and the position of the 
contact with the circle DC at the point E, are all unknown to us, and since 
the magnitude10 of the angle at G is equally unknown, thus there will be a 
difficulty when it comes to determining the figure. This is the intuition 
(ḥads) that I mentioned earlier in regard to knowing the degree of difficulty 
of the problem: in fact if the figure includes many unknowns, it will be 
difficult to find it starting out from things that are known, particularly if it 
appears in a form in which no relationship can be set up between its figures, 
as we have mentioned. In this figure, there is no accessible relation 
between the straight lines GC and GE and between the circumference of 
the circle, nor [is there one] between the angle G and the arc CE. Next we 
use intuition and also thought, then we proceed towards constructing it by 
means of transformation (naql), from what we have mentioned: it is easier 
to determine difficult figures by means of the latter. 

We say: how to set out two straight lines GC and GE in a form such 
that if we draw a circle, it will have GE as a tangent and will meet GC? 
That will be possible only if we make the angle G and if we know it.11 So it 
is necessary for us to seek to know the angle G. Now knowledge of it will 
not be accessible to us except by seeking another thing knowledge of which 
is of the same type: we are dealing with angles. How should we try to find 
that, starting from putting together the straight lines GC and GE, or GE and 
GH, or GE and GD? Because that is not possible for us in this figure start-
ing from combining other straight lines.12 It is here that intuition and 
thought come in. If we join E to C, then perhaps it will be difficult for us to 
find that, and perhaps we cannot get it by employing this method, because 
the angles formed there, in that figure, are also unknown from these lem-
mas. We join E to H; it is here that among the three angles we find the 
known angle E. Next we must look for the shape of the triangle GEH by 
combining straight lines and angles; we proceed to a second investigation, 
once this latter [i.e. angle E] is found. If we find what we have just been 
seeking, then what we were seeking will be established for us, that is to say 
that the shape of the triangle GEH is identified as that of a right-angled 
triangle, such that the ratio of one of its sides to the hypotenuse minus the 
remaining side is equal to a given ratio. Our original question is thus 
reduced to this question. 

The method we have followed now leads to what the question requires. 
As it has become our custom to do, we suppose that the triangle is con-

 
10 Lit.: convexity, curve (ḥāl inḥidāb). 
11 See commentary, pp. 530–1. 
12 Lit.: of another straight line. 
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structed; it is the right-angled triangle IKM, whose right angle is the angle 
K. But NM is equal to KM, so the ratio of IN to IK is equal to the ratio of B 
to A. It is then here that one employs skill and thought; because the more 
primitive what we are looking for, [the more] we must employ thought and 
intuition and not learning. We need to find out how to take IK to be such 
that the ratio of IK to IN is equal to the ratio of A to B. Let us draw KM of 
indefinite length, then, in our imagination, let us draw IL; if you extend it 
to [meet] the straight line KM, the difference between the movable straight 
line IL and what reaches as far as the straight line KM is equal to the 
straight line which lies between the point K and the point of intersection 
with the straight line KM;13 in consequence, we have here a search for two 
unknowns. 

 
Fig. 2 

 
We draw a circle with centre I and distance IL, using the fact that we 

have imagined the straight line IL as movable – [rotating] about the point I 
– so as to establish that, in the course of the imagined motion, L, the end-
point of the straight line IL, does not fail to fall on the circumference of the 
circle. But the basic shape of the triangle is placed before us so that we per-
ceive the figure correctly, by seeing it, at the moment of construction. We 
then look for the centre of a circle, <a centre> that lies on both the straight 
lines IM and KM. It is here that in consequence one uses intuition and 
thought in a correct way, but that will not be possible either, unless by 
means of a supplementary construction. We imagine that construction: 

How to draw IN to S in a shape in which the straight line KM divides it 
into two halves and with the condition that the whole of NS is double KM. 
The problem reduces to another figure which is the following one. 

 
13 See commentary, pp. 531–2. 
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Fig. 3 

 
Next, here we employ reflection; as usual we think of the objective as 

achieved, and that by supposing INS satisfies the condition that NS is dou-
ble KM and NM is equal to KM. With centre M and distance MK we draw 
the circle KS – it is clear that IK is a tangent to the circle – so as to employ 
intuition and thought. Once this is done, we must look for the property of 
this figure starting from the fact that we have a tangency, [a subject] first 
treated by Euclid in the Elements. The most immediate property of this 
figure is that the power of IK is equal to IS by IN. In consequence, we have 
found this construction provides help in starting out from this property, and 
that in making NS a straight line on the extension of IN such that the power 
of IK is equal to IS by IN. If we do that, then our construction will be even 
easier; in fact, we have found the straight lines IN, IK and IS. Consequently 
it remains for us to find the shape of IS according to how KM divides NS 
into two halves. We first divide NS into two halves in M and, in imagina-
tion, we rotate IS about the point I, then KM cuts NS into two halves; which 
is easy by means of construction, from the fact that with centre I and dis-
tance IM we draw a circle that KM cuts at the point M. We draw IMS and 
we cause SKN to rotate; then we have constructed this figure as we wanted 
it. We next transform it into the given circle using similarity and the ratio, 
and we have proved it. This is what we wanted to prove. 

Since the exercise of intelligence in deducing properties is more 
satisfying than constructions, accordingly we give an example of looking 
for properties of figures. We suppose [we have] a triangle ABC and we 
look for the property of its angles, namely: the sum of the three angles is 
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equal to the sum14 of the angles of a given triangle, before it is known that 
the sum is equal to two right angles.  

The method for our research in regard to this first objective is to sup-
pose that one of the angles remains as it is and to make the sides round it 
vary so that the sum of the two remaining angles is greater or smaller than 
that of the first two or is equal to their sum. 

We choose that the angle A shall remain as it is, unlike the other angles. 
But, it being given that, if we take two of the angles of a triangle given to 
be equal to two angles of another given triangle, each to its homologue, it 
necessarily follows that the remaining angle is equal to the other remaining 
angle, and thus we do not obtain what we wanted to know. 

We extend AC to D and we join BD, then the angle ADB will be 
smaller than the angle ACB. We next examine the two angles ABC and 
ABD, so the angle ABD will be greater than the angle ABC. We repeat this 
process once more, we extend AD to E and we join BE. The angle E will be 
smaller than the angle ADB and the angle ABE will be greater than the 
angle ABD.  

 
Fig. 4 

 
We repeat this process; then the angles that lie on the side AC continue 

to decrease with respect to the one which was there at first, and the angles 
on the side of the straight line AB continue to increase at the point B with 
respect to the one which was there at first. However, we now need to exam-
ine whether their increase and their decrease are coherent in the natural 
order of things, that is to say compensate one another: for what is added on 
one side, one takes away something equal from the other. If we find an 
order as in this example, we shall have found a property for triangles, abso-
lutely:15 that is to say that the sum of their three angles is the same. In what 

 
14 The word ‘sum’ has sometimes been added, to conform with English usage. 
15 Lit.: absolute triangles (al-muthallathāt al-muṭlaqa). That is, triangles as such. 
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way do we look for this equality? First of all, as is our custom,16 we take it 
that the sum of the two angles ABC and ACB is equal to the sum of the two 
angles ABD and ADB, because we have required this step at the beginning 
of this. If this is as we have assumed, it necessarily follows that the two 
angles CBD and CDB have a sum equal to the angle ACB, and this because, 
if this is so, the sum of the two angles ADB and CBD, to which one adds 
the angle ABC, is equal to the sum of the angles CBD and CDB, to which 
one adds the angle ABC.  

In consequence we have what we were looking for here. So if we fol-
low our procedures correctly and obtain a true result, something that is not 
impossible, then what we proposed was true. But if what follows is absurd 
and impossible, then it necessarily follows that the sum of the angles of the 
triangle ABC is not equal to the sum of the angles of the triangle ABD, nor 
to the sum of the angles of any other triangle except one that is similar to it; 
we should then need a construction more appropriate to our objective, that 
is to say much more closely related to it, or which is of a type which is 
associated with it. 

 
Fig. 5 

 
We draw DE parallel to BC and we join AE and AD so that the two 

triangles are similar and equal angles are formed, so that one can subtract 
them one from another. There necessarily follows for us a result that is 
either true or false, because we have first of all supposed it to be true. The 
angle BDE is equal to the angle DBC and the sum of the angles EDB and 
BDC is equal to the angle EDC. Consequently, the sum of the angles BDC 
and DBC is equal to the angle BCA. So what we were looking for neces-
sarily follows. But we are investigating the equality of the sum of the 
angles of the triangle ABC to the sum of the angles of the triangle ABD. 
Consequently, we have found a property of the angles of a triangle, better, 

 
16 That is, in analysis. 

A

BC

D E



 APPENDIX: AL-SIJZĪ 602 

two properties, because at the end of our research we have found that if we 
extend one of the sides of the triangle, then an exterior angle is formed 
equal to the sum of the two interior angles which are opposite it in the 
triangle. 

Now we are looking for another property of the angles; that is to say 
that after having proved that the sum of the angles of any triangle is equal 
to the sum of the angles of any other triangle, we are looking for the size of 
the sum of these angles. For this research we need a measure by which to 
measure these angles and this measure must be of their type, that is to say 
the right angle. We must take a triangle and make one of its angles a right 
angle, because if we make two of its angles right angles, our construction 
will not form a triangle, but the two sides will be parallel and will not meet 
one another; while a triangle is formed only by the meeting of its three 
sides. As a consequence, we must suppose the two sides enclosing the right 
angle to be equal. We suppose we have a triangle ABC, right-angled and 
isosceles, its right angle is the angle A; consequently we employ a parallel 
straight line because it, more than any other, resembles what is appropriate 
in this place. From the point B we draw the straight line BD parallel to AC, 
an angle is then formed, we are looking for the properties it has. We then 
find the angle DBC is equal to the angle BCA; but we have supposed that 
the angle BCA is equal to the angle ABC, so the angles ABC and DBC are 
equal. But their sum is an angle equal to the angle BAC; consequently it 
follows that the sum of the three angles of the triangle ABC is equal to two 
right angles. 

 
Fig. 6 

 
But we have found that property in a specified triangle, that is to say 

one in which one of the angles is a right angle and the two sides that 
enclose it are equal. Now [the sum of] the angles of a specified triangle, 
and that of the angles of a triangle as such,17 are equal – as we have men-

 
17 Lit.: absolute triangles. 
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tioned. It appears clearly to us, in consequence, that the sum of the three 
angles of any triangle is equal to two right angle. This is what we wanted to 
explain. 

 
This is one of the methods for looking for properties. So you must edu-

cate your understanding and your mind in this art. In fact, in this process 
which is the deduction of propositions, educating the understanding and 
refining the mind is more useful than reading the books on geometry pre-
scribed by the ancients, whose purpose in doing that was to give the 
reading of geometry precedence over all the books on philosophy of 
mathematics, as well as to educate the mind. 

