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Maha Elkaisy-Friemuth

6. ORIGINAL ISLAM
Malik and the Madhhab of Madina

Yasin Dutton

7. AL-GHAZALI AND THE QUR’AN
One book, many meanings

Martin Whittingham

8. BIRTH OF THE PROPHET MUHAMMAD
Devotional piety in Sunni Islam

Marion Holmes Katz

9. SPACE AND MUSLIM URBAN LIFE
At the limits of the labyrinth of Fez

Simon O’Meara

10. ISLAM AND SCIENCE
The intellectual career of Nizam al-Din al-Nizaburi

Robert G. Morrison

11. IBN ‘ARABÎ – TIME AND COSMOLOGY
Mohamed Haj Yousef

12. THE STATUS OF WOMEN IN ISLAMIC LAW AND SOCIETY
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FOREWORD

This book is a translation of Les Mathématiques infinitésimales du IXe

au XIe siècle, vol. III: Ibn al-Haytham. Théorie des coniques, constructions
géométriques et géométrie pratique. The French version, published in
London in 2000, also included critical editions of all the Arabic
mathematical texts that were the subjects of analysis and commentary in
the volume.

The whole book has been translated, with great scholarly care, by
Dr J. V. Field. The translation of the primary texts was not simply made
from the French; I checked a draft English version against the Arabic. This
procedure converged to give an agreed translation. The convergence was
greatly helped by Dr Field’s experience in the history of the mathematical
sciences and in translating from primary sources. I should like to take this
opportunity of expressing my deep gratitude to Dr Field for this work.

Very special thanks are due to Aline Auger (Centre National de la
Recherche Scientifique), who helped me check the English translations
against the original Arabic texts, prepared the camera ready copy and
compiled the indexes.



PREFACE

In the first two volumes, we sought to present an overall picture of a
tradition of geometrical research on the mathematics of infinitesimals carried
out by Arabic followers of the work of Archimedes. But our intentions went
further than this: we also wanted to put together a preliminary nucleus of a
corpus of Arabic geometry. In one form or another, we pursued the same
end: to accumulate material and, by all possible means, to break with a
manner of writing history that was at best partial and at worst merely anec-
dotal. We cannot of course lay claim to providing a complete reconstruction
– we are protected from entertaining any such illusion both by the limita-
tions of our own resources and by the fact that many writings are either still
missing or definitively lost – but we have simply tried to make our search
reasonably complete and, above all, sufficiently systematic to expose the
exact significance of the mathematical activity of particular periods.

It seemed sensible to start with the geometrical work of Ibn al-Haytham,
almost in its entirety, before going back to his predecessors. The justification
for this strategy lies in the unusual position that Ibn al-Haytham occupies: he
is heir to two centuries of intense research in geometry, and he undertook to
push that research forward as far as the logical possibilities allowed. His pur-
pose, stated several times in unequivocal terms, was to ‘complete’ the
contributions made by his Greek and Arabic predecessors. Ibn al-Haytham’s
explicit project was to correct the errors made by earlier scholars, to deve-
lop their intuitions to the full, and to push their successes as far forward as
possible. So his geometrical work naturally afforded us a privileged advan-
ced position from which we could look back on the past of the discipline in
an orderly way. The methods employed in carrying out this procedure of
moving backwards involve the history of the textual tradition of each piece
of writing and the tradition of ideas to which the work belongs. We have
explained this elsewhere.1

1 ‘L’histoire des sciences entre épistémologie et histoire’, Historia scientiarum, 7.1,
1997, pp. 1–10.
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The second volume is completely taken up with Ibn al-Haytham’s works
on infinitesimal or Archimedean geometry. The first volume contains
writings by Arabic followers of Archimedes from the period before Ibn al-
Haytham. This research tradition began with the Banº Mºsæ in the ninth
century, and was continued by Ibn al-Haytham’s immediate predecessors,
scholars such as al-Qºhî and Ibn Sahl, and included a long series of com-
mentators. Two traits are prominent in the character of these contributions.
In the first place, the tradition was shaped and developed by geometers.
Even when they were familiar with algebra and influenced by it to various
degrees, they understood their work as concerned with geometry. The pos-
sibilities inherent in algebra are nevertheless noticeable in the introduction of
a certain idea of measure, superimposed on the traditional presentation of
comparisons between figures, to determine surface areas and volumes of
solids with curved boundaries; algebraic possibilities are also apparent in the
more intensive use of sums and arithmetical inequalities. The second trait,
which has also escaped notice, as it were runs in counterpoint with the first
one. These geometers ceased to regard themselves as simply the intellectual
descendants of Archimedes, and instead laid an equal claim to be the heirs of
Apollonius of Perga. Never, before this period, had there been such heavy
emphasis upon any connection between these two geometrical programmes.
These mathematicians, coming after Apollonius, had at their disposal a
theory of conics much more elaborate than the one used by Archimedes.
The works by Apollonius that they knew included the Conics, from which
they also acquired an interest in metrical relations and in properties of
position and form. All these geometers, without exception, from the Banº
Mºsæ to Ibn al-Haytham, carried out research work that combined the
geometry of Archimedes with that of Apollonius. This union between the
traditions was powerful, as a principle both for making discoveries and for
organization. It is thus no accident that new areas of mathematics were
quickly opened up: point-to-point transformations, the study of certain
projections, algebraic geometry and others. It is thus a new landscape that
we find reflected in the works of Ibn al-Haytham and that forms the
backdrop to his researches in infinitesimal geometry. The sheer bulk of the
texts, as well as their high quality, required us to devote the following two
volumes to them. The title given to the first two volumes is no doubt not
very suitable for these later ones; we decided to keep the same title simply
so as not to break the overall continuity of the collection; the subtitle will
have to carry the burden of identifying the organizing theme of the book.
This solution, though slightly out of kilter with the rest, was the least
inconvenient.
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INTRODUCTION

CONIC SECTIONS AND GEOMETRICAL CONSTRUCTIONS

Greek geometers soon noticed that ‘geometrical’ constructions were not
applicable only to plane problems and that ‘constructible’ problems were
not simply those that could be solved by means of straightedge and
compasses. This important discovery led some mathematicians to investigate
the properties of curves other than the circle, in particular conic sections.
The story of these constructions has been told so many times that it need
not detain us here.1 Let us merely remind ourselves that as early as the
fourth century BC conics are called upon in the solution of a three-
dimensional problem. Menæchmus made use of a parabola and a hyperbola
to solve the problem of the duplication of the cube. Was this something
unusual or an established practice? Is this a procedure that lays the
foundations for the theory of conics? The answers to questions like these are
hidden in the mists surrounding the origins of the theory. What concerns us
here is to note that from a very early date conic sections were used to
construct solutions to three-dimensional problems in geometry.

A little later, towards the mid third century BC, Conon of Samos
– according to the account given by Apollonius – takes up the whole
problem once again. Apollonius in fact informs us, in the preamble to the
fourth book of his Conics, that Conon of Samos had investigated the
intersection of conic sections, and had tried to find the number of their
points of intersection, ‘the greatest number of points in which conic sections
that do not completely coincide can meet one another’.2 This is the only
echo, distant as it is, to tell us about the form and purpose of Conon’s work.
Was it like what Apollonius does in the fourth book of his Conics, where he
discusses the number of points using an argument by reductio ad
absurdum? We do not know, but this crucial evidence supplied by
Apollonius does allow us to infer that after Menæchmus some

1 T. L. Heath, A History of Greek Mathematics, 2 vols, Oxford, 1921; repr.
Oxford, 1965; O. Becker, Grundlagen der Mathematik, 2nd ed., Munich, 1964.

2 Apollonius, Les Coniques d’Apollonius de Perge, French transl. Paul Ver Eecke,
Paris, 1959, p. 281. Cf. Apollonius: Les Coniques, tome 2.2: Livre IV, edition, French
transl. and commentary by  R. Rashed, Berlin/New York, 2009, p. 116.
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mathematicians – and not only minor ones, since they included Conon –
attempted to investigate the intersection of conic sections, or at least the
number of their points of intersection. If we read further in Apollonius, we
find that Conon’s work was, however, challenged on two grounds at once:
rigour and utility. A contemporary of Conon, Nicoteles of Cyrene, made a
double criticism of his work, a criticism that Apollonius reports as follows:

Conon of Samos expounded it [the matter concerning intersection] to
Trasydoeus, but without having paid attention to the proof, as he should
have done; for which reason Nicoteles of Cyrene indeed justly found fault
with him.3

If Apollonius agrees with this first criticism that Nicoteles levels at
Conon, he does not endorse the second one, in which the questions raised
by Conon are judged to be of no use:

Nicoteles, he says, is, however, in error, when, in support of his arguments
against Conon, he maintains that the things Conon discovered are not any
use for further discussions (diorisms); for if, without these things, problems
can generally be expressed in a complete form from the point of view of
their discussion, the things nevertheless facilitate insights, either concerning
the possibility of multiple solutions, or concerning the number of solutions,
or, on the contrary, the impossibility of a solution.4

In the mid third century BC, an attempt is made to reduce certain
discussions (diorisms) to the problem of finding the points of intersection of
two conics. But there is no firm foundation for this attempt and it is vitiated
by the absence of proof. This may explain why mathematicians such as
Nicoteles think it can be set aside. There remains a question we cannot yet
answer: on this matter, what position was taken by Archimedes, a young
friend of Conon? Did he follow Conon in adopting this new technique, or
did he take Nicoteles’ part? Did he continue to prefer the technique of using
intercalations5 or did he begin to employ the new technique – considering
intersection of conics – because of its simplicity? In On the Spiral,
Archimedes reduces certain propositions to intercalations and seems ready
to accept that this brings the discussion to a conclusion (see Propositions 5,
6, 7 and 9). Can one infer that the new technique was only beginning to
replace the older one, at least in the circle surrounding Conon? To move

3 Apollonius, Les Coniques, transl. Paul Ver Eecke, p. 281; see also Les Coniques,
tome 2.2: Livre IV, ed. R. Rashed, p. 116.

4 Ed. P. Ver Eecke, p. 282; ed. R. Rashed, p. 118.
5 Intercalation is a technique based on a form of neusis: to place between a straight

line and a curve, for instance an arc of a circle, a straight line equal to a given straight line
and verging (inclined) towards a given point (in the sense that if produced it would pass
through that point).
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things forward would have required Conon’s invention to be backed up by
rigorous arguments, which in turn would have needed a better under-
standing of the local and asymptotic properties of conic sections. Such
understanding was to be characteristic of the future. We shall see that the
history of the study of conic sections is linked with the development of
exactly this understanding. All the same, Apollonius, unlike Nicoteles, had
no intention of throwing the baby out with the bath water: he recognizes
that the logic of Conon’s questions is flawed but he accepts that they have a
heuristic value. That might perhaps explain the attitude of Archimedes, since
he is younger than Conon and older than Apollonius by one or two
generations. Sometimes – for example in the lemma to Book II Proposition
4 of The Sphere and the Cylinder – when he has proposed a three-
dimensional problem he is content merely to define it (to give the diorism),
without a solution. Maybe, as Ibn al-Haytham was to suggest twelve
centuries later, Archimedes wished to avoid appealing to intersection of
conics, for the reason we have mentioned. However it was, neither
Nicoteles’ censure, nor Archimedes’ silence, nor Apollonius’ prudence
prevented mathematicians from looking to conic sections in solving three-
dimensional problems. Thus Diocles, a successor to Archimedes and a
contemporary of Apollonius,6 uses the intersection of two parabolas to solve
the problem of doubling the cube.

Although its impact was indirect, Apollonius’ personal contribution was
even more important. I refer specifically to Book V of the Conics, which is
concerned with normals to the curves, and in this connection with finding a
set of points – which much later on will become the evolute (Huygens).
Apollonius studies the evolute – if we may use the anachronistic term – by
considering points that lie both on an equilateral hyperbola and on the conic
in question. Thus in Propositions 51, 52, 55, 56, 58, 59, 62 and 63 of Book
V he proceeds by discussing intersection of his equilateral hyperbola and one
or other of the three conic sections. His work, the most systematic treatment
of the matter that we know from Hellenistic mathematics, is nevertheless,
from the point of view of what interests us here, defective in two respects:
all cases concern an equilateral hyperbola; and, further, the existence of the
points of intersection is not established. This deficiency is not due to

6 Les Catoptriciens grecs. I: Les miroirs ardents, edition, French translation and
commentary by R. Rashed, Collection des Universités de France, Paris, 2000, pp. 78ff.
Cf. Apollonius: Les Coniques, tome 3: Livre V, ed. R. Rashed, Berlin/New York,
2008. In Book V of the Conics Apollonius tries to find the number of normals that can be
drawn from any point. Huygens defines the evolute as the envelope of the normals in
connection with a problem in mechanics to do with the cycloid. Unlike Huygens,
Apollonius never refers explicitly to the idea of an evolute.
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weakness on the part of the mathematician, or to a lack of the technical
means required to provide at least a partial proof. It is simply that such a
procedure was not yet considered a necessary component of a demonstra-
tion if the matter seemed obvious. One can see hints of it in works such as
that of Eutocius, where he provides the demonstrations that are lacking in
The Sphere and the Cylinder, but a proof of the existence of the points of
intersection is not yet regarded as truly necessary.

This completes our account of the development of work on the
intersection of conic sections up to the ninth century. It is easily established
that we are dealing with sparse and scattered contributions, produced here
and there when mathematicians encountered three-dimensional problems,
and contributions in which employing intersection of conics is merely
sporadic (there is no apparent reluctance to use other curves, even though
Pappus seems to give preference to conic sections in Books III and IV of his
Collection). We shall not repeat here a story that has already been told very
well several times. It will be enough merely to supply a brief reminder of
what these three-dimensional problems were. We have already mentioned
doubling the cube, the lemma to Book II Proposition 4 of Archimedes’ The
Sphere and the Cylinder, Book V of Apollonius’ Conics and trisection of an
angle. We may also note the numerous solutions to some of these problems
that accumulated over the course of time. Doubling the cube and finding the
two means provides a particularly significant example of this: between
Diocles, Pappus and Eutocius, we find no fewer than twenty or so solutions,
several of which involve conics. We must also note, and this is of crucial
importance for the work carried out from the ninth century onwards, that
these problems and their solutions involve new idea about the curves and
their behaviour. The working out of these ideas was to be left to later
mathematicians. On the other hand, we may take note that in themselves
these problems already reflect a desire to extend the geometry of Euclid.

From the ninth century onwards the problems inherited from Greek
mathematicians are subjected to huge investigation. Although this is not the
place to discuss new results, we must note a change in the context. On the
one hand, in a relatively short interval of time, we see an unprecedented
growth in the number of writings devoted to these inherited problems. On
the other hand, it is almost exclusively intersection of conics that is used to
solve them. Not only is it rare for other methods to be employed, but when
they are used they seem to be connected with an older memory – as in the
work of the Banº Mºsæ7 and later that of al-Bîrºnî. Such methods always

7 R. Rashed, Founding Figures and Commentators in Arabic Mathematics. A
history of Arabic sciences and mathematics, vol. 1, Culture and Civilization in the Middle
East, London, 2012, Chapter I.
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avoid any demand for an appeal to transcendental curves. That is to say, we
are seeing an increased research effort, which displays a certain unity in
restricting its methods to those using intersection of conics. From this point
on, we are dealing with an ‘area of activity’ for conic sections.

This area soon became wider. The widening was at first carried out in
what one might call a Hellenistic spirit. The most striking example is that of
the regular heptagon. While Greek mathematicians have not left us even a
single construction for the figure, at the end of the tenth century we witness
a genuine debate on the matter in the mathematical community, with the
appearance of no less than a dozen essays. But this widening in a
‘Hellenistic’ style goes together with development of the same area in a new
manner that derives from the earliest attempts to solve certain third-degree
algebraic equations by using conics. It was at the end of the ninth century
that mathematicians began to consider this matter, and it was to be a
continuing topic for research until al-Khayyæm formulated his general
solution to the problem. The names of al-Mæhænî, al-Khæzin, al-Qºhî, Ibn
‘Iræq, and particularly of Abº al-Jºd, are associated with the various stages
of this programme of research. Their writings change the area of operations
in constructing solutions to three-dimensional problems using conic sections:
together with the ancient problems, the field now includes problems brought
forward by algebra.

As we have pointed out, this heterogeneity in the origins of the
problems is in contrast to a unity imposed on methods of solution:
thereafter, the only method is to use the intersection of conic sections. This
methodology seems to be the leading characteristic of research from the
ninth century onwards.

This is the tradition to which Ibn al-Haytham belongs, and it is this
tradition his work will affect. What he does is to complete the transformation
of the ‘area of activity’ into a part of geometry concerned with geometrical
constructions. But before we describe and analyse developments in the
theory, let us look at the works Ibn al-Haytham wrote about geometrical
constructions. There are no fewer than ten such essays.

1. On the Lemma for the Side of the Heptagon
2. On the Construction of the Heptagon in the Circle
3. On the Division of the Line Used by Archimedes

These three treatises deal with problems introduced by Ibn al-Haytham’s
predecessors. We shall see that in each of them he tries to complete the
treatment of the problem his predecessors had proposed and had either
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solved only for a particular case, or without proving the two conics
intersected one another.

The second group of three-dimensional problems makes it clear that
they are based on algebra.

4. On a Solid Numerical Problem
5. On the Determination of Four Straight Lines

This last treatise, which is unfortunately lost, dealt with the problem of
finding four line segments of lengths between those of two given segments
such that the lengths of the six segments shall be in continued proportion. A
successor to Ibn al-Haytham, the algebraist al-Khayyæm, writes that ‘this
has been proved by Abº ‘Alî ibn al-Haytham; only it is very difficult…’.8

The problem leads to an equation of the fifth degree, which is solved by
considering the intersection of a hyperbola and a generalized parabola (a
cubic). What al-Khayyæm tells us makes it seem likely that Ibn al-Haytham
was in possession of a method similar to the one we find later in Fermat’s
Dissertatio Tripartita.9

The third group consists of one book.

6. On the Completion of the Work on Conics
As we shall see, this book plays a crucial part in making the study of

geometrical constructions a subject in its own right.

The fourth and final group consists of several pieces that, to judge by
their titles, deal with questions concerning the construction of conics.
Unfortunately, no copies of these writings have yet come to light.

7. On the Properties of Conic Sections
The title of this treatise mirrors that of another one, on the circle, whose

text and translation appear in the fourth volume of the present work.10 In
the latter treatise, Ibn al-Haytham investigates not only metrical properties

8 R. Rashed and B. Vahabzadeh, Al-Khayyæm mathématicien, Paris, 1999, Traité
d’algèbre et d’al-muqæbala, p. 222. English translation: Omar  Khayyam. The
Mathematician, Persian Heritage Series no. 40, New York, 2000, p. 158.

9 Ibid., p. 387; English transl., p. 259.
10 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV:

Méthodes géométriques, transformations ponctuelles et philosophie des mathéma-
tiques, London, 2002.
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but also some affine properties, and even certain projective properties.
Perhaps in the text on the properties of conic sections (parabola, hyperbola,
ellipse) he discussed the same properties, but for conics. This is not unlikely:
the analogous titles suggest it, as does the fact that his predecessors – Ibn
Sinæn, al-Qºhî, Ibn Sahl and others – took an interest in these properties.

8. On the Construction of Conic Sections
Unlike the preceding one, this book is not mentioned either by old

biobibliographers or by old mathematicians that we know of. On the other
hand, Ibn al-Haytham himself refers to it in his treatise on parabolic burning
mirrors.11 The context tells us that in this book Ibn al-Haytham had proved
the parabola has the following property: the distance from the focus to the
vertex is a quarter of the latus rectum. The lost treatise no doubt addressed
problems of drawing conics, and in some respects resembled Ibn Sinæn’s
treatise On Drawing Conic Sections.12

9. On the Compasses for Conic Sections
The title, reported by old biobibliographers, suggests the treatise dealt

with an instrument like the ‘perfect compasses’ of al-Qºhî, designed to
draw conic sections. The loss of the text has clearly deprived us of a new
contribution, in succession to those of al-Qºhî and Ibn Sahl, on the subject
of mathematical instruments for drawing conic sections.

10. On the Determination of all the Conic Sections by Means of an
Instrument

The title is mentioned by Ibn al-Haytham,13 but no other old author –
biobibliographer or mathematician – refers to it. It seems that this treatise
addresses the same subject as the previous one, and it is reasonable to ask
ourselves whether we may in fact be looking at the same work we have
already mentioned under its correct title, but which is described here in
terms of its uses.

This variety of titles indicates that Ibn al-Haytham was engaging with
the properties of conic sections required in their application to problems.
Thus he deals with ways of drawing them, with properties of position and
shape, and not only with metrical properties – that is to say he considers

11 See The List of Ibn al-Haytham’s Works, no. 9, in R. Rashed, Ibn al-Haytham
and Analytical Mathematics, London, 2012, p. 394.

12 Text, translation and commentary in R. Rashed and H. Bellosta, Ibræhîm ibn
Sinæn. Logique et géométrie au Xe siècle, Leiden, 2000, Chapter III.

13 See The List of Ibn al-Haytham’s Works, no. 37, in R. Rashed, Ibn al-Haytham
and Analytical Mathematics, p. 402.
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everything that appears to be necessary for the geometrical constructions to
be carried out when conics are used in solving problems. We shall give a
systematic account of the different groups of works – that is, of course, of
those whose texts have come down to us.



CHAPTER I

THEORY OF CONICS AND GEOMETRICAL CONSTRUCTIONS:
‘COMPLETION OF THE CONICS’

1.1. INTRODUCTION

1.1.1. Ibn al-Haytham and Apollonius’ Conics

The theory of conics – and this point is worth emphasizing – had never
held such an important position before the ninth and tenth centuries. This
new importance is not only on account of the properties of the curves, but
also because they can they can be applied in areas not foreseen by the
original mathematicians, specifically not by Archimedes and Apollonius.
That is, the theory of conics has ceased to be simply a powerful instrument
in the hands of geometers; it now offers algebraists a means of solving cubic
equations.1 Ibn al-Haytham is no exception to the rule. As a geometer he
investigates the geometrical properties of conics – as we may see, for
example, in his treatise The Measurement of the Paraboloid. As a physicist
he is concerned with reflection properties of some of the curves – we may
think, for example, of his treatise Parabolic Burning Mirrors. He also uses
conics to achieve success in problems of geometrical construction. In short,
a glance at his works will show that conics and their properties run through
them from beginning to end. So it is easy to understand his taking an
interest in Apollonius’ treatise, the more so since – the works of his
predecessors having been lost – Apollonius was the only authority. No other
Greek mathematical work, apart from Euclid’s Elements, was so much
consulted, studied and cited by Arabic mathematicians, among them Ibn al-
Haytham. Not only did he know the Conics down to the smallest details, but
he even went so far as to transcribe the work, as we know from the copy in
his handwriting that has survived down the centuries.2

1 R. Rashed, ‘Algebra’, in R. Rashed (ed.), Encyclopedia of the History of
Arabic Science, London, 1996, vol. II: Mathematics and the Physical Sciences,
pp. 31–54.

2 Apollonius, Conics, photographic reproduction from MS Aya Sofya 2762 by
M. Nazim Terziofilu, Istanbul, 1981.
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Ibn al-Haytham, as a mathematician and, this once, a copyist, knew the
history of the text of the Arabic version of Apollonius’ treatise. This history
is recorded by the people who oversaw the search for Greek manuscripts
and then their translation, the Banº Mºsæ. In a text Ibn al-Haytham knew
well (since he made several corrections to it)3 the Banº Mºsæ say that they
had a first version made up of the first seven books, which was hard to
understand, and that later on, while in Damascus, AÌmad ibn Mºsæ found
Eutocius’ version of the first four books, which is key for understanding the
complete work.4 As we shall see later, the Banº Mºsæ report that of the
eight books to which Apollonius refers in his preamble to the Conics, they
(the Banº Mºsæ) had in their hands only the first seven, and the eighth was
missing. The absence of this book instigated Ibn al-Haytham’s project: to
make a conjectural reconstruction of the missing book, so as to ‘complete’
the Conics. Thus we must examine possible traces of this eighth book, so
that we can then try to understand what was implied by the term
‘completion’. Before we make a detailed examination of the significance of
Ibn al-Haytham’s project, we need to know whether there were any indica-
tions concerning the eighth book that might have offered guidance in his
researches.

1.1.2. The eighth book of the Conics

There are two passages in the Conics in which Apollonius refers to the
eighth book: the first is in the Preamble, where he describes the contents of
his treatise; and a second time in the seventh book.5 Commentators on the
Conics are not very helpful in this respect: Hypatia’s commentary is lost,
Serenus of Antinoë tells us nothing, and Eutocius says no more than
Apollonius did. There remain the lemmas for Apollonius’ Conics that
Pappus presents in his Mathematical Collection. To which we should add
an allusion by a tenth-century biobibliographer, al-Nadîm, who mentions
‘four propositions’ of the eighth book. It is this story, already repeated more
than once, that we shall need to re-examine a little critically.

In fact, the eighth book of the Conics seems to have disappeared a long
time ago, though no one can say for certain when: after Pappus, there is no

3 Banº Mºsæ, Muqaddamæt Kitæb al-Makhrº†æt, MS Istanbul, Aya Sofya 4832,
fols 223v–226v. A critical edition and French translation of the book by the Banº Mºsæ is
given in R. Rashed, Apollonius: Les Coniques, tome 1.1: Livre I, Berlin/New York,
2008, pp. 483–533.

4 See below, pp. 23–5.
5 See below pp. 27ff.
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doubt; before him, possibly. In the Mathematical Collection, Pappus
proposes to prove some lemmas to complete the account given by
Apollonius in the Conics.6 Pappus draws up lemmas, in succession, for the
first book (eleven lemmas), then for the second (thirteen lemmas), the third
(also thirteen lemmas) – no lemmas follow the fourth book – for the fifth
(ten lemmas), and finally the sixth (eleven lemmas). Thus far, Pappus distin-
guishes and clearly separates each group of lemmas according to the book
to which it applies. Then he finishes his exposition with the lemmas for the
seventh and eighth books, taken together. This anomaly seems incompre-
hensible: why, after carefully separating the lemmas for each book up to the
sixth, should he amalgamate the sets of lemmas for the last two books? One
might suggest that Pappus to some extent made a habit of this, since in his
Porisms he combined the lemmas for three books. But that is not the same
sort of thing, since in dealing with the Conics he had begun by separating
the lemmas, whereas in the Porisms he put them all together. But an
anomaly, if one may say so, never appears on its own. We should have
expected Pappus to have used the plural when he refers to two books. But
he does not, and the definite article is in the singular; he writes …∑◊ ZH
‘<lemmas> for 7 and 8’. Is this a simple copyist’s error, or an indication
that the text he was handling initially mentioned only one book? There is no
textual argument that provides a reasonable reply. All that can be said is that
this text raises the problem of what Pappus may have known about the
eighth book of the Conics, and that it seems the solution to this problem
cannot be found in the history of the text.

There is another possible approach: to match up the lemmas and the
propositions in Apollonius’ seventh book, which has come down to us. This
approach is not as easy as it seems, nor indeed so conclusive, for at least two
reasons. After the work done by Heiberg, we know that even for the first
three books of the Conics, which survive in the edition of Eutocius, Pappus’

6 Pappus drew up seventy lemmas for the books of the Conics, which appear in the
seventh book of his Mathematical Collection (see F. Hultsch, vol. II, pp. 636ff.;
Apollonius Pergaeus, ed. J. L. Heiberg, 2 vols, Leipzig, 1891–1893; repr. Stuttgart,
1974, vol. II, p. 143ff.; La Collection mathématique, French transl. P. Ver Eecke, 2
vols, Paris, 1982, vol. II, p. 718; A. Jones, Pappus of Alexandria, Book 7 of the
Collection, pp. 296ff.). These lemmas are, obviously, very important for writing the
history of the textual tradition of the first four books of the Conics (see M. Decorps-
Foulquier, Les Coniques d’Apollonius de Perge, Thesis, University of Lille, 1994,
pp. 51ff.; published as Recherches sur les Coniques d’Apollonios de Pergè, Paris,
2000, pp. 52–9 and pp. 237–65). More than half these lemmas are intended to fill in
missing steps in a demonstration by Apollonius, that is a jump in the exposition made
deliberately by the author. A reader familiar with the Elements, as he should be, would
be perfectly capable of filling in the gap for himself.
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lemmas are scarcely helpful in reconstructing the propositions. This state of
affairs is in no way peculiar to the Conics, but derives from Pappus’ editing.
Moreover, Paul Tannery experienced similar difficulties in regard to
Apollonius’ Plane Loci. The second difficulty arises from the fact that the
seventh book of the Conics does not survive in Greek, which means that we
cannot be confident in making use of philological arguments. As for the
eighth book, not the slightest trace of it has survived in any language: a state
of affairs that provides fertile ground for the growth of legends. With these
warnings in mind, let us nevertheless examine Pappus’ lemmas; perhaps
they may yield some elements of a response to the question of what Pappus
might have known of the eighth book.

We are considering fourteen lemmas in all, referring to the seventh and
eighth book. As we noted, Pappus does not indicate where the lemmas for
the seventh book begin or end; nor does he say how many lemmas there
are. This leaves us completely and inescapably incapable of determining how
many propositions Pappus may have known from the eighth book. So all
we can do is to try to identify the lemmas that are proposed for the seventh
book.

In the first two of this group of fourteen lemmas, Pappus in fact
considers two cases of a figure for a single lemma. At first glance, it appears
that these lemmas may apply to Proposition 5 of Book VII of the Conics,7

but closer inspection shows the situation is more complicated. It is in fact a
third case of the figure, a case Pappus does not mention, that applies to
Proposition VII.5. Further, applying it then gives Pythagoras’ theorem, from
which the required conclusion can be deduced. So the method is very
different from that of Apollonius. But let us begin by proving these
assertions.

7 Let there be a parabola P with axis ΑΗ, vertex Α, and let ΒΙ be any diameter,
ΑΓ = c the latus rectum with respect to the axis and ΒΖ ⊥ ΑΗ. The latus rectum with
respect to the diameter ΒΙ is then equal to c1 = ΑΓ + 4ΑΖ. For the text and a French
translation, see Apollonius: Les Coniques, tome 4: Livres VI et VII, ed. R. Rashed,
Berlin/New York, 2009, pp. 362–3.

ΙΒΕ

Θ

Α
Δ

Γ

Ζ Η

Fig. 1.1.1
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In the two lemmas, Pappus introduces a rectangle ΑΒΓΔ and a straight
line from the point A passes through the rectangle in the first lemma, and
lies completely outside the rectangle in the second lemma. He shows that

(1) ΑΕ · ΑΖ = ΔΕ · ΔΓ + ΒΖ · ΒΓ.

Α

Ε

ΖΒΖ Γ Ζ

Ε

Δ

Ε

Fig. 1.1.2

The position of the straight line can be defined by Ε , its point of
intersection with the straight line ΓΔ, and the possible cases for the figure
are as follows:

1. Ε lies between Δ and Γ; Ζ then lies beyond Γ on the line ΒΓ.
2. Ε lies beyond Γ; Ζ then lies between Β and Γ, which corresponds to

the figure for Pappus’ Lemma 1.
3. Ε lies beyond Δ; Ζ then lies beyond Β, which corresponds to the

figure for Pappus’ Lemma 2.

So we have three cases for the straight line from Α, and in all three
figures the reasoning and the conclusion are the same, that is we arrive at
equation (1).

The first case of the figure – Ε between Γ and Δ – is not in Pappus’
text, and it is nevertheless the one that corresponds to the figure for
Apollonius’ Proposition VII.5, where Ε is the midpoint of ΓΔ. However, one
can deal with Proposition VII.5 by using Pappus’ lemma, in two different
ways, without involving the normal, ΒΗ, which features in Apollonius’
method. but the reasoning is then different from that of Apollonius in his
proposition (see the figure for Conics, VII.5).
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We may consider:
a) The rectangle ΑΕΒΖ together with the straight line ΒΔ, the tangent

to the parabola at Β, and passing through the vertex Β of the rectangle
(Conics, VII.5).

b) The rectangle ΑΕΒΖ together with the straight line ΑΙ from the
vertex Α of the rectangle and parallel to the line ΒΔ. The line ΑΙ is then the
ordinate of Α relative to the diameter ΒΙ, and we have ΑΙ = ΒΔ; Pappus’
lemma gives

a) ΒΘ · ΒΔ = ΕΘ · ΕΑ + ΖΑ · ΖΔ
b) ΑΤ · ΑΙ = ΕΒ · ΕΙ + ΖΤ · ΖΒ.

But, from Conics I.35, Α  is the midpoint of ΖΔ; so Θ  is also the
midpoint of ΒΔ, and Τ the midpoint of ΒΖ. So both a) and b) are special
cases of Pappus’ lemma:

a) ⇒ ΒΔ2 = ΕΑ2 + ΖΔ2 ⇒ ΒΔ2 = ΒΖ 2 + ΖΔ2

b) ⇒ ΑΙ 2 = ΕΙ 2 + ΖΒ2 ⇒ ΑΙ 2 = ΕΙ 2 + ΕΑ2;

that is to say we have Pythagoras’ theorem applied to triangle ΒΔΖ in case
a) and to triangle ΑΕΙ in case b), results that could have been obtained
without Pappus’ lemma.

If the latus rectum relative to the axis ΑΖ is called c0 and the latus
rectum relative to the diameter ΒΙ is c, we have

ΒΔ 2 = ΑΙ 2 = c · ΒΙ = c · ΑΔ = c · ΑΖ,
ΒΖ 2 = ΕΑ2 = c0 · AZ,

ΖΔ2 = ΕΙ 2 = 4·AZ2;

so from a) and from b) we deduce

c · AZ = c0 · AZ + 4·AZ2 , hence c = c0 + 4·AZ.

This rather long discussion shows that the relationship between Pappus’
first two lemmas and Conics VII.5 is so tenuous that (if one did not already
know them) it would be impossible to deduce the statement and content of
the proposition from the lemmas alone. Such indeterminacy should, if we
care for rigour, prevent us saying this lemma is the one that belongs to that
proposition. The most we can say is that Pappus started from the figure for
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VII.5, or a figure like it, and proved a general metrical relation that in the
case found in Apollonius reduces to Pythagoras’ theorem.

Lemma 3 – of which Lemma 4 is only a special case – makes it possible
to prove a result concerning the sum of two conjugate diameters of a
hyperbola, the subject of Proposition VII.25. When applied to two conjugate
diameters of a hyperbola, the hypothesis of Lemma 3 leads to the property
proved in Proposition VII.13. So we accept it as a hypothesis and the
conclusion of Lemma 3 then directly gives the conclusion of Proposition
VII.25. On the other hand, the special case that can be deduced from
Lemma 4 is not mentioned by Apollonius. Let us expand these statements a
little.

Δ

Η Β

Γ

Ε

Ζ

Α

Θ

Fig. 1.1.3

In Lemma 3, Pappus considers the case in which ΑΒ > ΓΔ, ΑΗ = ΗΒ,
ΓΘ = ΘΔ, Ε ∈ [ΗΒ], Ζ ∈ [ΘΔ] such that ΑΕ · ΕΒ = ΓΖ · ΖΔ ⇒ ΑΕ > ΓΖ.

Proposition VII.25 investigates the sum of two conjugate diameters of a
hyperbola.

Let (d1, ′d1 ) and (d2, ′d2 ) be two pairs of conjugate diameters; we know
that if d1 > ′d1 , we also have d2 > ′d2 .

Let us assume d 2 > d1 > ′d1 , and let us put AH = HB = d2 and
ΗΕ = ′d2 ; ΓΘ = ΘΔ = d1 and ΘΖ = ′d1 ; we have

AE EB Z Z HA HE Z d d d d⋅ = ⋅ ⇔ − = − ⇔ − ′ = − ′Γ Δ ΘΓ Θ2 2 2 2

2

2

2

2

1

2

1

2 ,

which is the same as the conclusion of Proposition VII.13. We have

ΑΕ ·ΕΒ = ΓΖ · ΖΔ ⇒ ΑΕ > ΓΖ.

But
AE = d2 + ′d2  and ΓΖ = d1 + ′d1 .

So we have
d2 + ′d2  > d1 + ′d1 .

Let the axes of the hyperbola be d0 and ′d0 ; we have d1 > d0, so

d1 + ′d1  > d0 + ′d0 ,



16 CHAPTER I: THEORY OF CONICS

and consequently
d0 + ′d0  < d1 + ′d1  < d2 + ′d2 .

In Lemma 4, Pappus assumes ΑΗ = ΓΘ, and in this case

ΑΕ · ΕΒ = ΓΖ · ΖΔ ⇒ ΑΕ = ΓΖ.

In a hyperbola, two diameters d 1 and d 2 are equal if they are
symmetrically placed with respect to one or other of the two axes; if this is
so, their conjugates are also symmetrical, and we have ′d1  = ′d2 , hence

d1 + ′d1  = d2 + ′d2 .

We have ΑΗ = ΓΘ ⇒ ΑΕ = ΓΖ ⇔ d1 = d2 ⇒ d1 + ′d1  = d2 + ′d2 .
This special case is not mentioned by Apollonius.
Finally, let us note that if we had d1 < ′d1 , we should also have d2 < ′d2 ,

in which case we could apply Lemma 3 by making AH = HB = ′d2  and
HE = d2; ΓΘ = ΘΔ = ′d1  and ΟΖ = d1. We should then have

AE EB Z Z d d d d⋅ = ⋅ ⇔ ′ − = ′ −Γ Δ 2

2

2

2

1

2

1

2 ,

and the remainder of the argument would be the same as before.
So we have now identified the conditions for Lemmas 3 and 4 to be

lemmas for Proposition VII.25 of the Conics. The first condition is to fulfil
the conditions for Proposition VII.13, to which Pappus does not make the
slightest reference. The second condition, if we want to speak of perfect
correspondence between the lemmas and propositions, would be our
possessing a text of the Conics in which Apollonius considered the case to
which Lemma 4 corresponds, that is the case where there is symmetry with
respect to the axes. Now, no such text exists, except in the conjectural
circumstances of Pappus perhaps having in his hands a text of the Conics
that was different from the one we now have available. But it remains
impossible to prove that Pappus is indeed referring to this proposition by
Apollonius, even if the suggestion is not entirely implausible.

When we turn to Pappus’ Lemma 5, we find ourselves in an equally
indeterminate situation. One might deduce that the lemma was intended for
Proposition VII.27 on the ellipse. But Apollonius does not even give a proof;
he apparently regards the result as an obvious consequence of Proposition
VII.24, to which his readers are referred.8 Thus if we agree that Lemma 5 is

8 Apollonius: Les Coniques, tome 4: Livres VI et VII, pp. 420–1.
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intended to apply to that proposition, we shall also have to agree that the
same lemma makes it possible to provide a proof that Apollonius never
gave.

We can rewrite Pappus’ Lemma 5 as follows. Let there be four line
segments, respectively of lengths a, b, c, d:

a > b, d > c, a > c and b > d ⇒ a – c > b – d.

Let us turn to Proposition VII.27. Let AB and CD be the axes of the
ellipse, and let AB = d0, CD = ′d0 , with d0 > ′d0 . Let ΝΜ be the diameter
that is equal to its conjugate and let ΓΔ be any diameter. Let us make ΓΔ =
d; and let its conjugate be d′.

Α

Γ

Δ
Μ

Β

Ν

C

D

Fig. 1.1.4

– If Γ lies on the arc ΑΝ, we have

d0 > d > d′  > ′d0 .

In this case, Lemma 5 gives

d0 – ′d0  > d – d′ .

– If Γ lies on the arc NC, we have d′ > d; so

d0 > d′ > d > ′d0 ,
and Lemma 5 gives

d0 – ′d0  > d′ – d.

– If Γ is at point Ν, we have d = d′, d – d′ = 0. So the general result is

d0 – ′d0  > | d – d ′ |;

this proof does not depend on Proposition VII.24.
To say that Lemma 5 is a lemma for Proposition VII.27 is thus to imply

either that Pappus, for a reason we do not know, had not seen that the
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proposition is obvious from VII.24, or that he simply wanted to extract a
metrical relationship from the set-up considered in VII.27, without reference
to the proposition itself. There is nothing in the text to favour one of these
possibilities over the other, and we are more or less faced with just one
more lemma, unnecessary if perhaps not without purpose.

Lemma 6 gives an equally trivial result concerning two similar
rectangles: if the ratio between corresponding sides is 2, the ratio of the
areas is 4. In this lemma Pappus introduces four line segments of lengths a,
b, c and d, respectively, such that c = 2a, d = 2b, and shows that c · d = 4
a · b.

At no point does Pappus extend this result to the obvious case of
parallelograms, still less the general case. Now in Proposition VII.31, from
which one might approach the lemma, we find the case of a rectangle,
defined by the axes of the ellipse, and that of a parallelogram, defined by the
two conjugate diameters. Here is Apollonius’ text:

Four times the parallelogram ΘΗ, that is the parallelogram ΗΜ, is equal to
four times the rectangle ΑΘ  by ΘΓ , which is equal to the rectangle
enclosed by the axes ΑΒ, ΓΔ.9

Θ Θ

ΓΓ

Α Β

Η

Μ
Μ

ΔΔ

a

b

d a

b

cc

d

Η

ΒΑ

Fig. 1.1.5

So if Lemma 6 were intended for Proposition VII.31, the proposition
itself would have had to have partly failed in its purpose.

Lemmas 7, 9 and 11 deal with similar divisions, a matter not treated in
the seventh book. Lemma 9 is moreover a special case of Lemma 7;
Lemma 11 is the converse of Lemma 9. Lemmas 8 and 10 are inserted
between 7 and 9 and 9 and 11, respectively, for no reason, and the
properties they establish are completely trivial. That is to say one can see no
possible use for Lemmas 8 and 10, nor any reason why they occur where
they do. For example, let us consider Lemma 7.

9 Apollonius: Les Coniques, tome 4: Livres VI et VII, p. 432; Arabic text, p. 433,
10–12.
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Δ

Η Β Γ

Ε Ζ

Α

Θ

Fig. 1.1.6

Let us assume that

we have

(1) ΔΕ
ΑΒ

= =EZ

B

E

BHΓ
Θ

 = k;

so (Α, Η, Β, Γ) and (Δ, Θ, Ε, Ζ) are two similar ranges of points.
From (1) we deduce

(2) ΔΘ
ΑΗ

ΘΖ
ΗΓ

=  = k.

Now

(1) ⇒ ⋅
⋅

=ΔΕ ΕΘ
ΑΒ ΒΗ

k2  and (2) ⇒ ⋅
⋅

=ΔΘ ΘΖ
ΑΗ ΗΓ

k2 ,

hence
ΔΘ ΘΖ
ΑΗ ΗΓ

ΔΕ ΕΘ
ΑΒ ΒΗ

⋅
⋅

= ⋅
⋅

.

In Lemma 9, Β is the midpoint of ΑΓ, and Ε is the midpoint of ΔΖ.

That is, ΑΒ = ΒΓ and ΔΕ = ΕΖ; moreover ΕΖ
ΕΘ

ΒΓ
ΒΗ

= . We show that

ΘΔ ΘΕ
ΖΕ ΖΘ

ΗΑ ΗΒ
ΓΒ ΓΗ

⋅
⋅

= ⋅
⋅

.

So we have a special case of Lemma 7.

Lemma 11 is the converse of Lemma 9; it can be written

(ΑΒ = ΒΓ, ΔΕ = ΕΖ and ΘΔ ΘΕ
ΖΕ ΖΘ

ΗΑ ΗΒ
ΓΒ ΓΗ

⋅
⋅

= ⋅
⋅

)

⇒ =ΕΖ
ΕΘ

ΒΓ
ΒΗ

  ⇒ = = =ΔΕ
ΑΒ

ΕΖ
ΒΓ

ΕΘ
ΒΗ

k .

E
E

EE E E
E EE
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In Lemma 9, we can write the relation (1) of Lemma 7, and the proof is
immediate. In Lemma 11, we put in a point Κ on the line ΑΒ and a point Λ
on the line ΔΕ such that the ranges (Α, Β, Γ, Κ) and (Δ, Ζ, Θ, Λ) are similar.

We then deduce from this that the divisions (Α, Β, Γ, Η) and (Δ, Ε , Ζ, Θ)
are also similar.

Lemma 8, inserted between 7 and 9, reduces to saying that if
AB2 + BΓ2 and AB2 – BΓ2 are known, then ΑΒ and ΒΓ are known. And
Lemma 10, inserted between 9 and 11, can be written

if ΑΒ = ΒΓ and ΒΔ < ΒΕ, then ΑΔ ΔΒ
ΒΓ ΓΔ

ΓΕ ΕΒ
ΒΑ ΑΕ

⋅
⋅

< ⋅
⋅

.

ΔΒ ΓΕΑ

Fig. 1.1.8

It is not clear why Lemmas 8 and 10, which give results that are
obvious, should be inserted between lemmas connected with similar
divisions.

Let us put these last two lemmas aside and consider all the Lemmas 9,
11, 12, 13 and 14. We may note that all of them involve two line segments
and their midpoints – ΑΓ with midpoint Β and ΔΖ with midpoint Ε – and a
point Η on the straight line ΑΓ together with a point Θ on the line ΔΖ. In
Lemmas 9 and 11, we have similar divisions, and thus a series of equal
ratios. In Lemmas 12, 13 and 14 the hypotheses and the conclusions relate
to unequal ratios. Thus, from the hypotheses of Lemma 9 we have

12) If ΔΕ = ΕΖ, ΑΒ = ΓΒ and ΖΘ
ΓΗ

ΕΖ
ΓΒ

> , so ΔΘ
ΑΗ

ΕΖ
ΒΓ

<  if Η lies between

Β and Γ, and Θ lies between Ε and Ζ, or ΔΘ
ΑΗ

ΕΖ
ΒΓ

>  if H lies beyond Γ and

Θ lies beyond Ζ.

EE E E E EE EE EEE EE
E
E EE E

E E E E E
E E

E
E
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That is, with the hypotheses of Lemma 9 and the hypothesis (4) > (2),
we have (5) < (2) or (5) > (2), according to the position of Η.

13) If ΔΕ = ΕΖ, ΑΒ = ΓΒ and ΔΘ
ΑΗ

ΘΕ
ΗΒ

< , so ΖΘ
ΓΗ

ΕΖ
ΒΓ

< , if Η lies beyond

Γ and Θ lies beyond Ζ.

That is, with the hypotheses of Lemma 9 and the hypothesis (5) < (3),
we have (4) > (2).

14) If we make the same hypotheses, then ΖΘ
ΓΗ

ΕΘ
ΒΗ

<  if Η lies between Β

and Γ and Θ lies between Ε and Ζ.

We have given summaries of eight lemmas, three of which concern
similar divisions, two are obvious, and three deal with divisions in unequal
ratios. The five lemmas consider two line segments and their midpoints. We
know that when their midpoints coincide, the segments correspond to two
diameters of a conic. But it seems that – unless I am mistaken – the seventh
book of the Conics contains no proposition in which one might make use of
any of these lemmas. They could be used, for example, in considering
tangents and their intersection with diameters that do not pass through their
point of contact with the conic section. But that does not help us much.

To recap: examining the first six lemmas has shown us, if we can
identify it from mere hints, a relationship with some propositions of the
seventh book of the Conics, but the connection is often tenuous and fragile:
the case that is relevant to Proposition VII.5 is not considered in the first two
lemmas, and, if we decide to ignore that, we have seen that using Lemma 1
gives us Pythagoras’ theorem. Lemma 3 can be employed in Proposition
VII.25 only on condition that we also use Proposition VII.13, to which no
reference is made; Lemma 5 could be useful in a proof of Proposition
VII.27, but no proof is given by Apollonius; Lemma 6 is inadequate for
VII.31, because it does not consider parallelograms. From Lemma 7
onwards, as we have just seen, it seems there is no relationship with
propositions of the seventh book, not even by implication. These lemmas
cannot be constructed as components of Apollonius’ proofs, instead they
appear to be commentaries on the theory of conics, or spin-offs from it,
taking up only metrical relationships. On this evidence, we can come to no
conclusion about what Pappus may have known of the eighth book of the
Conics.

Given the inadequacy of the evidence, and the extent of our uncertainty,
it would be rash (to say the least) to make a snap judgement about the
relationship between Pappus’ lemmas and Apollonius’ propositions. There is
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nothing to justify drawing a line dividing the last two books of the Conics,
passing between Lemmas 6 and 7. Halley’s reconstruction of the lost book,
for his edition of 1710, could only have been based on pure conjecture, and
is of no historical significance. There are also further arguments that should
encourage us to exercise prudence.

The first concerns the version of the Conics that Pappus knew. He
writes:

The eight books of Apollonius’ Conics have four hundred and eighty-
seven theorems, or figures, and seventy lemmas.10

Counting the number of propositions in the seven books, as they
survive, in the version due to Eutocius and in the Arabic version, gives a
total that differs from this by about a hundred propositions. If Pappus did
know the eighth book of the Conics, and if his count was true, other things
being equal, the eighth book must have contained about a hundred propo-
sitions. This would be surprising, because in the other books – including the
fifth, which is by far the longest – Apollonius never exceeded 78 proposi-
tions. This unexpected feature would at least have been remarked upon by
Pappus or by some commentator; but that does not happen. There are
various possible, and equally probable, explanations for Pappus’ total: a
copyist’s error, propositions interpolated in Pappus’ version that made up
this number, a version different from the one that has come down to us, and
so on. As for the seventy lemmas, they could equally well be lemmas
included in the version of the Conics Pappus had in his hands or the
seventy-two lemmas found in the Mathematical Collection.

The second additional argument concerns the nature of the lemmas. We
have not properly understood the guiding principle of Pappus’ lemmas for
the Conics. We have not propositions conceived as parts of the proof that
Apollonius may have omitted; rather than that, what we have are commen-
taries, as it were in counterpoint to Apollonius. In most of the lemmas,
Pappus presents commentaries derived from the theory of conics that deal
only with metrical relations. Thus we have commentaries on the relations
that play a part in Apollonius’ proofs, that is, commentaries on isolated pro-
perties that are usually intended to draw attention to a metrical property.
Almost nothing remains of the properties of conics themselves. Perhaps this
is the main reason we find it so difficult to establish secure connections
between Pappus’ lemmas and Apollonius’ propositions.

10 Pappus, Collection, Book VII, ed. Hultsch, vol. II, pp. 682, l. 21–23 (French
transl. P. Ver Eecke, vol. II, p. 512): ˜F¤|§ {Å …d ä˝ x§y≥ß` …Ëμ ıA√∑≥≥›μß∑ 
≤›μ§≤Ëμ ¢|›ƒç¥`…`, è…∑§ {§`zƒc¥¥`…`  √â˝, ≥ç¥¥`…` {Å è…∑§ ≥`¥y`μ∫¥|μc }«…§μ
|•» `À…d ∑˝.
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The third argument relates to the content of Lemmas 7 to 14. Lemmas
8 and 10 are not only trivial but also give no clue as to their function, or to
why they are on this side of the supposed demarcation line. Lemma 8, for
example, tells us that if we have two magnitudes a and b and if a2 + b2 and
a2 – b2 are known, then a and b are known. So why is Lemma 8 inserted
between Lemma 7 and the special case of the same result, that is Lemma 9?
It is not clear, either, why Lemma 10, which is trivial, appears between
Lemma 9 and its converse, Lemma 11.

Moreover, it should be emphasized that there can be no doubt that
Lemmas 7, 9 and 11 relate to propositions in which similar divisions make
an appearance, and that the set of lemmas in the group 7, 9, 11, 12, 13, 14
could be useful if one were concerned with two diameters of a conic section.

Thus, however one looks at the evidence provided by Pappus, there is
no reasonable justification, that is no sufficiently convincing argument, for
extracting from it any useful information about the state of the Conics in the
copy he used, still less about what Pappus knew of the eighth book. We
cannot even be sure that Pappus possessed the whole of this last book. Did
he really know it? Did he know some propositions that involved similar
divisions? It is, at best, only the last of these possibilities that can be regarded
as acceptable, until we have more information. There is no hope of our
obtaining it either from the lost commentary by Hypatia, or from the book
by Serenus of Antinoë, or even from Eutocius. Unfortunately, everything
suggests that Book VIII of the Conics was essentially lost, probably in the
course of the centuries that separate Apollonius from Pappus. The Arabic
tradition provides further confirmation of this conclusion.

We are well informed about the part played by the three brothers Banº
Mºsæ in searching out Greek manuscripts of the Conics and in producing
translations. The nature of their contribution has become clearer from the
mathematical writings of the youngest brother, al-Îasan, which are now
better known.11 In addition to Eutocius’ version of the first four books, the
Banº Mºsæ also possessed another version of seven books of the Conics.
Thus they had a copy of seven books of the Conics that had been made
before the ninth century. This copy did not include the eighth book. Here is
what they say in an essay they wrote as an introduction for a reader of the
Conics:

Æ”uO½uKÐ√ UNF{Ë w²�«  ôUI*« w½UL¦�« s�  ôUI� l³Ý UMO�≈ l�Ë ÊU� b�Ë

11 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. I:
Fondateurs et commentateurs: Banº Mºsæ, Thæbit ibn Qurra, Ibn Sinæn, al-Khæzin, al-
Qºhî, Ibn al-SamÌ, Ibn Hºd, London, 1996.
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There have come down to us seven of the eight books composed by
Apollonius.12

The absence of the eighth book of the Conics was confirmed, in more
detail, by the tenth-century biobibliographer al-Nadîm. He writes:

 lÐ—_« rłdðË ÆWM�U¦�« iFÐË  ôUI� l³Ý tM� œułu*«Ë ¨ ôUI� ÊULŁ »U²J�« Ê≈ ∫vÝu� uMÐ ‰U�Ë
 sÐ XÐUŁ ¨dš«Ë_« WŁö¦�«Ë ¨wBL(« ‰ö¼ wÐ√ sÐ ‰ö¼ ¨vÝu� sÐ bLŠ√ Íb¹ 5Ð W�Ë_«  ôUI*«

Æ‰UJý√ WFÐ—√ WM�U¦�« W�UI*« s� »UB¹ Íc�«Ë Æw½«d(« …d�

The Banº Mºsæ said: the work is in eight books; seven and a part of the
eighth survive. The first four books were translated in the circle of AÌmad
ibn Mºsæ, by Hilæl ibn Abî Hilæl al-ÎimÒî, and the last three by Thæbit
ibn Qurra of Îarræn. What we possess of the eighth book is four
propositions.13

Obviously, al-Nadîm is not quoting the Banº Mºsæ verbatim. In those of
their writings that are known today, the Banº Mºsæ do not mention these
four propositions of the eighth book. On the other hand, the figure is so
precise, and the passage we have quoted contains so much that can be
substantiated, that we cannot neglect the evidence it offers. The Banº Mºsæ
in fact speak of only seven books. Thus, AÌmad ibn Mºsæ could have
obtained Eutocius’ version of the first four books and, they write,14 ‘he
managed, with the help of that, to understand the remaining three books of
the seven books’ (fa-amkana bi-dhælika fahm al-thalæth al-maqælæt al-
bæqiya min al-sab‘ al-maqælæt) or again ‘The man who undertook the task
of translating the remaining three books was Thæbit ibn Qurra of Îarræn,
the geometer’ (wa-kæna al-mutawælî li-tarjamat al-thalæth al-maqælæt al-
bæqiya Thæbit ibn Qurra al-Îarrænî al-muhandis).

In the writings of the Banº Mºsæ, then, it is only a question of seven
books, and there is no trace of the four propositions from the eighth book.
Where could al-Nadîm have got his information about the four propositions
from the eighth book? As he had no direct access to the Greek tradition, his
information must come from an Arabic text – possibly one translated from
Greek. There is no guarantee this source existed, and we have no idea what
it may have been.

The biobibliographers and mathematicians who succeeded al-Nadîm add
nothing of substance, except as echoes of the interest taken in the lost book.
Al-Qif†î does no more than pass on what was said by al-Nadîm, but from

12 Apollonius: Les Coniques, tome 1.1: Livre I, p. 504; Arabic text, p. 505, 1–2.
13 Al-Nadîm, Kitæb al-fihrist, ed. R. Tajaddud, Teheran, 1971, p. 326.
14 Apollonius: Les Coniques, tome 1.1: Livre I, p. 506; Arabic text p. 507, 6–7

and 13–14.
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his fictionalized account it emerges that at the end of the twelfth century and
the beginning of the thirteenth scholars were still looking for the eighth
book:

When books were brought from the Byzantine empire to al-Ma’mºn (the
Abbasid caliph), from this book (the Conics) they brought the first part,
comprising seven books, and no more. When it was translated, the intro-
duction indicated that the work was in eight books and that the eighth
book included the concepts of the seven books and more, and that he
(Apollonius) had set out useful propositions together with desirable
results. From that time until now specialists have been seeking to find this
book without hearing anything further of it.15

Other old biobibliographers add nothing very important to these stories.
They repeat the statements of the Banº Mºsæ, that is, that the seven books
were passed on and translated into Arabic.

Commentators on the Conics had access to only seven books, and
provided no information about the eighth. This is true of NaÒîr al-Dîn al-
™ºsî,16 al-IÒfahænî,17 al-Shîræzî18 and al-Yazdî.19 Only al-Maghribî writes
about the eighth book:

 

 «–U� vKŽ WLł«d²�« rKFð r�Ë ¨ «—œUB� öÐ UN�UJý√ błË qÐ ¨…œułu� dOG
 W�UI*« Ác¼ U�√ ∫‰u�√
Æ ôUI� l³Ý »U²J�« s� wIÐË ¨U¼uKL¼Q
 ¨qzU�*« s� ‰bð

I say: as for this last book, it does not exist <any longer>, but its propo-
sitions have been found without their statements, the translators did not
know which problems they [the propositions] refer to, so they have
neglected it [the book] and only seven books of the work remain.20

It is clear that al-Maghribî is contributing no significant information
beyond the fact that the eighth book was not translated into Arabic. He does
no more than make a conjecture, put forward as an argument, to explain
why the book is missing.

So we may state without risk of contradiction that from the ninth
century onwards no mathematician ever mentioned any proposition from
the eighth book – either commentators on the Conics or readers, for

15 Al-Qif†î, Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, p. 61.
16 TaÌrîr kitæb al-Makhrºtæt, MS Dublin, Chester Beatty 3076; London, India

Office 924.
17 TalkhîÒ al-Makhrº†æt, MS Aya Sofia 2724.
18 Abº al-Îusayn ‘Abd al-Malik ibn MuÌammad al-Shîræzî, Kitæb TaÒaffuÌ al-

Makhrº†æt, MS Istanbul, Ahmed III, 3463; Carullah 1507; Yeni Cami 803.
19 MS Edinburgh, Or. 28.
20 Ibn Abî al-Shukr al-Maghribî, SharÌ Kitæb Abulºniyºs fî al-Makhrº†æt, MS

Teheran, Sepahsalar 556, fol. 2v.
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example Ibn al-Haytham or Ibn Abî Jarræda. Only al-Nadîm refers to these
‘four propositions’. Was he repeating what he had found in an ancient
source that had been translated into Arabic?

So, all in all, taking into account both Greek and Arabic traditions, it
seems that from the eighth book, by then long lost, some propositions
survived, and were probably known to Pappus, and, by one means or
another, an echo of them reached into Arabic. The small number of these
propositions – four according to al-Nadîm – perhaps explains the anomalies
in the main lines of the history of this book. This conjectural explanation has
no pretensions to being either definitive or highly plausible. It is one possi-
bility among others. The only certainty, as we have already stated, is that the
eighth book was lost, either completely or in great part, some time in the
course of the centuries that separate Pappus from Apollonius, or even
before Pappus.

But once again we need to discuss the possible contents of the eighth
book. And here again, we are reduced to making conjectures. The one most
widely accepted is that of T. L. Heath:

It is probable enough that the book contained a number of problems
having for their object the finding of conjugate diameters in a given conic
such that Halley attempted a restoration of the Book.21

The same explanation is favoured by other eminent historians, G. Loria
and H. G. Zeuthen, but it is not the only one that is conceivable. One would
have an equal right to defend a completely different opinion. First let us
remind ourselves that in the fourth book of his Mathematical Collection
Pappus seems to indicate that the problem of trisecting an angle, posed in
the fourth century BC, was not solved. He writes:

The earliest geometers could not find a solution to the aforementioned
problem concerning the angle, a problem whose nature is three-
dimensional (solid), when they sought it by plane methods, for the
sections of the cone were not yet familiar to them, and it is because of this
that they (the geometers) remained uncertain. They did however achieve
trisection of the angle later on, after, in order to find it, having made use of
verging which we describe above.22

Looking at it from this point of view, we might think the eighth book
was concerned with using conics to solve problems involving three-
dimensional (solid) neuseis, such as those Pappus refers to in the fourth
book of the Collection. The book on neuseis attributed to Apollonius would

21 T. L. Heath, A History of Greek Mathematics, vol. II, p. 175.
22 Pappus d’Alexandrie, La Collection mathématique, French transl. P. Ver

Eecke, vol. I, p. 209.
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then be seen as complementary to Conics Book VIII, dealing only with
plane problems. In this interpretation we can see similarities between Ibn al-
Haytham’s reconstruction and Apollonius’ eighth book.

In the present state of knowledge, we have no reason to favour either of
these conjectural explanations over the other. Lack of information can only
give free rein to beliefs. In any case it is in these conditions and with this
hypothesis that Ibn al-Haytham conceived his project of ‘completing’ the
Conics. But exactly what are we to understand by such ‘Completion’?

1.1.3. The Completion of the Conics: the purpose of the enterprise

It scarcely needs to be said that the Completion of the Work the Conics
is not a commentary on Apollonius’ Conics, in any reasonable sense of the
term ‘commentary’. To convince oneself of this one needs only to compare
this book by Ibn al-Haytham with the Greek and Arabic commentaries on
the Conics – or on several books of the work – that is, the commentaries of
Eutocius, of al-™ºsî, of al-Maghribî, of al-Shîræzî, of al-IÒfahænî, and so on.
Moreover, the matter could hardly be otherwise. The Completion, unlike
commentaries, deals with a book that Ibn al-Haytham has never read. That
is, in the absence of a text, there was nothing to comment on.

The Completion accordingly belongs to a literary genre distinct from the
commentary, that of the reconstruction of a lost text. Finally, we do not
know of any attempt to reconstruct this lost book, either in Greek or in
Arabic, earlier than the eleventh century. So the Completion represents the
birth of a literary genre, a new type of mathematical writing whose charac-
ter we must now examine.

Ibn al-Haytham knew almost nothing about the book he was
reconstructing, except for some brief remarks by Apollonius. In the pream-
ble to the first book of the Conics, we read that the eighth book …ª {Å
√ƒ∑x≥ä¥c…›μ ≤›μ§≤Ëμ {§›ƒ§«¥Äμ›μ (ed. Heiberg, p. 4), which in the
Arabic translation becomes al-masæ’il allatî taqa‘u fî al-makhrº†æt.

It is clear that the translator has rendered the verb {§∑ƒßâ|§μ by the verb
waqa‘a. The immediate and standard translation for the Arabic expression
would then be ‘the problems that occur in cones’, which would, to say the
least, appear surprising coming from someone like Hilæl ibn Abî Hilæl al-
ÎimÒî or IsÌæq ibn Îunayn. Their knowledge of Greek and of Arabic
would have prevented them from abbreviating in this way. So we need to
recollect that the senses of the verb waqa‘a include ‘to occur infallibly’.23

23 As in the verse in the Koran:  l�«u� p=ÐÓ— Ó»«ÓcÓŽ ]Ê≈.
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The element of necessity affects the sense of the phrase, which can then be
translated ‘the problems that necessarily arise (occur) in cones’. A second
meaning for this same verb waqa‘a  is ‘firmly established, fixed,
determined’, as in waqa‘a al-Ìukm (‘the judgement has been firmly
established’).24 Apollonius’ phrase would thus mean ‘the problems <whose
solutions are> firmly established in the conics’. In both cases, we find the
sense ‘determined’ and thus Apollonius’ phrase would mean ‘the problems
<whose solutions are> determined in cones’. The verb {§∑ƒßâ|§μ means first
and foremost ‘to set limits on’, in the concrete and the abstract senses of the
term. Following Aristotle, the dialectico-logical sense (‘to determine’, ‘to
define’) is extremely widespread, and was not completely displaced by the
well-known mathematical sense: ‘to find and describe in what and how
many ways a question can be resolved’.25 The Arabic translator thus seems
to have opted for the dialectico-logical sense.

The second allusion to the eighth book appears in the preamble to the
seventh book. Apollonius first refers to the research in this latter book and
writes:

ÆWKBH� UNOKŽ qLFð w²�« ‰UJý_«Ë —UD�_« d�√ w
 WM�Š W³¹dž …dO¦� ¡UOý√ W�UI*« Ác¼ w
Ë

In this book (the seventh), there are many things, surprising and beautiful
things, concerning diameters and the figures constructed on them, given
in detail.26

He continues:

 qzU�*« s� lI¹ ULO
 …b¹bý tO�≈ WłU(«Ë ¨qzU�*« s� …dO¦� ”UMł√ w
 WFHM*« rOEŽ p�– lOLłË
Æ»U²J�« «c¼ s� Õ W�UI*« w
 t½UOÐË Ád�– Íd−¹ U2 U½d�– w²�«  UÞËd<« ŸuD� w


Here again, there are two possibilities, depending on whether or not the
verb waqa‘a is still being used to translate the same Greek verb as before.
The second hypothesis is, however, the more plausible one, given the
method of translation. We would then read:

All this is of great use in many kinds of problems, and we have great need
of it in the problems that are determined (lit.: determine themselves) in
conic sections, which we have mentioned, as being those that will be set

24 As in the verse of the Koran: ôÓ(« ÓlÓ�ÓuÓ
 ‘The truth establishes itself firmly’.

25 Ch. Mugler, Dictionnaire historique de la terminologie géométrique des
Grecs, Études et commentaires, XXVIII, Paris, 1958, p. 141.

26 Apollonius: Les Coniques, tome 4: Livres VI et VII, edited and translated from
the Arabic text, and with a historical and mathematical commentary by R. Rashed,
Berlin/New York, 2009, p. 350.
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out and demonstrated in book VIII of this treatise, which is the last
book.27

These pieces of information, it must be acknowledged, provide a very
slender basis for any kind of reconstitution. Ibn al-Haytham did not have at
his disposal any trace or scrap of text on which to exercise the skills of a
historian or those of an archaeologist. Moreover, he seems to have known
nothing of the four propositions referred to by al-Nadîm. So we cannot
avoid asking the following question: what, in these circumstances, is the
significance of the act of reconstructing a mathematical text about which
one knows nothing, and which, furthermore, was written twelve centuries
earlier? This enterprise which, at least at first glance, may appear hopeless,
for example as a piece of historical research, was nevertheless undertaken by
Ibn al-Haytham, and continued to seem attractive to mathematicians who
succeeded him, sharpening their imaginations and sometimes even their
creative activity. We may think of Maurolico and the Conics, of Fermat and
Apollonius’ Plane loci, of Albert Girard and Euclid’s Porisms, and so on.
For all of them, starting with Ibn al-Haytham, the act of ‘reconstruction’ is
in no way an act of restoration. The mathematician is neither an
archaeologist nor a historian. Moreover – and this is the second trait that all
these attempts have in common – this reconstruction is carried out in
accordance with the criteria of rigorous proof. It is not to be equated with
the reconstruction of a philosophical system of any kind. In that case the
philosopher works up the missing part of a theory so that the theory can be
presented in a coherent manner: fundamentally, we have commentary,
direct or disguised. For his part, the mathematician must invent, and give
rigorous proofs for, the propositions that strengthen the ancient work by
extending it. This is so for Ibn al-Haytham as well as for Fermat, for Albert
Girard, and, more or less, for Maurolico. We may note that the term
‘completion’ that Ibn al-Haytham uses has two closely connected senses: ‘to
complete’, to remedy omissions that may be due to Apollonius himself; ‘to
make perfect’, for establishing the internal consistency of the theory of
conics. Ibn al-Haytham speaks of tamæm (perfecting), which carries an
implication of a striving for perfection, for accomplishment.28 He is thus

27 Ibid., p. 350; Arabic p. 351, 7–9.
28 In the Kitæb al-‘ayn we read: ‘The completion of any thing is what completes it to

its limit’  t²¹UG� UÎ�U9 ÊuJ¹ U� ¡wý q� W]L²ð .

In the Koran we read, al-Mæ’ida 3: ‘Today I have perfected your religion for you,

perfected my good deed for you’ w²LF½ rJOKŽ XL9√Ë rJM¹œ rJ� ÔXKL�√ ÂuO�« .
(Cont. on next page)
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engaged in two forms of approach simultaneously, heuristic and structural.
And we cannot, in fact, understand the purpose or the development of his
work if we fail to take into account the double nature of the act of
‘completing’. Thus, after having pointed out that we lack some ‘notions’
(ma‘ænî), that is to say propositions and theorems, ‘that should not have
been lacking in this work [the Conics]’, he guesses, of course without any
evidence, since there is none, that

these notions that are missing from these seven books are the notions
contained in the eighth book and Apollonius left them until the end
because he had not needed to use them for the notions he introduced in
the <first> seven books. These ideas we have mentioned are notions
required by the notions introduced in the seven books.29

Too little attention has been paid to what Ibn al-Haytham says here: he
explicitly refers to the set of seven books of the Conics, and not to only the
seventh book – and, moreover, the examples he chooses are taken from the
second book of the work.

The passage we have just quoted gives the clearest possible account of
what Ibn al-Haytham intends by reconstructing the eighth book: he wants to
find the propositions required by the ones Apollonius proved in the course
of the first seven books; to give proofs of them, and thus provide a more
solid structure for the Conics. We can discern the outlines of the plan that
governs the Completion and sheds light on the choice of title as well as on
the method Ibn al-Haytham employs: to carry out new mathematical
research, based on the results obtained in the first seven books, so as to
perfect the logical structure of Apollonius’ exposition. In this sense the
activity of reconstruction is that of active research. But where is the
originality to be found, if indeed there is any? At present, all we know is that
there is nothing in this undertaking that guarantees that this research, even if
it is expressed in terms used by Apollonius, is being carried out precisely
within his conceptual world (his mathesis), or in his style. In regard to style,
Ibn al-Haytham’s choice is unambiguous. We know that, throughout the
seven books, Apollonius’ style is that of pure synthesis. Apart from the
problems at the end of Book II, which are all construction problems (44 to
53), for which Apollonius uses analysis and synthesis, we should seek in vain
to find anywhere else the slightest allusion to any preliminary analysis. Even

(Cont.) There are numerous instances in the Koran and in classical poetry that attest
to this sense of ‘bring something to perfection so that it lacks nothing and has no fault’,
‘to take it to its limit and perfect it’. It would be mistaken to understand this term tatimma
as indicating a simple complement.

29 Les Mathématiques infinitésimales, vol. III, Arabic text p. 147, 9–12; English
version in this volume p. 173.
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the fifth book – the most analytical one – shares the same character. This
preference for synthesis makes it impossible for us to speculate about the
style of the eighth book. It might have been devoted to construction
problems for which Apollonius used analysis and synthesis. But that is not
necessarily the case: all the other construction problems, apart from the
group at the end of the second book that we have already referred to, were
presented in terms of synthesis. Would he, for a reason we do no know,
have proceeded in this eighth book to make use of analysis and synthesis,
thereby departing from the method he followed in the rest of his work? No
serious argument can be put forward in favour of such a conjecture. If
something like that had been so, it would have been, above all, book five
that would have called for this special treatment. In short, there is no reason
to support such a hypothesis in regard to the content of the eighth book and
its style. All we can be sure of is that Ibn al-Haytham himself read the first
seven books of the Conics in the form in which we now know them, that is
in their synthetic style of exposition. In fact it is precisely this situation that
gives his choice such significance. This is how Ibn al-Haytham himself pre-
sents this choice:

Our procedure is to find these concepts [notions] by the use of analysis,
synthesis and discussion [diorism] so as to make this book [the
Completion] the most perfect of them all [the eight books of the Conics]
in regard to proofs.30

We may ask why Ibn al-Haytham adopted a different approach in his
version of a book that was proposed as a continuation of the first seven.
This so-to-speak stylistic concern seems to be a response to a new demand.

This demand, as we may note in general terms before setting out to
analyse it, springs from a mathematical interest that continued to grow and
became important towards the end of the tenth century, notably in the
works of Ibn al-Haytham: proving as rigorously as possible the existence of
points of intersection of the curves of conic sections. Hints of such an
interest are no doubt already to be found in some Greek works on geome-
try – perhaps in Eutocius’ commentary on Problem II.4 of Archimedes’
The Sphere and the Cylinder – but it is not until the tenth century, and in
particular with Ibn al-Haytham, that such proof becomes systematic and
accordingly takes on the appearance of constituting a standard that must be
met.31 Ibn al-Haytham is in fact concerned with the proof of the existence of

30 Ibid., p. 149, 20–21.
31 This new demand, which had not been noticed, seemed to us to be so important

that we have drawn attention to it more than once: 1) ‘La construction de l’heptagone

(Cont. on next page)
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intersections of two conics, using asymptotic and local properties of conics,
and in particular points of contact. Of itself, this new demand in regard to
proof makes it impossible, even at the level of exposition, to avoid
mentioning analysis and synthesis. The emergence of such research work on
the existence of solutions and their number, in accordance with concerns of
analysis and synthesis, is closely linked with the emergence of systematic
research on geometrical constructions employing the intersection of conics.
This research, arising from an interest at once geometrical and algebraic, is
no longer driven by questions that happen to be raised and problems that
are encountered, as it was in Hellenistic times; it now develops systemati-
cally, exploring the field of geometrical problems, the great majority of them
solid, but also plane problems.

Thus, in this book about Apollonius’ Conics, Ibn al-Haytham is espe-
cially concerned with geometrical constructions relating to conic sections:
the construction of tangents, diameters, latera recta and so on, assuming
that we know ratios, products, sums and differences of two of these seg-
ments. In the course of this work, Ibn al-Haytham employs conic sections to
construct solutions not only to solid problems, but also to plane problems.
So we meet, in turn, solid problems whose solutions are constructed by
means of conics, plane problems constructed by means of conics and plane
problems constructed by means of ruler and compasses. Insufficient atten-
tion has been paid to this important fact that, moreover, suggests that cons-
truction by means of conics had become an acceptable method in geometry,
since it is legitimate both for solid problems and for plane problems.

In the problems it considers, in the methods used and in the style it
employs, the Completion of the Work the Conics belongs to the new area of
studies of geometrical construction, in which seeds were undoubtedly sown
by Greek mathematicians, to be cultivated by mathematicians of the end of
the tenth century, before it became a separate area in its own right, notably
in the work of Ibn al-Haytham.

1.1.4. History of the text

Ibn al-Haytham’s book exists in a single manuscript that is part of an
important collection in the Library in Manisa, Turkey – cat. no. 1706. The
collection itself contains seventeen treatises, fifteen of which are concerned
with mathematics or astronomy. It begins with the commentary on

(Cont.) régulier par Ibn al-Haytham’, Journal for the History of Arabic Science, 3,
1979, pp. 309–87; 2) ‘La philosophie mathématique d’Ibn al-Haytham. I: L’analyse et
la synthèse’, MIDEO, 20, 1991, pp. 31–231.
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Menelaus’ Sphærica by the thirteenth-century mathematician, Ibn Abî
Jarræda. This commentary is followed by several ‘additions’ on the same
subject. Next comes a short essay (incomplete) on Proposition X.1 of the
Elements, then a commentary on Apollonius’ Conics, also incomplete at the
beginning and at the end. Most of these texts have been transcribed by the
same hand, and the folios are numbered continuously, which shows that
they came from a single collection. This first group is immediately followed
by another, transcribed by another hand and with the folios numbered
differently. The first treatise in this second group is the book by Ibn al-
Haytham, which occupies folios 1v–25r. Then comes a treatise dictated (but
not composed) by Maimonides: Glosses on Some Propositions of the
Conics.32 These two treatises are in the same hand, which seems to be more
recent than the one that copied the first group of texts. So it seems that Ibn
al-Haytham’s Completion and Maimonides’ Glosses are derived from
another collection. Next comes another treatise, consisting of Glosses on the
Conics, composed by an anonymous scholar for his personal use, in his own
words. The collection continues in the same way, and we find texts trans-
cribed by several hands. For example, one of these treatises was copied at
Tabrîz, in Iran, about 699/1300. So everything indicates that this collection
was put together from several others, by someone knowledgeable about the
mathematical sciences, and who was particularly interested in conic sections.

That is as far as our information goes, in the current state of palaeogra-
phic and bibliographic scholarship in Arabic. Thus the history of the text of
the Completion is very thin: the book was transcribed relatively late, by all
indications, the person responsible was someone interested in conics, but the
names of the owners do not tell us anything very significant.

So we have a text that has come down to us in a single manuscript, a
rather late one. The case is certainly not particularly remarkable, and would
not give rise to any problems if the title of the book appeared in one of the
lists of Ibn al-Haytham’s writings recorded by old biobibliographers, or if
the author himself had referred to it in one of the texts we know. Unfortu-
nately, none of this is so, and the situation is clearly favourable for har-
bouring all kinds of suspicions. That the book is explicitly attributed to al-
Îasan ibn al-Haytham both in the title and in the colophon is certainly
extremely important, but all the same it is not enough to definitively settle
the question of attribution. Against that, due weight must be given to the
silence of the biobibliographers and that of Ibn al-Haytham himself: a glance

32 R. Rashed, ‘Philosophie et mathématiques selon Maïmonide: Le modèle andalou
de rencontre philosophique’, in Maïmonide, philosophe et savant (1138–1204),
Studies collected by Tony Lévy and Roshdi Rashed, Ancient and Classical Sciences and
Philosophy, Leuven, 2004, pp. 253–73.



34 CHAPTER I: THEORY OF CONICS

at the tables comparing the lists of works33 shows that none of the three
principal lists is complete – al-Qif†î, Ibn Abî UÒaybi‘a, Lahore; and more-
over they differ from one another. So the fact that its title does not appear
in a list does not a priori condemn a work as apocryphal. The same tables
also show that Ibn al-Haytham’s silence is not a convincing argument for
casting doubt on the authenticity of a title; furthermore, the two writings in
which he might have referred to the Completion are themselves lost: On the
Properties of the Sections and On the Construction of the Conic Sections.

So our question can be narrowed down: here is a text explicitly
attributed to al-Îasan ibn al-Haytham, without any external evidence that
supports or contradicts this attribution. Accordingly, the only approach open
to us is to return to the text itself.

The overall structure of the piece and its organization show a style to be
found in other works accepted as being by Ibn al-Haytham. He made a habit
of beginning by describing what he is aiming to do, the problem he
proposes to consider, and then referring to the contribution made by his
predecessors, when there was one.

Certainly, Ibn al-Haytham is not the only one to organize his exposition
in this way, but there is also the reliable evidence provided by vocabulary: it
is indeed that of Ibn al-Haytham. Let us look at some examples:

UM×HBðË ÆÆÆ UM¹dI²Ý« (Optics, p. 62) `HBðË ÆÆÆ ¡«dI²Ý«

”uHM�« lKDð (Analysis and Synthe-

sis, p. 37, 4)
”uHM�« uL�ð

U¼U½d�– w²�« w½UF*« (The Knowns, p. 151, 2) U¼d�c¹ r� w²�« w½UF*«

 U½œUI²Ž« w
 vMF*« «c¼ sJ9
UMÝuH½ w
 Íu�Ë

(vol. II, p. 83, 7-8)   Í√— Èu� U� bŠ√ u¼ vMF*« «c¼
r¼œUI²Ž« w
 5H�KH²*«

We can extend our list of examples like these, which are obviously
reliable guides to the identity of the author. It suffices to note the very
frequent use of ma‘næ/ma‘ænî, which is characteristic of the vocabulary and
style of Ibn al-Haytham. As for the language, the restricted language, of
mathematicians, it is indeed what we find in other writings accepted as being
by him, with the important exception of a single expression – qi†‘ Òunºbarî
(section in the shape of a pine cone) – used to designate the parabola, four
times, in the Completion. Now this term was never used by Ibn al-Haytham
in other writings accepted as being his when giving a name to the parabola,

33 R. Rashed, Les Mathématiques infinitésimales, vol. II, pp. 512–35.



INTRODUCTION 35

which is unlike the way the term is used by, for example, his predecessor al-
Khæzin. We may note, first, that the word Òunºbarî occurs in the translation
of the Conics copied out personally by Ibn al-Haytham, in Propositions I.17,
I.19, I.20 among others.34 So it is not impossible that Ibn al-Haytham
allowed himself to apply this vocabulary when he composed the
Completion, it being a book that was meant to follow on from the seventh
book of Apollonius and to complete the Conics; so that, far from being an
argument against the authenticity of the Completion, the adoption of the
expression ‘section in the shape of a pine cone’ suggests a possible dating
for its composition. The fact that this term Òunºbarî occurs in the
Completion, and only there, in fact shows a lexical proximity that is closely
linked with a proximity in subject matter. It seems as though Ibn al-
Haytham the copyist had influenced Ibn al-Haytham the mathematician in
his choice of vocabulary. But there is more.

When we examine the copy of the Conics that is in the hand of Ibn al-
Haytham, in the state in which it has come down to us, we notice that it
breaks off towards the end of Proposition XLVIII of Book VII. So we lack
the end of this proposition and the four propositions that follow. This loss is
by no means a recent one, but dates from before the thirteenth century. This
copy in fact belonged to the mathematician Ibn Abî Jarræda, who made
abundant annotations on it; he has written in his hand, in the margin of the
last page (fol. 306v): baqiya min hadhæ al-kitæb al-maqæla al-thæmina
(there remains the eighth book of this work). Now – as is evident from his
commentaries on the works of Thæbit ibn Qurra35 – Ibn Abî Jarræda knew
the Conics too well not to be aware that the eighth book had not been
translated into Arabic. And nevertheless his turn of phrase indicates that the
copy he owned indeed included eight books. If our guess is correct, the
eighth book might have been none other than the Completion by Ibn al-
Haytham. Confirmation comes from Maimonides. This twelfth-century
philosopher and scholar, who also lived in Cairo, consulted the Completion,
and even wrote some glosses on certain propositions; now he considered
this book to be the last book of the Conics. In his glosses Maimonides
follows the order in the books of the Conics so as to complete some proofs
that Apollonius had left to the ingenuity of the reader, this being a matter of

34 MS Aya Sofia 2762. See Apollonius: Les Coniques, vol. 1.1: Livre I, edited
and translated from the Arabic text, and with a historical and mathematical commentary by
R. Rashed, Berlin/New York, 2008.

35 R. Rashed, Les Mathématiques infinitésimales, vol. I.
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putting in simple intermediate steps.36 Maimonides makes glosses to the
eighth book, which is none other than the Completion, and the glosses refer
to expressions found in it. So we see that the Completion was in circulation
between the eleventh and the thirteenth century, passing – at least in the
eyes of certain authors – for the eighth book of the Conics. However, Ibn
al-Haytham cannot be held responsible for this: the introduction to the
Completion does not admit of any confusion. Where can the misunderstan-
ding have come from? The conjectural explanation that we have just propo-
sed seems to account for all the facts: the exception in vocabulary, the
remark made by Ibn Abî Jarræda, the confusion of Maimonides, the silence
of the old biobibliographers.

Ibn al-Haytham may have written the Completion immediately after
making his copy (or one of his copies) of the Conics, and may have put it
after the copy. If this was so, he would have written his treatise about
415/1024, that is in the period of his full maturity, which gives a good expla-
nation for the content of this important book on the geometry of conics.

It will be for future research to confirm, correct or disprove this conjec-
ture. For the moment, putting all the evidence together, the arguments we
have already set out, to which, as we shall see, we may add considerations
of the mathematical content of the book, speak convincingly for the
Completion having been written by Ibn al-Haytham, and composed while he
was copying out the Conics.

 If we now turn to the copy of the Completion, we note that it was
transcribed in the elegant naskhî script, precise and clear. The figures are
drawn with similar care. The few marginal additions are in the hand of the
copyist; he made them in the course of his revision, when comparing his
copy with the original, since he notes their place in the text with the conven-
tional word ÒaÌÌ. The text contains no crossing out and no added glosses.

It was perhaps because of the high quality of this transcription that
N. Terziofilu – the first person to draw attention to this manuscript –
provided a photographic reproduction of the text, preceded by a preface
and a short introduction. This publication, in 1974,37 had the great merit of
making Ibn al-Haytham’s text known and putting it into circulation. In
1981, M. Abdulkabirov38 provided the first study of the mathematical

36 Îawæshin ‘alæ ba‘≈ ashkæl kitæb al-Makhrº†æt, MS Manisa 1706, fol. 26v; see
R. Rashed, ‘Philosophie et mathématiques: Maïmonide et le modèle andalou de rencontre
philosophique’, in Maïmonide, philosophe et savant.

37 Das Achte Buch zu den Conica des Apollonius von Perge. Rekonstruiert von
Ibn al-Haysam. Herausgegeben und eingeleitet von N. Terziofilu, Istanbul, 1974.

38 In Matematika i astronomiya v trudakh Ibn Sina, yego sovrenrennikov i
posledovatelei, Tashkent, 1981, pp. 80–94.
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content of this book by Ibn al-Haytham, thus making historians of mathe-
matics aware of Ibn al-Haytham’s great importance. Three years later,
J. P. Hogendijk published a doctoral thesis in which he set out to provide a
critical edition, an English translation and an extensive historical and
mathematical commentary. This publication had the great advantage of
making this book by Ibn al-Haytham known in the West, together with the
results he proved.

We have just noted that, perhaps for the very reason that the copy was
of such high quality, N. Terziofilu was content merely to reproduce it. In
contrast, J. P. Hogendijk decided it was worth putting out a critical edition.39

This edition, although it contains errors, is nevertheless an edition. A large
number of errors are, moreover, due to a laudable but misguided wish to
correct an Arabic text that is, finally, already perfectly correct in the first
place.40

39 J. P. Hogendijk, Ibn al-Haytham’s Completion of the Conics, Sources in the
History of Mathematics and Physical Sciences 7, New York/Berlin/Heidelberg/Tokyo,
1985.

40 For the history of the manuscript tradition of the Arabic texts, the critical edition
and the French translation, see Les Mathématiques infinitésimales, vol. III, pp. 22–6.
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1.2. MATHEMATICAL COMMENTARY

The Completion of the Work on Conics has a rather simple overall
structure. It starts with a very short introduction, in which the author
describes the current state of research and gives a summary of what he
intends to do. This introduction, on which we have already commented in
the introduction of this chapter, is immediately followed by studies of some
geometrical problems, taken in an order that does not seem to reflect
didactic considerations. As we shall see later, a difficult problem may be
followed by a simpler one. It is in fact the property required that decides the
order in the group of problems. Thus in the first problem Ibn al-Haytham
requires a point B of a parabola with vertex A such that the tangent at B
cuts the axis in E, to give BE/EA = k, a known ratio. The group of problems
2, 3, 4, 5 deal with the same property, but in central conics. Thus is the
sense in which the required properties determine the order of the
propositions. For each of the problems he considers, Ibn al-Haytham
proceeds in the same way: analysis, synthesis and discussion (diorism). But
he sometimes leaves the discussion incomplete. This is surprising coming
from a mathematician of the stature of Ibn al-Haytham, and it is the less easy
to understand for being repeated in other writings – for example in The
Knowns. Careful examination of the text suggests several explanations,
which refer to several orders of incompleteness that, to avoid damaging our
argument, we need to distinguish. One of the possible reasons seems to be
the objective difficulty of carrying out a discussion of the existence and
number of solutions in geometrical terms. The other possible reason, a much
more subjective one, is Ibn al-Haytham’s not having thought things through
before committing himself to using only conic sections, while easier
approaches were available, and he knew about them. We should also think
about Ibn al-Haytham wanting to make short work in the case of a very
easy problem. We shall see these different factors at work later on. But, in
order to be able to distinguish all the cases and give the precise conditions
for the solution, we have needed to supply two commentaries. There is a
geometrical commentary that follows Ibn al-Haytham’s mathematics in his
own terms; the other commentary is not in his style, but it helps us provide
a rigorous discussion when Ibn al-Haytham’s is not complete: this com-
mentary is analytic. It need hardly be said that we do not attribute any such
treatment to tenth- and eleventh-century mathematicians.

We now turn to an analysis of Ibn al-Haytham’s book. The commentary
will provide necessary details of the active development of his mathematical
ideas. We shall follow the order of exposition in the original.
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– 1 – Let there be a parabola ABC with axis AD and two straight line

segments HI and KL such that HI

KL
= k  where k is a given ratio.

To find the point B of the parabola such that the tangent at B cuts the

axis in a point E such that BE

EA
= k

KLO
CB

MAG E D

N

HI

I H

Figs. 1.2.1 and 1.2.2

Analysis: If BE is the tangent and BM the ordinate, we have MA = AE
(Conics, I.35).

We have
BE

EM
= BE

2EA
= k

2

and BM ⊥ EM, so the angle E is known. This assumes k > 2, so that
HI > 2KL, which is a necessary condition.

– 2 – Synthesis: By Proposition 50 of Book II of the Conics,41 we know
how to construct a tangent that makes a given angle with the axis.

    Let KO = 2LK, KO < HI; if in the circle with diameter HI we draw a
chord IN = KO, then

IH

IN
= k

2
= EB

EM
;

angle HIN is thus the angle made by the required tangent with the axis and
we know how to construct this tangent, let it be BE. By construction we
know that the right-angled triangle BEM is similar to triangle HIN, so we
have

41 Proposition 50 in Heiberg’s edition, Stuttgart, 1974; Apollonius: Les Coniques,
vol. 1.1 : Livre I, ed. R. Rashed.



40 CHAPTER I: THEORY OF CONICS

BE

EM
= HI

IN
,

hence
BE

EA
= HI

KL
= k .

– 3 – Let there be a conic section Γ, an ellipse or a hyperbola, with axis
AD, and let G /H be a given ratio, with G > H.

To find a point B on Γ such that the tangent at B cuts the axis in the
point K and such that

BK

KA
= G

H
.

It is clear that, for any point B of the conic, we have BK > AK, so the

construction of B such that BK

KA
= G

H
 requires that G > H.