 
Let us take another example in connection with another question so 

that someone who is diligent may exercise himself in this art and see open-
ing up what was enclosed in this question: How to divide a given triangle 
into three parts in a given ratio?18 

Let us suppose we have the triangle ABC and the ratios of D, E and G; 
the shape of the division must be produced by three other straight lines 
which meet one another in the middle19 of the triangle. 

Let us suppose the triangle has been divided as we wished, that is to 
say into the triangles ABH, ACH, BCH; and let the ratio of the triangle ABH 
to the triangle ACH be equal to the ratio of D to E and the ratio of the trian-
gle ACH to the triangle BCH be equal to the ratio of E to G. 

 
Fig. 720 

 

 
18 See mathematical commentary, Section 3.3, pp. 534–7. 
19 That is to say, inside it. 
20 In the figure in the manuscript we have K in place of L, which is different from 

what we find in the body of the text. 
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Next we think the matter over to look for a construction that is useful 
for this question. We extend BH to I so as to show that the ratio of the 
triangle ABH to the triangle BCH is equal to the ratio of AI to CI. If we 
divide the side AC in the ratio of D to G, then the division into the two 
triangles will be along the common straight line BI; this is necessary. We 
divide AC in I in the ratio of D to G and we join BI. It is necessary that the 
point of division lies on the straight line BI and that the angle formed from 
the triangle which is on the side of the straight line AC lies on the straight 
line BI. So we need to construct a triangle starting from the side AC and 
two other straight lines drawn from the points A and C and an angle 
<whose vertex> lies on the straight line BI still with the ratio to one of the 
two other remaining triangles equal to one of the ratios of E to D or of E to 
G.  

The best of the constructions is the first construction, because its proce-
dure is true: We do with the side BC what we did with the side AC by 
dividing the side BC, at the point L, in the ratio of D to E. Let us join AL; it 
is clear that the ratio of the triangle AHB to the triangle AHC is equal to the 
ratio of D to E.  

But we have proved that the ratio of the two triangles whose sides are 
drawn from the points A and C, and which meet one another on the straight 
line BI, is equal to the ratio of the triangles ABI and BIC. Consequently, the 
three triangles are constructed in the triangle ABC in a given ratio. This is 
what we wanted to prove. 

 
Another method: We suppose the three triangles have been constructed 

and we extend BH to I. We must attempt to find a triangle AHB; all the 
same, we imagine it has been constructed, as is our custom, for determining 
figures by the method of analysis. We reflect on it in mathematical terms 
and we look for a method whose character is close to that of the first one, 
that is if we divide BI at the point H so that the ratio of the triangle ABH to 
the triangle AHI will be known and the triangle ABH will be known. But 
the ratio of the triangle AHI to the triangle HIC is known because we know 
the ratio of AI to IC.  

Let us consider the two triangles AIH and AHB, both of them, individu-
ally, if we can know the ratios; 21 by composition of some of them,22 the 
two triangles will be divided according to the known ratio, once we know 

 
21 We are considering the ratios of AIH to AHC and of AHC to ABH, whose 

product is the ratio of AIH to ABH. 
22 The ratio of HIC to AIH, which is known; composition gives the ratio of AHC to 

AIH. 



 DETERMINING GEOMETRICAL PROPOSITIONS 605 

that the ratio of two arbitrary triangles, positioned as the two triangles ABH 
and CBH are [positioned], is known to us. We are looking for this method; 
shall we find it or not? If the ratio of BH to HI is known to us and if the 
ratio of AI to IC is known, once this triangle23 has been constructed, the 
ratio of the triangle HCA to the triangle AHB24 is known, which is the 
objective. 

Now the triangle has been divided in a ratio we did not intend, we need 
to divide one of the straight lines in proportion into the same parts as those 
into which the two triangles AHI and HIC were divided. We divide E into 
two parts such that the ratio of one to the other is equal to the ratio of D to 
G and we put the ratio of BH to HI equal to the ratio of D to one of the two 
parts of E. We join AH and CH. The ratio of the triangle ABH to the 
triangle AHI is equal to the ratio of D to one of the parts of E, and the ratio 
of the triangle AHI to the triangle HIC is equal to the ratio of one of the 
parts of E to the remaining part. So the ratio of the triangle ABH to the 
triangle AHC is equal to the ratio of D to E. Now we have shown that the 
ratio of the triangle ABH to the remaining triangle BCH is equal to the ratio 
of D to G. This is what we wanted to prove. 

 
Another method for constructing this figure is the following: We divide 

the side AB in the ratio of D, E and G <at the points> H and I. We join the 
straight lines CH and CI. It is clear that each of the triangles we seek is 
equal to each of the triangles <obtained>. 

 
Fig. 8 

 

 
23 This is triangle AHB. 
24 We have HCA
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This method is foreshadowed in the first approach; we next think this 
over and search for the point at which the sides of the triangles equal to 
these constructed triangles meet one another. We draw IK parallel to AC 
because we know that any triangle equal to the triangle AIC, with base AC, 
meets the straight line parallel to AC. In the same way, we draw HK paral-
lel to BC for the reason we have already mentioned; so they meet one 
another in K. We join AK, BK and CK and we consider that the triangle is 
divided as we wanted. It is clear how to proceed by these methods, even if 
we do not explain them completely. 

There is another method for this figure, however it reduces to the two 
methods that we have mentioned. Accordingly we have put it aside and 
have decided not to describe it. 

 
As an example of what we have said: if there is a lemma or a theorem 

among the lemmas and the theorems, and if this lemma or this theorem has 
a lemma, then this lemma also has a lemma, then one can prove the lemma 
or the theorem starting from the lemma of its lemma; we suppose we have 
a circle AB with centre the point D; on the arc BAC we put an angle BAC; 
we join BD and CD. I say that the angle BDC is double the angle BAC. 

Euclid proves this using the property of the exterior angle of a triangle 
in which one extends one of the sides; it is proposition thirty-two of the 
first book of his work the Elements. But propositions twenty-nine and 
thirty-one are two lemmas for this proposition. So we must check to see 
whether it can be established starting from these two, from one of the two, 
or not. 

 
Fig. 9 

 
Through the point D we cause to pass a straight line parallel to AB, 

which is ED, and another straight line parallel to AC, which is DG; we 
extend AD to H. This is to use proposition thirty-one which is a lemma to 
its lemma. But the exterior angle EDH is equal to the interior angle BAD 
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and the angle EDB is equal to the angle DBA, which is alternate to it. Now 
the angle DBA is equal to the angle BAD, because the sides are equal. Now 
the sides being equal which appears in this figure does not derive from the 
lemma, it is a property of the figure that it imposes on this proposition.25 So 
let us bear this meaning in mind.  

Consequently, each of the angles BDE and EDH is equal to the angle 
BAD, and the angle BDH is double the angle BAD. It is also clear, for the 
same reason, that the angle HDC is double the angle DAC. Consequently, 
the whole angle BDC is double the whole angle BAC. 

This is to use proposition twenty-nine. So we have used the lemmas of 
their lemmas; which has shown it is true. This is what we wanted to prove. 

 
We give examples to illustrate how propositions contribute to one 

another, with the help of propositions built up by starting from the division 
of a straight line in mean and extreme ratio.26 In fact, propositions built up 
from that commonly involve [the number] five. The construction of the 
regular pentagon in fact involves the division of a straight line in mean and 
extreme ratio, starting from composition27 of the semidiameter and the side 
of the decagon which has a ratio to the side of the pentagon, because it is 
the chord of half its arc; this gives a straight line divided in mean and 
extreme ratio. Of the two chords in the circle circumscribed about the 
pentagon, that is to say the chords drawn from angles of the pentagon 
inscribed in the circle, one [of these chords] divides the other in mean and 
extreme ratio. For any straight line is divided into two parts in mean and 
extreme ratio if, when we add to its greater part half of the whole straight 
line, then the square of the sum is five times the square of half the straight 
line. If we divide a straight line into two parts in this ratio and if to the 
greater part we add double the smaller part, then the square of the whole 
straight line is five times the square of the first part. If we divide a straight 
line in mean and extreme ratio and if to the smaller part we add half of the 
greater part, the square of the sum is five times the square of half the 
greater part. 

 
25 The word shakl is translated here successively as ‘figure’ and as ‘proposition’, 

which are the two senses in which the term is used. 
26 In his Barāhīn Kitāb Uqlīdis fī al-uṣūl ‘alā sabīl al-tawassu‘ wa-al-irtiyāḍ 

(Proofs from Euclid’s Book on the Elements according to the Path of Development and 
of Practice), al-Sijzī comments on the propositions at the beginning of Book XIII of the 
Elements on division in mean and extreme ratio, as well as on the pentagon (see ms. 
Dublin, Chester Beatty, 3652, fols 28r–29v). 

27 Arabic: tarkīb. 



 APPENDIX: AL-SIJZĪ 608 

Starting from the composition of the sides of a square divided into five 
equal parts and from their separation, there arises a straight line divided in 
mean and extreme ratio. By composition, I mean: adding certain straight 
lines to others and joining them so that they become a single straight line; 
and by separation: dividing the greatest into two parts so that one of them is 
equal to the smallest part. 

Example: We suppose we have the square of AB in such a way that the 
angle E is a right angle, so that the sum of the squares of AE and EB is 
equal to the square of AB. To find another straight line, say AD, such that 
double its square is equal to the square of AB; this straight line will be 
equal to AG. Finding the straight line AD is easy, it is done by drawing a 
semicircle ADB, which we divide into two halves at D; we join AD. Double 
the square of AD is equal to the square of AB. In consequence, we need to 
find a straight line AE such that if we draw EB, EB will be equal to EG and 
GA to AD, and which thus leads to our objective.  

 

 
Fig. 1028 

 
To obtain this, we work out what is required to determine the straight 

line. In fact, finding GE equal to EB arises from the equality of the angle 
EBG and the angle EGB. So it is clear that if we draw AE, if at the point B 
of the straight line EB we construct an angle equal to half a right angle and 
if we join BG, this gives a straight line GE equal to the straight line EB. 

After that we have to make AG and AD equal; so we must imagine that 
the straight line AE rotates about the point A – with centre A and distance 
AD let us draw the circle DG – and another straight line which passes 
through point G of a circle DG; it is necessary that this other straight line 

 
28 These figures do not appear in the manuscript. 
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meets the circle DG. So we must construct an arc that subtends an angle 
equal to a right angle plus half a right angle, as the arc AGB, it being given 
that, if the circle DG cuts it and if we draw AG to E29 and we join BG, the 
exterior angle AGB is equal to the sum of the interior angles E and B. But it 
is clear to us that the angle E is a right angle so that it necessarily follows 
that the angle B is equal to half a right angle. As a result, the angle B is 
equal to the angle G of the triangle GEB, so that the straight line EG is 
equal to the straight line EB and the straight line AG is equal to the straight 
line AD. Accordingly, we have thus divided AE at the point G in [such] a 
way that the square of AG is equal to double the product of AE and EG. So 
the square of the sum of AE and AG is equal to triple the square of AE. So 
we suppose that the square of AB is equal to triple the square of AD, which 
is equal to AG, and as before we prove that the square of AG is equal to the 
product of AE and EG. So AE has been divided as we wanted.  

Now by transformation, if we draw GH parallel to EB, AB will be 
divided as we wanted. The proof of this is easy. This is what we required to 
prove. 

 
Let us now look for how to prove the proposition that Ptolemy presents 

in his book The Almagest: If we have two unequal arcs of a given circle, 
then the ratio of the chord of the greater arc to the chord of the smaller arc 
is less than the ratio of the greater arc to the smaller arc.30  

In this problem we need to take thought, to work out composite cons-
tructions and joining up figures; nevertheless, this proposition and its 
analogues are easy, given that we know the truth of the matter, and that, 
moreover, the constructions by which he proved it are shown [by Ptolemy]. 
In these two respects, this problem and its analogues will be easy. But since 
it was difficult for us to prove what is sought without adding another 
construction to it, we are obliged to have recourse to another construction 
such that, if we add it to it, [then] by starting from the combination of the 
two, it will be easy to prove it. Employing the construction that Ptolemy 
gave, our construction will be easy, since we know how he adopted an 
approach and which things he added to it to prove it. He added triangles 
made up of straight lines and of arcs; then he proved it by using these trian-
gles as intermediaries, from their angles, from their chords and from their 
arcs. 

 
29 E is on the circle ADB. 
30 Claudius Ptolemy, Almagest, English trans. G. Toomer, London, 1984, Book 1, 

Chapter 9, p. 47. 
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Here we say something that is not concerned with this question. We do, 
however, need it. In fact, we have derived our procedure in this proposition 
from the procedure given by the ancients, insofar as the figures have ratios 
and properties such that, if a skilled man thinks about them, they31 appear 
to him to be connected and mingled with one another, as if they had 
become a single matter and were all in a single state; because, if we imag-
ine them as differing in species and agreeing in type, they have links and 
connections that are necessarily attached to the essences of their properties, 
which are common to all things of this type. 

For example: two chords cutting one another in a circle: in fact, those 
of one set are proportional to the others, this is an absolute statement about 
them with regard to their type. Next comes the mode within the species and 
the state in which the two chords one of which cuts the other lie within the 
circle, from which there necessarily follows its property, which is the 
essence of the proportion. If we examine what that state is, using as 
intermediary the propositions that provide a grasp on it as well as on the 
essence of the property – like the necessity of the proportionality of the 
lines which enclose areas to the surfaces [they enclose]; like the fact that an 
arc intercepted by equal angles; and like triangles constructed on equal 
bases and between two parallel straight lines being equal – if we examine 
these and their analogues, we find their properties and their essences, God 
willing. It is for this reason and ones like it, starting from properties of the 
figures and the ordering of them, that we in some way concentrate our 
attention on their nature, right at the beginning, before finding what we are 
looking for.  

 
We then return to what we said: we suppose we have the arc BAC and 

we divide it into two unequal parts at A, the greater part was AC. We draw 
two chords AB and AC. I say that the ratio of the arc AC to the arc AB is 
greater than the ratio of the chord AC to the chord AB. 

Proof: We join BC, we extend BA to K and we put AK equal to AC. 
We have proceeded in this order while we are adding to this figure con-

structions that bring about this configuration; no other construction is 
possible for us. 

We then join CK; so we have first of all added two triangles to the 
figure for the proposition (ṣūrat al-shakl) that we are looking for, one is the 
triangle ABC and the other is the triangle AKC; but the objective is not 
attained by these two triangles. We draw AD parallel to KC. If we draw AD 

 
31 The figures. 
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parallel to KC, it is because of the order that this entails: the equality of the 
angle DAC or DAB with the angle AKC. 

 
 

Fig. 11 
 
Here we then exercise our ingenuity, by drawing AG parallel to BC; so 

we need to construct segments of circles so as to know the angles them-
selves and to find the magnitude of the proportion between the sides of the 
triangles and of the angles of the arcs and then we push on to find the 
proportion between the arcs BA and AC and the angles of the sectors. With 
centre A and distance AG we draw the arc IGHE. We have constructed this 
circle with centre A because the things we are looking for concerning the 
arc IGHE are proportional to the angles that are at the point A. We then 
seek to attain the objective of the construction: that the angles that are at 
the point A and the angles enclosed by the sides AB, AC and BC shall be 
proportional so that what we are aiming for necessarily follows. 

It being given that the straight line GH is smaller than the straight line 
GK, we have that the arc HE is equal to the arc GI.32 We join AH; we have 
AH equal to AG and the segment GIC equal to the segment HEK.33  

We then try to attain our end by considering the proportionality be-
tween the segments, the arcs, the triangles and the sides. Here we first of all 
need to imagine the results [accomplished] and by analysis go from the 

 
32 See p. 544, n. 24. 
33 Ibid. 
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endpoint to our point of departure, then to set out from our point of depar-
ture to [arrive at] the end. It is here that we use intuition. 

It being given that the sector AGI is equal to the sector AEH and that 
the segment EHK is equal to the segment GIC, we add together the sector 
HGA and the triangle AHG; we have that the ratio of the triangle AGC to 
the triangle AGK is greater than the ratio of the sector AGI to the sector 
AGE. The ratio of the straight line GC to the straight line GK is conse-
quently greater than the ratio of the angle IAG to the angle GAK. But the 
ratio of the straight line GC to the straight line GK is equal to the ratio of 
the straight line BA to the straight line AC, because AC is equal to AK, so 
the ratio of the angle CAG to the angle GAK is smaller than the ratio of BA 
to AC. But the angle CAG is equal to the angle ACD and the angle KAG is 
equal to the angle ABC. The ratio of the angle C to the angle B is thus 
smaller than the ratio of the straight line BA to the straight line AC. In 
consequence, the ratio of the arc AC to the arc AB is greater than the ratio 
of the straight line AC to the straight line AB. This is what we wanted to 
prove. 

 
We look for the proof in a different way: we suppose we have the circle 

ABH and the two unequal arcs AC and CB – the greater is CB; we repeat 
the procedure we have already described. We join AB and we divide the 
angle C into two halves with the straight line CH. The division of the angle 
into two halves occurs because it is given that the straight line AB is 
divided at [the point] D, such that the ratio of AD to DB is equal to the ratio 
of AC to CB, so the straight line AB will be an intermediate element in the 
constructions we need.  

 

 
Fig. 12 
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Next we need, in this circle or outside it, a construction that will allow 
us to have [an angle equal to] the sum of the angles A and B at a single 
point, and that so that, if we take this point as a centre and if we draw an 
arc with a certain distance, that will accomplish our purpose. Now these 
constructions are at first not clear to us, however this procedure is a valid 
procedure.  

We join AH and BH; the two angles AHC and BHC thus come together 
at the point H; now they are equal to the angles A and B. The fact of joining 
the two straight lines AH and BH at the point H – and of not drawing from 
the points A, C, B three straight lines that meet in another point, whatever 
point it might be, on the arc AHB – arises from the fact that if we have 
found what we are looking for by this construction, then it will be easier to 
find what we are looking for if we draw them to the mid point of the arc 
AHB, given that the straight lines AD and DB are proportional to the 
straight lines AC and CB. Now what is more accessible to proportionality 
and to order is easier to find. Next we have to look for an arc with centre H 
and an arbitrary distance. I do not as yet know what this distance should be 
so that from it there necessarily results, through the segments, in the arcs 
and the angles which are at the point H, through the straight lines AD and 
DB and through the triangles ADH and DHB, the excess of the ratio of the 
arc BC to the arc CA over the ratio of the chord BC to the chord CA. This is 
where we have a fallacy: when someone says ‘with centre H and distance 
HD, we draw the arc EDI and we draw HB as far as I in his figure’ and 
then proves it in accordance with this [figure], we say to him that it is 
impossible because the straight line AH is equal to the straight line BH and 
the endpoint of the arc falls at the point E, so the other endpoint falls at the 
point I, opposite the point E.  

But, it being given that, in this proposition, the boundary of the seg-
ments and the triangles pass through the point D, in every case, as they did 
at first, with centre H and distance DH we draw the arc EDGI so as to find, 
or not find, what we are looking for. We draw HG; the ratio of the sector 
GDH to the sector DEH is thus greater than the ratio of the triangle GDH to 
the triangle HDA. By composition, we have that the ratio of the sector DIH 
to the sector DHE is greater than the ratio of the triangle DHB to the 
triangle DHA; consequently, the ratio of the arc DI to the arc DE is greater 
than the ratio of the straight line DB to the straight line DA. But the ratio of 
the arc DI to the arc DE is equal to the ratio of the angle BAC to the angle 
ABC, which is equal to the ratio of the arc BC to the arc CA, and the ratio 
of the straight line DB to the straight line DA is equal to the ratio of the 
chord BC to the chord CA. This is what we wanted to prove. 
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But since Ptolemy’s purpose is <to find> the part and half the part, the 
two arcs on which the proof is based must be smaller than a semicircle. For 
this problem we need this condition, because we are going to give a proof 
that is different from the earlier proof. For this we employ a different 
method, which is as follows: 

 
Fig. 13 

 
We take the arc AB smaller than a semicircle, and we divide it into two 

unequal parts at C, the greater part being CB. We join AC and CB, we put 
BD equal to AC, we join AD, with centre A and distance AE we draw the 
arc HEG and we extend AC to G. It is clear that this line lies outside the arc 
<ACB>; it is also clear that AE is equal to EB, so the ratio of the sector 
AGE to the sector AEH is greater than the ratio of the triangle ACE to the 
triangle AEB. By composition, the ratio of the sector AGH to the sector 
AEH is greater than the ratio of the triangle ACB to the triangle AEB. But 
the ratio of the arc GH to the arc EH is equal to the ratio of the arc CB to 
the arc DB. Consequently, the ratio of the arc CB to the arc DB is greater 
than the ratio of the straight line CB to the straight line EB. But the straight 
line EB is equal to the straight line AE and the straight line AE is greater 
than the straight line AC, because we have taken the arc ACB to be smaller 
than a semicircle. Consequently, the ratio of the arc CB to the arc CA is 
much greater than the ratio of the chord CB to the chord AC. This is what 
we wanted to prove. 

 
Let ABC be a given circle. The two arcs AC and CB are unequal, AC is 

greater than CB. We draw AB and from the point C we drop a perpen-
dicular to AB; <let it be CD>. I say that the ratio of the straight line AD to 
the straight line DB is greater than the ratio of the arc AC to the arc CB. 