If Γ is an ellipse, the tangent at the end point B of the axis perpendicular
to AB is parallel to AD and K goes to infinity. This can be taken as a limiting
case in which BK = KA, and the case of the problem in which G = H thus
has this solution.

Note: We shall let d denote the length of the diameter in question and let a
denote the length of the corresponding latus rectum.

Analysis: Let AD be the axis (transverse in the case of the hyperbola), E
the centre of the conic Γ, BK the straight line required by the problem and
AC the chord parallel to BK; the chord cuts EB in S and we have SA = SC.

G

H CB

A

S

P I E F

N

MK

H

P

OT

Θ

U

D

Q

Fig. 1.2.3.1
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C

B

K DQE

M

APIF

O N

S

U

G

H

P

Τ

Η

G

Q

Fig. 1.2.3.2

Let P, I and F be the orthogonal projections of B, S and C on the axis
AD. From Proposition 37 of Book I, we have EA2 = EK · EP, hence

(1)
PE

EA
= EA

EK
= PA

AK
,

but
AE

EK
= SA

BK
,

because SA || BK.
So we have

SA

BK
= PA

AK
,

hence
SA

AP
= BK

AK
= G

H
.

Since SA and BK are parallel, we also have

EA

EK
= ES

EB
= EI

EP
,

so
EI

EP
= EP

EA
 from (1),

hence EI · EA = EP2.



42 CHAPTER I: THEORY OF CONICS

If M is a point on the straight line DA such that ME

MA
= d

a
, then ME

EA
 is

known. We know, from Propositions 2 and 3 of Book VII, that if the point
Θ on the straight line AD is such that

ΘA

ΘD
= a

d
,

then
Θ ΘF AF

AC

D

AD

  ⋅ =2 .42

But S is the midpoint of AC and I is the midpoint of AF and, further, M is
the midpoint of ΘA, because

d

a
= ME

MA
= ΘD

ΘA
⇒ AE

AM
= AD

ΘA
= 2AE

ΘA
⇒ AM = 1

2
ΘA ,

from which we obtain

Θ ΘF AF

AC

MI IA

AS

D

AD

ME

AE

⋅ = ⋅ = =2 2 ,

hence
MI IA

AP

ME

AE

AS

AP

ME

AE

G

H

⋅ = ⋅ = ⋅2

2

2

2

2 ,

a known ratio.

Let EN be such that EN ⊥ EA, EN = EA and let NO be parallel to EA.
The parabola P with axis NO, vertex N and latus rectum EN passes through
A. The straight line SI cuts the parabola in U.

OU2 = EN · ON = EA · ON = EA · EI = EP2,

so we have

42 ΘA is called the homologous line (Apollonius,VII.2–3); ΘD has no name. In the
case of the ellipse, Θ is an exterior point of [AD], and we have: if a < d, ΘD – ΘA = d; if
a > d, ΘA – ΘD = d. In the case of the hyperbola, Θ lies between A and D, ΘA + ΘD =
d.
(case of the ellipse, a > d)

(case of the ellipse, a < d)

In all cases, M is the midpoint of AΘ,

and ME = 1

2
ΘD.

D

E A

M Θ

Θ

M D

E A

D E

Θ

M A

Fig. 1.2.3.3
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UO = EP,

hence
UI = AP.43

We then have

     
MI IA

UI

ME

AE

G

H

⋅ = ⋅2

2

2 , a known ratio,

hence U lies on a hyperbola H  whose axis is AM and whose latus rectum is
known. The point U is thus an intersection of P  and H, so it is known.
From U we can find, successively, the points I, F, C, S and B and the line
BK parallel to SC.

In the case where AD is the minor axis of the ellipse, the construction is
exactly the same, but ME

MA
= d

a
 < 1, so the point M (an exterior point of the

segment AE) is now on the same side as E. The point I, which lies between
A and E, is then between A and M and the auxiliary conic H  that passes
through the point U is an ellipse instead of (as before) a hyperbola.

Although Ibn al-Haytham did consider this case, he did not develop it
fully, because it is exactly the same as the preceding one.

– 4 – Synthesis: Given the conic section (Γ) with axis AD and centre E,

and a point M such that ME

MA
= d

a
 is known, MA is known (see Figs. 1.2.3.1

and 1.2.3.2).
    As before, we draw the parabola P. If we put

AE

EQ
= G2

H 2   and  
ME

EQ
= AM

MT
,

then MT is known, MT is the latus rectum of the hyperbola defined above.
The equation of H  (Apollonius, Conics, I.12) gives

IM IA

IU

ME

AE

G

H

ME

AE

AE

EQ

ME

EQ

AM

MT

⋅ = ⋅ = ⋅ = =2

2

2 .

If H  and P  cut one another in U (see discussion), we draw UI ⊥ AE;
let F be a point such that AF = 2AI, let C be the point on the given conic Γ
such that CF ⊥ AE, AC cuts the straight line UI in S, we have AS = SC, ES
is a diameter of Γ and meets Γ in B, and the line through B parallel to AS is
a tangent to Γ at B and cuts AE in K. Let us show that

43 We have UI = OI – OU for the ellipse, UI = OU – OI for the hyperbola, if we take
U on the semi-parabola NA.
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BK

KA
= G

H
.

Let BP ⊥ EA, we have EI · EA = EP2 (a property of Γ) and NO · NE =
OU2 (the equation of P), hence UO = EP and UI = AP. We have

MI IA

AS

ME

AE

⋅ =2 (a property of Γ)

MI IA

IU

AM

MT

⋅ =2 (the equation of H ),

so
AS

IU

AS

AP

AM

MT

AE

ME

ME

EQ

AE

ME

AE

EQ

G

H

2

2

2

2

2

2= = ⋅ = ⋅ = = ,

hence
AS

AP
= G

H
;

but SA || BK implies
AS

AP
= BK

AK
,

hence
BK

AK
= G

H
.

Discussion in the case where Γ is an ellipse with major axis AD. The
hyperbola H  has axis AM and latus rectum MT (we are considering the
branch with vertex A). We have

AM

MT

ME

EQ

ME EA

EA EQ
= = ⋅

⋅
.

We know that
AE

EQ
= G2

H2   and  G > H,

so AE > EQ.
So we have

EA · EQ < EA2 = EN2,

ME EA

EN

AM

MT

⋅ <2 .
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H  cuts EN between E and N:

AIQD F E

M

U

N

H

P

T

Fig. 1.2.4

H  and P have their axes parallel, and their concave aspects face one
another, A ∈ H  ∩ P, so H  cuts the arc AN of the parabola in U, where U
lies between A and N. I, the orthogonal projection of U on the axis lies
between A and E, so the point F such that AF = 2AI lies between A and D;
there is a point C of the ellipse Γ that corresponds to F, from which we get
the point B, the point of contact of a tangent parallel to AC.

The problem can always be solved.

– 5 – Discussion in the case where Γ is a hyperbola with transverse
axis AD; we consider the branch with vertex A, ΓA. The point M lies
between A and D. Let B lie on DA produced and be such that AB2 =
2AM · AD.

Condition for a solution to be possible:

G2

H 2 ≥ 2AD + 2AM + 3AB

ME
.

On the parabola P, we consider the points: S such that AS ⊥ NO and U
the intersection of SB and P. Now U can be projected orthogonally into the
point I on AD, into O on the axis of P and into V on the line parallel to the
axis drawn through S.

We have
IO2 = EA2

UO2 = EA · NO = EA2 + EA · AI = IO2 + EA · AI

EA · AI = UO2 – IO2 = (UO + OI) · UI = UV· UI

and
UI

BI
= UV

VS
= UV

AI
= EA

UI
,

hence
UI2 = EA · BI.
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We also have
UI

BI
= SA

AB
,

hence
2EA · BI = UI · AB,

and in consequence
AB = 2UI,

hence

SA · BI = 
1
2

 AB2 = AM · AD;

but
SA = AD,

hence
BI = AM.

D

T

EM

N

F
S

Z

A

U

I

O

V

B
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P

Q

O

D

C

W

J

I

X

H

G

T

′

′

′ ′

Fig. 1.2.5.1

Let P and C be points such that IP = 2AD and PC = 2AB; we then
have

CM = 2AD + 2AM + 3AB.

The condition we imposed becomes

G2

H 2 ≥ CM

ME
.
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a) Let us assume
G2

H2 = CM

ME
,

so
CM

ME
= AE

EQ
.

Let X be the midpoint of PC:

PX = AB = 2UI, PI = 2AD = 2VI, XI = 2UV, XI · UI = 2VU · UI.

But

VU · UI = UO2 – OI2 = EA · AI = 
1
2

 VI · AI,

so
(*) XI · UI = VI · AI.

Moreover,
CX = AB = 2UI,

hence
CX · IU = AB · UI = 2UI2 = 2AE · BI,

CX · IU = VI · AM.

We deduce from this, using (*),

CI · IU = VI · MI,

hence
CI

IM
= VI

IU
  and  

CM

MI
= VU

UI
.

But
CM

AE

CM

MI

MI

AE
= ⋅ ,

and we have
MI

AE

MI IA

IA AE

MI IA

UV UI
= ⋅

⋅
= ⋅

⋅
,

CM

MI
= UV

UI
= UV.UI

UI 2 ,

hence
CM

AE

MI IA

UI
= ⋅

2 .
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We have assumed
CM

AE
= ME

EQ
= AM

MT
,

hence
MI IA

UI

AM

MT

⋅ =2 ;

this relation expresses the fact that U lies on the hyperbola H  with axis AM

and latus rectum MT. So if G2

H2 = CM

ME
, H  and P  have the point U in

common, so the problem has at least one solution.

Let us show that there is a second one.
Let AT′ be the tangent to the parabola at A and Z the midpoint of AS;

we have  ZT′ = 2ZN = 2AZ. Let us draw ULa || AT′, La on the straight line
AI; triangles UILa and AZT′ are similar, so ILa = 2UI = AB; we thus have
IB = ALa = AM and consequently the straight line UM is the tangent to the
parabola at U.

Let us draw CW and MF perpendicular to VS. From the equality

CM

MI
= VU

UI
,

we deduce, successively,

MC

CI
= UV

VI
, CM · IV = CI · UV and CM · MF = VW · UV;

this last equality expresses the fact that the equilateral hyperbola H 1 with
asymptotes WF and WC that passes through the point M also passes
through U. The segment UM lies inside this hyperbola; but the straight line
UM is a tangent to the parabola, so any straight line from U in a position
between MU and the tangent to the hyperbola passes inside the parabola; it
cuts both the hyperbola H1 and the parabola P, so H1 cuts P in a point
situated between A and U. Let that point be U1.

UM: tangent to P,
Ut: tangent to H1.
With this point U1 we associate I1 and V1, U1 being a point of H1; we

have
CM · MF = CI1 . U1V1;

but
MF = I1V1,

hence
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CM

CI1

= U1V1

I1V1

,

from which we deduce
CM

I1M
= U1V1

U1I1

.

U

I

V

U

V

Z

F

E

M

N

AI1

1

1

H
1

S

C D

W

t

Fig. 1.2.5.2

Proceeding as for point U (pp. 47–8), we show that

MI AI

U I

AM

MT
1 1

1 1
2

⋅ = ,

so U1 lies on the hyperbola H.
H  thus cuts P in two points U and U1 distinct from A. These two

points U and U1 can be projected onto DA produced beyond the point A; on
the branch ΓA of the given hyperbola there are two points corresponding to
U and U1 (and symmetrical with them with respect to AD), points at which
the tangent has the required property.

b) Let us assume G2

H 2 > CM

ME
, and let G2

H 2 = ′O M

ME
, O′M > CM. Let

O′D′ ⊥ WF.

The tangent to the equilateral hyperbola H1 at M cuts the asymptotes
WF and WC in Y and Y1 and the straight line D′O′ in Y′; the straight line
MU, which joins two points of H1, cuts these straight lines in R, R1 and R′
respectively; we have

MY = MY1 a property of the tangent,
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MR = UR1 a property of the secant MU.
So we have MY′ > MY and UR′ > MR.

R

R

R
Y

EM D
O

D

C J

U
U

U

Y

Y

IW

A

R YF

P

1

1

1

2

2H

′

′

′

′
′

″

″

Fig. 1.2.5.3

The equilateral hyperbola H2 that passes through M and has D′F and
D′O′ as asymptotes thus cuts the straight line MY in a point of MY′ and the
straight line MU in a point of UR′. The straight line YY′ cuts the parabola P ;
the hyperbola H2, which passes through M, thus cuts P  in two points: U1

lying between A and U, U2 lying beyond U. We show that U1 and U2 are
points of the hyperbola H  and we proceed as in the previous case, but
replacing CM with O′M.

On the branch ΓA of the given hyperbola there are two points
corresponding to U1 and U2 (and symmetrical with them with respect to
AD), points at which the tangent has the required property.

c) Let us assume G2

H2 < CM

ME
. Let J be such that G2

H 2 = JM

ME
; we have

MJ < MC.
The perpendicular from J to the straight line MC cuts the straight ine

WF and the tangent MY in I′ and Y″ respectively; we have MY″ < MY.
The hyperbola H3 which passes through M and has I′J and I′F as

asymptotes cuts the straight line MY again in a point between M and Y; so it
does not cut the parabola P.



MATHEMATICAL COMMENTARY 51

Complete analytical study of Problems 3, 4 and 5, independent of the
method used by Ibn al-Haytham

I. The case of the ellipse with AD as axis. Let us take AD = d, a = latus

rectum corresponding to AD and k = d

a
.

To find B such that the tangent BK satisfies BK

KA
= G

H
> 1.

D E

C
B

P A K

B

x

y

′

Fig. 1.2.5.4

The equation of the ellipse with respect to its axes is

(1) x2 + ky2 = d 2

4
.

Let B (x, y) be such that 0 < x < d

2
; from the properties of the tangent,

we have

EP EK
d⋅ =

2

4
, hence EK = d2

4x
 (x ≠ 0),

EP PK

PB

d

a

⋅ =2 , hence PK = dy2

ax
,

from which we obtain

AK = EK − EA = d

2x

d

2
− x⎛

⎝
⎞
⎠

and

BK BP PK y
d

a

y

x

y

x
x k y2 2 2 2

2

2

4

2

2

2
2 2 2= + = + = +( ). .

So we have
BK

AK

G

H

y

d

x k y

d
x

2

2

2

2

2

2

2 2 2

2

4

2

= = ⋅ +

−⎛
⎝

⎞
⎠

.

But from (1)
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 y2 = 1
k

d2

4
− x2⎛

⎝⎜
⎞
⎠⎟

,

so if we assume B ≠ A, that is x ≠ d

2
, we shall have

G2

H 2
= 4

kd2
.

d

2
+ x

d

2
− x

. x2 1 − k( ) + k
d2

4
⎡
⎣⎢

⎤
⎦⎥
.

If a point B gives a solution to the problem, its abscissa satisfies the
equation

4
2

1
4 2

02
2 2

2
2d

x x k k
d G

H
kd

d
x+⎛

⎝
⎞
⎠ −( ) +⎡

⎣⎢
⎤
⎦⎥

− ⋅ −⎛
⎝

⎞
⎠ = .

This equation can be written

f (x) = 4x3 1 − k( ) + 2dx2 1 − k( ) + kd2 x 1 + G2

H 2

⎛
⎝⎜

⎞
⎠⎟

+ k
d3

2
1 − G2

H2

⎛
⎝⎜

⎞
⎠⎟

= 0.

– If k = 1. The ellipse becomes a circle. The equation f(x) = 0 is first-
degree, and has one root

x

G

H
G

H

d G

H
x

d
0

2

2

2

2

0

1

1 2
1 0

2
=

−

+
⋅ > ⇒ < <,    .

The problem has one solution. It is clear that the construction can be
carried out with straightedge and compasses; a special case that Ibn al-
Haytham does not consider, not least because he is dealing with conics. We
need to remember that the circle is not considered as a conic until the curves
are explicitly defined in terms of their equations.

– If k ≠ 1.

f
kd G

H
( ) ,0

2
1 0

3 2

2= −⎛
⎝⎜

⎞
⎠⎟

<

f
d

2
⎛
⎝

⎞
⎠ = d3 > 0;

when x → ± ∞,  f(x) ≅ 4x3 (1 – k).

– If k > 1.
lim
x

f x
→+∞

∞  ( ) = –
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lim
x→−∞

  f (x) = +∞.

The equation f(x) = 0 then has 3 roots x1, x2, x3

x1 < 0 0 < x2 < 
d

2
     x3 > 

d

2
;

the only appropriate root is x2.

– If k < 1.

′f (x) = 12 1 − k( )x2 + 4 1 − k( )dx + kd 2 G2

H2
+ 1

⎛
⎝⎜

⎞
⎠⎟

.

This second-degree polynomial remains positive for x ≥ 0, so f increases

over this domain and f(x) = 0 has only one root in 0,  
d

2
⎤
⎦⎥

⎡
⎣⎢
.

     So, for any given ellipse, for G

H
 > 1, the problem has one solution

and only one. This reasoning also holds for the case Ibn al-Haytham did not
consider, in which AD is the minor axis of the ellipse. In this case, the
auxiliary conic involved in the discussion is an ellipse instead of a hyperbola.

The case of the hyperbola with transverse axis AD

AD = d, 
d

a
 = k.

y

xD E K A P

B

Fig. 1.2.5.5

The equation of the hyperbola is

x2 − ky2 = d 2

4
.

Let B (x, y), x > d

2
 and let BK be the tangent at B:
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EP EK
d⋅ =

2

4
,

hence

EK = d 2

4x
, 0 < EK < d

2
and

AK = EK − EA = d

2x

d

2
− x⎛

⎝
⎞
⎠ AK < 0,

PE PK

PB

d

a
k

⋅ = =2 ,

hence

KP = k
y2

x
and

BK PK PB
y

x
x k y2 2 2

2

2
2 2 2= + = +( ) ,

BK 2

AK 2
= G2

H 2
= 4y2

d2
.
x2 + k2y2

x − d

2
⎛
⎝

⎞
⎠

2 ;

but

y2 = 1
k

x2 − d2

4
⎛
⎝⎜

⎞
⎠⎟

,

hence, assuming B ≠ A, so x ≠ d

2
, we have

G

H kd

x
d

x
d x k k

d2

2 2
2

24 2

2

1
4

= ⋅
+

−
⋅ +( ) −⎡
⎣⎢

⎤
⎦⎥

,

hence

f x x
d

x k k
d

kd
G

H
x

d
( ) ( )= +⎛

⎝
⎞
⎠ + −⎡

⎣⎢
⎤
⎦⎥

− ⋅ −⎛
⎝

⎞
⎠ =4

2
1

4 2
02

2
2

2

2 ,

f (0) = k
d3

2
G2

H2
− 1

⎛
⎝⎜

⎞
⎠⎟

> 0,      f
d

2
⎛
⎝

⎞
⎠ = d3 > 0 ;

when x → ± ∞, f(x) ≅ 4x3 (1 + k), so

lim
x

f x
→−∞

∞  ( ) = –

lim
x→+∞

  f (x) = +∞.
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From this we deduce that the equation f(x) = 0 has 0 or 2 roots in the

interval d

2
,+∞⎤

⎦⎥
⎡
⎣⎢
. The equation can be written:

(α ) = f (x) = 4x3(1 + k) + 2dx2 (1 + k) − kd 2 1 + G2

H2

⎛
⎝⎜

⎞
⎠⎟

x + k
d3

2
G2

H2 −1
⎛
⎝⎜

⎞
⎠⎟

= 0 .

We have

(β ) = ′f (x) = 12x2 (1 + k) + 4dx(1 + k) − kd 2 1 + G2

H 2

⎛
⎝⎜

⎞
⎠⎟

.

f′(x) = 0 has 2 roots x′ and x″ with opposite signs, hence

x – ∞ x′ 0 x″ + ∞
f′(x)

f(x)
– ∞

+ 0

M

– 0

m

+

+ ∞

The maximum, M, is positive because M > f(0) > 0; the equation f(x) = 0
thus has one root x1, x1 < x′ < 0. The existence of the other roots depends
on the sign of the minima m. For f(x) = 0 to have a double root or 2 simple

roots in the interval d

2
,+∞⎤

⎦⎥
⎡
⎣⎢
, it is necessary and sufficient that:

1)    x″ > 
d

2
,

2)    m = f(x″) ≤ 0.

x″ > d

2
  means that d

2
 lies between the two roots x′, x″ of f′, that is, that

′f
d

2
⎛
⎝

⎞
⎠ < 0 . We have

′f
d

2
⎛
⎝

⎞
⎠ =  5d2 (1 + k) − kd 2 1 + G2

H2

⎛
⎝⎜

⎞
⎠⎟

= d 2 5 + 4k − k
G2

H2

⎛
⎝⎜

⎞
⎠⎟

;

the condition can thus be written

(1) k
G2

H2 > 5 + 4k ⇔ G2

H2 > 5 + 4k

k
.

Let G2

H2 − 4 > 5
k

. As M > 0, the second condition is equivalent to

Mm ≤ 0;  apart from a positive numerical factor, the first member Mm is the
discriminant of the equation. We can find it by the method of remainders for
division of f by f′ (Euclid, Elements, VII); the remainder is
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− 2d2x

9
3k

G2

H2 + 4k + 1
⎛
⎝⎜

⎞
⎠⎟

+ kd3

9
5

G2

H2 − 4
⎛
⎝⎜

⎞
⎠⎟

= d2

9
λx + μ( ),

with

λ = −2 3k
G2

H2 + 4k + 1
⎛
⎝⎜

⎞
⎠⎟
,        μ = kd 5

G2

H2 − 4
⎛
⎝⎜

⎞
⎠⎟

.

So we have

M = d 2

9
λ ′x + μ( ) , m = d 2

9
λ ′′x + μ( )  and Mm

d
x x x x= ′ ′′ + ′ + ′′( ) +[ ]

4
2 2

81
λ λμ μ ,

where

′x ′′x = − kd2

12(1 + k)
G2

H2 + 1
⎛
⎝⎜

⎞
⎠⎟

, ′x + ′′x = − d

3
,

from equation (β). So

(γ) = λ2 ′x ′′x + λμ ′x + ′′x( ) + μ 2

 = 3kd2

1 + k
−k2 G6

H6 + 8k 2 G4

H 4 − 16k2 G2

H 2 + 11k
G4

H 4 −12k
G2

H 2 + G2

H 2 −1
⎛
⎝⎜

⎞
⎠⎟

 =
+

− −⎛
⎝⎜

⎞
⎠⎟

+ −⎛
⎝⎜

⎞
⎠⎟

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3
1

4 11 12 1
2

2
2

2

2

2

2 2

2

2

2

2

2

kd

k
k

G

H

G

H
k

G

H

G

H

G

H
.

The figure has been drawn with coordinates x = k

10
 and y = G2

H2 − 4; with

these coordinates, the inequality that defines the second condition is

(γ ′) = −100x2y2 y + 4( ) + 10x y + 4( ) 11y + 32( ) + y + 3 ≤ 0 ,

and the first condition can be written y > 1
2x

. If y > 0, this reduces to x > 1
2y

.

Now, putting x = 1
2y

 in the first member of inequality (γ ′), we find

10 y + 4( ) 3 + 16
y

⎛
⎝⎜

⎞
⎠⎟

+ y + 3 > 0;

that is, 1
2y

 lies between the two roots in x of the first member of (γ ′),

whereas inequality (γ ′) means that x lies outside the interval defined by the
roots. So we see that our two conditions are equivalent to
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1)   
G

H
> 2,

2)   k2 G2

H 2

G2

H2
− 4

⎛
⎝⎜

⎞
⎠⎟

2

− k
G2

H 2
11

G2

H2
−12

⎛
⎝⎜

⎞
⎠⎟

− G2

H2
+ 1 ≥ 0.

The condition given by Ibn al-Haytham can be written

G2

H2
≥ 4 + 6

k
1 + 1 + k( ) ,

because

ME = kd

2 1 + k( )
,   AM = d

2(1 + k)
 and AB = d

1 + k
.

In our coordinates, this becomes

y ≥ 3
5x

1 + 1 + 10x( ),

or

x ≥ 6
5y

1 + 3
y

⎛
⎝⎜

⎞
⎠⎟

.

Making

x = 6
5y

1 + 3
y

⎛
⎝⎜

⎞
⎠⎟

in the first member of (γ ′), we find

–
y + 3
y2

11y2 + 8 ×12y + 16 ×12( ) < 0.

This proves that conditions 1 and 2, which are necessary and sufficient,
imply Ibn al-Haytham’s condition, which is only sufficient.

We can see, more simply, that the condition for the problem admitting

of a solution may be expressed by the fact the ratio G

H
 is equal to or greater

than a minimum that depends on k. In fact, the ratio BK2

AK2  is

4 2

2

1
42

2
2

kd

x
d

x
d x k

kd+

−
+( ) −⎡

⎣⎢
⎤
⎦⎥

.



58 CHAPTER I: THEORY OF CONICS

Fig. 1.2.5.6
   useful hatched area defined by inequality (γ)

  curve 
G2

H2
− 4 = 5

k
 or 2xy = 1

• • • • •  curve 
G2

H2
− 4 = 6

k
1 + 1 + k( );

Ibn al-Haytham’s condition means it is above the curve.

Let us examine how this ratio varies when x varies from d

2
 to + ∞ . Its

derivative is
4 1

2

1
4

2 1
42 2

2
2

2
2

kd
x

d
dx k

kd
x k x

d
.

−⎛
⎝

⎞
⎠

− +( ) + + +( ) −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
−⎛

⎝
⎞
⎠

+( ) − +( ) − +( ) +⎡
⎣⎢

⎤
⎦⎥

4 1

2

2 1 1
2

1
42 2

3 2
2 3

kd
x

d
x k dx k

d x
k

kd
. .

The sign of this derivative is that of the third-degree polynomial in the
square brackets; the derivative of this polynomial is

6x2 1 + k( ) − 2dx 1 + k( ) − d2

2
1 + k( ) = 6 1 + k( ) x − d

2
⎛
⎝

⎞
⎠ x + d

6
⎛
⎝

⎞
⎠

and it is positive for x ≥ d

2
, so the polynomial increases from − d3

4
 to   + ∞

and it changes sign once and only once, for a value x0 of x that gives a

minimum of BK2

AK2 .

EEEE
E

E

E
E

E

E E E E E E EEE
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x d

2
x0   + ∞

BK2

AK2
  + ∞

min.

  + ∞

The condition for the problem to have a solution is thus

(*)
G

H kd

x
d

x
d x k

kd2

2 2

0

0

0
2

24 2

2

1
4

≥
+

−
+( ) −⎡

⎣⎢
⎤
⎦⎥

. ,

where x0 is determined by the conditions

a)   x0 > 
d

2
,

b)   2x0
3 1 + k( ) − dx0

2 1 + k( ) − d2x0

2
1 + k( ) + kd3

4
= 0.

If we take account of the last equation, the lower limit on G2

H2  can be

written
8 1 + k( )

kd3 x0 x0 + d

2
⎛
⎝

⎞
⎠

2

.

We may note that, as x0 > d

2
, we have

8 1 + k( )
kd3 x0 x0 + d

2
⎛
⎝

⎞
⎠

2

> 4
1 + k

k
= 4 + 4

k
;

in particular, G

H
 > 2. Eliminating between (*) and b), we return to inequality

(γ).
The discussion by Ibn al-Haytham is based on the idea of replacing the

hyperbola (H ) by the equilateral hyperbola (H1), which belongs to the
pencil of conics defined by P and H. This discussion would be complete if it
included finding the condition for P and H1 to touch one another. As the
analytical discussion shows, this condition is difficult to express since it

involves terms of the third degree in G2

H2 ; it is thus at the edge of what can

be done in the mathematics of the time. We may suppose that it was on
account of this difficulty that Ibn al-Haytham was content to give an
incomplete discussion. We may moreover note that Ibn al-Haytham seems to
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indicate the difficulty: whereas, for the case of the ellipse, he writes that the
problem ‘can be completed in all cases’, for the hyperbola he writes that
‘the problem cannot be completed except under one condition and one
specification’. He explains the condition, but not the specification.

The incompleteness of Ibn al-Haytham’s discussion, which may remind
us of a type of error committed by Abº al-Jºd and denounced by al-
Khayyæm, never the less remains surprising in the work of an author of his
calibre. But however matters stand, we need to rule out any interpretation of

the ratio CM

CE
 as being a numerical approximation to the true limit; the

mathematical context of this result is purely geometrical so no account can
be taken of anything other than exact values.

MC, the tangent to the parabola (which does not depend on G

H
) makes

its appearance naturally; it is impossible to imagine that Ibn al-Haytham
confused it with a tangent to the hyperbola.

In general, in these problems, the diorisms are concerned with
determining the existence of points of intersection of two conics; the limiting
case that separates existence and non-existence of intersection is that given
by the point in which the two conics touch one another, as one can see
clearly not only in the course of this book by Ibn al-Haytham, but also in
other works by him (such as The Knowns) and, before him, in the writings
of his Arabic and Greek predecessors (for example Eutocius’ Commentary
on Archimedes’ The Sphere and the Cylinder, and the fifth book of
Apollonius’ Conics). To make the discussion complete, we need to know
how to find the point of contact of the two conics. Finding this point seems
a difficult task to carry out geometrically in this case. Let us note what
seems to distinguish Ibn al-Haytham from his predecessors in this respect:

– Systematic investigation of constructing solutions to problems using
the intersection of conics becomes a separate area of endeavour in geome-
try. It is no longer a matter of isolated problems appearing sporadically, and
being solved using intersection of conics, but rather of a method of
exploring the domain of geometrical problems, a large majority of them
three-dimensional but also some that are quadratic.

– Within the framework of this new area of investigation, Ibn al-
Haytham makes a careful general study concerning the existence and
number of solutions, in accordance with his ideas about analysis and
synthesis.

This study is based on asymptotic and local properties of conics and in
particular tangency.

The algebraic theory developed later by Sharaf al-Dîn al-™ºsî is
certainly based on this kind of work, but is distinguished from it precisely by
the fact that the discussion becomes entirely algebraic. After dealing with the
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case of the equation x3 + c = ax2, in which the diorism is the same as that of
Eutocius, Sharaf al-Dîn al-™ºsî, who is aware of the fact that, in cases near
the limiting one, the two solutions are nearly symmetrical with respect to the
limiting solution, makes use of his method of affine translation of the
unknown44 to find the derived equation of the second degree, which allows
him to find the limiting case for all the other equations under discussion.

Summary of the preceding discussion
We have already noted that Ibn al-Haytham distinguishes the case of the

ellipse, in which the problem in question always has a solution, from that of
the hyperbola, which requires a condition to be met. The new idea he
introduced in this case was to replace the auxiliary hyperbola H  by another
hyperbola H1 belonging to the pencil generated by P and H. This idea can
be exploited in a different way by replacing H  by a second parabola P ′
belonging to the same pencil. We shall now summarize what Ibn al-Haytham
did by exploiting this idea.

To find the point B of a conic section Γ (an ellipse or hyperbola) with
centre E and axis AD, such that the tangent at this point B cuts the axis in K

and satisfies the equation KB

KA
= G

H
, where G

H
 is a given ratio greater than 1.

We note that if a point B gives a solution to the problem, the point
symmetric with it with respect to AD, B′, also gives a solution. We shall look

for B on a semi-conic Γ.
– In Problem 3, Ibn al-Haytham deals with the analysis of this problem.

The reasoning is the same whatever the given conic Γ is (an ellipse or a

hyperbola), that is, the point M defined by ME

MA
= d

a
 (where d is the diameter

AD and a the corresponding latus rectum) will be an exterior point on the
segment [AD] in the case of the ellipse, or will lie between A and D in the
case of the hyperbola.

In either case, if there exists a tangent BK that gives a solution to the
problem, then there exists a point U on a hyperbola H  and on a semi-
parabola P  defined as above.

– In Problem 4, Ibn al-Haytham shows that if U is a point common to H
and P, then there is corresponding to it a point B of Γ and a tangent BK

that satisfies the relation KB

KA
= G

H
.

44 That is an affine translation in which x → x ± a.
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But examining the intersection of H  and P demands a discussion that
allows us to separate the two cases:

In Problem 4: the case of the ellipse.
In Problem 5: the case of the hyperbola.

Analytic study of the discussion: d and a designate respectively the axis AD
and the corresponding latus rectum.

Case of the ellipse. To follow Ibn al-Haytham, we shall assume d > a, so
d

a
 = k > 1.

Let us take A as the origin A(0, 0), and let us have D(0, d), E (0, d

2
) N

( d

2
, – d

2
); M is defined by

ME

MA
= d

a
= k ,

ME

d
= MA

a
= ME − MA

d − a
= AE

d − a
,

hence
ME

AE
= d

d − a
= λ  and MA

a AE

d a

ad

d a

a
b

k

k
= ⋅

−
=

−( )
= ⋅ = =

−2 2 1
λ λ,        .

The equation of P  is

y + d

2
⎛
⎝

⎞
⎠

2

= − d

2
x − d

2
⎛
⎝

⎞
⎠  and y + d

2
> 0

or

y2 + dy = − d

2
. x  and y + d

2
> 0 .

The equation of H , vertices A(0, 0), M − = −⎛
⎝

⎞
⎠b

aλ
2

0,  , is

x x b

y

G

H

( )+ = ⋅2

2

2 λ  or y
H

G
x x b2

2

2= ⋅ +
λ

( ).

The abscissa x of a general point of intersection of P  and H  is a root of
the equation obtained by eliminating y2 .

To investigate the intersection of H  and P, we can use any two distinct
conics from the pencil λH  + μP generated by H and P. Thus the parabola
P ′ obtained by eliminating y2 from the equation

y = − x

2
− H2

λdG2 x x + b( ),

passes through any point U that is an intersection of H  and P.
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Examining H  ∩  P can be reduced to examining P  ∩ P ′:
P  with axis parallel to Ax,
P ′ with axis parallel to Ay,
A a point common to P  and P ′.

The slope of the tangent to the parabola P  at A has a gradient of –1/2.

2y ′y + d ′y = − d

2
,   y = 0 ⇒ ′y = − 1

2
⎡
⎣⎢

⎤
⎦⎥
.

The parabola P ′ cuts Ox in the point A and in the point with abscissa

x b
d G

H
b= − − ⋅ < −λ

2

2

2 .

Its vertex thus has an abscissa < 0 and an ordinate > 0. We have

′y = − 1
2

− H2

dλG2
2x + b( ) ;

for x = 0

′ = − −
⋅

⋅ = − − ⋅ < −y
b

d

H

G

a H

dG

1
2

1
2 2

1
2

2

2

2

2λ
.

The parabola P ′ cuts P  in A, and, close to A, we have

for x > 0 P ′ inside P
for x < 0 P ′ outside P.

So P ′ necessarily cuts P in a point U whose abscissa lies between 0

and d

2
, and in another point whose abscissa is negative. Only point U is to

be considered.

Let us note that a point on P ′ with abscissa d

2
 has ordinate

y
d

b
d H

G
= − − +⎛

⎝
⎞
⎠ ⋅

⋅4
1
2 2

2

2λ
         

or

 
  b

d d

d a

a d d a

d a

d+ =
−

⋅ + = +
−

⎛
⎝

⎞
⎠ = ⋅

2 2 2 2
1

2
λ ,

y
d d H

G

d H

G

d= − − ⋅ = − +⎛
⎝⎜

⎞
⎠⎟

> −
4 4 4

1
2

2

2

2

2 ,

because G

H
 > 1.
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The point U thus has an ordinate greater than that of N, U lies on arc
NA of the parabola P  and it satisfies the conditions.

So to this point U there corresponds a point B of the semi-ellipse in
question, and the tangent at B provides a solution to the problem.

The case of the hyperbola Γ. Ibn al-Haytham  considers only the branch

ΓA. The point M lies between A and E:

y

xA

A

M E D

N

H

Γ

ΓD

P

Z

Fig. 1.2.5.7

ME

MA
= − d

a
= −k ,

ME

d
= MA

−a
= ME − MA

d + a
= AE

d + a
,

ME

AE
= d

d + a
= ′λ < 1,  MA

a AE

d a

a
b AM b

k

k
= − ⋅

+
= − ⋅ ′ = − = ′ =

+2 1
λ λ, ,         .

With axes as before, we have

equation of P : y2 + yd = − d

2
x ,  [x < 0 and y > 0] for the arc AZ;

equation of H : A(0, 0), M(0, b);

x x b

y

G

H

( )− = ′ ⋅2

2

2λ  or y2 = H 2

′λ G2 x x − b( ).
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Intersection. Any point of intersection satisfies

− − =
′

−( ) = − −
′

−dy
dx H

G
x x b y

x H

d G
x x b

2 2

2

2

2

2λ λ
,              ( ),

the equation of a parabola P ′.

Examining H  ∩ P  reduces to examining P ∩ P ′.

P ′ cuts Ox in the point A (x = 0) and in A′ with abscissa

α λ= − ⋅ ′ = −⎡
⎣⎢

⎤
⎦⎥

= −⎛
⎝⎜

⎞
⎠⎟

<b
d G

H
b

d

a

G

H
b k

G

H
b

1
2

1 1
2

2

2

2

2

2 .

The vertex of P ′ has abscissa α
2

 and a positive ordinate.

Tangents at A:

to P y′ = –
1
2

;

to P ′ ′y = − 1
2

− H2

d ′λ G2
2x − b( );

hence, for x = 0,

′ = − +
′

= − + = −⎛
⎝⎜

⎞
⎠⎟

> −y
bH

d G

a H

dG

H

kG( )

.
0

2

2

2

2

2

2

1
2

1
2 2

1
2

1
1
2λ

,

′y(0) = H2

2kG2
1 − k

G2

H2

⎛
⎝⎜

⎞
⎠⎟

.

α  and y′(0) have the same sign, that of 1 − k
G2

H2
.

For a point of P  ∩ P ′ to give a solution to the problem, it is necessary

that it lies on the arc AZ of P, which requires α < 0, y′(0) < 0, so G2

H2 > 1
k

.

Then we have – 1
2

 < y′(0)  < 0; arc AA′ of the parabola P ′ thus goes

inside P  at the point A.
There are thus three cases:
a) arc AA′ lies completely inside P : the problem has no solution.
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AA

Z

′
Fig. 1.2.5.8

b) arc AA′ is the tangent to  P  at a point U0: we have one solution.

AA

U0

′

Fig. 1.2.5.9

c) arc AA′ cuts P  in two points U1 and U2: the problem then has two
solutions.

A A

U

U1

2Z

′

Fig. 1.2.5.10

– 6 – Let Γ be an ellipse or a hyperbola with transverse axis AD and

centre E, to find the point B of Γ such that the tangent at this point cuts the

axis, on the same side as A, in a point S and satisfies BS

DS
= H

F
, a given ratio

(Figs. 1.2.6.1 and 1.2.6.2). This problem is analogous to the previous one,
but we replace the vertex A with the vertex D, the more distant one.

Analysis: Let AI be the ordinate with respect to the diameter EB; we
have AI || BS and I the midpoint of AC, C being the point of intersection of
AI and Γ. We draw BK, IP, CO perpendicular to AD.

If we put AD = d and a = latus rectum, we have

OD OA

CO

d

a

⋅ =2  and 
KD KA

BK

d

a

⋅ =2 .
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We have I the midpoint of AC, E the midpoint of AD and IP || CO.
Therefore

AP = 
1
2

 AO,  EP = 
1
2

 OD,  IP = 
1
2

 C O

and we have
PE PA

PI

d

a

⋅ =2 .

M S A

B

K P

I

E O

C

D

H

F

Fig. 1.2.6.1 – Γ is an ellipse

C

O

I

P K

B

A S M E D

Fig. 1.2.6.2 – Γ is a hyperbola

If we put EM

MA
= d

a
, then EM

EA
 is known and we have MP PA

AI

ME

EA

⋅ =2

(according to Conics, VII.2). We have KA

AE
= AS

SE
 (according to Conics, I.37)

and AS

SE
= IB

BE
= PK

KE
 (because AI || SB and BK || IP), so

PK

KE
= KA

AE
.

Hence, by composition of ratios in one case and by separation in the
other,

EP

EK
= EK

EA
,
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so
EK2 = EP · EA. (α)

From
KA

AE
= AS

SE
,

we obtain
KA

AS
= AE

SE
= IA

BS
 and 

IA

AK
= BS

AS
.

But
BS

SD
= H

F
,

hence
DS

AS

IA

AK

F

H
= ⋅ .

But
DS

SA
= KD

KA
,

because
AE

ES
= KE

AE
,

which, by composition and using the fact that AE = DE, gives us

DS

ES
= DK

AE
,

so
KD

KA

IA

AK

F

H
= ⋅ ,

hence
KD

IA
= F

H
.

From
KD2

IA2 = F2

H2   and  
MP PA

IA

ME

EA

⋅ =2 ,

we get

    
MP PA

DK

ME

EA

H

F

⋅ = ⋅2

2

2 . (β)
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If we start from the equalities (α) and (β), the argument can be
developed as in the previous problem – if we make use of a parabola P and
a hyperbola H  that Ibn al-Haytham brings in only in his synthesis.45 It
seems that Ibn al-Haytham wanted to avoid repeating this argument; having
proved the equalities (α) and (β) he can affirm that the point P will be
known. From the point P we can find, successively, the points O, C, I, then
B and the tangent BS.

The synthesis will establish the existence of the point P.

– 7 – Synthesis of the problem: let us turn to two figures (Fig. 1.2.7.1
for the ellipse and Fig. 1.2.7.2 for the hyperbola).

B C
I

K P E DM S A

G
N

JV

U

u vHH

P

X

L

Q

a

O

Fig. 1.2.7.1

Let us draw the straight lines EN, AV and MU perpendicular to the
straight line AD, with EN = EA, AV = MU = AD. Let NG || DA and
VJ || DA. We have UV = MA. We put

AE

EQ
= H2

F2  and 
UV

VLa

= ME

EQ

45 Equation (β) leads to the hyperbola H  without the necessity of using several
symmetries to show it; in fact DK = AK + AD, hence the need for a downwards
translation of the axis of the auxiliary hyperbola H  by a distance AV equal to AD. We
can see clearly the link between this problem and the previous one: we move from one
construction to the other by a translation of the axis of the auxiliary hyperbola and not
by symmetries, as has been mistakenly asserted.
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and we draw the hyperbola H  with transverse axis UV and latus rectum
VLa and the parabola P  with axis NG and latus rectum EA. The parabola P
passes through A and V.

In the case of the ellipse, P and the branch HV of the hyperbola have
the common point V and their concave sides face in opposite directions; HV

cuts P  again in the point X, which can be projected orthogonally on AD
into the point P lying between A and E. We note that the branch HU also
cuts P but in points whose orthogonal projections onto DA lie on DA
produced and do not give solutions.

C

I

X

P

G

J

O

B

E

M

A

S

N

K

V W U

D

H

H
P

v

u

Q

La

I

H

F

′

Fig. 1.2.7.2

In the case of the hyperbola, considering the branch HV of the hyperbola
with axis UV, one asymptote cuts the half-line NG, which is the axis of the
parabola, so the asymptote also cuts the parabola; HV goes inside the
parabola at the point V, it approaches indefinitely close to its asymptote and
thus cuts the parabola again in the point X.

Let us note that the branch HU and P can have 0, 1 or 2 common
points; but these points, if they exist, are projected onto the straight line AE
between A and E and do not give any solution for this problem.

The perpendicular from X to the straight line AD cuts AD, NG and UV
in P, G and J respectively.
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Let O be a point such that AP = PO; the perpendicular to AD at O cuts
Γ in C, the straight lines AC and GP cut one another in I, the midpoint of
AC, and EI cuts Γ in B. The straight line BS parallel to AI is a tangent to Γ.

We shall show that
BS

SD
= H

F
.

We have EP · EA = EK2 (as in the analysis), PE = NG and NG · EA = GX2

(since X ∈ P), so
EK = GX;

we have
GJ = EN = ED,

hence
JX = KD.

On the other hand,
JU JV

JX

UV

VL

ME

EA

EA

EQa

⋅ = = ⋅2  (since X ∈ H  ),

therefore
JU JV

JX

MP PA

AI

H

F

⋅ = ⋅ ⋅2 2

2

2 ;

but
JU · JV = MP · PA,

so
AI 2

JX2 = H2

F2 = AI 2

KD2 ,

hence
AI

KD
= H

F
.

Therefore
KD

KA

IA

KA
H

F

=
⋅

.

But
IA

KA
= BS

SA
.

Let I′ be such that
SA

′I
= F

H
.
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We have
SA AI

I AI

F

H

BS AK

I AI

⋅
′ ⋅

= = ⋅
′ ⋅

;

therefore
BS

I

AI

AK
H

F
′

=
⋅

,

so
BS

′I
= KD

KA
.

On the other hand,
KD

KA
= DS

SA
,

so
BS

′I
= DS

SA
,

and consequently
BS

SD
= ′I

SA
= H

F
.

– 8 – Let there be a hyperbola Γ with transverse axis AD and centre E,

to find a straight line tangent to Γ in B, cutting the transverse axis in K and

such that BK

BE
= G

H
 (G < H). The problem is again of the same kind, but this

time the segments AK or DK are replaced by the radius vector EB.
Analysis: Let BK be the solution to the problem. The straight line

through A, parallel to BK, cuts the hyperbola and the diameter EB in C and
I respectively, points such that AI = IC; we have

IE

IA
= BE

BK
= H

G
. 46

46 From this equality, we can immediately deduce that I lies on a circle C1, and that
C lies on the circle C ′1 that is the image of C1 in the homothety (A, 2).
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G

H

DE

KS P A M

I

B

C

Fig. 1.2.8

Let P be a point of the straight line EA such that EIP IAPˆ ˆ= . Triangles
EIP and IAP are similar, we have

EP

PI
= PI

PA
= EI

IA
,

hence
EP · PA = PI2 and PI > PA.

We also have
EP

PA
= EP2

PI 2 = EI 2

IA2 = H2

G2 ,

so
EA + AP

AP
= H2

G2 ,   
EA

AP
= H2

G2 − 1 = H2 − G2

G2  (G < H).

EA is the semi-transverse axis, so AP is known. Consequently, EP is
known and PI also.47 Let CS || IP, we have AS = 2AP and CS = 2IP, so
CS > AS; these lengths are known.

We put SM = SC, hence SM > SA and M lies on SA produced. The
circle (S, SM) cuts the hyperbola in C; from point C we find I the midpoint
of AC, then B and the straight line BK.

– 9 – Synthesis: We consider the hyperbola Γ and the ratio G

H
. Let F be

a point such that G

F

H

G
= , then H

F

H

G
=

2

2 .

47 We have AP
G

H G
EA EP

H

H G
EA=

−
⋅ =

−
⋅

2

2 2

2

2 2,   , hence PI
G H

H G
EA= ⋅

−
⋅2 2 ; so we

have the centre P and the radius of the circle C1.
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G

H

DE

KS P A M

I

B

C

F

L

Fig. 1.2.9

Let us put
PE

PA
= H

F
= H2

G2 ;

this defines a point P on EA produced. Let S be a point such that PS = PA
and L a point such that PE · PA = PL2 (so PA < PL < PE). Let us draw the
circle (S, 2PL), it cuts the axis in M such that SM = 2PL > SA, M thus lies
outside Γ and S inside it; the circle cuts Γ in a point C.

Let I be the midpoint of AC, the straight line EI cuts the hyperbola in B.
Let us draw the tangent BK that is parallel to CA and let us show that

BK

BE
= G

H
.

Since P is the midpoint of SA and I is the midpoint of AC, we have
SC || PI and SC = 2PI, so PI = PL and PE · PA = PI2. Therefore

PE

PI
= PI

PA
,

hence triangles PEI and PIA are similar to one another. So, as in the
analysis, we have

PE

PA
= EI 2

IA2 ,

so we have
EI2

IA2 = H2

G2 .

However,
EI

IA
= EB

BK
,

so
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BK

BE
= G

H
.

– 10 – Let there be a parabola Γ and the tangent CD at point C of that
parabola. To find another straight line tangent to the parabola such that, if A
is its point of contact and D its point of intersection with CD, we have
DA

DC
= E

G
, a known ratio.

Analysis: Let H be the midpoint of AC; DH is a diameter, DH and AC
are conjugate directions, DH cuts Γ in B, the midpoint of DH (Fig. 1.2.10.1
or 1.2.10.2).

If E = G, then DA = DC (Fig. 1.2.10.2). As HA = HC, AHDˆ  is a right
angle; DH is then the axis of Γ, it is known; the point D is thus known. The
required tangent is the second tangent from D and it is equal to DC; the
points A and C are symmetrical with respect to  the axis DH.

A I

H

B

C

D

E

G

Fig. 1.2.10.1

If E ≠ G, then AD ≠ DC, Ĥ  is not a right angle. The straight line CD is
known, the direction of DH is known since DH is parallel to the axis of Γ, so

CDHˆ  is a known angle.

A

H
D

B

C

Fig. 1.2.10.2
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Let us draw through A a line parallel to the axis of Γ ; it cuts CD in I

and DC = DI, so DA

DI
= E

G
 and DIA CDHˆ ˆ= . Triangle DIA is of known

shape, so ADIˆ  is known, in consequence ADCˆ  is also known. But DA

DC
= E

G
,

so triangle ADC is of known shape, DCAˆ  is thus known, the straight line
CA is thus known. Its point of intersection with Γ, the point A, is the
required point of contact.

– 11 – Synthesis: The axis of Γ meets CD, a known straight line, in the

point I. Let K be a point on the axis such that CI

CK
= G

E
 (see discussion) and

let L be the point of the straight line CD such that CL = CI. Let us draw
through C a line parallel to LK, it cuts the axis and thus cuts Γ at the point
A. Let H be the midpoint of CA. The line parallel to the axis drawn through
H cuts Γ in B and CD in D, BH is thus a diameter and AH an ordinate; in
consequence DA is the second tangent from D.

A

H B D

I

C

K

M

L

G

E

Fig. 1.2.11.1

Let us show that
DA

DC
= E

G
.

Let M be the midpoint of KL, we have CM || IK, so CM || DH; but
CH || KL, so triangles DCH and CML are similar, with

DC

CH
= CL

LM
.
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Therefore
DC

CA
= CL

LK
;

so triangles DCA and CLK are similar and we have

DA

DC
= CK

CL
= E

G
.

Discussion: The problem has only one solution if the point K exists.
If we call the distance from C to the axis h, K exists if and only if

CK ≥ h; but CK

CI
= E

G
, hence the condition E

G
≥ h

CI
 or again E

G
 ≥ sinΘ, if Θ is

the acute angle between the tangent CD and  the axis of the parabola. If this
condition is satisfied, there are two points K, K′, which coïncide when
E

G
 = sinΘ; to each of these points there corresponds only one solution of the

problem. Ibn al-Haytham does not mention the possibility of there being two
solutions. When C is at the vertex of the parabola, I coincides with it and the
construction cannot be carried out in the same way. If T denotes the point in
which the required tangent AD meets the axis and if P is the projection of A

onto the axis, we have PC = CT, so AT

AP
= AD

DC
= E

G
, which is known, and

angle ATPˆ  is known; the problem thus reduces to Problem 50 of Book II of
Apollonius. Ibn al-Haytham does not mention this case; if he thought of it,
he may have thought it uninteresting, given that it is so easy.

A

C

D

TP

Fig. 1.2.11.2

– 12 – We are given a conic section Γ (an ellipse or a hyperbola) with

centre H, BD the tangent at a point B of Γ, a ratio E

G
.
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Problem: To draw a tangent to Γ that cuts BD in the point D such that
DA

DB
= E

G
 (A being the point of contact).

N

K

S

H

O
I

D

B

P

A

E

E

1

C

F

U

E

G

Fig. 1.2.12.1

Analysis: If a is the latus rectum relative to the diameter d that passes

through B, we have d

a
= HB

1
2

a
= k , a known ratio.

We suppose the tangent AD is known; let P be the point of intersection
of AD and HB and let AI || BD. We have

IH · HP  = HB2 and 
HI IP

AI
k

⋅ =2  (Conics, I.37),

from which we have
HP

IP

HB

k AI
=

⋅

2

2 .

We draw HN || AI (with N on DA), and AK || PH (with K on HN). We
have

HP

PI

HN

IA

HB

k AI
= =

⋅

2

2 ,
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hence

NH AI
HB

k
⋅ =

2

and
NH AI

HB

NH HK

HB k

⋅ = ⋅ =2 2

1
,

from which we obtain in succession

NH HK

HI HP k

k KH

HI

PH

HN

k KH

AK

PH

HN

AK

KN

⋅
⋅

= ⋅ = ⋅ = =1
, ,  

  
  

  
,

hence
KH KN

AK k

⋅ =2

1
.

Let U be the straight line defined by KH

U
= 1

k
, then we have

(1)
KH

U

NK KH

AK
= ⋅

2 ,

hence
U · KN = AK2.

We then have

U HN KA
HN

NK
HI

HN

NK
⋅ = ⋅ = ⋅2 2 ;

but
HN

NK
= PH

AK
= PH

IH
= PH. IH

IH2
= HB2

HI2
.

Therefore
U · HN = HB2.

If Γ is a hyperbola H, we consider the hyperbola H1 whose transverse
axis is NH and latus rectum a1 such that

 
NH

a1

= KH

U
= 1

k
;



80 CHAPTER I: THEORY OF CONICS

and if Γ is an ellipse E, we consider the ellipse E1 with diameter NH and
latus rectum a1. From equality (1) H1 (or E1) passes through the point A of
the conic section Γ under consideration.48

A K

D

B P H

NH

H1

U
F
E
G

I

S

Fig. 1.2.12.2

We have DB || HN and we draw DS || BH (with S on HN); from the
equality HI · HP = HB2, we then deduce that

AN · NP = ND2  and  KN · HN = NS2,
hence

AN

ND
= ND

NP
= AD

DP
  and  AN · DP = AD · DN.

Let us put
F · NK = AN2,

hence
F

U
= AN 2

AK 2
;

we can write
F

AN
= AN

NK
= DN

NS
= DP

DB
,

hence
F · DB = AN · DP = AD · DN.

So on the one hand we have

48 From how it has been defined, H1 (or E1) is similar to H (or E), the given conic
section (see comment 4, p. 94).
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F

DN
= AD

DB
,

and on the other
F

U
= AN 2

AK 2 = DN 2

DS2 ,

hence
F · DS2 = U · DN2.

But
U · HN = HB2 = DS2,

hence

F · HN = DN2 and 
F

DN
= DN

HN
,

from which we have
DN

HN
= AD

DB
= AD

HS
= AN

NS
,

but by hypothesis
DA

DB
= E

G
,

so we have
AN

NS
= E

G
.

We know that
KN · NH = NS2,

hence
KN NH

NA

NS

NA

G

E

⋅ = =2

2

2

2

2 ;

but
NA2 = F · NK,

hence
NH

F
= G2

E2
.

Let NO = F, we have NO · NK = NA2, hence

NO

AN
= AN

NK
.
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So triangles ANK and ONA, which have a common angle N, are similar,
hence NAO AKN BHN PBDˆ ˆ ˆ ˆ= = = , a known angle.

Thus we have
NH

NO
= G2

E2

49  and NAO PBDˆ ˆ= = α .

The point A lies on the arc C subtending the angle α constructed on the
segment NO; on the other hand it also lies on H1 in the case of the
hyperbola and on E1 in the case of ellipse.

So if the segment NH was known in magnitude and position, the point
A would be known, angles ANHˆ  and AONˆ  also and angle HPN AONˆ ˆ=  as
well.

If there exists a tangent that gives a solution to the problem, that tangent
makes with the diameter HB an angle HPNˆ  = Θ, which is determined by
the data of the problem, as Ibn al-Haytham will describe at the beginning of
his synthesis.

– 13 – Synthesis: Outline. a) To construct a figure MVLXJR similar to
the figure NKHOPA, to find the angle Θ = =NOA JLMˆ ˆ .

b) To show that if a tangent PN is such that HPNˆ = Θ , then we have
DA

DB
= E

G
.

c) Discussion.

a) Starting with the data of Problem 12:

k = HB
a

2

= 2HB

a
,

α = angle of the ordinates, E

G
 a given ratio,

we take two straight lines LM and LT such that LM

LT
= 1

k
 and we consider

two figures – the ellipse E2 and the branch of the hyperbola H2 that passes
through L – that involves both of them, LM as diameter (a transverse
diameter in the case of H2) and LT as latus rectum, with α as the angle of

the ordinates. [H2 and E2 are thus similar to H1  and E1.]

Let MX be the straight line defined by LM

MX
= G2

E2 , X being a point on the

straight line LM; we consider the circle C constructed to have MX as a

49 This equality shows that if E > G, then NO > NH; if E = G, then O is on H; if
E < G , then NO < NH.
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chord that subtends the angle  α. We should note that Ibn al-Haytham has
not specified whether the angle of the ordinates is the acute angle or the
obtuse one. One of the arcs MX of circle C subtends α and the other its

supplement. Moreover, there exist two circles C symmetrical with respect to

the straight line LM; we may consider the one that touches the ellipse E2

(or the second branch of H2 ) at M.
Ibn al-Haytham says that the enclosing arc under consideration cuts the

conic section (E2  or H2 ) ‘in every case’; this is not correct, as Ibn al-
Haytham shows later when he examines special cases in his paragraph of
discussion.

Let R be the point of intersection and RV the corresponding ordinate.
We know that MRX RVMˆ ˆ= =α ; so triangles MVR and MRX are similar
and we have

MR

MV
= MX

MR

or alternatively
MR2 = MV · MX,

hence
VM ML

MR

ML

MX

G

E

⋅ = =2

2

2 .

α
X

R J

V

L
M

G

E

U

T

Fig. 1.2.13.1
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L VX

J

M

α

R
δ

T

Fig. 1.2.13.2

Another possibility for the enclosing arc is that the tangent at the point
X is parallel to the tangent at L to E2 or to H2.

Moreover, because R is a point of H2 or of E2, we have

MV VL

VR

ML

LT k

⋅ = =2

1
 (equation of the conic section).

X V L

J

R

M
α

Fig. 1.2.13.3
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X L V

J R

M

Fig. 1.2.13.4

The line through L parallel to VR cuts MR in J, LJMˆ  is known because
it is given that JLMˆ = α  and LMJˆ  is known (because it is defined by the
given points L and M and the point R, the intersection of a known conic
section E2 or H2 with a known arc of a circle). Let LJMˆ = Θ .

So, returning to the conic section ABC, we construct a tangent that
makes with the diameter HB an angle equal to LJMˆ ; let A be the point of
contact, P the point of intersection of the tangent with the diameter HP and
AI the ordinate. The points N and K are defined as in Problem 12 and the
point O of NH is defined by

ON

NH
= XM

ML
= E2

G2
,  HPA LJMˆ ˆ= = Θ

and
AKN PIA PHN JLMˆ ˆ ˆ ˆ= = = = α .

Triangles NAK, NPH, API, MRV, MJL are similar. We know that

HI IP

AI
k

⋅ =2  (equation of the conic ABC)

and
MV VL

VR k

⋅ =2

1
,

so we have
MV

VR

VL

VR

AI

IP

AI

HI
⋅ = ⋅ .

But from the similarity of the triangles it follows that

MV

VR
= ML

LJ
= NH

HP
= AI

IP
,
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and consequently
VL

VR
= AI

HI
= HK

KA
.

So we have
NK KH

KA

NK

KA

KH

KA

MV

RV

LV

VR

ML

LT k

⋅ = ⋅ = ⋅ = =2

1
.

From
KA

KN
= RV

VM
 and 

HK

KA
= LV

VR
,

we obtain

 
HK

KN
= LV

VM
 and 

NH

KN
= LM

VM
.

But
HN

NO
= ML

MX
,

hence
KN

NO

MV

MX

MV

MX MV

MV

MR

KN

NA
= =

⋅
= =

2 2

2

2

2 ,

from which we get
KN · NO = NA2.

Let U be such that KH

U
= 1

k
; we have

KH NK

U NK k

⋅
⋅

= 1
.

But
1
k

= NK.KH

KA2
,

hence
U · NK = KA2

and consequently
NA2

KA2 = NO

U
.

Moreover
KN

NH

AK

PH

IH

HP

IH

HP HI

IH

HB

AK

HB
= = =

⋅
= =

2 2

2

2

2 ,

so we have
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U KN

U NH

AK

HB

⋅
⋅

=
2

2 ,

but
U · KN = AK2,

so
U · NH = HB2.

Let us (as in Problem 12) draw the line DS parallel to AK; from the fact
that HI · HP = HB2 we get NA · NP = ND2 and NK · NH = NS2.

Moreover we have

HN

ON

ML

MX

G

E

HN NK

ON NK

NS

NA
= = = ⋅

⋅
=

2

2

2

2 ,

hence
NA

NS
= E

G
.

From
ON · NK = NA2,

we obtain
ON

NA
= AN

NK
= PN

NH
,

hence

ON · NH = AN · NP = ND2 and 
ON

NH
= ND2

NH 2 = E2

G2 .

Thus we have
AN

NS
= ND

NH
= AD

HS
= AD

DB
,

and accordingly
AD

DB
= E

G
.

The point A gives a solution to the problem.

c) Discussion of the problem:
This discussion is equivalent to considering the existence of the point R,

an intersection of H2 (or E2) with the arc of C subtending angle α, both

defined by the segments ML and MX. We have put ML

MX
= G2

E2 . Ibn al-

Haytham says ‘Let us take the smaller of the two as a diameter ...’, so
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if G < E, we take ML as a diameter of H2 (or E2) and MX as a chord of
the arc C; this is what has been done in all our figures;

if G > E, we have ML > MX, and we should take MX as a diameter,
which would come to the same thing as exchanging the letters L and X in
the figures. But the argument put forward in the synthesis no longer holds.

Ibn al-Haytham then examines the choice of the arc C that subtends the
angle; there are four possible arcs depending on whether we consider an
acute or an obtuse angle α, that is, the half-plane I or the half-plane II in Fig.
1.2.13.5.

I

M

α

α

ΙΙ

X

Fig. 1.2.13.5

In the case of the hyperbola H2, whichever arc we consider, it cuts H2

in a point because M lies outside and X inside the branch of the hyperbola
that passes through L (if we assume ML < MX).

In the case of the ellipse E2, we choose the semi-ellipse for which the
tangent LT makes MLTˆ  acute. The tangent to the ellipse at M is MT1, and
MT1 || LT.

R

L M

J

R

X α

α

   

X

L V

R

T T’

M

T

α

1
α

Fig. 1.2.13.6 Fig. 1.2.13.7
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Let MT′ be such that LMT MLTˆ ˆ′ = ; MT′ is a tangent to the arc
containing the obtuse angle α. Near the point M, this arc lies inside the
ellipse, and the point X of the arc lies outside the ellipse; so the arc in
question and the semi-ellipse have one and only one point, R, in common.

If ML is the minor axis of the ellipse E2 (this assumes ML

LT k
= 1 < 1, so

k > 1); then C has diameter MX, E2 and C touch one another at M. In
considering the major axis of the ellipse, YZ, and the chord TU cut off in the
circle by YMZˆ , an angle that is obtuse because ML < YZ, Ibn al-Haytham
distinguishes three cases: 1) YZ = TU; 2) TU < YZ; 3) TU > YZ.

Y = T

MY L

Z = U = R

X L

T

Y

M

Z

U

R

Fig. 1.2.13.8 Fig. 1.2.13.9
T

X L

Y

M

Z

U

Fig. 1.2.13.10

In the first two cases, C and E2 cut one another, that is, R exists.
In the third case, R does not exist.

If the diameter ML of E2 is its major axis (this assumes k < 1), then X
lies outside the ellipse.
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X L M

Fig. 1.2.13.11

If E = G, we revert to the first conic section Γ (H  or E ): if the diameter
BH is the transverse axis of H  or an axis of E, the problem has no solution
(by Conics II.29 and 30). If the diameter BH is not an axis of E, the tangent
at B cuts the axis in D, and the second tangent from B, say BA, is equal to
BD.

D

A

B

H

Fig. 1.2.13.12

Investigation of Problems 12 and 13
Given: A conic section Γ (a hyperbola H  or an ellipse E ) with centre H,

the tangent BD at a point B of Γ and a ratio E

G
.

Problem: To draw a tangent to Γ to cut BD in D and to be such that, if

A is the point of contact, we have DA

DB
= E

G
.

The conic section Γ is specified by the diameter d = 2HB, the latus

rectum a corresponding to it (k = d

a
) and the angle α that HB makes with

the conjugate direction, an angle called the ‘angle of the ordinates’ (there are
two possibilities depending on whether α is acute or obtuse).



MATHEMATICAL COMMENTARY 91

So in this problem we know HB in position and magnitude, k = d

a
, α

and E

G
.

We note that if the conic section Γ is a hyperbola, Ibn al-Haytham
considers only one branch, the one that includes the point B.

In Propositions 12 and 13, Ibn al-Haytham proposes to show that the
problem concerned reduces to the construction of a tangent that makes a
known angle Θ with the diameter HB of the conic section Γ.

1) If the tangent at the point A is a solution to the problem and cuts the
diameter HB in P and the diameter conjugate with HB in N, then angle
HPNˆ  is known because triangle HPN is similar to a triangle that can be
constructed from what we are given in the problem.

In order to arrive at this result, Ibn al-Haytham, in his analysis, brings in
triangle NOA, which is similar to HPN, and at the beginning of the synthesis
he gives the construction, from the data provided, of the triangles MXR and
MJL, which are similar to the triangles NOA and NPH. We then have
MJLˆ = NPHˆ = Θ , an angle that depends only on what we have been given.

O
H

K N

A

P

J

X
L V M

R

α
α

α

Θ

Θ

Fig. 1.2.13.13

2) Ibn al-Haytham reminds us that using Propositions 57 and 59 of the
second book of Conics, we know how to construct a tangent to Γ such that
HPNˆ = Θ .

Then he shows that if HPNˆ  = Θ, then the tangent gives a solution to
the problem, that is, it satisfies

DA

DB
= E

G
.
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Comments
1) If Γ is a circle, with the tangent at B known, for any point A, except

where A coincides with B′ on the diameter HB, the tangent at A cuts the

tangent at B in the point D and we have DA

DB
= 1, so E

G
= 1.

H

B

P

D

D

A

A

C

P

B

Θ

C ′

′

Fig. 13.14

2) Ibn al-Haytham writes: ‘we extend AD on the side of D, thus it meets
HB; let it meet it at the point P’50. This holds true in the case of the
hyperbola if we consider only the branch H  that includes the point B. But
in the case of the ellipse (as for the circle) several different situations may
occur. Let CC′ be the diameter conjugate with BHB′. If A is at C or C′, the
tangent is parallel to HB, and P does not exist. If A lies on the arc BC or the
arc BC′, we have P beyond D on AD produced; the points concerned occur
in the order A, D, P, and H, B, P. But if A lies on one of the arcs CB′ or
B′C′, the points are in the order D, A, P and B, H, P. (See figures below.)

It is thus probable that Ibn al-Haytham is assuming that A lies on the arc
CBC′. But we may note that reasoning is valid for any position of A other
than C or C′ provided we take the ‘angle of the ordinates’
α = =PBD PHNˆ ˆ .

Moreover, if two points A are symmetrical with respect to H, the
corresponding tangents are parallel, the points P, as well as the points N
associated with them, are symmetrical with respect to H. The two lengths

ND associated with them are equal, so the ratio ND

NH
 is the same for the two

50 See below, p. 198.
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points concerned, and the same holds for the ratio DA

DB
, because we can

show that DA

DB
= DN

NH
.

This holds true equally in the case of the hyperbola and in that of the
ellipse.

Thus two points of Γ symmetrical with respect to H have associated with
them two parallel tangents, and in consequence the same angle

Θ = HPNˆ  and the same ratio DA

DB
.

This explains why Ibn al-Haytham considers only one branch of a
hyperbola or only a semi-ellipse.

3) Starting from the equality HP

IP

NH

IA

HB

k IA
= =

⋅

2

2 , Ibn al-Haytham brings

in:
Σ = k · IA2, where Σ is a square bearing a known ratio to the square of

IA, but Σ is not known, because IA is not.

Q = HB

k

2

, where Q is a known square, the square of a straight line Δ

whose ratio to HB is known. We have Δ = HB

k
, and Δ is a known straight

line.
Then we have

(1)
Q

IA2
= HB2

Σ
= NH

AI
.

From (1), we obtain

(2) NH · AI = Q  (or NH · HK = Q since AI = HK)

and
Q

HB2
= IA2

Σ
,

that is to say

(3)
NH HK

HB

AI

k

⋅ = =2

2 1
Σ

.

It is not clear what purpose is served by introducing Σ, Q and Δ, to
which Ibn al-Haytham does not refer again. The calculation that leads to (2)
and (3) need take no more than a few lines without an appeal to Σ  or Q, but
manipulation of proportions often proceeds by the introduction of such
magnitudes.
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4) If d denotes the diameter BB′ of the conic section Γ (H  or E ) and a
the latus rectum associated with it, and if we denote by d′ the diameter CC′
conjugate with BB′ and by a′ the latus rectum associated with it, then

k = d

a
= ′a

′d
,

so
′d

′a
= 1

k
.

Ibn al-Haytham defines a hyperbola H1 and an ellipse E1 whose

diameter is d1 = NH and whose latus rectum is a1, such that d1

a1

= 1
k

= ′d

′a
.

This is not enough to define H1 or E1, but it is clear that Ibn al-Haytham
also assumes that the diameter conjugate with HN is parallel to HB, because
he takes AK as the ordinate of the point A (meaning AK || HB).

In consequence the conic H1 (or E1) is similar to the conic section Γ (H
or E ) given in the problem.

5) In the part devoted to the discussion, Ibn al-Haytham provides details
concerning the auxiliary constructions used in the problem when it is
assumed E ≠ G. He examines a number of special cases where Γ is an
ellipse, but he does not consider the problem of establishing the existence of
a tangent that satisfies the conditions of the statement: does the proposed

problem have a solution for every value of E

G
?

Analytic investigation of the problem
A) Let Γ be an ellipse with centre H, and BB′ a diameter.

B
H I

A

D

P x

C

C

y

α

α
B

1

′

′

Fig. 13.15

We shall consider A, a variable point on the semi-ellipse CBC′. Let us
put BB′ = d, and d/a = k, where a is the latus rectum associated with d.
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The equation of the ellipse with respect to the axes HB and HC is
x2 + ky2 = d2/4. If AP is the tangent at A, we have HI · HP = HB2. Let
(x1, y1) be the coordinates of A; we have, with x1 > 0,

HP = d 2

4x1

.

We also have HI · IP = k · AI2, hence IP = ky1
2

x1

. The equation of the tangent

at A is

y y x x
x

ky
− = −( ) ⋅ −

1 1
1

1

.

The point D of this straight line has abscissa d

2
, therefore

BD y
d

x
x

ky

ky x
d

x

ky
= + −⎛

⎝
⎞
⎠ ⋅ − =

+ −
1 1

1

1

1
2

1
2

1

12
2 ,

BD = d

2ky1

d

2
− x1

⎛
⎝

⎞
⎠   

(where BD has the same sign as y1).
We have

AD

IB
= AP

IP
,

hence

AD AP

d
x x

ky
= ⋅

−⎛
⎝

⎞
⎠2 1 1

1
2 ,

E

G

AD

BD

x AP

d y
= = ⋅

⋅
2 1

1

.

But
AP2 = AI2 + PI2 – 2IA · IP · cos α

= y
ky

x
y

ky

x1
2 1

2

1

2

1
1
2

1

2+
⎛
⎝⎜

⎞
⎠⎟

− ⋅ cosα

= 
y

x
x k y k y x1

2

1
2 1

2 2
1
2

1 12+ −( ).cosα
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where α < π
2

  when A ∈ BC and α > π
2

  when A ∈ BC′. So we have

E

G d
x k y k y x

2

2 2 1
2 2

1
2

1 1

4
2= + − ⋅( )cosα .

But d2

4
= x1

2 + ky1
2; so, for t > 0, assuming x1 ≠ 0 and putting 

y1

x1

= t  we can

write

E

G

x k y k y x

x ky

k t kt

kt

2

2
1
2 2

1
2

1 1

1
2

1
2

2 2

2

2 1 2
1

=
+ − ⋅

+
= + −

+
cos cosα α

,

where 1 + kt2 = d 2

4x1
2

.

The equation in t can be written

(*) k
E2

G2
− k

⎛
⎝⎜

⎞
⎠⎟
t2 + 2kt cosα + E2

G2
− 1 = 0;

its discriminant is

Δ = k k cos2 α − E2

G2
− k

⎛
⎝⎜

⎞
⎠⎟

E2

G2
− 1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

and it is positive and equal to k2 cos2α for E2

G2
 = 1 or k. Since

 Δ = k − E4

G4
+ E2

G2
1 + k( ) − k sin2 α⎡

⎣⎢
⎤
⎦⎥
,

we can see that Δ becomes zero for two values of E2

G2
, m and M, between

which it stays positive; the values 1 and k lie in the interval [m, M]. The

equation (*) thus has two roots for m ≤ E

G
≤ M , and these two roots

coalesce at the end points of the interval. Their product comes to

 
1
k

E2

G2 − 1

E2

G2
− k

and it is negative if E

G
 lies between 1 and √k; thus equation (*) has one

positive root t0 to which there will correspond one solution with A on the
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arc BC and another solution A′ on the arc BC′. If on the other hand E

G
 is

inside the interval [√m, √M], but not between 1 and √k, the two roots of  (*)
have the same sign; half their sum

cosα

k − E2

G2

must be positive for the roots to be acceptable. This condition means that
E

G
 < √k if α < π

2
 and that E

G
 > √k if α > π

2
; in these cases we have two

solutions t0, t1, which correspond to two points on the same arc BC or BC′.

In the limiting case where E

G
 = √k, equation (*) reduces to the first

degree 2kt cosα + k – 1 = 0, so that t = 1 − k

2k cosα
, which corresponds to a

solution only if 1 – k and cos α have the same sign, that is, if k < 1 for

α < π
2

 or k > 1 for α > π
2

. If, in addition, α = π
2

, the equation makes k = 1

and leaves t indeterminate; in this case the ellipse is a circle and E

G
 = 1, the

two tangents to the circle from a general point always being equal.

In the limiting case E

G
 = 1, equation (*) becomes

kt
E

G
k t

2

2 2 0−⎛
⎝⎜

⎞
⎠⎟

+
⎡

⎣
⎢

⎤

⎦
⎥ =cosα

and its solution t = 0 corresponds to the vertex B of the ellipse.
Calculation gives

m = 1 + k − r

2
,   M = 1 + k + r

2
,

where r2 = (1 + k)2 – 4ksin2α = 1 + 2k cos 2α + k2.

B) Γ is one branch of a hyperbola, diameter BB′ = d, latus rectum a,

k = d

a
.
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z
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′

Fig. 1.2.13.16

The equation of the branch of the hyperbola is

x2 − ky2 = d 2

4
, where x > 

d

2
.

We also have
HI HP HB HI HP⋅ = > >2 0 0,       ,

and
IH IP kAI IH IP⋅ = < <2 0 0,       ,

hence

HP = d 2

4x1

 and IP = ky1
2

x1

.

The equation of the tangent at A is

y y x x
x

ky
− = −( ) ⋅1 1

1

1

;

x
d

y BD y
d

x
x

ky

ky x
d

x

ky
= ⇒ = = + −⎛

⎝
⎞
⎠ ⋅ =

− +

2 2
2

1 1
1

1

1
2

1
2

1

1

,

so

BD =
d x1 − d

2
⎛
⎝

⎞
⎠

2ky1

 ( BD has the same sign as y1).

We have

AI || BD ⇒ = ⇒ =
−⎛

⎝
⎞
⎠

⋅AD

IB

AP

IP
AD

x
d

x

ky
AP

1 1

1
2
2 ,

hence
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E

G

DA

DB

x

d

AP

y
= = ⋅2 1

1

.

But
    AP2 = AI2 + IP2 – 2AI · IP cos α,

= + − ⋅y
k y

x
y

ky

x1
2

2
1
4

1
2 1

1
2

1

2 cosα ,

= + −( )y

x
x k y kx y1

2

1
2 1

2 2
1
2

1 12 cosα ,

E

G d
x k y kx y

2

2 2 1
2 2

1
2

1 1

4
2= + −( )cosα , with 

d2

4
= x1

2 − ky1
2;

putting 
y1

x1

= t  we have

E2

G2 = 1 + k2t2 − 2kt.cosα
1 − kt2 = f (t), with kt2 = 1 − d2

4x1
2 .

The equation in t can be written

(**) k k + E2

G2

⎛
⎝⎜

⎞
⎠⎟
t2 − 2kt cosα + 1 − E2

G2 = 0;

its discriminant is

Δ = k k cos2 α − k + E2

G2

⎛
⎝⎜

⎞
⎠⎟

1 − E2

G2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

and this is positive and equal to k2cos2α for E2

G2
 = 1. Since

 Δ = k
E4

G4
+ (k − 1)

E2

G2
− k sin2 α⎡

⎣⎢
⎤
⎦⎥

is negative for E2

G2  = 0, we can see that it becomes zero for a unique value m

of E2

G2 > 0, a value that lies between 0 and 1. For Δ  to be positive, it is

necessary and sufficient that E

G
 ≥ √m; thus equation (**) has two roots,

which coalesce when E

G
 = √m. The product of these roots has the same sign

as 1 – E2

G2 ; when E

G
 > 1, only one of the roots is positive and leads to
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solutions of the problem, A and A′, respectively on the arcs BZ and BZ′. If

on the contrary √m < E

G
 < 1, the two roots have the same sign as cos α; so

there are no corresponding solutions except for α < π
2

.

In the limiting case α = π
2

, the equation requires E

G
 > 1. Calculation

gives

m = 1 − k + r

2
, with r2 = k −1( )2 + 4k sin2 α = k2 − 2k cos2α + 1.

There are two solutions for E

G
 > √m; both lie on the arc BZ if √m < E

G

< 1, but for E

G
 > 1 one lies on BZ, and the other on BZ′. If E

G
  = √m, there

is one double solution; if E

G
 = 1, there is one solution on the arc BZ; the

other solution, which corresponds to t = 0, coincides with the point B (a
degenerate case).

Ibn al-Haytham’s aim was to show that the solution of the problem
posed here can be deduced from the solution of Problem 50 of Book II of
the Conics: Given a conic section, to draw a tangent to it to make with the
axis, on the same side as the conic, an angle equal to a given acute angle Θ1.
In the case of the ellipse Problem 50 is possible for any acute angle, and in
the case of the hyperbola it is possible only if Θ1 is greater than the acute
angle between an asymptote and the axis.

Here the diameter concerned is a transverse diameter HB assumed to be
in general distinct from the axis HX.

The required tangent DA cuts the tangent at B in the point D and the
diameter HB in the point P.

In his analysis Ibn al-Haytham shows, using an auxiliary construction

considered at the beginning of the synthesis, that if DA

DB
= E

G
 is known, then

angle APBˆ  = Θ is known, and he says in the synthesis that if Θ is known,

then Θ1 is known.

Let β be the angle HX makes with HB;  the relationship between Θ (the
angle the tangent AP makes with HB), Θ1 (the angle the tangent AP makes
HX) and β will depend on properties of the figure and in particular on
α = PBDˆ .
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X
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HP

α

β

Θ

Θ11

Fig. 1.2.13.17a: Θ = Θ1 – β, α acute

Θ βX

P

HP
1

1

A

B

Θ

Fig. 1.2.13.17b: Θ = Θ1 + β, α obtuse

X P1

1

A

P

B

H
Θ

Θ

β

BP

P

A

Θ

Θ
β

11

Fig. 1.2.13.17c:  Θ = π  – (Θ1 + β), α obtuse         Fig. 1.2.13.17d: Θ = Θ1 + β, α acute
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H

P

A

B

P1

Θ

Θ
X

1

P B

A

P X

β

1

Fig. 1.2.13.17e: Θ = Θ1 – β, α obtuse Fig. 1.2.13.17f: Θ +Θ1 – β = π, α acute

Analytical determination of the angle Θ = Θ1 + β
To determine Θ by an auxiliary construction that uses the given values

d

a
 = k, a and E

G
 would entail a discussion that Ibn al-Haytham does not

supply and whose complexity can be seen in the relationship that connects
E

G
, Θ, α and k.

The case of the ellipse
We have

(1) 
IB IB

AI
k

⋅ ′ =2 , HI · HP = HB2,
HI IP

AI
k

⋅ =2 .

So
DB

PB

AI

PI

HI

k AI
= =

⋅
 and PB HP HB

HB BI

HI
= − = ⋅

.

B

C
A

H

C

A

D

P

BI

Θα
′

′

′

Fig. 1.2.13.18
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Moreover
DA

BI PAI
= sin

sin ˆ
α

,

where PAI PDBˆ ˆ=  = π – (α + Θ) (α acute or obtuse), hence

sin PÂI = sin (α + Θ)

and we have

DA BI= ⋅
+

sin
sin( )

α
α Θ  and DB

HB BI

k AI
= ⋅

⋅
,

hence
E

G

DA

DB

k AI

HB
= =

+
⋅sin

sin( )
.α

α Θ
.

But
HI

k AI

AI

PI⋅
= =

+
sin

sin( )
Θ

Θα

and (1) can be written
HB2 – HI2 = k AI2,

hence

HB kAI k AI2 2 2 2
2

2= + ⋅
+

sin
sin ( )

Θ
Θα

and
HB

kAI
k

2

2

2

21= + ⋅
+

sin
sin ( )

Θ
Θα

.

Thus we have

G2

E2
= sin2 (α + Θ )

k sin2 α
1 + k sin2 Θ

sin2 (α + Θ )
⎡
⎣⎢

⎤
⎦⎥
,

G2

E2
= sin2 (α + Θ ) + k sin2 Θ

k sin2 α
= f (Θ ) = φ(Θ )

k sin2 α
.

This calculation is valid for all positions of the point A on the arc BC

(0 < α < π
2

) or on the arc BC′ ( π
2

 < α < π). In both cases we have

0 ≤ Θ ≤ π – α  and α ≤ α + Θ ≤ π,

where

Θ = 0 ⇒ 
E

G
 = √k and Θ = π – α ⇒ 

E

G
 = 1.
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The case of the hyperbola
We have

(1) 
IB IB

AI
k

⋅ ′ =2 ⇔ HI2 – HB2 = k AI2 ⇔ HB2 = HI2 – k AI2

and
HI · HP = HB2,

HI · IP = k AI2,

B H

D

A

IBP

αω Θ
′

Fig. 13.19

from which we obtain

PB = HB – HP = HB – 
HB

HI

HB BI

HI

2

= ⋅
,

hence, as in the case of the ellipse,

DB
HB HI

kAI
= ⋅

.

We also have

DA BI= ⋅
+

sin
sin( )

α
α Θ

,

hence
E

G

k AI

HB
=

+
⋅sin

sin( )
.α

α Θ
.

But
HI

k AI

AI

PI⋅
= =

+
sin

sin( )
Θ

Θα
.
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 (1) ⇒ HB k AI k AI k AI
k2 2 2

2

2
2 2

2

2 1=
+

− =
+

−⎡
⎣⎢

⎤
⎦⎥

.
sin

sin ( )
sin

sin ( )
Θ

Θ
Θ
Θα α

  ,

hence
G2

E2
= sin2 (α + Θ )

k sin2 α
k sin2 Θ

sin2 (α + Θ )
− 1

⎡
⎣⎢

⎤
⎦⎥
,

G2

E2
= k sin2 Θ − sin2 (α + Θ )

k sin2 α
= g(Θ ) = Ψ (Θ )

k sin2 α
,

a calculation that is valid for acute and obtuse α.

The relationship between Θ, α, k and E

G
 can thus be written

(1) k sin2 Θ + ε sin2 (α + Θ ) = k
G2

E2
sin2 α ,

where ε = 1 in the case of the ellipse and ε = –1 in the case of the
hyperbola. The equation becomes simpler if we express it in terms of the
angle Θ1 that the required tangent makes with the principal axis of the conic.

Let us denote the ratio of the axes by c = b

a
 (0 < c ≤ 1) and the slope of the

diameter HB by p; the equation of the conic with respect to its principal axes

HX, HY is x2 + ε y2

c2 = a2 ; the conjugate diameter HC has slope −ε c2

p
. We find

k = HB2

HC2
 by writing

HB2 = 1 + p2( ) a2

1 + εp2

c2

,    HC2 = ε 1 + c4

p2

⎛
⎝⎜

⎞
⎠⎟

a2

1 + ε c2

p2

;

so

k = c2 1 + p2

p2 + c4 .

Let us now find the angle α from its tangent:

tanα
ε

ε
ε

ε
=

− −

−
= − +

−

c

p
p

c p

p c

c

2

2

2 2

21
1

1
.

Equation (1) becomes

(2) (k + ε cos2α )cos2Θ − ε sin2α sin2Θ = k + ε − k
G2

E2 (1 − cos2α )
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with

sin2α = −2 p
p2 + εc2( ) 1 − εc2( )
1 + p2( ) p2 + c4( ) ,

cos
( ) ( ) ( )

2
1 1 1 1

1

2 2

2 2 4α
ε ε

=
− − +[ ] + + −( )[ ]

+( ) +( )
p p c p p p c p

p p c
.

We find

k
c c p

p c

p

p
+ =

−( ) +( )
+

⋅ −
+

ε α
ε ε

cos2
1 1

1

2 2 2

2 4

2

2 ,

ε α
ε ε

sin2
1 2

1

2 2 2

2 4 2= −
−( ) +( )

+
⋅

+
c c p

p c

p

p

and equation (2) becomes

(3) 1 − εc2( )cos2 Θ − β( ) = 1 + εc2 − 2c2 G2

E2

c2 + εp2

p2 + c4 ,

with tan β = p (β is the angle between HX and HB).
Alternatively

(4) cos2Θ1 = 1 + εc2

1 − εc2
− 2c2

1 − εc2

G2

E2

c2 + εp2

p2 + c4
.

The condition for the equation to have a solution is that

1 + εc2

1 − εc2 − 2c2

1 − εc2

G2

E2

c2 + εp2

p2 + c4 ≤ 1

or

εc2 ≤ c2 c2 + εp2

p2 + c4

G2

E2
≤ 1.

In the case of the ellipse, this condition can be written

(5) c2 c2 + p2

p2 + c4
≤ E2

G2
≤ c2 + p2

p2 + c4
;

in the case of the hyperbola, it becomes

(5′) E2

G2
≥ c2 c2 − p2

p2 + c4
.
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We may note that the bounds found in (5) and (5′) coincide with the
quantities m and M that appear in the previous discussion.

In the case of the ellipse, if (5) is satisfied, equation (4) defines a unique
acute angle Θ1, which provides the solution to the problem.

In the case of the hyperbola, (4) can also be written

(6) cos2Θ1 =  cos2ω1 − G2

E2
 c 

c2 − p2

p2 + c4
 sin2ω1,

where ω1 is the angle the asymptote makes with HX; this equation gives a
unique acute angle Θ1 greater than ω1 because the second member of the
equation is less than cos2ω1.

We have just seen, in the course of our discussion of Problem 13, that
Ibn al-Haytham did not consider the problem of establishing the existence of
a tangent that satisfied the conditions in the statement, namely:

Given the conic section Γ and the point B, so that k and α are known,

has the problem got a solution for every value of E

G
?

Let us return again to this same question.

– In the case of the circle, if E

G
 ≠ 1, the problem has no solution; if E

G
 =

1, it is indeterminate, and for every tangent there is a corresponding acute

angle Θ = BPAˆ . Conversely, ∀ Θ ∈ ] 0, π
2

[, there exists a tangent PA such

that BPAˆ  = Θ and DA

DB
= E

G
= 1.

As Θ varies, E

G
 remains constant.

– In the case of a conic section Γ, either an ellipse or a hyperbola, the

ratio E

G
 varies as the point A varies.

For example, let us consider an ellipse with major axis BHB′; so α = π
2

and k > 1. We know that

(1)
IB IB

AI
k

⋅ ′ =2 ,

(2) HI · HP = HB2,

(3)
HI IP

AI
k

⋅ =2 .



108 CHAPTER I: THEORY OF CONICS

P

D
A

B I H B’

C

y

x
θ

Fig. 1.2.13.20

We assume I lies between H and B

HI = x, 0 < x < 
d

2
.

Taking coordinate axes (Hx, Hy), equality (1) gives

(4) ky2 = d

2
⎛
⎝

⎞
⎠

2

− x2 ,  the equation of Γ.

From (3) we obtain

HI

k AI

AI

IP⋅
= = tan Θ ,

hence

(5) tan Θ = x

ky
.

We have

DA = BI

cosΘ
, DB = PB · tan Θ,

hence
E

G

DA

DB

BI

PB
= =

⋅ sinΘ
.

From (2), we obtain

HP = HB2

HI
 and PB = HP − HB = HB2

HI
− HB .

PB
HB

HI
HB HI

HB BI

HI
= −( ) = ⋅

.

Therefore

(6)
E

G

HI

HB

x

d
=

⋅
=

sin sinΘ Θ
2

.
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From (5) and (4), we obtain

d
x

k

x

2
12

2
2

2
⎛
⎝

⎞
⎠ = + .

tan Θ
,

hence
d

x k

2

2 24
1

1= +
 tan Θ

.

From (6), we then obtain

G

E

k

k

2

2

2 2

2

1
=

+( ) tan

 tan

Θ Θ
Θ

sin

G

E

k

k

k

k

k

k

2

2

2 2 2 2 21 1 1=
+( )

= + = −( ) + tan    Θ Θ Θ Θ Θcos sin cos sin
.

For given k, k > 1, E

G
 is this a function of Θ. As A describes the arc BC,

Θ decreases from π
2

 to 0; sinΘ decreases from 1 to 0, so G2

E2  decreases

from 1 to 1
k

, and the ratio E

G
 increases from 1 to √k.

The problem has no solution unless 1 ≤ E

G
 ≤ √k.

Ellipse with BHB′ as any diameter. We shall again assume k > 1. The
equalities (1), (2) and (3) still hold.