Proof: We extend the perpendicular CD to E and we join EB and EA. 
We draw EI equal to EB and with centre E and distance ED we draw the 
circle GDKH. The ratio of the triangle ADE to the triangle DBE is greater 
than the ratio of the arc HKD to the arc DG, because the triangle ADE is 
larger than the sector <EDH> by the curvilinear quadrilateral AIKH and by 
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the segment IKD, the arc HD is intercepted by the angle AED and the arc 
DG is intercepted by the angle DEG. In the same way, the arcs AC and CB 
are intercepted by these same angles. So the arcs are proportional. The ratio 
of AD to DB is thus greater than the ratio of the arc AC to the arc CB. This 
is what we wanted to prove. 

 

 
Fig. 14 

 
The arc AC is greater than the arc AB. I say that the ratio of the chord 

of double the greater arc to the chord of double the smaller arc is smaller34 
than the ratio of the greater arc to the smaller arc. 

 

 
Fig. 1535 

 

 
34 The statement in the manuscript gives ‘is greater than’. But in the course of the 

proof, al-Sijzī shows we are in fact dealing with ‘is smaller than’. So we probably have 
an error by the copyist. 

35 See the figures for the two other cases in the commentary. 
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Proof: We draw the diameter AE, we draw EB and EC and we draw 
BC; let it cut AE at the point D. With centre E and distance ED we draw an 
arc HDG; so the point G falls either at the point C of the straight line CD or 
above this line, because if it falls below the straight line CD, then the angle 
ADC will be either a right angle or acute;36 now this is not so. The ratio of 
the triangle BDE to the triangle DCE is thus greater than the ratio of the 
sector HDE to the sector DGE, so the ratio of the straight line BD to the 
straight line DC is greater than the ratio of the angle HED to the angle 
DEG and greater than the ratio of the arc BA to the arc AC. But the ratio of 
BD to DC is equal to the ratio of the chord of double the arc BA to the 
chord of double the arc AC. So the ratio of the chord of double the arc AB 
to the chord of double the arc AC is greater than the ratio of the arc BA to 
the arc AC. This is what we wanted to prove. 

 
We suppose we have a circle37 ACB in which there are the two chords 

AC and BD which cut one another at the point E. I say that the ratio of the 
straight line DE to the straight line EB is smaller than the ratio of the arc 
AD to the arc CB. 

 

 
Fig. 16 

 
Proof: We extend DA to G and with centre B and distance BA we draw 

a circle HAI; we extend BD to H and we draw BG parallel to AC. The ratio 
of the triangle ADB to the triangle AGB is smaller than the ratio of the 
sector AHB to the sector AIB. In the same way, the ratio of the straight line 
AD to the straight line AG is smaller than the ratio of the angle DBA to the 

 
36 See p. 551, n. 26. 
37 The figure in the manuscript seems to start with a semicircle ACB. The reasoning 

is the same for a circle: we can have arc ACB ≤ π or arc ACB > π. 
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angle ABG. But the angle ABG is equal to the angle CAB and they38 
intercept the arcs AD and CB, so the ratio of AD to AG is smaller than the 
ratio of the arc AD to the arc CB. But the ratio of the straight line AD to the 
straight line AG is equal to the ratio of the straight line DE to the straight 
line EB, so the ratio of the straight line DE to the straight line EB is smaller 
than the ratio of the arc AD to the arc CB. This is what we wanted to prove. 

 
How to divide a straight line AB into two parts such that the product of 

the whole straight line AB and one of its two parts, to which we add the 
square of the remaining part, plus the given square C, is equal to the square 
of AB? 

 
Fig. 17 

 
So we need to apply a square to AB, because that is obvious and the 

final part of the construction depends on it. Next we suppose AB has been 
divided as we wished at the point D. If this is so, we have to draw DE' 
parallel to BG so that we know that the area DG is that enclosed by AB and 
DB; we then have to construct a square on the straight line AD. We con-
struct the square AI. If the square AI plus the area DG plus the square C is 
equal to the square AB, then it is necessary that the area KE' is equal to the 
square C. But the two additional pieces are equal, so the area KE' is equal 
to the area BI, because they are the two additional pieces. But the surface 
BI is enclosed by the straight lines AD and DB. So if we draw a semicircle 
AEB, with diameter AB, and if we draw DE perpendicular to AB, then [the 

 
38 That is, the angles DBA and CAB. 
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sum of] the squares of the two straight lines AD and DB is equal to the 
square of DE, so the straight line DE will be the side of the square C. 
Consequently the side of the square C must not be greater than half the 
straight line AB, because we would not be able to construct that. So we 
have added another condition to the condition. 

By synthesis, on AB we draw the semicircle AEB and in it we drop a 
perpendicular to AB equal to the side of the square C, which is DE. We 
extend it to E' and we apply the square AI to AD. But the product of AB and 
BD is <the area> DG, the square C is equal to AD by DB which is the area 
KE' and the square of AD is AI. So if we divide AB into two parts at D, we 
have that the product of AB and BD to which we add the square of DA and 
the square C, is equal to the square of the straight line AB. This is what we 
wanted to prove. 

 
If we want to divide AB into two parts, for example at D, so that the 

product of AD and DB to which we add the square of AD and the square C 
is equal to the square of AB, we apply the square AG to AB and we make 
AD by BD a rectangle, which is DK; we draw KI parallel to AD. It is clear 
that AH is the square of AD. There then remains the rectangle IG equal to 
the square C. But the rectangle IG is AB by BD. 

 

 
Fig. 18 

 
By synthesis, we need to apply a semicircle AEB to the diameter AB 

and to place the side of the square C in it as a chord starting from the end-
point B; which is BE. We drop the perpendicular ED to AB. It is clear that 
the latter is divided as we wished, because the straight line EB squared is 
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equal to the rectangle IG, and the rectangle DK is the product of AD and 
DB; and the square of AD is the square AH. So we have divided AB at D 
such that AD by DB, added to the square of AD and to the square C, is 
equal to the square of AB. This is what we wanted to prove. 

 
Having finished with these things, let us now end this book so as not to 

prolong the discourse, so as not to tire the understanding of the reader nor 
to make the work inaccessible to him. 

Since an investigation of the nature of propositions and of their individ-
ual properties is always carried out in one of these two ways: either we 
bring to mind the necessity of their properties by considering a variety of 
species, [an act of] imagination that draws on sensation or on what is per-
ceived by the senses; or we assume these properties and also the lemmas 
they make necessary, in succession, by geometrical necessity; [accord-
ingly] I shall now give an example of this to attract attention from those 
concerned with this art. 

As for imagining their properties being necessary by [considering] 
variation of their species in the light of what is common to the senses, it is 
like what we gave an example of earlier: For all triangles, the sums of the 
angles are equal to one another. And like: let there be two isosceles trian-
gles ABC and ADE, the side AD being equal to the side AB and the angle 
DAE being greater than the angle BAC, then the base DE is greater than the 
base BC. This property is equally imagined by what is common to the 
senses. For the scholar, the primary properties required are required in this 
way.  

 
Fig. 19 

 
For the second way, the scholar must enquire into them in a thorough 

comprehensive geometrical investigation to use them as an exercise and so 
as to arrive at a conception of the properties of the propositions in reality 
and this becomes a resource for him. I now give an example of this, which 
is the following: 

We suppose we have a circle ACB. In it we draw the two chords AB 
and CD which cut one another at the point H and we wish to know in what 
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way it necessarily follows that the product of AH and HB is equal to the 
product of CH and HD. We join CA and BD, there result two similar 
triangles ACH and BHD, it being given that equal angles inscribed in the 
circumference of the same circle intercept the same arc. We have that the 
ratio of CH to AH is equal to the ratio of BH to HD. In the same way, if we 
draw the straight line EHG and if we join CE and DG, we obtain the two 
triangles CEH and DHG, which are likewise similar; so their sides are in 
proportion. 

 
Fig. 20 

 
As for investigating the fact that an arc39 of a circle is intercepted by an 

angle equal to the angle formed by the chord of that arc40 and the straight 
line which is a tangent to it,41 we draw the circle ABC with diameter AB 
and we draw BD tangent to the circle; then it becomes clear to us that the 
semicircle ACB is intercepted by an angle equal to the angle ABD. So we 
draw BD, we have to look for the variety of the species of that figure, and 
the necessity of their properties, by an investigation of their nature. So we 
join BC, AC and CE. It being given that the variation of the angle B is 
intrinsically common to the circumference of the circle and the two straight 
lines AB and DG, such a property is necessary. But since the triangle ACB 
is right-angled and the arc CB is intercepted by equal angles, accordingly 
the angle E of the triangle CEB is equal to the angle A of the triangle ACB. 
Now to the angle B of the triangle ACB we have added an angle – which is 
the angle ABE – and we have to take away from the angle ACB an angle 
equal to the one we added to the angle B, by the same measure. The angle 
formed by the chord of an arc of a circle and the tangent is equal to the 
angle which intercepts that arc, which is the angle BAC. Consequently, it 

 
39 Lit.: segment (qiṭ‘a). 
40 Ibid. 
41 A tangent at an endpoint of the arc. 
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appeared to us, in reality and geometrically, how the species of this figure 
vary, that their properties are necessary and that EBD and the angles which 
intercept the arc EACB are equal. This is what we wanted to prove. 

 
Fig. 21 

 
Let us now start with a figure, by using analysis, so that this will be an 

exercise for beginners: Let there be a point A and a straight line BC; we 
wish to draw from the point A to the straight line BC two straight lines, 
such as the straight lines AB and AC, which enclose the known angle A, 
that is an angle equal to a given angle, and such that AB by AC is known, 
that is to say equal to a given area. 

 
Fig. 22 

 
By analysis, we take AB by AC to enclose a known area and a known 

angle, I mean the angle A. Let us draw the two perpendiculars AE and BD. 
Since AB by AC is known and the triangle ABD is of known form, because 
the two angles A and D are known, accordingly the ratio of AB to AD is 
known, so the ratio of AB by AC to AD by AC is known, because AC is the 
common term. So AD by AC is known; now AE by AG is equal to AD by 
AC on account of the similarity of the triangles AGD and ACE; but AE is 
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known, so AG is known. So if we apply to AG an arc which is intercepted 
by an angle equal to the angle ABD, then it is to its intersection with the 
given straight line that we draw AB. Now AC encloses a known angle with 
the latter. We thus proceed by synthesis and we prove it by the method of 
synthesis. 

 
It is here that we complete this book: for those working in this area, 

these examples suffice. In what we have tried to do to smooth the way for 
determining geometrical propositions, this is enough for someone who is 
thinking about it, who continues to study it and is satisfied with accustom-
ing himself to pursuing that towards which we have directed him and what 
we have pointed out to him. 

 
It is from God the Most High that help comes. It is to Him that we sub-

mit ourselves. It is He who is sufficient for us, gives us fulfilment and helps 
us.  

The book is completed, Thanks be to God and to the grace of His 
assistance. 

 



 
 

LETTER OF AḤMAD IBN MUḤAMMAD IBN ‘ABD AL-JALĪL <AL-SIJZĪ> 
TO THE PHYSICIAN ABŪ ‘ALĪ NAẒĪF IBN YUMN  

 
On the Construction of an Acute-angled Triangle  

from Two Unequal Straight Lines 
 
 
 
You have asked – may God give you continuing happiness – to 

construct an acute-angled triangle from two unequal straight lines; and you 
mentioned that Abū Sa‘d al-‘Alā’ ibn Sahl constructed this by using an 
ellipse with the help of proposition fifty-two of Book III of Apollonius’ 
Conics,1 by the method of division and discussion. I remember that I had a 
solution to the problem, and it is in our book on Triangles. But what we 
have presented in our book was not [done] by the method of discussion. So 
I have found it by the method of discussion and division starting from the 
first and third books of Euclid’s Elements so as to prove to you – may God 
sustain you – that the propositions established by simple methods and 
principles that can be found from the books of Euclid’s Elements are 
preferable to adopting difficult methods, and in particular those of the 
Conics. For problems whose solutions cannot be established from the book 
of the Elements, one is allowed to have recourse to unusual and obscure 
methods; but we do not need to show what they can do, because it is 
obvious; and from God comes help. 
 
Question: Starting from two given unequal straight lines, we wish to 
construct an acute-angled triangle. 
 
Answer: For this triangle there are three cases. Let the two given straight 
lines be the straight lines AB, AC. We want what we have said. We draw a 
circle on the chord AB such that the arc AB is intercepted by half a right 
angle; which is the circle ADB. We draw BD perpendicular to AB to meet 
the circumference of the circle. We join AD. It is clear that AD is a 
diameter of the circle. With centre A and distance AC, we draw the circular 
arc CK. Either it will touch the circle ADB at the point D, as in the first 
case; or it will cut it in two points – in I and K – as in the second case; or it 
will lie outside the circle, as in the third case. If it lies outside the circle, let 

 
1 Lit.: the cone. 
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us extend BD to I and let us join AI.2 If it cuts it as in the second case, let it 
cut it in two points on either side of the diameter AD, at the points I and K. 
Let us then join AI. If it touches it, as in the first case, it is necessary that it 
touches it at the point D.  

I say that the angle subtended by the straight line AB3 always lies 
inside the sector CAD, in the first case, inside the sector CAI, in the second 
case and the third case. Now, from the two straight lines drawn from the 
points A and B to the arc CED,4 and if we draw a straight line from the 
point B to the straight line drawn from A to the arc CED, such that, with the 
straight line drawn from B to the arc CED, this straight line encloses an 
angle equal to the angle formed on the arc CED by the two straight lines 
drawn from the points A and B, there is formed5 an acute-angled triangle. 
But it is not possible to construct an acute-angled triangle from these two 
given straight lines by anything other than this. 

Let us draw AE to meet the arc CED and let us join BE. On the point B 
of the straight line AB we construct an angle equal to the angle AEB; let it 
be <the angle> EBG. 
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2 In the last two cases of the figure, al-Sijzī uses the same letter, I, to designate two 

different points. 
3 He implies that E, the vertex of the angle AEB subtended by the straight line AB, 

always lies on the arc CD (excluding its endpoints) in the first case, and on the arc CI 
(excluding its endpoints) in the second case and the third case. 

4 Al-Sijzī considers the first case of the figure where E is on the arc CD. In the 
second and third cases, we need E to lie on the arc CI; the arc CED exists only in the 
first case of the figure, and in what follows al-Sijzī deals with the first case. 

5 Lit.: closes up. 
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Fig. 3 

 
I say that the triangle AGB is acute-angled. 
Proof: Since the angle AEB is smaller than half a right angle, and the 

angle AGB is double the angle AEB, because it is equal to the sum of the 
two angles AEB and EBG which are equal to one another, accordingly the 
angle AGB is smaller than a right angle; so it is acute; but since the two 
straight lines drawn from the points A and B to meet the arc CED enclose 
with the straight line AB two angles each smaller than a right angle, that is 
to say acute, accordingly each of them6 is acute; so the triangle AGB is 
acute-angled. It is clear that the straight line drawn from the point A in the 
direction of H encloses an obtuse angle with AB. Similarly, the straight line 
drawn from B in the direction of D encloses an obtuse angle7 with AB. So 
take the triangle inside the straight lines AC and BD which are parallel. 
This is what we wanted to prove. 

 
This is what we have presented by means of division and discussion, 

employing a universal method, whose easy access, simple course and 
brevity of expression make it agreeable to your mind and to your 
understanding. So take profit from it, may God make you happy through it 
and let there be peace. 

The treatise is completed, thanks to God and to His blessings. 
I wrote it on Thursday, the day day of the month of Ābān in the year 

339 in the era of Yazdegerd.8 

 
6 Here, ‘them’ refers to the three angles. 
7 He means: in separating from AH and BD. 
8 See History of the texts, p. 577, n. 46. 
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TWO PROPOSITIONS OF THE ANCIENTS ON THE PROPERTY  
OF THE HEIGHTS OF AN EQUILATERAL TRIANGLE:  

PSEUDO-ARCHIMEDES, AQĀṬUN, MENELAUS 
 
 
 

Book by Archimedes on the Foundations of Geometry, translated from 
Greek into Arabic by Thābit ibn Qurra, for Abū al-Ḥasan ‘Alī ibn Yaḥyā, 
protected by the Prince of Believers 

 
– I – Let us take an equilateral triangle ABC, in it let us draw the height 

AD and on the straight line BD let us mark an arbitrary point, which is the 
point E. From the point E let us draw two perpendiculars to the straight 
lines CA and AB, which are the straight lines GE and EH. 

I say that the straight line AD is equal to the sum1 of the straight lines 
GE and EH. 

 
Proof: From the point E let us draw a straight line parallel to AC, which 

is the straight line EI. From the point B let us draw a straight line 
perpendicular to the straight line AC, which is the straight line BJ. It being 
given that the triangle ABC is equilateral and that the straight line AC is 
parallel to the straight line IE, the triangle BIE is equilateral; and it being 
given that the straight line BJ is perpendicular to the straight line AC and 
that the straight line AC is parallel to the straight line IE, the straight line 
BK is perpendicular to the straight line IE. Now the straight line KJ is equal 
to the straight line EG, because the surface KEGJ is a parallelogram. So the 
whole straight line BJ is equal to the sum of the straight lines EH and GE; 

 
1 We sometimes add the word ‘sum’, to conform with the standard usage in 

English. 
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but the straight line BJ is equal to the straight line AD, so the straight line 
AD is equal to the sum of the straight lines EG and EH. This is what we 
wanted to prove. 

 
– II – Let us take an equilateral triangle ABC, let us draw inside it the 

height AD and let us mark inside it an arbitrary point, which is the point E. 
From this point let us draw perpendiculars to the sides of the triangle, 
which are the straight lines GE, EH and EI.  

I say that AD is equal to the sum of the straight lines EG, EH, EI. 
 

 
 

Proof: From the point E let us draw a straight line parallel to the 
straight line BC, which is the straight line JELK. It being given that the 
straight line JK is parallel to the straight line BC and that the straight line 
EG is parallel to the straight line DL, accordingly the surface ED is a 
parallelogram. It being given that the triangle ABC is equilateral and that 
we have drawn the height AD and the straight line JK parallel to its base, 
which is the straight line BC, the triangle AJK is equilateral. And it being 
given that the triangle AJK is equilateral, that we have drawn the height AL, 
that on the straight line BK we have marked an arbitrary point – which is 
the point E – and that from this point we have drawn two perpendiculars to 
the straight lines JA, AK which are the straight lines EH, EI, accordingly 
the straight line AL is equal to the sum of the straight lines EH, EI. Now we 
have proved that the straight line LD is equal to the straight line EG, so the 
straight line AD is equal to the sum of the straight lines EG, EH, EI. This is 
what we wanted to prove. 
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Book of Hypotheses by Aqāṭun 
 
– I – Let us take an equilateral triangle ABC in which we draw the 

height AD and mark an arbitrary point on the straight line CB, which is the 
point E. From this point let us draw two perpendiculars to the straight lines 
CA and AB, which are the straight lines GE and EH. 

I say that the straight line AD is equal to the sum of the straight lines 
GE and EH. 

 
Proof: From the point E we draw a straight line parallel to the straight 

line AC; let the straight line be IE. From the point B let us draw a straight 
line perpendicular to the straight line CA; let the straight line be BJ. Since 
the triangle ABC is equilateral and since the straight line AC is parallel to 
the straight line IE, the triangle IBE is equilateral. Since the straight line BJ 
is perpendicular to the straight line AC, which is parallel to the straight line 
IE, accordingly BK is perpendicular to the straight line IE. Now the straight 
line EH is perpendicular to the straight line IE, so the straight line BK is 
equal to the straight line EH; but the straight line KJ is parallel to the 
straight line EG, so it is equal to it. So the whole straight line BJ is equal to 
the sum of the straight lines GE and EH. But the straight line BJ is equal to 
the straight line AD, so the straight line AD is equal to the sum of the 
straight lines EH and EG. This is what we wanted to prove. 

 
 
– II – Let us take an equilateral triangle ABC, let us draw inside it the 

height AD and inside it let us take an arbitrary point, which is the point E. 
From this point let us draw three perpendiculars to the sides of the triangle; 
which are the straight lines EG, EH and EI.  

I say that AD is equal to their sum. 
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Proof: We cause to pass through the point E a straight line parallel to 

the straight line BC; let it be the straight line JEK. Since the straight line JK 
is parallel to the straight line BC and since EG is parallel to the straight line 
DL, accordingly the surface DE is a parallelogram. Since the triangle ABC 
is equilateral and since the straight line JK is parallel to its base, the trian-
gle AJK is equilateral. Now in it we have drawn the height AL and on the 
straight line KLJ we have marked a point E from which we have drawn two 
perpendiculars to the straight lines AJ, AK – let the straight lines be EH and 
EI –, accordingly the straight line AL is equal to their sum. But the straight 
line LD is equal to the straight line EG, so the straight line AD is equal to 
the sum of the straight lines EG, EH, EI. This is what we wanted to prove. 

 
 

Treatise by Aḥmad ibn Muḥammad ‘Abd al-Jalīl al-Sijzī on the Properties 
of the Perpendiculars Dropped from a Given Point onto a Given Equilat-
eral Triangle by the Method of Discussion 

 
– I – If the point falls on one of the sides of the triangle, like the point 

E, let us draw the two perpendiculars, EM and EN, to the sides AB and AC. 
We cannot draw a third perpendicular, apart from these two. Since EM is 
the height of an equilateral triangle, the side of the triangle is BE and since 
EN is the height of an equilateral triangle, the side of the triangle is EC. So 
the ratio of EM to BE is equal to the ratio of EN to EC and is equal to the 
ratio of AD to BC. By composition, the ratio of the sum of EM and EN to 
the sum of BE and EC is equal to the ratio of AD to BC, so the sum of the 
two straight lines EM and EN is equal to the straight line AD. 
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– II – If the point falls on the straight line AD, like the point G, let us 

then draw the two perpendiculars GS and GO to the sides AB and AC and 
let us draw the straight line ZGU parallel to the straight line BC; the sum of 
the straight lines GS, GO is thus equal to the straight line AG and the sum 
of the straight lines GS, GO, GD is equal to the sum of AG and GD, that is 
to say the straight line AD. 