We have
DB

PB

AI

PI

HI

k AI
= =

⋅
 and PB HP HB

HB BI

HI
= − = ⋅

;

but
DA

BI PAI
= sin

sin ˆ
α

, PAI PDBˆ ˆ=  = π – (α + Θ),

sin PAIˆ  = sin (α + Θ),
hence

DA BI= ⋅
+

sin
sin( )

α
α Θ

 and DB
HB BI

k AI
= ⋅

⋅
,

E

G

DA

DB

k AI

HB
= =

+
⋅sin

sin( )
.α

α Θ
,

E

G

ky

d
=

+
⋅sin

sin( )
α

α Θ
2

.
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α

Θ

Θ
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Fig. 1.2.13.21a: α  = PBDˆ  obtuse Fig. 1.2.13.21b: α  = PBDˆ  acute
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D

P
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′

′

Fig. 1.2.13.21c:
The tangent at any point of the branch of the hyperbola HB

cuts HB between H and B.
If A ∈ BZ, α = PBDˆ  is acute.
If A ∈ BZ′, α = PBDˆ  is obtuse.
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But

(4)
HI

k AI

AI

PI⋅
= =

+
sin

sin( )
Θ

Θα
= x

ky

and

(5)
d

2
⎛
⎝

⎞
⎠

2

= x2 + ky2  (equation of the ellipse).

From (4) and (5), we obtain

d

2
⎛
⎝

⎞
⎠

2

= k2y2 sin2 Θ
sin2 (α + Θ )

+ ky2 ,

hence
d 2

4ky2
= 1 + k sin2 Θ

sin2 (α + Θ )
.

We thus have
G

E

d

k y k

k2

2

2

2 2

2

2

2

2

2

24
1= ⋅ +( ) = +( ) +

+
⎡
⎣⎢

⎤
⎦⎥

sin
sin

sin
sin

sin
sin ( )

α
α

α
α α

Θ Θ Θ
Θ

,

hence
G2

E2 = sin2 α + Θ( ) + k sin2 Θ
k sin2 α

.

E

G
 can thus be expressed as a function of Θ, for given k and α.51 The

calculation is valid whether A lies on BC or on BC′. Angle α is acute if A lies

on BC′, α is obtuse if A lies on BC.
In both cases

0 ≤ Θ ≤ π – α  and α ≤ α + Θ ≤ π.

Θ = 0 ⇒ 
E

G
 = √k, Θ = π – α ⇒ 

E

G
 = 1.

This discussion concerning the existence of angle Θ thus allows us to
come back to the same conditions we obtained earlier by using algebra.

Ibn al-Haytham’s discussion only yields cases in which the construction
is possible and others in which it is not possible; but the discussion remains
incomplete. A complete discussion concerning the existence of the point of
intersection R would indeed be difficult to carry out by geometry. As
regards the problem as a whole, it is possible to find a solution that is more

51 If α = π
2

, we return to G2

E2 = k sin2 Θ + cos2 Θ
k

= (k − 1)sin2 Θ + 1
k

.
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elementary than the one developed by Ibn al-Haytham.52 It is in fact
sufficient to consider the intersection of the circle with centre H and radius
E

G
.

ad

2
 with the given ellipse or with the hyperbola that is conjugate with

the given hyperbola.

H

A

D

BA

C

C

Q

B

Q

′′

′

′

Fig. 1.2.13.22

P

Q

C
B

D

A O

D

H

A

B C

Q

′
′

′

′

′

Fig. 1.2.13.23

52 See J.P. Hogendijk, Ibn al-Haytham’s Completion of the Conics, Sources in
the History of Mathematics and Physical Sciences 7, New York/Berlin/Heidelberg/
Tokyo, 1985, p. 383, with a discussion based on an argument from growth and
continuity.
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The intersection, if there is one, defines two diameters (possibly the
same) such as QQ′. We look at AA′, the diameter conjugate with QQ′ in the

conic Γ, and the point A provides a solution to the problem.

For the case of the ellipse, we have AD2

BD2
= HQ2

HC2
 from Conics III.17; also

HQ2 = E2

G2
.
ad

4
 and HC2 = ad

4
. From this we obtain AD

BD
= E

G
.

For the case of the hyperbola, we again appeal to the Conics, to

Proposition 23 of Book III; from this proposition ′A ′D 2

B ′D 2 = HQ2

HC2 = E2

G2 , hence

′A ′D

B ′D
= E

G
. Moreover, AD

BD
= ′A ′D

B ′D
 because the triangles OA′D′, OAD and

OPB are similar to one another, and from Property 36 of Book I of the

Conics, which gives AP

′A P
= AO

′A O
.

The number of solutions is given by the number of points of intersection
of the circle and the ellipse (respectively with the hyperbola). Calling the

axes of the conic α and β, there is no solution if the diameter E

G
ad  is

strictly less than β. In the case of the ellipse, there is no solution either for
E

G
ad  > α and there are two solutions if β < E

G
ad  < α. In the case of the

hyperbola, there are two solutions if E

G
ad  > β. When one of the

inequalities is replaced by an equality, the two solutions coincide with one
another.

A discussion of the existence and number of solutions, in geometrical
terms, requires subtle considerations of the curvature of the conic and seems
to be very difficult to carry through without appealing to analytical concerns
such as the increase in the radius of the auxiliary circle as a function of the
given ratio.

We may wonder why Ibn al-Haytham did not think of such an
elementary solution, despite knowing Apollonius’ Conics better than
anyone. In trying to answer this question, we need to remember that
elsewhere Ibn al-Haytham uses the intersection of conics to deal with not
only three-dimensional problems but also some plane problems, for instance
in The Knowns. In this latter treatise, he is much less interested in looking for
the simplest method of some specific problem than in seeking families of
conics that supply solutions to a problem. We have indeed already seen that,
in connection with this example, he replaces two conics by two other conics
belonging to the same pencil. Let us not forget that Ibn al-Haytham did not
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usually write to embroider on a known theme, or to propose exercises, but
much more to contribute significant advances in mathematics.

– 14 – Let there be a parabola with vertex A and axis AD, and a given
straight line E. To find a point B of the parabola such that the tangent at B
cuts AD in a point H such that BH = E.

E

HAID

B

C

Fig. 1.2.14.1

Analysis: Let us suppose the point B and the straight line BH are
known. Let us draw BI ⊥ AD and BD ⊥ BH. We have HD · HI = BH2 = E2

(right-angled triangle). In the similar triangles BDH and IBH, we have
DH

BH

BH

HI
DH HI BH= ⇒ ⋅ = 2 .

We know that A is the midpoint of IH, because we have a subtangent,
and that DI = a/2, because we have a subnormal, where a is the latus
rectum. From this we find the lengths DH and HI by means of a classical
construction;53 HI is thus known, so the length AI is also known, from
which we can find the point I.

53 To construct two lengths x and y when we know that x – y = l, x · y = L2, l and
L being known lengths.

We draw a circle (O, r), r = l/2, we
draw a tangent to it TS of length L; the
straight line TO cuts the circle in P and Q,
we have TP = x, TQ = y. The construction
is always possible.

S L T

Q

O

P

_
2
l

Fig. 1.2.14.2
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Note: Let there be a parabola Γ with vertex A and axis AD, and a given
straight line E. To draw a tangent to touch Γ at B, and to cut the axis in H
and to be such that BH = E.

Ibn al-Haytham shows in his analysis that the data are sufficient to
determine the point H.

In the synthesis, starting from E and the latus rectum of Γ, he says that
H is known and simply adds ‘we draw from the point H a tangent to the
conic section; let it be HB’.54

He does not give any indication as to the method of constructing H or B
geometrically. Here the two constructions can be carried out with straight-
edge and compasses, very simply.

To find the point H, we only need to know AH; now AH = HI

2
, and we

have

HD · HI = E2 and HD – HI = 1
2

 latus rectum = l.

Once the point H has been constructed, I can be found from it, because

AH = AI, then D because ID = l = 1
2

 latus rectum.

The intersection of the circle with diameter HD with the straight line Δ
the perpendicular to the axis of Γ at I is the required point B.

Since he knows H, Ibn al-Haytham knows that the tangent exists (Book
II.49).

– 15 – Synthesis: The synthesis shows that if we are given E and the
latus rectum a we can find the length HI, and from it deduce H, then I and
B. The reasoning then proceeds in the opposite direction from that of the
analysis.

L M K N

E

HAID

B

Fig. 1.2.15

54 See below, p. 208.
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Note: The point B is the point with abscissa AI; it is thus the point of
intersection of the parabola and the straight line Δ the perpendicular to the
axis at I; B is also the point of intersection of Δ with the circle of diameter
HD, H and D being defined by what is given.

Finally, we may note that what we have is a problem of intercalation
(neusis) of the given segment E between the parabola and its axis; the
condition is that the intercalated line segment shall touch the parabola.

– 16 – Let there be a conic section Γ, an ellipse or a hyperbola, with
axis AD and centre E, and a given straight line F. To find a point B of Γ so
that the tangent at B cuts the axis in a point H such that BH = F.

Analysis: Let BH be the required tangent, we draw BI ⊥ AD and
AC || BH. The straight lines AC and BE cut one another in K, the midpoint
of AC; we draw KL ⊥ AD. Let a be the latus rectum, we define the point M

by ME

MA
= DA

a
, MA is half the line segment in the same ratio.55 So we have

ML LA

AK

ME

AE

⋅ =2 .

Moreover
HB

AK
= HE

AE
,

hence
AK · HE = AE · BH, a known product.

F

H M A

B

I L

E

C

N

D

K

Fig. 1.2.16.1

55 Apollonius, Conics, VII.2-3; see Apollonius de Perge, Les Coniques, t. 4:
Livres VI et VII, pp. 242ff.
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C

K

L

N

I

E

HA

B

M

F

Fig. 1.2.16.2

From a property of the tangent, that (A, D, I, H) is a harmonic range,
we have AE2 = EI · EH, and consequently

AK HE

EI EH

AE BH

AE

AK

IE

BH

AE

F

AE
k

⋅
⋅

= ⋅ = = = =2 ,  a known ratio.

From this we obtain
ML LA

IE

ML LA

AK

AK

IE

ME

AE
k

⋅ = ⋅ ⋅ = ⋅2 2

2

2
2 .

But we have seen (Problem 3) that LE · EA = IE2, so

(1)
ML LA

LE EA

ME

EA
k

⋅
⋅

= ⋅ 2 .

Let P  be the parabola with vertex E, axis EL, latus rectum EA, and let
P cut KL in N. Let H  be the hyperbola with vertex A and axis MA, whose
latus rectum is such that  

MA

a

ME

EA

HB

EA

ME

EA
k

′
= ⋅ = ⋅

2

2
2 ,

where H  cuts KL in N′.

N ∈ P, so we have LN 
2 = EL · EA;

N′ ∈ H, so we have LM LA

LN

MA

a

ME

EA
k

⋅
′

=
′

= ⋅2
2;  

from (1) we thus deduce that LN′ 
2 = EL · EA, so LN′ 

2 = LN 
2; the points N

and N′ thus coincide.
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So if the tangent BH exists, the hyperbola H  and the parabola P have a
common point N. The two auxiliary conics P  and H  meet one another in a
point N on the vertical through the point L, but outside the given conic
section Γ. This leads Ibn al-Haytham to give a slightly unusual treatment that
can give the misleading impression of resembling an account of a synthesis.
It does not help if we try to make a comparison between this passage and
the description of the construction of the regular heptagon, in which we can
observe a certain vagueness in distinguishing analysis and synthesis.56

– 17 –  Synthesis: As in the analysis we define M by ME

MA
= DA

a
. Let O

be the straight line defined by MA

O

EM

EA

F

EA
= ⋅

2

2 ; let H  be the hyperbola with

transverse axis MA and latus rectum O and let P be the parabola with
vertex E, axis EA and latus rectum AE. The conic sections H  and P cut
one another in N (see the next discussion).

Let L and P be the points defined by NL ⊥ AD and LP = AL. The
points  L and P lie inside Γ, which is an ellipse or a hyperbola. Let C be the
point of Γ whose projection on the axis is P. The straight lines AC and NL
cut one another in K and the straight line EK cuts Γ in B. The tangent at B
cuts the axis in H; we shall show in the next discussion that BH = F.

C

P

K

L

N

Z

I

DE

HA

B

M

O

F

Fig. 1.2.17.1

56 See below, p. 459.
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M H A I L E

B
K

C

P

N

D

F

O

Fig. 1.2.17.2

Let BI ⊥ AD, we have EL · EA = EI 
2 (see analysis).

Moreover  N ∈ P, hence EL · EA = LN 
2, so we have LN = EI. But

N ∈ H, hence
LA LM

LN

MA

O

ME

EA

F

EA

LA LM

EI

⋅ = = ⋅ = ⋅
2

2

2 2 ;

now we know that  
ML LA

AK

ME

EA

⋅ =2 ,

so we have

 
AK

EI
= F

EA
,

and consequently  
AK EH

EI EH

F

EA

⋅
⋅

= .

But
BH

AK
= EH

EA
,

hence
AK · EH = BH · EA,

and moreover
EI · EH = EA2;

so we have
F

EA
= BH

EA
,

hence BH = F.
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Discussion of the existence of N
If Γ is an ellipse, E the vertex of P lies inside H  (the branch of a

hyperbola in question), and H  and P have the same axis and are concave in
opposite directions; so they cut one another in two points that are
symmetrical with respect to the axis AD.

If Γ is a hyperbola, the midpoint of AM, that is, the centre of H , lies
inside P; so P  cuts the asymptotes of H  and consequently cuts H.

Notes:
1) As in the previous problem, concerning the parabola, we are making

a neusis, but this time for central conics.

2) Let us formulate the problem in terms of an equation. The equation
of Γ can be written

x2 + ky2 = d

2
⎛
⎝

⎞
⎠

2

,

where d is the diameter of Γ and k > 0 if Γ is an ellipse and k < 0 of Γ is a
hyperbola. We still have k (k – 1) > 0 because k does not lie between 0 and
1.

The slope of the tangent to Γ  at the point B with coordinates (x, y) is

− x

ky
, so the equation of the tangent is

Y − y = − x

ky
X − x( ) .

The tangent meets the axis AD at the point H with abscissa X such that

X − x = ky2

x
.

So we have

BH y
k y

x

y

x
x k y

y

d
ky

d
ky k y2 2

2 4

2

2

2
2 2 2

2

2
2

2
2 2 2

2
2

= + = +( ) =
⎛
⎝

⎞
⎠ −

⎛
⎝

⎞
⎠ − +

⎡

⎣
⎢

⎤

⎦
⎥ .

The equation that expresses the problem is accordingly

y k k
y

d
F

ky

d
2

2

2
2

2

21 1
4

1
4+ −( )⎡

⎣⎢
⎤
⎦⎥

= −⎛
⎝⎜

⎞
⎠⎟

,

or, if we put η = 2y2

d
,



MATHEMATICAL COMMENTARY 121

k k − 1( )η2 + d

2
+ 2kF2

d

⎛
⎝⎜

⎞
⎠⎟

η = F2 .

So, to construct the solution to this problem, we first apply the area
1

k k −1( )
F2 onto the line segment 1

k k − 1( )
d

2
+ 2kF2

d

⎛
⎝⎜

⎞
⎠⎟

 to fall short by the

square η2. Next, we find y as the side of the square of area equal to d

2
⋅η .

So, we can see that the problem is again a plane one. However, this is
not immediately apparent from a purely geometrical analysis, because we
are dealing with a biquadratic equation. In any case, here Ibn al-Haytham
again has recourse to intersection of conics and not to a plane construction.

– 18 – Let there be a conic section Γ with vertex A, and let D and E be

two points on its axis. To find a point B of Γ such that BD

BE
= I

K
 (where I

K
 is

a given ratio).57

Analysis: For I

K
 ≠ 1, if there exists a point B that gives a solution to the

problem, the point belongs to both  Γ and to the circle that is the set of

points such that the ratio of their distances from D and E is I

K
; the end

points of the diameter along the straight line DE give a harmonic division of
DE.

Ibn al-Haytham finds the centre H and radius of this circle as follows:
Let H be such that DBH BEHˆ ˆ= . Since triangles HBE and HDB are similar,
we have

DH

HB
= BH

HE
= BD

BE
,

hence
DH

HE
= DH2

HB2
= BD2

BE2
,

so
HD

HE
= I 2

K 2 ;

so the point H is known and the lengths HD and HE are known. Moreover,
HB2 = HD · HE, so the length HB is known and B lies on a circle with

57 Ibn al-Haytham does not specify the nature of the conic section Γ . The analysis
holds for the ellipse, parabola or hyperbola, but he mentions only one vertex. In the
synthesis it is clear, from the start of the discussion, that he is not considering an ellipse,
for which the discussion would be very different (see following note).
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centre H and known radius r = HB; if it exists, the point B is the intersection
of the circle (H, r) and Γ.

I

K

B

A H E D

C

Fig. 1.2.18.1

If I

K
 = 1, we have DB = EB; if B exists, it lies on Δ, the perpendicular

bisector of the segment DE. If B exists, it is at the intersection of Γ and Δ.

Ibn al-Haytham does not envisage the possibility that I

K
 = 1 until he

comes to the discussion.

Note:

If I

K
 ≠ 1, H lies outside the segment DE.

If I > K, H lies beyond E and BD > BE (BD is called the first segment).
If I < K, H lies beyond D and BD < BE.
Ibn al-Haytham adopts the hypothesis that I > K, which has the

consequence that the point H lies outside the segment DE on the same side
as E (this is confirmed by both the text and the figures in the manuscript).58

58 With the hypothesis I ≠ K, we can show that the problem does not lose generality
if we assume I/K > 1, that is, I > K.

D M E

B

Hx y

Fig. 1.2.18.2

Let there be a number λ > 1 and given positions of the points D and E on the axis xy
of the conic section Γ, and let us consider Fig. 1.2.18.2, which refers to BD/BE = λ and
Fig. 1.2.18.3, which refers to BD/BE = 1/λ < 1.

(Cont. on next page)
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– 19 – Synthesis: We return to Γ and the points D and E. Let H be the

point defined by HD

HE
= I 2

K 2
 and HM the distance defined by HM2 =

HD · HE. If the circle (H, HM) cuts Γ in B (see discussion), we shall show

that DB

DE
= I

K
.

We have HB = HM, so HB2 = HD · HE, hence HD

HB
= HB

HE
; the triangles

DBH and HBE have a common angle H so they are similar. So we have

DB2

BE2 = HD2

HB2 = HD

HE
= I 2

K 2 ,

hence
DB

BE
= I

K
.

B

A H E M

D

I

K

C

L

Fig. 1.2.19.1
                                                

(Cont.) We go from Fig. 1.2.18.2 to Fig. 1.2.18.3 by considering symmetry; so if
in Fig. 1.2.18.3 we replace (D, E) by (E′, D′ ), the modified figure will correspond to
the case of the problem in which BD′/BE′ = λ > 1.

x yH D
E

M E
D

B

′ ′

Fig. 1.2.18.3

If we take λ = I/K > 1, we can thus obtain all the forms of the figure we need to
examine in the discussion of the problem.

We may note that from the beginning of the discussion, Ibn al-Haytham assumes
I > K and in most cases, after considering a figure with the points A , D, E in a certain
order, he then turns to the figure obtained by exchanging the points D and E (see note 3′,
p. 126 and note, pp. 128–9).
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Note: From the equalities HD

HE
= I 2

K 2
 and HM2 = HD · HE, we deduce

I

K

HD

HE HD

HD

HM

2

2

2 2

2=
⋅

= ,

hence
HD

HM
= HM

HE
= I

K
.

Discussion: Let us assume I > K (so BD > BE).
1) If E = A (the vertex of Γ) and D lies outside Γ, then H lies inside Γ,

and M, which is between E and D, lies outside (Fig. 1.2.19.2a); the circle
(H, HM) cuts Γ.59

H DME=A

B

Fig. 1.2.19.2a

2) If E = A and D lies inside Γ, then H lies outside Γ and M lies inside
(Fig. 1.2.19.3); the circle cuts Γ.

59 It is clear that here Ibn al-Haytham assumes that Γ is a parabola or a hyperbola,
that is, a conic that is infinite, that the circle (H, HM) must necessarily intersect.

But if Γ is an ellipse with axis AA′, we have three possibilities:
1) Γ lies inside the circle (H, HM),
2) Γ touches the circle (H, HM),
3) Γ cuts the circle (H, HM).

A H A=E M D′

Fig. 1.2.19.2b

The discussion would require us to take account of additional conditions regarding
the position of A′ the second vertex of the ellipse. We come across difficulties of the same
sort in Cases 3, 4 and 5 of the discussion.
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B

HE=AMD

C

Fig. 1.2.19.3

3) If D and E lie outside Γ, the point H defined by HD

HE
= I 2

K 2
 may lie

inside Γ, on Γ or outside it; M always lies between D and E.

B

MA H E DM1

C

Fig. 19.4

If H lies inside Γ, or at A on Γ, the circle (H, HM) cuts Γ.
If H lies outside Γ, it is between E and A (Fig. 1.2.19.4), the circle

(H, HM) will cut Γ if and only if HA < HM.
Now

HA < HM ⇔ DH

HA
> DH

HM
⇔ DH

HA
> I

K
.

The condition ED

EA
≥ I

K
 given by Ibn al-Haytham is a sufficient condition

because DH

HA
> ED

EA
; it is not a necessary condition.

If HM1 = HM, M1 ∈ (H, HM), the condition for the intersection
becomes

HM1 > HA ⇔ EM1 > EA;

but
M1D

M1E
= I

K
,

hence
DE

M1E
= I − K

K
 and M1E = K.DE

I − K
.

So we have

 EM1 > EA ⇔ K

I − K
DE > EA ⇔ DE

EA
> I − K

K
⇔ DA

EA
> I

K
,
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which is the necessary and sufficient condition for the existence of a solution
when E and D lie outside Γ, with the points in the order A, E, D.

3′) The following paragraph begins ‘If the first term of the ratio is on the
side of the point E, it is the greater […]’60; it is thus clear that Ibn al-
Haytham is retaining the assumption that I/K > 1, but wants to say that he is
reversing the roles of the points D and E in Figure 1.2.19.4, and that we
have Figure 1.2.19.5, with H and  M lying outside Γ.

A H E M D

A
D M E H

Fig. 1.2.19.5

So we have HM < HA; the circle (H, HM) does not cut Γ.
4) If D and E lie inside Γ, and occur in the order A, E, D, the point H

may lie outside Γ, at A on Γ or inside Γ between A and E.

D M

B

E H

P

AM 1

Fig. 1.2.19.6

If H lies outside Γ or at A, since the point M, which is between D and E,
lies inside Γ, the circle (H, HM) cuts Γ.

If H is between E and A, if P is the point of Γ such that HP is the
minimum distance from H to points of Γ, then the necessary and sufficient
condition for  B to exist is HM ≥ HP.

The problem can have 0, 1 or 2 solutions.

The condition DE

EA
≥ I

K
 that is given by Ibn al-Haytham, which implies

HM > HA, is sufficient, but not necessary.

60 See p. 217.
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We may note that on this occasion Ibn al-Haytham does not consider
the case where the points D and E lie inside Γ, with the points in the order
A, D, E. We should again have H beyond E (Fig. 1.2.19.7), so H and M
would lie inside Γ, and we should have HM < HA.

H E M D A

B
P

Fig. 1.2.19.7

If HP is the minimum distance of the point H from the conic Γ, the
necessary and sufficient condition for the point B to exist is again HM ≥ HP.

5) If D lies outside the conic section and E inside it, still with I/K > 1,
then the point H lies inside the conic section. But M, which is between E and
D can lie inside Γ, at A, or outside it. For the circle (H, HM) to cut Γ, it is
necessary and sufficient that HM ≥ HP, HP being as before the minimum
distance associated with the point H.

B

B
P

B

H E DAM

G

′

Fig. 1.2.19.8

If D lies inside Γ and E outside it, then H lies outside Γ; M can be inside
Γ, at A on Γ, or outside Γ. For the circle (H, HM) to cut Γ, it is necessary
and sufficient that HM > HA (Fig. 1.2.19.9).

B

D M A E H

Fig. 1.2.19.9

As in 3 and 4, this condition becomes
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DA

EA
> I

K
.

6) If I = K, we have seen that B lies on Δ, the perpendicular bisector of
DE; for Δ to cut Γ, it is necessary and sufficient that M, the midpoint of DE,
shall lie inside Γ, and this holds whatever the order of the points A, D, E.

E M A D

B

Δ

Fig. 1.2.19.10

Note: In the course of this discussion we have found the following
arrangements of the points D and E in relation to Γ, in which we may
observe that the points D and E can exchange places with one another, as
shown in Fig. 1.2.19.11:

A E D A ED

AED D A E

E A D D A E

Fig. 1.2.19.11

We may note that in cases 1 and 2, which both give a solution, Ibn al-
Haytham has not considered the cases shown in cases 1′ and 2′ in Fig.
1.2.19.12.

In case 1′, it is clear the problem has no solution, since HM < HA.
In case 2′, if HP is the shortest distance between H and points of Γ, the

condition for the circle (H, HM) and Γ to intersect is HM ≥ HP.
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H E=A M D D=A M E H

D M E=A H

P

D=AE MH

case 1

case 2

case 1

case 2 ′

′

Fig. 1.2.19.12

– 20 – Given a conic section Γ with vertex C, two points D and E on its
axis and a straight line G, to find a point B of Γ such that BD + BE = G; it is
necessary to assume G > DE.

Note: The equality BD + BE = G defines an ellipse E with foci D and E. The
problem thus reduces to investigating the intersection of Γ and E.

Analysis: Let H and I be the points of the straight line DE outside the

segment DE, and such that EH = DI = G − DE

2
; so we have HI = G.

H E

B

D C I

K
G

Γ

Fig. 1.2.20

We define IK by HI · IK = 4HD · DI.
The ellipse E with axis HI and latus rectum IK is thus defined by what

has been given and, from Apollonius (Conics, III.52), it passes through B.
Throughout this problem, the parts played by D and E are

interchangeable, since the perpendicular bisector of DE is an axis of
symmetry of the ellipse.

– 21 – Synthesis: We construct the ellipse E as described in the analysis;
its axis HI is equal to G.
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Let us suppose that E and Γ cut one another in B. From Apollonius
(III.52), B ∈ E ⇒ BE + BD = HI, so BD + BE = G. The point B thus gives
a solution to the problem.

Discussion: We assume G > DE.
1) If one of the points D and E lies outside Γ and the other inside it, or if

one of the points is at the vertex C of Γ, where the other may lie either
outside or inside Γ, then it follows that C ∈ [ED]; so if Γ is a parabola or a
hyperbola, one of the points H and I lies inside Γ and the other outside it
(see Fig. 1.2.21.1), so Γ cuts E in one point and the problem has a solution.

A

B

E C D I

K

H

Fig. 1.2.21.1

But if Γ is an ellipse, its second vertex C′ may lie between H and E and
we thus cannot draw any conclusion. It accordingly seems that Ibn al-
Haytham is assuming Γ is a hyperbola or a parabola, as in the previous
problem.

H C C D IE′

Fig. 1.2.21.2

2) If the two points D and E lies outside Γ in the order C, E, D, we may
distinguish two cases:

B

H C E D I

Γ

K

Fig. 1.2.21.3



MATHEMATICAL COMMENTARY 131

a) If EC < G − DE

2
, that is, if EC < EH, then H lies inside Γ 61 and I lies

outside it, so E  cuts Γ in B.

b) If EC > G − DE

2
, then H and I, and consequently all of E, lie outside Γ

and there is no solution.

We may note that if EC = G − DE

2
, then H is at C; the point C gives a

solution to the problem since CE + CD = HI = G.

3) If the two points D and E lie inside Γ in the order C, D, E:

H E CD I

B

A

K

Fig. 1.2.21.4

a) If CD < G − ED

2
, that is, CD < DI, then the point I lies outside Γ and

the point H lies inside it,62 so E  cuts Γ.

b) If CD = G − ED

2
, then I = C, and C gives a solution to the problem.

c) If CD > G − ED

2
, then I lies inside Γ; the problem requires more

substantial treatment, which is provided in 22 for the case where Γ is a

parabola and in 23 for the case where Γ is a hyperbola.

– 22 – If the two points D and E lie inside Γ and if AD > G − DE

2
,63 then

H, I, the vertices of the ellipse E, lie inside Γ.

Let us assume that Γ is a parabola.

61 The argument is valid if Γ is a parabola or a hyperbola.
62 See previous note.
63 In 22, the letter C is replaced by A.
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H

N

M

E D

O

K F

S

A

GC

B

I

Fig. 1.2.22.1

Let M be the centre of the ellipse and IK its latus rectum, A the vertex
of the parabola and FA its latus rectum. The condition Ibn al-Haytham gives
for E and Γ to intersect is

HM

MA AF

HI

KI

2

⋅
≥ .

1) Let us take HM

MA AF

HI

KI

2

⋅
=  (Fig. 1.2.22.1).

Let MN ⊥ HI, N ∈ (HK); we have successively

HM

MA AF

HI

KI

HM

MN

HM MI

MN MI

HM

MN MI

2 2

⋅
= = = ⋅

⋅
=

⋅
,

from which we obtain
MA  · AF = MN  · MI.

Associated with the point M we have a point with ordinate y on the
parabola and a point with ordinate Y on the ellipse; we have

 y2 = MA · AF, the equation of Γ ,
and

MI MH

Y

HI

IK

⋅ =2 ,  the equation of E,

so
MH2

Y 2
= MH

MN
,

hence
Y2 = MH · MN = MI · MN;

so we have Y = y, so Γ passes through the vertex S of the ellipse E.
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2) Let us take 
HM

MA AF

HI

KI

2

⋅
> .

For any point O on the segment HI, we have 0 < HO · OI < HM 2 and
there exists a point O between M and I such that

(1)
HO OI

MA FA

HI

IK

⋅
⋅

=    (Fig. 1.2.22.2).

H

S

M O I A

F

K

N

P

C

B

Fig. 1.2.22.2

Let OP ⊥ HI, where P lies on HK; we have

(2)
HI

IK

HO

OP

HO OI

OP OI
= = ⋅

⋅
.

From (1) and (2), we obtain MA · FA = OP · OI. But MA · FA >
OA · FA, so OP · OI > OA · FA; as before O is the projection on AH of a
point of Γ with ordinate y and of a point of E  with ordinate Y, and we have

y2 = OA · FA and Y2 = OP · OI,

hence Y > y.
So the ellipse has a point that lies outside the parabola, and the two

vertices H and I lie inside it; so the ellipse cuts Γ in two points, one whose
projection is between I and O, the other with its projection between H and
O.

3) Ibn al-Haytham then finishes the first paragraph by showing that
when Γ cuts E  at the vertex S, it also cuts it in a second point.

Let us go back to Fig. 1.2.22.1; let O be a point between M and I
defined by MA · MO = MI2, that is, O is the harmonic conjugate of A with
respect to E; we have

MA

MO
= MI2

MO2 ,
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hence
MA

AO

MA

MA MO

MI

MI MO

MI

HO OI
=

−
=

−
=

⋅

2

2 2

2

.

Let us use yM and yO to designate the ordinates of the points of the
parabola Γ that have M and O as their projections on the axis; we have

yM
2

yO
2

= AM

AO
.

In the same way, let us use YM and YO to designate the ordinates of the
points of E that have M and O as their projections; we have

Y

Y

MI

OH OI

AM

AO
M

O

2

2

2

=
⋅

= ,

hence
yM

yO

= YM

YO

;

but
YM = yM = MS,

so
yO = YO.

The parabola Γ and  the ellipse E have a common point whose
projection on AH is O.

In conclusion, if HM

MA AF

HI

IK

2

⋅
≥ , the parabola and the ellipse cut one

another in two points, and the problem has two solutions.

Note: The proofs show that the condition that is imposed is sufficient to
ensure that Γ and E cut one another in two points. If the condition is
satisfied, one of the points is at S, a vertex of the ellipse, or on the arc HS,
and the other is on the arc IS.

  But it is possible that Γ cuts E in two points of the arc IS or that Γ is a
tangent to E, possibilities that do not emerge in the discussion.

The condition that is imposed is not necessary.

Investigation of the intersection of Γ and E
When Γ is a parabola with vertex A and latus rectum AF, and D and E

are two points on its axis, to find B ∈ Γ such that BD + BE = G.
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Let us put AF = c, DE = l. Let M be the midpoint of DE, I and H the

points on the axis such that MI = MH = G

2
.

In Problem 22, Ibn al-Haytham assumes the points D and E lie inside Γ

and AE > AD > G − DE

2
 ⇔ AD > DI. So the points are in the order A, I, D,

M, E, H. We have BD + BE = G, so B ∈ E, an ellipse with foci D and E

and major axis HI. Let IK = c′, its latus rectum. We have Gc′ = G2 – l2, so  

HI

IK
= G

′c
= G2

G2 − l2
= k .

Let us put AM = m.

The condition AD > DI gives m > G

2
.

The equation of Γ: y2 = c(m – x), x ≤ m;

the equation of E: x2 + ky2 = G2

4
, – G

2
 ≤ x ≤ G

2
,

the equation for the real-number abscissae of Γ ∩ E : x2 + kc (m – x) =
G2

4
,

(1) f(x) = x2 – kcx + kcm – 
G2

4
 = 0.

The condition given by Ibn al-Haytham,

HI

HK

HM

AM AF
≤

⋅

2

,

can be written  

k ≤ G2

4mc
⇔ kcm − G2

4
≤ 0.

This condition is sufficient to make equation (1) have 2 roots, x and x′,

that satisfy – G

2
 < x′ < 0 ≤ x″ < G

2
, since the condition implies

f
G

2
⎛
⎝

⎞
⎠ > 0, f − G

2
⎛
⎝

⎞
⎠ > 0, f(0) ≤ 0.

But the condition is not necessary. If Δ = k2c2 – 4(kcm – G2

4
) ≥ 0 with

kcm > G2

4
, the equation has 2 roots > 0.
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Now, the condition kcm – G2

4
≤ k2c2

4
 is necessary and sufficient to make

the roots real numbers. We also need to ensure that the roots lie in the

interval − G

2
,  

G

2
⎡
⎣⎢

⎤
⎦⎥
. Since 

  
f ± G

2
⎛
⎝

⎞
⎠ = kc m m

G

2
⎛
⎝

⎞
⎠ ≥ 0, the two roots (if they exist)

lie on the same side of G

2
 and – G

2
 and it is sufficient to impose the condition

that their mean, kc

2
, which is positive, shall be ≤ G

2
, that is, that k ≤ G

c
. The

necessary and sufficient conditions may be written λ λ2 24 0− + ≥m G  and
λ ≤ G, where λ = kc. The polynomial λ λ2 24− +m G  has two positive roots

2m ± 4m2 − G2  and G lies between them because G mG G2 24− + =

4
2

0G
G

m−⎛
⎝

⎞
⎠ < . The inequality λ λ2 24 0− + ≥m G  is equivalent to stating

that λ  lies outside the interval between the roots; the two conditions are this

equivalent to the single inequality λ ≤ − −2 4 2 2m m G , or

HI

IK
k

MA AI AH

AF
= ≤ − ⋅⎛

⎝⎜
⎞
⎠⎟

2 .

Note: The equation for the real-number abscissae of the points of intersection
may also be written

MH x

AF MA x

HI

IK

2 2−
⋅ −

=
( )

,

where the first member becomes zero at the points x = ± G

2
 and goes

through a maximum μ between these two abscissae. The condition for the
problem to have a solution  is thus that

HI

IK
≤ μ ;

the one proposed by Ibn al-Haytham can be written

HI

IK

MH

AF MA
≤

⋅

2

,

the value of the first member for x = 0; this condition obviously implies the
preceding one. So it is clear that Ibn al-Haytham’s condition is too strong.

In fact, his discussion consists of finding the value of k that makes the
ellipse E  tangent to the parabola Γ. Finding this by geometry is far from
trivial.
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– 23 – Let us take Γ to be a branch of a hyperbola. Let us return to the

assumptions of 22, that is, D and E lie inside Γ and AD > G − DE

2
. The

points H and I, the vertices of the ellipse E, thus lie inside Γ.

H M

N

U

C

O J

S

I A

F

K

G

T

DE

B

Fig. 1.2.23.1

Let AG be the axis of Γ and AF its latus rectum. The straight line MN

(MN ⊥ AD) cuts HK in N and GF in U. If S is the point defined by

SA

AF
= HI

IK
,

we have
SA

AG

HI

IK

AF

AG
= ⋅ .

The condition Ibn al-Haytham gives for E and Γ to intersect is

HM

MA MG

SA

AG

2

⋅
≥ .

1) Let us take HM

MA MG

SA

AG

2

⋅
= . We have

HM

MA MG

HM MI

NM MI

NM MI

MA MG

HI

IK

NM MI

MA MG

SA

AF

NM MI

MA MG

2

⋅
= ⋅

⋅
⋅ ⋅

⋅
= ⋅ ⋅

⋅
= ⋅ ⋅

⋅
,

from which we obtain
NM MI

MA MG

AF

AG

MU

MG

MU MA

MA MG

⋅
⋅

= = = ⋅
⋅

,

hence
NM · MI = MU · MA    (Fig. 1.2.23.1).
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With the point M there are associated a point on the ellipse E with
ordinate Y and a point on the hyperbola Γ with ordinate y; we have on E  

MH MI

Y

HI

IK

HM

MN

⋅ = =2 ,

hence
Y2 = MN · MI,

and on Γ
MA MG

y

AG

AF

MG

MU

⋅ = =2 ,

hence
y2 = MA · MU;

so we have y2 = Y2, and Γ cuts E at the vertex C.

2) Let us take HM

MA MG

SA

AG

2

⋅
>   (Fig. 1.2.23.2).

There exists a point O between M and I such that HO OI

MA MG

SA

AG

⋅
⋅

= .

C

H M

N

O

U

P
K

F

I

A

G

B

Fig. 1.2.23.2

But
MA · MG > OA · OG,

hence

 
HO OI

OA OG

SA

AG

⋅
⋅

> .

Let OP || IK, where P lies on HK; we have

HO

OP
= HI

IK
= SA

AF
,

hence
HO OI

OA OG

HO OI

OP OI

OP OI

OA OG

SA

AF

OP OI

OA OG

⋅
⋅

= ⋅
⋅

⋅
⋅

= ⋅ ⋅
⋅

. ,
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and therefore
OP OI

OA OG

AF

AG

⋅
⋅

> .

OP cuts GF in U, we have
AF

AG

OU

OG

OU OA

OA OG
= = ⋅

⋅
,

and consequently
OP · OI > OU · OA.

With point O there are associated a point on the ellipse E with ordinate
Y and a point on the hyperbola Γ with ordinate y, and we have
Y2 = OP · OI and y2 = OU · OA, hence y2 < Y2. So Γ cuts the straight line
OP inside E. The vertex A of Γ lies outside E ; consequently Γ cuts E in two
points which are one on either side of the straight line OP.

3) Ibn al-Haytham then finishes paragraph 1 by showing that if Γ cuts E
at the vertex C, it cuts it in another point, which lies on the arc CI.

Let us return to Fig. 1.2.23.1; let O, between M and I, be defined by
MO

MI
= MI

MA
, and let J be defined by 

OJ

JA
= AS

AG
.We have

OI

IA

MI

MA

IM

MA MG
= >

⋅

2

.

But
IM

MA MG

AS

AG

OJ

JA

2

⋅
= = ,

and further  
OM

MG

OM

MI

MI

MG

MI

MA

MI

MG
= ⋅ = ⋅ ,

so
OM

MG
= OJ

JA
.

Let us put GT = JA; we obtain

OM

MG

OJ

JA

MJ

MG JA

MJ

MG GT

MJ

MT

IM

MA MG

MJ

MJ MT
= =

+
=

+
= =

⋅
=

⋅

2 2

.

H M O I A G TJ

Fig. 1.2.23.3

Now
MA · MG = MJ · MT + JA · JG.
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In fact
MA · MG = (MJ + JA) MG = MJ · MG + JA · (MJ + JG)

    = MJ · (MG + GT) + JA · JG = MJ · MT + JA · JG,

and moreover
MI2 – MJ2 = (HM + MJ) (MI – MJ) = HJ · JI;

so
IM

MA MG

IM MJ

MA MG MJ MT

JH JI

JA JG

2 2 2

⋅
= −

⋅ − ⋅
= ⋅

⋅
,

hence
MH MI

JH JI

MA MG

JA JG

⋅
⋅

= ⋅
⋅

.

If we use YM and YJ to designate the ordinates of the points of Γ and yM

and yJ for the ordinates of the points of E that are projected, respectively,
into M and J on the axis that is common to E and H, we have

YM

YJ

= yM

yJ

.

But YM = yM = MC, so YJ = yJ; the hyperbola Γ and the ellipse E have a
common point that is projected into J on the axis AH.

In conclusion, if HM

MA MG

SA

AG

2

⋅
≥ , the two conic sections Γ and E have

two common points, and the problem has two solutions.

Note: As in Problem 22, the condition given by Ibn al-Haytham is sufficient,
but it is not necessary.

Analytic investigation of the intersection of Γ and E
Γ is a hyperbola with axis AG = d and latus rectum AF = c; what we

are given is the same as in Problem 22. We again assume that AD > G − DE

2
,

which gives m > G

2
.

Taking coordinates M (x, y), let us put AM = m,  GM = m + d . So we
have:

– Equation of Γ
m + x( ) m + d + x( )

y2
= d

c
, x ≥ –m.
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– Equation of E

x2 + ky2 = G2

4
, –

G

2
 ≤ x ≤ 

G

2
.

– Equation for the abscissae of E ∩ Γ

G2

4
− x2 = k

c

d
m + x( ) m + d + x( ), –

G

2
 ≤ x ≤ 

G

2
.

(1) f (x) = x2 k
c

d
+ 1⎛

⎝
⎞
⎠ + k

c

d
2m + d( )x + k

c

d
m m + d( ) − G2

4
= 0.

The condition given by Ibn al-Haytham

HM

MA MG

HI

IK

AF

AG

2

⋅
≥ .

can be written
G2

4
≥ kc

d
 m(m + d).

This is a sufficient condition for equation (1) to have two roots, x′ and x″,

that satisfy – G

2
 < x′< 0 ≤ x″ < G

2
 because it implies

f
G

2
⎛
⎝

⎞
⎠ > 0,   f − G

2
⎛
⎝

⎞
⎠ > 0,   f 0( ) ≤ 0.

Indeed

f
G

2
⎛
⎝

⎞
⎠ = kc

d
m + G

2
⎛
⎝

⎞
⎠ m + d + G

2
⎛
⎝

⎞
⎠ ,

f − G

2
⎛
⎝

⎞
⎠ = kc

d
m − G

2
⎛
⎝

⎞
⎠ m + d − G

2
⎛
⎝

⎞
⎠ ,    with m > 

G

2
.

But the condition is not necessary.
The discriminant of equation (1) is

Δ = k2c2

d2 2m + d( )2 − 4 kc + d( )
d

kc

d
m(m + d) − G2

4
⎡
⎣⎢

⎤
⎦⎥

.

The necessary and sufficient condition for the equation to have two roots is
thus

G2

4
− kc

d
m(m + d) ≥ − k 2c2 (2m + d)2

4d kc + d( )
.
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If we put λ = kc, this condition becomes

ϕ λ λ λ
( ) ( )= + − +[ ] + ≥2 2 24 0

d
G m m d G .

We need to add to it the condition expressing the requirement that the

roots of the equation in x lie between – G

2
 and G

2
. As half the sum of the

roots is − λ 2m + d( )
2 λ + d( ) < 0 , this last condition becomes

 
λ (2m + d)

λ + d
≤ G ,

or

λ ≤ Gd

2m + d − G
= α .

The discriminant of ϕ λ( ) is

δ = −( ) +( ) −[ ] ≥1
4 4 02

2 2 2 2

d
m G m d G ,

so ϕ λ( ) has two roots λ0 and λ1 and the first condition is that λ must lie

outside the interval [λ0, λ1].
Calculation gives us

ϕ α( ) = − +( ) −( ) + −[ ]
+ −( )

<2 2 2
2

02

m d G m G m d G

m d G

 ( )
,

so α lies between λ0 and λ1 and the two conditions finally reduce to the

single inequality λ ≤ λ0, that is,

HI

IK
k

m m d G

cd cd
m G m d G= ≤ + − − −( ) +( ) −[ ]2 1

2
4 4

2
2 2 2 2( )

  = ⋅ − − ⋅ ⋅ ⋅
⋅

2
2 2AM MG MI AH GH AI GI

AF AG
.

If Γ is an ellipse, and assuming D and E lie inside Γ and AD > G − DE

2
,

that is, AD > DI, the vertex A of Γ lies outside E and its second vertex G is
beyond E; it can lie between E and H, at H or beyond H.

H M I AE D

Fig. 1.2.23.4
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So the discussion of the intersection of Γ and E might be different (see
below).

Note: x2 − MH2

AM + x( ) GM + x( ) = SA

AG
.

As in the preceding cases, the limiting value given by Ibn al-Haytham
corresponds to the case in which the two conic sections have one common
point at the vertex of the minor axis of E.

Investigation of Problems 20, 21, 22 and 23
In the statement of the problem, Ibn al-Haytham does not specify the

nature of the conic section Γ; this causes no trouble in the analysis in 20. But
in 21, the synthesis and the beginning of the discussion, in paragraphs 1, 2,
3, we need to distinguish between the parabola and hyperbola on the one
hand and the ellipse on the other.

In stating that if I lies outside Γ, H must lie inside it, Ibn al-Haytham is
assuming that Γ is an infinite conic, either a parabola or a branch of a
hyperbola. He does not consider the case of the ellipse.

Ibn al-Haytham continues his discussion in 22, where Γ is a parabola,

and in 23, where Γ is a hyperbola, and he ends 23 by saying that if Γ is an
ellipse, ‘the discussion is the same as for the hyperbola, without needing to
add or remove anything’.64 Now, if Γ is an ellipse, we need to distinguish

several cases for different positions of G, the other end of the axis of Γ;

however, the condition Ibn al-Haytham gives, SA

AG

HM

MA MG
≤

⋅

2

, is, in all cases,

sufficient for the problem to have at least one solution (that is, one or two
solutions).

H E M D I Ax

y

Fig. 1.2.23.5

64 See p. 228.
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Intersection of the ellipses E and Γ with the assumptions of 23.

Equation of E: MH 2 − x2

y2 = HI

IK
MH = G

2
⎛
⎝

⎞
⎠ .

Equation of Γ: −
AM + x( ) GM + x( )

y2
= AG

AF
with   GM AM

G< >⎛
⎝

⎞
⎠0

2
, .

We must distinguish three cases depending on whether H is beyond G
(outside Γ), at G or between M and G (inside Γ). In the first case, E must cut
Γ since its other vertex I lies inside Γ. In the second case, E touches Γ at
their common vertex G. It remains to discuss the intersection in the third
case, where MG > MH.

The equation for  the abscissae of the points of intersection is

x2 − HM2 = SA

AG
AM + x( ) GM + x( ),

or

f x x
SA

AG

SA

AG
AM GM x

SA

AG
AM GM HM( ) = −⎛

⎝
⎞
⎠ + +( ) + ⋅ + =2 21 0 .

We have

f ± G

2
⎛
⎝

⎞
⎠ = SA

AG
AM ± MH( ) GM ± MH( ) ≤ 0

because
0 < MH < AM  and GM < −MH ;

also

f
SA

AG
AM GM HM( )0 = ⋅ + 2,

and Ibn al-Haytham’s condition SA

AG

HM

AM GM
≤

⋅

2

 thus means that f(0) ≥ 0,

which implies that there exist a root x1 lying between – G

2
 and 0, and a root

x2 between 0 and G

2
.

If SA

AG
> 1, f(x) becomes zero between –∞ and – G

2
 and between G

2
 and

+∞; but these roots do not correspond to points of the ellipse E, so there is

no solution. If SA

AG
= 1, f(x) becomes zero only once (the degree of f is 1), at a

point that must lie outside the interval − G

2
,  

G

2
⎡
⎣⎢

⎤
⎦⎥
. So let us assume SA

AG
< 1;

the discriminant of f can be written
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Δ = +( ) − −⎛
⎝

⎞
⎠ ⋅ +⎛
⎝

⎞
⎠

SA

GA
AM GM

SA

AG

SA

AG
AM GM HM

2

2

2 24 1

   = + −( ) +GA
SA

AG
AM GM HM

SA

AG
HM2

2

2
2 24 4. . = ϕ SA

AG
⎛
⎝

⎞
⎠ ,

a second-degree expression in SA

AG
 whose discriminant is

δ = ⋅ −( ) − ⋅[ ]4 2 2 2 2AM GM HM HM GA .

A
G M I

H H=G
M I

A

G
H M I

A

Fig. 1.2.23.6

We note that δ ≥ 0 because AM · MG + HM2 ≥ HM · GA on account of
the inequality

AM · MG ≥ HM (AM + GH),

which can also be written
AM · GH ≥ HM · GH.

Thus Δ becomes zero for two positive values of SA

AG
, α and β, and it is

positive if SA

AG
 lies outside the interval [α, β]. For SA

AG
 = 1, Δ becomes

GA AM GM2 4 0+ ⋅ ≥  since AM MG GA⋅ ≤ ⎛
⎝

⎞
⎠

1
2

2

; so we see that 1 lies outside

the interval [α, β].
We must also impose the condition that the roots of the equation in x

shall lie between – G

2
 and G

2
. The absolute value of half the sum of the roots

is
SA

AG
AM + GM

2 1 − SA

AG
⎛
⎝

⎞
⎠

and this condition can thus be written
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SA

AG
AM + GM ≤ G. 1 − SA

AG
⎛
⎝

⎞
⎠ ,

or
SA

AG
≤ G

G + AM + GM
.

We have

ϕ G

G AM GM

HM AM GM

HM AM GM
HM AM GM HM AM GM

+ +

⎛

⎝
⎜

⎞

⎠
⎟ =

⋅ +

+ +( )
+ + ⋅ + ⋅( )8

2
2

2 .

This expression is negative because the part in parentheses can be written

 [HM – inf (AM, GM)] [HM + sup (AM, GM)],

which is negative since HM is less than AM and GM.

Thus G

G + AM + GM
 is between α and β.

The two conditions accordingly reduce to the single inequality

SA

AG

HM AM GM AI GI AH GH

AG
≤ = − ⋅ − ⋅ ⋅ ⋅α 2 2

2 .

The necessary and sufficient condition for the problem to have solutions

is finally SA

AG
 ≤ α. When SA

AG
 = α, Δ = 0 and the two ellipses touch one

another.

– 24 – Let there be a hyperbola Γ with centre H and vertex A; to find a
point B on Γ such that the diameter BP from B and the corresponding
latus rectum PN satisfy

BP · PN = EG2,

where EG is a given straight line.

Analysis: Let AD be the transverse axis and AI the latus rectum
corresponding to AD; then the second diameter Δ associated with AD is
such that

Δ2 = AD · AI.

We then have
|AD2 – Δ2| = AD · |AD – AI| = AD · DI.
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Let EL ⊥ EG with EL2 = AD · DI = |AD2 – Δ2|. If a point B gives a
solution to the problem, we have BP · PN = EG2, so the straight line EG is
equal to the diameter conjugate with BP. So we have

|BP2 – EG2| = BP |BP – PN| = BP · BN.

But
|BP2 – EG2| = |AD2 – Δ2|  (Conics, VII.13),

so
|BP2 – EG2 | = EL2.

1) If AD > AI, then AD > Δ and in this case BP > EG (Conics, VII.21),
and we have

BP2 – EG2 = EL2 ⇔ BP2 = EL2 + EG2 = LG2 (Fig. 1.2.24.1).

The construction shown by Ibn al-Haytham then gives the length BP.

B

A H DI

PL

E G

C

N

Fig. 1.2.24.1

2) If AD < AI, then AD < Δ and in this case BP < EG (Conics, VII.22),

we have EG2 – BP2 = EL2 ⇔ BP2 = EG2 – EL2 (Fig. 1.2.24.2).
In this case BP is a side enclosing the right angle in a right-angled

triangle whose hypotenuse is EG and the third side EL; this requires
EG > EL, that is, EG2 > AD · DI.
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B

K A H D

I

P

L

E

G
LG=BP

Fig. 1.2.24.2

So in both cases, if the point B exists, the length BP can be found from
the equality |BP2 – EG2| = EL2.

– 25 – Synthesis: Ibn al-Haytham again uses the construction assuming
AD > AI (Fig. 1.2.24.1) and considers the circle with centre H and radius
GL/2; if it cuts Γ in B, this point gives a solution to the problem. Then, we

have BP = 2BH = GL; and if we define PN by BP · PN = EG2, we have
PN < PB because EG < GL, and PB · BN = BP2 – BP · PN = BP2 – EG2 =
EL2.

PN is in fact the latus rectum corresponding to the diameter BP whose
conjugate diameter has length EG.

Assuming AD < AI (Fig. 1.2.24.2), if PN is defined by BP · PN = EG2,
we have PN > PB because EG > LG and PB · BN = BP · PN – BP2 =
EG2 – BP2 = EL2, so BP and PN give solutions to the problem.

The existence of the point B: For the circle (H, GL/2) to cut Γ, it is

necessary and sufficient that GL > AD. (Any transverse diameter of Γ is
greater than the transverse axis.)

GL > AD ⇔ EG > Δ ⇔ EG2 > AD · AI,

that is the necessary and sufficient condition for the problem to have a
solution (in fact EG2 > AD · AI ⇒ EG2 > AD · DI, the condition known to
be required in case 2).

It is only here that Ibn al-Haytham considers the assumption AD < AI.
So up to now the problem has been treated assuming AD > AI. We have
seen that construction 1 does not give BP = LG if AD < AI. Here Ibn al-
Haytham gives a method for obtaining BP from construction 1.
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Let the point O of the segment GE be defined by GO2 =
GE2 – AD · DI = GE2 – EL2; this assumes GE2 > AD · DI, that is, GE >
EL; the segment GO is thus equal to the segment LG in construction 2.

If the point M is then defined by GM · GO = GE2, we have
GM > GE > GO; the length GO is then the same as that of the required
diameter and GM is the corresponding latus rectum, provided GO > AD.

L

M E O G

Fig. 1.2.25.1

GO > AD ⇔ GE2 – AD · DI > AD2

⇔ GE2 > AD (AD + DI)

⇔ GE2 > AD · AI.

If AD = AI, then AD = Δ and every diameter is equal to its latus rectum
and to its conjugate diameter (Conics, VII.23,  equilateral hyperbola), so the
required diameter and the corresponding latus rectum have the same length
EG; the necessary and sufficient condition for B to exist is thus EG > AD.

The case where Γ is an ellipse

To find a point B in an ellipse Γ with major axis AD, centre H, such that
the diameter BP from B and the corresponding latus rectum satisfy
BP · PN = EG2, where EG is a given straight line.

Analysis: Let AI be the latus rectum corresponding to AD, and the
minor axis FK is the diameter conjugate with AD; we have FK2 = AD · AI,
AI < AD.

If B gives a solution to the problem, we have BP · PN = EG2 and EG is
the diameter conjugate with BP; and from Proposition 12 of Book VII, we
have

(1) AD2 + FK2 = BP2 + EG2.

We know the lengths AD, FK and EG, so the length BP is known.
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E G

BF

D

P K

H
A

Fig. 1.2.25.2

Synthesis:
a) Construction of the length BP.
On the sides enclosing a right angle we make OM = AD and ON = FK;

we thus have MN2 = AD2 + FK2. We draw a semicircle with diameter MN
and the circle with centre M and radius EG; they intersect at a point R if and
only if EG < MN, that is, if EG2 < AD2 + FK2. The length RN is equal to
BP, the length that was required.

b) The existence of the point B.

We draw the circle with centre H and radius BP

2
= RN

2
. It cuts the ellipse

and gives the point B if and only if FK < BP < AD. From (1) this condition
is equivalent to FK < EG < AD. The point B that we find thus gives a
solution to the problem, and the latus rectum corresponding to BP is PN,
which satisfies  BP · PN = EG2.

MO=AD

NO=FK

O

N

R

M

Fig. 1.2.25.3

So, to summarize, in the case of the ellipse, if we are given AD, AI and
EG, the condition for the problem to have a solution is
AD · AI < EG2 < AD2.

– 26 – Let there be a hyperbola Γ with axis AD and centre H, and a
straight line EG. To find a diameter such that if we add its latus rectum to it,
we obtain a straight line equal to EG.
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Fig. 1.2.26.1

Analysis: Let BI be the diameter that gives a solution to the problem
and IK its latus rectum; we have BI + IK = BK = EG.

If Δ is the axis conjugate with AD, and Δ′ the diameter conjugate with
BI, we have

|AD2 – Δ2| = |BI2 – Δ′ 2| and Δ′ 2 = BI · IK,

|AD2 – Δ2| = BI · |BI – IK|.

Let L be a point such that IL = IK and M a point such that BM = BL.
Then we have

|BI – IK| = BL = BM, KM = 2BI.

Then we have BI · BM = |AD2 – Δ2|, which is known, so the product
KM · BM is known and BK = EG is a known length. We thus know the two
lengths KM and BM and we have BI = KM/2.

Note: If C is the latus rectum corresponding to AD:
1) C < AD ⇒ Δ < AD and IK < BI, so we have the following order of

points, which is the same as in Fig. 1.2.26.1:

M IB KL

Fig. 1.2.26.2

2) C > AD ⇒ Δ > AD and IK > BI, we have the following order:

M IB KL

Fig. 1.2.26.3



152 CHAPTER I: THEORY OF CONICS

In both cases, we have KM = 2BI, and we thus have

KM · BM = 2|Δ2 – AD2| = 2AD |AD – C|,
which is known.

But in 1) we have

BK = KM – BM = EG

and in 2) we have
BK = KM + BM = EG.

The lengths KM and BM are known because we know their geometric mean
and their difference (case 1) or their sum (case 2).

In case (1) the construction of KM and BM is always possible and
requires no discussion.65

In case (2), if we put BM · KM = 2(Δ2 – AD2) = l2, the condition for the
construction to be possible is 2l ≤ EG, as shown in Fig. 1.2.26.4.

E F G

l

Fig. 1.2.26.4

The lengths EF and FG are the lengths that were required.

– 27 – Synthesis: Let AI = C be the latus rectum associated with the
diameter AD, so we have DI = |AD – C|.

1) AI < AD 2) AI > AD.

A I D A ID

Fig. 1.2.27.1

1) Let us first assume that AI < AD.
Let the point K be defined by KE · KG = 2DA · DI, and the point M on

AD be defined by HM = EK/4. The circle (H, HM) cuts Γ at B, the diameter
BH gives a solution to the problem.

Proof: Let there be on the straight line BH points U, P, N, L such that
HU = HB, BP = EG and BN = BL = KG (L, U, P lie on the half-line BH).

65 See above, note 53, p. 114.
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Fig. 1.2.27.2

Thus we have

BU = 2HM = 
1
2

 EK,

PN = EG + GK = EK,

so
PU + BN = PU + BL = BU,

hence
PU = BU – BL,

PU = LU.

We get

BU · BL = 
1
2

 EK · KG = DA · DI,

so
BU · BL = BU2 – Δ′ 2,

if Δ′ is the diameter conjugate with BU, and

Δ′ 2 = BU · LU = BU · UP.

so UP is the latus rectum associated with the diameter BU and we have got
BU + UP = EG.

Discussion: It is necessary that BU + UP > AD + AI (a property of
diameters of a hyperbola and their latera recta),66 so we have

66 This property holds true only if 3AD ≥ AI. Otherwise, the minimum of the sum
(diameter + latus rectum) is reached at two positions of the diameter, these positions
being symmetrical with respect to AD (see Apollonius, Conics, VII.40); see the Note in
the main text at the end of this problem.



154 CHAPTER I: THEORY OF CONICS

 (1)  EG > AD + AI.

We need to know whether this condition is sufficient. The point B exists
if and only if HM > HA, that is EK > 2DA, where the point K is defined by
KE · KG = 2DA · DI, KE > KG.

If we assume AI < AD, the condition (1) can be written

EG > 2AD – DI;

so we have
EK – KG > 2AD – DI

and
KE · KG = 2AD · DI,

hence
EK > 2AD  and  KG < DI.

Condition (1) is thus sufficient for B to exist.

2) Let us assume AI > AD.
Let there be a point U′ on the segment EG such that EU′ · U′G =

2AD · DI, where U′E > U′G, and let there be a point M such that
HM = EU′ /4; the circle (H, HM) cuts Γ at B, and the diameter BH gives a
solution to the problem.

Discussion: We need to know whether condition (1) EG > AD + AI is
sufficient for the points U′ and B to exist.

If we put 2AD · DI = l2, U′ exists if and only if l < EG

2
, that is

EG2 >  8AD · DI. Now

(1) ⇔ EG > 2AD + DI ⇔  EG2 > 4AD2 + 4AD · DI + DI2

  ⇔ EG2 > 8AD · DI + 4AD2 – 4AD · DI + DI2

  ⇔ EG2 > 8AD · DI + (2AD – DI)2 (2).

So
EG > AD + AI ⇒  EG2 > 8AD · DI,

and the point U′ exists.

We have HB = HM = EU′ /4; B exists if and only if HB > AD/2, that is,

EU′ > 2AD. We know that

EU′ + U′G = EG  and  EU′ · U′G = 2AD · DI,
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hence
(EU′ – U′G)2 = EG2 – 8AD · DI;

from (2)
(EU′ – U′G)2 > (2AD – DI)2,

so we have
EU′ + U′G = EG

EU′ – U′G > |2AD – DI| (since EU′ > U′G),

hence

EU′ > 1
2

 [EG + |2AD – DI|]

EU′ > 1
2

 [2AD + DI + |2AD – DI|].

If 2AD > DI, we have EU′ > 2AD.

If 2AD < DI, we have EU′ > DI > 2AD.
So the condition EG > AD + DI is sufficient for B to exist.

3) Let us assume AI = AD.
In this case, any diameter is equal to its latus rectum; so the required

diameter is equal to 1
2

EG, and the condition for the construction to be

possible will be EG > 2AD, that is, EG > AD + AI.

Note: The condition BU + UP ≥ AD + AI is necessary only when
3AD ≥ AI. If this is not so, which means AI > AD, the condition must be
replaced by

BU + UP ≥ minimum of the sum (diameter + latus rectum) (see
Apollonius,  Conics, VII.40).

Let us calculate this minimum analytically. The coordinates of a point B

of the hyperbola whose equation is x2

a2 − y2

b2 = 1 are x = a cosh t, y = b sinh t

where t is a parameter that is positive on the branch of the hyperbola we are
considering.

The direction of the conjugate of the diameter HB is that of the tangent
at B, with steering ratio a sinh t, b cosh t. The corresponding semi-diameters
are

′ = + ′ = +a a t b t b a t b t2 2 2 2 2 2 2 2cosh sinh      sinh cosh, .
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The associated latus rectum is ′p = 2 ′b 2

′a
 and the sum 2 ′a + ′p  is thus

2 2 2
2

2

2 2 2 2

2 2 2 2

′ + ′
′

=
+( )

+( ) + −
a b

a

a b t

a b t a b

cosh 

cosh 
.

Putting u = (a2 + b2) cosh 2t  (u ≥ a2+b2), we need to find the minimum
of

v = u

u + a2 − b2
.

We have

′v =
u + 2 a2 − b2( )

2 u + a2 − b2( )3
2

;

this expression is positive for u ≥ 2 (b2 – a2).
This condition is always satisfied when a ≥ b; in this case v is an

increasing function of u, and thus of t ≥ 0, and its minimum is for t = 0, and
has the value

2
a2 + b2

a
= AD + AI (B = A).

In the case where b ≥ a, we still have v′ ≥ 0 if b ≤ a√3 since, in this

case, 2(b2 – a2) ≤ a2 + b2, the initial value of u. So v increases monotonically

from its minimum value of 2
a2 + b2

a
= AD + AI .  Ibn al-Haytham’s condition

is still necessary and sufficient. If on the contrary b > a√3, v has a local
minimum for u = 2(b2 – a2). We then have

′a 2 = u + a2 − b2

2
= b2 − a2

2
,       ′b 2 = u − a2 + b2

2
= 3

b2 − a2

2
,

that is, the latus rectum 2 ′b 2

′a
= 6 ′a  is equal to three times the transverse

diameter; and

2 ′a + ′p = 2
′a 2 + ′b 2

′a
= 4 2 b2 − a2( ) < 2

a2 + b2

a
because

(a2 + b2)2 – 8a2(b2 – a2) = (b2 – 3a2)2 > 0.
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The minimum is thus 4 2 b2 − a2( ) = 2 2AD AI − AD( )  and the condition

for the construction to be possible can be written EG2 ≥ 8AD (AI – AD) =
8AD · DI. In problems of this type, Ibn al-Haytham tried to find an exact
way of  obtaining a solution.

The radius a′ of the auxiliary circle is greater than HA = a because
b2 − a2

2
> a2 is equivalent to b2 > 3a2.

We may summarize the preceding discussion as follows:
1) If AI ≤ AD, the point K exists and the condition for B to exist is the

inequality EG ≥ AD + AI (a necessary and sufficient condition).
2) If AI > AD, the condition for the existence of U′, which replaces the

point K, is the inequality EG2 ≥ 8AD · AI (a necessary and sufficient
condition).

This condition ensures the existence of B in the case where AI ≥ 3AD,
but if AI < 3AD, the condition needs to be replaced by the stronger one
EG ≥ AD + AI.

Thus, the necessary and sufficient condition for the problem to be
soluble is EG ≥ AD + AI if AI ≤ 3AD, and the condition becomes
EG2 ≥ 8AD · DI if AI ≥ 3AD.

When AI = 3AD, the two conditions are equivalent.
To complete the discussion, we needed to find the minimum value of the

sum of the diameter and the latus rectum associated with it, which
Apollonius does not do in the  case where AI ≥ 3AD; in this case, where the
minimum is not AD + AI, Apollonius only states that the minimum in
question exists. So it is understandable that Ibn al-Haytham broke off the
discussion and omitted to deal with precisely this case.

Here too, we can see that Ibn al-Haytham abandons the attempt to give
a complete discussion when he realizes that he cannot provide a precise
solution to the diorism. It is as if, having recognized that he could not
achieve success in the case where AI ≥ 3AD, he left that case out, together
with what was said about it in Proposition VII.40 of the Conics.

– 27a – The same problem but with Γ an ellipse. Ibn al-Haytham gives
only a single indication regarding the method to employ.

Let there be an ellipse Γ with major axis AD and centre H, and a given
length EG. To find a diameter BU such that if UP is the latus rectum
associated with BU, we have BU + UP = EG.

Let AI be the latus rectum associated with AD (AI < AD); we have

(1) BU2 + BU · UP = AD2 + AD · AI,
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hence
(2) BU · EG = AD (AD + AI);

EG, AD, AI are known, so BU is known.
For the length BU to provide a solution to the problem, it is necessary

and sufficient that Δ < BU < AD, Δ being the minor axis of the ellipse
(Δ2 = AD · AI).

From (2), we have BU < AD if and only if EG > AD + AI.

BU > Δ ⇔ BU · EG > Δ · EG

⇔ AD (AD + AI) > Δ · EG

⇔ EG < (AD/Δ) (AD + AI).
G E

B

DA
I

U

P

H

Fig. 1.2.27.3

AD

Δ
= AD

AI
> 1,

BU > Δ ⇔ EG < AD

AI
AD + AI( ).

The problem has a solution if and only if

AD + AI < EG < (AD + AI) · 
AD

AI
.

Ibn al-Haytham gives the condition EG > AD + AI.

– 27b – Let there be a hyperbola with transverse axis AD and centre H.
To find a point B such that the diameter BE and the associated latus rectum

BF shall be such that BF

BE
= k , a known ratio.

Let AI be the latus rectum associated with the diameter AD and let

k0 = AI

AD
.

If BE gives a solution to the problem, we know that

| BE2 – BE · BF | = | AD2 – AD · AI |,

BE | BE – BF | = AD | AD – AI |.
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Let us choose points F and I on the semi-infinite straight lines [BE) and
[AD) respectively; we have

(1) BE · EF = AD · DI.

If AD > AI, it is necessary to assume k0 < k < 1 (from Proposition 21,
Book VII); we then have BE > BF and

BF

BE
= k ⇒ BE − BF

BE
= 1 − k = EF

BE
;

similarly

 
DI

AD
= 1 − k0 .

(1) ⇒ BE2 (1 – k) = AD2 (1 – k0).

AD, k and k0 are known, so BE is known. Assuming k0 < k < 1 implies 1 – k
< 1 – k0 and consequently BE > AD, and BE gives a solution to the
problem.

If AD < AI, it is necessary to assume 1 < k < k0 (from Proposition 22,
Book VII); we then have

BE < BF, 
BF − BE

BE
= EF

BE
= k − 1 and 

DI

DA
= k0 − 1

(1) ⇒ BE2 (k – 1) = AD2 (k0 – 1),

so BE is known.

1 < k < k0 = > k – 1 < k0 – 1 => BE > AD.

For the problem to be soluble it is necessary and sufficient that the given
ratio k shall lie between 1 and k0. [k0 < k < 1 or 1 < k < k0.]

B

A
I

D

E

F

Fig. 1.2.27.4
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Fig. 1.2.27.5

If AD = AI (an equilateral hyperbola, a case not discussed by Ibn al-
Haytham), we have k0 = 1 and the ratio k must also be equal to 1. In this
case all the points of the hyperbola give solutions.67

– 27c – The same problem but with Γ an ellipse with major axis AD,

latus rectum AI, AI

AD
= k0 , k0 < 1.

If BE is a diameter that gives a solution to the problem, we have

BF

BE
= k ,

AD (AD + AI) = BE (BE + BF);

but
BF

BE
= k ⇒ BE + BF

BE
= k + 1 ⇒ BE + BF = (k + 1)BE ;

similarly
AD + AI = (k0 + 1) · AD;

hence
(1) AD2 (k0 + 1) = BE2 (1 + k),

so BE is known.
BE gives a solution to the problem if and only if

(2) k0 · AD2 < BE2 < AD2.

(1) gives BE2 =
AD2 k0 + 1( )

1 + k

(2) ⇔ k0 < k0 + 1
1 + k

< 1 ⇔ k k0 < 1 and k0 < k ⇔ k0 < k < 1/k0.

67 Accordingly, no construction need be carried out. Perhaps this is why Ibn al-
Haytham did not think it necessary to consider this case.
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The condition for the problem to have a solution is thus k0 < k < 1/k0.
For Problems 27b and 27c Ibn al-Haytham has indicated the method to
employ, but he has not investigated the conditions for the problem to be
soluble, which are, however, obvious.

F

I A

B

D

E

Fig. 1.2.27.6

Note: We construct solutions to Problems 24 to 27 by looking at the
intersections of the given conic with a circle having the same centre and a
radius that can be constructed with straightedge and compasses.

Thus the problems do not involve any auxiliary conic.

– 28 – Through a given point D on the axis of a given parabola Γ with
vertex A, to draw a straight line that cuts Γ in B and C and is such that
BC = F, where  F is a given straight line.

E

G L

C

I

O

K
N

B

A S D

T

M H

F

Fig. 1.2.28

Analysis: if the straight line DBC is a solution to the problem, then
BC = F.

If AE || BC, the straight line parallel to AD through the midpoint I of
AE cuts BC in its midpoint K and cuts Γ in N. The tangent to Γ at N is
parallel to AE, it cuts the axis in T and we have AT > AD. If MN ⊥ AD and
IO ⊥ AD, A is the midpoint of TM, so we have MA = AT = NI = MO and
OA = 2AM. Moreover, KI = AD.

Let H be such that AH = AD = KI; then MH = DT = KN.
If AS is the latus rectum with respect to the axis, we have
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EG2 = SA · AG,

hence
EG2 + GA2 = EA2 = SG · GA.

But
GA = 2OA = 4AM = 4NI,

hence
SG · NI = IA2 = EI2.

SG is the latus rectum with respect to the diameter NI, K is the midpoint
of BC, so

DC · DB = DK2 – BK2;

but
DK = IA,

so
SG · NI = BK2 + DC · DB;

but on the other hand B ∈ Γ, so

SG · NK = BK2,

hence
SG · IK = DC · DB

and
SG · AH = DC · DB.

We also have SG · MH = BK2 since NK = MH. If we put AL = 4AH,
then LG = 4HM (since GA = 4AM) and SG · GL = 4BK2 = BC2 = F2, a
known square. We note that AL < AG since AH = AD < AT = AM.

AS and AD were given; AH, AL, SL are thus known segments, and the
segment SG and, consequently, the point G are known.

From the point G, we find E on Γ, I the midpoint of AE, then K (since
IK || AD and IK = AD); we join KD, from this we find B and C since BK =
KC = F/2.

– 29 – The problem proposed is soluble for all positions of D on the axis
of the parabola Γ lying outside the curve (that is, on the side of the vertex
opposite to that of the focus), and for any length of the given straight line F.
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Fig. 1.2.29.1

Indeed, from any point D on AX′ we can draw a tangent DU to Γ, and
UDXˆ  will be acute. Any straight line DY lying inside angle UDXˆ  cuts the
parabola in two points B and C and the length BC increases from 0 to +∞ as
angle UDYˆ  increases from 0 to UDXˆ ; so there exists a value of UDYˆ , and
only one such value, for which BC = F, and thus there is a unique straight
line DY that gives a solution to the problem.

We shall show that the construction deduced from the analysis does
indeed give the straight line DY.

Let L be a point on the axis such that AL = 4AD, G the point lying
beyond L such that SG · GL = F2, and E the point of Γ that is projected into
G and I the midpoint of AE.

We show that the line DY parallel to the line AE is the required straight
line, that is:

a) DY cuts Γ in 2 points B and C,
b) BC = F,

a) DY cuts Γ
The straight line parallel to AG passing through I the midpoint of AE

cuts Γ in N, and the tangent at N, which we shall call NT, is parallel to AE.
So DY cuts Γ if and only if AD < AT. This condition is satisfied since

AL < AG and AL = 4AD, AG = 4AT.
Let B and C be the points of intersection of DY and Γ .

E

C

N

KI

B

X

G L O M A S D
T

FY

Fig. 1.2.29.2
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b) BC = F
As in the analysis, we have SG · GA = EA2, hence SG · NI = AI2 (since

NI = 1
4

 GA); SG is the latus rectum with respect to the diameter NI, which

cuts BC in its midpoint K. We have

 BK2 = SG · KN,

KN = DT = AT – AD = 1
4

 LG,

hence

BK2 = 1
4

 SG · GL,

and consequently
BC2 = SG · GL = F2,

so
BC = F.

We may note that this problem, which presents a clear case of a μ|◊«§»,
is solved solely by plane geometry.

– 30 – We are given a hyperbola Γ with axis AD and centre E, a point
H between A and E and a straight line F. To draw through H a straight line
that cuts Γ in B and C and such that BC = F.

Let the latus rectum with respect to AD be called a, let us put EA

EH
= k .

N

O
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G
K
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Fig. 1.2.30

Analysis: Let the straight line that gives a solution to the problem be
HBC. AN || BC, AN cuts Γ in N. If K and O are the midpoints of BC and AN
respectively, we have O, K, E collinear. We draw the lines NP, OS, KJ, BM
perpendicular to the axis AD.
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We have

 
OS

KJ
= SA

JH
= OA

KH
= EA

EH
= k  a known ratio,

SA

JH
= EA

EH
= SE

JE
= k .

Therefore

k
OS

KJ

ES SA

JE JH

ES SA

OS

JE JH

JK
2

2

2 2 2= = ⋅
⋅

⇒ ⋅ = ⋅
,

but
PA = 2SA and DA = 2AE,

hence
DP = 2ES;

we also have
NP = 2OS,

so we have
JE JH

JK

DP PA

PN

AD

a

⋅ = ⋅ =2 2  (since N ∈ Γ).

Let us draw the line HG to be tangent to Γ and GI ⊥ AD; GI cuts the

straight line BC in L (if we produce GI, it passes through G′, the point of

contact of the second tangent to Γ from H); (C, B, L, H) is a harmonic

range, so CH

HB
= CL

LB
 (Conics, III.37).

We assume HC > HB, so LC > LB and L lies between B and K.

We have EI IH

IG

AD

a

⋅ =2 , a property of the tangent (Conics, I.37).

If a′ is the segment defined by EH

′a
= AD

a
, then the hyperbola H  with

axis EH and latus rectum a′ passes through the points K and G because

JE JH

JK

IE IH

IG

EH

a

⋅ = ⋅ =
′2 2 .

Let the point U be defined by UE

UH
= EH

′a
= AD

a
, where U lies between E

and H and UH is a segment in the same ratio; then UJ HJ

HK

UE

EH

⋅ =2 , which is a

known ratio (Conics, VII.2).
But

CH

HB
= CL

LB
⇒ CH + HB

HB
= CL + LB

LB
= CB

LB
⇒ HK

HB
= BK

LB
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  ⇒ = ⇒ = ⋅HK

KB

BK

LK
BK HK LK2 .

By orthogonal projection onto the axis AD, we find that JM2 = JH · JI,
hence

HJ

JM
= JM

JI
 and 

HJ 2

JM2
= HJ

JI
.

But
HJ

JM
= HK

KB
,

hence
HK

KB

HJ

JI

HJ UJ

JI UJ

JI UJ

KB

HJ UJ

HK

UE

EH

2

2 2 2= = ⋅
⋅

⇒ ⋅ = ⋅ = .

KB2 = F2

4
 and UE

EH
 is a known ratio, hence JI · JU is a known product and

the points I and U are known, so the point J is known.68

The perpendicular to AD at J cuts H  in K, the straight line HK cuts Γ in
B and C.

– 31 – Synthesis: We again have a conic section Γ with vertex A, axis
AD and centre E; we draw the tangent HG. We have

EI IH

IG

AD

a

⋅ =2 (Conics, I.37).
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Fig. 31.1

We draw H  (axis EH, latus rectum a′ / EH

′a
= AD

a
), G ∈ H, and let U be

a point such that EU

UH
= EH

′a
, where U lies between H and E (UH is a a

segment in the same ratio).

68 The lengths JI and JU are constructed by the method indicated earlier.
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Let us put
T 2

1
4

F2
= UE

EH
 and JU · JI = T2;

the point J lies inside Γ beyond I, the perpendicular to AJ at J cuts H  in K,
inside Γ. The straight line HK cuts GI in L and cuts Γ in two points, one on
either side of K.

From what is given, we have successively defined the points G, I, H, U,
J, K, and hence the straight line HK. We need to show that HK is the
required straight line.

We have
UJ. JH

HK 2 = UE

EH
= T 2

1
4

F2
= JU. JI

1
4

F2
 (Conics, VII.2),

hence we obtain
HJ

JI
= HK 2

1
4

F2
.

We define the point M by HJ · JI = JM2, hence

HJ

JI
= JM2

JI 2
= JH2

JM2
;

the perpendicular to the axis at M cuts the straight line HK in B and

HJ · JI = JM2 ⇒ KH · KL = KB2 ⇒ 
HK

KL
= KB2

KL2
= KH2

KB2
.

But
HK

KL
= HJ

JI
,

hence
HK 2

1
4

F2
= HJ 2

JM2
= KH2

KB2
,

hence

KB = 
1
2

 F .

Through A we draw a line parallel to HK; it cuts EK in O. Let us
produce AO to a point N such that AO = ON, let NP and OS be
perpendicular to AD.
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We have
OS

KJ
= SA

JH
= OA

KH
= AE

EH
= SA + AE

JH + EH
= SE

JE
,

AS

SO
= JH

JK
and

ES

SO

JE

JK

ES SA

SO

JE JH

JK

EH

a

AD

a
= ⇒ ⋅ = ⋅ =

′
=2 2 ,

NP = 2OS, AP = 2SA, PD = 2ES,

so we have
ES SA

SO

PA PD

PN

AD

a
N

⋅ = ⋅ = ⇒ ∈2 2 Γ .

O is the midpoint of AN, so EO is a diameter and, consequently, K is the
midpoint of the segment CQ if we use the letters C and Q to designate the
points of intersection of HK with Γ, where HC > HK > HQ.

We shall show that B and Q are coincident.
The points (C, Q, L, H) form a harmonic range, so KC2 = KQ2 =

KL · KH. But we have seen that KB2 = KL · KH, so KQ = KB, the points Q
and B, being on the segment BH, are coincident; so we have KC = KQ =

KB = 1
2

F, BC = F.

Existence of the solution
Throughout this problem, Γ is a branch of a hyperbola, or even half a

branch since the investigation takes place within only one of the halves into
which the plane is divided by the axis.

Z

X

C

X

G

B

R

A H E D

Y

′

Fig. 1.2.31.2
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We shall show that, whatever the given straight line F, the problem has
a solution. To prove this Ibn al-Haytham makes use of the asymptotes EX
and EY. The straight line drawn through A parallel to EX cuts Γ only at the
point A; similarly the straight line HX′ parallel to EX cuts Γ at only one point
R. Let HG be the tangent to Γ from H; then any semi-infinite straight line
HZ starting at H, and lying inside the angle GHXˆ ′, cuts the hyperbola at B
between R and G and at the point C beyond G, because such a line
necessarily cuts the asymptote EX.

0 < GHZ GHXˆ ˆ< ′; when GHZˆ  increases from 0 to GHXˆ ′, the length
BC increases monotonically from 0 to +∞, so it once and only once takes
the given value F.

Note: The homothety that transforms A into H and D into E obviously
transforms the given hyperbola into the auxiliary hyperbola H. Its centre is

the point X such that EX = 1
2k − 1

EA and it lies beyond A; the ratio of the

homothety is 1
2k

.

This homothety, which underlies Ibn al-Haytham’s method, transforms
the given hyperbola into the locus of the midpoints of the chords from the
point H. As H varies, we obtain a complete family of homothetic auxiliary
hyperbolae from Γ.

Once again we may observe that we have obtained a linear pencil of
conics (hyperbolae that are all homothetic with one another). The points that
form the basis of the pencil are the double point E and the two points at
infinity on the asymptotes of Γ.

The point J is found by means of a construction involving the
application of areas, that is, a plane construction. The point K, the point of
intersection of the hyperbola H, known from its latus rectum and transverse
diameter, and JK the perpendicular to AD, could have been found by
another plane construction. Ibn al-Haytham does not mention it because
here he is interested specifically in constructions using auxiliary conics.
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APPENDIX

Trisection of an angle
Let there be a hyperbola H  with diameter BC, whose latus rectum is

equal to BC, and the tangent at whose vertex is such that TBCˆ  = α a given
angle.

Let A be a point on H  such that BA = BC; then DABˆ = α
3

.

D

B

C

A

T

α

Fig. 1.2.32

Proof: The hyperbola H  is equilateral, so we have DB · DC = AD2,
hence

DB

DA
= DA

DC
.

So triangles DBA and DAC are similar, hence DAB BCA BACˆ ˆ ˆ= =   and
DBA DABˆ ˆ= 2 ; accordingly

α = + =DAB DBA DABˆ ˆ ˆ3  ,   α = 3DABˆ .

This text, which is not part of Ibn al-Haytham’s book, but which the
manuscript tradition attaches to the end of it, presents a simple application of
the same kind of μ|◊«§» in the problem of trisecting an angle. Here, we
insert into an equilateral hyperbola a chord AB equal to a diameter BC and
passing through the vertex B of this diameter. The diameter in question is
chosen so that the angle that is to be divided is the angle between the
ordinate direction and the diameter.
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On the Completion of the Conics



In the name of God, the Compassionate, the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Completion of the Conics

Apollonius remarked in the preamble to his work the Conics that he
had divided his work into eight books, and he set out what each of them
contains in terms of notions he had himself discovered. He pointed out that
the eighth book deals with problems that arise in the Conics. Only seven of
the books of this work have been translated into Arabic and the eighth one
has not been found.

When we examined this work, considering its ideas one by one and
reading through the seven books several times, we found that they were
lacking some notions that should not have been lacking in this work. So we
thought that these notions that are missing from these seven books are the
notions contained in the eighth book and Apollonius left them until the end
because he had not needed to use them for the notions he introduced in the
<first> seven books. These ideas we have mentioned are notions implied by
the notions introduced in the seven books.

Thus he found the ratio in which a tangent divides the axis of a conic
section and he showed how to draw a straight line that is a tangent to the
conic section and makes with the axis an angle equal to a known angle.1

These two notions require us to show how to draw a straight line that is a
tangent to the conic section and such that its ratio to what it cuts off on the
axis is a known ratio; and <how> to draw a straight line to be a tangent to
the conic section and such that the part cut off from it between the conic
section and the axis is equal to a known straight line. However, these
notions are among those which the mind <merely> aspires to know.

1 Problem 50 of Book II for all three conics.
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For instance, when he says how to draw a straight line that is a tangent
to a conic section and makes with the diameter drawn from the point of
contact an acute angle equal to a known angle.2 This concept too requires
us to draw a straight line that is tangent to the conic section and ends on the
axis, and is such that its ratio to the diameter drawn from the point of
contact is a known ratio.3

Thus in the preamble to book seven he spoke of the diameters of the
conic sections, mentioning each kind and distinguishing one from another,
and he pointed out that they have properties that depend on the latera recta
of the conic sections concerned. However he says in the preamble to this
book that the concepts that follow them in this book are strictly necessary
for those of the proposed problems that will be discussed in book eight,
<the book> which contains problems concerning diameters and their
properties.

For instance, when he says how to draw from a given point a straight
line to be a tangent to the conic section and to meet it in a single point. This
concept requires us to show how to draw from a given point a straight line
that meets the conic section in two points and such that the part of it that
lies inside the conic section is equal to a given straight line; and how to
draw a straight line that cuts the conic section and is such that the ratio of
the part of it that lies outside <the conic> to the part that lies inside is equal
to a given ratio.

 It is not fitting that these concepts to which we have referred and
which we have noted should not be present in this work. These are
concepts we consider beautiful and their beauty is no less than the beauty
of what the seven books do contain, but indeed on the contrary there are
some among them that are more beautiful and more striking than the earlier
concepts contained in the seven books. So it is very likely that these
concepts are those that we included in the eighth book and if Apollonius
did not refer to them before the eighth book, that is because he did not need
to use them in the earlier books.

As this concept carried conviction in our mind and strengthened its
hold in our thoughts because of the good opinion we have of the author of
the work, this good opinion prevailed with us and we came to the
conclusion that these concepts and ones like them are those which the

2 Problem 51 of Book II (parabola and hyperbola), Problems 52 and 53 (ellipse).
3 This is the problem he deals with here for the ellipse and the hyperbola (Problems

13 and 14).
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eighth book contained. When we had come to our decision on this matter,
we began by working out what these ideas were, proving them and
grouping them together in a book that included them all and could thus
fulfil the function of the eighth book and could represent the completion of
the work the Conics. Our procedure is to find these concepts by the use of
analysis, synthesis and discussion4 so as to make this book the most perfect
of them all in regard to proofs.

We now begin this book and we ask God for His help.

<1> If we have a given conic section such that the axis of the conic
section is extended outside the conic section, <the problem is> how to draw
a straight line that is a tangent to the conic section and such that its ratio to
what it cuts off from the axis on the side nearer the conic section is equal to
a given ratio?5

IH

KLO
CB

MAG E D

Fig. I.1

First, let the conic section be a parabola. Let the conic be ABC and let
AD be its axis; let us extend DA to G; let the ratio of HI to KL be given. We
wish to draw a straight line that is a tangent to the conic and ends on the
axis, and is such that its ratio to what it cuts off from the axis <on the side
nearer the conic section> is equal to the ratio of HI to KL. <Let us suppose
this has been done by analysis; and let the line be BE>. Let us draw BM as
an ordinate, then MA will be equal to AE, as has been shown in Proposition
35 of Book I. But since the ratio of BE to EM is equal to the ratio of HI to
twice KL and the ratio of HI to KL is known, the ratio of HI to twice KL is
known, so the ratio of BE to EM is known. But angle M is a right angle, so
the angle E is known, the straight line BE is thus a tangent to the conic
section and the angle <it> encloses with the axis is known; this is possible

4 Diorism.
5 See Supplementary note [1].
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because of what has been shown in Proposition 56 of Book II.6 So by
analysis the problem has been reduced to something that is possible: we
draw a straight line that is a tangent to the conic section and that makes
with the axis an angle equal to a known angle.

But by this we have also shown that HI is greater than twice KL,
because BE is greater than twice EA, so it is necessary that HI shall be
greater than twice KL; this is the discussion of the problem.

– 2 – Let us now proceed to the synthesis of the problem: let the conic
section be ABC, its axis DAG; let the given ratio be the ratio of HI to KL.
We make LO equal to LK, then KO will be smaller than HI. On the straight
line HI we construct a semicircle; let it be HNI. We draw a chord equal to
KO; let it be IN. Let us draw a straight line that is a tangent to the conic
section and makes with the axis an angle equal to the angle HIN, as has
been shown in Proposition 56 of Book II. Let the tangent be BE.

KLO
CB

MAG E D

N

HI

Fig. I.2

I say that the ratio of BE to EA is equal to the ratio of HI to KL.
Proof: We take BM as an ordinate; angle M will be a right angle. We

join HN, angle N will be a right angle. But angle E is equal to angle I, so
triangle BEM is similar to triangle HIN. The ratio of BE to EM is thus equal
to the ratio of HI to IN, that is to KO. The ratio of BE to EA – which is half
of EM – is equal to the ratio of HI to KL – which is half of KO. That is
what we wanted to do.