  
 
If the point falls in the surface ABC, like the point H, let us then draw 

the straight line ZHU parallel to the straight line BC and let us draw the 
perpendiculars HP, HU', HQ to the sides AB, AC, BC. From what we have 
proved, the sum of the straight lines HP, HU' is equal to the perpendicular 
AG and the straight line HQ is parallel to the straight line GD and is equal 
to it, so the sum of the straight lines HP, HU', HQ is equal to the sum of the 
straight lines AG, GD, that is to say the straight line AD. 
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SUPPLEMENTARY NOTES 
 
 

I. FAKHR AL-DĪN AL-RĀZĪ: IBN AL-HAYTHAM’S CRITIQUE OF THE 
NOTION OF PLACE AS ENVELOPE 

 
‘Ibn al-Haytham marshalled arguments to demolish the assertion that 

place is a surface; he said: if place were a surface, then it would be able to 
increase while the thing whose place it determines remained as it was, in 
two cases. A) If we divide a parallelepiped by parallel surfaces that are 
parallel to the two original surfaces, the surfaces which enclose this body 
before it is divided up are, without any doubt, smaller than those that 
enclose it after it has been divided up into many parts, whereas the thing 
whose place it determines remains as it was. B) If wax is shaped into a 
sphere, the surface that encloses the wax is smaller than the surface that 
encloses it when it is shaped into a cube. Since the sphere is the greatest of 
figures,1 the thing whose place it determines, when it is transformed into a 
cube, thus remains exactly the same whereas the place increases. 

It is possible for the place to remain the same whereas the thing whose 
place it determines decreases: indeed, the water which is in a goatskin has 
as its place the inner surface of the goatskin. If we press on the goatskin so 
that the water overflows through its spout, the surface of the goatskin 
continues to surround what remains of the water; so the thing whose place 
is determined has decreased and the place is as it was.  

It is possible for the thing whose place is determined to decrease and 
for the place to increase, as when we make a deep hollow in one of the 
sides of a cube; its concave surface is then necessarily greater than its plane 
face, and what remains of the body once it has been hollowed out is much 
smaller than it was at first. Here the thing whose place is determined has 
decreased whereas the place has increased. And since the consequences are 
manifestly inadmissible, the antecedents must be so too.’ 2  

 
1 That is, the sphere is the greatest among solid figures that have equal surface 

areas. 
2 Fakhr al-Dīn al-Rāzī (1149-1210), Al-Mulakhkhaṣ, ms. Teheran, Majlis Shūrā, 

no. 827, fols 92–93. Cf. above, Ibn al-Haytham’s treatise On Place, pp. 499–500, 511; 
and the French edition, pp. 670–1 and 955. 
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II. AL-ḤASAN IBN AL-HAYTHAM AND MUḤAMMAD IBN AL-
HAYTHAM: THE MATHEMATICIAN AND THE PHILOSOPHER 

 
ON PLACE 

 
 
In Volumes II and III we drew attention, under this same title, to the 

confusion caused by biobibliographers and many historians, from the thir-
teenth century onwards, regarding the mathematician and the philosopher. 
We put forward many historical arguments, both regarding technical 
content and bibliographic, which we still consider to be unanswerable.3 In 
Volume III, we called upon two important witnesses: ‘Abd al-Laṭīf al-
Baghdādī and Fakhr al-Dīn al-Rāzī, both from the end of the twelfth 
century. 

But old habits die hard. Thus, in what is no doubt a desperate attempt 
to support the identification of al-Ḥasan with his namesake Muḥammad, it 
has been considered possible to assert that al-Ḥasan’s treatise on place is a 
revised version of a treatise by Muḥammad, called Treatise on Place and 
Time according to what he [Muḥammad] Found Following Aristotle’s 
Opinion on them (Kitāb fī al-makān wa-al-zamān ‘alā mā wajadahu 
yalzamu ray’ Arisṭūṭālīs fīhimā).  

This conjecture is arbitrary in the literal sense, since it is not supported 
by any argument, whether historical, technical or textual (Muḥammad’s 
treatise is lost, we have only its title), and it is fraught with implications 
that are, to say the least, implausible. 

1. This title by Muḥammad ibn al-Haytham, reported by the biobibliog-
rapher Ibn Abī Uṣaybi‘a from the author’s autobiography, is from a late 
composition. From the information supplied by Ibn Abī Uṣaybi‘a himself, 
it appears that this text was composed after January 1027 and before July 
1028, that is after Dhū al-Ḥijja 417 of the Hegira and before the end of 
Jumādā al-ākhira 419 of the Hegira. 4  Now, in 417 of the Hegira, 

 
3 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-Haytham, 

London, 1993, pp. 8–19; English trans. Ibn al-Haytham and Analytical Mathematics. A 
History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in the 
Middle East, London, 2012, pp. 11–25. Les Mathématiques infinitésimales du IXe au 
XIe siècle, vol. III: Ibn al-Haytham. Théorie des coniques, constructions géométriques 
et géométrie pratique, London, 2000, vol. III, pp. 937–41; English trans. Ibn al-
Haytham’s Theory of Conics, Geometrical Constructions and Practical Geometry. A 
History of Arabic Sciences and Mathematics, vol. 3, Culture and Civilization in the 
Middle East, London/New York, 2013, pp. 729–34. 

4 Ibn Abī Uṣaybi‘a, ‘Uyūn al-anbā’ fī ṭabaqāt al-aṭibbā’, ed. N. Riḍā, Beirut, 1965, 
p. 558. 
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Muḥammad, again according to Ibn Abī Uṣaybi‘a, was in his sixty-third 
(lunar) year. So he would have composed his treatise On Place and Time 
(now lost, along with the major part of the philosopher’s huge output) at 
the age of about sixty-five lunar years: so we are not considering a work 
from his early youth. 

2. Between January 1027 and July 1028, Muḥammad had also com-
posed, among other things, A Summary of the Physics of Aristotle (Talkhīṣ 
al-Samā‘ al-ṭabī‘ī li-Arisṭūṭālīs), A Summary of the Meteorologica of 
Aristotle (Talkhīṣ Kitāb al-āthār al-‘ulwiyya li-Arisṭūṭālīs), and A Summary 
of the Book On Animals by Aristotle (Talkhīṣ Kitāb Arisṭūṭālīs fī al-
Ḥayawān). To which we must add numerous writings on philosophy, 
theology, medicine and optics. Moreover, before 1027, Muḥammad ibn al-
Haytham had also written a Summary of the Problems of Aristotle’s 
Physics (Talkhīṣ al-Masā’il al-ṭabī‘iyya li-Arisṭūṭālīs). So it is indeed a 
philosopher immersed in Aristotelian learning who conceived on this book 
On Place and Time. It is, moreover, sufficient to run through the titles of 
many others of his writings on metaphysics, logic and physics for us to 
register his deep engagement with the work of Aristotle. To confine our-
selves to the subject of logic, Muḥammad ibn al-Haytham wrote a sum-
mary of Porphyry’s Isagoge, as well as of seven of Aristotle’s logical 
works; a two-chapter book on the syllogism, a book on proof, and so on. 
He has also left us a Book to Refute Philoponus’ Criticisms of Aristotle in 
connection with The Heavens and the World (Fī al-radd ‘alā Yaḥyā al-
Naḥwī wa-mā naqaḍahu ‘alā Arisṭūṭālīs ... fī al-Samā’ wa-al-‘ālam).  

3. We can see clearly the philosophical framework within which 
Muḥammad ibn al-Haytham was working before and during the period of 
composition of On Place and Time. The combination of place and time 
suggests, moreover, that he intended to deal with the ideas of the Physics; 
and it does not take a great philologist to recognise, simply from the title he 
gave the work, that Muḥammad had shaped his On Place and Time in 
accordance with the teachings of Aristotle, or what ‘follows’ from this 
teaching. 

4. If we now return to al-Ḥasan ibn al-Haytham, we have shown that 
his treatise is resolutely and explicitly anti-Aristotelian. Moreover, in this 
treatise he formulated the first geometrical theory of place. His anti-
Aristotelianism and the originality of his theory did not, indeed, escape his 
critics, for instance al-Baghdādī at the end of the twelfth century. 

Also, in this treatise on place, al-Ḥasan draws extensively on one of his 
most original and sophisticated mathematical works on isoperimetric and 
isepiphanic figures and the solid angle (On the Sphere which is the Largest 
of all Solid Figures having Equal Perimeters and on the Circle which is the 
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Largest of all the Plane Figures having Equal Perimeters — Fī anna al-
kura awsa‘ al-ashkāl al-mujassama allatī iḥāṭatuhā mutasāwiya wa-anna 
al-dā’ira awsa‘ al-ashkāl al-musaṭṭaḥa allatī iḥāṭatuhā mutasāwiya).5 This 
same treatise is mentioned in On Place, as well as in another book by al-
Ḥasan: For Resolving Doubts in the Almagest.  

Finally, again according to Ibn Abī Uṣaybi‘a and from a list he had 
found of the writings of al-Ḥasan,6 the text on place (like the majority of al-
Ḥasan’s writings) was composed before 1038. 

In conclusion, if we accept that Muḥammad and al-Ḥasan are one and 
the same person, and that the treatise by al-Ḥasan On Place is a revised 
version of the Treatise on Place and Time according to what he 
[Muḥammad] Found Following Aristotle’s Opinion on them, we have to 
accept: 

1) that, at the age of sixty-five, al-Ḥasan wrote a treatise on place 
according to the theory of Aristotle, together with a commentary on the 
Physics, before changing his opinion completely and turning against 
Aristotle’s theory. But what event could have led to such a revolution in his 
thinking, since that is indeed what we are seeing here? Might the composi-
tion of his book on isoperimetric and isepiphanic figures and the solid 
angle (On the Sphere which is the Largest of all Solid Figures having 
Equal Perimeters) have instigated this conversion? However, a careful 
reading of this book does not permit us to draw any such conclusion, 
because the theorem Ibn al-Haytham uses in the treatise On Place can be 
derived directly from the treatise by al-Khāzin,7 since the mathematician 
has no need to investigate the solid angle which is the central topic of this 
book, and since he need not have waited until he was in his sixty-fifth year 
to turn against Aristotle. On the contrary, as we have shown, the geome-
trisation of the notion of place can be understood through the advances in 
geometrical understanding that are accumulated in the other geometrical 
treatises written by al-Ḥasan ibn al-Haytham. So we should not see the 
geometer’s anti-Aristotelianism as a sudden change of opinion and still less 
as simply a philosophical choice; his attitude is, much rather, derived from 
various works that involve geometrical transformations and movement. In 
short, al-Ḥasan ibn al-Haytham’s geometrisation of place is an effect of the 

 
5 Les Mathématiques infinitésimales, vol. II, Chap. III. 
6 This list is also known through the manuscript in Lahore. 
7 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. I: Fondateurs et 

commentateurs: Banū Mūsā, Thābit ibn Qurra, Ibn Sinān, al-Khāzin, al-Qūhī, Ibn al-
Samḥ, Ibn Hūd, London, 1996; English trans. Founding Figures and Commentators in 
Arabic Mathematics, A History of Arabic Sciences and Mathematics, vol. 1, Culture 
and Civilization in the Middle East, London, 2012, Chap. IV. 
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emergence of geometrical transformations, as operations as well as objects 
of geometry. In the circumstances, it is hard to see how one could maintain 
that a mathematician steeped in Aristotelian theory would change his mind 
because of a result showing that, among solids, it is the sphere that has the 
minimum surface area, a result known for a long time, that he changed his 
mind to the point of criticising Aristotle and working out an entirely new 
theory. 

2) that this revolution was not noticed by the man himself, to the point 
that he did not even refer to it in his second version of the text. This would 
be the more surprising because it often happens that Ibn al-Haytham 
returns to an old problem he has already considered, to explore it in a 
revised text, often a longer one. But in these cases he never failed to refer 
back to the first version. This is exactly what he did in his treatise On the 
Figures of Lunes,8  in his treatise On the Construction of the Regular 
Heptagon9 and in his treatise On the Principles of Measurement,10 among 
others. 

3) that his successors and above all his critics, such as al-Baghdādī, 
who were conversant with the writings of al-Ḥasan ibn al-Haytham’s times, 
never even noticed this radical change of position. Surely it is implausible 
that al-Baghdādī, in particular, would have been unaware of ‘his’ writings 
on logic to the point of reproaching him for his ignorance of logic; and that 
because he did not know this first treatise On Place and Time he made no 
mention of it in his critique of the treatise On Place.  

In the absence of historical and textual arguments, any conjectures are 
possibly correct and there is no limit imposed on implausibility.11 Only an 
intimate understanding of al-Ḥasan ibn al-Haytham’s mathematical writ-
ings can protect one from the temptation to make conjectures like that of 
there having been a ‘revised version’, a conjecture designed to defend an 
error made by biobibliographers, and one that has had too long a life.  

 
8 Les Mathématiques infinitésimales, vol. II, p. 102. 
9 Ibid., vol. III, p. 454. 
10 Ibid., vol. III, p. 538. 
11 It is with conjectures of this type, and with as little argument for them, that 

A. Sabra has dedicated himself to defending the identification of the mathematician 
with the philosopher. The reader will understand why we do not undertake to discuss 
the conjectures one by one. See A. Sabra, ‘One Ibn al-Haytham or Two? An Exercise in 
Reading the Bio-Bibliographical Sources’, Zeitschrift für Geschichte der arabisch-
islamischen Wissenschaften, Band 12, 1998, pp. 1–50. 
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530, 534, 537, 546, 568, 570 (see also 
invention) 

Distance: 147, 309, 340, 343, 346, 443, 
499, 504 

– imagined: 502, 504 
– invariable: 147, 504 

– from a point of a triangle to its sides: 
453–458, 463–470 

– superposition: 503 
Divisors: 175–177 
Division(s)/ranges 
– in extreme and mean ratio: 58, 538–

542, 607 n. 26 
– harmonic: 18, 19, 24, 46, 159, 161, 

315 
– similar: 18, 19, 24, 36, 42, 91 n. 3, 

330, 353, 354, 358 
– of a triangle: 534, 536 
 
Equality  
– of angles: 23, 30, 36, 72, 76, 84, 314 
– of arcs, of chords: 52 
– of ratios: 26, 312 
Ellipse: 3 n. 7, 4 n. 8–9, 27, 167, 436, 

438, 442–445 
Equation  
– of the circle: 320 
– of the hyperbola: 213 
– of the first-degree: 165, 178 
– of the fourth degree: 339 
– of the straight line: 213, 338 
Existence: 10, 11, 453 
– of forms: 11, 12 
– of geometrical objects: 10, 11, 137, 

306, 495 
– of motion: 8 n. 18, 10 
– of numbers: 177, 178 
– of a physical void: 502 
– of place: 497, 502 
– of a point of intersection: 10, 137, 

185, 186, 204–206, 331, 333–337, 
344, 345, 350, 357, 445, 451 

– of solutions: 150, 178, 179, 308, 335 
– of a straight line: 11, 348 
Extension: 499–504 
– empty, void: 501–503 
– in three dimensions: 501–502 
 
Figure(s): 6, 7, 145–147, 495, 519, 537, 

569, 569 n. 35, 570 
– auxiliary: 531 
– with equal areas (isepiphanic), with 

equal perimeters (isoperimetric): 17, 
29, 307, 635, 636 
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– plane: 30 
– static/variable: 305 
– three-dimensional: 30, 146 
Function: 545, 550, 554 
Foot of the bisector: 44, 105 n. 11, 448, 

450, 565 
Form(s): 143–147, 308, 497 n. 7, 500–

502 (see also ṣūra) 
– invariable intellectual: 11, 12, 502 
– of numbers: 177, 178, 569 n. 35 
– of a concave sphere: 500 
Focus: 167, 171, 207, 213, 322, 436, 

438 n. 6, 443 
 
Geometry: xi–xiii, 1–9, 12–14, 29, 31, 

134–139, 143–150, 157, 166, 171, 
174, 182, 188, 207, 305, 308, 435, 
436, 495, 505, 517–524, 526, 529, 
568, 570 

– algebraic: xii 
– Archimedean: xii, 8, 28 
– of conics: 136 
– descriptive: 148 
– Euclidean: 305–307, 504 
– hellenistic: xi, xii, 135 
– infinitesimal: xiii, 8, 135 
– of measurement, metrical: xiii, 3, 8, 

17, 521 
– plane: 28, 182, 309 
– of position and form: xiii, 3, 9, 17, 28, 

135, 148, 521 
– of projections: xiii, 2, 136 
– spherical: 135 
– in three dimensions: 29 
– of transformations: 28, 31 
– of triangles: 435, 436 
Geometrisation of place: xiv, 495, 498, 

504, 636 
Goatskin: 499 
 
Harmonic: see also division 
– pencil: 19, 44, 46 
– conjugate: 44, 161, 185 
Height 
– of the triangle: 68, 339, 355, 443, 446, 

449, 452, 457–465, 467, 469, 535 
n. 19, 552 

Heptagon (regular): 4, 454, 532 

Hexagon (regular): 59 
Homography: 19 n. 3, 316–318 
Homothety: 3, 3 n. 8, 6, 6 n. 14, 14, 18, 

24–32, 38, 39, 71, 72, 73 n. 22, 75–84, 
148, 160, 161, 186, 305, 308–310, 
314, 318, 323, 325, 330, 334, 346, 
359, 360, 535 n. 19 

Hyperbola: 4 n. 9, 191, 207–214, 322; 
equilateral 525 n. 13 

Hypotenuse: 531 
Image: 569 n. 35 
– of a circle: 3 n. 7, 5 n. 14, 28, 31, 186 
– of orthogonals: 91 n. 3 
– of a point: 38, 137, 161, 309, 314 
Imagination (takhayyul): 11–13, 502, 

529, 568, 570 (see also distance, void) 
Integers: 162, 165 
Intersection  
– of two branches of hyperbola: 191, 

207–210 
– of circles: 330, 331 
– of a circle and a straight line: 159, 

186, 187, 330, 333, 344–348, 351, 
356, 358, 359, 438, 532, 541 

– of conic sections: 10, 191, 442, 453 
– of straight lines: 80, 147, 330, 334, 

547 
– of a straight line and a branch of a 

hyperbola: 210 
Intuition: 527, 529 
Invariability: 143, 144 
Invariable (elements, sum): 305, 308, 

309, 470 
Invention (mathematical): 436, 453, 

517–524, 525, 568 
Inversion: 1 n. 2, 2 n. 4, 5 n. 14, 6, 27 

n. 11, 32, 45, 495, 594 
Isepiphanic: 500 (see also figure) 
Isometry, congruence: 52, 341, 343, 347 
 
Kinematics, celestial: 172, 174 
Knowns (discipline, concept): 8, 14, 

141–150, 305, 306, 329, 495, 505, 527 
– in actuality: 144 
– in form/shape: 143, 146–148, 160, 

185, 203, 309, 446, 447 
– in magnitude: 143, 146–148, 334, 

337, 350, 531 
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– in number: 143, 146 
– in position: 143, 146–148, 330, 332–

334, 337, 343, 344, 346, 347, 350, 
358, 531 

– in potentiality: 144 
– in ratio: 143, 146–148, 336, 341, 348 
 
Lemmas: 525, 526, 529, 530, 537 
Length: 64, 65, 311, 313, 327, 331–334, 

339, 343, 438, 440–449, 461, 551, 555 
Line  
– of centres: 77, 79, 83, 312 
– fixed/in motion: 147, 148 
Logic: 134, 137, 522, 527 
Lunes: xiii 
 
Magnitude(s): 143–148, 308, 309, 436, 

505, 520, 521, 529 n. 15, 536; in 
continuous proportion: 463 

Mathemata: 10, 11 
Mathesis: 522 
Mathematics: xi, 134–146, 157, 520–

523; infinitesimal: 17, 27, 27 n. 11 
Matter: 11, 500, 501 
Mean proportional: 56, 106 n. 14 
Median theorem: 71 
Measure (misāḥa): see geometry 
Metrical relationships: 50, 52 
Motion/movement: xiii, 4 n. 8, 6–9, 12–

14, 143–150, 305–307, 495, 636 
– of heavenly bodies: 172 
– kinematic: 6, 13 
– continuous: 145, 305, 309, 529 n. 15 
– of the Sun: 172, 173 
Music: 138, 146, 157, 173 
 
Naql: see transformation 
Naṣba (situation): 143, 233 n. 18, 365 

n. 2 
Neusis: 330 
Number(s): 146, 148, 168, 436 
– of conditions: 139, 522, 530 
– deficient: 146 
– perfect: 146, 149, 150, 153, 175–177, 

520 
– positive and rational: 164, 165, 178 
– prime: 177 

– of solutions: 139, 146, 150, 165, 169, 
170, 178, 179, 185, 186, 191, 199, 
207, 436, 437, 441, 530 