6 This is Proposition 50 in Heiberg’s edition.
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<3> Let the conic section ABC be a hyperbola or an ellipse; let FAD be
its axis; let the ratio of G to H be given and let G be greater than H. We
wish to draw a tangent to the conic section, that ends on the axis and is
such that its ratio to the segment it cuts off from the axis on the side nearer
the vertex of the conic section is equal to the ratio of G to H.
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Fig. I.3.1

We suppose this has been done by analysis, let <the line> be BK. We
draw AC parallel to the tangent, let the centre of the conic section be E. We
join EB; and let the line cut AC at the point S. Thus ES will be a diameter of
the conic section because ES is drawn from the centre and AS will be an
ordinate because it is parallel to the tangent, which follows from what was
shown in the converse of Proposition 32 of the first book. So the straight
line ES divides AC into two equal parts at the point S. Let us draw the
straight lines CF, SI and BP to be ordinates; the ratio of PE to EA is equal
to the ratio of AE to EK and to the ratio of PA to AK, from what has been
shown in Proposition 37 of the first book. But the ratio of AE to EK is equal
to the ratio of SA to BK, so the ratio of SA to BK is equal to the ratio of PA
to AK, and the ratio of SA to AP is equal to the ratio of BK to KA. But the
ratio of BK to KA is equal to the ratio of G to H, so the ratio of SA to AP is
equal to the ratio of G to H.
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Fig. I.3.2

We put the ratio of E M to MA equal to the ratio of the transverse
diameter7 to the latus rectum; then the straight line AM will be equal to half
the line that has the homologous ratio.8 Consequently, the ratio of the
product of MI and IA to the square of AS will be equal to the ratio of the
homologous straight line plus AD to AD, which is equal to the ratio of ME
to EA, which is known.9 But the ratio of the square of AS to the square of
AP is equal to the ratio of the square of G to the square of H  which is
known, so the ratio of the product of MI and IA to the square of AP is
known. On the other hand, the product of IE and EA is equal to the square
of EP.10 From the point E we draw a straight line at a right angle; let it be
EN . We put EN equal to EA, from the point N we draw a straight line
parallel to the straight line EI; let it be NO. We draw through the point N
the parabola with axis NO and latus rectum EN; let the conic section be
NU. We extend SI to O, so UO will be equal to EP; but IO is equal to AE
because it is equal to EN, and finally UI is equal to AP. But the ratio of the
product of MI and IA to the square of A P is known, so the ratio of the
product of MI and IA to the square of IU is known, so the point U lies on
the outline of a hyperbola whose axis is AM and whose latus rectum is
known; let this conic section be the conic section AU. The conic section AU
is known in position and the conic section NU is known in position, so the
point U is known. But UI is a perpendicular, so the point I is known. But

7 We are concerned with the axis AD. To judge by the figures that appear in the
text, Ibn al-Haytham is considering the major axis in the case of the ellipse.

8 See Supplementary note [2].
9 See Mathematical commentary, note 42, p. 42.
10 This follows from Conics, I.37.
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the straight line IS is known in position and AS is equal to SC, so the point
C is known. So the straight line AC is known in position, the point S is thus
known <in position>. But the point E is known, so the diameter EBS is
known in position, and the point B is thus known. But the straight line BK
is parallel to the straight line AC which is known in position, so the straight
line BK is known in position and its ratio to KA is equal to the ratio of G to
H which is given. That is what we sought.

<4> The synthesis of this problem is as follows.
We return to the two conic sections and we draw from the point E a

straight line at right angles; let it be EN. We put EN equal to EA, let us
draw NO parallel to the axis EA and we construct through the point N the
parabola whose axis is NO and latus rectum NE; let the conic section be
NU. We put the ratio of EM to MA equal to the ratio of the axis AD to its
latus rectum; so the straight line MA is half the homologous straight line.
We put the ratio of AE to EQ equal to the ratio of the square of G to the
square of H and we put the ratio of AM to MT equal to the ratio of ME to
EQ. We construct through the point A the hyperbola whose axis is AM and
latus rectum MT, let the conic section be AU; let it cut the conic section NU
at the point U. Whether it cuts it or does not cut it <is something that> we
shall show later, when we come in our discussion of the problem <as a
whole>.

C

B

K DQE

M
APIF

O N

S

U

Τ

Η
G

Fig. I.4.1



180 CHAPTER I: AL-ÎASAN IBN AL-HAYTHAM

We draw from the point U the perpendicular UI and we extend it on
both sides; let it cut NO at the point O. We make IF equal to AI, we draw
the perpendicular FC as far as the outline of the conic section and we join
AC; let it cut UO at the point S; so AS will be equal to SC. We join ES, it
will be a diameter of the conic section AC; let it cut the conic section AC at
the point B. We draw BK to be a tangent to the conic section.

I say that the ratio of BK to KA is equal to the ratio of G to H.
G
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Fig. I.4.2

Proof: We draw BP as an ordinate. The product of IE and EA will be
equal to the square of EP and the product of NO and NE is equal to the
square of OU; but NO is equal to EI and NE is equal to EA, so the square of
OU is equal to the square of EP, so the straight line OU is equal to the
straight line EP; but OI is equal to EA, so the straight line IU is equal to the
straight line AP. The ratio of the product of MI and IA to the square of AS is
equal to the ratio of ME to EA; the ratio of the product of MI and IA to the
square of AP is equal to the ratio of AM to MT which is the ratio of ME to
EQ and the ratio of the product of MI and IA to the square of AP is the
compound of the ratio of the product of MI and IA to the square of AS and
the ratio of the square of AS to the square of AP; but the ratio of the product
of MI and IA to the square of AS is equal to the ratio of ME to EA, so the
ratio of the square of AS to the square of AP is equal to the ratio of AE to
EQ. But the ratio of AE to EQ is equal to the ratio of the square of G to the
square of H, so the ratio of the square of AS to the square of AP is equal to
the ratio of the square of G to the square of H, and the ratio of AS to AP is
equal to the ratio of G to H. But the ratio of AS to AP is equal to the ratio of
BK to KA, so the ratio of BK to KA is equal to the ratio of G to H. That is
what we wanted to prove.
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The discussion of this problem is as follows.
For the ellipse, this solution of the problem is valid11 in all cases

without <imposing any> condition; there is a single solution for each side
of the ellipse. Indeed, the hyperbola whose axis is AM and its latus rectum
MT, the ratio of its axis to its latus rectum is equal to the ratio of ME to EQ,
which is the ratio of the product of ME and EA to the product of AE and
EQ, which is smaller than the square of AE; so it is smaller than the square
of EN. The hyperbola whose axis is AM cuts the straight line EN between
the two points E and N, so it cuts the outline of the parabola between the
two points A and N because the parabola passes through the point A. Indeed
the perpendicular drawn from the point A to the axis N O is equal to the
straight line EN which is the latus rectum, and cuts off on the axis a straight
line equal to the straight line EA which also is equal to the latus rectum.
The parabola passes through the point A  and the hyperbola, whose
transverse axis is AM, has the point A as its vertex and its concave side
faces the concave side of the parabola; so it cuts the parabola in two points
in every case. One of these points is the point A, it (the hyperbola) thus
<also> cuts it (the parabola) in another point. The conic section (i.e. the
hyperbola) cuts the straight line EN, so it cuts the outline of the parabola in
a point between the two points N and A and does not cut it in any other
point except these two points. The problem is solved for all cases and has
only a single solution, because the two conic sections, the hyperbola and
the parabola, do not cut one another apart from at the point A except in one
other point.

<5> In the case of the hyperbola, the problem is solved only after
imposing a condition, <that is by> taking a special case.

The condition for this conic section is that the ratio of the square of G
to the square of H shall not be smaller than the ratio of the straight line that
is compounded from twice the transverse diameter, that is AD, from the
straight line that has the homologous ratio, which is twice AM, and from
three times the straight line whose square is equal to the product of the
transverse diameter and the straight line with the homologous ratio, to the
straight line ME.

Let us return to the hyperbola and the parabola and let us complete the
parabola. We extend the straight line DA in the direction of A. We put the

11 Lit.: is completed.
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product of DA and twice AM equal to the square of AB, we draw from the
point A a perpendicular to the axis of the parabola and let us extend it as far
as the outline of the parabola; let it be AS. This straight line cuts off from
the axis a straight line equal to the straight line A E which is the latus
rectum. We join SB and extend it so that it ends on the outline of the
parabola; let the line cut the parabola at the point U. We draw from the
point U a straight line that is an ordinate, let it be UIV; let it cut the axis of
the conic section at the point O. The product of the latus rectum and the
straight line that AS cuts off from the axis is equal to the square of IO. But
the product of the latus rectum and NO is equal to the square of UO, so the
product of the latus rectum and BI is equal to the square of UI. Similarly,
the ratio of UI to IB is equal to the ratio of SA to AB, so the product of AB
and UI is equal to the product of SA and BI. But the product of SA and BI is
twice the product of the latus rectum and BI, because SA is twice the latus
rectum. So the product of AB and UI is twice the square of UI, so AB is
twice UI, thus UI is half AB. But since the product of SA and BI is equal to
the product of AB and UI, the product of SA and BI is half the square of AB;
but the square of AB is equal to the product of DA and twice AM, so the
product of DA and AM is half the square of AB; but DA is equal to SA, so
the product of SA and BI is equal to the product of SA and AM, so BI is
equal to AM and the sum of AM and BI is equal to the homologous straight
line. We make IP twice AD and we make PC twice AB. So the straight line
CM will be twice AD, plus twice AM, which is the homologous straight
line, plus three times the straight line AB whose square is equal to the
product of DA and the homologous straight line. So the straight line CM is
the straight line that we defined earlier.
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I say that if the ratio of the square of G to the square of H is equal to
the ratio of CM to ME or greater than the ratio of CM  to ME, then the
problem is solved and has two solutions. And if the ratio of the square of G
to the square of H is smaller than the ratio of CM to ME, then the problem
is not to be solved in any way. Let us first prove what we have just stated.

Let the ratio of the square of G to the square of H, which is equal to the
ratio of AE to EQ, be first of all equal to the ratio of CM to ME. We divide
CP into two equal parts at the point X, then PX is equal to AB and AB is
twice UI, so the straight line PX is twice UI. But IP is twice VI, so the
straight line XI is twice the straight line UV. The product of XI and IU is
thus equal to twice the product of VU and UI. But VI is twice the latus
rectum and the product of the latus rectum and AI is equal to the product of
VU and UI, so the product of VI and IA is equal to the product of XI and IU.
But CX is equal to AB and AB is twice UI, so the product of CX and IU is
equal to the product of VI and AM. The product of CI and IU is thus equal
to the product of VI and IM, the ratio of CI to IM is equal to the ratio of VI
to IU, and the ratio of CM to MI is equal to the ratio of VU to UI. But the
ratio of CM to AE is compounded from the ratio of CM to MI and the ratio
of MI to AE, and the ratio of CM to MI is equal to the ratio of VU to UI, so
the ratio of CM to AE is compounded from the ratio of VU to UI and the
ratio of IM to AE, and this ratio is equal to the ratio of the product of MI
and IA to the product of IA and AE. But AE is the latus rectum and the
product of IA and the latus rectum is equal to the product of VU and UI, so
the ratio of IM to AE is equal to the ratio of the product of MI and IA to the
product of VU and UI. The ratio of CM to AE is thus compounded from the
ratio of VU to UI and the ratio of the product of MI and IA to the product of
VU and UI. But the ratio of VU to UI is equal to the ratio of the product of
VU and UI to the square of UI, the ratio of CM to AE is thus compounded
from the ratio of the product of MI and IA to the product of VU and UI and
the ratio of the product of VU and UI to the square of UI, and this ratio is
the ratio of the product of MI and IA to the square of IU. The ratio of CM to
AE is thus equal to the ratio of the product of MI and IA to the square of IU.
But the ratio of CM to AE is equal to the ratio of ME to EQ, so the ratio of
the product of MI and IA to the square of IU is equal to the ratio of ME to
EQ. But the ratio of AM to MT is equal to the ratio of ME to EQ, so the
ratio of the product of MI and IA to the square of IU is equal to the ratio of
AM to MT.
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The hyperbola whose transverse axis is AM and latus rectum MT passes
through the point U, but the point U lies on the outline of the parabola. So
if the ratio of the square of G to the square of H is equal to the ratio of CM
to ME, then the hyperbola with axis AM cuts the parabola and the problem
is solved, as we have shown in the synthesis of this problem.

I also say that the problem has two solutions. We draw from the point
U to the diameter AI a straight line that is an ordinate; let the straight line
be ULa. So LaI is twice UI; in fact ULa is parallel to the straight line that is
a tangent to the parabola at the point A and the tangent cuts off from the
axis outside the conic section a straight line equal to the straight line cut off
on the axis by the perpendicular to the axis drawn from the point A. But the
perpendicular to the axis drawn from the point A is equal to what it cuts off
from the axis, because this perpendicular is equal to the latus rectum. Thus
the tangent drawn from the point A, together with the axis, gives rise to a
triangle whose base is twice the perpendicular drawn from the point A. This
triangle is similar to the triangle ULaI, so the straight line LaI is twice the
straight line IU, so it is equal to the straight line AB. The straight line ALa is
thus equal to the straight line BI and BI is equal to AM, so the straight line
ALa is equal to the straight line AM; the straight line MU is thus a tangent to
the conic section.

We draw from the two points M  and C  two perpendiculars to the
straight line SV; let them be MF and CW. Since the ratio of CM to MI is
equal to the ratio of VU to UI, the ratio of MC to CI is equal to the ratio of
UV to VI, so the product of CM and IV, that is MF, is equal to the product
of UV and CI, that is VW. The hyperbola constructed through the point M,
and which has as its asymptotes the straight lines FW and WC, passes
through the point U. The straight line MU will thus lie inside this conic
section and MU is a tangent to the parabola, so there is no straight line
between that straight line and the parabola. A straight line drawn from the
point U between the tangent to the hyperbola and the straight line MU, lies
inside the parabola. And each of these straight lines lies inside the parabola.
So the hyperbola that passes through the two points M  and U  cuts the
parabola in a point between the points A and U. Thus if we draw from the
point of intersection a perpendicular to the straight line S W , the
perpendicular cuts the straight line MC in such a way that the ratio of CM
to the part of it cut off by the perpendicular on the same side as M is equal
to the ratio of the perpendicular to the part of it cut off between the conic
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section and the straight line MC . If we undertake the proof using the
method we have indicated, this will allow us to show that the hyperbola
whose transverse axis is AM and latus rectum MT passes through the other
point that lies between the two points A and U. In this way we show that
the hyperbola whose axis is AM and latus rectum MT cuts the parabola in
two points distinct from the point A. Thus it has been shown that the
problem has two solutions.

Now that we have proved this for that ratio, we prove it for a ratio
greater than the ratio of CM to ME.12 We make O′M greater than CM and
let us draw from the point O′ the perpendicular O′D′. It is clear that if we
draw from the point M a tangent to the hyperbola that passes through the
two points M  and U, and if we then extend it (the straight line) in both
directions, it reaches the straight line WF and the straight line WC – if we
extend these two straight lines. The tangent is divided into two equal parts
at the point M. This tangent will lie between the two straight lines MU and
MC. If we extend this tangent on the other side of C, it meets D′O′ on the
side of O′ and the part of it that lies between the point M and the straight
line D′O′ will be greater than the part that lies between the point M and the
straight line WF. If we extend MU on the side of F, the part of the straight
line added to the straight line MU that lies between the point U and the
straight line D′O′, the part extended on the side of O′, will be greater than
the part of the straight line between the point M and the straight line D′F.13

The hyperbola constructed through the point M  and such that its two
asymptotes are the straight lines D′F and D′O′ cuts the tangent and cuts it
on the side of O ′; it also cuts the part of the straight line added to the
straight line MU  on the side of O′ and cuts it beyond the point U. The
tangent cuts the parabola because it (the line) lies between the two straight
lines MU and MC. The hyperbola constructed through the point M and such
that the two straight lines D′O′ and D′F are its two asymptotes, thus cuts
the parabola and cuts it in two points; one is before the point U and the
other after the point U. So if we draw from the two points of intersection
two perpendiculars to the straight line D′F and if we continue the proof
using the same method as before, it becomes clear that the problem is

12 CM

ME
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2 = ′ , hence O′M > CM.
13 Ibn al-Haytham is using the property of a secant in relation to the asymptotes of

the hyperbola.
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solved and it has two solutions, as we have shown also for the straight line
MC.

So we have shown that if the ratio of the square of G to the square of H
is greater than the ratio of CM to ME, then the problem is solved and it has
two solutions. But if the ratio of the square of G to the square of H is less
than the ratio of CM to ME, then the problem is not solved. This is clear, as
we describe it.

We put this ratio equal to the ratio of JM  to ME and we draw the
perpendicular JI′, which, when extended in the direction of J, cuts the
tangent that we have described earlier, that is the tangent to the hyperbola
that passes through the two points M and U and a part of which is cut off
between the straight line JI′ and the point M, <a part that is> smaller than
the part between the point M  and the straight line I′F. If we construct
through the point M a hyperbola whose asymptotes are the straight lines I′J
and I′F, this hyperbola cuts the tangent that was mentioned above in a point
between the point M and the straight line I′F. So this hyperbola does not
cut the parabola. If it does not cut the parabola, the hyperbola whose axis is
AM and latus rectum MT does not cut the parabola; then the problem is not
solved.

It is clear, from all that we have proved, that the discussion (diorism) of
the problem for the hyperbola is that the ratio of the square of G to the
square of H must not be less than the ratio of CM to ME, and if the ratio is
like this, then the problem has two solutions. That is what we wanted to
prove.

– 6  – The conic section ABC is a hyperbola or an ellipse whose
transverse axis is AD and centre E; the ratio of H to F is given. We wish to
draw a tangent to the conic section, <a line> ending on the axis and such
that its ratio to what it cuts off from the axis on the side towards the further
end is equal to the ratio of H to F.

We suppose this has been done by analysis: let the tangent be BS, then
the ratio of BS to SD will be equal to the ratio of H to F. We join EB, we
extend it on the side of B and we draw from the point A and towards the
diameter EB a straight line that is an ordinate; let it be AIC. So AI will be
half AC. We draw from the points B, I and C perpendiculars to the axis; let
them be BK, IP and CO.
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The ratio of the product of DO and OA to the square of OC is equal to
the ratio of the transverse diameter AD to the latus rectum; the same holds
for the ratio of the product of DK and KA to the square of KB, as has been
shown in Proposition 21 of Book I. The ratio of the product of EP and PA
to the square of PI is equal to this same ratio, since these straight lines are
half the other straight lines. We put the ratio of EM to MA equal to the ratio
of the transverse diameter AD to its latus rectum; the straight line AM will
thus be equal to half the homologous straight line. The ratio of the product
of MP and PA to the square of AI will be equal to the known ratio of ME to
EA, as has been shown in the second proposition of Book VII. But the ratio
of KA to AE is equal to the ratio of AS to SE and the ratio of AS to SE is
equal to the ratio of IB to BE which is the ratio of PK to KE, so the ratio of
PK to KE is equal to the ratio of KA to AE. The ratio of PE to EK is equal
to the ratio of KE to EA, so the product of PE and EA is equal to the square
of EK. But since the ratio of KA to AE is equal to the ratio of AS to SE, the
ratio of KA to AS will be equal to the ratio of AE to ES which is the ratio of
IA to BS. The ratio of IA to BS is thus equal to the ratio of KA to AS, the
ratio of IA to AK is accordingly equal to the ratio of BS to SA. Since the
ratio of BS to SD is equal to the ratio of H to F, which is known, the ratio of
DS to SA is equal to the ratio of BS to a straight line whose ratio to SA is
known. The ratio of DS to SA is thus equal to the ratio of IA to a straight
line whose ratio to KA is known. But the ratio of DS to SA is equal to the
ratio of DK to KA, as has been shown in Proposition 36 of Book I. The
ratio of DK to KA is thus equal to the ratio of IA to a straight line whose
ratio to AK is a known ratio. The ratio of DK to IA is thus known; similarly
the ratio of the square of DK to the square of AI is known. But the ratio of
the product of MP and PA to the square of AI is known, the ratio of the
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product of MP and PA to the square of DK is thus known. But it has been
shown that the product of PE and EA is equal to the square of EK. But
since the ratio of the product of MP and PA to the square of KD is known
and the product of PE and EA is equal to the square of EK, the ratio of EA
to AP is known, AP will accordingly be known because it is possible to find
it; we shall show how to find it in the synthesis of this problem. But if AP
is known, P I will be known in position and AIC  will be known in
magnitude and position; since AI is equal to IC, the point I will be known,
so EBI will be known in position, the point B will be known, the straight
line BS that is a tangent will be the line that is the solution to the problem
and it is known in position.
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– 7 – The synthesis of this problem is as follows.
We return to the two conic sections and we put the ratio of AE to EQ

equal to the ratio of the square of H to the square of F. We draw from the
points E, M, A perpendiculars to the axis; let them be EN, MU and AV. We
put EN equal to EA and MU equal to DA. Let us draw from the two points
N and U two straight lines parallel to the straight line EA; let them be NG
and UVJ. UV will thus be equal to MA. We put the ratio of UV to VLa equal
to the ratio of ME to EQ. We construct through the point V the hyperbola
whose transverse axis is UV and latus rectum VLa and we construct through
the point N the parabola whose vertex is the point N, its axis NG and latus
rectum EA; these two conic sections always intersect:
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In the case of the ellipse, it is because the parabola passes through the
point A, because EA is equal to the latus rectum; as the parabola is traced
out, it then passes through the point V, a part of the hyperbola lies inside
the parabola and their concave sides face towards one another; so they cut
one another in every case and they intersect only on one side in a single
point.14

In the case of the hyperbola, it is because an asymptote of the
hyperbola with axis UV cuts the straight line NG which is the axis of the
parabola and cuts it in a point beyond the point N , because it (the
asymptote) is drawn from the midpoint of the straight line UV and encloses
an acute angle with the straight line UV beyond the point V; if it cuts the
straight line NG beyond the point N, it then falls inside the parabola, so it
cuts the outline of the parabola. If the outline of the parabola cuts the
asymptote of the hyperbola, it must cut the hyperbola, because the
hyperbola approaches indefinitely closely to its asymptote and the parabola
becomes indefinitely distant from a straight line that cuts it.

The parabola and the hyperbola thus cut one another in every case; let
them cut one another at the point X and let the parabola be NX and the
hyperbola VX.

We draw from the point X the perpendicular XPGJ, we put PO equal to
PA, we extend the perpendicular OC to reach the given conic section, we
join AC and we draw XP so far as to meet AC; let it meet it at the point I.

14 See Supplementary note [3].
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Thus AI will be equal to IC. We join EI, it will be a diameter of the conic
section; let it cut the outline of the conic section at the point B. We draw BS
parallel to IA, it will be a tangent to the conic section, as has been shown in
Proposition 17 of Book I.

I say that the ratio of BS to SD is equal to the ratio of H to F.
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Proof: We draw the perpendicular BK. The product of PE and EA is
equal to the square of EK, as has been shown in the analysis. But PE is
equal to NG and the product of NG and EA is equal to the square of GX,
because EA is the latus rectum of the parabola, so the straight line EK is
equal to GX. But GJ is equal to ED because PJ is equal to AD, and GJ is
half PJ, the straight line JX is thus equal to the straight line KD. But the
ratio of the product of UJ and JV to the square of JX is equal to the ratio of
UV to VLa which is the ratio of ME to EQ; the ratio of the product of UJ
and JV to the square of JX is thus a compound of the ratio of ME to EA and
the ratio of AE to EQ. But the ratio of ME to EA is equal to the ratio of the
product of MP and PA to the square of AI, as has been shown in the
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analysis, and the ratio of AE to EQ is equal to the ratio of the square of H to
the square of F, so the ratio of the product of MP and PA to the square of
JX is a compound of the ratio of the product of MP and PA to the square of
AI and the ratio of the square of H to the square of F. But the ratio of the
product of MP and PA to the square of JX is a compound of the ratio of the
product of MP and PA to the square of AI and the ratio of the square of AI
to the square of JX, so the ratio of the square of AI to the square of JX is
equal to the ratio of the square of H to the square of F. But JX is equal to
KD, so the ratio of the square of AI to the square of KD is equal to the ratio
of the square of H to the square of F and the ratio of AI to KD is equal to
the ratio of H to F. So the ratio of DK to KA is equal to the ratio of IA to a
straight line whose ratio to AK is equal to the ratio of IA to KD, which is
the ratio of H to F. But the ratio of IA to AK is equal to the ratio of BS to
SA. We put the ratio of the straight line I′ to SA equal to the ratio of H to F,
the ratio of SA to I′ will then be equal to the ratio of F to H. But the ratio of
SA to I′  is equal to the ratio of SA multiplied by AI to AI multiplied by I′, so
the ratio of SA multiplied by AI to AI multiplied by I′  is equal to the ratio of
F to H. But SA multiplied by AI is equal to BS multiplied by AK, so the
ratio of BS multiplied by AK to AI multiplied by I′ is equal to the ratio of F
to H. That is why the ratio of BS to I′ is equal to the ratio of IA to the
straight line whose ratio to AK is equal to the ratio of H to F, a ratio equal
to the ratio of DK to KA. The ratio of BS to SD is thus equal to the ratio of
I′ to SA and the ratio of I′ to SA is equal to the ratio of H to F, so the ratio
of BS to SD is equal to the ratio of H to F. Which is what was to be proved.

There is no need for a discussion of this problem, because it has been
shown that the two conic sections NX  and V X always intersect. The
problem is thus solved in all cases without <imposing> any conditions and
there is a solution for each side, because the conic section NX cuts the conic
section VX only on one side and in a single point:

In the case of the ellipse, it is because the concave sides of the two
conic sections face towards one another. In the case of the hyperbola, it is
because any straight line that cuts a hyperbola in two points, if it is
extended in both directions, cuts the two asymptotes and <thus> a part of it
is intercepted in the angle between the two asymptotes, an angle which is
outside the conic section by what has been shown in Proposition 8 of Book
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II. So if the parabola NX cuts the hyperbola VX,15 then the two points lie
within the angle formed by the two asymptotes, that is the angle that
encloses the conic section, beyond the point where the parabola cuts the
asymptote of the hyperbola. If we join the two points with a straight line,
then this straight line cuts the two conic sections at the same time. So if we
extend this straight line, it then cuts the asymptote of the hyperbola beyond
the point in which that straight line and the parabola cut one another. The
straight line that passes through the two points does not cut the other
asymptote of the hyperbola, that is it is no part of it is intercepted in the
angle formed by the hyperbola. The parabola and the hyperbola whose
<common> axis is UV thus do not cut one another in two points on one
side. But it has been shown that they cut one another in all cases, thus they
cut one another on only one side, in a single point only. That is what we
wanted to prove.

It has been shown how, starting from what we have proved in the
synthesis, one can find the straight line AP, which we stated in the analysis
would be shown in some way in the synthesis.

– 8 – The conic section ABC is a known hyperbola, its axis is AD, its
centre E, the ratio of G to H is a given ratio and G is smaller than H. We
wish to find a tangent to the conic section, with one end on its axis, and that
is such that its ratio to the <semi>diameter drawn from the point of contact
is equal to the ratio of G to H.

We suppose this has been done by analysis: let the straight line be BK.
We join EB; the ratio of EB to BK is thus known. We extend EB and we
draw from the point A an ordinate to meet EB; let it be AIC. AI will be
equal to IC and the ratio of EI to IA equal to the known ratio of EB to BK.
We make the angle EIP equal to the angle IAP, then the triangle AIP will
be similar to the triangle EIP, so the ratio of EP to PI is equal to the ratio of
PI to P A, so the product of EP and PA is equal to the square of PI, the
straight line PI is thus greater than the straight line PA. But the ratio of EP
to PA is equal to the ratio of the square of EP to the square of PI which is
equal to the ratio of the square of EI to the square of IA which is known;
the ratio of EP to PA is thus known and EA is known, so the straight line
AP is known and the straight line PI is known.

15 To be understood: in two points.
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We draw from the point C a straight line parallel to the straight line IP;
let it be CS. CS is thus twice IP and SA is twice AP. But IP is known and
AP is known, so CS is known and SA is known, so the point S is known.
But SC is greater than SA, because IP is greater than PA. We make SM
equal to SC, so the point M will lie beyond the point A.16 We take the point
S as centre and with distance SM construct a circle;17 let it be CM . This
circle is thus known in size and position, because its centre is of known
position; so the point C is known, the straight line AC is known in size and
position, so the point I is known, the straight line EI is thus known in
position, the point B is thus known and it is the point that provides a
solution to the problem.

– 9 – For the synthesis of this problem, we return to the conic section
and we put the ratio of G to F equal to the ratio of H to G. The ratio of H to
F will thus be equal to the ratio of the square of H to the square of G. We
put the ratio of EP to PA equal to the ratio of H to F and we make SP equal
to PA; we put the product of EP and PA equal to the square of PL. We take
the point S as centre and with a distance equal to twice the straight line PL
we construct an arc of a circle; let the arc be MC. We join AC and we
divide it into two equal parts at the point I. We join EI; it cuts the conic
section because the point I lies inside the conic section; let EI cut the conic
section at the point B. We draw BK to be a tangent to the conic section.

16 Outside the hyperbola, because SM > SA.
17 Ibn al-Haytham does not point out that the circle defined in this way must cut the

hyperbola at the point C, but this follows from the inequality SM > SA which has been
established in the course of the analysis.
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I say that that the ratio of KB to BE is equal to the ratio of G to H.
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Proof: Let us join SC and PI; they will be parallel, so CS will be twice
IP. The product of EP and PA is thus equal to the square of PI, so the ratio
of EP to PI is equal to the ratio of IP to PA. Thus the two triangles EPI and
API are similar and the ratio of EP to PI is equal to the ratio of IP to PA
and to the ratio of EI to IA. So the ratio of EP to PA is equal to the ratio of
the square of EP to the square of PI. But the ratio of EP to PA is equal to
the ratio of H to F which is equal to the ratio of the square of H to the
square of G; the ratio of the square of EP to the square of PI is thus equal
to the ratio of the square of H to the square of G and the ratio of EP to PI is
equal to the ratio of H to G. But the ratio of EP to PI is equal to the ratio of
EI to IA and the ratio of EI to IA is equal to the ratio of EB to BK; so the
ratio of EB to BK is equal to the ratio of H to G, so the ratio of KB, the
tangent, to BE, is equal to the ratio of G to H. That is what we wanted to
prove.

There is no need for a discussion for this problem because it can be
solved in all cases.

– 10 – ABC is a conic section, the straight line CD is a tangent to it and
the ratio of E to G is known. We wish to draw another tangent to the conic
section, which meets CD and is such that its ratio to what it cuts off from
the straight line CD is equal to the ratio of E to G.
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We suppose this has been done by analysis: let the required straight
line be AD, let the conic section AB be, first, a parabola. We join AC, we
divide it into two equal parts at the point H and we join DH; let it cut the
conic section at the point B. So DH will be a diameter of the conic section
because it cuts CA into two equal parts and tangents meet it [DH] in a
single point. So AC is an ordinate and DB is equal to BH. If E is equal to G,
then AD is equal to DC. But AH is equal to HC, so angle H is a right angle,
DH is thus the axis of the conic section; it is known in position. But by
hypothesis the straight line CD is known in position, so the point D  is
known. If we draw from the point D a tangent to the conic section, it will
be equal to DC. That is what we sought.

But if E is not equal to G, then AD is not equal to DC, so angle H is not
a right angle; but since the conic section is a parabola, all its diameters are
parallel and parallel to its axis. But its axis is known in position and the
straight line CD is known in position, so it meets the axis at a known angle.
So the straight line CD meets each of the diameters of the conic section at
that angle; but the straight line DH is a diameter, so the angle CDH  is
known. We draw from the point A a straight line parallel to the straight line
HD; let it be AI. We extend CD until it meets it; let it meet it at the point I.
The angle I will thus be equal to the known angle HDC, and ID will be
equal to DC; but the ratio of DC to DA is known, so the ratio of ID to DA is
known. But the angle I is known, so the triangle AID is known in shape and
angle ADI is known, so angle ADC is known. But the ratio of AD to DC is
known, so the triangle ADC is known in shape, angle DCA is known and
the straight line CD is known in position; so the straight line CA is known
in position, the point A  is thus known and the straight line DA  is the
tangent.
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– 11 – The synthesis of this problem is as follows.
We draw the axis of the conic section; let it be IK. It meets the straight

line CD; let it meet it at the point I.18 We put the ratio of IC to a general
straight line equal to the ratio of G to E ; we draw C K19 equal to that
<general> straight line, we extend IC on the side of C, we cut off CL equal
to CI, we join LK and we draw from the point C a straight line parallel to
the straight line LK; let it be CA. This straight line thus cuts the conic
section in another point, because it cuts the axis and in consequence cuts all
the diameters; let it cut the conic section at the point A. We divide CA into
two equal parts at the point H and we draw from the point H a straight line
parallel to the axis, so it meets the straight line CD; let it be the straight line
HBD. This straight line will thus be a diameter and AC is an ordinate of
that diameter, so DB is equal to BH because CD is a tangent and CH an
ordinate. We join AD, it will thus be a tangent because DB is equal to BH.

I say that the ratio of AD to DC is equal to the ratio of E to G.
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Proof: We divide LK into two equal parts at the point M and we join
CM; it will be parallel to IK because IC is equal to CL, so the straight line
CM is parallel to the straight line DH and the straight line CH is parallel to
the straight line LM. So triangle DCH is similar to triangle CLM. So the
ratio of DC to CH is equal to the ratio of CL to LM. But the ratio of CH to

18 So the point I here is not the same as the point I in the analysis.
19 The question of the existence of the point K is discussed later.
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CA is equal to the ratio of ML to LK, so the ratio of DC to CA is equal to
the ratio of CL to LK, thus triangle DCA is similar to triangle CLK. So the
ratio of CD to DA is equal to the ratio of LC to CK, that is to the ratio of IC
to CK, which is equal to the ratio of G to E. So the ratio of AD to DC is
equal to the ratio of E to G. That is what we wanted to prove.

The discussion of this problem is that the ratio of E to G shall not be
less than the ratio of the perpendicular dropped from the point C onto the
axis to the straight line CI, because the ratio of E to G is equal to the ratio
of KC to CI and the angle CIK is acute because it is the angle formed by the
tangent and the axis, so it cannot but be acute. That is why the ratio of KC
to CI is not less than the ratio of the perpendicular dropped from the point
C onto the axis to the straight line CI. That is why the ratio of E to G is not
less than the ratio of the perpendicular dropped from the point C onto the
axis to the straight line CI. That is what we wanted to prove.

– 12 – Let the conic section ABC be a hyperbola or an ellipse; the
straight line BD is a tangent and the ratio of E to G is known. We wish to
draw another straight line to be a tangent to the conic section, to meet the
straight line BD and to be such that its ratio to what it cuts off from the
straight line BD is equal to the ratio of E to G.
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We suppose this is to be done by means of analysis: let the required
tangent be the straight line AD. So the ratio of AD to DB will be known.
Let the centre of the conic section be the point H. We join HB, thus it will
be a diameter20 of known position. Let us draw from the point A a straight
line that is an ordinate; let it be AI. We extend AD on the side of D, thus it
meets HB; let it meet it at the point P.21 The product of IH and HP is equal
to the square of HB, from what has been shown in Proposition 37 of the
first book. We draw from the point H a straight line parallel to the straight
lines that are ordinates; let it be HKN. We extend it in both directions. Let
us draw from the point A a straight line parallel to HI; let it be AK. Thus it
meets HK; let it meet it at the point K. We extend AP until it meets KH; let
it meet it at the point N. Since AI is an ordinate and AP is a tangent, the
ratio of the product of HI and IP to the square of AI is equal to the ratio of
HB to half of the latus rectum22 which is a known ratio, as has been shown
in Proposition 37 of the first book. The ratio of the product of HI and IP to
the square of AI is thus known. But the product of HI and HP is equal to
the square of HB, so the ratio of HP to PI is equal to the ratio of the square
of HB, which is known, to a square23 whose ratio to the square of AI is
known, because the ratio of HP to PI is equal to the ratio of the product of
HP and HI, which is equal to the square of BH, to the product of HI and IP;
but the ratio of the product of HI and IP to the square of AI is known. The
ratio of HP to PI is equal to the ratio of NH to AI, so the ratio of NH to AI
is equal to the ratio of the square of HB to a square24 whose ratio to the
square of AI is known; it is thus equal to the ratio of a known square25 to
the square of AI. So the product of NH and AI is equal to the square of a
known straight line,26 whose ratio to HB is known. The ratio of the product
of NH and HK to the square of HB is thus known because the ratio of NH to

20 The straight line HB is a diameter, but the segment HB is a semidiameter, that is
why Ibn al-Haytham associates with it half the latus rectum for the diameter.

21 See Mathematical commentary, p. 92.
22 See note 17.
23 If we put the square Σ = K · AI2, we have HB NH

IA

2

Σ
= , the square Σ is not known.

24 See preceding note.
25 If we put the square Q = Δ2 = HB

k

2

, Q and Δ are known and we have NH · AI =

Q

AI2 , hence NH · AI = Q.
26 See preceding note.
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AI is equal to the ratio of a specified area to the square of AI, so the ratio of
the square of HB to the square whose ratio to the square of AI is known is
equal to the ratio of that area to the square of AI. By permutation we can
find what we were looking for.27

The ratio of the product of NH and HK to the product of IH and HP is
thus known, the ratio of KH to a straight line whose ratio to HI is known is
thus equal to the ratio of PH to HN, so the ratio of HK to a straight line
whose ratio to AK is known is equal to the ratio of AK to KN, so the ratio of
the product of NK and KH to the square of KA is known. We put the ratio
of KH to U equal to the ratio of the product of NK and KH to the square of
KA, the ratio of KH to U is thus known, the product of U and KN is equal to
the square of KA and the product of U and HN is equal to the square of HB,
because AK is equal to HI.
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We construct through the point H the hyperbola whose transverse
diameter is NH and its latus rectum a straight line such that the ratio of NH
to that straight line is equal to the ratio of KH to U; it accordingly passes
through the point A of the hyperbola ABC. We construct on the straight line

27 From notes 23 and 25, we deduce NH

AI

Q

AI

HB= =2

2

Σ
, hence NH AI

AI

HB⋅ =2

2

Σ
; but

AI = HK, consequently, by permutation, we can obtain NH HK

HB

AI

k

⋅ = =2

2 1

Σ
.
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NH of the ellipse ABC an ellipse such that its diameter is NH and its latus
rectum a straight line such that the ratio of NH to that straight line is equal
to the ratio of KH to U; it accordingly passes through the point A which lies
on the outline of the ellipse ABC.28 We put the product of F and NK equal
to the square of AN, the ratio of F to U will thus be equal to the ratio of the
square of NA to the square of AK. We draw from the point D a straight line
DS parallel to KA. But DB is a tangent and it is parallel to HK; the product
of IH and HP is equal to the square of HB, so the product of AN and NP is
equal to the square of ND and the product of KN and NH is equal to the
square of NS, so the ratio of AN to ND is equal to the ratio of AD to DP, the
product of AN and DP is thus equal to the product of AD and DN. But the
ratio of F to AN is equal to the ratio of AN to NK which is equal to the ratio
of DN to NS and which is equal to the ratio of DP to SH, so the ratio of F to
AN is equal to the ratio of DP to SH, the product of AN and DP is thus
equal to the product of F and SH, so the product of AD and DN is equal to
the product of F and SH, that is DB. The ratio of AD to DB is thus equal to
the ratio of F to DN, so the ratio of F to DN is known. But the ratio of F to
U is equal to the ratio of the square of NA to the square of AK, thus it is
equal to the ratio of the square of ND to the square of DS. But the product
of U and HN is equal to the square of DS because it is equal to the square
of HB, so the product of F and HN is equal to the square of ND; the ratio of
F to ND is thus equal to the ratio of ND to NH; but the ratio of F to ND is
equal to the ratio of AD to DB, so the ratio of DN to NH is equal to the ratio
of AD to DB, that is the ratio of AD to HS, and is equal to the ratio of AN to
NS; so the ratio of AN to NS is equal to the ratio of AD to DB which is
equal to the known ratio of E to G, and the ratio of AN to NS is known. But
the product of KN and NH is equal to the square of NS, so the ratio of the
product of KN and NH to the square of NA is known and it is equal to the
ratio of HN to F. We make NO equal to F, then the product of KN and NO
is equal to the square of NA. We join AO, triangle ANO will be similar to
triangle ANK, the angle NAO will be equal to the angle AKN; but the angle
AKN is known because it is the angle of an ordinate associated with the
diameter HB, so the angle NAO is known. If the straight line NH is known
in magnitude and position and if the conic section HA is known in position,
then the straight line NO is of known magnitude, and the point A lies on the
circumference of a segment of a circle known in position; the point A will

28 See the Mathematical commentary, p. 94.
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be known, the straight line AN will be known in position, the angle ANH
will then be known and the angle NPH will be known. The straight line AP
is a tangent to the conic section, so it makes a known angle with the
diameter HP, so the point A is known.

– 13 – The synthesis of this problem is as follows.
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We return to the conic section and the ratio, we suppose there are two
known straight lines29 LM and LT and we put the ratio of LM to LT equal to
the ratio of half the latus rectum of the diameter HB to the diameter HB.30

We construct through the point L of one of the two straight lines31 the
hyperbola whose transverse diameter is LM, whose latus rectum is LT and
the angle of whose ordinates is the angle of the ordinates of the diameter
HB of the hyperbola ABC; let this conic section be LR. We construct on the
other straight line LM the ellipse whose diameter is LM and its latus rectum
LT and the angle of whose ordinates is the angle <of the ordinates> of the
diameter HB of the ellipse ABC; let the conic section be LRM. We put the
ratio of LM to MX equal to the ratio of the square of G to the square of E
and we construct on the straight line XM a segment that subtends an angle
equal to the angle of the ordinate of the diameter HB; let the arc be MRX.

29 Ibn al-Haytham considers two straight lines LM  and LT and constructs two
figures.

30 As before, HB is the semidiameter.
31 See note 25.
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This arc cuts the conic section LR in every case; let it cut it at the point R.
We join RM, the angle M will thus be known; we join RX and we draw RV
as an ordinate, so the angle RVM will be equal to the angle MRX and
triangle MRX will be similar to triangle MRV; their sides are therefore
proportional. The product of VM and MX is equal to the square of MR, so
the ratio of the product of VM and ML to the square of MR is equal to the
ratio of LM to M X which is equal to the ratio of the square of G to the
square of E. But the ratio of the product of MV and VL to the square of VR
is equal to the ratio of ML to L T which is equal to the ratio of the latus
rectum of the diameter HB to the diameter HB.32 We draw from the point L
a straight line that is an ordinate; let it be LJ. The angle LJM is known
because the two angles L  and M  are known. But it has been shown in
proposition fifty-seven and in proposition fifty-nine of the second book of
the Conics how to draw a straight line that is a tangent to the conic section
and which makes with the axis of the conic section an angle equal to a
known angle. Starting from this case, we shall show how to draw a straight
line that is a tangent to the conic section and which makes a known angle
with a diameter of known position, because the axis in fact makes a known
angle with any diameter of known position. So we draw a straight line that
is a tangent to the conic section ABC and which makes with the diameter
HB an angle equal to the angle LJM; that is the straight line AP. We draw
AI as an ordinate; we draw AK parallel to the diameter IH and we draw
from the point H  a straight line parallel to the straight lines that are
ordinates, let it be HKN; let it cut the straight line AK at the point K and
meet AP at the point N. We put the ratio of ON to NH equal to the ratio of
XM to ML, which is equal to the ratio of the square of E to the square of G;
we join AO. Since KH is parallel to the ordinates and AK is parallel to IH,
the angle K will be equal to the angle I and to the angle PHN. But the angle
PHN is equal to the angle JLM and the angle P is equal to the angle J, <so>
there remains the angle N <which is> equal to the angle M; triangle NAK
will thus be similar to triangle MRV and triangle NPH will be similar to
triangle MJL. But the ratio of the product of MV and VL to the square of VR
is equal to the ratio of ML to L T which is equal to the ratio of the latus
rectum relative to the diameter HB to the diameter HB; so it is equal to the
ratio of the square of AI to the product of HI and IP, as has been shown in
Proposition 37 of Book I. The ratio compounded from the ratio of MV to

32 The diameter is 2HB and Ibn al-Haytham considers half of the latus rectum. He
abbreviates his wording in this same way in all that follows.
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VR and the ratio of LV to VR is the ratio compounded from the ratio of AI
to IP and the ratio of AI to IH; but the ratio of MV to VR is equal to the
ratio of ML to LJ which is equal to the ratio of NH to HP which is equal to
the ratio of AI to IP. There remains the ratio of LV to VR <which is> equal
to the ratio of AI to IH which is equal to the ratio of HK to KA; so the ratio
of HK to KA is equal to the ratio of LV to VR.
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So the ratio of the product of NK and KH to the square of KA is equal
to the ratio of the product of MV and VL to the square of VR, which is equal
to the ratio of ML to LT, which is equal to the ratio of the latus rectum
associated with the diameter HB to the diameter HB. But the ratio of AK to
KN is equal to the ratio of RV to VM, so the ratio of HK to KN is equal to
the ratio of LV to VM. Thus the ratio of KN to NH is equal to the ratio of
VM to ML. But the ratio of HN to NO is equal to the ratio of LM to MX, so
the ratio of KN to NO is equal to the ratio of VM to MX. But the ratio of VM
to MX is equal to the ratio of the square of VM to the square of MR, so the
ratio of KN to NO is equal to the ratio of the square of VM to the square of
MR, which is equal to the ratio of the square of KN to the square of NA.
Thus the product of KN and NO is equal to the square of NA. Let us put the
ratio of HK to U equal to the ratio of the latus rectum associated with the
diameter HB to the diameter HB, so the ratio of the product of NK and KH
to the product of NK  and U is equal to the ratio of the latus rectum
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associated with the diameter HB to the diameter HB. But the ratio of the
product of NK and KH to the square of AK is equal to the ratio of the latus
rectum associated with the diameter HB to the diameter HB, so the product
of NK and U is equal to the square of KA, so the ratio of the square of NA
to the square of AK is equal to the ratio of NO to U. But the ratio of KN to
NH is equal to the ratio of AK to PH, which is equal to the ratio of IH to
HP, which is equal to the ratio of the square of IH to the square of HB, that
is the ratio of the square of AK to the square of BH. So the ratio of the
product of NK and U to the product of NH and U is equal to the ratio of the
square of AK to the square of HB. But the product of NK and U is equal to
the square of AK, so the product of NH and U is equal to the square of HB.

We draw DS parallel to KA; DS will thus be parallel to HB. But since
the product of IH and HP is equal to the square of HB, the product of AN
and NP will be equal to the square of ND, and the product of KN and NH is
equal to the square of NS. But the ratio of ON to NH is equal to the ratio of
XM to ML which is equal to the ratio of the square of E to the square of G,
so the ratio of O N to N H is equal to the ratio of the square of E to the
square of G; the ratio of HN to NO is thus equal to the ratio of the square of
G to the square E. Now the ratio of HN to NO is equal to the ratio of the
product of HN and NK to the product of NK and NO, which is equal to the
square of NA. So the ratio of the product of KN and NH to the square of NA
is equal to the ratio of the square of G to the square of E. But the product of
KN and NH is equal to the square of NS, so the ratio of the square of NS to
the square of NA is equal to the ratio of the square of G to the square of E;
the ratio of the square of AN to the square of NS is thus equal to the ratio of
the square of E to the square of G, so the ratio of AN to NS is equal to the
ratio of E to G. But since the product of ON and NK is equal to the square
of NA, the ratio of ON to NA will be equal to the ratio of AN to NK, which
is equal to the ratio of PN to NH. So the ratio of ON to NA is equal to the
ratio of PN to NH, the product of ON and NH is thus equal to the product of
AN and NP which is the square of ND. So the product of ON and NH is
equal to the square of ND, so the ratio of ON to NH is equal to the ratio of
the square of DN to the square of NH. But the ratio of ON to NH is equal to
the ratio of the square of E to the square of G, so the ratio of the square of
DN to the square of NH is equal to the ratio of the square of E to the square
of G. But the ratio of the square of AN to the square of NS is equal to the
ratio of the square of E to the square of G, so the ratio of the square of AN
to the square of NS is equal to the ratio of the square of DN to the square of
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NH; so the ratio of AN to NS is equal to the ratio of DN to NH and is equal
to the ratio of the remainder, which is AD, to the remainder, which is HS;
so the ratio of AD to DB is equal to the ratio of AN to NS which is equal to
the ratio of E to G. Consequently the ratio of AD to DB is equal to the ratio
of E to G. That is what we wanted to prove – and it is known only to God.

The discussion of this problem – if the two straight lines E and G are
different – consists of supposing we have two straight lines whose ratio to
one another is equal to the ratio of the square of E to the square of G like
<the ratio between> the two straight lines XM and LM which are in the
figure. We take the smaller of the two as a diameter of the hyperbola
homologous to the conic section LR. We do not need to add any other
condition in order to construct the hyperbola.

For the ellipse, we must similarly make the smaller of the two straight
lines a diameter of the ellipse homologous to the conic section LRM. If the
diameter of the ellipse is a diameter but not an axis, the excess <length> of
the greater straight line over the shorter line — an excess which is
homologous to the straight line LX — must be placed on the side of the end
of the diameter, starting from which the tangent to the conic section makes
an acute angle with the diameter of the conic section, so that the other end
of the diameter is the end of the base of a segment of the circle, such that
the tangent to that segment of the circle at the other end falls inside the
ellipse, because the tangent and the base of the segment enclose an acute
angle, since in the case of the ellipse the segment subtends an obtuse angle
and, in the case of the hyperbola, the segment subtends an acute angle.33

The tangent to the ellipse makes an obtuse angle with the base of the arc at
this end. It follows that this end34 of the arc lies inside the ellipse and that
the other end of the arc that is the end of the greater straight line lies
outside the conic section. So the arc cuts the outline of the conic section.
This clearly results in the arc cutting the perimeter of the ellipse in a single
point and the problem having only a single solution.

If the diameter is an axis and is the smaller axis, then the arc will be a
semicircle and the tangent to the arc will be a tangent to the conic section
as well. If the chord that cuts off from this circle a segment that subtends an
angle equal to the angle made at the end of the smaller axis and enclosed

33 Ibn al-Haytham restricts the scope of the discussion by making the assumption
that α is obtuse for the ellipse and α is acute for the hyperbola.

34 Here what Ibn al-Haytham means by ‘end’ is not the point itself, which is a point
of the ellipse, but a point near this point on the circular arc he is considering.



206 CHAPTER I: AL-ÎASAN IBN AL-HAYTHAM

between the two straight lines drawn from the two ends of the greater axis,
<which> is equal to the greater axis, then the outline of the segment passes
through the end of the greater axis and the other end of the segment lies
outside the conic section; the problem is thus solved.

And if this chord is smaller than the greater axis, then the segment cuts
<the major> axis of the conic section inside the conic section; so it cuts the
perimeter of the conic section on the side of the outer end and does not cut
it on the side of the tangent, because any circle constructed on this diameter
such that the chord we have defined in it is smaller than the major axis, and
such that this circle is greater than the first circle, is thus a tangent to the
first circle, <at a point> outside it, and a tangent to the conic section, <at a
point> inside it; the segment that is a semicircle cuts the conic section in a
single point; the problem thus has a single solution.

If the chord is greater than the greater axis, then the problem has no
solution for the ellipse, because the segment of a circle touches the conic
section at the end of the axis and cuts the major axis outside the conic
section, and its other end lies outside the conic section; consequently the
complete segment lies outside the conic section and does not cut the
perimeter of the conic section; the problem thus has no solution.

If the diameter of the conic section is the greater axis, the problem
again has no solution, because the complete segment lies outside the conic
section.

If the two straight lines E  and G are equal, the procedure for the
construction is to draw the axis of the hyperbola of the ellipse; it will cut
the straight line BD which is the tangent. If it cuts it in a point other than
the point B, we draw from the point of intersection another straight line that
is a tangent to the conic section, it will accordingly be equal to the first one;
the problem is thus solved.

If the axis passes through the point B, then we cannot draw another
straight line that is a tangent to the conic section and is equal to the part it
cuts off from the straight line BD. In fact the diameter drawn as far as the
position where the two straight lines that are tangents meet <one another>
divides the straight line that joins the two points of contact into two equal
parts – this can be shown from the converse of propositions twenty-nine
and thirty of the second book of the Conics – and this diameter is not
perpendicular to the straight line that joins the two points of contact
because it is not the axis, so the two straight lines that are tangents are not
equal. If the two straight lines E  and G are equal, the problem has a
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solution only if the point B does not lie on the axis. So we have completed
the discussion of this problem. That is what we wanted to prove.

<14> If we have a known parabola, <the problem is> how to draw a
straight line that is a tangent to it, which ends on its axis and which is equal
to a given straight line.

Let the conic section be ABC, its axis AD and the given straight line E.
We wish to draw a straight line that is a tangent to the conic section and
such that <the part of it> that ends on the axis is equal to the straight line E.
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We suppose this is to be done by the method of analysis: let the straight
line be BH; we draw BI as an ordinate and we put the angle HBD as a right
angle. So the product of DH and HI is equal to the square of BH, and the
product of DI and IH is equal to the square of BI. But BI is an ordinate and
BH is a tangent, so the straight line HA is equal to the straight line AI, as
has been shown in Proposition 35 of the first book. But the product of the
latus rectum associated with the axis and AI is equal to the square of BI, so
the straight line DI is half the latus rectum of the axis. But the latus rectum
associated with the axis is known, so the straight line DI is known and the
product of DH and HI is equal to the square of HB. But HB is known, so
the product of DH and HI is known.35 But DI is known, so the straight line
HI is known. But the point A is known, so the point H is known. Now we
have drawn from this point a straight line HB that is a tangent to the conic

35 The length of HI is obtained by a geometrical construction (see Mathematical
commentary).
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section, so the point B is known, from what has been shown in Proposition
51 of the second book.36

<15> The synthesis of this problem is carried out in this way: we return
to the conic section and the given straight line; let the latus rectum
associated with the axis of the conic section be <the straight line> KL
which we divide into two equal parts at the point M. We put the product of
MN and NK equal to the square of E.37 We put AH equal to half of KN and
we draw from the point H a tangent to the conic section; let it be HB.

I say that HB is equal to E.
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Proof: We draw BI as an ordinate, then IA is equal to AH and IH is
equal to KN. We put ID equal to MK, then the product of DH and HI is
equal to the product of MN and NK, so the product of DH and HI is equal
to the square of E. Since DI is equal to half the latus rectum, the product of
DI and twice IA is equal to the square of IB, so the product of DI and IH is
equal to the square of IB. We join DB, then the angle DBH is a right angle
and the product of DH and HI will thus be equal to the square of HB. But
the product of DH and HI is equal to the square of E, so the straight line
BH is equal to the straight line E and BH is a tangent to the conic section
and equal to the straight line E. That is what we wanted to construct.

36 Only part of the proposition is used.
37 The point N is found by the same construction.
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This problem does not demand a discussion, because it can be solved in
all cases.

– 16 – If we have a known hyperbola or a known ellipse, <the problem
is> how to draw a straight line that is a tangent to the conic section and
ends on its axis and is equal to a known straight line.

Let the conic section be ABC, its axis AD , its centre E and let the
straight line F be known. We wish to draw a straight line that is a tangent to
the conic section, which ends on the axis and is equal to the known straight
line F.
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We suppose this is to be done by means of analysis: let <the tangent>
be BH. We draw BI as an ordinate and we draw from the point A the
straight line AC parallel to the tangent. We join EB and extend it until it
meets AC; let it meet it at the point K. We draw KL as an ordinate and we
put the ratio of EM to MA equal to the ratio of DA to its latus rectum; so
MA is half the homologous straight line and the ratio of the product of ML38

and LA to the square of AK is equal to the ratio of ME to EA. But since BH
is known and AE is known, the product of AE and BH is known. But the
product of AE and BH is equal to the product of KA and HE, because the
ratio of KA to BH is equal to the ratio of AE to EH; so the product of KA

38 BL in the manuscript (see Mathematical commentary).
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and EH is known. But we have pointed out earlier39 that the ratio of IE to
EA is equal to the ratio of AE to EH, and that the product of IE and EH is
equal to the square of AE which is known, so the ratio of the product of KA
and EH to the product of IE and EH is known, and it is equal to the ratio of
KA to IE. But the ratio of the product of ML and LA to the square of KA is
equal to the ratio of ME to EA, so the ratio of the product of ML and LA to
the square of IE is equal to the ratio of ME to a straight line whose ratio to
AE is known. But it has also been shown earlier that the ratio of LE to EI is
equal to the ratio of IE to EA, so the product of LE and EA is equal to the
square of EI.40 So the ratio of the product of ML and LA to the product of
LE and EA is a known ratio.
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Fig. I.16.2

We construct through the point E the parabola whose axis is EL and
latus rectum EA; let the conic section be EN. Let us extend KL until it
meets EN; let it meet it at the point N. Let us construct through the point A
the hyperbola whose axis is MA and whose latus rectum is such that the
ratio it has to MA is the compound of the ratio of ME to EA and the ratio of
the square of HB to the square of EA; let it cut the conic section EN at the
point N. Whether it cuts it or does not cut it is a matter we shall deal with

39 See Mathematical commentary, Problem 2.
40 Ibid.
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later.41 Thus the point N  will be the point of intersection of two conic
sections known in position, so the point N  is known. But NL is a
perpendicular, so the point L is known and the straight line NL is known in
position; but as it has <merely> been extended, the straight line LK is
accordingly known in position and AK is equal to KC, so the straight line
AC is known in position, because if we cut off from the axis <a straight
line> equal to AL and if from the point of division we draw a straight line
as an ordinate, it ends at the point C; so the point C is known, so the
straight line AC is known in position. But the straight line LK is known in
position, so the point K is known and the point E is known, so the straight
line EK is known in position and the conic section ABC is known in
position; so the point B is known and the straight line BH is a tangent.

Thus the analysis has led us to draw a tangent from a known point on
the outline of the conic section.

– 17 – The synthesis of this problem is as follows.
Let the conic section be ABC; its axis is AD, its centre E, and the given

straight line F. We wish to draw a straight line that is a tangent to the conic
section, <a line> that ends on the axis and is equal to the straight line F.
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Fig. I.17.1

41 Once the name N has been given to the point of intersection of the parabola and
LK, it needs to be shown that the hyperbola cuts LK at the same point, which follows
immediately in the analysis and does not require discussion.
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We put the ratio of EM to M A equal to the ratio of DA to its latus
rectum; so the straight line MA will be half the homologous straight line.
We put the ratio of the straight line MA to a straight line O equal to the
compound of the ratio of ME to EA and the ratio of the square of F to the
square of E A. We construct through the point A the hyperbola whose
transverse axis is MA and latus rectum O; let the conic section be AN. We
construct through the point E  the parabola whose axis is E A and its
extension and whose latus rectum is AE; it cuts the conic section AN; let it
cut it at the point N; let the conic section be EN. Whether it cuts it or not is
a matter we shall deal with later. We draw from the point N a perpendicular
NL, the point L will thus lie inside the hyperbola ABC, because it lies inside
the conic section AN and the axes of the two sections are <one and the>
same straight line. In the case of the ellipse, the point L lies between the
two points E  and A, because the axis AE is common to the two conic
sections AN  and EN . We put LP equal to L A and we draw PC  as an
ordinate, we join AC and we extend NL; let it meet the straight line AC at
the point K. We join EK; let it cut the outline of the conic section at the
point B. We draw from the point B the straight line BH to be a tangent to
the conic section.

I say that the straight line BH is equal to the straight line F.
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Proof: We draw BI as an ordinate, then the product of LE and EA will
be equal to the square of EI and the product of LE and EA is equal to the
square of NL; so the straight line NL is equal to the straight line EI. But the
ratio of the product of ML and LA to the square of LN is equal to the ratio
of MA to the straight line O which is a ratio compounded from the ratio of
ME to EA and the ratio of the square of F to the square of EA, so the ratio
of the product of ML and LA to the square of EI is compounded from the
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ratio of ME to EA and the ratio of the square of F to the square of EA. But
the ratio of the product of ML and LA to the square of EI is compounded
from the ratio of the product of ML and LA to the square of AK and the
ratio of the square of AK to the square of EI. Now the ratio of the product
of ML and LA to the square of AK is equal to the ratio of ME to EA, so it
comes out that the ratio of the square of AK to the square of EI is equal to
the ratio of the square of F to the square of EA; so the ratio of AK to EI is
equal to the ratio of F to EA. So the ratio of the product of AK and EH to
the product of IE and EH is equal to the ratio of F to EA. But the product of
AK and EH is equal to the product of BH and AE, so the ratio of the product
of BH and AE to the product of IE and EH is equal to the ratio of F to EA.
But the product of IE and EH is the square of EA, so the ratio of <the
product of> BH and AE to the square of AE is equal to the ratio of F to EA.
But the ratio of the product of BH and AE to the square of AE is equal to
the ratio of BH to AE, so the ratio of BH to AE is equal to the ratio of F to
AE; the straight line BH is thus equal to the straight line F. That is what we
wanted to prove.

The discussion of this problem is that the two conic sections AN and
EN cut one another in every case. This is clear for the ellipse since their
concave sides face one another and they have an axis in common. For the
hyperbola, the straight line that does not meet the conic section,42 <a line>
drawn from the centre of the conic section, which is the midpoint of the
straight line MA, <this line that does not meet the hyperbola> cuts the
parabola EN, crosses it and becomes infinitely distant, and the hyperbola
AN comes indefinitely close to the straight line which the conic section EN
meets; so it (the hyperbola) cuts the parabola EN before coming close to the
straight line it does not meet. The two conic sections must necessarily cut
one another, and they cut one another on each side in a single point. The
problem can thus be solved in all cases without <imposing> any condition,
and it has a single solution on each side <of the axis>. That is what we
wanted to prove.

– 18 – If a conic section is known and if we take two points on its axis,
<the problem is> how to draw from these two points two straight lines that
meet one another on the outline of the conic section and are such that the
ratio of one to the other is equal to a given ratio.

42 The line concerned is the asymptote to the hyperbola with axis AM.
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Let ABC be the conic section, DAE its axis, D and E the two points; let
the given ratio be the ratio of I to K. We wish to draw from the two points
D and E two straight lines that meet one another on the outline of the conic
section and are such that the ratio of one to the other is equal to the ratio of
I to K.43
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Fig. I.18

We suppose this is to be done by means of analysis: let the two straight
lines be DB and EB. We make the angle DBH equal to the angle BEH; the
two triangles HBE and DHB are thus similar, so the ratio of DH to HB is
equal to the ratio of BH to HE and equal to the ratio of DB to BE. So the
ratio of DH to HE is equal to the ratio of the square of DH to the square of
HB and is equal to the ratio of the square of DB to the square of BE. So the
ratio of DH to HE is equal to the ratio of the square of I to the square of K,
which is known. So the point H is known and the product of DH and HE is
known. But the product of DH and HE is equal to the square of HB, so the
straight line HB is known. Now the point H is known; so the point B is
known, because the point B lies on the circumference of a known circle
whose centre is H and its semidiameter is known, and B lies on the outline
of the conic section which is known in position.

Analysis has thus resulted in finding a known point that is the point at
which the two straight lines we seek meet one another. Which is what was
required.

43 The circle, the set of points B  such that BD

BE
 = IK has been investigated in

Analysis and Synthesis, Problem 1. The centre of the circle is found here as in Problem
1. The similarity of the two proofs is an important argument in favour of The
Completion being authentic.
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– 19 – The synthesis of this problem is carried out in this manner: let
the conic section be ABC; let the ratio be the ratio of I to K. We put the
ratio of DH to HE equal to the ratio of the square of I to the square of K,
and we put the product of DH and EH equal to the square of HM. Let us
take H as centre and construct a circle with distance HM; let it cut the
outline of the conic section at the point B; let the circle be LBM. We join
DB and BE.

I say that the ratio of DB to BE is equal to the ratio of I to K.
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Proof: Let us join HB, the product of DH and EH is equal to the square
of HB, so the ratio of DH to HB is equal to the ratio of BH to HE, the two
triangles DHB and HBE are thus similar, so the ratio of DB to BE is equal
to the ratio of DH to HB. So the ratio of the square of DB to the square of
BE is equal to the ratio of the square of DH to the square of BH. But the
ratio of the square of DH to the square of HB is equal to the ratio of DH to
HE, which is equal to the ratio of the square of I to the square of K; so the
ratio of DB to BE is equal to the ratio of I to K. That is what we wanted to
prove.

As for the discussion, it will be as follows.
<1> If I is greater than K and if one of the two points is the vertex of

the conic section and the other lies outside the conic section as in the first
figure, then the problem can be solved in all cases, <that is> without
<imposing any> condition, because the point H will lie inside the conic
section and the point M outside the conic section; the first term of the ratio
will thus be on the side exterior to the conic section.
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H DME=A

B

Fig. I.19.2

<2> If one of the two points is the vertex of the conic section and the
other lies inside the conic section, as in the second figure, the problem can
again be solved in all cases because the point H will lie outside the conic
section and the point M will lie inside the conic section; the first term of the
ratio will be on the side of the interior of the conic section.
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Fig. I.19.3

<3> If the two points lie outside the conic section as in the third figure,
the problem can be solved unless we add a condition: the ratio of DE to EA
cannot be smaller than the given ratio, because if we put the ratio of DH to
HE equal to the ratio of the square of I to the square of K, then the point H
will lie inside the conic section, or it will lie on the outline of the conic
section, or it will lie outside the conic section. But the point M always lies
between the two points D and E. If the point H lies inside the conic section
or on the outline of the conic section, it is clear that the problem can be
solved because the centre of the circle will lie inside the conic section, or
on the outline of the conic section, and the circumference of the circle
<accordingly> lies <partly> outside the conic section, so the circle cuts the
conic section. If the point H lies outside the conic section, it thus lies
between the two points E and A, if the first term of the ratio is on the side
of the point D.44 But the ratio of DE to EA is not smaller than the ratio of I
to K, so the ratio of DH to HA is greater than the ratio of I to K, so the ratio

44 That is, if I

K
> 1 and the points are in the order A, E, D.
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of DH to HM is smaller than the ratio of DH to HA, so the straight line HM
is greater than the straight line HA; the circle with centre H and semi-
diameter HM thus cuts the conic section and the problem is solved.
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Fig. I.19.4

<3′> If the first term of the ratio is on the side of the point E, it is the
greater, so the problem cannot be solved in any way because the point H
will lie further away from the conic section than the point D and the point
M will lie between the two points D and E.

<4> If the two points lie inside the conic section as in the fourth figure,
then the discussion of this figure is like the discussion of the third figure,
that is the point H lies outside the conic section or it lies on the outline of
the conic section, or it lies between the two points A and E.45
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Fig. I.19.5

If the point H lies outside the conic section, or on its outline, then the
problem can be solved in all cases, and if the point H lies between the two
points E and A, the discussion of the problem is that the ratio of DE to EA
must not be smaller than the ratio of I to K and the first term of the ratio
will lie inside the conic section.

45 This implies that, as in the case where the points lay outside the conic section,

Ibn al-Haytham supposes that I

K
 > 1 and that the points are in the order A, E, D.
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<5> If the two points are such that one lies outside the conic section
and the other lies inside the conic section as in the fifth figure, then the
discussion of the problem is that the straight line HA must be smaller than
the straight line HM and the first term of the ratio lies on the side interior to
the section; or that HM must not be smaller than the shortest straight line
drawn from the point H to the conic section and the first term of the ratio
lies on the side exterior to the conic section.
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<6> If I and K are equal, then the discussion of this problem is that the
two points must lie inside the conic section, or that one of them must lie
inside the conic section and the other on the outline of the conic section, or
that one of them must lie inside the conic section and the other outside the
conic section and in such a position that the part of the straight line DE
which lies inside the conic section is greater than half DE. It is thus clear
that the problem can be solved in these three ways and this is the discussion
of all the cases of this problem. That is what we wanted to prove.
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Fig. I.19.7*

– 20 – If we have a given conic section and if we take two points on its
axis, <the problem is> to draw from these two points two straight lines
which meet on the outline of the conic section and are such that their sum is
equal to a given straight line.

* The manuscript contains five figures.
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Let the conic section be ABC, the two points D and E and the given
straight line G. We wish to draw from the two points D and E two straight
lines that meet one another on the outline of the conic section and are such
that their sum is equal to the straight line G.
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We suppose this is to be done by means of analysis: let the two straight
lines be DB and EB; we put each <of the straight lines> EH and DI equal to
half of the amount by which G exceeds the straight line DE.46 We put the
product of HI and IK equal to four multiplied by the product of HD and DI.
We construct through the two points H and I the ellipse whose axis is HI
and whose latus rectum is IK; so it passes through the point B as has been
shown in Proposition 52 of the third book. Let this conic section be the
conic section HIB. But the straight line DE is known in magnitude and
position, so the straight line HI is of known magnitude and the product of
HD and DI is of known magnitude; so the straight line IK is of known
magnitude and the conic section HIB is known in position; but the conic
section ABC is known in position, <and> the point B  is thus known.
Analysis has resulted in finding a known point which gives a construction
for the problem.

– 21 – The synthesis of this problem is to cut off from G a straight line
equal to DE; we take half of what remains and we add to DE an amount
that is equal to the two halves, on either end <of the line, that is at> D <and
at> E, and let them (the added halves) be EH and DI; so HI will be equal to
G. We put the product of HI and IK equal to four times the product of HD

46 Ibn al-Haytham is thus assuming G > DE, a condition that is necessary for the
triangle BDE to exist.
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and DI, we construct on the straight line HI the ellipse whose axis is HI and
latus rectum IK; let it cut the conic section ABC at the point B. Whether it
cuts it or does not cut it <is a matter> we shall examine later. We join DB
and BE, thus their sum will be equal to the straight line HI as has been
shown in Proposition 52 of the third book. But HI is equal to the straight
line G, so the straight lines DB and BE have <a sum> equal to the straight
line G. That is what we wanted to prove.

The discussion of the problem is as follows. In every case the straight
line G must be greater than the straight line DE.
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<1> If one of the two points D and E lies outside the conic section and
the other lies inside the conic section, or if one of the two points lies
outside the conic section and the other is at the vertex of the conic section,
or one of the two lies inside the conic section and the other at the vertex of
the conic section, then the problem can be solved in all cases without
imposing any condition, because in all these cases, it happens that one of
the points H, I lies inside the conic section and the other outside the conic
section;47 so the ellipse cuts the given conic section in every case.

H E C D=

K

I

B

A

       

E I

K

A

B

D = C

Fig. I.21.1b Fig. I.21.1c

47 This assumes that the given conic section is a parabola or a hyperbola (see
Mathematical commentary).
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<2> If the two points D and E both lie outside the conic section and if
the straight line that runs between whichever of the two <points> is closer
to the conic section and the vertex of the conic section is smaller than half
the amount by which the straight line G exceeds the straight line DE, then
the problem can again be solved without imposing any condition, because
one of the two endpoints of the axis of the ellipse will lie inside the conic
section and the other endpoint will lie outside. If the straight line that runs
between the vertex of the conic section and whichever of the two points is
the closer to it (the vertex) is not smaller than half the amount by which the
straight line G exceeds the straight line DE, then the problem cannot be
solved because the whole ellipse lies outside the conic section.
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Fig. I.21.2

<3> If the two points D and E both lie inside the conic section ABC and
if the straight line that runs between the vertex of the conic section and
whichever of the two points is closer to it (the vertex) is smaller than half
the amount by which the straight line G exceeds the straight line DE, then
the problem can again be solved without imposing any condition, because
one of the endpoints of the axis of the ellipse lies outside the conic section
and the other inside.
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– 22 – If the two points D and E lie inside the conic section ABC and if
the straight line that runs between the vertex of the conic section and
whichever of the two points is closer to it (the vertex) is not smaller than
half the amount by which the straight line G exceeds the straight line DE,
then the problem cannot be solved unless we impose a condition. This
condition is, if the given conic section is a parabola, that the ratio of the
square of half the diameter of the ellipse to the product of the straight line
that runs between the centre of the ellipse and the vertex of the parabola
and the latus rectum of the parabola is not smaller than the ratio of the
diameter of the ellipse to its latus rectum.

Let us return to the figure. We divide the straight line HI into two equal
parts at the point M; we join HK and we draw MN parallel to IK; let the
latus rectum of the parabola be FA.
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<1> If the ratio of the square of HM to the product of MA and FA is
equal to the ratio of HI to KI, then the ratio of the square of HM to the
product of MA and FA is equal to the ratio of HM to MN. But the ratio of
HM to MN is equal to the ratio of the product of HM and MI to the product
of MN and MI, so the ratio of the square of HM to the product of MN and
MI is equal to the ratio of the square of HM to the product of MA and FA.
The product of MN and MI is thus equal to the product of MA and FA. But
the product of MN and MI is the square of the ordinate drawn from the
point M to the outline of the ellipse and the product of MA and FA is the
square of the ordinate drawn from the point M  to the outline of the
parabola. The ordinate drawn from the point M  to the outline of the
parabola is equal to the ordinate drawn from the point M to the outline of
the ellipse. So the ellipse cuts the parabola at one end of the ordinate drawn
from the point M, which is the perpendicular axis.
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<2> If the ratio of the square of HM to the product of MA and FA is
greater than the ratio of HI to IK, then the ratio of a part of the square of
HM to the product of MA and FA is equal to the ratio of HI to IK; let this
part be the product of HO and OI. So the ratio of the product of HO and OI
to the product of MA and FA is equal to the ratio of HI to IK. We draw the
perpendicular OP; the ratio of the product of HO and OI to the product of
OP and OI is thus equal to the ratio of HI to IK; the ratio of the product of
HO and OI to the product of MA and FA is equal to the ratio of the product
of HO and OI to the product of PO and OI, and the product of PO and OI is
equal to the product of MA and F A. But the product of MA and F A is
greater than the product of OA and FA, so the product of PO and OI is
greater than the product of OA and FA. But the product of PO and OI is the
square of the ordinate drawn from the point O to the outline of the ellipse
and the product of OA and FA is the square of the ordinate drawn from the
point O to the outline of the parabola. Consequently, the ordinate drawn
from the point O to the outline of the ellipse is greater than the ordinate
drawn from the point O to the outline of the parabola. So the parabola cuts
the ordinate of the ellipse drawn from the point O <that is> inside the
ellipse, so it cuts the outline of the ellipse before cutting the ordinate. If it
cuts the outline of the ellipse before cutting the ordinate, then it <also> cuts
it in another point after <cutting> the ordinate.
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Fig. I.22.2

<3> Similarly, I say that the parabola, if it cuts the ellipse at the end of
the perpendicular axis, then it <also> cuts the ellipse in another point
before the end of the perpendicular axis.

Proof: We put the product of AM and MO equal to the square of MI,
then the ratio of AM to MO is equal to the ratio of the square of MI to the
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square of MO. If we invert and compound the ratio, then the ratio of MA to
AO will be equal to the ratio of the square of MI, which is the product of
HM and MI, to the product of HO and OI. But the ratio of MA to AO  is
equal to the ratio of the square of the ordinate drawn from the point M to
the outline of the parabola, to the square of the ordinate drawn from the
point O to the outline of the parabola and the ratio of the product of HM
and MI to the product of HO and OI is equal to the ratio of the square of the
ordinate drawn from the point M to the outline of the ellipse to the square
of the ordinate drawn from the point O to the outline of the ellipse. So the
ratio of the ordinate drawn from the point M to the outline of the ellipse to
the ordinate drawn from the point M to the outline of the parabola is equal
to the ratio of the ordinate drawn from the point O to the outline of the
ellipse to the ordinate drawn from the point O to the outline of the parabola.
But the ordinate drawn from the point M to the outline of the parabola is
equal to the ordinate drawn from the point M to the outline of the ellipse, so
the ordinate drawn from the point O to the outline of the parabola is equal
to the ordinate drawn from the point O to the outline of the ellipse. So the
parabola cuts the ellipse at the endpoint of the ordinate drawn from the
point O.

So if the ratio of the square of HM to the product of MA and FA is not
smaller than the ratio of HI to IK, then the two conic sections cut one
another in all cases and the problem has two solutions in all cases. That is
what we wanted to prove.

– 23 – If the given conic section is a hyperbola, then the discussion of
the problem is that the ratio of the square of the semidiameter of the ellipse
to the product of the straight line that runs between the centre of the ellipse
and the vertex of the hyperbola and the straight line that runs between the
centre of the ellipse and the more distant of the endpoints of the axis of the
hyperbola is not smaller than the ratio compounded from the ratio of the
diameter of the ellipse to its latus rectum and the ratio of the latus rectum
associated with the axis of the hyperbola to its transverse diameter.

Let us return to the figure; we divide the straight line HI into two equal
parts at the point M. Let AG be the axis of the hyperbola, AF its latus rec-
tum. We join HK and GF, we draw MN parallel to IK, we extend it and we
extend GF until the two lines meet at the point U. We put the ratio of SA to
AF equal to the ratio of HI to IK; so the ratio of SA to AG is compounded
from the ratio of HI to IK and the ratio of FA to AG.
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I say that if the ratio of the square of HM to the product of AM and MG
is not smaller than the ratio of SA to AG, then the problem can be solved,
and if the ratio of the square of HM to the product of AM and MG is smaller
than the ratio of SA to AG, then the problem cannot be solved.
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Fig. I.23.148

Proof: <1> If the ratio of the square of HM to the product of AM and
MG is equal to the ratio of SA to AG, then the ratio of the square of HM to
the product of MA and MG is compounded from the ratio of the product of
HM and MI to the product of NM and MI and the ratio of the product of NM
and MI to the product of MA and MG. But the ratio of the product of HM
and MI to the product of NM and MI is equal to the ratio of HI to IK which
is equal to the ratio of SA to AF. So the ratio of the product of NM and MI
to the product of MA and MG is equal to the ratio of FA to AG, which is
equal to the ratio of UM to MG, which is equal to the ratio of the product of
UM and MA to the product of MA and MG. So the ratio of the product of
NM  and MI to the product of M A and MG  is equal to the ratio of the
product of UM and MA to the product of MA and MG and the product of
NM and MI is equal to the product of UM and MA. But the product of NM
and MI is the square of the ordinate drawn from the point M to the outline
of the ellipse, and which is the perpendicular axis, and the product of UM
and MA is the square of the ordinate drawn from the point M to the outline
of the hyperbola. Consequently, the ordinate drawn from the point M to the
outline of the hyperbola is the ordinate drawn from the point M  to the

48 The figure has been divided into two separate parts to distinguish between the
three cases that are considered and to avoid the confusion that might arise from using
the same letters for different points.
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outline of the ellipse, the two conic sections thus meet one another at the
endpoint of the perpendicular axis.

<2> If the ratio of the square of HM to the product of MA and MG is
greater than the ratio of SA to AG, then the ratio of SA to AG is equal to the
ratio of a part of the square of HM to the product of MA and MG; let this
part be the product of HO and OI. Thus the ratio of the product of HO and
OI to the product of MA and MG is equal to the ratio of SA to AG. But the
product of MA and MG is greater than the product of OA and OG, so the
ratio of the product of HO and OI to the product of OA and OG is greater
than the ratio of SA to AG.
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We draw OP  parallel to the straight line IK, then the ratio of the
product of HO and OI to the product of OA and OG is equal to the ratio
compounded from the ratio of the product of HO and OI to the product of
PO and OI and the ratio of the product of PO and OI to the product of OA
and OG. But the ratio of the product of HO and OI to the product of PO
and OI is equal to the ratio of HO to OP, which is equal to the ratio of HI to
IK, which is equal to the ratio of SA to AF. So the ratio of the product of
PO and OI to the product of OA and OG is greater than the ratio of FA to
AG, which is equal to the ratio of UO to OG, which is equal to the ratio of
the product of UO and OA to the product of OA and OG. So the ratio of the
product of PO and OI to the product of OA and OG is greater than the ratio
of the product of UO and OA to the product of OA and OG, and the product
of PO and OI is greater than the product of UO and OA. But the product of
PO and OI is the square of the ordinate drawn from the point O to the
outline of the ellipse and the product of UO and OA is the square of the
ordinate drawn from the point O to the outline of the hyperbola, so the
ordinate drawn from the point O to the outline of the ellipse is greater than
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the ordinate drawn from the point O to the outline of the hyperbola; so the
hyperbola cuts the ordinate drawn from the point O <at a point> inside the
ellipse, and consequently cuts the outline of the ellipse before reaching the
ordinate, and if it cuts the outline of the ellipse before reaching the ordinate
– such as the ordinate drawn from the point O – then the hyperbola cuts the
outline of the ellipse in another point as it exits from the ellipse. Thus, in
this case, the hyperbola cuts the ellipse in two points.

<3> Similarly, I say that if the hyperbola cuts the ellipse at the endpoint
of the perpendicular axis, it cuts it in another point before the end of the
perpendicular axis.

Indeed if we put the ratio of IM to MO equal to the ratio of AM to MI,
then the ratio of AI to IO is equal to the ratio of AM to MI; thus the ratio of
OI to IA is equal to the ratio of IM to M A. But the ratio of IM to M A is
greater than the ratio compounded from the ratio of IM to MA and the ratio
of IM to MG which is the ratio of the square of IM – that is HM – to the
product of MA and MG, which is the ratio of SA to AG. Let us put the ratio
of OJ to JA equal to the ratio of SA to AG. Since the ratio of OM to MI is
equal to the ratio of IM to MA, the ratio of OM to MG is compounded from
the ratio of IM to MA and the ratio of IM to MG, which is the ratio of SA to
AG. So the ratio of OJ to JA is equal to the ratio of OM to MG. Let us put
GT equal to JA; so the ratio of JM to MT will be equal to the ratio of SA to
AG, which is equal to the ratio of the square of IM to the product of MA
and MG. But the ratio of JM to MT is equal to the ratio of the square of JM
to the product of JM  and MT. So the ratio of the square of JM to the
product of JM and MT is equal to the ratio of the square of IM to the
product of MA and MG. But the product of JM and MT is the amount by
which the product of MA and MG exceeds the product of JA and JG; so the
ratio of the square of IM to the product of MA and MG is equal to the ratio
of the square of JM to the product of JM and MT and is equal to the ratio of
the remainder of the square of IM, which is the product of HJ and JI, to the
remainder of the product of MA and MG, which is the product of JA and
JG, so the ratio of the square of HM, which is equal to the product of HM
and MI, to the product of MA and MG, is equal to the ratio of the product of
HJ and JI to the product of JA and JG. The ratio of the square of the
ordinate drawn from the point M to the outline of the ellipse to the square
of the ordinate drawn from the point J to the outline of the ellipse is
accordingly equal to the ratio of the product of MA and MG to the product
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of JA and JG, which is the ratio of the square of the ordinate drawn from
the point M to the outline of the hyperbola to the square of the ordinate
drawn from the point J to the outline of the hyperbola. The ratio of the two
ordinates of the ellipse drawn from the two points M and J, <their ratio>
one to another, is thus equal to the ratio of the two ordinates of the
hyperbola drawn from the two points M and J, <their ratio> one to another.
But the ordinate of the ellipse drawn from the point M  is equal to the
ordinate of the hyperbola drawn from the point M, so the ordinate of the
ellipse drawn from the point J is equal to the ordinate of the hyperbola
drawn from the point J. The two conic sections accordingly meet one
another on the ordinate drawn from the point J.

It is thus clear from what we have shown that, if the ratio of the square
of HM to the product of MA and MG is not smaller than the ratio of SA to
AG, then the two conic sections meet one another in two points, and if the
two conic sections meet one another in two points, then the problem has
two solutions. That is what we wanted to prove.

If the given conic section is an ellipse, the method of solving the
problem is derived from the method we have set out for the hyperbola and
the discussion is the same as for the hyperbola, without needing to add or
remove anything.49

– 24 – The conic section ABC is a hyperbola whose centre is H. We
wish to find a diameter of the conic section that, together with its latus
rectum, encloses a known area.

We suppose this is to be done by means of analysis: let the required
diameter be BP and the known area the square of EG. The product of BP
and its latus rectum is thus equal to the square of EG, and EG is the right

49 See Mathematical commentary.
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diameter conjugate to the diameter BP.50 We put AI as the latus rectum of
the axis <AD>; the product of AD and DI is thus the difference between the
squares of the two axes.

B

A H DI

PL

E G

C

N

Fig. I.24

At the point E we construct the straight line EL perpendicular to EG
and we put its square equal to the product of AD and DI. We join LG and
we put PN as the latus rectum of the diameter BP, then the product of BP
and PN is equal to the square of EG and the product of PB and BN is the
difference of the squares of the two conjugate diameters; but the difference
between the squares of any pair of conjugate diameters of the hyperbola, is
the difference between the squares of its two axes, as has been shown in
Proposition 13 of the seventh book. So the product of BP and BN is equal
to the square of EL, and the square of BP is equal to the square of LG. But
LG is known, so the diameter PB is known, HB is known and the point B is
known. But the product of BP and PN is equal to the square of EG, which
is known; so the straight line PN is known and it is the latus rectum of the
diameter BP. That is what we wanted to find.

50 In the case of the hyperbola, the diameter Δ conjugate to a transverse diameter D
is called a right diameter (see Les Coniques d’Apollonius de Perge, transl. P. Ver Eecke,
Book VII.6, note 4, p. 557). From Book I, Second Definitions, def. 3, we have
Δ 2 = D · a, if a is the latus rectum of D. See our edition, Les Coniques, tome 1.1, p. 255,
22–25; tome 1.2, p. 8–7 and tome 1.4, p. 364.
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– 25 – The synthesis of this problem is as follows:
Let ABC be the hyperbola with axis AD and latus rectum AI and let

there be a given straight line EG. We wish to find the diameter of the conic
section that, together with the latus rectum, encloses an area equal to the
square of EG . We construct at the point E  of the straight line EG the
perpendicular EL; we put the square of EL equal to the product of AD and
DI and we join LG. The square of LG is thus equal to <the sum of> the
squares of GE and EL, the square of LG thus exceeds the square of EG by
the area <of the rectangle> enclosed by the two straight lines AD and DI.
We put HK equal to half GL. We take H as centre and we construct with
distance HK an arc of a circle – let it be KB; let it cut the outline of the
conic section at the point B. We join HB, we extend it on the side of H as
far as the <point> P and we put PH equal to HB, PB is thus equal to GL.
We put the product of BP and PN equal to the square of EG, there remains
the product of PB and BN, <which is> equal to the square of EL; so the
product of PB and BN is the difference between the square of BP and the
square of the right diameter which is conjugate to it. So the straight line PN
is the latus rectum of the diameter BP. But the product of BP and PN is
equal to the square of EG. That is what we wanted to prove.
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The discussion of this problem is that the square of EG must be greater
than the area enclosed by the two straight lines DA and AI. From this it then
follows that the square of GL is greater than the square of DA, so that half
GL is greater than HA; so the point K lies inside the conic section, the arc
KB cuts the outline of the conic section in every case and the problem can
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be solved in every case, with the condition for the magnitude of EG, that is
that its square exceeds the product of DA and AI, which is the square of the
right axis. If the axis <AD> is smaller than its latus rectum, then each of the
diameters is smaller than its latus rectum, as has been shown in Proposition
22 of the seventh book. But any diameter is greater than the axis, so the
straight line EG must be greater than the perpendicular axis. We cut off
from the straight line EG a straight line such that its square is equal to the
amount by which the square of GE exceeds the product of AD and DI,51 let
it be GO. We put the product of MG and GO equal to the square of GE; so
the ratio of MG to GO is equal to the ratio of the square of EG to the square
of GO, which is the amount by which the square of EG exceeds the product
of AD and DI; so the ratio of GM to MO is equal to the ratio of the square
of EG to the product of AD and DI, so GO is the diameter and GM is the
latus rectum, and the construction is completed as before.

The discussion of this problem is that GO must be greater than the
axis.52
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If the axis is equal to its latus rectum, then every diameter is equal to
its latus rectum, as has been shown in Proposition 23 of the seventh book;
EG is divided into two equal parts, and <each> half <of it> is half the
diameter. The discussion of the problem is that EG is greater than the axis.

This idea, that is that the product of the transverse diameter and its
latus rectum is known,53 is possible for the ellipse; the method for

51 This assumes that GE2 > AD · DI.
52 GO > AD ⇔ GE2 > AD · AI (see Mathematical commentary).
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obtaining it is easier than <the one> for the hyperbola, because the sum of
the squares of any pair of conjugate diameters of the ellipse is equal to the
sum of the squares of the two axes – this has been shown in Proposition 12
of Book VII. So if the product of the diameter and its latus rectum is
known or if the square of the right diameter is known, and the sum of the
two diameters being known, because the two axes are known, then the
result is that the square of the transverse diameter is known, so it is possible
and easy to find it.

The discussion of this problem is that the straight line EG must be
greater than the minor axis.54

– 26 – The hyperbola ABC is known, <and> has axis AD, and the
straight line EG is known. We wish to find a diameter of this conic section
that, <when> added to its latus rectum, is equal to the straight line EG.
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We suppose this is to be done by means of analysis: let the diameter be
the straight line BHI and let its latus rectum be IK, then BK is known. We
put IL equal to IK; the product of IB and BL will then be the difference
between the squares of the two conjugate diameters, because the product of
BI and IK is equal to the square of the conjugate diameter. So the product
of IB and BL is known, because it is equal to the difference between the
squares of the two conjugate axes, as has been shown in Proposition 13 of

53 He means that this product is equal to the square of the conjugate diameter.
54 The length of the straight line EG must be intermediate between those of the

minor and major axes, a property shared by all diameters of the ellipse.
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Book VII. We put BM equal to B L, then KM  will be twice IB. But the
product of IB and BL is known, so the product of KM and BM is known,
because it is twice the product of IB and BL. But KB is known, so the
straight line KM is known, so half of it is known, so IB is known, HB is
known and the point B is then known.

– 27 – The synthesis of this problem is as follows:
Let the conic section be ABC with axis AD , with centre H and the

known straight line EG. We wish to find a diameter of the conic section
that, <when> added to its latus rectum, is equal to the straight line EG.
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We put AI equal to the latus rectum of the axis, we put the product of
EK and KG55 equal to twice the product of AD and DI, we put HM equal to
a quarter of EK, we take H as centre and with distance HM we construct an
arc of a circle; let it be MB. We join HB, we extend HB on both sides and
we put BP equal to EG.

I say that BP is equal to the diameter added to the latus rectum.
Proof: we cut off BN equal to GK, so PN is equal to EK. We cut off HU

equal to HB and we put BL equal to BN, so we are left with LU <which is>
equal to UP. So the product of UB and BL is equal to half the product of
PN and NB, which is equal to the product of EK and KG, which is twice the
product of AD and DI, so the product of UB and BL is equal to the product
of AD and DI; so the product of UB and BL is the difference between the
square of UB and the square of the right diameter that is conjugate to it, so

55 In this part of his work, Ibn al-Haytham assumes that AI < AD and thus takes K
on EG produced, on the side of G.
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the product of BU and UL is the square of the diameter conjugate to the
diameter UB, so the straight line UL is the latus rectum of the diameter UB.
But UL is equal to UP, so UP is the latus rectum of the diameter UB, so the
straight line BP is the diameter BU added to its latus rectum. But BP is
equal to EG, so the diameter BU added to its latus rectum is equal to the
straight line EG. That is what we wanted to construct.

The discussion of this problem is that the straight line EG must be
greater than the sum of the axis and its latus rectum, because every
diameter of the hyperbola is greater than the transverse axis and its latus
rectum is greater than the latus rectum of the axis. That every diameter is
greater than the axis is something that is obvious. That the latus rectum of
the diameter is greater than the latus rectum of the axis is something that
follows because it has been proved in Proposition 21 of Book VII that the
ratio of any diameter of the hyperbola to its latus rectum is smaller than the
ratio of the axis to its latus rectum.

If the axis is smaller than its latus rectum, we divide EG into two parts
at the point U′ so that the product of EU′ and U′G is equal to twice the
product of AD  and DI . Let us put HM  equal to a quarter of EU′, the
construction is completed as before: we shall have PU equal to UN and UN
will be the latus rectum.

If the axis is equal to the latus rectum, we divide EG into two equal
parts, and one half of it will be the diameter, because if the axis is equal to
its latus rectum, then every diameter of the conic section is equal to its
latus rectum.

The discussion of this problem in all cases is that EG should be greater
than the sum of the axis and its latus rectum.

<27a> This idea, that is that the sum of the transverse diameter and its
latus rectum is equal to a given straight line, is possible and easy <to
verify> for the ellipse. Indeed, the sum of the squares of any two conjugate
diameters of the ellipse is equal to the sum of the squares of the two axes.
But the squares of the two axes are known, so <the sum> of the square of
the transverse diameter and its product with its latus rectum is known, so
the product of the sum of the transverse diameter and its latus rectum and
the transverse diameter is known. So if the product of the sum of the
transverse diameter and its latus rectum and the transverse diameter is
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known, then the transverse diameter is known, and it will thus be possible
and easy to find it.

The discussion of this problem is that the known straight line should be
greater than the sum of the greater axis and its latus rectum <and smaller
than that same sum multiplied by the square root of the ratio of the major
axis to the latus rectum>.56

<27b> We can also easily show how to find a diameter of the
hyperbola whose ratio to its latus rectum is a known ratio.

Indeed, the difference between the squares of two conjugate diameters
in any hyperbola is equal to the difference between the squares of its two
axes, as has been shown in Proposition 13 of Book VII. So if the conic
section is known, its two axes are known and the difference between their
squares is known, so the difference between the square of the diameter and
its product with its latus rectum is known, because the product of the
diameter and the latus rectum is equal to the square of the right diameter
that is conjugate to it. But the difference between the square of the diameter
and its product with its latus rectum is the product of the diameter and the
amount by which the diameter exceeds its latus rectum. If the ratio of the
transverse diameter to its latus rectum is a known ratio, then the ratio of the
transverse diameter to the amount by which that diameter exceeds its latus
rectum is a known ratio. But its product with this excess amount is known,
so the transverse diameter will be known; consequently it is possible and
easy to find it.

<27c> Similarly for the ellipse, we <can> easily show how to find a
diameter whose ratio to its latus rectum is a known ratio.

Indeed the sum of the squares of any two conjugate diameters of the
ellipse is known, because it is equal to <the sum> of the two squares of its
two axes, as has been proved in Proposition 12 of Book VII. So <the sum>
of the square of the transverse diameter and the diameter’s product with its
latus rectum is known. So if the ratio of the transverse diameter to its latus
rectum is known and if its product with it, plus the square of the transverse
diameter, is known, then each of them is known. Thus the diameter whose
ratio to its latus rectum is known, is <itself> known, <and> in consequence
it is possible and easy to find it.

56 This passage at the end of the problem is missing in the manuscript (see
Mathematical commentary).
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<28> Let there be a known parabola AB, with known axis AD, the point
D on its axis outside the conic section and a given straight line F. We wish
to draw from the point D a straight line to cut the conic section in two
points and such that the part of it that lies inside the conic section is equal
to the given straight line F.
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We suppose this is to be done by means of analysis: let there be a
straight line DBC , let BC be equal to the straight line F. We draw the
straight line AE parallel to the straight line DBC , we draw EG  as an
ordinate and we divide AE into two equal parts at the point I. We draw
from the point I a straight line parallel to the axis, let it be IKN; thus it will
be a diameter of the conic section <and the tangent at the point N will be
parallel to the straight line AE>, as has been shown in Proposition 46 of
Book I.57 We draw MN as an ordinate, then AM is equal to NI because the
tangent drawn from the point N cuts off from the axis outside the conic
section a straight line equal to the straight line AM, as has been shown in
Proposition 33 of Book I.58 This straight line cut off by the tangent is equal
to the straight line NI because the tangent is parallel to the straight line AE,
so the straight line AM is equal to the straight line NI; but KI is equal to
AD. We cut off AH equal to AD, there remains HM equal to NK. We put AS
equal to the latus rectum of the axis, we have the product of SG and GA
equal to the square of AE, as has been shown in Proposition 1 of Book VII.
We draw the perpendicular IO, so OM is equal to IN; but IN is equal to AM,

57 The stated property can be deduced from Proposition I.46.
58 Propositions 33 and 35 of Book I are converses of one another; the proposition

used here is 35.
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so OM is equal to MA, so OA is twice AM. But GA is twice AO, so GA is
four times AM, so GA  is four times NI. So the product of SG and NI is
equal to the square of AI, so S G is the latus rectum associated with the
diameter NI; but AI is equal to DK, so the product of SG and NI is equal to
the square of DK. But since NI is a diameter and BC is parallel to AE, NI
divides BC into two equal parts, the product of CD and DB, plus the square
of BK, is thus equal to the square of DK, so the product of SG and NI is
equal to the product of CD and DB, plus the square of BK. But the product
of SG and NK is equal to the square of BK, because NK is a diameter and
SG is its latus rectum, so we are left with the product of SG and IK equal to
the product of CD and DB; so the product of SG and AH is equal to the
product of CD and DB. But the product of SG and AM is equal to the
square of DK, so we are left with the product of SG and HM equal to the
square of BK. We put AL equal to four times AH, so we have LG equal to
four times HM. But the product of SG and HM is equal to the square of BK,
so the product of SG and GL is equal to the square of BC which is known.
But AH is known, so AL is known and AS is known, so SL is known and the
product of SG and GL is known, so the point G is known. But GE is <a>
perpendicular, so it is known in position. But the conic section is known in
position, so the point E is known and consequently the straight line AE is
known in magnitude and in position; so half of it is known and the point I
is thus known. The straight line IK is known in position and in magnitude,
so the point K is known, so the straight line DK is known in position and in
magnitude; but <the straight line> BK is known in magnitude, so the point
B is known.

– 29 – The synthesis of this problem is carried out as follows.
We put AL equal to four times AD, we put AS as the latus rectum of the

axis and we put the product of SG and GL equal to the square of F. We
draw the perpendicular GE, we join AE and we divide it into two equal
parts at the point I. We draw IN parallel to the axis, so IN will be a diameter
of the conic section. We draw from the point D a straight line parallel to the
straight line AE, then it cuts the conic section in every case, because it
makes an acute angle with the axis on the side towards the conic section.
But since it cuts the conic section and cuts the axis, it accordingly cuts the
conic section in two points, because any straight line that cuts the conic
section and that cuts one of the diameters of the conic section, cuts the
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conic section in two points, as has been shown in Proposition 27 of Book I;
let the straight line be DBC.

I say that BC is equal to F.
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Proof: The straight line BC cuts the conic section in two points and it is
parallel to the straight line AE, so the diameter IN cuts it into two equal
parts; let it cut it at the point K. We show, as we showed in the analysis,
that the straight line AG is four times the straight line IN. But the product of
SG and GA is equal to the square of AE, so the product of SG and NI is
equal to the square of AI. But the straight line NI is a diameter, so the
straight line SG is the latus rectum of the diameter NI. The product of SG
and NK is equal to the square of BK. But AG is four times NI and AL is four
times IK, because IK is equal to DA , so LG  is four times NK  and the
product of SG and GL is equal to the square of BC. But the product of SG
and GL is equal to the square of F, so the straight line BC is equal to the
straight line F. That is what we wanted to construct.

In this problem there is no need for a discussion because the product of
SG and GL can be equal to the square of a known straight line, whatever
<the magnitude of> that straight line is.

– 30 – The conic section ABC is a known hyperbola, with axis AD and
centre E; a straight line F is given and a point H is given on the axis of the
conic section between its centre and its vertex. We wish to draw from the
point H a straight line that cuts the conic section in two points and <is>
such that the part of the straight line that falls inside the conic section is
equal to the given straight line F.
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We suppose this is to be done by means of analysis: let it (the required
line) be the straight line HBC; so BC will be equal to the given straight line
F. We divide BC into two equal parts at the point K, we join EK and we
extend it. We draw from the point A a straight line parallel to the straight
line HK, so it meets the conic section; let it meet it at the point N and let it
cut EK at the point O; so AO will be equal to half of AN. We draw the
straight lines NP, OS, KJ, BM as ordinates. So the two triangles AOS, KHJ
are similar, the ratio of OS to KJ is equal to the ratio of SA to JH and is
equal to the ratio of OA to KH. But the ratio of OA to KH is equal to the
ratio of AE to EH, which is a known ratio, because each of the straight lines
AE and HE is known. So the ratio of OS to KJ is known, the ratio of SA to
JH is known and is equal to the ratio of AE to EH. So the ratio of SE to EJ
is known, and the ratio of the product of ES and SA to the square of SO is
equal to the ratio of the product of EJ and JH to the square of JK. But PA is
twice AS, DA is twice AE and PN is twice SO, so the ratio of the product of
ES and SA to the square of SO is equal to the ratio of the product of DP and
PA to the square of PN, so the ratio of the product of EJ and JH to the
square of JK is equal to the ratio of the product of DP and PA to the square
of PN, which is equal to the ratio of DA to its latus rectum, which is a
known ratio, so the ratio of the product of EJ and JH to the square of JK is
equal to the ratio of DA to its latus rectum. We draw from the point H a
tangent to the conic section; let it be HG. We draw GI as an ordinate, so it
cuts the straight line HC; let it cut it at the point L. Since the point H is on
the axis, the tangent drawn from the point H on the other branch of the
conic section is equal to the straight line HG, the straight line that joins the
two points of contact is perpendicular to the axis and it is an ordinate; so
the straight line GI is the one that ends at the point of contact on the other
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side. So the ratio of CH to HB is equal to the ratio of CL to LB, as has been
shown in Proposition 37 of Book III. But CH is greater than HB, so CL is
greater than LB, so the point L lies between the two points B and K. But
since GH is a tangent and GI is an ordinate, the ratio of the product of EI
and IH to the square of IG is equal to the ratio of AD to its latus rectum, as
has been shown in Proposition 37 of Book I. So the ratio of the product of
EI and IH to the square of IG is equal to the ratio of the product of EJ and
JH to the square of JK. The hyperbola with axis EH and latus rectum a
straight line such that the ratio of EH to that straight line is equal to the
ratio of AD to its latus rectum, thus passes through the points H, G, K; let
this conic section be the conic section HGK. We put the ratio of EU to HU
equal to the ratio of AD to its latus rectum, which is the ratio of the axis EH
to its latus rectum; so the point U will be known and U H will be the
straight line with a homologous ratio, as has been shown in the second
proposition of the seventh book. So the ratio of the product of UJ and JH to
the square of HK is equal to the ratio of UE to EH, as has been shown in
the second proposition of the seventh book. But the ratio of UE to EH is
known, so the ratio of the product of UJ and JH to the square of H K is
known. Now, since the ratio of CH to HB is equal to the ratio of CL to LB,
the ratio of CH plus HB  to HB  is equal to the ratio of CB  to B L and,
similarly, half of one is equal to half of the other.59 So the ratio of KH to
HB is equal to the ratio of KB to BL, so the ratio of HK to KB is equal to the
ratio of BK to KL and consequently the product of HK and KL is equal to
the square of KB. The product of HJ and JI is equal to the square of JM.
But the ratio of the square of HK to the square of KB is equal to the ratio of
HJ to the square of JM, and the ratio of the square of HJ to the square of
JM is equal to the ratio of HJ to JI, so the ratio of the square of HK to the
square of KB is equal to the ratio of HJ to JI. Now the ratio of HJ to JI is
equal to the ratio of the product of UJ and JH to the product of UJ and JI,
so the ratio of the product of UJ and JH to the product of UJ and JI is equal
to the ratio of the square of HK to the square of KB and the ratio of the
product of UJ and JH to the square of HK is equal to the ratio of the
product of UJ and JI to the square of KB. But the ratio of the product of UJ
and JH to the square of HK is known, because it is equal to the ratio of UE
to EH, so the ratio of the product of UJ and IJ to the square of KB is a
known ratio. But KB is known because it is half of F, so the product of UJ

59 Lit.: and their halves equally.
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and JI is known; but the straight line UI is known, so the point J is known,
the straight line JK is known in position and the conic section HK is known
in position, so the point K is known in position, the straight line HK is thus
known in position, so the points B and C are known and the straight line
BH is thus known. That is what we wanted to find.

<31> The synthesis of this problem is carried out as follows.
N

O

C

G
K

P S J I M A H E D

B

L

U

F

T

Q

Fig. I.31

We draw from the point H a tangent to the conic section ABC; let it be
HG. We draw GI as an ordinate, then the ratio of the product of EI and IH
to the square of IG is equal to the ratio of the diameter AD to its latus
rectum, as has been shown in Proposition 37 of Book I. We construct
through the point H a hyperbola with axis EH and as latus rectum a straight
line such that the ratio of EH to that straight line is equal to the ratio of AD
to its latus rectum; let the conic section be HK. The conic section HK
passes through the point G, because the ratio of the product of EI and IH to
the square of IG is equal to the ratio of the diameter EH to its latus rectum.
So the conic section HK cuts the conic section ABC at the point G. We put
the ratio of EU to UH equal to the ratio of the diameter EH to its latus
rectum; the straight line UH is the straight line with a homologous ratio.
We put the ratio of the square of T to a quarter of the square of F equal to
the ratio of EU to EH and we put the product of UJ and JI equal to the
square of T. We draw from the point J a straight line as an ordinate to the
outline of the conic section HK; let it be JK. So the point K will lie inside
the conic section ABC, because the point G lies on the outline of ABC. We
join HK; let it cut the straight line GI at the point L. So the ratio of the
product of UJ and JH to the square of HK is equal to the ratio of UE to EH,
as has been shown in Proposition 2 of Book VII; so it is equal to the ratio
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of the square of T to a quarter of the square of F, so the ratio of the product
of UJ and JH to the square of HK is equal to the ratio of the product of UJ
and JI to a quarter of the square of F. We put the product of HJ and JI
equal to the square of JM and we draw MB as an ordinate;60 so the product
of HK and KL is equal to the square of KB . But since the ratio of the
product of UJ and JI to a quarter of the square of F is equal to the ratio of
the product of UJ and JH to the square of HK, then the ratio of the product
of UJ and JH to the product of UJ and JI is equal to the ratio of the square
of HK to a quarter of the square of F. So the ratio of HJ to JI is equal to the
ratio of the square of HK to a quarter of the square of F. But the ratio of HJ
to JI is equal to the ratio of the square of HJ to the square of JM, so the
ratio of the square of HK to a quarter of the square of F is equal to the ratio
of the square of HJ to the square of JM, which is equal to the ratio of the
square of HK to the square of KB; so the ratio of the square of HK to the
square of KB is equal to the ratio of the square of HK to a quarter of the
square of F, the square of KB is a quarter of the square of F and the straight
line KB is half of the straight line F.

We draw from the point A a straight line parallel to the straight line
HK; let it meet the straight line EK at the point O. We extend AO, we put
ON equal to OA and we draw NP and OS as ordinates, they will be parallel
to the straight line KJ. So triangle AOS will be similar to triangle HKJ, so
the ratio of OS to KJ will be equal to the ratio of SA to JH and it is equal to
the ratio of OA to KH. But the ratio of OA to KH is equal to the ratio of AE
to EH, so the ratio of SE to EJ is equal to the ratio of SA to JH and to the
ratio of OS to KJ. But the ratio of AS to SO is equal to the ratio of HJ to JK,
so the ratio of the product of ES and SA to the square of SO is equal to the
ratio of the product of EJ and JH to the square of JK. But the ratio of the
product of EJ and JH to the square of JK is equal to the ratio of EH to its
latus rectum, which is equal to the ratio of AD to its latus rectum, so the
ratio of the product of ES and SA to the square of SO is equal to the ratio of
AD to its latus rectum. But AP is twice AS and DA is twice EA, so DP is
twice ES. But NP is twice OS, so the ratio of the product of DP and PA to
the square of PN is equal to the ratio of AD to its latus rectum, so the point
N lies on the outline of the conic section ABC. But since the point K lies
inside the conic section ABC, and it lies on the diameter EO and the straight
line HK is parallel to the straight line AN, which the diameter EO divides

60 The point B lies on HK. It will be shown later that it also lies on the conic
section.
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into two equal parts, the straight line HK, if extended, cuts the conic section
ABC in two points and is divided into two equal parts by the straight line
EK. Let us extend the straight line HK; let it cut the conic section at the
point C.

I say that the point B is the second point on the outline of the conic
section ABC.

If it is not so, let C and Q be the two points. Then CK will be equal to
KQ. But since HG is a tangent, the ratio of CH to HQ will be equal to the
ratio of CL to LQ; so the ratio of CH plus HQ to HQ is equal to the ratio of
CQ to QL and the ratio of half of one of them to half the other is also
equal,61 so the ratio of KH to HQ is equal to the ratio of QK to QL and the
product of HK and KL is equal to the square of KQ.62

Now it has been shown that the product of HK and KL is equal to the
square of KB, so KB is equal to KQ, which is impossible. So the point Q
does not lie on the outline of the conic section ABC and no point other than
the point B  lies on the outline of the conic section ABC. But EK  is a
diameter, and accordingly cuts the straight line BC into two equal parts, so
BK is equal to KC; now BK is half the straight line F, so the straight line
BC is equal to the given straight line F and BC lies inside the conic section
ABC. That is what we wanted to prove.

This problem does not require a discussion,63 because the straight line
drawn from the point A, the endpoint of the axis, and which is parallel to
the straight line that does not meet the conic section, does not meet the
conic section in another point; this is in fact shown from Proposition 13 of
the second book. Any straight line drawn from the point H between the
straight line HG, the tangent, and the straight line drawn from the vertex of
the conic section parallel to the straight line that does not meet the conic
section, cuts the conic section in two points, because it can cut the two
straight lines that do not meet the conic section. These straight lines are
infinitely many and the parts of these straight lines that fall inside the conic
section, those that become more distant from the tangent, increase
indefinitely and for those of the straight lines that become closer to the

61 Lit.: and the ratio of half equally.
62 HK

HQ

QK

QL
=  is written HK

HK KQ

QK

KQ KL−
=

−
, hence KQ2 = KL · KH.

63 Ibn al-Haytham means that the problem can be solved without imposing any
conditions regarding the given line F; but he rightly provides a discussion to prove this,
that is he investigates whether a solution exists.
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tangent, (the parts that fall inside the conic section) decrease indefinitely.
So for any straight line <that is> among the straight lines of finite
magnitude, there is a straight line equal to it, which can fall inside the conic
section.

So if, to find the straight line from the point H, we continue to employ
the method we have indicated, then the part of the straight line that falls
inside the conic section will be equal to the given straight line. The
problem can be solved in all cases and there is no need for a discussion.
That is what we wanted to prove.

Thus we have completed what was written by al-Shaykh Abº ‘Alî al-
Îasan ibn al-Îasan ibn al-Haytham on the completion of the work the
Conics.

Thanks be rendered to God alone. May the blessing of God be upon our
Lord MuÌammad, his family and his companions.
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Appendix*

If from a known angle we wish to take one third, we consider a
hyperbola whose latus rectum is equal to its transverse diameter, <and> the
angle of whose ordinates is equal to the known angle; let the conic section
be AB and the transverse diameter BC. We construct in the conic section a
straight line equal to the straight line BC, let the straight line be BA, and let
us draw the straight line AD as an ordinate.

I say that the angle DAB is the known angle.

D
B

C

A

Fig. I.32

Proof: The ratio of the product of CD and DB to the square of the
straight line AD is equal to the ratio of the transverse <diameter> to the
<latus> rectum; but we have supposed the transverse <diameter> to be
equal to the <latus> rectum, so the product of CD and DB is equal to the
square of AD, which is why the triangle ADB will be similar to the triangle
ADC; the angle DAB is thus equal to the angle C and the angle ABD is
equal to twice the angle C, because AB is equal to BC, so the angle ABD is
equal to twice the angle DAB. But since <each of the> two external angles
of any triangle is equal to <the sum> of the two internal <angles> that are
respectively opposite them, so for that reason the angle DAB will be one
third of the given angle. That is what we wanted to prove.

* This appendix is anonymous and appears in the manuscript following the treatise
of Ibn al-Haytham.



CHAPTER II

CORRECTING THE BBBBAAAANNNNªªªª    MMMMªªªªSSSSÆÆÆÆ’S    LEMMA
FOR APOLLONIUS’ CONICS

2.1. INTRODUCTION

In the history of Apollonius’ Conics, as in that of research on conic
sections, the part played by the Banº Mºsæ was crucial. They were the ones
who had searched for Greek manuscripts, they were also the ones who had
employed the translators who made Arabic versions of the seven books of the
Conics that were found; they were also the ones who had supervised the
process of translation; finally, they were the ones who, together with their
pupils, reactivated research on conics, which had lain dormant for several
centuries. One might point to the works on conics by the youngest brother, al-
Îasan, and those of their pupil, Thæbit ibn Qurra.1 The tradition on which they
set their stamp is certainly the one to which Ibn al-Haytham belongs, as we
have seen in the first two volumes. That is to say, it would have been
impossible for him to ignore what the Banº Mºsæ had written on conics.
Indeed, he had good reasons for being interested in their work, first as a
student of the theory of conics, second as an expert and serious-minded reader
of the Conics and finally as one engaged in making a copy of the text.

As an aid to the study of the Conics, the Banº Mºsæ had composed an
essay that supplied the nine lemmas required for Apollonius’ proofs.2

Accordingly, this essay was, understandably, intended to be read before
reading the Conics and had therefore accompanied the work. The ninth (and
last) lemma did not satisfy Ibn al-Haytham, even though it is in accord with
the cases considered in the Conics. Ibn al-Haytham thought that, in the form in
which it was stated, this lemma was not as general as the Banº Mºsæ had

1 R. Rashed, Founding Figures and Commentators in Arabic Mathematics. A history
of Arabic sciences and mathematics, vol. 1, Culture and Civilization in the Middle East,
London, 2012, Chapter II.

2 See Apollonius: Les Coniques, tome 1.1: Livre I, commentaire historique et mathé-
matique, édition et traduction du texte arabe par R. Rashed, Berlin/New York, 2008.



248 CHAPTER II: CORRECTING THE BANª MªSÆ’S LEMMA

believed, and he also thought that an ‘oversight’ in the course of the proof
might have reinforced this misunderstanding. Ibn al-Haytham’s short treatise
has the specific aim of correcting the defects in the Banº Mºsæ’s essay. It thus
belongs to a type of writing that Ibn al-Haytham enjoyed: compositions in
which he discusses and corrects his illustrious predecessors: Euclid, Ptolemy,
Ibn Sinæn, and on this occasion the Banº Mºsæ. All the same, in this last case
the task is a rather modest one compared with, say, what he undertook in
regard to Ptolemy: we are concerned only with a single technical problem with
a proof that does not raise any crucial theoretical questions. After all, the
importance of the Banº Mºsæ’s essay itself largely derives from its connection
with the Conics. That was also the reason that made it of interest to Ibn al-
Haytham. The question underlying Ibn al-Haytham’s treatise is how to correct
the Banº Mºsæ’s procedure so as to achieve the desired degree of generality.
The structure of his work is designed with that end in mind: he begins by
setting out the lemma in question and pointing out the difficulty in it; he then
returns to the actual problem proposed in the lemma and makes an exhaustive
examination of all possible cases. Out of the ten possible cases, he shows that
the lemma is true in seven. It is these cases that occur in the Conics, so the
Banº Mºsæ’s text, in the state in which Ibn al-Haytham found it, achieves
what they had intended. On the other hand, for the three remaining cases – the
first, sixth and tenth – the lemma is not always true. But since the tenth
reduces to the sixth, we only have two cases to discuss. Ibn al-Haytham
accordingly proposes to add a condition to ensure that the lemma always holds
true. That is, with this supplementary condition, we obtain the necessary and
sufficient conditions for the lemma to always be true. Ibn al-Haytham does not
prove the truth of this statement as such. He had established the nature of the
seven cases and of the first and sixth cases. That may be why he did not go
back to give a general proof. Before we address that possibility, let us first go
through Ibn al-Haytham’s text point by point.

2.2. MATHEMATICAL COMMENTARY

Lemma of the Banº Mºsæ: Let there be two triangles ABC and DEF, a
point G on BC  and a point H on EF such that ˆ ˆA D= , AGB DHEˆ ˆ=  and
BG CG

GA
HE HF

HD2 2

⋅ = ⋅ , then triangles ABC and DEF are similar.
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In fact, the lemma will be true, and the triangles proved similar, if we
show that the initial assumptions imply ˆ ˆE B= . What Ibn al-Haytham will
show is, precisely, that the two triangles are not always similar. Let us return
to the Banº Mºsæ’s proof in its original form, as described by Ibn al-Haytham.

A

BC

D

E

G

H

I

F K

L

Fig. 2.2.1

Let us assume that the two triangles are not similar, and ˆ ˆE B≠ . Let I be a
point on DH such that HEI Bˆ ˆ= , and K a point on EF such that EIK A Dˆ ˆ ˆ= = ;
then triangles EIK and ABC are similar, and so are triangles EIH and BAG. We
have

EI

AB
= IK

AC
= KE

CB
  and  

EI

AB
= IH

AG
= HE

BG
,

hence
IH

AG
= HE

BG
= KE

CB
= KE − HE

CB − BG
= KH

CG
;

therefore
EH HK

IH

BC CG

GA

⋅ = ⋅
2 2

and consequently
EH HK

IH

HE HF

HD

FH

HK

DH

HI

⋅ = ⋅ ⇒ =2 2

2

2 .

If the point L on DH is such that DH2

HI2 = DH

HL
, we deduce that

(1) DH

HI
= HI

HL
and
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(2) DH

HL
= FH

HK
.

Now (2) implies that DF || LK.
We note that the positions of the points I and L are different according to

whether ˆ ˆE B>  or ˆ ˆE B< .
ˆ ˆE B>  means that I lies between H and D, so HI  < HD, and, from (1),

HI < HD ⇒ HL < HI ⇒ L lies between H and I (Fig. 2.2.1).
ˆ ˆE B<  means that I lies beyond D , so H I  > HD, so L  is above I

(Fig. 2.2.2).

D

EH

I

L

K F

Fig. 2.2.2

The Banº Mºsæ’s figure (Fig. II.3) is incorrect:3 I lies between H and D as
in Fig. 2.2.1 and L is above I as in Fig. 2.2.2.

D

EH

I

L

KF

Fig. 2.2.3

3 See R. Rashed, Apollonius: Les Coniques, tome 1.1: Livre I, pp. 527–31.
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The argument based on this figure gives

KIH FDHˆ ˆ>  and EIH EDHˆ ˆ> ,

hence KIE EDFˆ ˆ< , which is impossible, because by construction
KIH EDHˆ ˆ= .

But in Fig. 2.2.1 we have

KIH FDHˆ ˆ<   and EIH EDHˆ ˆ> ;

and in Fig. 2.2.2
KIH FDHˆ ˆ>   and  EIH EDHˆ ˆ< ;

so we cannot draw any conclusions about angles KIH and EDF.
Faced with this difficulty, Ibn al-Haytham goes back to the problem itself4

and starts by listing all the possible cases.

Table of the possible cases

ˆ ˆA D=  = 1 right angle ˆ ˆG H=  = 1 right angle      (1)
ˆ ˆG H=  acute                   (2)
ˆ ˆG H=  obtuse reduces to  (2) (*)

ˆ ˆA D=  > 1 right angle ˆ ˆG H= = Â                      (3)
ˆ ˆG H=  obtuse > Â          (4)
ˆ ˆG H= = 1 right angle      (5)
ˆ ˆG H= obtuse < Â           (6)
ˆ ˆG H=  acute reduces to   (4) or (6) (*)

ˆ ˆA D=  < 1 right angle ˆ ˆG H=  = Â                    (7)
ˆ ˆG H=  < Â                    (8)
ˆ ˆG H=  = 1 right angle     (9)
ˆ ˆG H=  acute > Â            (10)
ˆ ˆG H=  obtuse reduces to  (8) or (10) (*)

4 Ibid.
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We note (*) that if AGBˆ  is acute, then AGCˆ  is obtuse, and if AGBˆ  is
obtuse, then AGCˆ  is acute. Only one of the cases will be examined, the other
can be deduced from it by exchanging the letters B and C (on the one hand)
and E and F (on the other). Ibn al-Haytham then investigates the ten cases.

First case: ˆ ˆA D=  = 1 right angle, ˆ ˆG H=  = 1 right angle.
In this case, ABC and DEF are right-angled triangles and AG and DH are

their heights above their hypotenuses. Whether the triangles are similar or not,
we can still write

GA2 = GB · GC  and  HD2 = HE · HF,

hence

(1) GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

Ibn al-Haytham then adds a supplementary condition that is necessary for
the two triangles ABC and DEF to be similar:

AG

DH

BC

EF
= ,

hence

(2) GA

HD

BC

EF

2

2

2

2= ;

from (1) and (2), we get

(3) GB GC

BC

HE HF

EF

⋅ = ⋅
2 2 .

A

BC

D

EG HF

Fig. 2.2.4
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Ibn al-Haytham deduces without offering any justification that

GB

GC

HE

HF
= ,

and then concludes the triangles are similar.

Second case: ˆ ˆA D=  = 1 right angle, AGB DHEˆ ˆ=  ≠ 1 right angle and

(1) GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

Ibn al-Haytham first constructs a triangle DEF similar to ABC ( ˆ ˆE B= ).

If ˆ ˆG H= , triangles AGB and AGC are similar to triangles DHE and DHF
respectively and equation (1) is satisfied.

Let us assume there exists a triangle EIF, and a point K on EF, that satisfy

ˆ ˆI A=  = 1 right angle, IKE AGBˆ ˆ=  ≠ 1 right angle and GB GC

GA

HE KF

KI

⋅ = ⋅
2 2 .

Then we have IK || DH and HE HF

HD

KE KF

KI

⋅ = ⋅
2 2 .

A

BC

D

E

G

H

I

F
K

L

P M

Q

O R

Fig. 2.2.5
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DH and IK cut the circle of diameter EF again in points L and M respec-
tively; we have

HE · HF = HL · HD  and  KI · KM = KE · KF,

so
HL

HD

KM

KI
=

and, by composition of ratios,
LD

HD

MI

KI
= .

But
HD

DR

KI

IO

LD

DR

MI

IO
= ⇒ =   and  LD

DP

MI

IQ
= ;

on the other hand LDP MIQˆ ˆ= , so triangles LDP and MIQ are similar, and
DLP IMQˆ ˆ= , which implies DEP IEQˆ ˆ= ; this is impossible because

DEFˆ  = 1
2

DEPˆ   and  IEFˆ  = 1
2

IEQˆ

and we have DEFˆ  ≠ IEFˆ .
Thus the two triangles ABC and DEF are similar and there exists no other

triangle that satisfies the same conditions without being similar to these
triangles.

Third case: ˆ ˆA D= ; AGB DHEˆ ˆ=  > 1 right angle and GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

On a line segment EF we construct the arc that subtends the given angle
Â.

Let the point D be such that DEF Bˆ ˆ=  and H such that DHE AGBˆ ˆ= . We
show as in the preceding case that equation (1) is satisfied and that triangles
ABC and EDF are similar.
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A

BC

D

EG
H

I

K

L

P

M

O

F

N
S

Fig. 2.2.6

Let us assume there exists a triangle EIF, and a point K on EF, such that

EIF Aˆ ˆ= , IKE AGB Aˆ ˆ ˆ= = , and

KE KF

KI

GB GC

GA

⋅ = ⋅
2 2 ,

then I lies on the arc EDF, IK || DH and IEF Bˆ ˆ≠ . We have

KE KF

KI

HE HF

HD

⋅ = ⋅
2 2 .

The straight lines DH and IK cut the circle again in L and M; we have

HE · HF = HD · HL  and  KE · KF = KI · KM,

hence
KM

KI

HL

HD
=

and consequently
MI

IK

DL

HD
= .
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By hypothesis EHD EDFˆ ˆ= , hence ED2 = EH · EF.
But EHD EDFˆ ˆ= , hence EHL ELFˆ ˆ= , hence EL2 = EH · EF, from which

we deduce
EL = ED; EL ED= .

So if N is the centre of the circle, EN  ⊥  DL and EN ⊥ IM. The straight line
EN cuts the segments DL and IM at their respective midpoints S and O, so we
have

SD

DH
= OI

IK
.

The straight line EI cuts DH in P, and we have

OI

IK
= SP

PH
.

Therefore
SP

PH
= SD

DH
,

hence
SH

HP
= SH

HD
,

which is impossible because HP ≠ HD.

The reasoning holds whatever the position of the point I on the arc that
subtends EDF: if I lies on the arc DF, the point P lies between H and D,
HP < HD; if I lies on the arc DE, the point P lies beyond D, HP > HD. In this
case also, the two triangles ABC and DEF are similar and there exists no other
triangle that satisfies the same conditions without being similar to these
triangles.

Fourth case: 1 right angle < ˆ ˆA D=  < AGB DHEˆ ˆ=  and GB GC

GA

HE HF

DH

⋅ = ⋅
2 2 .

As in the preceding case, Ibn al-Haytham again constructs on a general
line segment EF the arc that subtends the angle A and a triangle EDF similar
to ABC with a point H such that DHE AGB Aˆ ˆ ˆ= = ; relation (1) is satisfied.
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Fig. 2.2.7

Let EIF be a triangle that fits the initial assumptions, but is not similar to
ABC. The notation is the same as in the preceding case and we have

KE KF

KI

HE HF

HD

MI

IK

DL

HD

⋅ = ⋅ ⇒ =2 2 .

We have DHE Aˆ ˆ> ; if from the point D we draw the straight line D H′
such that DH E Aˆ ˆ′ > , then H ′  lies between H and F and the straight line
DH′ ⊥ EN. The same is true for IK′ || DH′.

The perpendicular from N to the straight lines DL and IM cuts the arc DE
in J. This straight line cuts DL and IM in their respective midpoints U and Q
and cuts EF in X. The straight line IX cuts the straight line DL in P (Fig.
2.2.7); we have

LD

DH
= MI

IK
⇒ QI

IK
= UD

HD
.

The straight lines QI and UD are parallel; (P , H, U ) and (I, K , Q) are
similar divisions, so

QI

IK
= UP

PH

and consequently
UD

HD
= UP

HP
.
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If X lies between H and E as Ibn al-Haytham says, and I lies between D
and F, then HD < UD and HP < UP, and we can write

UD − HD

HD
= UP − HP

HP
,

or

 
UH

HD
= UH

HP
;

which is impossible because HP ≠ HD.

But there are other possible cases for the figure.

a) It could be that H is the midpoint of DL; then NH ⊥  DL, and U, H, X

and P coalesce.

E

L

M

Q

N

I

F
K H

D

Fig. 2.2.8

In this case HE · HF = HD2. And we should get

KE · KF = KI2;

which is impossible, because for any point I  ≠ D, the point K  is not the
midpoint of MI.

b) It could be that the point U lies between H and D and the point X lies
between H and F . If K lies on XF (Fig. 2.2.9), P lies on the semi-infinite
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straight line HL. We then have HD > UD; but HP < UP; the equality UD

HD
=

UP

HP
 is thus impossible because UD

HD
< 1.

E

L

M

N

I

F
K

H

D

SQ X

U

J

P

Fig. 2.2.9

c) It could be that U lies between H and D, and the point X lies between H
and F; but the point K is at X. In this case, XI does not cut DL (the point P is at
infinity), and Q = K = X. The point K is thus the midpoint of IM, so KE · KF =
IK2; but HE · HF ≠ HD2, so it is impossible to have

KE KF

IK

HE HF

HD

⋅ = ⋅
2 2 .

d) Finally, it could be that U lies between H and D and X lies between H
and F; but the point K can lie between X and H, the point P then lies on the
semi-infinite straight line HD beyond D. We cannot have

DU

DH
= PU

PH
,

because D ≠  P and D and P both lie outside the segment UH. Thus we con-
clude that any triangle that conforms with the hypotheses must be similar to
the triangle ABC.

Fifth case: ˆ ˆA D=  > 1 right angle, ˆ ˆG H=  = 1 right angle and

GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .
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If DEF Bˆ ˆ= , triangle DEF is similar to ABC and satisfies (1).

Let us consider triangle EIF, not similar to triangle ABC, with I on the arc
EDF, and I ≠ D; let us assume

KE KF

KI

HE HF

HD

⋅ = ⋅
2 2 .

E

L
M

N

I

F
K H

D
A

C G B

O S

I

Fig. 2.2.10

Let NO be the diameter parallel to E F. As in the previous cases, we
deduce from the last equation that

DS

DH
= IO

IK
 and 

SH

DH
= OK

IK
;

but SH = OK, hence DH = IK.

We may note that there exists a
point I ≠ D for which IK = DH; that is,
the point symmetrical to D with
respect to the perpendicular bisector
of EF. Triangles EIF  and EDF are
thus congruent, so both of them are
similar to triangle ABC, but with
IEF Bˆ ≠ , IEF Cˆ ˆ= .

E

N

F
KH

D I

Fig. 2.2.11
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In conclusion, any triangle that fits the initial assumption is similar to
triangle ABC.

Sixth case: 1 right angle < BGA EHDˆ ˆ=  < ˆ ˆA D=  and

GB GC

GA

HD HE

HD

⋅ = ⋅
2 2 .

L

M

F
K H

D
A

C G B

O

I

N

S U

J
Q

E P

Fig. 2.2.12

Let there be a circle with centre N, a chord EF of the circle, a point P on
FE produced, a straight line from P that cuts the minor arc EF in D and a point
I on the half of EF that lies on the same side as E. The straight line NP cuts
the circle in U and Q. We draw DH and IK perpendicular to NP at S and O
respectively and EJ || NP (Fig. 2.2.12). We have

(1) DHP IKPˆ ˆ=  = 1 right angle + FPQˆ

 = 1 right angle + FEJˆ .

Angles EDF and EIF cut off the arc EUQJF, which is equal to

EU  +
1
2

 circle +QJ JF+ ,

so

(2) EDF EIFˆ ˆ=  = 1 right angle + FEJˆ  + 2α, where α is the

inscribed angle that cuts off EU  or QJ .
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From (1) and (2), we deduce EDF DHEˆ ˆ=  + 2α.

We then consider the two triangles EDF and EIF and a triangle ABC
similar to EDF, where G is a point on BC such that AGB DHEˆ ˆ= ; so we have

GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

Moreover, we have

     
DS

DH
= IO

IK
    (similar ranges),

hence
DL

DH
= IM

IK
.

Therefore
HL

HD

KM

KI
=   and  

HL HD

HD

KM KI

KI

⋅ = ⋅
2 2 ,

hence
HE HF

HD

KE KF

KI

⋅ = ⋅
2 2 .

Triangles DEF and IEF thus conform with the same hypotheses as the
similar triangles DEF and ABC; however, triangle IEF is not similar to DEF,
because IEF DEFˆ ˆ<  and IFE DFEˆ ˆ> , so it is not similar to ABC either.

Note: The conditions that are given are not sufficient to make two triangles
similar.

Seventh case: ˆ ˆA D=  = AGB DHEˆ ˆ=  < 1 right angle and

(1) GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

Let there be a triangle ABC, a point G on BC lying between B and C such
that ˆ ˆA AGB=  < 1 right angle and a segment EF on which we construct an arc
that subtends an angle A. We take a point D on that arc such that DEF Bˆ ˆ= ;
the triangle DEF is then similar to ABC, and if a point H on EF is such that
DHE D Aˆ ˆ ˆ= = , then H lies between E and F and we have the equality (1).
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E

G

H

I

F

A′

Fig. 2.2.13

The straight line DH cuts the circle DEF in I, so we have

EHI EIFˆ ˆ= = 2 right angles – D̂.

Note: The straight line AG cuts the circumcircle of ABC again at A′ and we
have BA C BGA′ = ′ˆ ˆ  = 2 right angles – Â, so the triangles A′BC and IEF
conform with the hypotheses of the third case. But we have seen that there
exists no triangle that is not similar to A′BC that has the required properties.
From this we deduce that there is no triangle that conforms with the
hypotheses of the seventh case that is not similar to triangle ABC.

Eighth case: AGB DHEˆ ˆ=  < ˆ ˆA D=  < 1 right angle and

GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

The argument proceeds as in the seventh case; we have

BA C EHI A′ = > ′ˆ ˆ  > 1 right angle.

Triangles BA′C and EIF conform with the hypotheses of the fourth case;
we have seen that triangle EIF is similar to BA′C and that there exists no
triangle that conforms with these hypotheses that is not similar to A′BC.

So there is no triangle that conforms with the hypotheses of the eighth
case without also being similar to triangle ABC.
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Ninth case: ˆ ˆA D=  < 1 right angle, AGB DEHˆ ˆ=  = 1 right angle and

GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

By the same reasoning as in the preceding case we reduce this to the fifth
case.

Tenth case: ˆ ˆA D=  < AGB DHEˆ ˆ=  < 1 right angle and

GB GC

GA

HE HF

HD

⋅ = ⋅
2 2 .

By the same process, we reduce this to the sixth case, and we deduce that
on a given segment EF, we can construct a triangle similar to ABC conforming
with the hypotheses and another triangle not similar to ABC while never-
theless conforming with the hypotheses. So we need to introduce the
supplementary condition.

The Banº Mºsæ’s lemma corrected
1. As we have said, Ibn al-Haytham’s stated purpose is to remedy some

weaknesses that the Banº Mºsæ failed to notice when formulating and proving
the ninth lemma. In other words, he needed to find the necessary and
sufficient conditions for the lemma to be true in a general form. Let us
conclude by returning to this problem.

The Banº Mºsæ’s proposition can be considered as a converse of the
following proposition:

If two triangles ABC and DEF are similar – D, E, F corresponding res-
pectively to A , B , C – and if G ∈  [BC] and H ∈ [EF] are points such that

AGB DHEˆ ˆ= , then GB GC

GA

HE HF

DH

⋅ = ⋅
2 2  (Fig. 2.2.1).

The proof of this proposition is obvious, so we can write

ˆ ˆA D= , ˆ ˆB E= , AGB DHEˆ ˆ=  ⇒ 
GB GC

GA

HE HF

DH

⋅ = ⋅
2 2 .

Here we propose to show that (1) and (3) imply (2), using the notation

(1) ˆ ˆA D= ,
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 (2) AGB DHEˆ ˆ=  ⇒ ˆ ˆB E= ,

(3)
GB GC

GA

HE HF

DH

⋅ = ⋅
2 2 .

We have seen that, in his investigation of this converse, Ibn al-Haytham
distinguishes ten cases and shows it is false, as a general result, in two
principal cases: the first and the sixth. It is also false in the tenth case, but this
reduces to the sixth one. To make the conditions necessary and sufficient for
the lemma to always be true, Ibn al-Haytham proposes to add the condition

(4)
AG

BC
= DH

EF
.

Taking account of condition (4), let us consider the two problematic cases:
the first and the sixth.

In the first case, we have ˆ ˆA D=  = AGB DHEˆ ˆ=  = 1 right angle, triangles
ABC and DEF are right-angled at ˆ ˆA D= , AG and DH are the heights above
the hypotenuse. Hypothesis (3) is a property of any pair of right-angled
triangles, whether they are similar or not; its appearance as a condition is
redundant. If it is replaced by condition (4), the two triangles ABC and DEF
are similar, by Euclid, Data, 79. But E may correspond to B and F to C, or E
may correspond to C and F to B.

A

BC

D

E

G

H
F

D

H ′

′

Fig. 2.2.14

In the sixth case, we have ˆ ˆA D=  > AGB DHEˆ ˆ=  > 1 right angle. The
straight lines AG and DH are no longer the heights.

Let AK  and DL be the heights, let us put AGB DHEˆ ˆ=  = α. We have

AK = AG sin α and DL = DH sin α. Therefore condition (4) is equivalent to
AK

BC
= DL

EC
. This condition and condition (1) ( ˆ ˆA D= ) together imply that
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triangles ABC and DEF are similar, and as in the first case there are two
possibilities: E and F corresponding respectively to B and C or to C and B.

A

BC

D

E

G

HF

D

H

K

LL ′

′

′

Fig. 2.2.15

Condition (3) is satisfied only if E in triangle EDF corresponds to B; it is
not satisfied for the triangle D′EF, because we have DH = D′H′, but HE · HF
≠ H′E · H′F.

Here, the two conditions (3) and (4) are complementary and allow us to
conclude that ˆ ˆB E= .

Thus with condition (4) the Banº Mºsæ’s lemma is true in all cases.

2. We still need to know how Ibn al-Haytham had found condition (4) and
how, when added to those given by the Banº Mºsæ, this condition makes it
possible to prove the lemma completely generally, without having to
distinguish the ten cases, a proof that Ibn al-Haytham does not give. Perhaps
he thought it was not necessary to do so after having given corrections for the
two defective cases; or perhaps he did not think of it, given how many distinct
cases there were.

Let us begin by considering two similar triangles ABC and DEF with a
point G on BC and a point H on EF such that

ˆ ˆA D= , ˆ ˆB E=  and AGB DHEˆ ˆ=  (Fig. 2.2.16).

A

BC

D

EG HF

Fig. 2.2.16
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Triangles AGB and DHE are similar and so are triangles AGC and DHF.
So we have

AB

DE
= GB

HE
= AG

DH
= GC

FH
= AC

DF
,

hence
AG

DH

GB GC

HE HF

2

2 = ⋅
⋅

; 
GB + GC

HE + FH
= AG

DH
,

that is
BC

EF
= AG

DH
  and  GB

GC
= HE

HF
,

so the divisions (B, G, C) and (E, H, F) are similar.

If, instead of ˆ ˆB E= , we were to put ˆ ˆB F=  (Fig. 2.2.17), we should need
to invert the roles of E and F throughout; we should put AGB DHFˆ ˆ= .

A

BC

D

EG HF

Fig. 2.2.17
The conclusions

AG

DH

GB GC

HE HF

2

2 = ⋅
⋅

  and  BC

EF

AG

DH
= ,

would remain the same; but the range (B, G, C) would be similar to the range
(F, H, E). Thus we have found conditions (3) and (4) by the previous analysis.
Let us now turn our attention to the Banº Mºsæ’s lemma with the added
condition (4); and let us show that ˆ ˆB E= .

Lemma of the Banº Mºsæ / Ibn al-Haytham
The triangles ABC and D E F are similar if and only if the following

conditions are satisfied:

(1) ˆ ˆA D= ,
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(2) AGB DHEˆ ˆ= ,

(3) GB GC

GA

HE HF

DH

⋅ = ⋅
2 2 ,

(4) AG

BC
= DH

EF
.

From (3) and (4) we obtain

(5) GB GC

BC

HE HF

EF

⋅ = ⋅
2 2 ,

(5) ⇔ BC − GC( )GC

BC2 = EF − HF( )HF

EF2  ⇔ 
GC

BC
− GC2

BC2 = HF

EF
− HF2

EF2

  ⇔ GC

BC
− HF

EF
⎛
⎝

⎞
⎠ 1 − GC

BC
+ HF

EF
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

= 0

  ⇔ GC

BC
= HF

EF
  or  

GC

BC
= 1 − HF

EF
= HE

EF
.

We then have two cases:

a) If GC

BC

HF

EF
= , then the ranges (B, G, C) and (E, H, F) are similar and we

have
BC

EF

GC

HF

GB

HE
= = .

b) If GC

BC

HE

EF
= , then the ranges (B, G, C) and (F, H, E) are similar and we

have
BC

EF

GC

EH

GB

HF
= = .

We can move from a) to b) by inverting the roles of E and F. So let us
deal with the two cases.

a) Hypotheses
(1) ˆ ˆA D= ,
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(2) BC

EF

GB

HE
= ,

(3) AGB DHEˆ ˆ= ,

(4) AG

BC

DH

EF
= .

From (2) and (4), we obtain AG

DH

GB

HE
= ; triangles AGB and DHE (Fig. 2.2.16)

are thus similar, so ˆ ˆB E=  and, consequently, triangles ABC and DEF are
similar and points correspond with one another in the order (A, B, C) → (D, E,

F).

b) Hypotheses
(1) ˆ ˆA D= ,

(2) BC

EF
= GB

HF
,

(3) AGB DHFˆ ˆ= ,

(4) AG

BC
= DH

EF
.

From (2) and (4), we obtain AG

DH
= GB

HF
; triangles AGB and DHF (Fig. 2.2.17)

are thus similar, so ˆ ˆB E=  and, consequently, triangles ABC and DFE are
similar and points correspond in the order (A, B, C) → (D, F, E). The lemma is

thus proved.

2.3. HISTORY OF THE TEXT

The treatise On a Proposition of the Banº Mºsæ by Ibn al-Haytham exists
in five manuscripts.

1) It occurs in an important collection, one part of which is in the Military
Museum in Istanbul (Askari Müze 3025, no number), copied by the
mathematician Qæ≈î Zædeh between 1414 and 1435. Ibn al-Haytham’s treatise
occupies folios 1 v–8v. Here we shall designate it by the letter S.
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We have made a long investigation into the history of this collection.5

Specifically, we have shown that this collection in the Military Museum is a
part of a larger collection, the other part of which is in Berlin, Oct. 2970.
Together, the two parts contain numerous treatises by Ibn al-Haytham. We
have also shown that the famous collection ‘Æ†if 1714 of the Süleymaniye
Library in Istanbul was copied from this collection and from it alone.

2) The second manuscript of this treatise is, indeed, a part of the last
collection, the one in ‘Æ†if 1714, and occupies folios 149r–157r. We have
designated it by T.

3) The third manuscript is in the Library of the University of Aligarh
(India), no. I, fols 28–38, in which the completion of the copy is dated 1072
AH (November 1661) at Jahænæbæd. The transcription of the whole collection
was completed on 26 Rajab 1075 AH, that is, 12 February 1665.6 The copy is
in careful nasta‘lîq. Each folio measures 25.6 × 11.4 cm with 25 lines per
page, and about 13 words per line. We designate this collection by the letter
A.

4) The fourth manuscript is in the collection of the British Library in
London, Add. 14332/2, fols 42–61. In connection with a treatise by Ibræhîm
ibn Sinæn,7 we have shown that this collection was copied exclusively from
Aligarh University no. I. A careful examination of Ibn al-Haytham’s text
confirms this finding, if confirmation is required. All the errors in A are
reproduced in B; however, it sometimes happens that B corrects certain
grammatical mistakes. This collection was also copied in India and was
transferred to the British Museum in the mid nineteenth century. In
establishing the text of Ibn al-Haytham’s treatise, we might have dispensed
with this last manuscript, since B is derived from A and only from A. If we
have noted its variants, that is in order to establish the family tree of the
manuscripts. Here this manuscript is designated by B.

5) The fifth manuscript is in the collection of the India Office in London,
no. 1270 (= Loth 734), fol. 28r–v; this is an incomplete copy that we shall
designate by L. An examination of this short fragment shows that it belongs to

5 See Chapter III, below.
6 The colophon of Ibn Sinæn’s treatise on Drawing the Three Sections says it was

transcribed by a certain MuÌammad Akbaræbædî. See R. Rashed and H. Bellosta, Ibræhîm
ibn Sinæn. Logique et géométrie au Xe siècle, Leiden, 2000, p. 261.

7 Ibid., p. 261.
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the same family as A and B. We find five mistakes that are common to A and
B, and five individual ones.

So in the end there are only two manuscripts, the one in the Military
Museum [S] and the one in Aligarh [A], that are genuinely useful in
establishing the text, as is shown in the following stemma:

x

x x

S

T

A

B L

Until now, there has been no critical edition of this treatise. A publication
that was not a critical edition appeared in Hyderabad; an examination of the
variants shows that this text was printed simply from manuscript B alone.
However, this publication had the advantage of attracting attention to this
treatise by Ibn al-Haytham.8

8 See Majmº‘ al-rasæ’il, Osmænia Oriental Publications Bureau, Hyderabad,
1938–1939, no. 6.



2.4. TRANSLATED TEXT

AAAAllll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----HHHHaaaayyyytttthhhhaaaammmm

On a Proposition of the Banº Mºsæ



In the name of God the Compassionate the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On a Proposition of the BBBBaaaannnnºººº    MMMMººººssssææææ

One of the propositions which the Banº Mºsæ put in place before the
proofs of the Conics, the one that is the last of the lemmas, has not got the
property they ascribed to it. They have, in fact, made it <seem to be> a
general proposition, whereas it holds only in special cases. Further, they
have made a slip in the course of the proof of the proposition and <it is>
because of this they have taken it to be general. Now this proposition is
required for some proofs of propositions in the Conics. That is why we
need to explain its form and show that it concerns particular propositions,
that it is true in certain cases and false in others, that the use that is made of
it in the proofs in the Conics involves cases in which it is true and that none
of the cases in which it is false is used in the Conics. So let us set out what
we think about this proposition. We say that the proposition mentioned by
the Banº Mºsæ and whose property is as we have described above is the
following:

Let there be two triangles that have two angles equal. From the two
equal angles to the sides opposite them there have been drawn two straight
lines that make two equal angles with the two opposite sides, in such a way
that the ratios of each of the two rectangles enclosed by the two parts of the
two opposite sides to each of the squares of the straight lines drawn to the
opposite sides are two equal ratios.

 They have claimed that two triangles with this property are similar. It
does not follow that the two triangles are always similar. They proved the
similarity of the two triangles using a demonstration in which they made a
slip.

Let us first indicate where the slip in their proof occurs. They have
taken the two triangles, triangles ABC and DEF; they have drawn in these
two triangles the two straight lines AG and DH; they have taken the two
angles A and D as equal and the two angles AGB and DHE as also equal;
they have made the ratio of the product of BG and GC to the square of GA
equal to the ratio of the product of EH and HF to the square of HD and they
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have claimed in connection with these two triangles that they (triangles) are
always similar if they have the property that we have described.

A

BC

D

E

G

H

I

F K

L

Fig. II.1

They proved this by saying: if angle DEH is not equal to angle ABG,
then let us put angle HEI equal to angle ABG, and let us put angle EIK
equal to angle BAC; then triangle EIK is similar to triangle BAC and
triangle EIH is similar to triangle BAG, so the ratio of the product of EH
and HK to the square of HI is equal to the ratio of the product of BG and
GC to the square of GA, which is equal to the ratio of the product of EH
and HF to the square of HD, so the ratio of the product of EH and HF to
the square of DH is equal to the ratio of the product of EH and HK to the
square of HI. The ratio of FH to HK is thus equal to the ratio of the square
of DH to the square of HI. They then said: let us put the ratio of the square
of DH to the square of HI equal to the ratio of D H to HL. They put the
point L above the point I, that is between the two points D and I. This is the
place where they made the slip; if the ratio of DH to HL is indeed equal to
the ratio of the square of DH to the square of HI, HL will be smaller than
HI, because HI is smaller than HD. They then joined LK which is parallel
to the straight line DF, because the ratio of DH to HL becomes equal to
ratio of FH to HK. Next they said: angle KLH is equal to angle FDH and
angle KLH is smaller than angle KIH, so angle KIH is greater than angle
FDH; but angle EIH is greater than angle EDH, so angle EIK is greater
than angle EDF; but it is equal to it, which is impossible. However, this
impossibility is a necessary consequence of their hypothesis that the point L
is above the point I; now the point L cannot but be below the point I; if it is
below the point I, it does not give rise to this impossibility. And if this
impossibility does not arise, it does not follow either that these two
triangles are similar. It is because of this slip that they thought that the two
triangles are always similar; but that is not so.
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Having pointed out this slip, let us consider all the <possible> cases1

for these two triangles2 and let us show which are the cases where it is
necessary that the two triangles be similar, and that there shall exist no
other triangle that has the properties that pertain to these two triangles and
is not similar to them. We also show which are the parts in which the two
triangles are similar and where there also exists another triangle that has the
same properties as they do and is not similar to them.

We say that the two triangles that have this property can be divided into
several parts; in some parts, it is necessary that the two triangles be similar
and that there shall exist no other triangle that has the properties that
pertain to these two triangles and that is not similar to them; in other parts,
it is necessary that the two triangles be similar and that there shall exist
another triangle that has the same properties as they do and that is not
similar to them.

So let us examine all the parts for these two triangles. The two triangles
can first of all be divided into two parts: in one, the two angles which are at
the points G and H are equal to the angles which are at the points A and D,
and in the other, the two angles which are at the points G  and H are
different from the angles which are at the points A and D. Each of these
two parts can then be divided into three parts according to whether the two
angles at the points A and D are right angles, obtuse or acute. So there are
six parts. If the two angles A and D are obtuse and the two angles at the
points G and H are not equal to them, then they will be greater than them or
smaller than them. If they are smaller than them, they will be either right
angles or obtuse, so the <number of> cases increases by two. In the same
way, if the two angles A and D are acute and the two angles which are at
the points G and H are not equal to them, then they will be greater than
them or smaller than them; if they are greater, then they are either right
angles or acute and the <number of> cases is increased by two others. So
there are ten cases. We shall explain the nature of each of these cases.

<First case>. – First of all, let the two angles A and D be right angles,
let the two angles G and H  also be right angles and let the ratio of the
product of BG and GH to the square of GA be equal to the ratio of the
product of EH and HF to the square of HD. It is possible for there to exist
two similar triangles that have this property, as it is possible for there to
exist two non-similar triangles that have this property.

1 Lit.: parts.
2 He means that this holds for all triangles that, two by two, satisfy the given

conditions.
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Proof: We return to triangle ABC and we draw a general straight line
whatsoever, let it be EF. We construct on this line a semicircle, let it be
EDF. We make the angle FED equal to angle C B A, we draw the
perpendicular DH and we join FD; so triangle EDF is similar to triangle
ABC and the two angles at the points G and H are both right angles. The
product of EH and HF is equal to the square of HD and the product of BG
and GC is equal to the square of GA , the two triangles thus have the
property we have mentioned. However, it is possible for there to exist
many triangles, each of which has this property without each of them being
similar to the triangle ABC. In fact, if from any point taken on the arc
EDF,3 a perpendicular is drawn to the diameter EF and if this point is
joined to the ends of the diameter, we generate a triangle which is not
similar to the triangle ABC. However, the angle at its vertex is equal to
angle A, the angle at its base is equal to angle G and the ratio of the product
of the two parts of the base, which is EF, to the square of the perpendicular
is equal to the ratio of the product of BG and GC to the square of GA. In
this case, it is not necessary the two triangles shall always be similar unless
we add to the conditions of the case a further condition, which is: the ratio
of AG to D H is equal to the ratio of BC to E F, because it necessarily
follows that the ratio of the square of AG to the square of DH is equal to the
ratio of the square of BC to the square of EF; so the ratio of the product of
BG and GC to the square of BC is equal to the ratio of the product of EH
and HF to the square of EF, and the ratio of BG to GC is equal to the ratio
of EH to HF.4 It necessarily follows that triangle DEH will be similar to
triangle ABG, and that triangle DFH will be similar to triangle ACG. This is
the reason why the two triangles ABC and DEF are similar. If we do not
add this condition, it does not necessarily follow that the two triangles ABC
and DEF are similar. That is what we wanted to prove.

Second case. – Let the two angles A and D be right angles and let the
two angles G and H be equal and not right angles. In this case it necessarily

3 He means: other than the point D.
4 See Mathematical commentary.
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follows that the two triangles are similar and there does not exist any other
triangle that has the same properties as they do and is not similar to them.

Let us return to the triangle ABC. We draw a general straight line; let it
be EF. We construct a semicircle on this line and we make the angle FED
equal to the angle CBA; we join FD  and we draw from the point D a
straight line DH to make the angle DHE equal to the angle BGA; the two
triangles that are formed are thus similar to the triangles ABG and AGC. So
the ratio of the product of BG and GC to the square of GA is equal to the
ratio of the product of EH and HF to the square of HD. The two triangles
ABC and DEF have the properties we have mentioned and they are also
similar.
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I say that it is not possible to find another triangle that has these
properties and that is nevertheless not similar to the triangle ABC. If that is
possible, let it be assumed to be done. It is thus possible to construct on the
straight line EF a triangle similar to that triangle; the point at its vertex will
thus lie on the arc EDF and the angle that is homologous to the angle B will
thus not be equal to the angle FED. Let this triangle be the triangle EIF. Let
the straight line IK be the line that makes with the straight line EF an angle
equal to the angle DHE; thus IK will be parallel to the straight line DH and
the ratio of the product of EK and KF to the square of KI is equal to the
ratio of the product of EH  and HF  to the square of HD, if that were
possible. We complete the circle EDF and we extend the two straight lines
DH and IK to the two points L and M. We draw the two perpendiculars DR
and IO and we extend them to the points P and Q; they divide one another
into two equal parts at the points R and O. We join LP and MQ. Since the
ratio of the product of EH and HF to the square of HD is equal to the ratio
of the product of EK and KF to the square of KI, the ratio of LH to HD is
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equal to the ratio of MK to KI; so the ratio of LD to DH is equal to the ratio
of MI to KI. But the two triangles DHR and KIO are similar, so the ratio of
HD to DR is equal to the ratio of KI to IO, the ratio of LD to DR is equal to
the ratio of MI to IO, the ratio of LD to DP is equal to the ratio of MI to IQ
and the two angles LDP and MIQ are equal; so the two triangles LDP and
MIQ are similar and the angle DLP is equal to the angle IMQ; so the sector
DEP is similar to the sector IEQ; which is impossible. This impossibility is
a necessary consequence of our assumption that the ratio of the product of
EK and KF to the square of KI is equal to the ratio of the product of EH and
HF to the square of HD. The triangle EIF has not got the same properties
as the triangle ABC. We can show that the same holds for any triangle that
is not similar to the triangle ABC. So any triangle that has the same
properties as the triangle ABC is similar to the triangle ABC; and it follows
in these two triangles also that the ratio of AG to DH is equal to the ratio of
BC to EF, because the two triangles ABG and AGC are similar to the two
triangles DEH and DHF. That is what we wanted to prove.

Third case. – Let the two angles A and D be obtuse and let the two
angles G and H be equal to them. In this case it is necessary that the two
triangles shall be similar and there does not exist any other triangle that has
the same properties as they do and is not similar to them.
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Let us return to the triangle ABC and let us draw a general straight line,
let it be EF; on this we construct a portion of a circle that is intercepted by
an angle equal to the angle A; we make the angle FED equal to the angle
CBA and we join FD. The triangle DEF is then similar to the triangle ABC.
Let us draw the straight line DH such that the angle DHE is equal to the
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angle BGA which is equal to each of the two angles A and D. The ratio of
the product of EH and HF to the square of HD is then equal to the ratio of
the product of BG and GC to the square of GA. So the two triangles ABC
and DEF have the properties we mentioned and they are also similar.

I say that it is not possible to find another triangle that has the same
properties as these two triangles and which nevertheless is not similar to
these two triangles. If that is possible, let it be assumed to be done. We
construct on the straight line EF a triangle similar to this triangle, the point
at its vertex will then lie on the arc EDF, so the angle homologous to the
angle B will not be equal to the angle E. Let this triangle be the triangle
EIF. Let the straight line IK be the line that makes with the straight line EF
an angle equal to angle DHE; so the straight line IK is parallel to the
straight line DH and the ratio of the product of EK and KF to the square of
KI is equal to the ratio of the product of EH and HF to the square of HD, if
that is possible. We complete the circle EDF and we extend the two
straight lines DH and KI to the two points L and M. Let the centre of the
circle be the point N; we join NE and EL, the straight line NE cuts the two
straight lines DL and IM; let it cut them at the two points S and O. Since
angle DHE is equal to angle FDE, the product of FE and EH is equal to the
square of ED. Since angle DHE is equal to angle FDE, angle EHL is equal
to the angle in the sector ELF;5 so the product of FE and EH is equal to the
square of EL. So the straight line EL is equal to the straight line ED and the
arc EL is thus equal to the arc ED, so the straight line NE is perpendicular
to the two straight lines DL and IM, so DS is equal to SL and IO is equal to
OM. But since the ratio of the product of EH and HF to the square of HD is
equal to the ratio of the product of EK and KF to the square of KI, the ratio
of LH to HD is equal to the ratio of MK to KI. The ratio of LD to DH is
thus equal to the ratio of MI to IK, so the ratio of SD to DH is equal to the
ratio of OI to IK. But the straight line EI cuts the straight line DH; let it cut
it at the point P; then the ratio of OI to IK is equal to the ratio of SP to PH,
so the ratio of SP to PH is equal to the ratio of SD to DH, and the ratio of
SH to HP is equal to the ratio of SH to HD; which is impossible.

So it is not possible that there exists a triangle that has the same
properties as triangle ABC and which is not similar to triangle ABC. That is
what we wanted to prove.

Fourth case. – Let the two angles A and D be obtuse and let the two
angles G and H also be obtuse and greater than the two angles A and D,

5 We are concerned with the angle whose vertex is on the arc ELF and which
intercepts the arc EDF.



282 CHAPTER II: AL-ÎASAN IBN AL-HAYTHAM

then the two triangles are similar and there does not exist any other triangle
having the same properties which is not similar to them.
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Let us return to triangle ABC and the previous circle; let triangle DEF
be similar to triangle ABC and let the properties of the first triangle be
those of the second. Let there be a triangle EIF which is not similar to
triangle ABC but such that its properties are those of the two triangles ABC
and DEF, if that is possible. We extend the two straight lines DH and IK to
L and M. So the ratio of LD to DH is equal to the ratio of MI to IK. But
since the angle DHE is greater than the angle EDF, thus the straight line
drawn from the point D that makes with the straight line EF an angle equal
to the angle EDF lies beyond the straight line DH, that is in the direction
towards the point F; and if we extend it, it meets the straight line NE and is
perpendicular to it; the same holds for the straight line that is parallel to it
drawn from the point I. Thus it is clear from this that the two angles DSN
and ION are acute.6 So the perpendicular drawn from the point N to the two
straight lines DL and IM will be above the straight line NE, that is to say it
cuts the arc ED; let this perpendicular be the perpendicular NQUJ. It cuts
each of the straight lines DL and IM into two equal parts, so it cuts the
straight line KE; let it cut it at the point X. We join XI. It cuts the straight
line DH; let it cut it at the point P. Since the ratio of LD to DH is equal to
the ratio of MI to IK, the ratio of QI to IK is equal to the ratio of UD to DH;
but the ratio of QI to IK is equal to the ratio of UP to PH, so the ratio of

6 This is true only when I is sufficiently close to D for O to lie between N and S.
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UD to DH is equal to the ratio of UP to PH and the ratio of UH to HD is
equal to the ratio of UH to HP. Which is impossible.

If the point X falls between the two points H and K or between the two
points K and F, or at the point H, or at the point K, then this impossibility is
even more unseemly. So it is not possible that there exists a triangle that
has the same properties as triangle ABC and is not similar to triangle ABC.
That is what we wanted to prove.

Fifth case. – Let the two angles A  and D be obtuse and let the two
angles G and H be right angles, then the two triangles are similar and there
does not exist any other triangle that has the same properties as these and is
not similar to them.
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Let us return to the triangle ABC and the circle; let triangle DEF be
similar to triangle ABC and let its properties be those of triangle ABC. Let
triangle EIF not be similar to triangle ABC, but let its properties be those of
the two triangles ABC and DEF, if that is possible. We draw the two
straight lines DH and IK as far as L and M, then the ratio of LD to DH is
equal to the ratio of MI to IK; let us draw from the centre of the circle,
which is the point N, a perpendicular to the two straight lines DL and IM,
let it be NOS; NS is thus parallel to the straight line FE, because the two
angles H and K are right angles; so the ratio of SD to DH is equal to the
ratio of OI to IK. The ratio of SH to HD is thus equal to the ratio of OK to
KI; but SH is equal to OK, so HD is equal to KI; which is impossible becau-
se if KI were equal to DH, triangle EIF would be similar to triangle EDF,
because the arc IF would be equal to the arc ED and, in consequence, angle
IEF would be equal to angle EFD, angle IFE would be equal to angle DEF
and triangle EIF would thus be similar to triangle EDF; but, by hypothesis,
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it is not similar to it. If triangle EIF is not similar to triangle EDF, then the
straight line IK is not equal to the straight line DH; so the ratio of LH to HD
is not equal to the ratio of MK to KI. So the ratio of the product of EK and
KF to the square of KI is not equal to the ratio of the product of EH and HF
to the square of HD and triangle EIF does not have the property found in
the two triangles ABC and DEF. So there does not exist any other triangle
that is not similar to the two triangles ABC and DEF, and has the same
properties as they do. That is what we wanted to prove.

Sixth case. – Let the two angles A and D be obtuse and let the two
angles G and H also be obtuse, but smaller than the two angles A and D; let
the ratio of the product of BG and GC to the square of GA be equal to the
ratio of the product of EH and HF to the square of HD.

I say that there can exist two triangles that have this property and are
similar and that further there exists another triangle that has this property
without being similar to these two similar triangles.
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Proof: We draw a circle; let it be EDFM. Let us cut off on it a part
smaller than a semicircle; let the part be EDF. We extend FE as far as P
and on this straight line we take a general point; let it be the point P. We
draw from the point P a straight line that cuts the part <of the circle> EDF
in two points; let the two points lie in the half of the arc EDF towards the
point E; let the straight line be PDI; let the centre of the circle be the point
N. We join NP; let it cut the circle at the point U. We draw from the two
points D and I two perpendiculars to the straight line NP; let the two
perpendiculars be DS and IO which we extend to L and M; the perpendi-
culars are thus divided into two equal parts at the points S and O. We
extend PN to Q and we draw EJ parallel to the straight line PQ; so angle
FEJ is equal to angle FPQ. Since the two angles S and O are right angles,
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the two angles PHS and PKO are acute, so the two angles DHE and IKE
are obtuse. Since angle S is a right angle, the sum of the two angles SPD
and SDP is a right angle, so the two angles SPD and SDP intercept the arc
UDFQ which is half of the circle. But angle JEF, which is equal to angle
QPF, intercepts the arc FJ; so there remain the two angles HPD and HDP,
that is angle DHF, which is the angle that intercepts the arcs UE, ED, DF
and JQ. So angle DHF  is smaller than a right angle by an angle that
intercepts the arc FJ, so angle DHE exceeds a right angle by an angle that
intercepts the arc FJ, so angle EDF exceeds a right angle by an angle that
intercepts the two arcs UE and FQ and angle EDF exceeds the obtuse angle
DHE by the angle that intercepts the two arcs UE and FQ.

Having shown that angle EDF is greater than angle DHE, let us show
that there exist two triangles that have the properties we mentioned and that
are nevertheless not similar. We join the straight lines ED, EI, FD and FI.
Let triangle ABC be similar to triangle DEF. Since DS is parallel to IO, the
ratio of SD to DH is equal to the ratio of OI to IK, so the ratio of LD to DH
is equal to the ratio of MI to IK. Thus the ratio of LH to HD is equal to the
ratio of MK to KI. So the ratio of the product of EH and HF to the square of
HD is equal to the ratio of the product of EK and KF to the square of KI; so
triangle EIF has the same properties as the two triangles ABC and DEF,
although it is not similar to them because IK is greater than DH, since <D
and I> are both on half the arc EDF; so the angles <of the triangle EIF> are
not equal to the angles of the triangle EDF.

So if the two angles A and D are obtuse, the two angles G and H obtuse
and smaller than the two angles A and D and if the ratio of the product of
BG and GC to the square of GA is equal to the ratio of the product of EH
and HF to the square of H D, then the two triangles ABC and DEF are
similar and there nevertheless exists a triangle that has these properties but
which is not similar to them. That is what we wanted to prove.

Seventh case. – Let the two angles A and D be acute and let the two
angles G and H be equal to them. In this case it is necessary that the two
triangles be similar and there does not exist any other triangle that has the
same properties as they do and which is not similar to them.
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Let us return to triangle ABC and the circle and let us cut off from the
circle a part <that is the arc> that is intercepted by an acute angle equal to
angle BAC. Let the part be EDF. We make angle FED equal to angle CBA
and we join FD. So triangle DEF is similar to triangle ABC. We draw DH
in such a way that angle DHE is equal to angle EDF; let it be DHE. If the
point G lies inside the triangle ABC, then the point H lies inside the triangle
DEF. We extend DH to I and we join EI and FI, so angle EHI is equal to
angle EIF. It necessarily follows that triangle EIF has only one triangle that
is similar to it and has the properties of triangle EIF and there does not
exist any other triangle that has the properties of triangle EIF and which is
not similar to them. If there does not exist any other triangle that has the
same properties as triangle EIF and which is not similar to it, then there
does not exist any other triangle that has the same properties as triangles
ABC and DEF and which is not similar to them. The two triangles ABC and
DEF are similar and there does not exist any other triangle that has the
properties of these two triangles without being similar to them. That is what
we wanted to prove.

Eighth case. – Let the two angles A and D be acute and let the two
angles G and H be smaller than them.

In this case, it necessarily follows that the two triangles are similar and
there does not exist any other triangle that has their properties and which is
not similar to them. In fact, if we make triangle DEF similar to triangle
ABC, if we extend the straight line DH as far as I and if we complete the
triangle EIF such that angle EHI is greater than angle EIF, it is necessary
that triangle EIF shall have a triangle similar to it that has the properties of
triangle EIF and there does not exist any other triangle that has their
properties and which is not similar to them. So it is necessary that there
shall not exist for the two triangles ABC and DEF any other triangle that
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has their properties and which is not similar to them. That is what we
wanted to prove.

Ninth case. – Let the two angles A and D be acute and let the two
angles G and H be right angles. So if we draw DH and complete the tri-
angle EIF, we show <in the same way> as we showed in the fifth case that
there exists for the triangle EIF a triangle similar to it that has the same
properties as it does and there does not exist any other triangle that has the
same properties as it does and which is not similar to it, so it is necessary
that there does not exist for the two triangles ABC and DEF any other
triangle that has the same properties as them and which is not similar to
them.

Tenth case. – Let the two angles A  and D be acute and let the two
angles G and H be acute, but greater than A and D.

It necessarily follows that angle EHI is smaller than angle EIF. We
show <in the same way> as we showed in the sixth case, that there can
exist for the triangle EIF a triangle similar to it and which has the same
properties as it does, that there exists another triangle that has the same
properties as the triangle EIF and which is not similar to it. It necessarily
follows that the two triangles ABC and DEF are similar and that there
exists another triangle that has the properties of these two triangles and
which is not similar to them.

The cases into which this proposition is divided are ten in number: in
seven of them, the assertion mentioned by the Banº Mºsæ is true, and in
three of them this assertion does not hold. The cases in which this assertion
mentioned by the Banº Mºsæ is true, require that the ratio of the base of the
triangle to the base of the triangle shall be equal to the ratio of the straight
line drawn to the base of one to the straight line drawn to the base of the
other; if, indeed, the two triangles are similar, then their angles are equal.
So we suppose that each of the two triangles into which one of the two
large triangles is divided is similar to the corresponding figure in the other
large triangle, it necessarily follows that the ratio of the two parts of the
base of one of the two triangles, one to the other, is equal to the ratio of the
two parts of the base of the other triangle, one to the other. It necessarily
follows that the ratio of the base of one of the two large triangles to the
straight line drawn to that base is equal to the ratio of the base of the other
large triangle to the straight line drawn to this base. It necessarily follows
that the ratio of the straight line drawn to the other straight line <that has
been> drawn is equal to the ratio of the base to the base.
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So if we add to the conditions <imposed> for the two triangles that the
ratio of the straight line drawn to the other straight line <that has been>
drawn is equal to the ratio of the base to the base, the proposition becomes
general and will not be defective in any case. All the cases of this
proposition that are used in the Conics are among the true cases which we
have proved and none of the defective cases is used in the Conics.

It is thus clearly apparent, from all that we have shown, that the
proposition that the Banº Mºsæ employed in assessing these two triangles
is not a general proposition, that is it is true in certain cases of the two
triangles and that it is false in the other cases of the triangles, that is that
two triangles that have the properties the Banº Mºsæ have mentioned are
not always similar, but in certain cases they are similar and in other cases
they are not similar. We have also shown the slip they made in the course
of the demonstration of this proposition; that is what we wanted to show in
this treatise.

The treatise on the proposition of the Banº Mºsæ is completed.



CHAPTER III

PROBLEMS OF GEOMETRICAL CONSTRUCTION

3.1. THE REGULAR HEPTAGON

3.1.1. Introduction

One of the geometrical construction problems that most interested
mathematicians between the ninth and eleventh centuries was that of
constructing the regular heptagon. If we are to believe what the Arabic
mathematicians themselves say, this problem belongs to a whole group of
three-dimensional (solid) problems inherited from Greek mathematicians; but
historians have placed too little emphasis upon what makes it different from
other such problems. Unlike, for example, investigations of the two means
or the trisection of an angle, work on the regular heptagon was resumed
rather late. Whereas the first two problems were subjects of intense research
from the mid ninth century onwards, from such early scholars as the Banº
Mºsæ, Thæbit ibn Qurra and others, it was not until the second half of the
tenth century that study of the regular heptagon was resumed. But once it
started, such research became something of a craze among eminent
mathematicians: it is as if each of them wanted to leave his mark on it. This
is how, a little later on, Ibn al-Haytham presented such research:

One of the geometrical problems – over which geometers enter into rivalry,
<problems> in which those who surpass the others take pride, and through
which the prowess of those who succeed in solving it is revealed – is the
construction of a regular heptagon in a circle.1

Why was there such enthusiasm, and why did work start relatively late?
The fashion for studying this topic may be explained by the high standing of
Archimedes. The mathematicians of the time, including Ibn al-Haytham,
refer to the lemma that Archimedes proposed for this construction. It is clear
that they are concerned with a text attributed to Archimedes, and one of
which no trace has come down to us. If we are to believe the
mathematicians, Archimedes had not, however, proved his lemma, but had

1 See below, On the Construction of the Heptagon in a Circle, p. 441.
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simply assumed it was accepted as true. So the regular heptagon basked in
the reflected glory of Archimedes, but did so without having been
constructed by him: a state of affairs peculiarly intriguing and exciting. But
that does not explain why it was not until the second half of the tenth
century that mathematicians revived a problem already known, they say, to
Thæbit ibn Qurra and his contemporaries.2 The time that elapsed might be
explained by reference to the new interests that emerged during this period.
These interests, which have various origins – algebraic and geometrical –
encouraged mathematicians to investigate this problem, along with many
others previously neglected to which we shall return. Interest in matters of
algebra, as we have seen elsewhere,3 is directed to the development of a
theory of algebraic equations of degree less than or equal to three, and to
research in algebraic geometry. As we shall see, the interest in geometry is
bound up with the changes brought about in work on geometrical
construction by the introduction of the use of conic sections.

To construct the regular heptagon, Ibn al-Haytham’s predecessors first
constructed a triangle in a given circle, the triangle having a particular ratio
between its angles. Thus Abº al-Jºd, and similarly al-Sijzî, considered the
ratio (1, 3, 3); Ibn Sahl tried to prove Archimedes’ lemma;4 al-Qºhî made
separate studies of two cases, (1, 2, 4) – which takes us back to Archimedes’
lemma, as we shall see – and (1, 5, 1). As for al-∑æghænî, he too discusses
the case (1, 2, 4). In a first essay, with the title Treatise on the

2 Qus†æ ibn Lºqæ mentions the problem of the regular heptagon as one of those that
illustrate a special power. That is, in the mid ninth century, mathematicians knew of the
existence of this problem and its difficulty. See ‘Une correspondance islamo-chrétienne
entre Ibn al-Munafifiim, Îunayn ibn IsÌæq et Qus†æ ibn Lºqæ’, Introduction, édition,
divisions, notes et index par Khalil Samir; Introduction, traduction et notes par Paul
Nwyia in F. Graffin, Patrologia Orientalis, vol. 40, fasc. 4, no. 185, Turnhout, 1981,
pp. 674-6:

‘What do you say […] about someone who finds two segments between two
segments in continuous proportion, <solves the problem of> the inscription of the regular
heptagon in the circle and other matters that men were incapables of solving? If one of our
contemporaries were to solve these problems, would you place his action on the same
level as raising the dead and parting the sea, and would you recognize him as thus
fulfilling the prophecy?’.

3 R. Rashed, ‘Algebra’, in id. (ed.), Encyclopedia of the History of Arabic
Science, London, 1996, pp. 349–75.

4 See below, pp. 295ff.
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Determination of the Lemma of the Heptagon, Ibn al-Haytham himself tries
to prove Archimedes’ lemma for constructing the heptagon. In this essay, he
considers a triangle whose angles are in the ratio (1, 2, 4). In a second essay,
with the title On the Construction of the Regular Heptagon – a more
substantial piece that was written later – he undertakes the first systematic
study of all possible constructions, and thus of all the triangles that can be
formed from sides and diagonals of the regular heptagon. In this essay, he
deals in succession with the cases (1, 3, 3), (3, 2, 2), (1, 5, 1) and finally (1, 2,
4). We may note that for the case (1, 3, 3), the analysis leads to division of a
segment, that is a range of points on a line, not to be found in any of the
studies by his predecessors, and that for the case (1, 2, 4) Ibn al-Haytham
begins by proving that such a case can be obtained from preceding ones: (1,
3, 3), (3, 2, 2) and (1, 5, 1). He does, however, give an analysis of (1, 2, 4)
that leads to the division of the segment proposed in Archimedes’ lemma
(see below). Here we see the emergence of a characteristic of these
constructions that is important for several reasons: an emphasis on the
geometrical nature of the problem. Ibn al-Haytham, following the example
of his predecessors, reduces the construction of the regular heptagon to that

of a triangle and not that of the angle π
7

; from then on, there are in all four

possible triangles, and he examined the construction of each of them. To say

that the problem reduces to finding the angle π
7

 is to interpret Ibn al-

Haytham’s text in a framework that is foreign to it. What he does is to
construct a triangle whose angles are in the ratio (3, 2, 2). Ibn al-Haytham’s
view is in fact deliberately geometrical and not trigonometrical. Finally, as in
his essay on Archimedes’ division of the line, Ibn al-Haytham – unlike some
of his predecessors, such as Abº NaÒr ibn ‘Iræq5 – was not tempted by the
possibility of making an algebraic version of the problem. His proof is
deliberately geometrical, and he is intent on considering all possible cases.

Once we have reconstructed the research tradition to which it belongs,
Ibn al-Haytham’s contribution allows us to discern two intentions on the
part of its author. He obviously wished to give a systematic account of what
was known, thereby settling the question of constructing the heptagon, and
thus bringing the tradition to a successful conclusion. But if we now examine
the construction problems Ibn al-Haytham inherited from Antiquity, we can
only find two, both of which carry the name of Archimedes: the regular
heptagon and Archimedes’ division of the line (the lemma for the fourth
proposition of the second book of The Sphere and the Cylinder). It is, it

5 R. Rashed and B. Vahabzadeh, Omar Khayyam. The Mathematician, Persian
Heritage Series no. 40, New York, 2000, p. 174.
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seems to me, an important fact, despite its having escaped attention, that Ibn
al-Haytham never deals with any other problem inherited from his Greek or
Arabic predecessors. Perhaps his purpose was to remedy the inadequacies of
this unfinished work by Archimedes, as he had done for Apollonius’ Conics.
Was that his intention, one of the motives for his three pieces on the solid
problems that had been passed down from Antiquity? The suggestion is
worth some consideration.

First, we shall reconstruct the tradition of research on the construction
of the regular heptagon, and then we shall examine each of Ibn al-
Haytham’s two treatises.

3.1.2. The traces of a work by Archimedes on the regular heptagon

It is worth repeating that the history of the problem of constructing the
regular heptagon differs from that of the other solid problems: trisecting an
angle, the two means, the lemma for the fourth proposition of the second
book of Archimedes’ The Sphere and Cylinder. Apart from some references
in archaeological sources (Babylonian tablets dating back to about 1800 BC)
and a practical method like that of Heron of Alexandria,6 we know of no

6 On several mathematical tablets of the Old Babylonian period (about 1800 BC) we
find carefully drawn geometrical figures, including the regular heptagon. Heron of
Alexandria returns more than once to the regular heptagon, not to explore its geometrical
properties, but to give an approximate calculation. See Heron, Metrica, ed.
E. M. Bruins, Codex Constantinopolitanus Palatii Veteris n. 1, Part 2 [Greek Text],
Leiden, 1964, pp. 101–2. Heron writes as follows:

‘Lemma. If a regular heptagon is inscribed in a circle, the ratio of the radius to the
side of the heptagon will be equal to 8/7. Let there be the circle BC with centre A , and let
us construct inside it the side BC of the hexagon, that is a side equal to the radius of the
circle. Let us draw on this side the height AD. AD will thus be almost equal (fl»
Çzz§«…`) to the side of the heptagon. Let us join BA, AC. The triangle ABC will thus be
equilateral. So the square of AD will be three times the square of DB. So the ratio of AD
to DB to the power of two will be almost equal to 49/16. And in length, the ratio of AD to
DB will be equal to 7/4. And BC is double BD. The ratio of BC to DA is thus equal to
8/7.’ E. M. Bruins commented on this lemma as follows: ‘In this lemma the ratio of the
side of the heptagon to the radius of the circle is not deduced from the properties of this
regular polygon. Equating the side of the heptagon to the perpendicular from the centre of
the circle to the side of the heptagon, i.e. equating the side of the heptagon to one half of
the side of the equilateral triangle in the same circle, the ratio 7 to 8 is computed’ (Part 3,
pp. 230–1).

(Cont. on next page)
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contribution on the construction of this figure from the ancient world – with
one exception: a work attributed to Archimedes, that only Arabic sources
take into account. The ancients’ complete silence is as surprising as it is
intriguing, and prompts reflection. One may wonder why, after all, so much
interest was shown, for example, in the trisection of an angle (on the
evidence of Pappus’ Mathematical Collection), whereas there was such
apparent indifference to the heptagon. The same question might be asked
about the lemma in The Sphere and Cylinder, where, this time, the evidence
is supplied by Eutocius. What makes the heptagon the exception despite the
fact, if we are to believe the Arabic sources, that the problem was raised by
Archimedes?

It is even more surprising that this silence from antiquity was not much
interrupted in the ninth century, that is, even when, it seems, Archimedes’
text was available. The scarce testimony we have from that period leaves no
doubt that the problem was known. As we have seen, Qus†æ ibn Lºqæ, the
famous translator and scholar, mentions it in a religious debate, as a
wonderful discovery, without giving the name of Archimedes. On the other
hand, he has done no better than any other mathematician of the time by
not leaving us any indication of how the figure constructed. Nevertheless the
biobibliographer al-Nadîm cites in his list of the works of Archimedes
known in Arabic translation ‘a book on the regular heptagon (Kitæb fî tasbî‘
al-dæ’ira)’.7 But he is niggardly with further information and does not
supply either the name of the translator or the date of the translation.
However, if the translation did indeed take place, we may suppose this
happened in the ninth century. Apart from these bare indications, all we
know about the work attributed to Archimedes and its possible translator
goes back to a single, and very late, source – it dates from the eighteenth

                                    
(Cont.) Heron also writes: ‘Let there be a regular heptagon ABCDEFG, with side

equal to 10 units. To find its area. Let us take the centre of the circle circumscribed about
it, H, and let us join DH, HE. Let HI be the perpendicular to DE. The ratio of HD to DE
is thus equal to 8/7 and its ratio to DI is equal to 8 over 3 1

2 , or 16/7. So that the ratio of
HI to ID is almost exactly (fl» Çzz§«…`) that of 14 1

3  to 7, or 43/21. From that it follows
that the ratio of DE to IH is equal to 42/43, or 84/86. From that it follows that the ratio of
the square of DE to DE. IH is the same. From that it follows that the ratio of DE to the
triangle DHE is equal to 84/43. Now the ratio of the triangle to the heptagon is 1/7. The
ratio of the square of DE to the heptagon is thus equal to 12/43. And the square of DE is
given. The heptagon is thus given. The synthesis is carried out in the following way:
multiply 10 by itself; we obtain 100; multiply that by 43; we obtain 4300; divide by 12;
we obtain 358 1

3 . That will be the area of the heptagon’.
Here too we have an approximate calculation. See also E. M. Bruins, Part 3,

p. 234.
7�Al-Nadîm, Kitæb al-fihrist, ed. R. Tajaddud, Tehran, 1971, p. 326.
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century – a well known copyist: MuÒ†afæ ∑idqî.8 Educated and familiar with
mathematics, MuÒ†afæ ∑idqî transcribed a treatise called Book of the
Construction of the Circle Divided into Seven Equal Parts, by Archimedes,
Translated by Abº al-Îasan Thæbit ibn Qurra de Îarræn. A Single Book
in Eighteen Propositions.9 A work by Archimedes translated by Thæbit ibn
Qurra is an important document, and was considered as such after being
translated into German by C. Schoy.10 However, enthusiasm quickly abated:
the copyist, in all honesty, delivers a prompt warning when he writes:

when I wanted to transcribe this book, I had only obtained one copy,
damaged and affected by the ignorance of the copyist and his lack of
understanding. I did all I could to force myself to check the problems, to
make the synthesis of the analyses and to set out the propositions in terms
that are easy and accessible; and I have introduced several proofs by
modern mathematicians […].11

MuÒ†afæ ∑idqî’s admission puts us in an impossible situation. There are
two overlapping questions that preclude us from drawing any firm
conclusion: What remains of the original version after this work of editing,
commentary and making additions? What evidence have we that this
original version was truly the work of Archimedes? As it is, MuÒ†afæ ∑idqî’s
edition is, at best, an edition that has been rewritten, incorporating proofs by
late mathematicians like al-Îubºbî and al-Shannî; at worst, the edition is a
‘pot-pourri’, in which the problem of the heptagon takes up only two of the
eighteen propositions. But the text also raises other difficulties. The first
sixteen propositions are very elementary: they deal with calculation with
segments of a straight line using some notable identities, (a ± b)2 and
(a + b + c)2, they also consider Pythagoras’ theorem, and expressions for
the area of a right-angled triangle. From Proposition 9 onwards, we meet
the circle inscribed in a triangle, and we use the property of there being two
tangents from a point outside the circle and the concept of the power of a
point. On occasion the editor gives three or four proofs of the same
proposition, two such proofs being explicitly attributed to tenth-century
mathematicians such as al-Shannî. In short, the principle behind the

8 R. Rashed, Founding Figures and Commentators in Arabic Mathematics. A
history of Arabic sciences and mathematics, vol. 1, Culture and Civilization in the Middle
East, London, 2012, p. 126; R. Rashed, Geometry and Dioptrics in Classical Islam,
London, 2005, e.g. p. 10.