– square: 146, 149, 165 
 
Object(s) 
– geometrical: 1, 10, 137, 145, 146, 

149, 305–307, 495, 519, 529, 569 
n. 35, 637 

– mathematical: 10, 11, 136, 137, 141,  
– perceptible: 11, 12, 496 
Optics: xii, 135, 306, 497 n. 7 
Ordinate: 317, 444 
Order 
– of discovery: 519 
– in the Elements: 518, 519 n. 3, 524 
– of proofs: 524 
Orthocentre of the triangle: 68 
Orthonormal coordinate system: 210 
 
Parabola: 4 n. 9, 171 
Paraboloid: 307 
Parallelepiped: 500 
Parallelism: 20–24, 72, 77, 83, 84, 312, 

495 
Parallelogram: 316, 344 
Parameter: 166, 180–182, 214, 457, 

463, 466–470 
Pencil: see Harmonic 
Pentagon: 56, 58, 59, 538, 607 n. 26 
Perpendicular bisector: 36, 39, 40, 65, 

183, 185, 203, 314, 322, 335, 338, 
355, 438, 449, 544 n. 24 

Philosophy of mathematics: 14, 134, 
497 n. 7, 522 

Phonemes: 146 
Physics: 496 
Place/locus: xiv, 6, 8, 14, 18, 146, 308, 

495–505, 633–637 
– of centres: 442 
– of a body: 497–499, 502, 503 
– natural: 499 n. 14 
– of points: 159, 161, 203, 309–319, 

327, 328, 339 
– straight/rectilinear, circular: 148, 308, 

315, 330 
– of the Whole: 497 n. 3 
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Plane: 3 n. 4, 4 n. 8, 468 
Point(s):  
– coincident: 322 
– collinear: 26, 69, 170, 189, 191, 208, 

210 
– of contact: 20, 72–75, 170, 322, 325, 

359, 445 
– equidistant: 171, 314 
– fixed: 147, 157, 159, 185, 309, 318, 

320, 327, 336, 337 
– at infinity: 210, 214, 316, 318, 320 
– inside/outside the circle: 311, 321, 

328, 329, 332, 348 
– inside the triangle: 456–458, 463, 

465–468, 471 
– of intersection: 10, 21, 29, 44, 49, 74, 

77, 78, 82, 312, 322, 324, 325, 333–
338, 344, 360, 438, 446, 535 

– outside/exterior the triangle: 456, 468, 
471 

– variable: 313, 316, 318, 322, 323, 325  
Polyhedron, regular: 500 
Polygon: 3 n. 7, 4 n. 9; regular: 27, 29 
Position: 77, 143–148, 308, 309, 505 
Postulates: 9, 13, 495, 520, 521, 583 

(see also Euclid’s Elements) 
Principle (aṣl): 520 
Problems 
– arithmetical: 162, 163 
– geometrical: 138, 139, 166, 169, 171, 

182, 187, 436, 522 
– logical: 150, 524 
– numerical: 171, 173 
– plane: 191, 338 
– solid: 10, 338 
Procedures  
– ingenious: 527–529, 568 
– theoretical and practical: 528, 529 
Progression, geometric: 176 
Projection (tasṭīḥ): xiii, 2, 4 n. 9, 27 

n. 11, 134, 135 
– conical: 2, 2 n. 4–5, 6 
– cylindrical: 2 n. 5, 3, 3–4 n. 8, 6 
– of a sphere: 2 n. 4 
– stereographic: 2 n. 4 
Propaedeutic: 523, 527, 528 
Property 
– affine: 14, 18 

– of angles: 35, 45 
– of the body: 499 
– of circle (metrical): 17, 18 
– of conic sections, asymptotic: 137 
– of figures: 17, 145, 569 n. 35, 570 
– of the foot of the bisector: 55, 105 

n. 11, 353, 448, 565 
– of geometrical objects: 526, 529 
– of the homothety: 22, 23, 26, 28, 80 
– invariant: 141, 145, 148, 149, 306, 

329, 570, 571 
– isepiphanic bodies: 500 
– metrical: 18, 51, 148, 327 
– of the orthogonal affinity: 3 n. 7 
– of position and form: 148, 175, 308 
– of the side of the pentagon: 59 
– of similar arcs: 83 
– of the space: 147 
– of the tangent: 21, 23  
– of the transformation: 28, 31 
– of triangles: 453, 533; homothetic: 24; 

isosceles: 463; right-angled: 6 n. 14 
Power 
– in actu: 497 n. 7 
– natural: 523 
– of a point: 42, 43, 46, 64, 66, 69, 75, 

321, 328, 330, 332, 449 
Pyramid: 29 
 
Quadrature/squaring of circle: 526, 594 
Quadrilateral: 37, 82, 316 
Quadrivium: 136, 146, 149, 436 
Quantity  
– discrete, continuous: 146, 149 
– constant: 471 
 
Rabatment: 136, 137 
Reductio ad absurdum: 36, 40, 163, 

164, 167, 168, 176, 328 
Ratio: 146–148 
– of areas: 3 n. 7, 4 n. 9, 535 
– of two arcs: 48 
– constant: 323, 324 
– of chords: 73 n. 22, 550 
– of the homothety: 21, 24, 25, 28, 77, 

346 
– of the radii: 21, 84, 325 
– of similarity: 55, 105 n. 11, 532 
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Radius: 28, 159, 309, 310, 328, 442, 
445, 531, 532, 541, 545, 546, 553 

– parallel: 26, 29, 81 
Rectangle: 74, 167, 359, 568 
Region: 468–471 
Reversibility of implications: 522 
Roots: 216, 218, 445 
Rotation of a straight line: 12, 13, 306 
 
Secant: 5 n. 14, 20, 21, 26, 42, 72, 74, 

75, 80, 82 
Sector: 544, 546, 552, 554, 557 
Section(s) 
– conic: 2, 4, 10, 17 n. 1, 137, 191, 207, 

453 
– plane: 27, 149 
Set  
– of imagined distances: 503 
– of points: 147, 148, 161, 308 
Shakl (figure, proposition): 569–570 
Similarity: 4, 6, 19, 27 n. 11, 31, 148, 

161, 185, 207, 305, 308, 309, 312, 
313, 341, 351, 353, 529 n. 15, 532, 
542 (see also arcs, triangles) 

Solid: 146, 148, 505, 637 
Space: 145–147, 495, 502, 504 n. 25–

26; three-dimensional: 504 
Spatial relationships: 495, 496 
Square(s): 74, 566, 567 
 
Sun: 172, 173 
Sum 
– of the angles of a triangle: 48, 520, 

533, 570 
– arithmetical: xii 
– of the distances to the sides: 453, 457, 

458, 460, 463, 464, 466–471 
Subtraction: 146, 149 
Sphere: 2, 2 n. 4, 7, 29, 30, 307, 505 
– celestial: 173 
Statics: 135 
Straight line(s): 11–13, 146, 306, 308, 

309, 330–332, 342, 503 
– anti-parallel: 337, 338 
– concurrent: 39, 91 n. 3, 353, 354 
– half: 158, 192, 195, 200–204, 214, 

311, 316, 333, 339, 352, 358, 438, 449 
– fixed: 160, 336 

– homologous: 28 
– homothetic: 349 
– parallel: 23, 24, 31, 91 n. 3, 315, 334, 

337–339, 346, 349, 352–354, 357, 
443–446, 448–451, 462 

– proportionnal: 530 
– symmetrical: 331, 348 
– variable: 326 
Sundial: 3, 189 
Superposition: 7, 12, 503 
Ṣūra: 569 n. 35 
Surface: 146, 148, 497–499, 501 
Symmetry (central): 78, 360 
Synthesis (see also analysis): 133 n. 7, 

134, 141, 161–164, 178, 180, 183, 
186, 197, 306, 436, 446–449, 535, 566 

 
Tangent: 3 n. 4, 5 n. 14, 21–26, 49–51, 

63–66, 73–83, 210, 214, 312, 323, 
343, 359, 360, 531, 532, 559, 571, 572 

Time: 146 
Theorem: 524–526, 569 n. 35 
– of Pythagoras: 343, 540 
– of Thales: 24, 349, 542 
Theory  
– of cubic equations, algebraic: 135, 

136 
– of abstraction: 7 
– of conics: 188 
– of magnitudes: 136 
– of number: xii, 138, 174, 175, 177, 

178 
– of parallel lines: xii, xiii 
– of proof: 134, 522, 523 
– of proportions: 136, 527, 536 
Transformation(s) (naql): xiii, 1, 3, 24, 

527–529, 532, 542, 570 
– affine: 4 n. 9, 28, 31 
– birational of order 2; quadratic: 148, 

308 
– of a circle into another: 80 
– of a circle into a straight line: 5 n. 14 
– geometrical: xiii, 1–6, 9, 13, 14, 18, 

27, 27 n. 11, 28, 134–136, 145, 146, 
148, 149, 157, 161, 185, 305–308, 
329, 495, 505, 529 n. 15, 636, 637 

– homographic: 316–318 
– irrational (of the plane): 320 
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– point by point, point-to-point: xiii, 
27–31, 148, 308, 528, 530, 532, 570 

– projective: 4 n. 9, 31 
Transform (of a circle, of a straight 

line): 20, 21, 28, 148, 309, 310, 312, 
313, 315–318, 505 

Translation: 6, 39, 82, 148, 305, 308, 
315, 316, 359, 529 n. 15 

Triangle: 4 n. 9–10, 10, 166, 191, 195, 
196, 199, 203, 206, 207, 210, 309, 
313, 319, 320, 327, 338, 339, 347–
357, 435–438, 446–457, 520, 557 

– acute-angled: 436, 438, 441–443 
– congruent, isometric: 51, 52, 341 
– curvilinear: 544 n. 24 
– equilateral: 56, 150, 453, 454, 456, 

457, 460, 462, 468–471, 520 
– homothetic: 20, 21, 24–26, 43, 51, 64, 

77, 160, 314, 532 
– inscribed in a cercle: 452 
– isosceles: 53, 82, 183, 439, 442, 443, 

451, 453, 456–463, 466, 467, 539, 544 
n. 24, 564, 569 n. 35; acute-angled: 
463; right-angled: 440, 534, 541 

– right-angled: 6 n. 14, 67, 72, 73, 82, 
343, 531, 540, 569 n. 35  

– scalene: 456–458, 463, 465, 466 
– similar: 5–6 n. 14, 24, 29, 35–37, 44, 

51, 55, 62, 72, 91 n. 3, 158, 160, 184, 
185, 203, 319, 337, 340–342, 349–
353, 445, 448, 450, 466, 532, 539, 571 

Trigonometry: xii, xiii, 538 
 
Unknowns, auxiliary: 181 
 
Variation: 17, 529 
– of constructions: 529, 537–542; 

auxiliary: 566–568 
– of elements of the figures: 30, 309, 

529, 533–534, 570, 571 
– of lemmas: 529, 537 
– of methods of solution: 529, 534–537 
– on a problem from Ptolemy: 543–565 
Void: 495 n. 1, 496, 501–504 
Volume: 500 
 
Weights: 146 
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