9 See Appendix I: Kitæb ‘amal al-dæ’ira al-maqsºma bi-sab‘a aqsæm mutasæwiya
li-Arshimîdis, MS Cairo 41, fols. 105r–110r.

10 See C. Schoy, Die trigonometrischen Lehren des persischen Astronomen
Abº’l RaiÌæn MuÌammad Ibn AÌmad al-Bîrºnî, Hanover, 1927, pp. 74ff.

11 See below, p. 587.
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organization of the text is not clear, and we may note that none of the first
sixteen propositions is of any use for the last two, which concern the
heptagon. Which amounts to saying that we cannot expect an analysis of the
content to yield any indication that might allow us to ascribe such a work to
Archimedes or to Thæbit ibn Qurra.12

12 This is so for the tenth proposition, the one that is closest to those that relate to
Archimedes’ lemma. This proposition can be rewritten:

Let I be the point of intersection of HD with the perpendicular to CB at C; then

CH

HB
= DC

EB
.

We have CI ⊥  CB ⇒ CI || AE ⇒ triangles
ICD and EAD are similar and

AE

CI
= AD

CD
⇒ AE

AD
= CI

CD
.

Now AE = AD, so CI = CD.
On the other hand, triangles HBE and

HCI are similar, hence

A

B C

D

E

H

I

<O>

<K>

G

Fig. 3.1

CH

HB
= CI

EB
= CD

EB
.

Note: Thus we have
CH

CB

CG

BG
CB CG CH BG= ⇒ ⋅ = ⋅ ,

which gives a property of the range (C, B , G, H), a property that will not be used later
when this range is investigated.

What is much more serious and significant is the error that seems to have been made
in the ninth proposition, an error that neither Archimedes nor Thæbit ibn Qurra could have
committed. This proposition can be rewritten:

Let ABC be a triangle right-angled at B , circumscribed about a circle DEG; then
BH = AD (see Fig. 3.1).

Here in brief is the proof given in the text:

(1) HD · HE + EA2 = AH2 ⇒ HG2 + EA2 = AB2 + BH2,

hence
EA2 + HG2 = HB2 + AB2 ⇒ EA2 + BG2 + 2 HB · BG = AB2,

hence
BG2 + 2 HB · BG = AB2 – EA2 = 2 AE · EB + EB2;

but BG = EB, hence the result.
(Cont. on next page)
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When we try to authenticate the work at least partly, with the help of its
presumed translator, we quickly run up against a stone wall. For indeed if
we turn to the titles of works by Thæbit ibn Qurra – original works and
translations – we can only be disappointed: there is no source that would
allow us to ascribe any such translation to him, and no old biobibliographer
suggests anything like it.13 Even more significantly, the title does not appear
in the list of Thæbit ibn Qurra’s works that was kept by his family. This list
is, understandably, to be taken as authoritative, and was provided by his
grandson al-MuÌsin Ibræhîm al-∑æbi’.14 We are left what is to be found in
the tenth-century mathematicians who were interested in the heptagon.
Almost all of them agree in saying that Archimedes wrote a work on the
heptagon that included a famous lemma. But whereas the work is described
in slightly vague terms, the lemma is well reported; nevertheless, even
though the sense is there, the details vary each time the statement of the
lemma is presented as appearing in the work designated as by Archimedes.
Prudence is required.

From Abº al-Jºd ibn al-Layth, in 968–969, up to Ibn al-Haytham in the
following century, there are references to what the former calls ‘a treatise by
Archimedes on the construction of the heptagon (Risælat Arshimîdis fî
‘amal al-musabba‘)’. Abº al-Jºd’s contemporary, al-Qºhî, says of this
treatise:

                                    
(Cont.) Now, the equality given by the author – HD·HE + EA2 = AH2 – does not

follow directly from the hypotheses, but is deduced from the required result

 (2) BH = AE = AD.

This is an error in the reasoning, because we cannot suppose that the statement of the
proposition contains an error that affects the lettering, or an error in regard to the required
property. In fact, the results (1) and (2) are correct: we prove (2), and we deduce (1).
Moreover, equality (2), together with the equality HG = AB that is deduced from it, are
used in Proposition 11 to show that area (ABC) = AD · AC.

Note: To show that we have BH = AD = AE, let us consider the centre O of the
circumscribed circle and the point K, the point of intersection of AO and ED. We have
AEO AKEˆ ˆ= , one right angle; so AOE AEKˆ ˆ= . But AEK HEBˆ ˆ= , so AOE HEBˆ ˆ= ; so
triangles AEO and HEB are similar and also have one side equal, because EB = BG =
EO; thus they are congruent, and HB = AE = AD.

Let us show that (2) ⇒ (1). If BH = AD, we also have AE = HB and AB = HG.
Moreover, HG2 = HE · HD, hence AH2 = HB2 + AB2 = HE · HD + AE2.

This proof could not have escaped the notice of either Archimedes or Thæbit ibn
Qurra; it thus rules out any possibility of the text being authentic.

13 We have reached this conclusion after examining all the old biobibliographical
writings.

14 R. Rashed, Founding Figures and Commentators in Arabic Mathematics,
Chapter II, p. 121.
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It is a subtle book whose purpose he (Archimedes) did not fulfil nor did he
achieve his aim in finding the heptagon by a single method, not to speak of
more than one.15

Although the wording is not very precise, it nevertheless (unless we are
determined upon total scepticism) gives us a rational basis for drawing the
conclusion that there existed a text attributed to Archimedes, translated into
Arabic and consulted by the mathematicians of the mid tenth century. What
we need to know is whether that work is the same as the text copied by
MuÒ†afæ ∑idqî. Archimedes’ lemma, which tenth-century mathematicians
found valuable for a variety of reasons, provides a starting point for the
discussion.

In the edition by MuÒ†afæ ∑idqî, the lemma is stated as follows:

Let us suppose we have a square ABCD. We extend the side AB in the
direction of A as far as E; we join the diagonal BC and we put one end of
the ruler at the point D and the other end on the straight line EA which is
such that it cuts EA at the point G and makes the triangle GAH equal to the
triangle CID. We draw from the point I the straight line KIL parallel to AC. I
say that the product of AB and KB is equal to the square of GA, that the
product of GK and AK is equal to the square of KB and that each of the
straight lines BK and GA is longer than the straight line AK.16

AB

CD

EG

H

I

K

Ω

L

Fig. 3.2

In this edition, the lemma is presented as a kind of neusis for carrying
out the division of the line segment, which, according to T. L. Heath, is a
construction problem Archimedes solved ‘by means of a ruler, without
troubling to show how it might alternatively be solved by means of conics
or otherwise’.17 If that is so, the proof follows immediately. From the
equality of the areas AHG and CID, we obtain

DC IL AG AH
AB

AG

AH

IL
⋅ = ⋅ ⇒ = .

15 See below, p. 651.
16 See below, p. 602.
17 T. L. Heath, A Manual of Greek Mathematics, New York, 1963, p. 341.
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Since triangles GAH, GIK and ILD are similar, we obtain

(1) AH

IL

GA

LD

GA

KB

AB

AG

GA

KB
GA AB KB= = ⇒ = ⇒ = ⋅2 .

We also have

(2) IL KA KI BK DL
KA

KB

IL

KI

DL

GK

BK

GK
BK KA GK= = = ⇒ = = = ⇒ = ⋅, 2 .

Finally, GK > AK; so, from (2), KB > KA. But AB > KB, and from (1)
GA > KB, so GA > AK. The inequalities BK > KA and GA > AK follow
from (1) and (2).

It is enough to look at each of the versions of Archimedes’ lemma that
appear in the tenth century to recognize that all of them differ from the
statement we have just cited, insofar as none of them mentions the movable
ruler. Here is how Abº al-Jºd, quoted by al-Sijzî, reports Archimedes’
lemma:

Let us draw the diagonal of the square ABCD, say AC. Let us extend AB to
E, without an endpoint, and let us draw from a point of BE, let it be E, a
straight line to the corner of the square, at the point D, which cuts the
diagonal AC at the point G and the side BC at the point H, so that the
triangle BHE outside the square is equal to the triangle CDG.18

So it is indeed the same figure (almost down to the lettering), but there
is absolutely no sign of the movable ruler. The same is true for all the
versions of this lemma in the writings of tenth- and eleventh-century
mathematicians, and even those of later ones writing in Arabic.

So there is an important and irreducible difference between version of
the lemma known to the mathematicians of the tenth and eleventh centuries
and that attributed to Archimedes in the eighteenth-century manuscript: the
use of the movable ruler. If it had been mentioned, the use of the instrument
could not have escaped the notice of geometers like al-Qºhî and Ibn al-
Haytham. Although perfectly capable of appreciating the ingenuity of the
procedure, they would not have been able to accept it as legitimate, that is as
a technique leading to a valid geometrical construction. We are not putting
forward only an argument ex silentio, because it concerns the very nature of
the work of mathematics, above all when we are considering a scholar as

18 See Book on the Construction of the Heptagon in the Circle and the
Trisection of a Rectilinear Angle of AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl al-Sijzî,
below, p. 631.
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preoccupied with existence questions as Ibn al-Haytham was. Would he, and
his predecessors, have complained about the way Archimedes expressed the
matter? That is hard to believe, it is not his style, no more than it is theirs; it
is more likely that they would have raised the question of whether the
construction was valid. Their books of criticisms indeed show their taste for
this.19

We might hope that there is a way out of this situation by a judicious
deployment of established philological methods. But there is not. A careful
and detailed examination of MuÒ†afæ ∑idqî’s language – a purely classical
Arabic – reveals not even a hint of employing Greek, and does not permit
us to identify any vestige of a translation anywhere in the text. Finally,
perhaps one might reject the idea that Archimedes ever wrote anything on
the heptagon. This solution would be cavalier in several respects.

It does happen that Archimedes proposes problems for which he
sketches the diorism, but says nothing about the solution. One such problem
is the famous lemma in The Sphere and Cylinder mentioned above. The
problem of the regular heptagon could belong in the same category.

Moreover, the problem is one that might have interested Archimedes
for two reasons. As Heath has pointed out,20 the problem of the regular
heptagon very probably derives from that of inscribing regular polygons in
the circle. These questions interested Archimedes. The successful use of
straightedge and compasses to construct the triangle, the square, the
pentagon and the hexagon inevitably suggest looking for an analogous
technique for constructing the heptagon. Archimedes would surely not have
been unwilling to adopt approximation procedures to accomplish this task,
and such a style can indeed be characterized as Archimedean. Finally, if we
look at the figure, if G lies beyond A, we see a solution, and only one,
because, on one hand, DIC decreases from DΩC to zero, and, on the other
hand, AHG increases from zero to infinity. This observation leads to a neusis
that Archimedes could have carried out.

Then, an allusion by Abº al-Jºd refers the reader who wants to solve
the problem of the heptagon by a neusis to Archimedes’ lemma. He writes:

We obtain the well known triangle constructed by Archimedes and others
who have sought to construct the heptagon using an instrument and
movement, with the help of the lemma he had assumed, because the angles
of this triangle follow one another in double ratio.21

19 See the critique of the Almagest by Ibn al-Haytham or his commentaries on
Euclid’s Elements.

20 T. L. Heath, A History of Greek Mathematics, vol. I, p. 235.
21 See p. 619.
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One might see this sentence as referring to a work attributed to
Archimedes that contained Propositions 17 and 18 of the text copied by
MuÒ†afæ ∑idqî.

Putting all this together, we can accordingly say: there was a work on
the regular heptagon attributed to Archimedes; such a work was in
circulation in the tenth century; that two kinds of vestiges of this work have
come down to us: one type in the references by mathematicians of the time,
and the other in the edition by MuÒ†afæ ∑idqî (Propositions 17 and 18), to
which Abº al-Jºd seems to allude; that between the two types there is a
crucial difference that we have no means of reducing. In short, it seems this
work comprised two propositions – which are the origin of MuÒ†afæ ∑idqî’s
version of Propositions 17 and 18 – and that the tenth-century mathemati-
cians ignored the neusis and kept only the two results. That is all we can say,
and from this point on we shall follow tradition by referring to ‘Archimedes’
lemma’.

3.1.3. A priority dispute: aaaallll----SSSSiiiijjjjzzzzîîîî    against AAAAbbbbºººº    aaaallll----JJJJººººdddd

Interest in solid problems had never been so strong as it became in the
last third of the tenth century: the number of such problems continued to
grow, as did the number of mathematicians working on them. There are two
kinds of reason for this. First of all, as we have already emphasized, there is
the part played by new geometrical and algebraic interests.22 Then – and
this is indeed the second reason – the new forms of activity in mathematics
itself and in related sciences provided a solid basis for these interests. We
have already mentioned them but these new forms of activity have not yet
received the attention they deserve: what we have is no less than the
emergence of a new mathematical community, whose members are linked
by exchanges of letters, and face to face conversations in the numerous
salons (majælis), or even at the courts of Kings, Viziers, and around
patrons.23 Previously unknown, this situation had, among other effects, that
of sharpening competition, encouraging challenges and stirring up polemics.
To surpass one’s rivals was a way to draw closer to the centres of power,
even sometimes to reach to the very top.

It is in precisely such communities and such an atmosphere that the
problem of the heptagon was revived. The matter is immediately taken up

22 See R. Rashed and B. Vahabzadeh, Omar Khayyam, The Mathematician.
23 See A. Anbouba, ‘Tasbî‘ al-Dæ’ira (La construction de l’heptagone régulier)’,

Journal for the History of Arabic Science, vol. 1, no. 2, 1977, pp. 352–84;
R. Rashed, Geometry and Dioptrics, Chapter I.
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as a challenge: as witness the writings of eminent correspondents such as
MuÌammad ‘Abdallæh al-Îæsib, AÌmad al-Ghædî (?) and others; the essay
is dedicated to the King in person, as by al-∑æghænî to ‘A≈ud al-Dawla, by
al-Qºhî to him and to his son, Sharaf al-Dawla; competitors are denounced
to the community. In short, the construction of the heptagon acquires a
worldly dimension far more striking than that of any other piece of
mathematical research of the period. That is to say, the heptagon appears on
the scene in an atmosphere of polemics.

The story of what happened with this construction, which we shall
recount here, has been presented twice; similarly that of the polemic. The
first time, it was near the end of the tenth century that a mathematician who,
evidently, did not like Abº al-Jºd composed an essay with the title The
search for the trap laid by Abº al-Jºd. In this hypercritical essay, al-Shannî
– who is the author concerned – even goes so far as invective. The second
time is very recent: A. Anbouba wrote, in Arabic, the first modern history of
the regular heptagon in this period, that is, before Ibn al-Haytham.24 This is
a serious piece of work and in it the author rightly deplores the sometimes
unacceptable remarks made by al-Shannî, but without managing to
completely break free from the influence of the story he tells. So we must, in
turn, exercise particular prudence and submit al-Shannî’s testimony to the
rules of historical criticism.

The story that al-Shannî tells, that is, the first history of the heptagon, is
presented in two parts. In his first section, al-Shannî mentions Archimedes’
lemma, to remind us that it has remained ‘in its state [he means it has not
been solved] until it became possible for Abº Sahl Wayjæn ibn Rustum al-
Qºhî and Abº Îæmid al-∑æghænî, to each of them, to solve it by using

24 A. Anbouba traces the history of the construction of the regular heptagon from
Abº al-Jºd to al-Shannî in his article ‘Tasbî‘ al-Dæ’ira (The construction of the regular
heptagon)’ (cited in our preceding note). At the request of the Journal, he gave a brief
summary of his study in French, entitled ‘La construction de l’heptagone régulier’ (The
construction of the regular heptagon), which appeared in the same Journal, vol. 2, no. 2,
pp. 264–9. Scarecely a year later, we ourselves published ‘La construction de l’hepta-
gone régulier par Ibn al-Haytham’ (The construction of the regular heptagon by Ibn al-
Haytham), which thus completes A. Anbouba’s study, in the Journal for the History of
Arabic Science, vol. 3, no. 2, (1979), pp. 309–87. Readers can find an account in
English, in an article by J. P. Hogendijk, which repeats A. Anbouba’s study, for the
period from the last third of the tenth century, with the addition of an edition and English
translation of the treatise by al-Sijzî and several quotations from various mathematicians
[‘Greek and Arabic constructions of regular heptagon’, Archive for History of Exact
Sciences, 30, 1984, pp. 197–330]. The texts and translations in this work are, however,
far from satisfactory. For example, in a short text by Ibn Sahl – seven lines – we find no
less than ten editorial errors, not to mention the translation (p. 324). For this text,
compare our Geometry and Dioptrics, p. 480.
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conic sections’. In other words, the lemma was proved twice, separately: by
al-Qºhî in 360/969–970 and by al-∑æghænî in 970. The former divided the
straight line segment with the help of a parabola and a hyperbola; as for al-
∑æghænî, his procedure was by means of two branches of a hyperbola (the
two opposing sections) and one branch of another hyperbola.

The second part begins with Abº al-Jºd. Al-Shannî, and despite the
repulsive picture he draws of the man, who is accused of incompetence and
plagiarism, nevertheless attributes to him a division of the straight line
segment, the division we designate below25 as D2. It gives the range of
points that leads to the construction of the regular heptagon. Al-Shannî
complains, however, that Abº al-Jºd has made two errors and left a gap in
his argument. The two errors are the same ones that al-Sijzî had pointed
out at least a quarter of a century before. In the course of the proof, Abº al-
Jºd had replaced the ratio obtained at the end of his division – the correct
ratio – with another one. Worse still, he had not actually proved such a
division was possible. The weakness of which he is accused elsewhere was
sufficient to prevent his noticing that his division is equivalent to that of
Archimedes.

This essay by Abº al-Jºd, the object of such vehement criticisms by al-
Shannî, is dated 358/968–969. So it is the first essay to be mentioned that
deals with the heptagon. Al-Shannî does not explicitly situate it in relation to
the work by al-Qºhî, which was composed about a year later. But he does
suggest that it is in fact the first essay, even though he considers Abº al-Jºd
has not really succeeded. So if he does not place the essay in its proper
position, that is perhaps because he considered it a semi-failure.

It is at this point that al-Shannî mentions the crucial part played by Ibn
Sahl. According to al-Shannî, at the end of the 960s, al-Sijzî, then a young
mathematician, had noticed Abº al-Jºd’s supposed error in the division of
the straight line segment, was himself unable to give a solution, and sent the
problem to Ibn Sahl. The latter then gave the analyse by means of a
hyperbola and a parabola. Al-Sijzî, after having himself carried out the
synthesis corresponding to Ibn Sahl’s analysis, then (allegedly) laid claim to
having carried out the construction of the heptagon. Ibn Sahl’s solution, it is
said, fell into the hands of Abº al-Jºd, who in turn committed the same act
of plagiarism as al-Sijzî. We are told the latter then became angry and wrote
an essay in which he made violent criticisms of Abº al-Jºd.

That is a brief summary of the history of the heptagon as told by al-
Shannî, which can be found in full below.26 We may note that part of the
story has been copied from al-Sijzî, that another part does not correspond

25 See below, p. 341.
26 See Text 1.2.8.
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to what we find in surviving documents, and finally that it is the only source
that describes Ibn Sahl’s intervention in any detail. It is accordingly
necessary to make comparisons between the account given by al-Shannî
and the various other versions that we have at our disposal.

We know that Abº al-Jºd in person composed three essays on the
heptagon. The first, written in 358/968–969, is a letter addressed to a certain
Abº al-Îusayn ‘Ubayd Allæh ibn AÌmad. This is the essay that attracted
the criticism from al-Sijzî and, later on, from al-Shannî. Now, it is precisely
this first essay that reactivates research on the heptagon. But all our
information about it is indirect, since the essay itself is lost. So we are
reduced to taking testimony from Abº al-Jºd and his detractors. We may
note, for the present, that all of them agree that in his essay Abº al-Jºd
reduced the study of the heptagon to that of a triangle of type (1, 3, 3) –
that is, a triangle whose angles are in the ratio 1:3:3 – which has been
constructed from the division of a straight line segment that he proposed.
We shall see later that Abº al-Jºd explains how he was led to take that step.

In the second essay, in which he mentions the preceding one, Abº al-
Jºd writes:

I learned that a certain geometer arbitrarily attributed this construction to
Abº Sahl al-Qºhî, then that he changed part of it and claimed it for his
own.27

This accusation seems to be aimed at al-Sijzî and looks very like a
counterattack on him. Al-Sijzî had indeed just complained of the weakness
of Abº al-Jºd’s proof, and had claimed the correct solution as his own; but
he had made no claim to have proposed the problem himself. Having got
under way at the beginning of the 970s, the series of polemical exchanges
only became more strident. Later on, al-Sijzî himself was to abandon
prudence and address to Abº al-Jºd reproaches that he had not expressed at
the time he made the construction. Thus in A response to the problems
posed by the people of Khuræsæn, he chooses to write:

He (Abº al-Jºd) rejects as ugly all the propositions that it is not possible for
him to understand […] I have told the story, in the preamble of my book on
the heptagon, of the weakness in this art of the man called MuÌammad

27 Abº al-Jºd, On the Construction of the Heptagon in the Circle, which he Sent
to Abº al-Îasan AÌmad ibn MuÌammad ibn IsÌæq al-Ghædî, below, p. 605.
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<Abº al-Jºd> ibn al-Layth, who has taken the lemmas from my book on the
heptagon after having acquired his knowledge in geometry, and has
claimed them as his own.28

To enable us to identify the elements in this dispute, we return to its
beginning, before it took on such breadth, and let us start by listening to
Abº al-Jºd. He writes:

Some years, and no small number of them, after what I did, Abº Sahl al-Qºhî
composed a treatise on this figure, in which he relies upon Archimedes’
lemmas.29

He continues:

Abº Îæmid al-∑æghænî later composed a treatise on this figure, in which he
addressed himself to this square (Archimedes’ lemma) […], and for that he
made use of three hyperbolas, two opposite conic sections and a third one,
in a long construction and using many figures and straight lines.30

 These statements are correct, apart from slight details. Abº al-Jºd’s
detractors are in tacit agreement on this version of events, and the only
point on which they disagree with him is the success of the construction, but
Abº al-Jºd seems to be exaggerating the time that elapsed between his
work and that of al-Qºhî: it is not a matter of ‘some years’, but only about
one year. Taken as a whole Abº al-Jºd’s version thus seems to be correct,
at least in providing the succession of events in the story of the construction.
It could not of course be otherwise, given al-Qºhî’s contribution,
undoubtedly authoritative, and that of al-∑æghænî, Abº al-Jºd’s real
teacher. But, all the same, Abº al-Jºd’s account underestimates al-Sijzî, and
leaves him out of the honourable company of al-Qºhî and al-∑æghænî. In
short, according to Abº al-Jºd, the discovery developed with contributions
from mathematicians in the following order: himself, al-Qºhî and al-
∑æghænî. Al-Sijzî appears only in the wings, for having surreptitiously
‘plagiarized’ the contribution by al-Qºhî. As for Ibn Sahl, he is simply not
there.

Let us now look at al-Sijzî’s version. In a highly rhetorical preamble, he
denounced Abº al-Jºd for his irreverence in regard to Archimedes, the
Geometer, and then censures him for making two mistakes in his proof,
which to al-Sijzî’s mind suffice to deprive him of the desired priority. In
doing this, al-Sijzî draws a less than flattering portrait of Abº al-Jºd

28�Jawæb AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl ‘an masæ’il handasiyya su’ila
‘anhu ahl Khuræsæn, MS Chester Beatty 3652, fol. 55r; Reshit 1191, fol. 114v.

29 Abº al-Jºd, On the Construction of the Heptagon in the Circle, which he Sent
to Abº al-Îasan AÌmad ibn MuÌammad ibn IsÌæq al-Ghædî, below, p. 606.

30 Ibid .
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– making him a second-rate mathematician, if not a downright mediocre
one – and suggests, without saying so explicitly, that he was not familiar
with the properties of conic sections. This picture inevitably caused irritation,
since it is thoroughly belied not only by Abº al-Jºd’s works, but also by the
opinions of his successors, and high-ranking ones, since we mean al-Bîrºnî
and al-Khayyæm.31

As for the accusation of disrespect to Archimedes, which is indeed
repeated by al-Shannî, it seems to arise from a misrepresentation. This is
what al-Sijzî himself cites from Abº al-Jºd concerning Archimedes:

All the criticism of the two authors is directed to the verb bK� . Al-Sijzî
had read it as qallada, and had preferred the sense ‘imitate’ (Ìækæ); al-
Shannî had done the same, and the paragraph we have cited will thus be
translated:

He (Abº al-Jºd) said: among the many lemmas that he introduced for the
division of the circle into seven equal parts, Archimedes imitated a lemma
whose construction he has not shown and which he has not proved; and it
perhaps involves a more difficult construction and a less accessible proof
than the matter for which he introduced it.32

One does not need to be a linguist to find the expression ‘imitated a
lemma’ jarring: one cannot imitate a lemma or a proposition. But the verb
has other meanings that are obviously more natural here, and fit better with
the syntax. There is a choice: either we have the form qalada, or the form
qallada. In the first case, the dictionaries (Ibn ManÂºr, Ibn Færis, Ibn
Durayd al-Zabîdî, etc.) give the sense ‘reunite’, ‘associate’, ‘bind’ one thing
with or to another; in the second case, we find the meanings of the word
include ‘impose’ and ‘require’ (alÂama). So we might read, in one case:
‘[…] Archimedes associated with numerous [other] lemmas a lemma […]’;

31 Al-Khayyæm is ready to speak of ‘the eminent geometer’ in his Treatise on
Algebra, English transl. and commentary in R. Rashed and B. Vahabzadeh, Omar
Khayyam. The Mathematician, pp. 138, 147, 174 (Arabic text in the French edition, pp.
179, 197, 257). Similarly, al-Bîrºnî includes him among ‘the distinguished men of our
time (al-mubarrizºna min ahli zamæninæ ka-Abî Sahl wa-Abî al-Jºd)’, in al-Qanºn al-
Mas‘ºdî, Hyderabad, 1954, vol. I, p. 297. See R. Rashed, ‘Les constructions géométri-
ques entre géométrie et algèbre: l’Épître d’Abº al-Jºd à al-Bîrºnî’, Arabic Sciences and
Philosophy, 20.1, 2010, pp. 1–51.

32 Cf. below, pp. 630–1.
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and in the other case ‘Archimedes imposed with numerous [other] lemmas
a lemma […]’. Whichever of the two forms we choose, al-Sijzî’s objection
no longer applies, and Abº al-Jºd’s paragraph becomes clear, both as to
syntax and as to sense.

Once we have removed this misrepresentation, which was no doubt
driven by the dispute, there remain the two errors Abº al-Jºd is accused of
making. Al-Sijzî, as ever followed by al-Shannî, states that in his letter of
358/968–969, Abº al-Jºd carried out the construction of the heptagon with
the help of four lemmas, which we can rewrite in the form:

1. If the radius of a circle of centre A is equal to the distance from A to a
straight line, then the circle touches this straight line.

2. Draw through a point M of the side AB of a triangle ABC a straight
line parallel to the side AC to cut the side BC in N, and such that MN = CN.

3. Given a straight line AB and the ratio of C to D, to draw a straight

line X such that X

AB
= C

D
.

4. To divide a straight line AB in a point M such that AB · AM = X2 and
X

BM
= C

D
.

We may observe that the proof of 1 is immediate, and that 2 and 3 are
very simple constructions; 4 can be rewritten:

to find on AB a point M such that AB BM

MB

C

D

⋅ =  (a given ratio); in the

case where C

D
= AB

AB + BM
, we have the division of a segment – division D2,

see below – which leads to the construction of the heptagon.
Al-Sijzî’s criticisms are precise. Instead of using the ratio given in 4 in

the course of the proof, Abº al-Jºd replaced it by another ratio.
Contemporaries could check the validity of this criticism, even if we, having
no text, cannot do so. This criticism leads us to the most hotly contested
point of the debate. We shall return to it later.

The second criticism is less clear insofar as al-Sijzî suggests more than
he actually states. He writes:

He (Abº al-Jºd) believed it is possible to construct that (the division and
then the heptagon) by means of the lemma in the fourth proposition. But
the construction is not possible except by means of conic sections, and, for
someone who, in geometry, knows neither the cone nor the sections, it
would be by means of the lemmas presented in the books of the ancients,
thanks to which it is possible to construct the heptagon <that is> for
someone who adds his lemmas to them. But by means of his lemmas, and by
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others analogous to them, it is difficult to find the hexagon inscribed in the
circle […], a fortiori if it is a matter of finding the heptagon.33

What, exactly, is al-Sijzî suggesting by these complicated, not to say
slightly confused, remarks? Perhaps that Abº al-Jºd had not proceeded by
using conic sections, but by using straightedge and compasses. Abº al-Jºd
was replying to this criticism when he wrote: ‘It was not possible for me to
do this (the division of the straight line), except by using two intersecting
conic sections, a hyperbola and a parabola.’34 unless we are to suppose Abº
al-Jºd was not telling the truth about something that was (after all)
verifiable, which is difficult to believe. Perhaps al-Sijzî was insinuating that
Abº al-Jºd was not familiar with conics. That seems equally extreme. Or
perhaps he wanted to imply that Abº al-Jºd’s discussion did not lead to the
required construction. That criticism is also incorrect. Later, al-Shannî
suggests that Abº al-Jºd did not succeed in dividing the straight line. He
even goes so far as to say that al-Sijzî tried to cover up this deficiency, but
without success. Perhaps it was this incomplete, or incorrect, proof that al-
Sijzî meant to complain of in his somewhat Sybilline remarks, when he says
that it was by using conic sections that one might succeed, that if not it was
enough to return to Archimedes’ division with lemmas different from those
employed by Abº al-Jºd. Perhaps he was complaining of Abº al-Jºd’s
initial hesitation before turning to conic sections.

At this moment in the dispute, an entrance is made by one of the most
eminent mathematicians of the time, and the most underestimated until
recent times: Ibn Sahl.

As we have seen, according to al-Shannî, it was Ibn Sahl who provided
the solution for al-Sijzî and Abº al-Jºd then misappropriated it. This is the
story as told by al-Shannî, who, of course, prolonged and revived a dispute
that by then was already about a quarter of a century old.

This version is not correct; at the very least we can set against it the fact
that on two occasions al-Sijzî acknowledges his indebtedness to Ibn Sahl. At
the beginning of his treatise on the regular heptagon, he says he profited by
‘the mathematical learning of Archimedes and the preliminary parts of
Apollonius, and in particular that of moderns such as al-‘Alæ’ ibn Sahl.’
More importantly, when he comes to the division, he writes:

33 Cf. below, p. 633.
34 Treatise by Abº al-Jºd MuÌammad ibn al-Layth Addressed to the Eminent

Master Abº MuÌammad ‘Abd Allæh ibn ‘Alî al-Îæsib on the Account of the Two
Methods of the Master Abº Sahl al-Qºhî the Geometer, and of his Own Master Abº
Îæmid al-∑æghænî, and on the Route he Himself Took to Construct the Regular Hep-
tagon in the Circle, below, p. 622.
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Abº Sahl al-‘Alæ’ ibn Sahl has proved this proposition by using the method
of analysis and our synthesis is a part of his analysis.35

What al-Shannî says is thus incorrect. Moreover, if Abº al-Jºd had
done what al-Shannî accuses him of doing – if he had laid claim to Ibn
Sahl’s solution – it could not, in any case, have been in the letter of
968–969, the subject of the dispute. Abº al-Jºd’s later versions of the
matter will be considered below. However, we may say at once that if they
had been under scrutiny, al-Sijzî, as a declared enemy of Abº al-Jºd, could
hardly have failed to mention the fact. And he does not mention it.

Finally, still according to al-Shannî, al-Sijzî had addressed another
question to Ibn Sahl. This is confirmed by another source: the Book on the
Synthesis of Problems Solved by Analysis by Abº Sa‘d al-‘Alæ’ ibn Sahl.36

The matter in hand was a sort of generalization of Archimedes’ lemma to
the case of a parallelogram. Ibn Sahl had given the analysis, and it is al-
Shannî himself (not Abº al-Jºd as A. Anbouba inadvertently implies37) who
set out the synthesis for this analysis.

The moment has at last come for us to examine the first criticism al-
Sijzî addresses to Abº al-Jºd, a criticism repeated by al-Shannî. It is
important because it allows us to pinpoint a matter of key significance in the
construction of the heptagon, but, in the absence of the document (Abº al-
Jºd’s first essay), it is not possible to decide whether the criticism is justified.
We need to try come closer to answering the question raised by this
criticism: what relationship is there between Abº al-Jºd’s four lemmas and
his lemma on the division of form D2 that he proposes, and consequently the
construction of the heptagon? We want to know whether the error that al-
Sijzî, followed by al-Shannî, accuses Abº al-Jºd of making lies in the
conception of this relationship and in the course of the proof of the lemma
on division D2. Al-Sijzî’s attitude, which at the very least is equivocal,
complicates the issue, which is already made difficult by our not having Abº
al-Jºd’s essay: in the passage we have already quoted, he states, in the
clearest possible terms, that Abº al-Jºd made use of the four lemmas to
construct the heptagon, a procedure for which he is sharply upbraided. But
al-Sijzî also states that, in the proof of the lemma on division D2, he did not
use the ratio established by the last of this group of four lemmas, but instead
had recourse to another ratio, a complaint that is in contradiction with the

35 Al-Sijzî, Book on the Construction of the Heptagon in the Circle and the Tri-
section of a Rectilinear Angle, below, p. 635.

36 R. Rashed, Geometry and Dioptrics, pp. 7–10, 329ff, 480 ff.
37 Although it is of no consequence in A. Anbouba’s study, this inadvertent mis-

take, when it happens to be combined with an astonishingly faulty edition of Ibn Sahl’s
paragraph, has had serious consequences later. See note 24.
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previous one. To say the least, al-Sijzî’s position requires some clarification.
The fourth lemma in the group we mentioned raises a precise question, that
of finding the point M on a given segment AB such that

AB AM X⋅ = 2  and 
X

MB
= C

D
,

where C

D
 is a given ratio.

Point M can thus be defined by the equation

AB AM

MB

C

D

⋅ =2

2

2 .

To understand what Abº al-Jºd conceives to be the relationship
between this lemma and the one that gives the division D2, we need to
answer the following questions: Did Abº al-Jºd believe he was dealing with
a neusis or with an acceptable geometrical construction? Had he noticed the
difference between this construction and that of division D2, or did he regard
them as the same? Finally, assuming he did distinguish between them, why
did he introduce this fourth lemma?

The first question can be disposed of quickly, thanks to an anonymous
text.38 The unnamed author more or less repeats Abº al-Jºd’s lemma.
Perhaps he knew Abº al-Jºd’s essay. Or perhaps he had come upon the
problem independently in the course of his own researches. At present we
cannot make any comment at all on these possibilities. But what matters to
us here is to see how a mathematician belonging to this tradition dealt with
this problem; he does so as follows.

He starts with two segments EG and EH such that

EG2

EH2
= ′C

′D
,

and poses the problem of constructing the point M such that

AB AM

BM

C

D

⋅ = ′
′2 .

We may note that this will correspond to Lemma 4 if we put

38 This text was noted by J. P. Hogendijk, who translated a short paragraph from
it. He thought this paragraph gave a neusis. See ‘Greek and Arabic constructions of the
regular heptagon’, pp. 246–8.
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′C

′D
= C2

D2
,

hence

 
EG

EH
= C

D
.

If we are given EH, then EG is the segment defined by Abº al-Jºd’s third
lemma.

To carry out his construction, the anonymous author begins by giving a
lemma that shows that if two ranges (A, M, B) and (G, I, K) are similar, then

AB AM

MB

GK GI

IK

⋅ = ⋅
2 2 .

 The converse of this lemma is easily shown to be true, even if the
author neglects to do so. In any case, it is the converse he uses. He
constructs the range (G, I, K) such that

GK GI

IK

EG

EH

⋅ =2

2

2 ,

and from this he derives a similar range on the given segment AB. He then
carries out the construction. We take EG ⊥  EH and draw from G a straight
line to cut the circle (H, HE) in I and K such that IK is the side of the
regular hexagon inscribed in the circle. As for constructing the straight line,
the author writes ‘that is possible for us’, and it is thus within the capabilities
of any mathematician of the time.

G
I

T

K

E
H

X

YZ

Fig. 3.3
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Let ZY = HE be a side of the hexagon and X the midpoint of ZY; the
circle (H, HX) is then the circle inscribed in the hexagon. If from G we draw
a tangent to this circle, the tangent will cut the circle (H, HE) in I and K and
we have IK = ZY = HE. This is a classical construction using straightedge
and compasses. The point T, the point of contact of the tangent from G, is
the point of intersection of the circle (H, HX) and the circle with diameter
GH. We have

EG2 = GI · GK  and  IK = HE,

so
KG GI

IK

EG

EH

⋅ =2

2

2 .

It follows, from the converse of the lemma we mentioned above, that
the range (G, I, K) is similar to the range (A, M, B).39 So the construction
can be carried out by means of straightedge and compasses, making use of
the circle inscribed in the hexagon. This explains why, on the one hand, the

39 A segment equal to the segment GK is drawn parallel to the given segment AB .
There are two possible cases:

1) AB ≠ GK. The lines AG and BK cut one another in O, and the line OI cuts AB at
the required point M (homothety).

AB

GK

O

I

M

Fig. 3.4

2) AB = KG. In this case AG and BK are parallel, and we draw IM || GA. The divi-
sions are then equal, and correspond to one another by translation.

AB

GK I

M

Fig. 3.5
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author writes: ‘That is possible for us’, and on the other hand supposes the
construction to be known, as we see in his reference to the hexagon.40

It does not seem rash to claim that a mathematician of Abº al-Jºd’s
stature could have carried out this construction. But that still leaves the
difficulty of accounting for al-Sijzî’s formulation of the problem, according
to which it is difficult to construct the hexagon with Abº al-Jºd’s lemmas
and analogous results. The remark is astonishing in more than one respect,
since al-Sijzî knew better than anyone that these lemmas are not required
for the construction in question, for which one merely needs to use the
compasses to make a chord equal to the radius of the circle. That is,
moreover, what he is talking about when he writes that carpenters carry out
this construction ‘with one simple opening of the compasses’.41 Perhaps, in
the heat of the conflict, he merely meant to say that Abº al-Jºd’s lemmas
are not used in constructing the hexagon and they would only complicate
something simple.

Let us now return to the difference between the ratio used in this lemma
and the one considered in the lemma for Abº al-Jºd’s division D2.

In the fourth lemma, the length X is defined by a given ratio, whereas in
the expression for the division D2 this same length is defined by a ratio that
depends on the required point M.

If M is a general point on the given segment AB, and ABC is a triangle
such that BC = BM, Abº al-Jºd’s Lemma 2 allows us to construct a point E
such that EG || BC implies EG = BE. Then

EG

BM
= EG

BC
= AE

AB
= EG + AE

AB + BM
= AE + BE

AB + BM
= AB

AB + BM
;

so we have
EG

BM
= AB

AB + BM
,

a relation that holds for any point M on AB.
If we put EG = X, we have

X

BM
= AB

AB + BM
.

The point M required by Abº al-Jºd must satisfy this equality, but also

40 To say that this construction is a neusis (see note 37), rather than an acceptable
geometrical construction, is thus obviously untrue, and the construction that uses an arc
of 120° follows immediately from the properties of the hexagon.

41 See below, p. 633.



AL-SIJZï AGAINST ABª AL-JªD 313

X2 = AB · AM,

where the length X is an auxiliary length defined by a ratio that depends on
M.

A B

G

EM

C

Fig. 3.6

So the construction of point M cannot be carried out by a method
analogous to the one used for the point M of the fourth lemma, where X
was defined by a known ratio. It is accordingly inconceivable that Abº al-
Jºd could have used Lemma 4 in constructing the division D2. Indeed,
neither al-Sijzî nor al-Shannî accuses him of making such an error. For
example, after quoting Abº al-Jºd’s fourth lemma, al-Shannî writes:

He considered this ratio and later in the construction of the heptagon he
used another ratio, different from the one he had introduced.42

So Abº al-Jºd seems not to have confused these two lemmas, or the
two ratios. Why then did he give the four lemmas? Perhaps, at first, before
he had fully realized that constructing the heptagon is a solid problem, he
believed his lemmas might allow him to find a construction for the heptagon.
An error he then immediately corrected by making use of another ratio,
whereas the point M is found by the intersection of two conic sections. This
seems to be the only possible explanation we can offer, and if it is correct
then it was presumably Abº al-Jºd’s uncertainty that attracted blame. This
explanation, or something like it, would also account for the somewhat
contradictory statements made by al-Sijzî as well as the claims of Abº al-
Jºd.

The controversy whose main outlines we have just sketched allows us at
least one advantage: it identifies the groups that took part in the work on
constructing the heptagon, and shows, behind the sometimes acrimonious
exchanges, something more or less like collaboration, forced but productive.

The first grouping is that of Abº al-Jºd and al-Sijzî, with whom, as it
were without prior consent, Ibn Sahl was also associated. Abº al-Jºd

42 Book on the Discovery of the Deceit of Abº al-Jºd concerning the Two Lem-
mas he Introduced in order to Construct the Heptagon, see below, p. 675.



314 CHAPTER III: PROBLEMS OF GEOMETRICAL CONSTRUCTION

proposes a division D2 of a segment, which seemed to him to be rather
better than that proposed by Archimedes (in fact the divisions are
equivalent). His proof was undoubtedly imperfect in some respects;
accordingly, al-Sijzî turns to Ibn Sahl to request that he provides a rigorous
proof. So the latter probably became involved in the controversy without
making a deliberate choice in the matter. Thanks to Ibn Sahl, al-Sijzî gave a
proof of Abº al-Jºd’s division D2.

The second group consists of mathematicians of the calibre of Ibn Sahl,
who are obviously above the controversy. In any case, they took no part in
this dispute. Each one of them starts with Archimedes’ division D1, which
they all prove, and then construct the heptagon. Notable examples are al-
Qºhî and al-∑æghænî, with whom Abº al-Jºd later allies himself.

Abº al-Jºd intervenes again to propose another division, D3. As for al-
Shannî, he has a dual role: as a historian who is directly involved in the
dispute he reports events and stokes the fire of controversy; as a
mathematician he proves several interesting propositions.

This is the varied and polymorphous tradition that Ibn al-Haytham
brings to a close by making it systematic. To show how much ground was
covered, we shall organize our account round the successive forms of
division, together with the constructions they enabled, beginning with
Archimedes’ division, even though it was in effect taken up again after that
of Abº al-Jºd.   

3.1.4. The lemmas for the construction of the heptagon: the division of
a segment

To understand the part played by the various lemmas – Archimedes’
lemma and the other ones – that were necessary for the construction of the
heptagon, specifically in the last third of the tenth century, we shall first of all
take a look at the problem of the heptagon itself.

 Let us consider a regular heptagon (ABCDEFG) inscribed in a circle.

The side of the heptagon subtends at the circumference an angle α = π
7

. If

we draw the chords AB, AC, AD, AE, AF, AG, BC, CD, DE, EF, FG and
CF, the angles we obtain are thus all α or a multiple of α. The triangles

defined in terms of this measure α are (see Fig. 3.7):

T1   Triangles ABC or AGF, type (1, 5, 1)
T2   Triangles ADC or AEF, type (1, 2, 4)
T3   Triangle ADE, type (1, 3, 3)
T4   Triangle ACF, type (3, 2, 2).
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As we have already mentioned, Ibn al-Haytham was the first to state
that there are only these four types, and he investigated all of them. In
contrast, his predecessors had only investigated one or two types at a time.
Thus it is these triangles that we shall find in the treatises on the regular
heptagon.

A

B

C

DE

F

G

1
2

3

5 5

3

2

22

2

2

1 1 1
11

1

Fig. 3.7

Examining the construction of each of these triangles leads to one or
more types of division of a given segment into two or three parts. However,
these divisions can only be obtained by using the intersection of conics. Let
us go through them systematically. The first division to be proposed is that
of Archimedes’ lemma.

3.1.4.1. Archimedes’ division (D1)

Archimedes’ division appears in two textual traditions, that of the
mathematical writings of the last third of the tenth century, and that of the
eighteenth-century manuscript, that is, the edition by MuÒ†afæ ∑idqî.
Happily, these two traditions are in agreement, and allow us to present
Archimedes’ lemma in the following terms:

Let there be a segment [AB]; let us divide it in the points C and D such
that

(1) BD2 = AD · CD, (2) AC2 = CB · BD.

B D C A

Fig. 3.8

If now, starting from that division, we construct a point E such that
DE = DB and CE = CA, we obtain four triangles EDC, EDB, ECA and
BAE, which are respectively of types T2, T4, T1 and T2.
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BDCA

E

Fig. 3.9

To understand how research on this lemma unfolded from the 960s
onwards, we need to distinguish three stages. The first, about which we have
only slender information, saw the reception of the text attributed to
Archimedes and its translation. Here all we know is contained in the two
clues to be found in the edition by MuÒ†afæ ∑idqî. In the second stage,
mathematicians set about research, they begin to want to provide a solid
basis of proof for the lemma; this period is marked by the intervention of
Ibn Sahl. Finally, at the third stage, when Ibn Sahl’s competitors come to
grips with the lemma, we wish to speak in particular of al-Qºhî and al-
∑æghænî. That is the overview of our account.

3.1.4.1.1. First stage: the division in the text attributed to Archimedes

We have seen that in the lemma (Proposition 17 of MuÒ†afæ ∑idqî’s
edition), the author gives the range (A, C, D, B) that satisfies equations (1)
and (2). In proposition 18, he constructs on the segment DC the triangle
DEC such that DE = DB and CE = CA, and shows that triangles DEC and
EAB (triangles of type (1, 2, 4), although the author does not say so) are
similar. He deduces that

DEC EAB AECˆ ˆ ˆ= = .

The straight lines EC and ED cut the circumcircle of triangle AEB at the
points G and H; we thus have HG GA BE= = . He then shows that each of
the arcs AE and BH is double each of the preceding arcs. If M and N are
respectively the midpoints of the arcs AE and BH, then AMEBNHG is a
regular heptagon.

If we turn back to the earlier summary of Archimedes’ procedure, we
can see he does indeed start from a given segment AB, on which he
supposes the points of the range (A, C, D, B) of type D1 to be known. He
next constructs on AB a triangle of type (1, 2, 4), then its circumcircle, and
from that he finds the heptagon.
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Fig. 3.10

We need to emphasize what distinguishes this procedure from that of all
the tenth-century mathematicians. In all the treatises we have been able to
examine, the author starts by constructing one of the four triangles T1, T2,
T3, T4, then inscribes in the given circle a triangle similar to the triangle just
constructed.

With this difference in mind, let us now present Archimedes’ procedure
as it appears in MuÒ†afæ ∑idqî’s edition.

Let there be the range (A, C, D, B) that satisfies (1) and (2). From the
lemma, we have AC > CD and BD > CD. Let us construct the triangle ECD
such that CE = CA and DE = DB. We draw the circumcircle of triangle
EAB (a triangle of type T2, although the author does not mention the fact);
the straight lines EC and ED cut the circle in G and H, the chord BG cuts
EH in I. We have EAC AECˆ ˆ= , so AG EB= .

From equation (1), we have AD

BD
= BD

DC
= DE

DC
, so triangles AED and CED

are similar, and GH EB AG= = .
So we have ABG EABˆ ˆ= , hence GB || AE. Angles CEI and CBI are

equal, points C, E, B, I are concyclic, and DCI DICˆ ˆ= , so CD = DI and
CE = IB.

From equation (2) and the equalities EC = CA, DB = DE and CB = EI,
we get

EI DE EC
EC

ED

IE

EC
⋅ = ⇒ =2 ,

so triangles CED and IEC are similar, and DCE EICˆ ˆ= .
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But DCE CAEˆ ˆ= 2 , so CIE CAEˆ ˆ= 2 . Moreover, CIE CBEˆ ˆ= , so
CBE CAEˆ ˆ=  and AE BE= 2 . Similarly, DBE DEB CAEˆ ˆ ˆ= = 2 , so
HB BE= 2 .

If we divide the two arcs AE and HB in half at the points M and N, the
circle will be divided into seven equal arcs and AMEBNHG will be the
required regular heptagon.

3.1.4.1.2. Second stage: Ibn Sahl

According to al-Sijzî, and later also al-Shannî, the period of proofs of
Archimedes’ lemma begins with Ibn Sahl. It is no surprise to find that Ibn
Sahl is also the first to attempt to generalize this lemma to the parallelogram.

If we are to believe al-Shannî, al-Sijzî asked Ibn Sahl two questions.
The first relates to the proof of Abº al-Jºd’s division – a division equivalent
to that of Archimedes. Ibn Sahl gave a proof that used a parabola and a
hyperbola. It is al-Sijzî who, in a way, preserves this method and Ibn Sahl’s
result, in carrying out the synthesis of Ibn Sahl’s analysis; furthermore, let us
remind ourselves, he was scrupulous in acknowledging his debt to Ibn Sahl.
The second question al-Sijzî asked Ibn Sahl is reported by al-Shannî, who is
(precisely) engaged in carrying out the synthesis of Ibn Sahl’s analysis. Here
is that second question:

ABCD is a parallelogram in which there has been drawn a diagonal which is
BC; the side CD has been extended indefinitely in the direction of D. How
may we draw a straight line, say the straight line AEGH, in such a way that
the ratio of the triangle BEG to the triangle GDH is a given ratio?43

A B

C D

E G

I

H

Fig. 3.11

This is the question as reported by al-Shannî in his essay on the
heptagon. We find confirmation of the terms of the question in a text that
was certainly also written by al-Shannî, the Book on the Synthesis of the
Problems Analysed by Abº Sa‘d al-‘Alæ’ ibn Sahl.44 From reading this
text, we understand that Ibn Sahl’s purpose – and very probably that of al-
Sijzî when he raised the question – has two parts: to prove Archimedes’

43 See below, p. 678.
44 R. Rashed, Geometry and Dioptrics, p. 472ff.
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lemma in the case of the parallelogram; to find the ratio between areas, a
ratio that is not unity, by looking at another triangle, that is to say by slightly
departing from Archimedes’ approach. We have two reasons for this
interpretation: the manner in which contemporaries such as al-Shannî
understood the problem; and, further, the mathematical analysis of the
synthesis given in this book, which we shall not consider here. In fact, for al-
Shannî the matter is entirely that of generalizing Archimedes’ lemma.
However, the question addressed to Ibn Sahl and the construction he
proposes, which shows through in the synthesis given by al-Shannî, lead to
a solution in the case where we are comparing the areas of triangles BEG
and GDH, whereas Archimedes’ problem considered triangles AEB and
GDH. We show that the two problems are not identical.45 Ibn Sahl himself
acknowledged that his construction does not solve the problem of
Archimedes’ lemma in this case. In a famous text he writes:

As for the means of extending mathematical knowledge by giving the ratio
between the two triangles DCG and LAE (here EBG and GDH), there is no
method that comes to mind for leading us to determine it by analysis, nor for
obtaining a lemma, and if we had found an approach that allowed us to
achieve it, we should have held to it so as to have knowledge of that which
escaped until it could be shown to follow.46

 While he acknowledges Ibn Sahl’s eminence as a mathematician, al-
Shannî never the less launches into a diatribe against him, accusing him of
vanity. No doubt al-Shannî had become confused and had failed to notice
that this problem was different from that considered by Archimedes. His
confusion is the more surprising since he had himself correctly copied out
the precise quotation. He actually writes ‘the triangle CGD’ – here BEA –
instead of ‘triangle CGE’ – here BEG. His own words are:

I say: if the plane figure ABCD is a square, and if the ratio of the two
triangles is the ratio unity, then it is the same figure introduced by
Archimedes for the construction of the heptagon, and for which Abº Sahl
Wayjan ibn Rustum al-Qºhî followed the method of dividing a straight line
into three parts in a ratio that must occur.47 If, later, the ratio of the two
triangles is a different ratio, then, from the figure constructed by Abº Sahl,
the straight line is divided in the ratio we mentioned […].48

Al-Shannî gives a summary of al-Qºhî’s solution for the case of the
square, using an equilateral hyperbola and a parabola, a solution we shall

45 See R. Rashed, Geometry and Dioptrics, pp. 324–34.
46 Ibid., p. 480.
47 The expected ratio is K/L ≠ 1.
48 See R. Rashed, Geometry and Dioptrics, p. 480.
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examine presently. He then adapts al-Qºhî’s construction to the case of the
parallelogram. Here, briefly, is his solution, using his own lettering.

Let there be a parallelogram ABEG, on whose side AB we have the
range (A, C, D, B). The straight line GD cuts the diagonal in I and the
produced part of EB in M.

A

B

C

D
E

G

I

M

Fig. 3.12

We want
area
area

( )
( )
BDM

GIA

K

L
= ≠ 1.

Let there be two segments CD, DE, such that DE ⊥  CD and DE = DC;
the parabola P  with vertex C, and latus rectum DE; the hyperbola H  with

axis DE and latus rectum H defined by H

DE
= K

L
. The two curves cut one

another in four points; let G be the point of intersection that is projected into
I and B, which lie on DE and CD respectively.

A

C

D

B

E
I

G

Fig. 3.13

We obtain
GB CB DE CB CD2 = ⋅ = ⋅     (from the parabola)

and

GI EI ID
H

ED
EI ID

K

L
2 = ⋅ ⋅ = ⋅ ⋅  (from the hyperbola).
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If we produce DC beyond C by a distance AC = GB, we have

(1) AC CB CD2 = ⋅ ,

(2) BD AD AC
K

L
2 = ⋅ ⋅ .

If the range (A, C, D, B) on the side of the parallelogram satisfies equations
(1) and (2), then from (1) we deduce that if we draw from the point C a line
parallel to AG, it cuts AE and GD at the same point, that is, in I. From (2)
we get

BD

AD AC

BM

AG

DM

IG

K

L

2

⋅
= ⋅ = ;

from which the result follows.49

The inspiration for this approach is very much drawn from the work of
al-Qºhî, so that it is indeed as if we had a commentary on Ibn Sahl’s study
written in the light of a reading of al-Qºhî.

3.1.4.1.3. Third stage: al-Qºhî and al-∑æghænî
3.1.4.1.3.1. Al-Qºhî: the first treatise

Round about the 970s, two mathematicians picked up the problem as
Archimedes had left it. Nothing in the three texts composed by these
mathematicians suggests they had played the slightest part in the famous
controversy. Perhaps they did not know of its existence, or perhaps they
simply wished to avoid becoming involved in it. We do not know, but what
concerns us here is that both of them used Archimedes’ range and carried
out their construction of the heptagon as Archimedes had wished, starting
from the triangle (1, 2, 4). This is what al-Qºhî did in a first essay on the
subject.

In this work, which is dedicated to the King himself, ‘A≈ud al-Dawla,
al-Qºhî proceeds by analysis and synthesis. So he has decided his treatment
of the problem shall be complete. His starting point is an analysis of the
problem itself.

Let us suppose that the chord BC is the side of the regular heptagon
inscribed in the given circle, and A is the point on the circle that satisfies the
equation AB BC= 2 ; so A is a vertex of the heptagon. From this we deduce
that

49 Geometry and Dioptrics, pp. 324–34.
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ABC ACB BACˆ ˆ ˆ= =2 4 .

A

B C

D

Fig. 3.14

Al-Qºhî naturally goes on to an analysis of the construction of a triangle
(1, 2, 4) with apex at the point A and base BC. He shows that this analysis
leads to the range used by Archimedes (E, B, C, D).

A

E
B C D

12 4

1 1

2

2

Fig. 3.15

Let us produce BC in both directions, to give points D and E with BE =
BA and CD = CA. Triangle ACD is isosceles, so BCA CAD ADBˆ ˆ ˆ= =2 2 .
Now BCA BACˆ ˆ= 2 , hence BAC ADBˆ ˆ= ; triangles ABD and ABC are

similar, hence DB

AB
= AB

BC
; so we have AB2 = BC · BD, that is,

(1) BE2 = BC · BD.

Similarly, ABC BAE AECˆ ˆ ˆ= =2 2 . Now ABC ACBˆ ˆ= 2 , so ACB BAEˆ ˆ= ,
and the two triangles ACE and ABE are similar; hence CE

EA
= EA

EB
; so we have

AE2 = CE · EB. But, EA = AC = CD, so

(2) CD2 = CE · EB.

Now (1) and (2) define Archimedes’ range.
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The above analysis shows that a (1, 2, 4) triangle is associated with that
range. It is clear that triangle ACD is of the type (1, 5, 1) which leads to the
construction of the heptagon. For this reason al-Qºhî returns to the same
figure in a second essay in which he considers this triangle.

In the following propositions – numbers 3 to 5 – al-Qºhî uses analysis
and synthesis to carry out the construction of a range (A, B, C, D) of type
D1. Thus, in Proposition 3 of his treatise, completed by Proposition 4, he
gives the analysis that leads to the parabola and hyperbola that allow the
range to be constructed. In Proposition 5, he gives the synthesis to which we
shall now turn, keeping the lettering and the figure used for the analysis.

DB

E

IG

C A

<J>

<D  >

<A  >′

′

Fig. 3.16

Let CD be a given segment and CE a segment such that CE ⊥  CD and
CE = CD. Let us consider the parabola P  with vertex E, axis EC and latus
rectum DC, and the hyperbola H  with vertex C, transverse axis DC and
latus rectum DC. The two curves cut one another at the point I. Let us
draw IA || CE and IG || CD; let us produce CD by a length DB equal to AI.
Then we have EG = CB, because CG = AI = DB. But, since I ∈ P, we have
IG2 = EG · CD, so

(1) AC2 = CB · CD,

and since I ∈ H,  we have IA2 = AC · AD, so

(2) DB2 = AC · AD.
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So if we take the segment CD, we can construct P and H, and from
their point of intersection I we can find the points A and B such that (A, C,
D, B) is a range of the kind given by Archimedes.

We may note that the parabola P cuts the straight line DC in a point D′
symmetrical with D with respect to the point C, and that P cuts H in two
points J and I. The point I chosen by al-Qºhî is the appropriate one,
because CA > CD′, so CA > CD, a condition the author’s analysis establishes
as necessary; whereas J would give us A′ with CA′ < CD.

Once again, the problem has one and only one solution. Let us turn to
an analytical method of finding the point I.

Let CA, CE be orthogonal axes (Cx, Cy), with DC = a and CE = a. The
equation of the parabola P  with vertex E, axis Cy and latus rectum a is

x2 = a a − y( ).

The equation of the hyperbola H  with vertex C, transverse axis DC and
latus rectum a is

y2 = x a + x( ) ,

and the equation for the abscissae of the points of intersection is

x3 − ax2 − 2a2 x + a3 = 0,

which has three roots x1 < 0, 0 < x2 < a and x3 > a. It is this third root that
satisfies the conditions of the problem.

In the following proposition, the sixth, al-Qºhî proves the converse of
Proposition 2 (which was an analysis), namely that with a range (A, C, D, B)
of type D1 we can associate a triangle with base CD, of type (1, 2, 4).

We first construct Archimedes’ range with points in the order (A, C, D,
B), such that equations (1) and (2) are satisfied, using the method of the
preceding proposition. Now we know that BD + AC > DC; so we can
construct the triangle DCE such that DE = DB and CE = CA.

We produce EC by GC = CD, we then have EG = AD. We have

BC CD AC EC⋅ = =2 2 ,

so
BC

EC
= EC

CD
.
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AB
CD

E

G

Fig. 3.17

Triangles BCE and DCE are similar, with common angle C. But

(3) EDC DBE BED EBD CEDˆ ˆ ˆ ˆ ˆ= + = =2 2 .

In the same way

ECD CDG CGD DGCˆ ˆ ˆ ˆ= + = 2 ;

moreover DA · AC = DB2, hence GE · EC = DE2; so we have

GE

DE
= DE

EC

and triangles GED and DEC, which have a common angle E, are similar. In
consequence

DGC EDCˆ ˆ= ,

so

(4) ECD EDCˆ ˆ= 2 .

So we deduce from (3) and (4) that

ECD EDC CEDˆ ˆ ˆ= =2 4 .

So triangle ECD gives a solution to the problem.

In Proposition 7 al-Qºhî finally carries out the construction of the
heptagon, by drawing in the given circle a triangle ABC similar to the
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preceding one; the arc CB will be a seventh of the circumference and the
chord CB will be the side of the heptagon.

3.1.4.1.3.2. Al-∑æghænî
It was scarcely two years after Abº al-Jºd, still closer in time to Ibn

Sahl, and less than a year after al-Qºhî, that al-∑æghænî attacked the
problem of Archimedes’ lemma and the construction of the heptagon. He
completed a first essay intended for the Library of the King, ‘A≈ud al-
Dawla. He then returned to this essay and wrote a second one, also
dedicated to the King. It is this second composition that has come down to
us.

As regards the history of the problem, al-∑æghænî is rather discreet. He
merely remarks that ‘the determination of the chord of the heptagon
resisted the efforts of geometers’, and that ‘Archimedes had stated a lemma
whose proof would have made it possible to find the chord of the heptagon’;
and that ‘this is how the problem has made its way down to our own
time’.50 The most one might detect in this is an allusion to the research
being directed to the problem. All the same, this study by al-∑æghænî is one
of the most detailed.

A B

H

C

Fig. 3.18

He begins by proving that if A, H, B, C are four consecutive vertices of
a regular heptagon, then ABC ACB BACˆ ˆ ˆ= =2 4 . So triangle ABC is of type
T2 (1, 2, 4).

We may note that triangle AHB is of type T1 (1, 5, 1). Al-∑æghænî then
states that, if one knows how to construct T2, the problem of constructing
the heptagon is solved.

50 See below, p. 661.
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The propositions that follow are dedicated to investigating this triangle.
First proposition: Let there be a triangle ADU such that ˆ ˆ ˆU D A= =2 4 .

We produce the base DU in both directions, making DH = DA and
UB = AU.

A

BH D U

Fig. 3.19

We have
AUD ABU BAUˆ ˆ ˆ= =2 2 ,

hence BAU ADUˆ ˆ= ; so triangles ABU and ADB are similar and isosceles,
AD = AB. Thus we have

DB

AB
= AB

BU
,

hence AB2 = DB · BU, or again DH2 = DB · BU.
Similarly, ADU DAU AHUˆ ˆ ˆ= =2 2 , so DAU AHUˆ ˆ= ; so triangles AUD

and AUH are similar, and we have

UH

AU
= AU

UD
,

hence AU2 = UD · UH, or again BU2 = UH · UD.
Thus the analysis shows that the triangle ADU of type (1, 2, 4) is

associated with Archimedes’ range, that is, D1, (B, U, D, H).

In the second proposition, al-∑æghænî considers such a range, lettered
(A, E, D, B), and on AD constructs the square AFID; the straight line FB
cuts ID in K and IA in H. We draw HC || ID. We then show that:

• the points C and E coincide
• area (IFH) = area (KBD).
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AB CD E

FG

H

I

K

Fig. 3.20

In the third and fourth propositions, al-∑æghænî starts with a square
ABDC with diagonal BC, and shows, by analysis and synthesis, how to
construct a straight line from A to cut BC in E and BD in H in order to give
us area (AEC) = area (GDH).

A

BDH

I

I

K

L C

E

<Y>

O

Q
X

G

P

′

Fig. 21

Let us begin with the analysis and let us suppose that AH is the required
straight line, L the fourth vertex of the rectangle ABHL and XC the line
parallel to AH that cuts HL in K and BD in I′. We have AC = I′H. Since

area (AEC) = area (GDH) and EAC GHDˆ ˆ= ,

thus
AC · AE = HD · HG,

hence
AC

DH
= GH

AE
;
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but
AC

DH
= AG

GH
,

so we have
GH

AE
= AG

GH
,  

hence
GH AG AE2 = ⋅ .

But in triangle ACG we have AG · AE < AC2 (because AE < AY if
CY ⊥  AG), so GH < AC, hence KC < AC < CX. We mark on CX a point O
such that CO = KC = GH, so we have OC2 = AG · AE.

The hyperbola H1 that passes through A and has asymptotes CB and
CD also passes through O.51

Moreover, the hyperbola H2 that passes through C and has asymptotes
BX and BI′  also passes through K, because XC = KI′.52

We know that CL < GH < AC; let I be a point on CL produced such
that CI = CA. The two points I and K are symmetrical to A and O with
respect to C which is the centre of H1, so the second branch of H1 passes
through K and I. So the point K, the point of intersection of H1 and H2, is
known, and the straight lines CK and AH are thus known.

In the fourth proposition al-∑æghænî carries out the synthesis for this
analysis.

We take a square ABDC with diagonal BC, and a point I on AC
produced such that CI = CA. We draw the hyperbola H1, with asymptotes
CB and CD, one of whose branches passes through A; so the other branch,
KI, passes through I. We then draw the hyperbola H2 that passes through C
and has asymptotes BA and BD. The branch KI of H1 cuts the two parallel
lines AI and BD; so it cuts H2 in a point K lying between the lines AI and
CD. The straight line KC cuts AB in X and BD in I′. We draw KH ⊥  BD;
we join AH, it cuts CB and CD in E and G respectively.

We then show that area (GDH) = area (AEC).
From Apollonius II.8, we have KI′ = XC, so triangles AXC and KHI′  are

congruent; hence HI′ = AC; so we have AH || XI′. If O is the point of
intersection of XI′ with the hyperbola H1, we have CO = CK,53 and since

51 Apollonius, Conics, II.11, ed. Heiberg.
52 Apollonius, Conics, II.8, ed. Heiberg.
53 Apollonius, Conics, I.30, ed. Heiberg.
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AG || OC, we have AG · AE = OC2, from Proposition II.11 of Apollonius.
But OC = CK = GH, so GH2 = AG · AE, hence

AG

GH
= GH

AE
.

Triangles ACG and DGH are similar, so

AC

DH
= GH

AE
.

Now EAC GHDˆ ˆ= ; hence the result.
We have just repeated the analysis and synthesis given by al-∑æghænî.

Let us go back over his proof using a different formal language – that of
algebra.

Let (BD, BA) be coordinate axes (Bx, By) with BD = BA = a.

H1 = x, y( );y = x − a2

x − a

⎧
⎨
⎩

⎫
⎬
⎭

H 2 = x, y( );xy = a2{ }
.

The equation for the abscissae of the points of intersection is

x3 − ax2 − 2a2 x + a3 = 0,

which has three roots x1 < 0, 0 < x2 < a and a < x3 < 2a. The required point
K corresponds to the root x3.

Note 1: Let U be the orthogonal projection of E on BD. Let us put BD = a;
we require U and H such that

BU2 = UH · UD and HD2 = BU · BD.

Let us put BH = x, BU = y and BD = a, where a < x < 2a and 0 < y <
a. We have

(1) y2 = x − y( ) a − y( ) ⇔ y = ax

a + x

(2) x − a( )2 = ay .

From (1) and (2) we have
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x a a x a x−( ) +( ) =2 2
,

and, when we reduce this, we have the same cubic equation as before, which
gives the abscissa of K, the point of intersection of H1 and H2, a point that
has the same abscissa as H.

Note 2: In his analysis, al-∑æghænî proved the inference

CAE GHDˆ ˆ=  and area (AEC) = area (GDH) ⇒ GH2 = AG · AE

and, in his synthesis

GH2 = AG · AE and CAE GHDˆ ˆ= ⇒ area (AEC) = area (GDH).

So the argument has made use of only one of the two equalities that
serve to characterize Archimedes’ range (A, E, G, H), a range al-∑æghænî
obtained in his first proposition.

In his fifth proposition, he does indeed show that this range (A, E, G, H)
considered in Propositions 3 and 4 also satisfies the second equation that is
necessary to define an Archimedean range D1, and from what he has
already proved he derives a construction for a triangle of type (1, 2, 4).
Proposition 5 thus gives the synthesis that corresponds to the analysis in
Proposition 1. Al-∑æghænî proceeds as follows:

A

B

C

D

E

G

H

O

U

Fig. 3.22

Let us return to the square ABDC and the straight line AH with the
points E and G obtained in Proposition 4. From E we draw a perpendicular
to BD to cut AC in O and BD in U.

We know that GH2 = AG · AE; the two ranges (A, E, G, H) and (B, U,
D, H) are similar, so DH2 = DB · BU. Moreover, triangles AOE and EUH
are similar, so
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HU

UE
= AO

OE
;

but
OE = OC = UD and AO = UB = UE,

hence
HU

UB
= UB

UD
.

So BU2 = HU · UD and consequently AE2 = EH · EG. The two ranges are
thus both of type D1.

We have seen in Proposition 3 that AC > GH; now GH > DH and AC =
BD; so BD > DH, that is BU + UD > DH. Moreover BU2 = HU · UD,
where HU > UD; so we have BU + DH > UD and HD + DU > BU. So we
can construct a triangle from the three segments BU, UD, DH.

It is true that al-∑æghænî did not state that the ranges (A, E, G, H) and
(B, U, D, H) were similar; but it is clear that it is implicit when he concludes:

Similarly, we can construct a triangle whose sides are equal to the straight
lines AE, EG, GH starting from the straight line AH and the points E and G.54

So, starting from the range (B, U, D, H), he constructs a triangle ADU
where AU = UB and DA = DH, and proves that

AUD ADUˆ ˆ= 2   and ADU UADˆ ˆ= 2 .

A

B
D

G

H
U

Fig. 23

The proof is immediate: we produce AU by a length UG = UD, and use
the fact that triangles AUD, AUH and ADG are similar to deduce that they
are equiangular. These triangles are of type (1, 2, 4).

54 See below, p. 668.
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To construct the regular heptagon, it is sufficient to inscribe in the circle
a triangle ABC similar to the triangle AUD; which is what al-∑æghænî does
in the fifth and sixth propositions of his treatise.

Al-∑æghænî’s solution was subjected to careful investigation by Abº al-
Jºd in his Letter to Abº MuÌammad ‘Abd Allæh ibn ‘Alî al-Îæsib. Abº al-
Jºd does not go over al-∑æghænî’s analysis, but he repeats the whole of the
proof of the synthesis following it step by step (only two letters of the figure
are changed).

3.1.4.1.3.3. Al-Qºhî: the second treatise
Some years after his first treatise, in which he constructed the heptagon

with the help of a triangle of type (1, 2, 4), al-Qºhî wrote a second treatise,
in which the heptagon is constructed starting from a triangle of type (1, 1,
5), again making use of a range of type D1. Whereas the first treatise was
composed around 970 and dedicated to the King ‘A≈ud al-Dawla, the
second is dedicated to the King’s son, Abº al-Fawæris. The son’s youth, and
the manner in which al-Qºhî addresses him, leave no doubt about the order
in which the texts were composed, as A. Anbouba correctly observed.55

This second treatise was separated from the first by a period of several
years. In any case, it was composed before the death of the King who was
the dedicatee’s father, in 982, that is before Abº al-Fawæris became the
Prince Sharaf al-Dawla of Færs.

As before, al-Qºhî starts by referring to the contribution made by
Archimedes, and, amazingly, this is the only name he mentions in
connection with the construction of the heptagon. No other text, not even
his own, is referred to in this second treatise.

Al-Qºhî considers three consecutive vertices A, B, C, of a regular
heptagon inscribed in a circle and proves that the isosceles triangle ABC is of
type (1, 5, 1). In a second proposition, he proves that analysis of the
construction of an isosceles triangle ABC in which AB = BC and
ABC BAC BCAˆ ˆ ˆ= =5 5  leads to Archimedes’ range (C, B, D, E). Let us
follow al-Qºhî’s procedure for constructing such a triangle ABC.

Let D and E be points on CB such that BAD BACˆ ˆ=  and DE = AD.
Triangles ACD and ABD are similar, so we have

CD

DA
= DA

DB
,

hence
DA2 = DB · DC,

55 A. Anbouba, ‘Tasbî‘ al-Dæ’ira’.
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and consequently

(1) DE2 = DB · DC.

A

BC D E

Fig. 3.24

We have
ABC BADˆ ˆ= 5  and ABC BAD BDAˆ ˆ ˆ= + ;

so
BDA BADˆ ˆ= 4 .

Moreover, AD = DE, so BDA DAE DEAˆ ˆ ˆ= =2 2 . Triangles ABE and ADE
are thus similar, and we have

EB

EA
= EA

ED
,

hence
EA2 = EB · ED.

But EA = AB and AB = BC, hence

(2) BC2 = EB · ED.

So we require to find, on the line BC, points D and E such that (1) and (2)
are satisfied. The analysis has thus led to the inference:

[Triangle of type (1, 5, 1)] ⇒ Archimedes’ range D1.

Note: This figure includes the triangles ABD and CAE, which are of type (1,
2, 4] and the triangle DAE of type (3, 2, 2). But al-Qºhî pays no attention
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to them.56 In the first treatise we find the same figure for considering a
triangle (1, 2, 4), and the other types, although present, are not discussed.
We may remind ourselves that it was to be Ibn al-Haytham who dealt with
all the types of triangle, taking an approach he himself characterized as more
complete: considering all the possible cases.

In the third and fifth propositions of his treatise, al-Qºhî uses analysis
and synthesis to construct the range (A, B, C, D) of type D1. In the third
proposition, he gives the following analysis:

A B

C

E

D

G

I

K

H

H

1

2

Fig. 3.25

Let ABGˆ  = α   be given and let CE || BG, with BG = BA and CD = CE
and KB, the bisector of angle α  cuts EC in I. By hypothesis we have
CD2 = CE2 = AC · AB; so E lies on the hyperbola H1, which has diameter
AB and latus rectum c = AB, so the angle of the ordinates is ECBˆ = α  (so
BG is the tangent to the hyperbola at B).

We have CBI KBAˆ ˆ=  and CIB KBGˆ ˆ= , hence CBI CIBˆ ˆ=  and CB = CI,
and consequently IE = BD; so we have IE · EC = BA2 = BG2; so the point
E lies on a hyperbola H2 that has asymptotes KB and BD and passes
through G.

Al-Qºhî then concludes by considering a segment AB of known length
and position, and choosing an angle α; which allows him to construct G and

the bisector BK. From this we find the hyperbolae H1 and H2 and their
point of intersection E. The points C and D are obtained from E, and the

56 In a shortened version of al-Qºhî’s treatise on the trisection of an angle and the
construction of the heptagon (Thurston 3, fol. 130v; Marsh 720, fol. 264v), he constructs
the triangle (3, 3, 1), and thus recognizes the relationship between the two constructions.
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range (A, B, C, D) is thus known. Effectively, this strategy corresponds to
the conclusion of the synthesis carried out in the fifth proposition. However,
we first need to ensure that certain inequalities are satisfied. These
inequalities follow immediately from the properties of Archimedes’ range
and are necessary for the construction of the triangle.

In Proposition 4, al-Qºhî proves the following inequalities:

AB < BC + CD, BC < AB + CD  and  CD < AB + BC.

We shall now present the synthesis, using the same lettering and figure
as in the analysis.

Let AB be a given segment, BG a segment such that BG = AB and
ABCˆ = α , a given angle, and let KB be the bisector of ABGˆ .

We draw the hyperbola H1 with transverse diameter AB and latus
rectum AB, with α as the angle of the ordinates. We then draw the

hyperbola H2 that passes through G and has asymptotes KB and AB. The
two hyperbolae must intersect, say in a point E. Let EC be the ordinate of
this point, EC || BG and it cuts BK in I.

From symptoma of H1 we have EC2 = CA · CB. We produce AC by
CD = CE, so we have CD2 = CA · CB. The symptoma of H2 gives
GB2 = EC · EI, but GB = AB, EC = CD and EI = BD; so we have
AB2 = DB · DC.

Given AB and the angle α  (arbitrary choices), H1 and H2 and their point

of intersection E are determinate; from the point E we can find C and D,
which do not depend on the angle α.

We may make the following comments on al-Qºhî’s procedure,
employing a type of presentation that is different from his.

Let (BD, BG) be the coordinate axes (Bx, By), with AB = BG = a. The
hyperbola H1 that passes through B, and to which By is a tangent, has the
equation

(1) y2 = x(a + x).

The hyperbola H2 has asymptotes BD and BK and passes through
G(0, a); it has the equation

(2) y(y + x) = a2.

From (1) and (2) it follows that
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(3) a x ax x x ax2 2 2 2 2− −( ) = +( ) ,

which after simplification reduces to

(4) x ax a x a3 2 2 32 0− − + = .

This equation has three roots, x1 < 0, 0 < x2 < a, x3 > a. One of the
positive roots is the abscissa of E. Now we know that the ordinate of E must
be positive. But

y = a2 − x2 − ax

x
= a2

x
− x + a( ),

so x2 ∈ ]0, a[, which is the abscissa of the point E (because x3 > a gives

y < 0).
So al-Qºhî’s choice is understandable. It remains to explain the

disappearance of the term x4 from (3). The reason for this is that one of the
asymptotes of H1 is a parallel to the asymptote GK of H2, drawn through
the midpoint of AB, a transverse diameter of H1. Let us draw the figure

taking α = π
2

. The hyperbola H1 is equilateral and has asymptotes

y x
a

y x
a= + = − −

2 2
  and  .

M

A

N

K

B

I

C
DA

x

y

G

E

′

Fig. 3.26
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Let A′ be such that AB = BA′ = a. So we have three points of
intersection: M where xM = x1, E (the solution to the problem) where xE =
x2 ∈ ]0, a[, and N where xN > a and yN < 0.

In the sixth proposition al-Qºhî proves the converse of Proposition 2
(which was an analysis); that is, that if we have an Archimedean division D1,
there is an associated triangle of type T1 – (1, 5, 1).

From Proposition 4, we know it is possible to construct such a triangle.
Let DEC be a triangle such that DE = DB and CE = CA. The straight line
EC cuts the line through D parallel to AE in the point I. We have CD = CI
and triangle CDI is isosceles, as is triangle ACE; hence IE = AD.

So we have IE·EC = DA·AC = DB2 = DE2, from which we obtain

IE

ED
= ED

EC
,

so triangles EDC and EID are similar and we have

 ECD CID EDC EBDˆ ˆ ˆ ˆ= = =2 2 4 .

Moreover,
BC·CD = AC2 = EC2,

hence

 
BC

CE
= EC

CD
;

so triangles BCE and ECD are similar, so EBD DECˆ ˆ= , and we thus have
EDC DECˆ ˆ= 2  and ECD DECˆ ˆ= 4 . As BDEˆ  is an exterior angle of triangle
EDC, BDE DCE DEC DEC DBEˆ ˆ ˆ ˆ ˆ= + = =5 5 .

So the isosceles triangle EBD gives a solution to the problem.

AB CD

E

I

Fig. 3.27
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In the following proposition, the seventh, al-Qºhî returns to the
construction of the side of the regular heptagon inscribed in a given circle,
using the method we have already examined more than once: we construct
a triangle similar to that in the previous proposition and we inscribe it in the
circle.

For constructing Archimedes’ range (D1), the idea we find for the
triangle of type (1, 2, 4) in all three principal authors – Ibn Sahl, al-Qºhî in
his two treatises and Ibn al-Haytham, in his two treatises – consists of taking
two of the four points as given, and the others as determined by
Archimedes’ two conditions. In fact these authors read the two conditions as
the symptomata of two conic sections whose points of intersection determine
the two points that are required. In fact, one of these two points is the
projection on the line of the range of a suitably chosen point of intersection,
while the other point is found by marking off the ordinate of the point of
intersection on the line, starting from one of the points that are already
known.

AC2 = CB · BD,

BD2 = AD · CD.

B D C A

Fig. 3.28

Ibn Sahl and al-Qºhî, in his first treatise, take the two points C and D as
given; the point B is the projection of a point of intersection of a parabola
and a hyperbola and CA is the ordinate of this point of intersection. We put
CD = a, BD = x and AC = y; Archimedes’ conditions can be written

y2 = x(a + x),

which is the equation of an equilateral hyperbola with transverse axis CD,
and

x2 = a(a + y),

which is the equation of a parabola with axis DE perpendicular to CD,
vertex E such that DE = CD = a and latus rectum a.

As x and y have positive values, only one of the points of intersection
can be used.

We may note that in the case of al-Qºhî the sign of y is changed. Ibn al-
Haytham, like al-Qºhî in his second treatise, takes the points B and D as
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given; the point C is the projection of the point of intersection of a parabola
and a hyperbola and CA is equal to the ordinate of this point of intersection.
We put BD = a, CD = –x and AC = y; the conditions can be written

y2 = a(a – x)

which is the equation of a parabola with axis BD, vertex B and latus rectum
a; and

a2 = x (x – y),

which is the equation of a hyperbola that passes through B and has
asymptotes x = 0 and y = x.

Here x < 0 and y > 0 and this determines which is the relevant point of
intersection. To find the equations given in the commentary, we need to
change the signs of x and y.

Al-∑æghænî’s procedure is completely different, although he too starts
with two of the four points, taking them as given, and then determines the
other two. He assumes we know B and C; he finds A as the projection of the
point of intersection of two hyperbolae and he obtains D from A by means
of the geometrical construction of the square of side BC, say BCC′B′; D is

the projection onto BC of the point of intersection of the straight lines B′A
and BC′.

AB CD

B C

M

′ ′

Fig. 3.29

This construction replaces the use of Archimedes’ first relation, which
does not appear in al-∑æghænî. The first of the two hyperbolae that he uses
is chosen a priori, to have equation xy = a2 (a = BC); the second hyperbola
is chosen so that it expresses Archimedes’ second relation. Thus, as noted in
our commentary, the determination of A involves only the use of this second
relation. Al-∑æghænî’s procedure is much less transparent than those of the
other authors.



THE REGULAR HEPTAGON: THE DIVISION OF A SEGMENT 341

3.1.4.2. The range studied by Abº al-Jºd and al-Sijzî (D2)

We are in fact concerned with Abº al-Jºd’s first range: to divide a
segment AB at a point C such that

AB AC

BC

AB

AB BC

⋅ =
+

.

AB C

D

Fig. 3.30

From that range we derive a construction for a point D such that
BD = BA and AD AB AC= ⋅ . We show that D lies on the perpendicular
bisector of AC and that the triangles ABD and ACD are isosceles and
similar; they are of type T3.

According to his own account, Abº al-Jºd had proposed this range in
the first letter, that of 968–969. He explains how he was led to the problem
and to this range. His model is Euclid and his construction of the regular
pentagon. This construction involves an isosceles triangle each of whose base

angles is twice the angle at the vertex; thus α = π
5

. An angle α inscribed in a

circle stands on an arc whose chord is equal to the side of the regular
pentagon. Abº al-Jºd notes that the same principle holds for any polygon
with an odd number of sides. Thus, for a polygon with 2n + 1 sides, we
would employ a triangle each of whose base angles is n times the angle  at

the vertex, that is the triangle (1, n, n), α = π
2n + 1

. This explains why Abº al-

Jºd chose the triangle (1, 3, 3) for the heptagon.
The analogy clearly has its limits, and Abº al-Jºd seems to have realized

that the heptagon cannot be constructed by means of straightedge and
compasses. He had carried out the following analysis for constructing such a
triangle.

Let ABC be a triangle such that AB = AC and ABC BCA BACˆ ˆ ˆ= = 3 .
Let there be a point D on AB and a point E on AC such that BCD BACˆ ˆ=
and ADE BACˆ ˆ= .

E
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HAG

E

D

C

IB

Fig. 3.31

We have BC = CD and DE = EA.
Moreover, DCE Aˆ ˆ= 2 , so DC = DE, and we have BC = EA. Triangles

ABC and BCD are isosceles and similar; so

AB

BC

CB

BD
BC AB BD= ⇒ = ⋅2 ;

hence

(1) AE AB BD2 = ⋅ .

We draw CI ⊥  BD and GE ⊥  AD; we obtain IB = ID and GA = GD.
We have

AE

AG
= AC

AI
= AB

AI
.

We produce BA by AH = AD; thus BH = 2 AI. Now AD = 2 AG, so

(2) AE

AD
= AB

BH
.

So the points B, D, A, H satisfy (1) and (2); and BH = AB + AD. Thus
we can describe the range (A, D, B) by the equality

(3) AB

AB AD

AB BD

AD+
= ⋅

.

Conversely, starting with a straight line AB and a point D lying on it
that satisfies equality (3), we can find an isosceles triangle such that the sum

of its angles is seven times the angle α at its vertex, so α = π
7

. From this

triangle we can go on to construct the heptagon.

In this work Abº al-Jºd does not give either the construction for the
range, or that for the heptagon, but merely points out that he has already
done all this in his essay of 968–969 using a parabola and one branch of a
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hyperbola. But that is precisely what is in dispute. He returns to the matters
of this earlier essay in another treatise, entitled Book on the Construction of
the Heptagon in the Circle, where he writes:

As for my former letter about the construction of the heptagon, in which I
was ahead of everyone and I distinguished myself from others by the route I
followed, I repeat it here for you in its entirety in a single proposition
proved with the aid of God and His assistance.57

Abº al-Jºd then gives the following proof:
Let there be a segment AI, with midpoint B, and the square BIKL; let

there be a parabola P with vertex A, axis AI and latus rectum AB, and H  a
branch of a hyperbola with vertex B, transverse diameter 2 BK and latus
rectum 2 BK – so H  has the straight lines KI and KL as asymptotes. The
vertex B of H  lies inside P, so H  cuts P in two points; let M be the point
of intersection that lies between A and L. We draw MD ⊥  AB and construct
a point C such that AC = CD = MD. So we have AB · AD = AC2; the two
triangles ABC and ADC are similar, they are of type (1, 3, 3) and

consequently ABC ACDˆ ˆ= = π
7

.
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We may note that the construction shows two other triangles: CBD, of
type T2, and DHB, of type T1.

57 On the Construction of the Heptagon in the Circle, which he Sent to Abº al-
Îasan AÌmad ibn MuÌammad ibn IsÌæq al-Ghædî, see below, p. 610.
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So Abº al-Jºd gives the range (A, D, B) of type D2, which is not
mentioned. He uses only the equality AC2 = AB · AD, where AC = MD.
Finally, he gives only the synthesis.

Is this an abbreviated version of the original letter, in which Abº al-Jºd
has, in the process of shortening it, corrected some errors for which he has
been reproved? The only justification for such a suspicion is in the very
existence of the dispute; because if a proof like this was to be found in that
original letter, it is hard to understand the criticisms made by al-Sijzî.

The latter constructs the range D2 in his treatise, which thus happens to
be the oldest available document that contains the proof, which he
acknowledges is in its essentials due to Ibn Sahl. Al-Sijzî gives the following
proof of the lemma:

Lemma 1 of allll----SSSSiiiijjjjzzzzîîîî: To construct on a given segment AB a point C such
that we obtain the range D2.

A
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Let D be a point such that BD = 2BA, and let ADEG be the square
constructed on AD. We consider a hyperbola H with vertex A, having
asymptotes ED and EG; and the parabola P with vertex B, axis BD and
latus rectum AB. This parabola passes through G, so it cuts the hyperbola at
the point H. From H we draw the perpendicular to AB – let it be CHJ, and
the line parallel to AB – let it be HIM. We have

area (HMEJ) = area (ADEG)  ⇒ area (JHIG) = area (IADM)

⇒ area (JCAG) = area (HCDM).
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So we have

CA · AG = CH · CD ⇒ CA · AB = CH · CD.

But, H ∈ P ⇒ CH2 = BC · AB and CD = AB + AC, hence

CA AB AB AC BC AB⋅ = +( ) ⋅ .

So the problem has one solution; we show it is unique. Let us take up
the solution in different terms. We consider orthogonal axes (Ex, Ey) and
take points A (a; a) and B (2a; a), where a > 0. The problem is to find a
point C ∈ [A B], C(x, a), where a < x < 2a such that

a 2a − x( )
x − a

= a

x
.

The equations of H  and P  in this system of coordinates are respectively

(1) xy = a2 – we consider only the branch x > 0, y > 0
(2) a (2a – x) = (a – y)2.

For any point of H  we have

xy = a2 ⇔ a (x – a) = x (a – y),

hence for x ≠ 0 and x ≠ a

(3)
a − y

x − a
= a

x
.

So if H(x0, y0) ∈ H ∩ P, from (2) and (3) we have

a 2a − x0( )
x0 − a

= a

x0

,

and if a < x0 < 2a, the point H gives a solution to the problem.
To prove the point H exists, we may note that A, the vertex of the

branch of the hyperbola in question, lies inside P ; so H  cuts P in two
points, which lie on either side of A. The one that is nearer the vertex B of
the parabola is the one we require. This is how (by implicit considerations of
continuity and convexity) the mathematicians of the time – in particular Ibn
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al-Haytham – establish the existence of a point of intersection for two
convex curves. Analytical investigation of H  ∩ P  gives, by eliminating y

between (2) and (3), the equation

x3 – ax2 – 2a2x + a3 = 0,

which has three solutions: x1 < 0, 0 < x2 < a and a < x3 < 2a. So the
problem has one and only one solution, which corresponds to the root x3.

Once the range D2 has been set up, al-Sijzî gives a second lemma that
considers the construction of a triangle ABC of type (1, 3, 3), making use of
the range (B, C, A) of the same type (in this lemma, the ordering A, B of the
previous lemma becomes B, A). The proof uses the point E on the segment
[B, A] such that BE2 = AB · AC; the range (B, E, C, A) is then of type D3, as
put forward by Abº al-Jºd.

A
B

C

D

E

F

G H

Fig. 3.34

Lemme 2 of aaaallll----SSSSiiiijjjjzzzzîîîî: Given a segment AB, to construct the triangle ABD
such that BA = BD  and ˆ ˆA = 3B.

Let C be the point on BA obtained by constructing the range D2 (taking
points in the order B, A). We have

AB AC

BC

AB

AB BC

⋅ =
+

.

We construct D such that BA = BD and AD = AB AC⋅ ; D is the
required point.

Let us follow al-Sijzî’s proof; we have

AD

BC
= AB

AB + BC
,

so AD < BC.



THE REGULAR HEPTAGON: THE DIVISION OF A SEGMENT 347

Let E be such that BE = AD, EF || AD, FH ⊥  AB, DG ⊥  AB. We have

 AD2 = AB · AC,

so

 
AB

AD
= AD

AC
,

and the two triangles ABD and ADC are similar ( Â is common to both).
Then triangle ADC is isosceles and G is the midpoint of AC; hence

GB = GC + CB = 1
2

AC + 2CB( ) = 1
2

AB + CB( ) .

But
AD

BC
= AB

AB + BC  
 and  AD = EB,

hence
EB

1
2

BC
= AB

1
2

AB + BC( )
= AB

GB
.

Moreover, the two triangles FHB and DGB are similar, hence

 
EB

HB
= AB

GB
,

since EB = FB and AB = BD.
Then we have

HB = 1
2

BC ,

H is the midpoint of BC, so FC = FB = EB = AD = DC, hence

DFC FCB B B CDF Bˆ ˆ ˆ ˆ, ˆ ˆ= + = =2 2

and
ACD CDF B Bˆ ˆ ˆ ˆ= + = 3 .

But ˆ ˆA ACD= , so finally we have ˆ ˆA B= 3 , hence B̂ = π
7

.
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We may note that D is the point of intersection of the circle (B, AB) and
the perpendicular bisector of AC.

Al-Sijzî then goes on to construct the regular heptagon inscribed in a
given circle C. Using Lemma 2, we construct an isosceles triangle EGD
such that ˆ ˆ ˆE G D= = 3 , and we construct in C a triangle ABC similar to

triangle DEG. We have ˆ ˆ ˆB C A= = 3 , hence Â = π
7

 and BC is the side of the

regular heptagon. To construct the vertices of the heptagon, al-Sijzî
considers the point H on the circle such that BCH BACˆ ˆ=  and CI is the
bisector of ACHˆ ; then BAC BCH HCI ICAˆ ˆ ˆ ˆ= = = , hence CB = BH = HI =
IA. In the same way, we obtain the points J and K such that CJ = JK = KA,
and thus the regular heptagon AIHBCJK.

EG

D

A

I

H

BC

J

K

Fig. 3.35

However, we may note that al-Sijzî does not tell us how to construct
the triangle ABC similar to triangle DEG. It can be done like this: let R be
the radius of the given circle and r the radius of the circumcircle of triangle

DEG, we have BC

EG
= R

r
, which corresponds to the construction mentioned

by Abº al-Jºd in his Lemma 3, which al-Sijzî himself cites. In the same

way, we construct AB, AB

DE
= R

r
.

In our examination of the treatises by Abº al-Jºd and al-Sijzî, we have
of course remarked on several occasions, and with identical figures, that the
ranges of types D1 and D2 have been set up by means of the intersection of
a parabola P and a hyperbola H.  Let us consider this intersection again, in
a slightly different way.

Let ABCD be a square of side a; let us take (AD, AB) as coordinate axes
(Ax, Ay) and let I be the point such that BI = 2 BC = 2a. We consider the
equilateral hyperbola H (one branch of it) that passes through C and has
asymptotes Ax and Ay; and the parabola P  with vertex I, latus rectum a
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and axis IB parallel to the asymptote Ax. The parabola P  passes through D
and the point C lies inside P  (see Fig. 3.36); we have

H = x, y( ) ; xy = a2{ } where x > 0, y > 0,

P = x, y( ); a − y( )2 = a 2a − x( ){ }.

The equation for the abscissae of the points of intersection is

x3 – ax2 – 2a2x + a3 = 0,

which has two positive roots x2 ∈ ]0, a[, the abscissa of the point L, and

x3 ∈ ]a, 2a[, the abscissa of the point H.

Abº al-Jºd, in his Book on the Construction of the Heptagon in the
Circle, and al-Sijzî, in his treatise, both use the point H; its projection J on
the axis of the parabola gives the range (I, J, C) of type D2 with HJ2 = IJ ·
IC. The isosceles triangle constructed with base IJ and IK = JK = HJ, is
similar to triangle IKC; they are triangles of type (1, 3, 3).

x

y

H

I

J

K

A B

C
D

E

G

LM

N

S
Y

Fig. 3.36
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Abº al-Jºd – like another, anonymous, author58 – uses the point L; its
projection M on the side BC of the square ABCD determines the range (D,
N, M, S) of type D1 (Archimedes’ range). The range (A, E, B, S) is also of
type D1. From (A, E, B, S) Abº al-Jºd derives (B, E, A, Y) by putting AY =
BS, AY2 = BS2 = BA · BE; this is a range of type D3, so the range (B, E, Y) is
of type D2. The isosceles triangle EBG, with base EB and BG = EG = BS, is
similar to triangle BGY; these are triangles of type (1, 3, 3).

In conclusion, in using the method employed by Abº al-Jºd and al-
Sijzî, we are seeking to divide a segment AB in a point C such that

AB BC

AC

AB

AB AC

⋅ =
+

.

B DC A

Fig. 3.37

If we take the origin of the abscissae to be the point D, symmetrical to B
with respect to A, and put AB = a, this condition can be written

a(2a − x)
x − a

= a

x
.

Let us introduce the quantity z such that z

x − a
= a

x
. We have z = a(2a − x)

or z2 = a(2a − x), the equation of a parabola with coordinates (x, z); its vertex
is the point B, its axis is BD and its latus rectum is a. Meanwhile, the relation

z

x − a
= a

x
 is the equation of an equilateral hyperbola that passes through A

and has asymptotes x = 0 and z = a. Observe that z corresponds to a – y.
We may note that al-Sijzî proves that there exists a point of intersection of
the two conics.

Let us remind ourselves that for the range D1 there were four points
and two relations; in D2 there are only three points and a single relation.
Geometrical considerations concerning triangles of the type (1, 3, 3) have
made it possible to eliminate one of the unknown points.

58 See below, p. 693.



THE REGULAR HEPTAGON: THE DIVISION OF A SEGMENT 351

3.1.4.3. Abº al-Jºd’s range (D3)

Let us return to the preceding range D2 (A, C, B). We had59

AD AB AC= ⋅ ; let there be a point E on [AB] such that BE2 = AB · AC.

B E C A

H

Fig. 3.38

So we have BE = AD, and consequently

BE

BC

AB AC

BC

AB

AB BC

BE

EC

AB

BC

AB

BE

BC

EC

AE

BE

BE

EC
BE AE EC= ⋅ =

+
⇒ = ⇒ = ⇒ = ⇒ = ⋅2 .

The range (A, C, E, B) can thus be defined by

BE AB AC2 = ⋅  
and

BE

BC
= AB

AB + BC
,

or by
BE AB AC BE AE EC2 2= ⋅ = ⋅  and  .

We note that if we produce BA by a length AH equal to BE, then EH =
AB and (H, A, C, E) is a range of type D1, Archimedes’ range.

In fact, we have
HA2 = AE · EC

and moreover

AB AC AE EC HE AC AE EC
HE

EC

AE

AC

CH

EC

EC

CA
⋅ = ⋅ ⇒ ⋅ = ⋅ ⇒ = ⇒ =

       
⇒ = ⋅CE AC CH2 .

So we can pass from a range (A, C, E, B) of type D3 to a range (H, A,
E, C) of type D1, and conversely. Types D1 and D3 are thus equivalent. Abº
al-Jºd makes use of D3 in his Letter to Abº MuÌammad ‘Abd Allæh ibn
‘Alî al-Îæsib. He returns to the analysis that leads him to a triangle of type
(1, 3, 3) with which he associates this range D3. He proceeds as follows:

59 See above, p. 341.
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Let E, B, H, G be four points on a circle such that EG GH= =
HB EB= 2  then BE = 1

7
 of the complete circumference. GE and HB cut

one another in A. From EG BH= , we get
a) EG = BH and b) BHG EGHˆ ˆ= , hence AG = AH; from a) and b) it

follows that AE = AB and EB || GH.
From GH EB= 2  we get GEH EHBˆ ˆ= ; but GEH EHB EAHˆ ˆ ˆ= + , hence

EHB EAHˆ ˆ= , and in consequence EH = EA = AB.
If EI ⊥  AB, then IH = IA. If we take a point C on IA such that IB = IC,

then AC = HB; but BH > BE, so AC > BE.
Let D be a point on AC such that AD = BE; we have

GH

AH
= EB

AB
= AD

AB
= AC

AH
 (because AC = BH = GH).

Therefore

AD

DB

AC

CH

AD

AC

DB

CH

AD

AC

DB

AB

AD

DC

DB

AD
AD DC DB= ⇒ = ⇒ = ⇒ = ⇒ = ⋅2 .

A

C
DB

I

G

H

E

Fig. 3.39

Moreover, the angle at I is a right angle and IB = IC ⇒ EB = EC; the

isosceles triangles ABE and CBE are similar, so AB

BE
= EB

BC
; but EB = AD, so

AD2 = AB · BC.
The segment AB has thus been divided into three parts, AD, DC, CB,

such that
AD2 = AB · BC  and  AD2 = DC · DB.

This is the range (A, D, C, B) of type D3.
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3.1.4.4. Comparing the ranges: Abº al-Jºd, al-Shannî, Kamæl al-Dîn
ibn Yºnus

Among other questions raised in the course of the dispute there is the
question of the choice of range. In fact, a priority dispute, if contingent
elements are stripped away, in most cases reduces to arguing over what
constitutes the discovery: Here, the matter in contention is the type of range.
If we read Abº al-Jºd carefully, we observe that one of his major claims is
that the range he uses is new, economical and easy to use. He writes about
the range of type D2 as follows:

But dividing the given straight line into two parts, as I did it, is more
immediate than dividing it into three parts, as they did (Abº Sahl al-Qºhî
and our teacher Abº Îæmid al-∑æghænî).60

That is to say, the preference he expresses for D2 as against Archimedes’
range is not defended on grounds of truth – from that point of view the
ranges are equal – but on grounds of efficiency. Further, Abº al-Jºd
congratulates himself on his discovery of D2 as he does on that of D3.
Indeed he deploys similar arguments in presenting the range of type D3. This
range, he writes,

is more accessible and easier than dividing a straight line into three parts
such that the product of the sum of the first and the second parts and the
first <part> is equal to the square of the third part and the product of the
sum of the second and the third parts and the second <part> is equal to the
square of the first part, as was proposed by Archimedes and as has been
constructed by the Master Abº Sahl and our Master Abº Îæmid – may God
sustain them – in order to construct the heptagon. It is also easier than
dividing the straight line into two parts such that the product of the
complete straight line and one of them is equal to the square of a straight
line whose ratio to the other part is equal to the ratio of the whole straight
line to the sum of the straight line and this other part, which is what I did
before, also in order to construct the heptagon.61

Continuing to apply only the criterion of efficiency, Abº al-Jºd’s order
of preference would be D3 – D2 – D1; and the comparison between the
types of range appeared at the very moment that research was beginning to
be done on the construction of the heptagon.

60 See Treatise by Abº al-Jºd MuÌammad ibn al-Layth Addressed to the Eminent
Master Abº MuÌammad ‘Abd Allæh ibn ‘Alî al-Îæsib on the Account of the Two
Methods of the Master Abº Sahl al-Qºhî the Geometer, and his own Master Abº
Îæmid al-∑æghænî, below, p. 623.

61 Ibid., pp. 624–5.
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Without a word of explanation, al-Sijzî adopts the range of type D2

introduced by Abº al-Jºd. Later, al-Shannî returns to the problem when he
makes his criticisms of Abº al-Jºd. There are two criticisms: on the one
hand, if we prove the three types of range are equivalent – or at least that
they are interdependent – Abº al-Jºd’s claim to priority, even if it does not
completely collapse, is greatly weakened. On the other hand, Abº al-Jºd
claimed to have set up the range D2 using a single conic section. This
assertion, which is taken literally by al-Shannî, is certainly erroneous.
Nevertheless there are other possibilities – perhaps he thought he had
carried out the construction using a conic section and a circle (which at the
time was not considered to be a conic section)62 – but, since Abº al-Jºd
does not explain, further discussion is impossible. So here we shall concern
ourselves only with the first criticism.

To dismantle Abº al-Jºd’s argument, al-Shannî first of all proves that
D2 implies D3; but, since D3 also implies D2, the two types of range are
equivalent. Let there be two points C and E on AB such that

AB · AC = BE2  and  
BE

BC
= AB

AB + BC
;

then
BE2 = AB · AC  and  BE2 = AE · EC,

since we have

AB

AB BC

BE

BC

AB

BC

BE

EC

AB

BE

BC

EC

AE

EB

BE

EC
EB AE EC

+
= ⇒ = ⇒ = ⇒ = ⇒ = ⋅2 .

But, by hypothesis, we have BE2 = AB · AC; so the result follows.
D2 and D3 define the same range on AB, that is the range (A, C, E, B)

that we have considered above.

B E C A D

Fig. 3.40

Let us now produce AB by AD = BE; then the range (E, C, A, D) is of
type D1 (Archimedes’ range), and we have

AD2 = AE · EC  and  EC2 = DC · CA.

62 We know, from Book III of Descartes’ Géométrie, that such a construction,
using a parabola and a circle, is always possible.
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In fact we have
AD BE AE EC EB AE EC AD= ⇒ ⋅ = ⇒ ⋅ =2 2 .

Moreover, by hypothesis we have AB · AC = AE · EC; but AB = DE, so
ED · AC = AE · EC, hence

ED

EA

EC

AC

ED

EC

EA

AC

DC

EC

EC

CA
CE DC CA= ⇒ = ⇒ = ⇒ = ⋅2 ;

so
D 3 ⇒ D1.

Al-Shannî has thus proved that the range (A, C, B) of type D2 implies
the range (A, C, E, B) of type D3, which in turn implies (D, A, C, E) of type
D1.

Conversely, it is easy to proceed from a range of type D1 to one of type
D3, that is from (E, C, A, D) to (A, C, E, D), which is what Abº al-Jºd did.
The three ranges are in fact equivalent.

Finally, we may wonder whether, once the dispute had died down and
the whole problem was re-examined by Ibn al-Haytham, in the time of al-
Shannî perhaps, or a little later, the ranges were no longer compared with
one another. This is far from certain. We can find at least one exception:
Kamæl al-Dîn ibn Yºnus, who died in 639/1242. He was a pupil of Sharaf
al-Dîn al-™ºsî. He returns to this question, and even to some extent to the
dispute, although by now it is more than two centuries old. One of his
correspondents, MuÌammad ibn al-Îusayn, reminds him that al-Sijzî took
the question of Archimedes’ lemma so seriously

that at the beginning of his book on the regular heptagon inscribed in the
circle he discussed remarks made by the man who affirmed: ‘and it perhaps
involves a more difficult construction and a less accessible proof than the
matter for which he introduced it;  and perhaps these latter are not
possible’.63

Ibn Yºnus thus returns to the material of the dispute and conjures up
the ghosts of Abº al-Jºd and al-Sijzî. He reproves al-Sijzî for having seen
only that D2 ⇒ D1. So he in turn wants to give a proof:

63 Treatise by Kamæl al-Dîn ibn Yºnus to MuÌammad ibn Îusayn on the Proof
for the Lemma neglected by Archimedes in his Book on the Construction of the Hep-
tagon Inscribed in the Circle, see below, p. 698.
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Let AB be a straight line and (A, C, B) a range of type D2, defined by

AB

AB AC

AB BC

AC+
= ⋅

;

if on AB we define the points N and P by BP = CN = AB BC⋅ , then

BP2 = AP · AN  and  AN2 = NB · NP,

that is, the range (A, N, B, P) is a range D1, Archimedes’ range.

B

N CA

A

B

C

P

Fig. 3.41

We shall give a brief summary of his proof as a whole, beginning with
the proof of the lemma. Let there be a square ABCD; on AB let us take the
point H such that AB = AH and on the straight line DC let us take the points
J and N such that JD = DC = CN; let us produce NH to the point K such
that HK = HN and let us draw KL ⊥  AL.

O

P
M

L K

H

H

1

2

<X>

HEAB

I

G

J D

Q C S N

Fig. 3.42

Let H1 be the hyperbola that passes through K and has asymptotes AH
and AL, and let H2 the hyperbola with vertex D, with DJ as a transverse
diameter and latus rectum; H2 cuts the straight line NK in a point X such
that
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NX2 = JN · ND > NK2,

hence NX > NK.
Moreover, the point K is the only point of intersection of H1 with the

straight line HK, which is parallel to the asymptote AL.
The two curves H1 and H2 thus cut one another in a point M with

ordinate MS > KN. The straight line MS cuts BA in a point E, which is the
point required for a solution to Archimedes’ lemma.

Since triangles ESD and GQD are similar, we have

ES

DS
= GQ

DQ
= DJ

DS
,

hence
JS

SD
= CD

DQ
.

But M ∈ H2, so
JS

SD
= MS2

SD2
;

and M ∈ H1, hence

area (AEMP) = area (AHKL) = area (ABDC),

from which it follows that

area (EBDS) = area (MPCS) ⇔ ES · SD = MS · SC ⇔ 
MS

SD
= ES

SC
.

Consequently
CD

DQ
= ES2

SC2
= CD2

SC2
,

hence
SC

DQ

CD

SC

EA

DQ

CD

EA
= =  or  .

But triangles EAI and GDQ are similar, hence

EA

DQ
= AI

GQ
;
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so
CD

EA
= AI

GQ
,

hence CD · GQ = AI · EA; the two areas (CDG) and (AEI) are equal, and the
lemma is proved.

Ibn Yºnus here carries out a synthesis: the point E, the orthogonal
projection on AB of M, the point of intersection of H1 and H2, defines an
Archimedean range (E, I, G, D) such that the two areas (AEI) and (CGD)
are equal. We may note that he proves the existence of the point of
intersection of H1 and H2, presenting a proof comparable to that given by
Ibn al-Haytham in the first part of his first treatise, Lemma for the Side of
the Heptagon, regarding the intersection of a parabola and a hyperbola.
Both of them in fact make use of Proposition 13 of the second book of the
Conics: a line parallel to an asymptote cuts the conic section in one point
and only one point.

This is when Ibn Yºnus is concerned with the implication D2 ⇒ D1. His
proof is as follows:64

We put CN = BP = CH. We draw through N a line parallel to AG; it
cuts EG in S and HM in O, and we have AI = CH = CN. But we had CH2 =
AB · BC,

AB

AB + AC
= CH

AC
= CN

AC
,

hence
CN

NA
= AB

AC
.

A BCPND

M I O H

E G S J U

Fig. 3.43

64 The figure is the same as that in al-Sijzî’s treatise (see below, p. 634) for investi-
gating the range (A, C, B), a range of type D2; we have AB = AD = AG and CH2 =
AB · BC.
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But
CN

NA

AI

IO

AB

AC

AG

HI
= =  and  ;

so we have
AB

AC

AG

HI

AI

IO

GI

HO

GI

CN
GI IO AI CN CN= = = = ⇒ ⋅ = ⋅ = 2 .

Now GI = PA, so

(1) PA · AN = CN2 = BP2.

But we have seen65 that area [H, G] = area [I, D] = area [B, I]; by adding
the area [H, U] we have area [U, I] = area [C, U] + area [C, I]; but area
[C, U] = AB · CB = CH2 = PA · AN = GI · IO = area [G, O], so area [C, I] =
area [U, I] – area [G, O] = area [U, O].

Now area [C, I] = CA · AI = AB · IO = AG · AN and area [U, O] =
US · SO. So

AG

US
= AB

BN
= SO

AN
= AP

AN
  (because  SO = AP).

Then we have
AB

BN
= AP

AN
⇒ AN

BN
= PN

AN
,

hence
(2) AN2 = BN · NP.

From (1) and (2) the range (A, N, P, B) is a range of type D1, so D2 ⇒
D1.

In other words, after having proved Archimedes’ lemma and found the
range (D, G, I, E), Ibn Yºnus returns to the figure used by al-Sijzî for the
Abº al-Jºd/al-Sijzî range: to divide the segment AB at the point C such that

AB BC

AC

AB

AB BC

⋅ =
+

.

Al-Sijzî has found the point H such that CH AB BC= ⋅  by using the
intersection of the parabola with vertex B, axis AB and latus rectum AB,
and the equilateral hyperbola that passes through A and has asymptotes ED
and EG. He has proved that if HC ⊥ AB, C is the point required.

65 Cf. al-Sijzî’s treatise.



360 CHAPTER III: PROBLEMS OF GEOMETRICAL CONSTRUCTION

Kamæl al-Dîn ibn Yºnus then proves that if we take points N and P on
AB such that CN = BP = CH, we divide AB at the points P and N in the
required way. He proves that we have

BN · PN = NA2  and  BP2 = PA · AN,

that is, the two equalities that define Archimedes’ range.
Although it was composed in the thirteenth century, Ibn Yºnus’s study

is, as it were, that of a mathematician of the second half of the tenth century;
despite being written about two centuries after Ibn al-Haytham, it in fact
belongs to a distinctly earlier phase than he does. Was Ibn Yºnus unaware
of Ibn al-Haytham’s work? Did he know the tradition that lay behind it?
These questions give rise to many others, in particular concerning the
diffusion of learned treatises in the Islamic world during these centuries. It
would be premature to venture onto such ground. However this came
about, Ibn Yºnus’s contribution finds its true place within a discussion of the
types of range and their equivalence.

3.1.4.5. Ibn al-Haytham’s ranges (D4 and D5)

The two pieces that Ibn al-Haytham wrote on the regular heptagon not
only belong to two distinct periods, they also form part of two different
projects. The Lemma for the Side of the Heptagon – the author’s first piece
of writing on this subject – is from the same mould as the works of his
predecessors. In it Ibn al-Haytham seeks to prove Archimedes’ lemma, to
construct the triangle of type (1, 2, 4) and finally to construct the heptagon.
The work is traditional in style, of course, but not in one respect: Ibn al-
Haytham is much more concerned than his predecessors with proofs of
existence, here the existence of the points of intersection of the conic
sections. This difference, which is often overlooked, but seems crucial to the
historian, is found in other work as well as in his investigations of the
heptagon, but we should stress that in this treatise Ibn al-Haytham does
indeed show himself to be a mathematician who belongs to the tenth
century, that is, thus far he is thinking like his predecessors.

The later treatise, On the Construction of the Regular Heptagon, is very
different in scope, and also directed to a different end. There is every
indication that what Ibn al-Haytham intends here is to carry through a
project in which he has succeeded elsewhere: to ‘complete’ the tradition, to
bring it to fulfilment. In this there is often a reform that demands the starting
point be changed.

Ibn al-Haytham seems to have a good knowledge of the tradition. He is
in possession of a treatise by al-Qºhî and another one, whose author he
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does not name, which proves Archimedes’ lemma and constructs the
heptagon; perhaps he has other texts too, all of which have in common a
characteristic that Ibn al-Haytham wants to break with. In fact he writes:

We have not found a treatise that explains sufficiently fully by any of the
ancients or by modern scholars, <that is one> in which there are included all
the ways in which the construction of the heptagon can be achieved.66

This time, we no longer start from Archimedes’ lemma, nor from any
equivalent lemma, but from the problem of the heptagon as a whole, so as
to open up a route that allows us to find ‘all the ways by which one can
complete the construction of the heptagon’. We shall in fact need to find all
possible triangles that lead to the construction of the heptagon. This search
for the ‘possible’ allows us to speak of the generality of this exhaustive
procedure (the word exhaustive is Ibn al-Haytham’s, ), which has no
known precedent. Thus, in this last treatise, Ibn al-Haytham explicitly breaks
with tradition. It is no less a difference of project than it is a break in style,
because identifying the ranges actually makes it necessary to prove their
existence. So if we gloss over this difference between Ibn al-Haytham’s two
treatises, and consider them simply as following on one from the other, we
cannot judge either the new contribution he made, or what links him with
the tradition from which he came.

There is a short and simple way of understanding the situation: we shall
work through his ranges and triangles, comparing then with those of his
predecessors.

3.1.4.5.1. Triangle (1, 3, 3) and Ibn al-Haytham’s range (D5)

A

B

C D E

Fig. 3.44

Analysis gave the range (A, E, D, C) such that

(1) CE2 = AC · CD  and  CE2 = AD · DE.

66 On the Construction of the Heptagon in the Circle, see below, p. 441.
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The triangle (1, 3, 3) is found in Abº al-Jºd, al-Sijzî, and al-Qºhî in
connection with trisecting an angle; later on we meet it in NaÒr ibn ‘Abd
Allæh. But Ibn al-Haytham’s range D5 is not found in the work of any of his
predecessors that we know about.

 We may note that the range (C, D, A) is that of Abº al-Jºd and al-Sijzî,
and that the point E is obtained from these three points by making CE2 =
CA · CD.

We may also note that this range of Ibn al-Haytham’s is different from
Abº al-Jºd’s range D3 – (C, D, F, A) – deduced from (C, D, A) by taking a
point F defined by AF2 = AC · CD.

AFC D E

Fig. 3.45

To obtain this range D5 Ibn al-Haytham starts with two hyperbolae one
of which is equilateral.67

3.1.4.5.2. Triangle (3, 2, 2) and the range of type D3

This triangle does not occur in the work of any of Ibn al-Haytham’s
predecessors; which is additional evidence that there was no attempt to find
all possible triangles.

A

B CD
E

Fig. 3.46

Analysis leads to the range (B, E, D, C) such that

EB2 = CE · CD  and  EB2 = BD · BC,

which is the range D3 given by Abº al-Jºd.
To obtain this range Ibn al-Haytham again uses two hyperbolae, one of

them equilateral; that is, his procedure is not at all like that of Abº al-Jºd.

67 See below.
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3.1.4.5.3. Triangle (1, 5, 1) and Ibn al-Haytham’s range (D4)

A

B CD
E

Fig. 3.47

Analysis leads to a range (B, E, D, C) such that

BE2 = BC · CD and CD2 = BD · DE,

a range which is not found in any of Ibn al-Haytham’s predecessors. He
obtains it by using a hyperbola and a parabola.

We may note that NaÒr ibn ‘Abd Allæh employs the range D4 to
construct the triangle of type (1, 3, 3) – triangle ABE. We may also note that
al-Qºhî had studied the triangle (1, 5, 1).

3.1.4.5.4. Triangle (1, 2, 4) and the range D1

Unlike his predecessors, and departing from the procedure he had
adopted himself in his first treatise, this time Ibn al-Haytham begins by
proving that a triangle of this type can be obtained from each of the
triangles already studied. If we divide the angle ACB into four equal parts,

each is equal to Â= π
7

; then on the segment AB we obtain the points D, E,

G such that ACD is a triangle of type (1, 3, 3), EBC a triangle of type (3, 2,
2) and AGC a triangle of type (1, 5, 1); and from the construction of one or
other of these triangles we can deduce a construction for triangle ABC,
which is of type (1, 2, 4). So this last triangle has no logical priority over the
others, and its privileged position is due solely to an accident of history.

A
B

C

DEG

Fig. 3.48

Ibn al-Haytham then gives an analysis of the construction of this triangle
that leads to Archimedes’ range D1 such that
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DC2 = EC · BC and EB2 = DB · DC.
A

B C DE

Fig. 3.49

To obtain this range, Ibn al-Haytham uses the same curves as in the
preceding case. We have already encountered this triangle in the text
attributed to Archimedes, in al-Qºhî and in al-∑æghænî, and it was also
mentioned by Abº al-Jºd.

So we can see in detail, and in regard to a major element in the
construction of the heptagon, how far Ibn al-Haytham has progressed
beyond the tradition in which he began. This tradition has not completely
dropped out of sight, since Ibn al-Haytham reduces each construction of a
triangle to finding two points of a range on a segment. All the same, by
introducing a new range in each case, Ibn al-Haytham seems to suggest that
the problem of choosing the right range is no longer important. Indeed one
can carry out the construction by means of any two conics belonging to a
pencil of which only the base points are fixed; each choice of two conics
gives two symptomata that define a range on the segment.

3.1.5. Two supplementary constructions: NNNNaaaaÒÒÒÒrrrr    iiiibbbbnnnn    ‘‘‘‘AAAAbbbbdddd    AAAAllllllllææææhhhh    and an
anonymous author

With the work of Ibn al-Haytham, the tradition of research on the
regular heptagon draws to a close. We have seen that a later contribution –
by Ibn Yºnus – in fact adds nothing very substantial. However, if we wish
to be exhaustive, there are two further constructions for the heptagon which
we should report. The first is the work of NaÒr ibn ‘Abd Allæh and the
second that of an anonymous author.

3.1.5.1. NaÒr ibn ‘Abd Allæh

Like al-Qºhî and Ibn al-Haytham (in The Construction of the
Heptagon) NaÒr does not start with the square given in Archimedes’ lemma,
but instead directly with a triangle of type (1, 3, 3). Thus, with the chord BC,
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the side of the regular heptagon inscribed in a circle, he associates a point A,
the midpoint of the major arc BC; the isosceles triangle ABC is a triangle of
type (1, 3, 3).

A
B

C

D E

Fig. 3.50

Analysis of a triangle of this type leads to the range (A, B, D, E) such
that

(1)  AB2 = AE · ED  and  (2)  DE2 = AD · DB.

This we recognize as the range D4, which is to be found in Ibn al-Haytham –
and nowhere else – where it is used in his investigation of the triangle (1, 5,
1). However, in this study of D4, NaÒr takes the segment AB as given
whereas Ibn al-Haytham takes as given a segment that corresponds to the
segment AE. This difference explains the difference that governs the choice
of curves: while Ibn al-Haytham opts for a parabola and a hyperbola to
show the range, NaÒr proceeds to use two hyperbolae (one branch of each).

Let us examine his analysis and synthesis.

A B

G

D
E

L

M

K

N
H

H1

2

Fig. 3.51
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We draw AN and DG perpendicular to AD, with AN = AB and
DG = DE. The line NB cuts DG in L; so we have DL = DB. The line MA,
constructed to be parallel to NB cuts DG in K; we have LK = AN = AB, and
so KG = AE and

(1) ⇒ KG · GD = KL2 = AB2 = AN2.

The points N and G thus lie on a hyperbola H1, which has asymptotes
AM and AE. Similarly, DG2 = DE2 = DA · DB, so B and G lie on a
hyperbola H2 with vertex B, transverse axis AB and latus rectum equal to
AB. So G is the point of intersection of H1 and H2 (H2 is an equilateral
hyperbola, its asymptotes pass through the midpoint of AB and one of them
is parallel to AM).

We may note that the range (K, L, D, G) can be obtained from (A, B, D,
E) by a 90° rotation about D.

Let us now examine the synthesis, which is stated as follows: given the
segment AB, to find the segments BD and DE on AB produced so that the
range (A, B, D, E) satisfies (1) and (2).

We draw NA perpendicular to AB, NA = AB; we draw NB and MA,
where NB || MA. Let H1 be the hyperbola that passes through N and has
asymptotes AM and AB, and let H2 be the hyperbola with vertex B,
transverse axis AB and latus rectum equal to AB. The two curves must cut
one another because H1 has the axis of H2 as an asymptote. Let G be the
point of intersection. We draw GD perpendicular to AB; GD cuts AM in K.
Let E be a point on AD produced such that DE = DG. We get

  G GD GK NA∈ ⇒ ⋅ =H 1

2
;

but DK = DA, so
GK = GD + DK = DE + AD = AE,

hence equality (1).
Moreover

 G GD BD AD∈ ⇒ = ⋅H 2

2
,

hence equality (2).
Let us express NaÒr’s proof in different language. Let us put AB = a,

BD = x, DE = y. The equalities (1) and (2) give the equations of H1 and H2

(since DE = DG). We can write:
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H

H

1

2

2

2

= ( ) + +( ) ={ }
= ( ) +( ) ={ }

x y y y x a a

x y x a x y

, ; ,

, ; .

The equation for the abscissae of the points of intersection is written

x3 + 4ax2 + 3a2x – a3 = 0,

an equation that has one positive root that corresponds to the point G and
two negative roots that correspond to the points of intersection of the
second branch of H2 with each of the branches of H1.

Starting from this range that he has now set up, NaÒr goes on to
construct a triangle of type (1, 3, 3). Let there be circles (A, AB) and (D,
DE); they cut one another since DE > DB; let C be their point of
intersection; we have

DE2 = AD · DB  and  DE = DC,

hence
AD

DC
= DC

DB
;

so triangles DCA and DCB are similar, hence ˆ ˆA BCD= .

A B D
E

C
K

Fig. 3.52

To prove angles A and E are equal, NaÒr replaces AB by EC in the
equality AB2 = DE · AE. Now, the equality AB = AC = CE, proved in the
analysis, is not a hypothesis in the synthesis, because in the latter the
hypotheses relate only to the range (A, B, D, E). So we need to prove that
ˆ ˆA E= , but this point is missing in NaÒr’s proof; and it is not true to say that

his synthesis is the strict converse of the analysis. So let us prove that
ˆ ˆA E= .

We have

CDB AECˆ ˆ= 2   and  ACE A Eˆ ˆ ˆ= − −π .
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In triangle ACD, we have
AC

CDB

CD

Asin ˆ sin ˆ= ,

hence
AC

CD

E

A
= sin ˆ

sin ˆ
2

.

But AC = AB and CD = DE, so

sin ˆ

sin ˆ
2E

A

AB

DE
= .

But AB2 = DE · AE. So we have

sin ˆ

sin ˆ
2E

A

AE

AB

AE

AC
= = .

Now in triangle AEC, we have

AE

AC

ACE

E

A E

E
= =

+( )sin ˆ

sin ˆ

sin ˆ ˆ

sin ˆ .

So we have

sin ˆ

sin ˆ

sin ˆ ˆ

sin ˆ
2E

A

A E

E
=

+( )
,

hence
sin ˆ sin ˆ sin ˆ sin ˆ ˆ2E E A A E⋅ = ⋅ +( )
⇒ − = − +( )cos ˆ cos ˆ cos ˆ cos ˆ ˆE E E A E3 2

⇒ = + ⇒ =3 2ˆ ˆ ˆ ˆ ˆE A E E A ,

and it follows that ˆ ˆA ECD= ; hence

BDC Aˆ ˆ= 2   and ABC BDC BCD Aˆ ˆ ˆ ˆ= + = 3 .

So triangle ABC is of type (1, 3, 3).
Like everyone, NaÒr finishes by inscribing in a given circle an isosceles

triangle similar to this last triangle, that is of type (1, 3, 3).
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3.1.5.2. An anonymous text

The text, which was copied by MuÒ†afæ ∑idqî without the name of its
author, contains no hints that provide material for a plausible conjecture
about the identity of the author or even his date. As the title indicates, we
have a synthesis of the analysis of Archimedes’ lemma, but employing a
different method: to divide a straight line AB into two parts AC and CB such
that

AB AB AC X+( ) = 2 , where 
X

AB

AC

BC
= .

As we have explained above, this range had been obtained by considering
the intersection of a parabola and a hyperbola.

The author sets out to find the straight line from the point A, a vertex of
the square ABCD, that cuts the diagonal BC in E and the line CD in H, and
which gives the equality area (AEB) = area (GDH). To do this, he uses the
point G of the segment DB, defined by

BD BD BG F+( ) = 2 , where F

BD

BG

GD
= .

Authors who deal with this problem generally use the point H on the
segment CD. Their analysis takes them to the range (A, E, G, H) or the
similar range derived from it by orthogonal projection onto the line CD.

If we make an orthogonal projection of the point E onto the line BD, we
obtain the point I, and the range (B, I, G, D) is similar to the range (A, E, G,
H), which satisfies

(1) AE2 = EH · EG  and  (2)  HG2 = AG · AE.

We also have

(1′) BI2 = ID · IG  and  (2′)  DG2 = BG ·  BI.

From (1′) we get

BI2 = (BD – BI)(BD – BI – GD),

hence
 BD2 – BD · GD = BI (2BD – GD);

hence
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BD · BG = BI(BD + BG) ⇒ = ⋅
+

BI
BD BG

BD BG
.

From (2′) we get

DG
BG BD

BD BG

DG

BG

BD

BD BG

BD

BD BD BG
2

2 2

2

2

= ⋅
+

⇒ =
+

=
+( )

;

so we have
BG

DG
=

BD BD + BG( )
BD

.

If we put F2 = BD(BD + BG), we come back to the equalities that were
given to define the point G and the range.

A B

C D

E

G

H

I

J

Fig. 3.53

We must note that there is some degree of analogy between this
procedure and that of Abº al-Jºd, which we have considered before. To
obtain a triangle of type (1, 3, 3), Abº al-Jºd employs a range that is similar
to the range (C, J, D, H) that we have here. He obtains this range by finding
a point that corresponds to the point G, by considering the intersection of a
parabola and a hyperbola, exactly the ones used by the anonymous author
here. One might perhaps hazard the conjecture that Abº al-Jºd’s study
inspired this anonymous author to carry out his synthesis.

3.1.6. Ibn al-Haytham’s two treatises on the construction of the heptagon

3.1.6.1. On the determination of the lemma for the side of the heptagon

1. Ibn al-Haytham is referring to the lemma Archimedes gave for
constructing the heptagon.
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Lemma:68 Let ABCD be a square and AC its diagonal. Let us produce
AD to E and let us draw BGHE such that the two triangles BGC and HDE
have equal areas. Let us draw KGI parallel to BA; we have

(1) DA · AI = DE2,

(2) EI · ID = IA2.

Now, while (1) and (2) can be deduced from the areas of the two triangles
BGC and HDE being equal, the pair of points (E, I) can be constructed only
by using conic sections.

So Ibn al-Haytham first tries to prove the lemma. He starts by trying to
simplify the problem, and sets about doing so by analysis. So let us join BD,
it cuts AC in its midpoint, M. We have

(3) tr. (BMC) = tr. (AMD)

tr. (BMC) = tr. (BMG) + tr. (EDH),

hence, from (3),
tr. (AMD) = tr. (EDH) + tr. (BMG).

H

E

B

D

C

A I L

M

N

G

K

Fig. 3.54

68 We may note that this lemma can be reduced to: to find on a given segment AD a
point I and on AD produced a point E such that (1) and (2). These two conditions can be
expressed algebraically as follows: If we put AD = a, ID = y, DE = x, we get

*
( ),

( ) ( ) ,
        

x a a y

a y x y y

2

2

= −

− = +

⎧
⎨
⎩

which give x ax a x a3 2 2 32+ = + , an equation that can be solved by considering the inter-
section of the two curves whose equations are given by *. The first curve is a parabola,
the second is a hyperbola.
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If we add the quadrilateral MDHG to both sides, we have

tr. (BDE) = tr. (ADHG).

Let L be a point such that tr. (BEL) = tr. (CGH). We have

tr. (BDL) = tr. (ADC),

and they are between two parallel lines. So

(4) LD = DA

and we have
tr.  (BDL)
tr.  (BEL)

= tr.  (ADC)
tr.  (CGH)

.

Let us draw HN ⊥ GC; we have

HN · 
1
2

GC = tr. (GHC),

and similarly

DM · 
1
2

AC = tr. (ADC), since DM ⊥ AM,

so
tr. 
tr. 

( )
( )
ADC

CGH

DM

HN

AC

GC

DC

CH

AC

GC
= ⋅ = ⋅ ;

and since
DC

CH
= BE

BH
  and  

AC

GC
= EB

BG
,

we have
tr. 
tr. 

( )
( )
ACD

CGH

EB

BH

EB

BG

EB

BH BG
= ⋅ =

⋅

2

.

If ABCD is a rectangle (see Fig. 3.55), we need to draw DM′, the
perpendicular to AC. The line DM′ then replaces DM, and we obtain the
same ratios as before.
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A

M

M

N
G

I D E L

H

CB K

′

Fig. 3.55

We have
tr.  (ACD)
tr.  (CGH)

= tr.  (BDL)
tr.  (BEL)

= DL

LE
,

and consequently
DL

LE

EB

BH

EB

BG

EA

AD

EA

AI

EA

AD AI
= ⋅ = ⋅ =

⋅

2

;

but
DA · AI = DE2,69

hence

(5) DL

LE
= AE2

DE2
.

69 According to the text attributed to Archimedes, this relation expresses the
equivalence of the triangles BGC and DEH. Indeed, the area of the first one is

1

2

1

2
BC GK AD DI⋅ = ⋅   or  1

2
AD DI

AB

BC
⋅ ⋅ ,

while that of the other one is

1

2

1

2

1

2

2

DH DE IG
DE

EI
DE

AI DE

EI
⋅ = ⋅ ⋅ = ⋅  or 1

2

2AI DE

EI

AB

BC

⋅ ⋅ ;

so the required relation can be written  AD · DI · EI = AI · DE2.
Now AI2 = DI · IE because triangles KGB and IGE are similar to one another. So

we have AD · AI = DE2.
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Now, from (4), AD = DL. So the construction reduces to dividing AL in
a point E such that it satisfies (5). But this division of the segment AL can be
carried out only by using conic sections.

So let us continue the analysis and let us suppose that the segment has
been divided in this manner. Let us produce CD to O and let us make
DO = AE. Let us draw from E the line EF perpendicular to AL such that
EF = DE (see Fig. 3.56). We have

(6) DL

EL
= OD2

EF2
.

Let

(7) DL · s = OD2    where s = EF2

EL
.

The parabola with axis DL and latus rectum s accordingly passes through O,
from (7). Let (L, F, O) be that parabola; it passes through F, because from
(6) and (7) we have

(8) LE · s = EF2.

Let us put DQ = DL and let us join LQ. It cuts EF in U. We know LDQ
[isosceles right-angled triangle], and OQUˆ  is known [= 135°]. The ratio
QU

DE
 is also known since QU

DE
= QL

DL
= 2 .

A
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Fig. 3.56
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Now OD = EA  and  QD = DL = DA, so QO = DE, and consequently
OQ

QU
 is known.

It follows that triangle OQU is of known shape and UO

OQ
 is known.

We have OQ = DE and DE = EF, so OQ = EF and OU 2

FE2
 is known.

From (8) we know LE s

OU

⋅
2  and EL

LU
, so LU s

OU

⋅
2  is known and OULˆ  is

known.
So the parabola with diameter LQ, vertex L, angle of its ordinates OUL

and having as its latus rectum a segment whose ratio to s is known passes
through O. Let (L, R, O) be this parabola.

LU

OU
s k LU

s

k
OU LU s OU s2

2
1

2
1⋅ = ⇒ ⋅ = ⇒ ⋅ = ⇒⎡

⎣⎢
⎤
⎦⎥

      latus rectum the .

Unfortunately, knowing the latus rectum s assumes we know point E,
which is what we want to construct; in fact s is defined by

s = OD2

DL
= EA2

DL
.

However, from Ibn al-Haytham’s analysis, we may imagine a synthesis
that allows us to construct the square ABCD in accordance with the
conditions impose by Archimedes’ lemma. If we suppose the point L, the
line LD and the magnitude s are known, then we know the parabola LFO,
with axis LD, vertex L and latus rectum s. The second auxiliary parabola
passes through L and has a diameter LQ such that DLQˆ  = 45°. The angle
OUL, the angle between the ordinates and this diameter, is constructed as
follows: let us consider an isosceles triangle UVQ, right-angled at V, let us
produce the side VQ by a length QO = VQ; let us join OU and let us
produce QU to L; the required angle is OULˆ .

O

Q

V
U

L

Fig. 3.57
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The latus rectum s1 of this second parabola can be found if we note that
it is equal to

OU

LU

OU

LE

2 2 1
2

= ⋅ ,

where
OU2 = OQ2 + QU2 + OQ · QU√2 = 5QV2 = 5DE2;

so

s
DE

LE
s1

25
2

5
2

= ⋅ =

since

s = EA2

DL
  and  

EA2

DE2
= DL

LE
.

So the second auxiliary parabola is also known. The two parabolae
intersect in a point O (different from L) whose projection on LD defines the
point D. We take the point A on LD produced such that DA = LD and the
point E on LD such that DE = OQ where Q is the point where the diameter
LQ intersects OD. Archimedes’ figure is thus reconstructed, up to a
homothety.

Ibn al-Haytham follows this solution with another one, which makes
corrections to the range constructed from the initial data, a solution that is,
moreover, taken from the work of his predecessors: we may see this
procedure as proof that the first solution did not seem to him to be
satisfactory.

Moreover, it has been claimed that in the second part of this treatise Ibn
al-Haytham employs ‘an analysis as well as a synthesis’, and that ‘the
analysis is rendered in a confused manner’.70 However, a simple
examination of the text shows that it contains no analysis and that Ibn al-
Haytham employs only synthesis.

This synthesis starts from data that are different from what was given at
first and that is in fact the point at issue: it is assumed we know the
magnitude s and not segment AD. Perhaps that is why Ibn al-Haytham
looked for a different method rather than provide the synthesis we have just
given.71

70 J. P. Hogendijk, ‘Greek and Arabic constructions of the regular heptagon’,
p. 234.

71 We have been criticized for saying that Ibn al-Haytham’s analysis was
‘erroneous’; we have never written anything of the sort, but only that ‘the analysis does

 (Cont. on next page)
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2. There is thus every indication that, recognizing the difficulty we have
mentioned, Ibn al-Haytham returns to the problem in the second part of his
first treatise. He first notes that constructing the regular heptagon using
Archimedes’ lemma in fact reduces to dividing a segment AB at points C
and D in such a way that

DA · AC = DB2  and  BC · CD = AC2,

where
AC > DC  and  DB > DC.

C DA B

Fig. 3.58

This time he dispenses with the analysis and passes immediately to the
synthesis.

Let there be a general segment IE with midpoint H. Let HK ⊥ HE,

HK = HE and HK || IL.
Let us draw the parabola (P ) with axis EG, vertex E and latus rectum

EH; from I.52 of the Conics, we have K ∈ (P ) (see Fig. 3.59a).

L

G I H E

M

N

K

F

U

S

Fig. 3.59a

                                    
(Cont.) not lead to a solution of the problem in the form in which it was stated’, that is
with a given segment AD; see ‘The construction of the heptagon’, p. 314. Perhaps we
should, moreover, see in this the reason why Ibn al-Haytham did not think it worth his
while to give a synthesis, which we may note is not a matter of any difficulty. Other
criticisms, concerning the remainder of our edition and commentary, have no more weight
than that last one. So we shall not address them here.
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Let L ∈ (P ) be such that LI ⊥ IE. Let us produce LI to S such that

IS = IH = KH. The quadrilateral KISH is thus a parallelogram.
Let us draw the hyperbola (H  ) passing through I and with asymptotes

HK and HS; an (H  ) with these properties must exist, from II.4 of the
Conics.

Now IL || KH and KH is an asymptote. So the straight line IL cuts (H  )
in a single point I. The semi-infinite straight line IL lies inside (H  ) and meets
(H  ) only at the point I.

Let N and N′ be two general points on (H  ) and F and F′ their

projections on EG (see Fig. 3.59b):

L

N

N

I F F H E′

′

Fig. 3.59b

if N′F′ > NF,  then d (N′, HK) < d (N, HK),

if N′F′ → +∞, then d (N′, HK) → 0.

So the part of (H ) between the lines IL, HK is cut by the arc KL of (P ) in
a point N.

Let  NM || KI  and  NU || HK.  We have

NM · NU = KI · IS   [from the equation of (H )]
and

area (N, H) = area (S, K).

Now HF ⊥ NU  and  HI ⊥ IS, so

NU · HF = SI · IH = EH2.
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Let us put FG = NF. Since FU = FH, then  HG = NU, hence

GH · HF =  EH2.

Moreover
FE · EH = FN2  [equation of (P )].

Now FN = FG, so FE · EH = FG2.
We then move from the division of EG to that of AB by using a

homothety that transforms (E, F, G, H) into (A, D, B, C). So we have

DA · AC = DB2,
BC · CD = CA2.

G F H E

B D C A

Fig. 3.60

We still need to prove that AC > CD and DB > CD. We have FE · EH
= FG2 = FN2; now FE > EH; hence FN > EH.

But EH = HI, hence FN > HI and FN > HF, since HF < HI. Now
NF = FG, so FG > FH; EH > HF because EH = HI. So EH > HF and
FG > HF, hence by homothety AC > CD and DB > CD.

At the end, we have divided AB in points C and D in accordance with
the given conditions. Q.E.D.

Constructing the heptagon can finally be reduced to constructing a
triangle ECD such that EC = CA and ED = DB. In fact, if we draw the
circumcircle of triangle AEB, AB is a diagonal of the required heptagon and
E a neighbouring vertex to A; EC and ED are two other diagonals of the
heptagon because, as we shall show later, triangle ECD has angles π/7, 4π/7

and 2π/7.
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B
D C

G
H

E

A

Fig. 3.61

The circumcircle of this triangle leads directly to the regular heptagon
inscribed in the circle. Now, Ibn al-Haytham has already established that this
triangle can be constructed since

AC > CD  and  DB > CD ⇒ AC + DB > CD;

moreover
AC2 = CD · BC  and  AC > CD ⇒ AC < CB,

hence
AC < CD + DB,

so
AC – DB < CD,

hence
AC – DB < CD < AC + DB.

Let us prove that triangle ECD is of the type (1, 2, 4), that is, 

EDC CEDˆ ˆ= 2  and ECD CEDˆ ˆ= 4 .

Let DH be the bisector of CDEˆ  and CG the bisector of ECDˆ ; we have

EH

HC
= ED

DC
= BD

DC
,
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hence, by composition of ratios,

EC

CH
= BC

CD
.

But
BC

CD
= AC2

CD2

because BC · CD = AC2, so

EC

CH
= AC2

CD2 = CE2

CD2 ;

hence
CD2 = CH · EC,

hence
CE

CD
= CD

CH
.

So triangles DEC and CDH are similar, and in consequence

DHC EDCˆ ˆ=   and  DHC EDH DEHˆ ˆ ˆ= +

DEH HDCˆ ˆ= ,  EDC HDCˆ ˆ= 2 , EDC DECˆ ˆ= 2 .

We also have
DG

EG
= CD

CE
= CD

AC
,

hence, by composition of ratios,

DE

EG
= AD

AC
= BD2

AC2
= DE2

CE2
,

and in consequence
DE

CE
= CE

EG
,

so triangles ECD and ECG are similar, and in consequence

CGE ECDˆ ˆ=  and CGE GCD GDCˆ ˆ ˆ= + ,
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EDC ECGˆ ˆ= , ECD ECGˆ ˆ= 2 , ECD EDCˆ ˆ= 2 , ECD CEDˆ ˆ= 4 .

If we now construct in the circle a triangle whose angles are equal to
those of triangle ECD and if we divide ECDˆ  in half, and then divide each
half into halves again, and divide EDCˆ  in half, the straight lines we have
drawn divide the circle into 7 equal parts.

H

E

C G

D

Fig. 3.62

To put it differently, we may say that, to divide the segment in
accordance with the given conditions, Ibn al-Haytham considers (HI, HK) as
a pair of rectangular coordinate axes, to which he refers the conics used in
the construction.

So let (HI, HK) = (Ox, Oy), EH = a,

   (P) = {(x, y); y2 = a (x + a)},

   (H) = {(x, y);   y = 
a2

x
 – x}.

He proves that these two curves must necessarily cut one another in a point
whose abscissa lies between 0 and a. The equation for the abscissae is of the
fourth degree with one obvious root x = –a (the second branch of the
hyperbola passes through the point E, symmetrical with I).

(a2 – x2)2 = ax2 (a + x),

hence
x3 – 2ax2 – a2x + a3 = 0.
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It is clear that this equation has three roots x1 < 0, 0 < x2 < a, x3 > a; it
is the positive root x2 that corresponds to the point N (see Fig. 3.59a).

A property of the asymptote to the hyperbola (Conics, II.14) allows Ibn
al-Haytham to prove the existence of this positive root.

Ibn al-Haytham then constructs a triangle of type (1, 2, 4) to complete
the solution of the problem. Apart from the discussion – which has historical
importance for its treatment of the intersection of the curves – Ibn al-
Haytham’s solution, although the procedure differs, is not actually distinct
from those given by al-∑æghænî or al-Qºhî. It is in his second treatise that
he changes the very status of the problem of the heptagon.

3.1.6.2. On the construction of the heptagon

In the introduction to this treatise, Ibn al-Haytham first of all notes that
until his time all constructions of the regular heptagon have been based on
Archimedes’ lemma, that is, on dividing one of the diagonals of the
heptagon by the two others. For his part, Ibn al-Haytham sets out to find
constructions for the heptagon by examining constructions for the triangles
that can be made from its sides and diagonals. This change of viewpoint, of
which historians have taken too little notice, leads Ibn al-Haytham to work
systematically through all possible constructions and thus go beyond the
single solutions given by each of his predecessors; and he does this by
considering all partitions of the integer 7. It is in precisely this sense that his
solution to the problem is more general.

He refers to mathematicians who have already considered this problem;
these are al-Qºhî and an anonymous author whose solution is based on
Archimedes’ lemma, probably al-∑æghænî. Ibn al-Haytham thus proceeds
with analyses of the problems and states the following proposition:

Let there be a circle ABC; let us suppose the problem is solved. Let
ADEBCGH be the regular heptagon obtained. Let BEC, BDC, BAC, BDH
be four triangles inscribed in the circle. Any other triangle formed from
these 7 points is congruent with one of these four triangles.

In fact, we have

1. ABC: Â = 
π
7

, B̂= 
3π
7

,  Ĉ  = 
3π
7

, (1, 3, 3),

2. BDH: B̂  = 
2π
7

, D̂ = 
3π
7

, Ĥ  = 
2π
7

, (2, 3, 2),
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3. EBC: Ê  = 
π
7

, B̂  = 
5π
7

, Ĉ  = 
π
7

, (1, 5, 1),

4. DBC: D̂ = 
π
7

, B̂  = 
4π
7

, Ĉ  = 
2π
7

, (1, 4, 2).

A

B E

G

H

DC

Fig. 3.63

In other words, there exist only four triplets of natural numbers a, b, c, such
that a + b + c = 7. Ibn al-Haytham does not present a justification for that
last assertion, whose proof is immediate. Let us present the proof in the style
of the time:

Let us suppose that a ≥ b ≥ c. It is impossible to have a = b = c,
because that would give 3a = 7, which is impossible since a is a natural
number. Let us put b + c ≥ 2, we have a ≤ 5; moreover 7 = a + b + c < 3a,
so we have a > 2. So we can take three values:

a = 5, b + c = 2, b = 1, c = 1, (1, 5, 1),

a = 4, b + c = 3, b = 2, c = 1, (1, 2, 4),
b ≥ c,

a = 3, b + c = 4, b = 3, c = 1, (1, 3, 3),
b ≥ c, b = 2, c = 2, (2, 3, 2).

The remainder of the treatise is accordingly devoted to the synthesis of
the proposition just stated. The purpose is to prove that each of these
triangles gives a possible construction for the regular heptagon.
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1. The case (1, 3, 3)
Analysis: Let us suppose that we have found a triangle ABC (see Fig.

3.64) whose angles A, B, C, are of the type (1, 3, 3). Triangle ABC is
isosceles. Let the point D on AC be such that CBD BACˆ ˆ= . So triangles
BCD and ABC are similar. We have

BD = BC  and  AC

CB
= BC

CD
,

hence

(1) AC · CD = BC2.

Let the point E on DA be such that DBE BACˆ ˆ= . Since ABCˆ  is three
times BACˆ ,

ABD BEC CBEˆ ˆ ˆ= = = 2
7
π

,

so
EC = CB.

I
K

L

G

P

N

M

H

D EC

B

A

O

Fig. 3.64

But triangles DBE and ABD are similar, so

(2) AD · DE = DB2.

Now BD = BC, so, from (1) and (2),
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AD · DE = AC · CD.

BD = BC = CE,

and, from (2),

(3) AD · DE = CE2,

(4) AC · CD = CE2.

The range (A, E, D, C) on the segment AC, constructed so as to obtain
the triangle whose angles are in the ratio (1, 3, 3), and satisfying equations
(3) and (4), is not found in the work of any predecessor known to Ibn al-
Haytham.

Then, on CE we construct the square CEHG and the hyperbola (H1)
that passes through H and has asymptotes CE and CG. The line drawn from
D parallel to CG cuts (H1) in K and GH in N.

Let P be a point on HE such that HP = HE; let us draw PG and HC.
The segment HC cuts DN in M.

We have

(5) CD = DM  and  DE = HN.

Let us draw KI parallel to DC; we have

(6) KD · DC = HE · EC = CE2 [equation of (H1)].

We have, from (4),
KD = AC,

and from (5),
KM = AD.

Hence, from (3) and (5),
KM · NH = CE2;

since
NH

MH
= GH

CH
,

we have
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KM NH

KM MH

GH

CH

GH

GH CH

GH

ND HC

⋅
⋅

= =
⋅

=
⋅

2 2

.

Now
GH = CE,

hence
KM · MH = HC · ND = HP · HC.

Let us draw KL parallel to HM, where L ∈ HE; we have

MK · KL = HP · PG,

so the hyperbola (H2) that passes through G and has asymptotes HC and
HL also passes through K. So K ∈ (H1) ∩ (H2). The projection of K on CE

is the point D.

Synthesis: Let CE be a general segment; let us construct on CE the
square EHGC; let us place P on EH so that HP = HE. Let us then draw the
hyperbola (H1) that passes through H and has asymptotes CE and CG, and
the hyperbola (H2) that passes through G and has asymptotes HC and HP.
The arcs of (H1) and (H2) included in the area bounded by the two parallel
asymptotes cut one another in K.

Let D ∈ CE  be such that  KD || GC,  I ∈ CG be such that  KI || CE,

L ∈ EH be such that KL || MH;  {M} = (CH) ∩ (DK),  A ∈ CE  be such

that  CA = KD.
Let us draw the circle (C1) with centre A and radius AC, and the circle

(C2) with centre C and radius CE. The circles (C1) and (C2) cut one another
in B, and we have

AC CD KD DC KD KI GH HE CE⋅ = ⋅ = ⋅ = ⋅ = 2    [equation of (H1)].

Since CB = CE, we have

(7) AC · CD = CB2;

and since KD = AC and CD = DM, we have AD = KM. But

MK · KL = GC · GP   [equation of (H2)],
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hence
KM · MH = GC · CH;

now
MH

HN
= CH

HG
   [EH || CG || DK, HG || EC],

hence
KM MH

KM HN

CH HG

HG

PG GH

CG

⋅
⋅

= ⋅ = ⋅
2 2 ;

now
KM · MH = PG · GH    [equation of (H2)],

so
KM · HN = CG2 = CE2,

and
 HN = DE, KM = AD

hence
AD · DE = CE2 = CG2 = CB2.

Triangles ABC and BDC are similar, from (7); so BDC ABCˆ ˆ=  and
CBD BACˆ ˆ= , and BD = BC, because triangle ABC is isosceles, hence

AD · DE = BD2.

So triangles ABD and BED are similar.

BED ABDˆ ˆ=   and  DBE BADˆ ˆ= ,

hence
DBE CBDˆ ˆ= .

Triangles ABC and CBD are similar, hence

AB

BC
= BD

DC
.

Now
BC = BD = EC,
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so
AB

BD
= CE

CD
= AC

CE
;

and, by separation, we find that these ratios are also equal to AE

ED
.

So the point E lies on the bisector of DBAˆ , so DBE ABEˆ ˆ= . Thus the
angle B is divided into three equal parts. The construction of the heptagon
follows as before.

So we may finally sum up Ibn al-Haytham’s solution:
Let (CE, CG) be a pair of coordinate axes (Ox, Oy). Let us put CE = a

and consider the two hyperbolae

(H1) = {(x, y); xy = a2},

(H2) = (x,  y) ;  y =  x − a2

x − a

⎧
⎨
⎩

⎫
⎬
⎭

;

(H1) and (H2) must cut one another at the point K (x0, y0) such that
x0 ∈ ]0, a[.

So there exists a unique x0 ∈ ]0, a[ such that

x0
3 − ax0

2 − 2a2x0 + a3 = 0.

In fact, the equation for the abscissae of the points of intersection has
three roots, and x0 is the one that gives the solution to the problem.

Let D (x0, 0) be the projection of K (x0, y0) on CE.
Let A be a point of CE such that CA = DK = y0. The circles (C1) and

(C2) cut one another. Let B be one of their points of intersection. The
triangle ABC that we obtain is of type (1, 3, 3). By a homothety we
construct in the given circle a triangle similar to triangle ABC. We may
observe that here Ibn al-Haytham’s procedure involves trisecting the angle
CBA. We may also note that (C1) passes through the centre of (C2); so the
two circles intersect, and we do not need the inequality concerning the
distance between the centres and the radii.

2. Second case (3, 2, 2)
First, we may note that, as far as we know, this case had not been

examined by any of Ibn al-Haytham’s predecessors.
Analysis: Let us suppose we have found the required triangle ABC (see

Fig. 3.65); so angles A, B, C are of the type (3, 2, 2).
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Thus triangle ABC is isosceles, AB = AC. Let D be a point on BC such
that BAD Cˆ ˆ= . Let us produce CB to a point E such that BE = BA. Then
triangles ABD and CBA are similar; we have

CB · BD = BE2.

Triangle ABE is isosceles:

BAE BEA Bˆ ˆ ˆ= = 1
2

   and  CAD AECˆ ˆ= ,

because, by hypothesis, BACˆ  is three times BEAˆ ; so triangles ADC and
EAC are similar.

We have

(1) EC · CD = AC2 = EB2,

so
EC · CD = CB · BD.

Let there be a segment EH such that EH ⊥ BE and EH = BE, a

segment HI such that HI || BE and HI = BE,  a segment BK such that BK ⊥
BE and BK = BC,  a segment KL such that KL || BC and KL = BC, and a
segment DG || BK, where G ∈ KL; DG cuts BL in M.

Let P be the fourth vertex of the parallelogram HLGP.
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Let the point N on BC be such that BN = BE and BNSO the square
constructed on BN. We have

area (N, O) = BE2 and KB · KG = BE2,

hence
DG · GK = NS · SO.

So the hyperbola (H1) that passes through S and has asymptotes DB
and BO passes through G.

We have
LB

BK
= LB

BC
= BH

BE
= LH

CE
,

hence
LH CD

EC CD

HB BE

BE

⋅
⋅

= ⋅
2 ;

and from (1) we have

LH · CD = HB · BE;

we have
LH = PG  and  CD = GL

because
KL = BC  and  KG = BD,

so
PG · GL = HB · BE = IE · EB.

So the hyperbola (H2) that passes through E and has asymptotes HL
and HI passes through G. So

G ∈ (H1) ∩ (H2).

The projection of G on BC is D; Ibn al-Haytham then deduces that CB ·
BD = BE2; so we know BA and AC. But we are already moving on to the
synthesis.

Synthesis: Let BE be a given general segment, N the point symmetrical
to E with respect to B, and let the square BNSO be constructed on BN. Let
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us draw the hyperbola (H1) that passes through S and has asymptotes BN
and BO. Let H be such that HE ⊥ EB and HE = EB, the point I such that
HI || BE and EI || BH. Let us also draw the hyperbola (H2) that passes
through E and has asymptotes HS and HI. The hyperbolae (H1) and (H2)
cut one another at the point G because (H2) approaches indefinitely close to
HS.

Let D be the projection of G on EB, L a point on HS such that
GL || EB, C a point on BE such that DC = GL and K a point on BO such
that GK || EB. We have

BC = KL = KB,

so
(1) CB · BD = BE2   [equation of H1].

Let P be a point on HI such that GP || HS; we have

(2) PG · GL = EI · EB   [equation of H2].

But
LB

BK
= LB

BC
= HB

HE
= HB

BE
= HL

EC
,

hence
HB

BE

IE BE

EB

HL

EC
= ⋅ =2 ,

so
IE EB

EB

HL DC

EC DC

⋅ = ⋅
⋅2 ;

but
CD = LG  and  HL = PG,

so
PG GL

EC CD

IE EB

EB

⋅
⋅

= ⋅
2 ,

hence, from (2)
EC · CD = EB2

and from (1)



IBN AL-HAYTHAM’S TREATISES 393

EC · CD = CB · BD,

hence
EC

CB
= BD

DC
.

But
 EC > CB,

hence
DB > DC.

So we have
BD > DC ⇒ 2BD > BD + DC = BC

2BN > 2BD > BC ⇒ BE + BN > BC.

We can thus construct triangle ABC such that BA = AC = BE, and we
have

CB · BD = BA2.

So triangles ABD and CBA are similar, and we have

BAD ACBˆ ˆ=   and  ADB BACˆ ˆ= .

Since EC · CD = BE2 = CA2, triangles ADC and AEC are similar, hence

CAD AECˆ ˆ= .

Therefore
ABC AECˆ ˆ= 2 ,
ABC CADˆ ˆ= 2 ,
ADB CADˆ ˆ= 3 ,
BAC CADˆ ˆ= 3 .

So if angle BAC is three parts, then each of the angles ABC and ACE is
two parts. We construct in the given circle a triangle similar to ABC, and
finally we obtain the heptagon.

Let us take a rapid look at Ibn al-Haytham’s solution using algebraic
notation.
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Let there be a segment EB; let N and E be two points symmetrical with
respect to B. Let us construct the square BNSO; let (BO, BC) be coordinate
axes (Ox, Oy) and let us put BE = a.

Let us consider the two hyperbolae

(H1) = {(x, y); xy = a2},

(H2) = (x,  y) ;  y =  x − a2

x + a

⎧
⎨
⎩

⎫
⎬
⎭

.

(H1) and (H2) must cut one another at G(x0, y0) such that x0 > 0. So there
exists a unique x0 > 0 such that

x0
3 + ax0

2 − 2a2 x0 − a3 = 0.

In fact, the equation for the abscissae of the points of intersection has three
roots, of which x0 is the one that provides the required solution.

From G(x0, y0) we can find D(0, y0), L(x0, x0) and C(0, x0). We construct
A as the point of intersection of the two circles C1 (B, a) and C2 (C, a).
These two circles have the same radius a, and they cut one another if BC <
2a, which Ibn al-Haytham proves is true – that is he shows that BE + BN >
BC.

The triangle we obtain, triangle ABC, is of the type (2, 3, 2). By a
homothety, we construct in the given circle a triangle similar to triangle
ABC. Finally, we may note that in constructing this solution Ibn al-Haytham
has carried out a trisection of the angle BAC.

3. The case (1, 5, 1)
Analysis: Let us suppose we have found a triangle ABC such that

ABC ACBˆ ˆ=  = 
π
7

   and  BACˆ  = 
5π
7

.

Let us put CAD ABCˆ ˆ=  and DAE ABCˆ ˆ= . Triangles CAD and ABC are
similar, and we have

BC

CA
= AC

CD
,

hence

(1) BC · CD = AC2 = AB2.
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Triangles ADE and ABD are also similar, and we have

BD · DE = AD2.

But AD = CD, because CAD ACDˆ ˆ= , hence

BD · DE = CD2.

G
A

B K

M

CD

L

H
N

I

E

Fig. 3.66
Since

CAD DAE ABD ACDˆ ˆ ˆ ˆ= = = ,

we have
ADE ACDˆ ˆ= 2

and
 AEB ACBˆ ˆ= 3 ,

 BAC ACBˆ ˆ= 5 (by hypothesis),
EAC ACBˆ ˆ= 2 ,
BAE ACBˆ ˆ= 3 ,
BAE AEBˆ ˆ= ,  hence AB = BE.

From (1), we have

(2) BC · CD = BE2.
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Let us put DK = CD. Let us draw KL ⊥  DK with KL = KD, and at D
construct the perpendicular DG such that DG = DK. Let us join GK and
DL, and at B construct the perpendicular BH such that BH = BE. Let us
join EH and produce it to M; let us produce DL to meet BH in the point I.
Then we have

HE

EB
= EM

DE
= HM

BD
 and 

HE

BE
= GK

DK
,

so
HM

BD
= GK

DK
 and 

HM DE

BD DE

GK

DK

GK

KL

GK KL

KL

⋅
⋅

= = = ⋅
2 .

But
BD · DE = CD2 = KL2,

so
HM · DE = GK · KL.

But
DE = DM and DM = HI,

so
HM · HI = GK · DK.

The hyperbola (H  ) that passes through K and has asymptotes GD and
DI thus passes through H. But from (2) and the hypothesis that BH = BE,
the parabola (P ) with axis BC, vertex C and latus rectum DC passes
through H. So

H ∈ (H  ) ∩ (P ).

So if we knew CD, (H  ) and (P ) would be known, point H would also
be known, as would points E and B.

Synthesis: Let CK be a given general segment. Let us divide CK into
two halves at the point D, and at the points D and K let us construct
perpendiculars DG and KL such that DG = KL = DK. Let us join GK and
DL, and let us produce DL to the point I. Let us draw the hyperbola (H  )
that passes through K and has asymptotes GD and DI.72 Let us also draw
the parabola (P ) with axis CK, vertex C and latus rectum CD.

72 The point I will be defined below.
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(P ) cuts DI, because any straight line that cuts the axis of (P ) cuts (P )
in two points on opposite sides of the axis. If, further, (P ) extends beyond
DI, it becomes more distant from it, because the tangent at the point of
intersection cuts DI. So (P ) remains above the tangent. If (P ) becomes
more distant from the intersection, the curve thus becomes more distant
from DI. But as we extend (H ), it comes closer to DI. It must accordingly
follow that (H ) and (P ) intersect; let their point of intersection be H.

At the point H let us construct HB perpendicular to the axis of (P ); let
HB meet DL in the point I; let us draw HEM parallel to DL. Triangles HBE
and EDM are then similar to triangle DKL, and we have

HB = BE  and  ED = DM = HI,

hence
HE

BE
= DL

DK
= EM

DE
= HM

BD
,

so
HM

BD
= DL

DK
,

hence
HM DE

BD DE

GK

KL

GK KL

KL

⋅
⋅

= = ⋅
2 ,

hence
HM HI

BD DE

GK KL

KL

⋅
⋅

= ⋅
2 .

But
HM · HI = GK · KL   [equation of (H )],

so
BD · DE = KL2,

hence
BD · DE = CD2.

But
KC = 2CD,

hence
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KC · CD = 2KL2.

The point L thus lies inside (P ).73 So the parabola (P ) cuts DI beyond
L, say at the point N. Thus the straight line HB lies beyond KL, and
BD > DK. But

BD · DE = CD2 = DK2,

so DE < DK and consequently DE < CD and EC < 2CD. But

BC · CD = HB2  [equation of (P )]

and
HB = BE,

hence
BC · CD = BE2

and we have
BC · CE < BC · 2CD  and  BC · CE < 2EB2,

so
CE < BE

[in fact BC = BE + CE, hence (BE + CE) · CE < 2EB2, then the hypothesis
CE ≥ BE gives (BE + CE) · CE ≥ 2EB2, and 2 BE > BC.]

So it is possible to construct on BC an isosceles triangle such that its
base is BC and its other sides are equal to BE. Let the triangle be ABC. Let
us join AD, AE.

Since AC = BE, we have BC · CD = AC2. Triangles ACD and ABC are
similar, hence

CAD ABC ACBˆ ˆ ˆ= = .

73 This statement is easily proved: let  L′ ∈ (P) be projected to K; we have

KL′ 2 = KC · CD.
But

KC · CD = 2KL2,
hence

KL′ 2 = 2KL2,
so KL′ > KL and L lies inside (P).
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Then we have
AD = CD  and  BD · DE = AC2,

hence triangles ADE and ABD are similar and

DAE ABD ACDˆ ˆ ˆ= = ,

so
AEB ACBˆ ˆ= 3 .

Since AB = BE, we have
BAE BEAˆ ˆ= ,

so
BAE ACBˆ ˆ= 2   and  CAE ACBˆ ˆ= 2

and we have
BAC ACBˆ ˆ= 5 .

So triangle ABC is of type (1, 5, 1). By a homothety we construct in the
given circle a triangle similar to ABC, and we obtain the heptagon.

Let us now retrace Ibn al-Haytham’s procedure in a language of
algebraic functions that is (obviously) not his, and let us put (BD, DG) =
(Ox, Oy) and CD = a.

Let us consider

(P ) = {(x, y); y2 = a(x + a)},

(H ) = (x,  y) ;  y =  x − a2

x

⎧
⎨
⎩

⎫
⎬
⎭

.

(P ) and (H ) must intersect at the point H(x1, y1), such that x1 ∈ R*+ and y1

∈ R*+.  In fact,

Let  f1: [0, ∞[ → R such that f1(x) = a(x + a) ,

   f2: ]0, ∞[ → R such that f2(x) = x − a2

x
.

Let h: ]0, ∞[ → R such that h(x) = f2(x) – f1(x); h is defined as

increasing monotonically; so we have
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h(x) = x − a(x + a) − a2

x
,

which is the difference of two functions

x − f1(x) = x − a(x + a)  and x − f2 (x) = x − x − a2

x

⎛
⎝⎜

⎞
⎠⎟

,

the first of which is increasing and the second decreasing. These two
functions represent the respective positions of P  and H  with respect to the
asymptote y = x; these positions are exactly what Ibn al-Haytham
investigates.

We have
lim
x→0
x>0

  h(x) = −∞  and lim
x→∞

  h(x) = +∞ .

So there exists a unique x1 ∈ ]0, ∞[ such that h(x1) = 0 where y1 > 0.
The root x1 is one of the two positive roots of the equation for the abscissae,
which, after we divide through by x + a, can be written

x3 – 2ax2 – a2x + a3 = 0.

Ibn al-Haytham then constructs a triangle of type (1, 5, 1), and by a
homothety he constructs in the given circle a triangle similar to the first one
and, finally, obtains the heptagon.

4. The case (1, 2, 4)
Analysis: Ibn al-Haytham first proves that this case can be reduced to

those investigated earlier. Let us suppose that we have found the triangle
ABC (see Fig. 3.67) such that angles A, B and C are of the type (1, 2, 4). Let

us put BCDˆ  = π
7

, we have ACDˆ  = 3π
7

, and hence

ADC ABC BCDˆ ˆ ˆ= +  = 3π
7

.

So triangle ACD is of type (3, 3, 1). Given triangle ACD, we increase
ACDˆ  by DCB CADˆ ˆ= , and we obtain triangle ABC of type (1, 2, 4).
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If, similarly, we put BCEˆ  = 2π
7

, we have CEBˆ  = 3π
7

 because EBCˆ  =

2π
7

. So triangle BEC is of type (2, 3, 2). Given triangle BEC and

 ECA ECBˆ ˆ= ; we have

ACBˆ  = 
4π
7

  and  CABˆ  = 
π
7

.

C

A E D B

Fig. 3.67

So triangle ABC is of type (1, 2, 4).

Similarly (see Fig. 3.68), if we put ACG CAGˆ ˆ=  = π
7

, then

GCBˆ  = 
3π
7

  and  AGCˆ  = 
5π
7

,

because
AGC GCB GBCˆ ˆ ˆ= + .

C

A G D B

Fig. 3.68

So triangle AGC is of type (1, 5, 1). Let triangle AGC be given and let
us take GCD CGDˆ ˆ= . Now

CGDˆ  = 
2π
7

,

because
CGD ACG GACˆ ˆ ˆ= + ,

so

ACD CDGˆ ˆ=  = 
3π
7

.
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So if we take DCB CABˆ ˆ=  = π
7

, then

ACBˆ  = 
4π
7

  and  CABˆ  = 
π
7

  and  ABCˆ  = 
2π
7

.

So the case (1, 2, 4) can be reduced to the preceding ones.
But it is possible to construct a triangle of type (1, 2, 4) without

reducing it to the preceding cases. Analysis shows that we then return to
Archimedes’ lemma.

Let the triangle be ABC (see Fig. 3.69); let us produce BC in both
directions to D and E respectively such that CD = CA and BE = BA.

A

E B C D

Fig. 3.69

Since

ACBˆ  = 
4π
7

,

then

ADC CAD ABCˆ ˆ ˆ= =  = 
2π
7

,

so

BADˆ  = 
3π
7

  and  ABD ADBˆ ˆ= ,

hence
AB = AD  and  AD = BE.

But

ABCˆ  = 
2π
7

,

thus
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 AEBˆ  = 
π
7

;

hence
AEC BACˆ ˆ= .

So triangles ABC and AEC are similar. We have

(1) EC · CB = CA2 = CD2.

Now

ACBˆ
  = 

4π
7

,

thus

DAC ABCˆ ˆ=  = 
2π
7

.

So triangles ADC and ABD are similar. Thus we have

(2) BD · DC = DA2 = BE2.

So the segment ED must be divided at points B and C such that we
have (1) and (2); which corresponds to Archimedes’ lemma.

Ibn al-Haytham then mentions that al-Qºhî had carried out a division of
the segment in this ratio to construct the triangle of type (1, 2, 4) and then
the regular heptagon. He proposes employing a method different from al-
Qºhî’s. But before enquiring into this difference, let us continue our account
of Ibn al-Haytham’s analysis.

To divide the segment ED at points B and C into parts that satisfy the
given conditions, let us put CK = CD; KG ⊥ CD such that KG = KC;
BH ⊥ BC such that BH = BE; CL ⊥ BC (see Fig. 3.70). Let us draw GI
parallel to KC with GI = GK and let us join GC and IK. The straight line HB
cuts GC in M.

Let us draw the parabola (P ) with vertex D, axis DB and latus rectum
DC. Since HB2 = EB2, we have HB2 = BD · DC, so H ∈ (P ).

Let us draw the hyperbola (H ) that passes through K and has
asymptotes CL and CG. Since KG = KC, we have BM = BC, hence HM =
EC.

So the equality EC · CB = CD2 implies MH · CB = KG · KC. But

HL

CB
= MC

CB
= GC

KC
,
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hence
HL MH

CB MH

GC KG

KG KC

⋅
⋅

= ⋅
⋅

,

so
MH · HL = KG · GC,

hence H ∈ (H ).

G

B

K

M

C D

L

H

I

E

Fig. 3.70

Finally, we have H ∈ (P ) ∩ (H ). So if we know points C and D, we
know (P ) and (H ), and consequently H. We also know B, the projection of
H, and finally E, because BH = BE.

Synthesis: Let KD be a given general segment and C its midpoint; let us
draw KG ⊥ KD such that KG = KC, GI parallel to KC such that GI = KC,
CL ⊥ DK. Let us join GC, IK.

Let us draw the hyperbola (H ) that passes through K and has
asymptotes GC and CL, and the parabola (P ) with vertex D, axis KD and
latus rectum CD. The parabola (P ) cuts (H  ) in H, for the reasons we gave
earlier.

Let us draw HB ⊥ DK, EH || GC. Let us produce HB to M and EH to
L. We have

HB = BE  and  BM = BC;
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so
HM = CE  and  HL = MC,

EC · CM = HM · MC.

But
HM · MC = IK · KC

[since HM · MC = KG · GC, the equation of (H  )].
Now

MC

CB

GC

CK

IK

CK

IK KC

KC
= = = ⋅

2 ,

so
EC CM

EC CB

IK KC

KC

⋅
⋅

= ⋅
2 .

But
EC · CM = IK · KC,

hence
EC · CB = KC2 = CD2.

Now
BD · DC = HB2  [equation of (P )],

hence
BD · DC = BE2.

So we have divided ED into three parts such that

(3) EC · CB = CD2,

(4) BD · DC = BE2.

These conditions are those for Archimedes’ range (E, B, C, D) on the
segment (ED), used to construct the triangle of type (1, 2, 4).

Now, from (3), we have CD > CB [because EC > CB] and
consequently EC > CD. From (4) we have BE > CD [because BD > CD]
and consequently BD > BE. So the sum of any two of the segments EB,
BC, CD is greater than the third segment [EB + CD > BC, because
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CD > BC]. So the triangle ABC can be constructed from these segments.
The construction of the heptagon is then carried out as before.

We may note that, if we put (CE, CI) = (Ox, Oy) and CD = a, we again
return to the curves from the previous case, that is,

(P ) = {(x, y); y2 = a(x + a)},

(H  ) = (x,  y) ;  y =  x − a2

x

⎧
⎨
⎩

⎫
⎬
⎭

.

As before, we show that (P ) and (H ) intersect at H(x0, y0) where x0 ∈ ]0,

a[ and we have the same equation

x3 – 2ax2 – a2x + a3 = 0.

G I

B D
C

A

E

Fig. 3.71

To pinpoint the difference between Ibn al-Haytham’s last step and that
of al-Qºhî, we need to have a quick look at the latter’s text.74 In his
analysis, al-Qºhî supposes we have a segment AB (see Fig. 3.71) divided at
points C and D such that

AD · AC = DB2,

74 Al-Qºhî, On the Determination of the Side of the Heptagon, p. 639.
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CB · CD = AC2.

Let us put ECG ⊥ AB; EC = CD  and  CG = DB. Let us draw GI || BA

and AI || CG. We have

IG2 = AC2 = CB · CD,

hence
IG2 = CE · EG.

the point I thus lies on the parabola (P ) with axis EG, vertex E and latus
rectum EC.

Moreover
AI2 = CG2 = BD2 = AD · AC.

so the point I lies on the hyperbola (H  ) with vertex C, axis AC and latus
rectum CD.

So if we put CD = CE = a and (CA, CG) = (Ox, Oy), we have

(P ) = {(x, y); ay = x2 – a2},

(H ) = {(x, y); y2 = ax + x2}.

(H  ) is an equilateral hyperbola whose second vertex is D.
The point of intersection we have investigated here corresponds to the

greater of the two positive roots of the equation

x3 – ax2 – 2a2x + a3 = 0.

The difference between the procedures adopted by Ibn al-Haytham and
al-Qºhî thus lies in their choice of curves. But this difference leads us to
another more important one: Ibn al-Haytham has chosen the same curves in
this case as in that of (1, 5, 1), so the equation obtained is the same. He not
only wanted to solve the problem, but also – calling on as few curves as
possible – to provide solutions to the problem of the heptagon in all possible
cases. That is why he chose a method different from that of al-Qºhî, who
(for his part) was not looking for a solution as exhaustive as Ibn al-
Haythm’s.

Al-Qºhî’s synthesis follows immediately after his analysis:
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Let us put AB = AC and AB ⊥ AC (see Fig. 3.72). Let us draw the

parabola (P ) with vertex B, axis AB and latus rectum AB; the hyperbola
(H ) with vertex A, axis AC and latus rectum AB = AC. The curves intersect
at E.

E
H

G
A

C I

B

Fig. 3.72

Through E we draw EH parallel to AC and EG parallel to AH. Let us
take the point I on AC such that IC = AH. We have

EG2 = GA · GC   [equation of (H )],

hence
IG2 = GA · GC.

Moreover
AG2 = AB · BH   [equation of (P )],

hence
AG2 = AC · AI,

hence the result.
The remainder of the construction is carried out as usual.
This is the form of solution Ibn al-Haytham gives for the problem of the

heptagon. After listing the various possible cases, that is, the different
possible triangles, he investigates them all. Beneath the apparent diversity,
his investigation essentially reduces to solving three cubic equations. We shall
summarize the different cases to give ourselves an overview:
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First case:
(H1) = {(x, y); xy = a2},

(H2) = (x,  y) ;  y =  x − a2

x − a
⎧
⎨
⎩

⎫
⎬
⎭

,

hence
x3 + a3 = ax2 + 2a2x.

There are three real roots, two of them positive:  x0 ∈ ]0, a[, x1 > a. Ibn al-
Haytham uses x0.

Second case:
(H1) = {(x, y); xy = a2},

(H2) = (x,  y) ;  y =  x − a2

x + a
⎧
⎨
⎩

⎫
⎬
⎭

,

hence
x3 + ax2 = 2a2x + a3.

There are three real roots, one of which is positive x0; this is the one Ibn
al-Haytham uses.

Third and fourth cases:

(P ) = {(x, y); y2 = a(x + a)},

(H ) = (x,  y) ;  y =  x − a2

x

⎧
⎨
⎩

⎫
⎬
⎭

,

hence
x3 + a3 = 2ax2 + a2x.

There are three real roots, two of them positive:

x0 ∈ ]0, a[  and  x1 > a.

In the third case, Ibn al-Haytham uses x1 and, in the fourth one, x0.

This summary makes clear that Ibn al-Haytham is concerned with
economy and thus shows that his systematization represents an advance, not
only in going beyond all the solutions given by his predecessors, but also
beyond what he himself had presented in his first essay. Ibn al-Haytham’s
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systematic approach thus shows the history of the problem of the heptagon
in Arabic mathematics in a new light, not only because it is systematic but
also because he made various investigations of the conic curves. Another
reason for giving further consideration to these investigations is that, later
on, they seem to have exercised some influence on algebraists (al-Khayyæm
and Sharaf al-Dîn al-™ºsî).

Furthermore, Ibn al-Haytham noted, in the first two cases, that the
problem of constructing the regular heptagon is equivalent to that of
trisecting an angle. The equivalence of the two problems thus appears
explicitly in Ibn al-Haytham’s treatise. From work by Viète, it is now known
that the solution of all irreducible cubic equations can be expressed as the
general problem of trisecting an angle.

We have been examining the beginnings, and then the unfolding and
transformation, of the study of the regular heptagon in Greek geometry and
in Arabic geometry. Its history opens with Abº al-Jºd – who was the first to
try to solve the construction problem – and closes, about half a century
later, with Ibn al-Haytham. This does not, of course, mean that after Ibn al-
Haytham work on the heptagon abruptly and finally came to a stop. We
know this was not so, as witness the example of Ibn Yºnus. We merely wish
to emphasize that later contributions – in Arabic as well as in Latin – added
nothing of major significance. It is only much later that, with the theory of
algebraic numbers and Wantzel’s theorem, that new work was done in this
area. The story of the regular heptagon is thus a good example of a
mathematical investigation that exhausts its subject matter, only for the
subject matter to then, as it were, renew itself in a quite different form from
its original one. Neither Ibn Yºnus nor Viète makes any difference to this.

We still need to answer the question raised at the beginning of this
chapter: why did this problem of constructing the heptagon draw in so
many mathematicians of the time, and ones who were highly placed in the
learned community? Why did this problem prompt some of them – Abº al-
Jºd, al-Qºhî, Ibn al-Haytham – to come back to their essays on it a second
time or more? We have turned to the milieu, or even psychological factors,
to account for such intense activity, and no doubt these matters are relevant.
But the essence of the explanation lies elsewhere: the reasons for this
ferment of activity lie in geometry itself, and they are, it seems to us, the
same reasons that entitle us to speak of this work as forming a chapter: at
once an intellectual domain, a unifying element and a style.

Let us return to the tenth century and take note that the problem of the
heptagon is only one element in an increasingly large group, that of three-
dimensional problems. This group included inherited problems – of which
that of the heptagon is one – and others that were new. Unlike that of the
heptagon, the other inherited problems came down to mathematicians
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accompanied by solutions, and all had two claims to excite their interest: on
the one hand their connections with the theory of conic sections, and, on the
other hand, their undergoing a double process of translation that had never
existed in Greek mathematics.

Having a grasp of the theory of conics, mathematicians saw these three-
dimensional problems as providing opportunities for making good use of the
tools offered by Apollonius’ Conics. Of course, there were other areas for
such applications: for example burning mirrors;75 but, to confine ourselves
to the problem of the heptagon, it can be seen that the authors have made
use of no fewer than sixteen propositions from the Conics, and that they
have drawn no fewer than seven parabolae and hyperbolae, defined by the
positions of axes and asymptotes.

There is every indication that such frequent use of conic sections, toge-
ther with the many studies of points of intersection, eventually changed ideas
about what constituted a legitimate geometrical construction. Henceforth, a
construction is legitimate if it uses straightedge and compasses, or if it
employs the intersection of two conic sections. Constructions are rejected if
they involve using a neusis76 or transcendental curves. This principle is
applied rigorously and the occasional exceptions confirm the rule. This deci-
sion was to dominate Arabic mathematics, and we may ask ourselves about
the part algebra played in its formulation and the generalization of its
demands. In any case, the message was clear and it was well understood by
algebraists.

By the end of the ninth century the algebraists (Thæbit ibn Qurra, al-
Mæhænî, …) were already beginning to translate geometrical problems into
the language of algebra. In the mid tenth century, a new idea appears: that
of solving cubic equations by considering intersections of two conic sections
– for example in the work of al-Khæzin. So it is in connection with three-
dimensional (solid) problems that this idea of double translation takes shape,
and, according to al-Khayyæm,77 it is Abº al-Jºd who was the first to make
a systematic study of the matter. Al-Khayyæm also informs us that it was
Ibn ‘Iræq who translated the problem of the heptagon into an algebraic
equation. The fact that Abº al-Jºd took an interest in both algebra and

75 Les Catoptriciens grecs. I: Les miroirs ardents, Texts edited and translated and
with commentary by R. Rashed, Collection des Universités de France, Paris, 2000.

76 This seems to explain why there were so few mechanical constructions using a
neusis. One of these, by an anonymous author, has been preserved in a Latin translation
by Gherard of Cremona. It would be very helpful to be able to date the original Arabic
text. The Latin text has been edited by Marshall Clagett, Archimedes in the Middle
Ages, vol. V: Quasi-Archimedean Geometry in the Thirteenth Century, Philadelphia,
1984, pp. 596–9.

77 R. Rashed and B. Vahabzadeh, Omar Khayyam. The Mathematician.
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geometry can hardly be a matter of pure coincidence.
In short, algebraists led geometers on to open up the new field of geo-

metrical construction by means of conic sections, and encouraged them in
their work. The series of studies of the heptagon can be seen as part of this
new process, and circumstances favoured such studies. It is accordingly
understandable that they aroused such active interest.

3.2. DIVISION OF THE STRAIGHT LINE

One of the famous problems of geometrical construction encountered in
classical and late antiquity is Archimedes’ division of a segment. The history
of the problem from Archimedes to Eutocius is well known.78 We shall
summarize the principal elements to make it clear what was contributed by
Ibn al-Haytham.

It all begins with Archimedes’ statement in the fourth proposition of the
second book of The Sphere and Cylinder:

So we need to cut a segment of a straight line EG in a point Y and do it so
that YG shall be to the given segment GJ as the given square, on CE, is to
the square on EY.79

Δ X B Θ Z

Fig. 3.73

According to the Greek text, Archimedes then went on to determine the
special conditions for the problem examined in Proposition II.4, that is with
EC = 2CG, and GC > GJ; which leads to the following formulation:

given two straight line segments CE and CG, CE being twice CG, and a
point J on CG, to cut EC in a point Y in such a way that the square on CE
shall be to the square on EY as YG is to GJ; each of these problems will be
examined at the end (}√® …Ä≥|§).80

The final remark is lacking in the Arabic version, and very probably also in
the whole manuscript tradition of Archimedes’ text that was translated into

78 See, for instance, Oskar Becker, Das mathematische Denken der Antike,
Göttingen, 1966, pp. 89–90; T. L. Heath, The Works of Archimedes, Cambridge,
1897; Dover Reprint, 1953, pp. 65–79; E. J. Dijksterhuis, Archimedes, transl. by
C. Dickshoorn with a new bibliographic essay by Wilbur Knorr, Princeton, 1987,
pp. 143–205.

79 See Archimède, Commentaires d’Eutocius et fragments, Texte établi et traduit
par Charles Mugler, Collection des Universités de France, Paris, 1972, p. 113.

80 Ibid., p. 113, l. 10–14, translation modified.
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Arabic. All we find is:

So we must divide the known straight line ZE into two parts at the point X,
in such a way that the ratio of XZ to ZJ, which is known, shall be the same
as the ratio of the square of BE to the square of EX; the order of what we
mentioned, its composition and its synthesis, as I describe.

This is the text that would have been available to Ibn al-Haytham. He
also knew Eutocius’ commentary on The Sphere and Cylinder, also transla-
ted into Arabic. In this book, Eutocius writes:

Archimedes did indeed promise to prove, at the end, what precedes, but the
promised explanation is not found in any manuscript.81

This broken promise appears only in the Greek text, and is not found in the
Arabic version. It does not matter much here whether the Greek sentence is
authentic or not: the proof is missing, and its absence is attested well before
Eutocius. Diocles, only one or two generations after Archimedes, explicitly
mentions the fact,82 and Dionysodorus, when giving a proof, seems to
confirm Eutocius’ statement. Dionysodorus himself proposes a proof, using
a parabola and a hyperbola.

Ibn al-Haytham knew Archimedes’ text in the Arabic version, together
with Eutocius’ commentary. He knew that Archimedes set out this cons-
truction, and that a proof could only be given with the help of conic sec-
tions. For Ibn al-Haytham, the latter fact explains the former one: the
absence of a proof is not an oversight by Archimedes, but springs from a
deliberate choice to separate the genera, to avoid using conic sections. This is
a very strange style of learned discussion; it shows us how Ibn al-Haytham
conceives constructions of solutions to problems by means of intersection of
conics: as a special body of results within geometry.

This is the conception that governs the study Ibn al-Haytham devotes to
Archimedes’ line segment. In any case, it is the conception that characterizes
his solution, which an unprepared reader might tend to place in a tradition
derived directly from Eutocius, which is not in fact the case. To appreciate
the historical position of Ibn al-Haytham’s solution, we need to look briefly
at its context: Ibn al-Haytham’s predecessors, from the end of the ninth cen-
tury onwards, had chosen to give an algebraic solution to the problem. This
was the method adopted by al-Mæhænî, al-Khæzin and Abº NaÒr ibn ‘Iræq.

81 Ibid., p. 88.
82 R. Rashed, Les Catoptriciens grecs. I: Les miroirs ardents, p. 121, l. 20–21.
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At this point we should mention the evidence provided by al-Khayyæm,
who writes:

As for the moderns, among them it is al-Mæhænî who found himself led to
carry out an algebraic analysis of the lemma Archimedes used, taking it as
accepted, in proposition four of the second book of his work on The Sphere
and the Cylinder. He then arrived at cubes, squares and numbers in an
equation he did not succeed in solving after having reflected on it for a long
time; so he broke off, deciding it was impossible, until Abº Ja‘far al-Khæzin
appeared and solved the equation by means of conic sections.83

Al-Khayyæm says the same thing in another text.84

The problem of Archimedes’ line, in which mathematicians began to
take a new interest during the tenth century, had thus been translated into a
cubic equation before it was solved by considering the intersection of two
conic sections. At the same time that progress was being made by the alge-
braic approach, other mathematicians, who were probably well aware of this
work and of course also aware of algebra itself, chose to take a deliberately
geometrical path. Among such mathematicians we find al-Qºhî85 and Ibn al-
Haytham.

Al-Qºhî looks simultaneously at two problems according to whether the
point of division Y lies within EG (to retain Archimedes’ lettering) or on EG
produced. However, he assumes the special condition GJ = CE. In the case
where the point Y lies on EG produced, the problem always has a solution
(the cubic equation always has one positive root). In the other case, we
require a condition that al-Qºhî states: the cube of the line segment GJ
must be smaller than 4/27 of the cube of GE.

For his part, Ibn al-Haytham makes no special assumptions about the
segment GJ, but he considers only the case envisaged by Archimedes, in
which the point of division Y lies within the segment EG. So we may
assume that, even if he knew the study by al-Qºhî, Ibn al-Haytham began
his work directly from the text of Archimedes.

Let us now look at Ibn al-Haytham’s proof, preserving the Greek
lettering.

Let (GE, GD) be coordinate axes (Gx, Gy), E (x, 0) a point on Gx and
C (a, 0) another point. Let J (α, 0) be such that α < a and A(β, β – a).

To find a point Y (x, 0) such that

83 Treatise on Algebra, in R. Rashed and B. Vahabzadeh, Omar Khayyam. The
Mathematician, p. 111 (Arabic text in the French edition, p. 117, l. 11–15).

84 Treatise on the Division of a Quadrant of a Circle, in R. Rashed and B.
Vahabzadeh, Omar Khayyam. The Mathematician, p. 173 (Arabic text in the French
edition, p. 255, l. 4–8).

85 See Supplementary Note.



DIVISION OF A STRAIGHT LINE 415

 (1) x

α
=

β − a( )2

β − x( )2 ,

which is a version of Archimedes’ condition

ΖΧ
ΖΘ

= ΒΔ2

ΔΧ 2
.

Fig. 3.74

Let there be a hyperbola

H  = x y xy a, ; ,( ) = −( ){ }α β

E (α, β – a) ∈ H.

Since H  tends to infinity, and ZE is an asymptote to H,  H  must cut AE,
say in a point K.

Let there be a parabola

P = x, y( ); β − x( )2 = y β − a( ){ }.

P  tends to infinity, and AD is perpendicular to its axis. So P  must cut AD,
say in a point T, with ordinate β – a.

Σ x a,β −( ) ∈ P ⇒ −( ) = −( )β βx a
2 2

,
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so x = a; but α < a by construction; so E ∈ H  lies outside P  and K ∈ H
lies inside P; so (by an implicit argument from continuity) P cuts H.  Let
M(x0, y0) ∈ H ∩ P.  The point M(x0, y0) ∈ P,  so (β – a)y0 = (β – x0)

2,

hence
β
β

β−
−

= −a

x

x

y0

0

0

,

hence
β − a

y0

=
β − a( )2

β − x0( )2 .

The point M(x0, y0) ∈ H, so x0y0 = α (β – a), hence

x0

α
= β − a

y0

,

hence
x0

α
=

β − a( )2

β − x0( )2 .

Which is what it was required to prove.

Comparing it with that of Eutocius, we can see that Ibn al-Haytham’s
geometrical construction is also carried out by means of a parabola and a
hyperbola. Translated into the algebraic terms of al-Khayyæm, Eutocius’
version of the problem reduces to solving the equation

x3 + c = ax2,

that is to say Equation 17 in al-Khayyæm,86 whereas Ibn al-Haytham’s
version leads to the equation

x3 + bx = ax2 + c,

that is to Equation 24 in al-Khayyæm.87

86 R. Rashed and B. Vahabzadeh, Omar Khayyam. The Mathematician, p. 46ff.
87 Ibid ., pp. 77ff. Al-Khayyæm uses the intersection of a semicircle and an

equilateral hyperbola
(Cont. on next page)
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The solution Ibn al-Haytham finds is not unique. His construction gives
him a second solution that, as it happens, does not satisfy the conditions for
the geometrical problem as proposed, for which we are required to find a
point Y between E and C (in Archimedes’ problem EC is the diameter of
the sphere). Ibn al-Haytham’s second solution lies outside EC. On the other
hand, a division such as that proposed by Archimedes, with J between C
and G, which in our notation is written ` < a, gives Ibn al-Haytham a suffi-
cient condition for the solution to exist. In fact GJ · CE2 < GC · CE2 =
α(x – a)2, the equation we are required to solve being x(x – x)2 = `(x – a)2;

this equation has a solution between 0 and x if `(x – a)2 is less than the
maximum value of x(x – x)2 for 0 < x < x, a condition that is satisfied for

0 < ` < a < x. The maximum value in question is 4β 3

27
, so the necessary and

sufficient condition for there to be a solution in the interval ]0, x[ is that

`(x – a)2 < 4β 3

27
; this condition is implied by ` < a.

We may note that Eutocius establishes that this condition is necessary.88

Al-Qºhî also points out this condition in the special case of the problem that
he investigates.

For his part, Ibn al-Haytham abides strictly by the conditions of
Archimedes’ problem, which means he can dispense with this necessary
condition (which is satisfied automatically).

We find another important difference between Eutocius’ text and Ibn al-
Haytham’s, a difference that relates to proving two conic sections do inter-
sect. Eutocius as it were sees the result without pausing to point it out or
prove it. In addition, Ibn al-Haytham uses the coordinates more directly by
referring the two curves to the same coordinate axes, which decreases the
complexity of manipulating the proportions. However, he explicitly set out
to give a proof by considering properties of the convexity of the curves,
their behaviour at infinity, and their assumed continuity. Finally, we may
note that, unlike Eutocius, Ibn al-Haytham shows the symptoma, the basic
relationships that define the two conic sections, in the form of an equality of
products of segments. However, he also notes that the parabola passes

                                    
(Cont.)

C = x y b y x
c

b
a x, ; ,( ) −

⎛

⎝
⎜

⎞

⎠
⎟ = −⎛

⎝
⎞
⎠ −( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1

2

2

H = x, y( ); xy = b
1

2 × c

b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

88 Commentaires d’Eutocius et fragments, ed. and transl. Charles Mugler, pp.
94f.
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through a point M that lies inside the hyperbola, and he does not explicitly
draw the appropriate conclusions regarding the intersection of the two
curves.89

3.3. ON A SOLID NUMERICAL PROBLEM

‘To divide a known number into two parts such that one is the cube of
the other’. This is the problem Ibn al-Haytham considers in a text that, while
short, is nonetheless of major significance. The importance of the text deri-
ves from the nature of the problem. We are indeed dealing with one of the
types of problem that, since the time of Diophantus, number theorists were
in the habit of proposing, problems in which the algebraists, following al-
Khayyæm, took a lively interest. But while the number theorists looked for
rational numbers as solutions, the algebraists wanted positive real numbers.
Since Ibn al-Haytham is engaging with a three-dimensional (solid) problem,
he proposes to employ the techniques of geometrical construction that he
has developed, in order to solve the problem without needing to call on
algebra: thus the field for geometrical constructions extends beyond the area
in which it originated.

The facts that the task was new, and that the means employed could
accomplish it, could hardly fail to attract the notice of Ibn al-Haytham’s suc-
cessors: they were to seize upon the essential elements of his work before
integrating it into algebra. That integration was carried out by al-Khayyæm,
who was certainly aware of Ibn al-Haytham’s work.90 So let us begin by
analysing Ibn al-Haytham’s text91 using a mathematical language different
from his.

89 Ibid., pp. 92–3.
90 R. Rashed and B. Vahabzadeh, Al-Khayyæm mathématicien, especially

pp. 222, 224.
91 See below.

Problem:
Let a > 0 be a given number. To find x > 0 such that x < a and

(1) x = (a – x)3.

To solve this problem, Ibn al-Haytham begins by proving the following
lemma:
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Lemma: To find four magnitudes a1, a2, a3, a4 such that

1. 0 < a1 < a2 < a3 < a4,

2.
a1

a2

= a2

a3

= a3

a4

,

3.
a4 − a3

a1

= k = b

c
, a known ratio.

With coordinate axes (Nx, Ny), let us take the points A(c, b), B(c, 0),
D(2c, 0) and E(2c, b). Let us then draw

H  = {(x, y); y(x – c) = bc},

P = {x, y); y = 
x2

c
, x > 0}.

Ibn al-Haytham then uses the behaviour of these conics as they tend to
infinity to prove that the two curves must cut one another in a unique point
with abscissa x0 > c. He notes that when x increases from c to + ∞, yH
decreases from + ∞ to zero, since the hyperbola has asymptotes BA and
BC; and (for the parabola) yP increases from c to + ∞, so there exists a
unique value x0 > c such that G(x0, y0) ∈ H  ∩ P. Since x0 > c, we have
y0 > x0.

We get y0 = x0
2

c
 since G(x0, y0) ∈ P  and y0(x0 – c) = bc since G(x0, y0) ∈

H.  From these two relations we obtain respectively

c

x0

= x0

y0

 and 
c

x0

= y0

y0 + b
;

hence
c

x0

= x0

y0

= y0

y0 + b
,

where c < x0 < y0 < y0 + b.

It is now enough to put

a1 = c, a2 = x0, a3 = y0, a4 = y0 + b,
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in order to satisfy the conditions of the lemma, since

a4 – a3

a1

= b

c
= k .

Solution of the problem:
Let us now look for x, the solution to (1).
Let AB = a, AI = x; x < a and the problem is to find x such that

x = (a – x)3 ⇔ AI = BI3.

H

G
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U

LK

C I D B
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P

Fig. 3.75

From the lemma, we can find four positive numbers a1 < a2 < a3 < a4

such that
a1

a2

= a2

a3

= a3

a4

  and that a4 − a3

a1

= a2.

We prove that, if
x

a − x
= a4 − a3

a3

,

then x = (a – x)3.

By hypothesis we have a4 – a3 = a1 · a2. The relation x

a − x
= a4 − a3

a3
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implies

(2)
x

a x
a

a

a
a

a

a−
= ⋅ =

⎛
⎝⎜

⎞
⎠⎟

2 1

3

2 3

4

2

.

But we also have

(3) a

a − x
= a4

a3

.

From (2) and (3), we obtain
x

a2 (a − x)
= (a − x)2

a2
,

hence the result.

Notes:
1. Ibn al-Haytham starts from the range (D, H, G, E, C), which is

assumed known with DC = a4, DE = a3, DG = a2, DH = a1, and constructs
from another given segment AB the range (B, L, K, I, A) similar to the first
one, with AI corresponding to CE.

2. The construction of the point I on AB is equivalent to finding x = AI
where a – x = BI; which is the same as solving equation (1). If we put y =
a – x, that is the same as solving y3 = a – y with a > 0. The solution of this
problem depends on the lemma. We have seen that the solution is obtained
from the intersection of a parabola and a hyperbola. Later, al-Khayyæm,
after translating the problem into an algebraic form – see Equation 13 of his
treatise92 – solved it by means of the intersection of a parabola and a circle.

If we now reverse Ibn al-Haytham’s procedure and start from the
magnitudes in continued proportion, we find an equation of the form

x3 = α1x2 + α3,

which is of al-Khayyæm’s type 18.93

If, instead, we start directly from equation (1), we come back to the
equation

92 R. Rashed and B. Vahabzadeh, Omar Khayyam. The Mathematician,
pp. 35–8. See also Sharaf al-Dîn al-™ºsî, Œuvres mathématiques, 2 vols, Paris, 1986,
vol. I, Eq. 13, pp. CLV–CLVIII.

93 See R. Rashed and B. Vahabzadeh, Omar Khayyam. The Mathematician, pp.
52ff.
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x3 + (3a2 + 1)x = 3ax2 + a3

of al-Khayyæm’s type 24, which can have three positive solutions.

3. We may note that if x = c, from the equation of the parabola we have
y = c, and if x = 2c, we have y = 4c. The parabola cuts the straight line EA
between E and A if b > 4c, (k > 4), which is the case shown in the figure,
and we then have y0 < b and x0 > 2c. If k < 4, we have the situation shown
in the following figure, giving y0 > b and x0 < 2c, but all the reasoning is still
valid.

C D C N

E
G A U

y

Fig. 3.76

4. The solution to equation (1) constructed in this way is, in general,
irrational and consequently beyond the scope of the theory of numbers. The
solution thus belongs to geometry or to the algebra developed at this time.
Ibn al-Haytham’s study, as we have just seen, is strictly geometrical.

3.4. HISTORY OF THE TEXTS OF IBN AL-HAYTHAM

3.4.1. On the Construction of the Regular Heptagon

This title is the one adopted by the old biobibliographers, al-Qif†î and
Ibn Abî UÒaybi‘a, in their lists of the works of Ibn al-Haytham.94 It has been

94 R. Rashed, Ibn al-Haytham and Analytical Mathematics, London, 2012,
no. 8, p. 392.
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known since 197995 that this treatise was preserved in the famous
manuscript ‘Æ†if 1714 in Istanbul. Apart from twenty treatises by Ibn al-
Haytham on mathematics, astronomy and optics, the collection, which is of
relatively late date (1158 AH/1745), includes a piece by the mathematician
YaÌyæ al-Kæshî and a piece by an anonymous author on the planisphere.
The treatise On the Regular Heptagon was the nineteenth work passed on
in this collection, which until very recently was believed to provide the only
surviving example of this text by Ibn al-Haytham.

In the course of our research on the mathematics and optics of Ibn al-
Haytham, we have been led to establish several texts included in this collec-
tion, such as the Measurement of the Sphere,96 the Exhaustive Ttreatise on
Lunes97 and the Burning Sphere.98 In this connection, we have shown that
in each case the copyist of manuscript ‘Æ†if worked from only a single ori-
ginal, luckily one that is extant, manuscript Oct. 2970 in the Staatsbibliothek
in Berlin. In fact we can go further: this conclusion holds for all the treatises
– fifteen treatises by Ibn al-Haytham, one by al-Kæshî – contained in the
Berlin collection: they are all found, in the form of apographs, in manuscript
‘Æ†if.

So, apart from the rather mysterious question of the anonymous text on
the planisphere, there remains the problem of the five texts by Ibn al-
Haytham that are absent from the Berlin manuscript and present in manus-
cript ‘Æ†if, namely:

– On a Proposition of the Banº Mºsæ,
– On the Hour Lines,
– On the Construction of the Waterclock,
– On the Formation of Shadows,
– On the Construction of the Regular Heptagon.

The question that came to mind was the following: did these five texts
once form part of the Berlin collection and were later separated from it,
either deliberately or accidentally? A careful examination of this collection
confirmed our initial suspicions by revealing numbering in the original
volume, which had included not sixteen treatises, as it does today, but ins-

95 R. Rashed, ‘La construction de l’heptagone régulier par Ibn al-Haytham’,
Journal for the History of Arabic Science, 3.2, 1979, pp. 309–87.

96 Les Mathématiques infinitésimales, vol. II, p. 294–323; Ibn al-Haytham and
Analytical Mathematics, Chapter II.

97 Les Mathématiques infinitésimales, vol. II, pp. 102–75; Ibn al-Haytham
and Analytical Mathematics, Chapter I.

98 R. Rashed, Géométrie et dioptrique, pp. 111–32; Geometry and Dioptrics,
Chapter III.
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tead twenty-two or twenty-three. The same examination also showed that
the Berlin collection had been copied out over a period of at least twenty
years, between 817/1414 and 839/1435. The hand – contrary to what we
said earlier, there is only one99 – is none other than that of the famous
scholar Qæ≈î Zædeh, who, in the service of Ulugh Beg, was for some time
the director of the observatory at Samarkand. In fact, on fol. 12r, we read
the following note:

Treatise on the proof two problems, one about what is the basis for the
measurement of the surface of the sphere and the other about the area of a
parallelogram … by the hand of Qæ≈î Zædeh.

In the colophon to this same text, we read the following information (fol.
21v):

His calligraphy (tanmîqihi) was completed on ten Rabî‘ al-ækhir of the year
eight hundred and seventeen at Samarkand.

Finally, in the colophon of Ibn al-Haytham’s The Measurement of the
Sphere (fol. 152r), the scribe has dated his copy to the year 839/1435. As for
the history of this manuscript between when it was written and its incorpo-
ration into the German national collection in 1930, we know almost nothing.
However, given the transcription dates that appear in it – covering an inter-
val of at least twenty years – the identity of the copyist and the place where
the  copy was made, it does not seem rash to suggest that what we have
here may be a personal working copy belonging to Qæ≈î Zædeh. He very
probably copied the set of works now in Berlin for his personal use, and
with an eye to his own mathematical work – evidence, if it were really nee-
ded, that the mathematical, optical and astronomical corpus of work by Ibn
al-Haytham was still found interesting in the first half of the fifteenth cen-
tury. It is now up to the sociologists of science to give us in-depth informa-
tion about stakes and modalities of scientific activity at the court of Ulugh
Beg. More modestly, and to return to the textual question we began with,
we for our part need to ask whether, together with the four other texts that
are absent from the Berlin manuscript, the treatise On the Regular
Heptagon may have formed part of this collection made by Qæ≈î Zædeh – if
the answer to the question were in the affirmative, we should be able to take
the history of our treatise forward by about three centuries.

This affirmative answer is possible and, by a lucky conjunction of the
disciplines of philology, codicology and palaeography, it can even be rigo-
rously demonstrated. The solution lies in investigating a third piece of evi-
dence, never examined until now: manuscript 3025 in the Military Museum
in Istanbul. This collection includes the five treatises by Ibn al-Haytham that

99 Ibid., pp. CXLVIII–CXLIX.
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are lacking in the Berlin collection, and a commentary on Apollonius’
Conics by al-Îusayn ibn ‘Abd al-Malik. However, whereas the five works
by Ibn al-Haytham are copied in the same hand, this last commentary comes
from a different source. More importantly: the hand in which the treatises by
Ibn al-Haytham were copied is none other than that of the Berlin manus-
cript, that is, the hand of Qæ≈î Zædeh. As far as the microfilms permit us to
judge, the layout of the pages in the two  manuscripts – those in Berlin and
in the Military Museum – shows an identical pattern of ruled lines: 21 lines
to the page, almost equal ratio between the dimensions of the four margins
to those of the area of writing.

So we may conclude without the slightest hesitation that the present two
manuscripts (in Berlin and in the Military Museum) were originally a single
manuscript – and remained so at least until the year 1158/1745, the date
when the apograph manuscript ‘Æ†if 1714 was put together.100 After this
date, the huge collection was divided into two separate volumes, and it was
perhaps then – unless this did not take place until later still – that the five
treatises today in the Military Museum in Istanbul were put together with
the commentary on the Conics by al-Îusayn ibn ‘Abd al-Malik. So the
manuscript ‘Æ†if 1714 no longer has any independent value in regard to the
stemma.

This conclusion is corroborated in a definitive manner by a philological
comparison of the two copies of the five texts (Military Museum 3025 and
‘Æ†if 1714). Here we shall confine our discussion to the case of the
Construction of the Regular Heptagon.  It is clear that the copyist of ‘Æ†if
[A] worked from a single original, the text of the Military Museum [M].
Every error or omission in M can in fact be found in A, while A presents
numerous distinctive mistakes of its own, errors and omissions, which do not
appear in M. Finally, we may note that certain phrases copied in the margin
of M are integrated into the text in A. This extends to the letters on the

100 So Qæ≈î Zædeh’s manuscript, copied at Samarkand, was in Istanbul in the
eighteenth century and there it was transcribed by the copyist of ‘Æ†if. What we read in
the colophon of Ibn al-Haytham’s treatise on the Direction of the Qibla (fol. 9v) is:

5�LšË ÊULŁ WM�� Â«d(« Âd×� ‰öš w
 ⁄«dH�« l�ËË ¨w�Ëd�« Áœ«“ w{UIÐ dONA�« vÝu� tDš U2 qI½Ëò
åÆÆÆWOL;« WOMDMD�� W³OD�« bK³�« w
 n�√Ë WzU�Ë 

‘It has been copied from what was transcribed by Mºsæ, known under the name of
Qæ≈î Zædeh the Byzantine. The copy was completed during the sacred month of
MuÌarræm in the year one thousand one hundred and fifty-eight in the good city of
Constantinople, protected <by God>.’

The collection was later divided and the greater part of it was acquired by the
Staatsbibliothek, while the remainder was taken into the Military Museum in Istanbul.
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geometrical figures, which, if they are forgotten in M, are similarly absent
from A.

The text of M is transcribed in nasta‘lîq. We find some marginal correc-
tions in the hand of the copyist. The geometrical figures are drawn, but the
lettering on the figures has sometimes been forgotten.

In the collection ‘Æ†if 1714, the text on the heptagon occupies folios
200v–210r, the script is naskhî and the figures are copies resembling those in
M.101

Ibn al-Haytham’s text on the regular heptagon has so far appeared only
in a single edition, the one we published in 1979. This was made from the
only manuscript then known: ‘Æ†if 1714. The history of the text that we
have just recounted compelled us to revise that critical edition, and the
French translation that accompanies it. But there is no occasion to expect
important modifications. The omissions and mistakes in A do not make any
changes in the text. However, it goes without saying that as far as we are
concerned this new edition and its translation supersede the former ones. So
we decided, without being obliged to do so, to note the variants from A in
the apparatus criticus so as to provide access to a certain amount of the evi-
dence we used in support of our argument.

3.4.2. Treatise on the Determination of the Lemma of the Heptagon

This title is the one mentioned by the old biobibliographers, al-Qif†î and
Ibn Abî UÒaybi‘a,102 and it is thus different from the one given in the only
manuscript of the whole text. In fact, in manuscript 1270/21 (= Loth 734),
fols 122r–123v of the India Office in London [designated by A], Ibn al-
Haytham’s treatise is presented with the title: FaÒl li-al-Îasan ibn al-Îasan
ibn al-Haytham fî muqaddimat al-musabba‘ (Chapter of al-Îasan ibn al-
Îasan ibn al-Haytham on the lemma of the heptagon). The author himself
refers to this treatise in his second and substantial version On the Construc-
tion of the Regular Heptagon, in these terms:

We, for our part, have proved the lemma that Archimedes used, in a separate
treatise, not in this <present> treatise.

101 Thus we read in the colophon: ‘The drawing of the figures of this treatise was
carried out in conformity with the original from which it was copied, in the night that ends
the twentieth of the month of sha‘bæn 1158.’

102 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. N. Ri≈æ, Beirut,
1965, with the title Qawl fî istikhræj muqaddimat ≈il‘ al-musabba‘, p. 559; al-Qif†î,
Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, with the title Muqaddimat ≈il‘ al-
musabba‘, p. 167.
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This perfect agreement between Ibn al-Haytham and the old biobiblio-
graphers in speaking of a qawl (treatise or discourse), and not of a faÒl
(chapter), tells us the true title of this treatise. Moreover, it is surprising to
speak of a faÒl for a short treatise that deals with a single proposition. Fur-
ther, we may add that the word faÒl could be a corrupt reading introduced
in the course of copying the term qawl. So here we have opted for the title
referred to by the old biobibliographers.

Concerning manuscript 1270 of the India Office, we have already told
the little that we know about it. Ibn al-Haytham’s text is transcribed without
crossing out or additions, certain words are illegible because of damage by
damp.

Until now this was the only known manuscript of this treatise. We have
been able to identify a fragment of this text in manuscript 678, fol. 27r–v, of
the collection  ‘Abd al-Îayy in the University Library in Aligarh [designa-
ted by O], in India, copied in 721/1321–22 at al-Sul†æniyya, in nasta‘lîq
script. This fragment is all that remains, after the loss of several pages of this
manuscript. Comparison of this ‘Extract’ with Ibn al-Haytham’s text in the
manuscript in the India Office shows that the former has been made after an
ancestor of the latter. However, this fragment allows us to add a supplemen-
tary textual argument in favour of the authenticity of the text.

The textual tradition of this treatise is not confined to the copy in the
India Office and the fragment in Aligarh. We also have a shortened version
of this text in the Bodleian Library in Oxford, Thurston 3, fol. 131.103 This
version presents itself for what it is, since it has the title: Min kalæm Ibn al-
Haytham ‘alæ muqaddimat Arshimîdis fî ≈il‘ al-musabba‘ (Extract from
Ibn al-Haytham’s discourse on the lemma of Archimedes for the side of the
heptagon). Thus in this version we do not find either the first paragraph or
the last one; the remainder is summarized rather briefly.

Finally, this last text was copied, without doubt recently, in the Bodleian
Library manuscript, Marsh 720, fol. 259r.

There has been only a single critical edition of this text by Ibn al-
Haytham, our own, published in 1979,104 based on the single manuscript in
the India Office. In Les Mathématiques infinitésimales, vol. III, we presented
a revised version of that edition based on the same manuscript and the
fragment in Aligarh.

103 We gave the edition of this extract in Les Mathématiques infinitésimales, vol.
III, pp. 914–19.

104 ‘La construction de l’heptagone régulier par Ibn al-Haytham’, pp. 385 ff.
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This text has been translated into German by C. Schoy.105 The transla-
tion was very useful in making the text known. Here we present an English
translation that we hope is as accurate as possible.

3.4.3. The Division of the Straight Line Used by Archimedes in the
Second Book of his Work on The Sphere and the Cylinder

Ibn al-Haytham’s treatise on The Division of the Straight Line Used by
Archimedes in the Second Book of The Sphere and the Cylinder exists in
numerous manuscripts. It has come down to us with other treatises by Ibn
al-Haytham as well as on its own, being included in Mutawassi†æt,
intermediate collections. In Les Mathématiques infinitésimales we gave the
editio princeps of this piece based on the eight manuscripts we have been
able to obtain:106

1. Leiden, Or. 14/16, fols 498–501, designated by L. This is the famous
manuscript transcribed in the seventeenth century at the request of the
mathematician and Orientalist Golius, as is reported by R.P.A. Dozy.107 We
have discussed the history of this manuscript elsewhere.108

2. Istanbul, Topkapi Sarayi, Ahmet III 3453/16, fol. 179v, designated by
D. This manuscript was copied by ‘Abd al-Kæfî ‘Abd al-Majîd ‘Abd Allæh
al-Tabrîzî in 677 AH (1278) in Baghdad. FatÌ Allæh al-Tabrîzî owned this
manuscript in 848 AH (1444). The script is naskhî (page 17.1 × 13.2 cm;
text 13.9 × 9.6 cm). The numbering of the folios is modern.

3. Istanbul, Topkapi Sarayi, Ahmet III 3456/18, fols 81v–82r, designated
by E. This text was transcribed on 12 Rabî‘ al-awwal 651 AH (12 May
1253). The script is nasta‘lîq (page 25.5 × 11.3 cm; text 19.4 × 8.9 cm). The
numbering is old.

4. Istanbul, Süleymaniye, Carullah 1502, fol. 222v–223r, designated by
C.

This is a collection transcribed, in 894 AH, from the copy of the
celebrated astronomer Qu†b al-Dîn al-Shîræzî, as is affirmed by the copyist
Ibn MaÌmºd ibn MuÌammad al-Kunyænî. The script is naskhî; each page
has 25 lines (page 25.5 × 17.9 cm; text 17.2 × 11.2 cm).

105 Die trigonometrischen Lehren des persischen Astronomen Abº’l RaiÌæn
MuÌammad Ibn AÌmad al-Bîrºnî, Hanover, 1927.

106 F. Sezgin mentions that the collection Algiers 1446/9 includes a copy of this text
in fols 119–126. On checking, this proves not to be so (Geschichte des arabischen
Schrifttums, V, Leiden, 1974, p. 372).

107 Catalogus Codicum Orientalium Bibliothecae Academiae Lugduno Batavae,
Leiden, 1851, p. XV.

108 R. Rashed and B. Vahabzadeh, Al-Khayyæm mathématicien, Paris, 1999,
pp. 109–10 and especially below, Chapter IV, pp. 506–7.
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5. Istanbul,  440, fol. 275v, designated by B.
The copy dates from the beginning of Dhº al-Qa‘da 1134 AH (August

1722). The script is naskhî, and is very elegant (page 28.2 × 15.7 cm; text

18.5 × 8.6 cm).

6. Istanbul, Haci Selimaga 743, fols 135r–136v, designated by S.
This manuscript was copied in 1099 AH. In fact we read: ‘The copy was

completed on 15 Sha‘bæn one thousand and ninety-nine’, that is 14 June
1688. This manuscript, made up of two different parts, but on paper from
the same batch, is in naskhî script (each page is 22.2 × 13.3 cm; 18 × 8.8 cm

for the text).
7. Istanbul, Süleymaniye, Atif 1712/17, fol. 147r–v, designated by O. This

is an intermediary collection of books.
8. London, India Office 1270/18, fol. 119v, designated by A. We do not

know the date of transcription, which might be in the tenth century of the
Hegira.

Since Ibn al-Haytham’s text is short, it would be highly arbitrary to
establish a stemma on the basis of a single page, without investigating the
history of the collections of which this page forms part. But such an
investigation must await the distant future, given the current state of
research into the history of Arabic manuscripts.

The text was translated into French by F. Woepcke with the title
‘Mémoire d’Ibn Alhaïtham, c’est-à-dire du Chaïkh Aboûl Haçan Ben
Alhaçan Ben Alhaïtham sur la section d’une ligne employée par Archimède
dans le second livre’ (Essay by Ibn Alhaïtham, that is by Chaïkh Aboûl
Haçan Ben Alhaçan Ben Alhaïtham on the section of a line used by
Archimedes in the second book). This translation, which is a little free,
appeared as a first appendix to the translation of the Algebra of al-
Khayyæm.109

3.4.4. On a Solid Numerical Problem

This text exists in a single manuscript in the India Office Library,
London, no. 1270, fols 118v–119r (a manuscript to which we have referred
several times),110 with the title Fî mas’ala ‘adadiyya mujassama (On a

109 See his translation of the Algebra, L’Algèbre d’Omar Alkhayyâmî, Paris,
1851, pp. 91–6.

110 See above and R. Rashed, Ibn al-Haytham and Analytical Mathematics,
p. 33.

EEEEEE
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Solid Numerical Problem). This is the title under which it appears in the old
biobibliographers’ lists of the writings of Ibn al-Haytham.111

In Les Mathématiques infinitésimales we gave the editio princeps of
this treatise, together with a French translation that we have made as exact
as possible. A French translation of this text has already been published by
J. Sesiano, ‘Mémoire d’Ibn al-Haytham sur un problème arithmétique
solide’, Centaurus, 20.3, 1976, pp. 189–95. This translation sometimes runs
into difficulties in rendering nuances in Ibn al-Haytham’s line of thought.

111 Ibid., p. 412–13.
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3.5.1. A Lemma for the Side of the Heptagon

3.5.2. On the Construction of the Regular Heptagon

3.5.3. On the Division of the Straight Line Used by
Archimedes in Book Two of The Sphere and the Cylinder

3.5.4. On a Solid Numerical Problem



In the Name of God, the Compassionate, the Merciful
Glory to God

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM :

A Lemma for the Side of the Heptagon

Archimedes based <his derivation of> the side of the heptagon on the
square he introduced, without showing how to construct the square that has
the property he required. In fact, if he did not show this, that is because the
construction of the square with the property he required cannot be carried
out except by using conic sections. Now, since in the book at the end of
which he deals with the heptagon, he has not referred to conic sections, he
deliberately did not put into the book something that does not belong in a
book of that kind, so he considered this square as an assumption and it was
on this basis that he built up the side of the heptagon.

As for the manner of constructing the square with the property he
required: we draw the square to which he referred, that is the square ABCD.
We extend AC as he did, we extend the straight line AD to E, we extend the
straight line BGHE and we assume for the purpose of analysis that the
triangle HDE is equal to the triangle BGC. We draw the straight line KGI
parallel to BA as he did. So the product of DA and AI is equal to the square
of DE, as Archimedes showed. We join BD, then it cuts the diameter AC
into two equal parts, because the square A B C D  is a right-angled
parallelogram; let it cut it at the point M. So the triangle BMC is equal to
the triangle AMD. But since the triangle EDH is equal to the triangle BGC,
the triangle BMC will be equal to the triangle EDH plus the triangle BMG.
But the triangle BMC is equal to the triangle AMD, so the triangle AMD is
equal to the <sum of the> triangles EDH and BMG. We consider their
common quadrilateral MDHG, so the triangle BDE is equal to the
quadrilateral ADHG. Let the triangle BEL be equal to the triangle CGH, so
the triangle BDL is equal to the triangle ADC, and they lie between two



434 CHAPTER III: AL-ÎASAN IBN AL-HAYTHAM

parallel straight lines. So the straight line LD is equal to the straight line DA
and the ratio of triangle BDL to the triangle BEL is equal to the ratio of the
triangle ADC to the triangle CHG.
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Fig. III.1.1

We draw the straight line HN perpendicular to the straight line GC. So
the product of HN and half of G C is equal to the triangle HGC, and the
product of DM and half of AC is equal to the triangle ADC because DM is
perpendicular to AM if the rectangle has equal sides, so the ratio of the
triangle ADC to the triangle CGH is compounded from the ratio of DM to
HN – which is equal to the ratio of DC to CH – and the ratio of half of AC
to half of CG – which is equal to the ratio of AC to CG; so the ratio of the
triangle ADC to the triangle CGH is compounded from the ratio of DC to
CH and the ratio of AC to CG. But the ratio of DC to CH is equal to the
ratio of EB to BH and the ratio of AC to CG is equal to the ratio of EB to
BG, so the ratio of the triangle ACD to the triangle CGH is compounded
from the ratio of EB to BH and the ratio of EB to BG. In the same way, it
necessarily follows that if the rectangle has <sides of> two different
lengths, we draw from the point D a perpendicular to the straight line AC,
then the perpendicular takes the place of DM, and the case reduces to the
two ratios <that we have already> mentioned. And the ratio of the triangle
ACD to the triangle CGH is equal to the ratio of the triangle BDL to the
triangle BEL, which is equal to the ratio of DL to LE, so the ratio of DL to
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LE is compounded from the ratio of EB to BH – which is equal to the ratio
of EA to AD – and the ratio of EB to BG – which is equal to the ratio of EA
to AI – so the ratio of DL to LE is compounded from the ratio of EA to AD
and the ratio of EA to AI – which is equal to the ratio of the square of EA to
the product of DA and AI, which is equal to the square of DE – so the ratio
of DL to LE is equal to the ratio of the square of AE to the square of ED,
and the straight line AD is equal to the straight line DL.

Thus, <the construction of the> square has been reduced by analysis to
the division of the straight line AL – which is twice AD – at a point E such
that the ratio of DL to LE is equal to the ratio of the square of AE to the
square of ED. But the straight line cannot be divided in this ratio without
using conic sections.

By the method of analysis we assume that the straight line has been
divided, we extend the straight line CD to O and we put DO equal to AE.
We draw from the point E the perpendicular EF and we put EF equal to
DE. So the ratio of DL to LE is equal to the ratio of the square of OD to the
square of FE. Let the product of DL and the straight line S be equal to the
square of OD. The parabola whose axis is DL, and latus rectum the straight
line S, passes through the points O and F. It <necessarily> passes through
the point O since the square of DO is equal to the product of DL and the
latus rectum, and this is the property of the parabola; the parabola
<necessarily> passes through the point F since the ratio of DL to L E is
equal to the ratio of the square of OD to the square of F E, as has been
shown in Proposition 20 of Book I of the Conics; let this conic section be
LFO. We put the straight line DQ equal to <the straight line> DL and we
join LQ; let it cut the straight line FE at the point U. So the triangle LDQ is
known in shape, the angle OQU is known and the ratio of QU to DE  is
known because it is equal to the ratio of QL to LD, <which is> known. But
since OD is equal to EA and QD is equal to DL – which is equal to DA –
we have QO equal to DE, so the ratio of OQ to QU is known and the angle
OQU is known. We join OU, so the triangle OQU is of known shape and
the ratio of UO to OQ is known; but OQ is equal to DE and DE is equal to
EF, so the straight line OQ is equal to the straight line FE and the ratio of
the square of OU to the square of FE is known. But the square of FE is
equal to the product of LE and the straight line S, so the ratio of the product
of LE and S to the square of UO is known; but the ratio of EL to LU  is
known, so the ratio of the product of LU and S to the square of U O is
known and the angle OUL is known. So the parabola – whose diameter is
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LQ, vertex the point L, the angle of its ordinate the angle OUL and latus
rectum a straight line whose ratio to the straight line S is a known ratio –
passes through the point O; let this conic section be the conic section LRO.

So if the straight line AD is known in position, if the point L is known
and the straight line S is of known magnitude, then the conic section LFO is
known in position, the straight line LQ is known in position because the
angle DLQ  is known, the latus rectum of the conic section LRO is of
known magnitude and the angle OUL is known, so the conic section LRO
will be known in position, so the point O will be known. But the straight
line OD is perpendicular to the straight line LD which is known in position,
so the straight line OD is known in magnitude and in position, the point D
is known and the straight line DL is of known magnitude, so the ratio of
OD to DL is known; OD is equal to AE and DL is equal to AD, so the ratio
of AE to AD is known. And since we can find two straight lines that are
equal to them by the method that we have demonstrated, <lines> which are
the straight lines OD and DL, and since the straight line AD is known, so
the straight line DE is known, and since the point D is known, so the point
E is known, and this is the one that gives the square ABCD the property
that Archimedes required.

Archimedes similarly assumed this square <can be constructed> and by
means of analysis he reduced the problem to the lemma he needed to
construct the heptagon, that is that the product of DA and AI is equal to the
square of DE and the product of EI and ID is equal to the square of AI, each
of the two straight lines AI and ED being greater than ID. So he supposed
there was a known straight line and he divided it in this ratio and from it he
constructed the heptagon. It is possible to divide a straight line in this ratio
by means of conic sections even without recourse to the square.

Let us suppose we have the straight line; let it be AB. We wish to
divide it into three parts, the parts AC, CD, DB such that the product of DA
and AC is equal to the square of DB and the product of BC and CD is equal
to the square of AC and each of the straight lines AC, DB is greater than
DC.

We suppose we have a general straight line, let it be EG; we cut off
from it a known arbitrary magnitude, let it be EH. We construct a parabola
with axis EG, vertex the point E and latus rectum the straight line EH, as in
Proposition 52 of Book I of the Conics; let the conic section be EKL. We
cut off HI  equal to HE  and we draw from the points H  and I two
perpendiculars whose endpoints are on the conic section, let them be HK
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and IL. So HK is equal to HE, because the square of KH is equal to the
product of HE and the latus rectum, and HE  is the latus rectum, so the
square of KH is equal to the product of HE with itself and the straight line
KH is equal to the straight line HE. We extend LI in the direction of I, we
cut off IS equal to IH and we join KI. So KI is parallel to the straight line
HS, since IS is equal to KH and is parallel to it; so the plane figure KHSI is
a parallelogram.
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Fig. III.1.2

We draw through the point I the hyperbola that does not meet the
straight lines KH, HS as in Proposition 4 of Book II of the Conics; let the
conic section be IN. This conic section cuts the segment KL. In fact, the
straight line IL is parallel to the straight line HK which is an asymptote to
the conic section, so the straight line IL lies inside the hyperbola IN. If we
extend the straight line IL to infinity, it does not meet the conic section IN
in any point other than the point I; in fact, if we extend the two straight
lines HK and IL to infinity in the directions of K  and L, the distance
between them always remains the same; and if we extend the conic section
IN in the direction of N, as it is extended further it comes closer to the
straight line HK and to its extension, as <is shown> in Proposition 14 of
Book II of the Conics. Since if we extend the straight line IL to infinity in
the direction of L, it will always lie inside the conic section IN and the
point K itself always lies outside the conic section IN, because it is on the
asymptote, so if we extend the conic section IN, it then cuts the segment KL
of the conic section EKL; let it cut it at the point N. We extend the straight
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line HK in the direction of K and we draw from the point N a straight line
parallel to the straight line KI, let it be NM, and we draw the perpendicular
NFU, it will be parallel to the straight line LIS, so the product of MN and
NU is equal to the product of KI and IS, as has been shown in Proposition
12 of Book II of the Conics. So the parallelogram NH is equal to the
parallelogram SK. But the area NH is the product of NU and HF, because
HF is perpendicular to NU, and the area SK is equal to the product of SI
and IH, and SI is equal to IH, and IH is equal to HE, so the parallelogram
SK is equal to the square of EH.

Now we have shown that the area SK is equal to the product of NU and
HF, so the product of NU and HF is equal to the square of EH. We put FG
equal to NF; but FU is equal to the straight line FH since SI is equal to IH,
so the straight line HG is equal to the straight line NU, so the product of
GH and HF is equal to the square of HE. Similarly, the straight line NF is
one of the ordinates because it is perpendicular to the axis EG and the
straight line EH is the latus rectum of the parabola EKN, so the product of
FE and EH is equal to the square of FN; but FN is equal to FG, so the
product of FE and EH is equal to the square of FG. But the product of GH
and HF was equal to the square of HE. So we divide the straight line AB at
two points C, D in the ratio of the straight lines EH, HF, FG, we then have
the product of DA and AC equal to the square of DB and the product of BC
and CD equal to the square of CA. It remains to show that each of the
straight lines AC and DB is greater than CD.

Since the product of FE and EH is equal to the square of FG, FN is
thus greater than EH, so it is greater than HI because HI is equal to HE, so
FN is much greater than the straight line HF. Now NF is equal to FG, so
the straight line FG is greater than the straight line FH. But EH is also
greater than HF since EH is equal to HI, so each of the two straight lines
EH and FG is greater than the straight line HF. So each of the straight lines
AC, DB is greater than the straight line CD, but the straight lines AC, CD,
DB are in the same ratio as the straight lines EH, HF, FG. So we have
divided the straight line AB into <three> straight lines: AC, CD, DB so that
the product of DA and AC is equal to the square of DB, the product of BC
and CD is equal to the square of AC and each of the two straight lines AC
and DB is greater than the straight line CD. That is what we wanted to do.

If we divide the straight line AB in this ratio, then we can construct a
triangle from the straight lines AC, CD, DB; let this triangle be ECD, which
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is the triangle constructed by Archimedes from which he constructed the
heptagon. If we construct this triangle, it is possible from it to go on to
construct the heptagon by a process different from the process adopted by
Archimedes; and we do this by constructing in the circle in which we wish
to construct the heptagon a triangle whose angles are equal to the angles of
this triangle, then the <major> arc whose chord is the straight line CD is a
seventh of the circle, the <major> arc whose chord is the straight line CE is
two sevenths of the circle and the <major> arc whose chord is the straight
line ED is four sevenths of the circle, because angle EDC is twice angle
CED and angle ECD is four times angle CED. So if we divide the arc
above the straight line EC  into two equal parts and the arc above the
straight line ED into four parts and if we put in the chords of the arcs, then
what is produced in the circle is a regular heptagon.

It remains for us to show that the angle EDC is twice angle CED and
that the angle ECD is four times angle CED.

AB CD
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Fig. III.1.3

We divide the angle CDE into two equal parts with the straight line DH
and we divide the angle ECD into two equal parts with the straight line CG.
So the ratio of EH to HC is equal to the ratio of ED to DC, which is equal
to the ratio of BD to DC. So by composition, the ratio of EC to CH is equal
to the ratio of BC to CD. But the ratio of BC to CD is equal to the ratio of
the square of AC to the square of CD, because the product of BC and CD is
equal to the square of CA, so the ratio of EC to CH is equal to the ratio of
the square of AC to the square of CD, that is to the ratio of the square of CE
to the square of CD, so the ratio of EC to CD is equal to the ratio of DC to
CH. So the two triangles DEC and CDH are similar. Then the angle DHC
is equal to the angle EDC, but the angle DHC is equal to the sum of the two
angles EDH and DEH, so the angle DEH is equal to the angle HDC; but the
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angle EDC is twice the angle HDC, so the angle EDC is twice the angle
DEC. For the same reason, the ratio of DG to GE is equal to the ratio of DC
to CE, which is equal to the ratio of DC to CA. By composition, the ratio of
DE to EG is equal to the ratio of DA to AC; but the ratio of DA to AC is
equal to the ratio of the square of BD to the square of CA, so the ratio of
DE to EG1 is equal to the ratio of the square of BD to the square of CA,
which is equal to the ratio of the square of DE to the square of EC, so the
ratio of DE to EG is equal to the ratio of the square of DE to the square of
EC, so the ratio of DE to EC is equal to the ratio of EC to EG. So the two
triangles ECD and ECG are similar, so the angle CGE is equal to the angle
ECD and the angle EGC is equal to the sum of the two angles GCD and
GDC, so the angle EDC is equal to the angle ECG. But the angle ECD is
twice the angle ECG, so the angle ECD is twice the angle EDC and the
angle ECD is four times the angle CED.

We have thus shown that the angle EDC is twice the angle CED and
that the angle ECD is four times the angle CED. So if we construct, in the
circle in which we wished to construct the heptagon, a triangle whose
angles are equal to the angles of the triangle ECD, if we divide the angle
ECD into two equal parts and each of these halves into two equal parts and
if we divide the angle EDC into two equal parts, the circle is divided into
seven equal parts. So if we draw the straight lines that are chords of these
parts, there is produced in the circle a regular heptagon. That is what we
wanted to prove.

The chapter on the lemma for the side of the heptagon is completed.
Thanks be given to God alone.

1 The end of manuscript [O].
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TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Construction of the Heptagon in a Circle

One of the geometrical problems – over which geometers enter into
rivalry, <problems> in which those who surpass the others take pride, and
through which the prowess of those who succeed in solving it is revealed –
is the construction of a regular heptagon in a circle. Some ancient and some
modern scholars have succeeded in achieving <a solution>, although their
achievement included some flaw. Among the ancients, it is Archimedes
who constructed the figure; he did indeed write a treatise on finding the
side of the heptagon, but in his determination of it he employs a lemma,
without presenting a proof of it. We, for our part, have proved the lemma
that Archimedes used, in a separate treatise, not in this <present> treatise.
From modern scholars, we have received two treatises; in one,
Archimedes’ lemma has been proved and the construction was based on it;
the other treatise is by Abº Sahl Wayjan ibn Rustam al-Kºhî: he
determined the side of the heptagon by means of a straight line that he
divided into three parts in a particular proportion; this is the straight line
that completes Archimedes’ lemma. We have not found a treatise that
explains sufficiently fully by any of the ancients or by modern scholars,
<that is one> in which there are included all the ways in which the
construction of the heptagon can be achieved. This being so, we have made
a careful study of the construction of the heptagon, and we have given
proofs of all the ways in which the construction of the heptagon can be
carried out. We have proceeded by analysis and by synthesis.

So we begin our account of the subject by saying: We wish to construct
in a given circle a heptagonal figure whose sides and whose angles are
<all> equal, inscribed in the circle.
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Let the circle be ABC; we wish to construct in this circle an inscribed
heptagon with equal sides and equal angles.

By the method of analysis:
Let us suppose that this has been carried out, that is that the heptagon is

ADEBCGH. We join <points to give> the straight lines CE, EB, BC, CD,
BD, DH, BH, BA, CA. There are formed in the circle four inscribed
triangles, each of whose angles intercepts one or more equal arcs, whose
chords are the sides of the heptagon.

A

B E
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H

DC

Fig. III.2.1

We say first: we cannot have in the circle an inscribed triangle each of
whose angles intercepts one or more arcs of the equal arcs whose chords
are the sides of the heptagon, and which is different from one of these
triangles. Because in the triangle ABC the angle BAC intercepts the arc BC,
which is a seventh of the circle. So the angle BAC is one part of the seven
parts of the sum of two right angles; the angle ABC intercepts AGC, which
is three sevenths of the circle; it is three parts of the seven parts of the sum
of two right angles. Similarly, the angle ACB is three parts of the seven
parts of the sum of two right angles. In triangle BDH, the angle BDH is
three parts of the seven parts of the sum of two right angles, and each of the
angles DBH and DHB is two parts of the seven parts. In triangle EBC, the
angle EBC is five parts of the seven parts, and each of the angles BEC and
BCE is a single part of the seven parts. In triangle DBC, the angle BDC is
one part of the seven parts, the angle BCD is two parts of the seven parts,
and the angle DBC is four parts of the seven parts.
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These triangles are four triangles whose angles are such that each of
them is part of the seven parts of the sum of two right <angles>, which has
been divided into three parts, using different schemes of division. Seven
cannot be divided into three parts except by these four types of division.
These are the types we have described in detail, and there are no parts <of
the number> seven that are three parts and which do not belong to the set of
these four types. No triangle may be inscribed in the circle with angles that
intercept the equal arcs whose chords are the sides of the heptagon, apart
from these four triangles; if we find a triangle similar to one of these
triangles, then we have found the heptagon, because if in the circle we
construct a triangle similar to this triangle and if we divide its angles into
parts, the circle is divided into seven equal parts; if the angles intercept the
arcs, a heptagon is formed which has sides and angles that are equal.

<First case>
So let us begin by finding triangles similar to the four triangles whose

angles we have described in detail, and let us form the heptagon starting
from each of them. Let us make a beginning with the isosceles triangle in
which each of the angles at the base is three times the remaining angle. We
wish to form the heptagon starting from this triangle.

By the method of analysis:
We suppose that we have found a triangle that shows this property; let

the triangle be ABC. We put the angle CBD equal to the angle BAC; so
triangle BCD is similar to triangle ABC, and the angle BDC is equal to the
angle ABC; the angle ABC is equal to the angle ACB. So the angle BDC is
equal to the angle BCD. So the straight line BD is equal to the straight line
BC. Since the triangle CBD is similar to the triangle ABC, the ratio of AC to
CB is accordingly equal to the ratio of BC to CD; so the product of AC and
CD is equal to the square of BC. We put the angle DBE equal to the angle
BAC. So the two triangles ABD and DBE are similar, so the angle BED is
equal to the angle ABD, and the angle ABD is two parts of the seven
<parts>; so the angle BEC is two parts of the seven <parts> and the angle
CBE is two parts of the seven <parts>. So the straight line EC is equal to
the straight line CB. Since the triangle DBE is similar to the triangle ABD,
the product of AD and DE is equal to the square of DB, and DB is equal to
BC, so the product of AD and DE is equal to the product of AC and CD,
and BC is equal to CE; so the product of AD and DE is equal to the square
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of CE, and the product of AC and CD is equal to the square of CE. Then on
the straight line EC we construct a square;1 let the square be CEHG. We
extend the two straight lines CG and EH as far as I and L. We imagine the
hyperbola that has asymptotes EC and CI and passes through the point H;
let it be the conic section HK. We draw from the point D a straight line
parallel to the straight line CI. It thus meets the conic section; let it meet it
at the point K. This straight line cuts the straight line GH; let it meet it at
the point N. We cut off <a segment> HP equal to HE and we draw the two
straight lines PG and HC. The straight line HC cuts the straight line DN; let
it cut it at the point M. CD is thus equal to DM and DE is equal to HN. We
draw KI parallel to DC. Since the two straight lines EC and CI are the
asymptotes2 of the conic section HK, the product of KD and DC is equal to
the product of HE and EC, which is equal to the square of CE. But the
product of AC and CD is equal to the square of CE; the straight line KD is
thus equal to the straight line AC, and CD is equal to DM. Finally KM is
equal to AD, and the product of AD and DE is equal to the square of CE, so
the product of KM and NH is equal to the square of EC, and the ratio of NH
to HM is equal to the ratio of GH to CH; so the ratio of the product of KM
and NH to the product of KM and MH is equal to the ratio of GH to HC,
which is equal to the ratio of the square of GH to the product of GH and
HC, that is to the product of HC and DN. Now, the product of KM and NH
is equal to the square of GH. So the product of KM and MH is equal to the
product of HC and ND. We draw KL parallel to MH. The product of MK
and KL is thus equal to the product of HP and PG. So the hyperbola that
has as asymptotes <the lines> CH and HL passes through the two points G
and K; let the conic section be GK. So if the square EG  is known in
magnitude and position, the two conic sections GK and HK are known in
position, so the point K is known, and the point D is thus known; it is
<starting from this last point> that we construct the <solution to> the
problem.

1 Lit.: a square with right angles.
2 Lit.: does not fall on the conic section. This expression, as we know, is a literal

translation of the Greek a«Õ¥√›…∑», from the verb « ¥√ß√…›, to fall, to meet.
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Let us carry out the synthesis corresponding to this analysis:
Let us suppose we have a known general straight line; let it be EC. We

construct a square; let it be EHGC; we join CH, we extend EH and CG, we
cut off <the segment> HP equal to HE and we join PG. We cause to pass
through the point H a hyperbola that has as asymptotes the straight lines EC
and CG; let the conic section be HK. We cause to pass through the point G
the hyperbola that has as asymptotes the straight lines CH and HP; this
conic section cuts the conic section HK because this <former> conic
section comes ever closer to the straight line HL if we extend HL, and the
conic section HK becomes ever more distant from the straight line HL if we
extend HL. So let the two conic sections cut one another in a point K. We
draw KD parallel to CG, KI parallel to CE, and KL parallel to MH; we put
CA equal to DK; we take A as centre and we draw a circle with distance
AC; let the circle be CBO. We draw CB equal to CE and we join AB, BD,
BE. Since AC is equal to KD, the product of AC and CD is equal to the
product of KD and DC, which is equal to the product of DK and KI, which
is equal to the product of GH and HE, which is equal to the square of CE.
So the product of AC and CD is equal to the square of CE, by which I mean
<that it is equal > to the square of CB. Since KD is equal to CA, and CD
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equal to DM, AD is equal to KM; since the product of MK and KL is equal
to the product of CG and GP, the product of KM and MH is equal to the
product of GC and CH, and the ratio of MH to HN is equal to the ratio of
CH to HG; so the ratio of the product of KM and MH to the product of KM
and HN is equal to the ratio of the product of CH and HG to the square of
HG, which is equal to the ratio of the product of PG and GH to the square
of GC. And the product of KM and MH is equal to the product of PG and
GC; so the product of KM and HN is equal to the square of GC, which is
equal to the square of CE. NH is equal to DE, and KM is equal to AD; thus
the product of AD and DE is equal to the square of CE, I mean to say <it is
equal> to the square of CG. Since the product of AC and CD is equal to the
square of CB, the triangle CBD is similar to the triangle ABC. So the angle
BDC is equal to the angle ABC, and the angle CBD is equal to the angle
BAC; but the angle ABC is equal to the angle ACB, so the angle BDC is
equal to the angle BCD, so the straight line BD is equal to the straight line
BC, the product of AD and DE is equal to the square of DB, the angle BED
is equal to the angle ABD, and the angle DBE is equal to the angle BAD. So
the angle DBE is equal to the angle CBD. Since the triangle ABC is similar
to the triangle CBD, the ratio of AB to BC is equal to the ratio of BD to DC
and BC is equal to BD, and BD is equal to EC. So the ratio of AB to BD is
equal to the ratio of EC to CD, and the ratio of EC to CD is equal to the
ratio of AC to CE, and is equal to the ratio of AE, which remains, to ED,
which remains. So the ratio of AB to BD is equal to the ratio of AE to ED;
so the two angles ABE and EBD are equal; thus the three angles at the point
B are equal.

So if we take away from the angle ACB an angle equal to the angle
CBD and if we divide the angle that remains into two equal parts, the three
angles are equal to the three angles at the point B. The angles of the triangle
ABC will be divided into seven equal angles. So if we construct in the
circle a triangle similar to the triangle ABC, if we divide the two angles at
its base into angles each of which is equal to each of the angles at the point
B and if we extend the straight lines that divides the two angles as far as the
circumference of the circle, the circumference of the circle is divided into
seven equal parts; if we put in the chords of the arcs, there is formed in the
circle a figure that has seven equal sides and whose angles are equal. In this
manner, we can construct in the circle a heptagon with equal sides and
equal angles. That is what we wished to construct.
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<Second case>
In the same way, we shall consider the isosceles triangle in which each

of the angles at the base is two parts, and the angle that remains is three
parts, and we shall form the heptagon starting from this triangle.

By the method of analysis:
We suppose that we have found a triangle that shows this property; let

it be the triangle ABC. Let each of the two angles B and C be two parts; the
angle A is three parts. We put the angle BAD as two parts. The triangle
ABD is thus similar to the triangle ABC, since the angle C is two parts. The
product of CB and BD is thus equal to the square of BA. <We extend CB to
E> and we put BE equal to BA; the product of CB and BD is equal to the
square of BE. We join AE. The two angles BAE and BEA are thus equal. So
each of them is one single part, because the angle ABC is two parts, and the
angle CAD is one part, since the angle BAD is two parts, and the angle BAC
is three parts; thus the angle CAD is equal to the angle AEC. So the triangle
ADC is similar to the triangle AEC. So the product of EC and CD is equal
to the square of AC, AC is equal to AB, and A B is equal to B E; so the
product of EC and CD is equal to the square of BE. So the product of EC
and CD is equal to the product of CB and BD. We erect on the straight line
EB the perpendicular EH and we put EH equal to EB; we draw from the
point H the straight line HI parallel to the straight line BE. We put HI equal
to EB. We join HB and IE, we extend HB on the side of B, we erect on the
straight line BE the perpendicular BK, and we put BK equal to BC. We
draw from the point K a straight line parallel to the straight line BC; let
<the straight line> be KL. It meets the straight line HB; let it meet it at the
point L. So LK is equal to KB, because BE is equal to EH. We draw from
the point D a straight line parallel to the straight line BK; let it be DG. It
cuts the straight line BL; let it cut it at the point M. We draw from the point
G a straight line parallel to the straight line LH; let it be GP. We put BN
equal to BE, and we draw NS parallel to BK, and SO parallel to BC. So <the
area> NO is equal to the square of BE and the product of BK and KG is
equal to the square of BE. Hence the product of DG and GK is equal to the
product of NS and SO. Then the hyperbola that passes through the point S
and has as asymptotes the two straight lines DB and BO passes through the
point G. Let that hyperbola be the conic section SG.
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Since the ratio of LB to BK, which is equal to BC, is equal to the ratio
of HB to BE, and is equal to the ratio of the whole to the whole,3 the ratio
of LH to EC is equal to the ratio of HB to BE, which is equal to the ratio of
the product of HB and BE to the square of BE. So the ratio of the product of
LH and CD to the product of EC and CD is equal to the ratio of the product
of HB and BE to the square of BE. But the product of EC and CD is equal
to the square of BE. So the product of LH and CD is equal to the product of
HB and BE, and CD is equal to LG, LG is equal to HP, and LH is equal to
GP, so the product of PG and GL is equal to the product of HB and BE, that
is to say IE and EB. So the hyperbola that passes through the point E and
has as asymptotes the two straight lines LH and HI passes through the point
G. Let this hyperbola be the conic section EG. The point G is then the
intersection of the two hyperbolas. So if the straight line BE is of known
magnitude and position, the area BI is known in magnitude and shape, and
the square NO is known in magnitude and shape, so the point S will be
known; and the two straight lines KB and BC are known in position, the
conic section SG is known in position and the two straight lines HL and HI
are known in position. And the point E is known <in position>. So the
conic section EG is known in position and the point G is the intersection of
two conic sections of known position.
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3 That is to say: the ratio of the sum of LB + BH to the sum of BC + BE.
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So if we draw from the point G the perpendicular GD, if we draw the
perpendicular GKL, and if we put BC equal to LK, DC is then equal to LG,
hence the product of CB and BD is equal to the square of BE, which is
known. And each of the two straight lines BA and AC  is equal to the
straight line BE, which is known.

Let us carry out the synthesis corresponding to this analysis:
We suppose we have a known straight line; let it be BE. And we put

BN equal to BE. We construct on BN a square, let it be BNSO. We cause to
pass through the point S the hyperbola that has as asymptotes the two
straight lines NB and BO. Let the conic section be SG. We join BS and we
extend it on both sides, to H and to L; we draw from the point E the
perpendicular EH and we put it equal to EB; we draw HI parallel to BE and
EI parallel to BH; we cause to pass through the point E the hyperbola that
has as asymptotes the two straight lines LH and HI. This conic section cuts
the conic section SG because it comes ever closer to the straight line HL.
Let it cut it at the point G. We draw from the point G the straight line GD
parallel to the straight line KB and we draw KGL parallel to the straight line
BD; we put DC equal to GL. We have BC equal to KL, that is to say <equal
to> KB. So the product of CB and BD is equal to the square NO, which is
the square of BE. So the product of PG and GL is equal to the product of IE
and EB; but the ratio of LB to BK, I mean to say BC, is equal to the ratio of
HB to HE, I mean to say BE, and is equal to the ratio of HL to EC; so the
ratio of HB to BE, that is to say the ratio of the product of IE and EB to the
square of EB, is equal to the ratio of HL to EC. So the ratio of the product
of IE and EB to the square of EB is equal to the ratio of the product of HL
and DC, to the product of EC and CD; CD is equal to LG, and HL is equal
to PG; so the ratio of the product of PG and GL to the product of EC and
CD is equal to the ratio of the product of IE and EB to the square of EB.
But the product of PG and GL is equal to the product of IE and EB. So the
product of EC and CD is equal to the square of BE. So the product of EC
and CD is equal to the product of CB and BD; so the ratio of EC to CB is
equal to the ratio of BD to D C. Now EC is greater than CB . So DB is
greater than DC. So BN is much greater than DC. So <the sum> of the two
straight lines BE and BN is much greater than BC. So starting from the
straight lines EB, BN, BC we can construct a triangle; let this triangle be the
triangle BAC. Thus each of the two straight lines BA and CA is equal to the
straight line BE. So the product of CB and BD is equal to the square of BA.
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So the triangle ABD is similar to the triangle ABC, the angle BAD is equal
to the angle ACB and the angle ADB is equal to the angle BAC. The product
of EC and CD is equal to the square of BE; so it is equal to the square of
CA. So the triangle ADC is similar to the triangle AEC, so the angle CAD is
equal to the angle AEC and the angle ABC is twice the angle AEC, because
AB is equal to BE. So the angle ABC is twice the angle CAD and the angle
ABC is equal to the angle ACD, so the angle ACD is twice the angle CAD.
So the angle ADB is equal to three times the angle CAD. Now the angle
ADB is equal to the angle BAC. So the angle BAC is equal to three times
the angle CAD. Now the triangle ABC is isosceles; its two equal sides are
AB and AC; so each of the two angles ABC and ACB is two parts according
to the measure that makes the angle BAC three parts.

So if we construct in the circle a triangle similar to triangle ABC, if we
divide each of the two angles at the base into two equal parts, and if we cut
off from the angle at the vertex an angle equal to an angle at the base,
which we divide into two equal parts, the angles of the triangle are divided
into seven equal parts. If we draw the straight lines that cut off the angles
as far as the circumference of the circle, the circumference of the circle is
divided into seven equal parts. If we put in their chords, there is formed a
heptagon with equal sides and equal angles. That is what we wished to
construct.

<Third case>
Similarly, we suppose we have an isosceles triangle in which each of

the angles at the base is a single part and the angle at the vertex is five
parts. We form the heptagon starting from this triangle.

By the method of analysis:
We suppose we have found a triangle that shows this property. Let the

triangle be ABC. Let each of the two angles ABC and ACB be a single part.
The angle BAC is five parts. We put the angle CAD equal to the angle ABC.
We also put the angle DAE equal to the angle ABC. Since the angle CAD is
equal to the angle ABC, the triangle ACD is similar to the triangle ABC;
hence the ratio of BC  to CA  is equal to the ratio of AC  to CD. So the
product of BC and CD is equal to the square of CA. But CA is equal to AB.
So the product of BC and CD is equal to the square of AB. Since the angle
DAE is equal to the angle ABD, the triangle ADE is similar to the triangle
ABD. So the product of BD and DE is equal to the square of DA. But DA is
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equal to DC, because the angle CAD is equal to the angle ACD. So the
product of BD and DE is equal to the square of DC. Since each of the two
angles CAD and DAE is equal to the angle ABD, which is equal to the angle
ACD, the angle AEB is three times the angle ACB; the angle BAC is five
times the angle ACB and the angle EAC is twice the angle ACB. So the
angle BAE is three times the angle ACB. So the angle BAE is equal to the
angle AEB. Hence the straight line AB is equal to the straight line BE. So
the product of BC and CD is equal to the square of EB.
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We put DK equal to DC and at the point K we erect the perpendicular
KL; we put it equal to KD; also, at the point D we erect the perpendicular
DG and we put it equal to DK. We join GK and DL and at the point B we
erect the perpendicular BH; we put it equal to B E; we join HE and we
extend it to M . DM is then equal to DE. We extend the straight line DL
until it meets the straight line BH; let it meet it at the point I. Since HB is
parallel to MD, the ratio of HE to EB is equal to the ratio of ME to ED and
is equal to the ratio of HM to BD and the ratio of HE to EB is equal to the
ratio of GK to KD. So the ratio of HM to BD is equal to the ratio of GK to
KD. Now the ratio of HM to BD is equal to the ratio of the product of HM
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and ED to the product of BD and ED. So the ratio of the product of HM and
ED to the product of BD and ED is equal to the ratio of GK to KD, that is to
say to the ratio of GK to KL, which is equal to the ratio of the product of
GK and KL to the square of KL. But the product of BD and ED is equal to
the square of DC, which is equal to KL. So the product of HM and ED is
equal to the product of GK and KL. But ED is equal to DM  and DM is
equal to HI. So the product of HM and HI is equal to the product of GK and
KD. So the hyperbola that passes through the point K and has as
asymptotes the two straight lines GD and DI passes through the point H.
Let this hyperbola be the conic section KH. Since the product of BC and
CD is equal to the square of EB and EB is equal to BH, the parabola whose
axis is BC and latus rectum DC, and with vertex at the point C, passes
through the point H. Let this parabola be the conic section CH. The point H
is thus the intersection of these two conic sections. So if DC is known, the
two conic sections will be known in position, the point H will be known,
and the two points E and B will be known.

Let us carry out the synthesis corresponding to this analysis:
We suppose we have a given straight line; let it be CK. We divide it

into two equal parts at the point D, and at the two points D and K we erect
two perpendiculars; let them be DG and KL. We put each of the <straight
lines> DG and KL equal to KD. We join GK and DL and we extend DL to I.
We cause to pass through the point K the hyperbola that has as asymptotes
the two straight lines GD and DI; let it be the conic section KH. We extend
DK on the side of K. We draw through the point C the parabola whose axis
is CK, its vertex the point C, and with latus rectum the straight line CD; let
the conic section be C H. This conic section cuts the straight line D I
because any straight line that cuts the axis of the parabola cuts the
parabola4 in two points on opposite sides of the axis. So the conic section
CH cuts the straight line DI; if it then goes beyond the straight line DI, it
becomes more distant from the straight line DI, because the straight line
drawn from the point of intersection to be a tangent to the conic section
cuts the straight line DI. If the curve is extended on both sides, it becomes
more distant from the straight line DI. The conic section <KH> cuts the
parabola CH below the tangent; as it becomes more distant from the point
of intersection, it becomes more distant from the straight line DI. The conic

4 Lit.: the circumference of the section.
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section KH, as one extends it, approaches more closely to the straight line
DI. So it necessarily follows that the two conic sections cut one another; let
the two conic sections cut one another at the point H. We draw H B
perpendicular to the axis of the parabola, and we draw, also from the point
H, a straight line parallel to the straight line GK; let it be HEM. Each of the
two triangles HBE and EDM is thus similar to the triangle DKL. HB is
accordingly equal to BE, and ED equal to DM. Hence the ratio of HE to EB
is equal to the ratio of LD to DK, <that is> equal to the ratio of ME to ED
and equal to the ratio of HM to BD. So the ratio of HM to BD is equal to
the ratio of LD to DK, that is to the ratio of GK to KL. So the ratio of the
product of HM and ED to the product of BD and DE is equal to the ratio of
GK to KL, which is equal to the ratio of the product of GK and KL to the
square of KL. But ED is equal to DM and DM is equal to HI. So the ratio of
the product of HM and HI to the product of BD and DE is equal to the ratio
of the product of GK and KL to the square of KL. Now the product of HM
and HI is equal to the product of GK and KL. So the product of BD and DE
is equal to the square of KL, that is to the square of DK. But DK is equal to
DC. So the product of BD and DE is equal to the square of DC. Since KC is
twice CD, the product of KC and CD is equal to twice the square of KL. So
the point L lies inside the parabola.5 So the parabola6 cuts the straight line
DI beyond the point L. The point H is thus situated beyond the point L. So
the straight line HB lies beyond the straight line KL. So the straight line BD
is greater than the straight line DK. But the product of BD and DE is equal
to the square of DK. So DE is smaller than DK. So it is smaller than DC.
Hence EC is smaller than twice DC. And the product of BC and CD is
equal to the square of HB. But HB is equal to BE. So the product of BC and
CD is equal to the square of EB. So the product of BC and CE is smaller
than twice the square of EB. So EC is smaller than EB. So twice EB is
greater than BC. So it is possible to construct on the straight line BC an
isosceles triangle such that its base is the straight line BC and each of the
two remaining sides is equal to BE. Let this triangle be the triangle ABC.
We join AD and AE. Since AC is equal to EB, the product of BC and CD is
equal to the square of CA; so the triangle ACD is similar to the triangle
ABC. So the ratio of BC to CA is equal to the ratio of AC to CD. So the
angle CAD is equal to the angle ABC which is equal to the angle ACB. So
the angle CAD is equal to the angle ACB. So the straight line AD is equal to

5 Lit.: the section.
6 Lit.: the section.
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the straight line DC. Thus the product of BD and DE is equal to the square
of DA. The triangle ADE is accordingly similar to the triangle ABD. So the
angle DAE is equal to the angle ABD, which is equal to the angle ACD. So,
depending on the magnitude of which the angle ACB is a single part, the
angle AEB is three parts. Since AB is equal to BE, the angle BAE is equal to
the angle BEA. Thus the angle BAE is three parts of the magnitude of which
the angle ACB is a single part. And the angle CAE is two parts <measured>
in these parts. Thus the angle BAC is five parts <measured> in the parts in
which each of the two angles ABC and ACB is a single part. So if we
construct in the circle a triangle similar to the triangle ABC, and if we cut
the angle BAC into <five> angles each of which is equal to the angle ABC,
the angles of the triangle are divided into seven equal parts. If we draw the
straight lines <of a length> such that they meet the circumference of the
circle, the circle is divided into seven equal parts. If we put in the chords,
there is formed in the circle a heptagon with equal sides and equal angles.
That is what we wished to construct.

<Fourth case>
Similarly, we suppose <we have a> triangle one of whose angles is a

single part, another <angle> two parts, and the remaining one four parts,
and we form the heptagon starting from this triangle.

By the method of analysis:
We suppose that we have found a triangle that shows this property; let

the triangle be ABC. Let its angle A be a single part, its angle B two parts,
its angle C four parts. We put the angle BCD as a single part; the angle
ACD will then be three parts and the angle ADC is also three parts, because
it is equal to the sum of the angles ABC and BCD. So the triangle ACD is
the first of the triangles that we have found.7 So if we find the first triangle,
it will be similar to the triangle ADC, and if we put the angle DCB equal to
the angle CAD, then the angle ACB will be four parts and the angle ABC
two parts. If we also put the angle BCE equal to two parts, the angle CEB is
then three parts, because the angle EBC is two parts. The triangle BEC will
then be the second of the triangles that we found. If we put the angle ECA
equal to the angle ECB, the angle ACB will then be four parts and the angle
CAB will be a single part. If we also put the angle ACG equal to the angle

7 See Fig. 3.67 in this chapter, p. 401.
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CAG, then the angle GCB will be three parts, and the angle AGC will thus
be five parts, because it is the sum of the two angles GCB and CBG. The
triangle AGC will then be the third of the triangles that we found. If we put
the angle GCD equal to the angle CGD, which is two parts, because it is the
sum of the two angles ACG and CAG, then the angle ACD will be three
parts.8 If we next put the angle DCB equal to the angle CAG, then the angle
ACB will be four parts and the angle CAB will be a single part. So the angle
ABC will be two parts and the triangle ABC reduces to each of the three
triangles that we have already established. If we wish to construct the
heptagon starting from the triangle one of whose angles is a single part, the
second two parts and the third four parts, we find one of the preceding
triangles and we increase one of its angles by the extra quantity to which
we have just referred. In this way we find the triangle one of whose angles
is a single part, the second two parts and the third four parts.

A

E B C D

Fig. III.2.5

But it is possible to construct this triangle without reducing it to one of
the preceding triangles. So let us return to the triangle. We draw BC
<produced> in both directions; we put CD equal to CA, BE equal to BA,
and we join AE and AD <Fig. III.2.5>.

Since the angle ACB is four parts, ADC is two parts, the angle CAD is
two parts and the angle ABC is two parts. So the angle BAD is three parts,
and the two angles ABD and ADB are equal. So the straight line AD is
equal to the straight line AB. Now AB is equal to BE. So AD is equal to BE.
Since the angle ABC is two parts, the angle AEB is a single part, so the
angle AEC is equal to the angle BAC. So the triangle ABC is similar to the
triangle AEC. So the product of EC and CB is equal to the square of CA.
But CA is equal to CD. Hence the product of EC and CB is equal to the
square of CD. Since AC is equal to CD, then the angle DAC is equal to the
angle ADC; but the angle ACB is four parts, then <it follows that> the angle

8 See Fig. 3.68 in this chapter, p. 401.
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DAC is two parts; but the angle ABC is two parts, so the angle DAC is
equal to the angle ABC. So the triangle ADC is similar to the triangle ABD.
So the product of BD and DC is equal to the square of DA. But DA is equal
to BE; so the product of BD and DC is equal to the square of BE. So the
straight line ED is divided into three parts, the product of BD and DC is
equal to the square of BE and the product of EC and CB is equal to the
square of CD. The straight line <DE> divided in this ratio is the line that
completes Archimedes’ lemma. This is the straight line that was divided by
Abº Sahl al-Kºhî and starting from which he built up the triangle one of
whose angles is a single part, the second two parts, and the third four parts,
and starting from this he determined the heptagon.

We divide this straight line by a method different from the method by
which it was divided by Abº Sahl. We shall prove how it is divided, first
by analysis:

We put CK equal to CD, at the point K we erect the perpendicular KG
and let us put it equal to KC. We draw from the point G a straight line
parallel to KC; let it be GI. We put GI equal to GK. Let us join GC and IK.
At the point C let us erect the perpendicular CL <perpendicular to the
straight line BC. We draw BH perpendicular to BC, and we put BH equal to
BE. The straight line BH cuts GC at the point M>. Through the point D, we
construct the parabola with axis the straight line DB, and latus rectum DC.
<Since HB is equal to EB, and the square of EB is equal to the product of
BD and DC, the square of HB is equal to the product of BD and DC. So the
parabola passes through the point H>; let it be the conic section DH. We
draw the hyperbola that passes through the point K and has as asymptotes
the two straight lines GC and CL. <Since KG is equal to KC, BM is equal to
BC; so HM is equal to EC. But the product of EC and CB is equal to the
square of CD. So the product of MH and CB is equal to the product of KG
and KC and the ratio of HL to BC is equal to the ratio of MC to BC, which
is equal to the ratio of GC to KC. So the ratio of the product of HL and MH
to the product of BC and MH is equal to the ratio of the product of GC and
KG to the product of KC and KG. So the product of MH and HL is equal to
the product of GC and KG. So the point H lies on the hyperbola>.

*This conic section cuts the conic section DH because this conic
section, that is the hyperbola, comes ever closer to the straight line CL, and
the parabola cuts CL and then goes beyond it and becomes more distant
from it. Let the two conic sections cut one another at the point H; so the
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point H lies beyond the straight line CL, that is beyond the point L, because
the hyperbola is always beyond the straight line CL.*9

We draw from the point H the perpendicular HB and we draw H E
parallel to the straight line GC. So if the straight line CD is known, CK will
be known in magnitude and in position, the figure KGI will be known in
magnitude and in shape and the point K will be known; then the hyperbola
will be known in position. Since CD is known in magnitude, the parabola is
known in position. So the point H is known and the point B is known. It is
<starting from this point> that the triangle is constructed.

Let us carry out the synthesis corresponding to this analysis:
We suppose we have a known straight line; let it be KD. We divide it

into two equal parts at the point C; at the point K we erect the perpendicular
KG and we put it equal to KC. We draw from the point G a straight line
parallel to the straight line KC; let it be GI. We put GI equal to KC. We join
GC and IK. We draw from the point C the perpendicular CL and we cause
to pass through the point K the hyperbola that has as asymptotes the two
straight lines GC and C L. We cause to pass through <the point> D the
parabola with axis KD and latus rectum CD. This conic section cuts the
hyperbola for the reason we have mentioned earlier. Let them cut one
another at the point H. We draw the perpendicular HB, and we draw HE
parallel to GC. We extend HB as far as M. So HB is equal to BE and BM to
BC. So HM is equal to EC, and HL to MC. So the product of EC and CM is
equal to the product of HM and MC. But the product of HM and MC is
equal to the product of IK and KC. Now the ratio of MC to CB is equal to
the ratio of GC to CK, that is <equal> to the ratio of IK to KC, which is
equal to the ratio of the product of IK and KC to the square of KC. So the
ratio of the product of EC and CM to the product of EC and CB is equal to
the ratio of the product of IK and KC to the square of KC. But the product
of EC and CM is equal to the product of IK and KC. So the product of EC
and CB is equal to the square of CK, that is <to the square> of CD. But the
product of BD and DC is equal to the square of HB. And HB is equal to BE;
so the product of BD and DC is equal to the square of BE. Thus we have
divided the straight line ED into three parts such that the product of EC and

9 In the preceding paragraph we have, as an exception, used <…> to separate off
the sentences that we added when establishing the Arabic text. The paragraph enclosed
between *…* should have taken its place in the synthesis, not in the analysis.
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CB is equal to the square of CD, and the product of BD and DC is equal to
the square of BE.
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Fig. III.2.6

Since the product of EC and CB is equal to the square of CD, CD is
greater than CB, and EC, which is the sum of EB and BC, is greater than
CD. Since the product of BD and DC is equal to the square of BE, BE is
greater than CD, and BD, which is the sum of BC and CD, is greater than
BE. So the sum of any two of the straight lines EB, BC, CD is greater than
the remaining straight line. So it is possible to construct a triangle from
these three straight lines. Let this triangle be the triangle ABC. Let AB be
equal to BE and AC equal to CD. We join AE and AD. So the product of EC
and CB is equal to the square of CA. So the ratio of EC to CA is equal to
the ratio of AC to CB. So the two triangles ACB and AEC are similar. So
the angle CAB is equal to the angle AEB, which is half the angle ABC.
Since the product of BD and DC is equal to the square of BA and DC is
equal to CA, the product of BC and CD plus the square of CA is equal to
the square of BA. Accordingly, the triangle ABD is isosceles; so the straight
line DA is equal to the straight line BA. So the product of BD and DC is
equal to the square of DA. The triangle ADC is thus similar to the triangle
ABD; so the angle DAC is equal to the angle ABD, which is equal to the
angle ADB. Each of the two angles ADC and CAD  is two parts in the
measure by which the angle BAC is a single part. The angle ACB is four
parts, in the measure by which the angle BAC is a single part. So if we
divide the angle ACB into two equal parts, and we divide each half into two
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equal parts, the angles of the triangle are <thus> divided into seven equal
parts. If we draw the straight lines used to divide the angles <extending
them to reach> the circumference of the circle, the circumference of the
circle is divided into seven equal parts. If we put in their chords, there is
formed in the circle a heptagon with equal sides and equal angles.

We have constructed in the circle a heptagon with equal sides and
equal angles in all the cases for which we can construct the heptagon. Such
was our purpose in this treatise.



In the name of God, the Compassionate, the Merciful
Glory to God

TREATISE BY IBN AL-HAYTHAM,
SHAYKH ABª AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Division of the Straight Line Used by Archimedes
in Book Two of The Sphere and the Cylinder

He says: in the fourth proposition of the second book of his treatise on
The Sphere and the Cylinder, Archimedes used a straight line that he
supposed to have been divided in a particular ratio, without showing how to
divide the straight line in this ratio. Since the division of the straight line
cannot be carried out except by employing conic sections and in his book
he makes no use of conic sections, he did not take the decision to
incorporate into his book material that did not belong in a work of this
type; so he treated the division of the straight line as an assumption, relying
on the fact that it is possible. But insofar as we do not carry out the division
of the line in the ratio he assumed, the proof of the proposition in which he
used it is not complete.

As this is so, we decided to divide this line in the ratio he assumed and
to demonstrate the possibility of the division, in order to make it clear that
what Archimedes used was correct. The division employed by Archimedes
is that he assumed we have a line on which we have DB. He took each of
<the straight lines> DB and BG as known. He assumed the ratio of BG to
BI was known. He then said: we put the ratio of HG to GI equal to the ratio
of the square of BD to the square of DH. We assume we have a line such as
he assumed and we set about dividing it.

At the two points D and G we erect two perpendiculars, let them be DA
and GC. We put each of them equal to the known straight line BD. We join
AC , which is thus perpendicular to the straight line AD . We draw IE
parallel to the straight line C G. We construct through the point E  the
hyperbola that has as asymptotes the two straight lines CG and GD; let the
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conic section be UEK. This conic section cuts the straight line AD because
on the side of K it extends to infinity and does not meet the straight line
GD; let it cut the straight line AD at the point K.

We then construct through the point D the parabola whose axis is DA,
its vertex the point D and latus rectum the straight line DB; let the conic
section be DSO. This conic section cuts the straight line AC if we assume
the straight line AC has been extended, because on the side of O the conic
section DSO extends to infinity and the straight line AC is perpendicular to
its axis. Let this conic section cut the straight line AC in a point S.
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Fig. III.3.1

Since the conic section DSO is a parabola with axis DA  and latus
rectum DB, the square of AS is equal to the product of DB and DA. Now
DB is equal to DA, so the square of AS is equal to the square of DB. Thus
the straight line AS is equal to the straight line DB. Now the straight line
AE is equal to the straight line DI, so the straight line AE is greater than the
straight line AS. So the point E lies outside the conic section DSO and the
point K lies inside the conic section DSO, because it lies on its axis. So part
of the hyperbola UEK lies outside the parabola DSO and part lies inside the
conic section DSO. So the conic section DSO cuts the conic section KEU;
let it cut it in a point M. <From M> we draw MH perpendicular to the
straight line DB.

I say that the ratio of HG to GI is equal to the ratio of the square of BD
to the square of DH.
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Proof: We construct through the point M the straight line LMN parallel
to the straight line GD, then MN is perpendicular to the straight line DA.
The straight line MH  is parallel to the straight line C G, because it is
perpendicular to the straight line GD. So the product of BD and DN is equal
to the square of MN, NM is equal to D H and ND is equal to MH . The
product of BD and MH is equal to the square of DH. So the ratio of BD to
DH is equal to the ratio of DH to MH. The ratio of BD to MH is equal to
the ratio of the square of BD to the square of DH. Similarly, since the conic
section UEK is a hyperbola, and the two straight lines CG and GD are its
two asymptotes, and the two straight lines EI and MH are parallel to the
straight line CG and the two straight lines ML and EC are parallel to the
straight line GD, <accordingly> the product of CE and EI is equal to the
product of ML and MH. So the ratio of ML to EC is equal to the ratio of EI
to MH. Now ML is equal to HG, EC is equal to GI and EI is equal to BD,
so the ratio of HG to GI is equal to the ratio of BD to MH.

We have shown that the ratio of BD to MH is equal to the ratio of the
square of BD to the square of DH. So the ratio of HG to GI is equal to the
ratio of the square of BD to the square of DH. That is what we wanted to
prove.



In the name of God, the Compassionate, the Merciful
Glory to God

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On a Solid Numerical Problem

We wish to divide up a known number into two parts such that one of
them is the cube of the other.

Let the known number be AB; we wish to divide up AB into two parts
such that one of the two parts is the cube of the other. So let us find four
magnitudes in continued proportion such that the ratio of the amount by
which the greatest of them exceeds the one that follows it, to the smallest,
is equal to the ratio of the cube of the number AB to the number AB.

Let the four magnitudes be the magnitudes CD, DE, DG, DH and let
the ratio of CE to HD be equal to the ratio of the cube of AB to AB, which
is a known ratio, because AB and its cube are each known.

As for the manner of finding these magnitudes, we shall demonstrate
that later. If we find the magnitudes that are in these ratios, then we are
dividing up the number AB at the point I so that the ratio of AI to I B is
equal to the ratio of CE to ED.

I say that AI is then the cube of IB.

D H G E C

B L K I A

Fig. IV.4.1

Proof: We put the ratio of IB to BK equal to the ratio of ED to DG and
the ratio of KB to BL equal to the ratio of GD to DH. But the ratio of AI to
IB was equal to the ratio of CE to ED, so, by composition, the ratio of AB
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to BI is equal to the ratio of CD to DE. So we have AB, BI, BK, BL in the
same ratios as CD, DE, DG, DH; but CD, DE, DG, DH are in continued
proportion, so the numbers AB, BI, BK, BL are in continued proportion. The
ratio of AB to BL is equal to the ratio of AB to BI, multiplied by itself three
times, and the ratio of AB to BI, multiplied by itself three times, is the ratio
of the cube of AB to the cube of BI. But the ratio of AI to IB is equal to the
ratio of CE to ED and the ratio of IB to BL is equal to the ratio of ED to
DH, so, by <this> equality, the ratio of AI to LB is equal to the ratio of CE
to HD. But the ratio of CE to HD is equal to the ratio of the cube of AB to
the number AB. So the ratio of the cube of AB to the <number> AB is equal
to the ratio of AI to LB; by permutation, the ratio of the cube of AB to AI is
equal to the ratio of AB to LB. But it has been shown that the ratio of AB to
LB is equal to the ratio of the cube of AB to the cube of BI, so the ratio of
the cube of AB to AI is equal to the ratio of the cube of AB to the cube of
BI; so AI is the cube of BI.

So we have divided a number AB into two parts such that one of the
two parts is the cube of the other, let them be AI and IB. That is what we
wished to do.

So as for the manner of finding four magnitudes in continued
proportion such that the ratio of the amount by which the greatest of them
exceeds the one that follows it to the smallest, is equal to a known ratio,
this <procedure> will be as we shall describe.

We suppose <we have> a known straight line AB and at its endpoint we
erect a perpendicular; let it be BC. We put the ratio of AB to BD equal to
the known ratio and we construct at the point D a straight line parallel to
the straight line AB; let it be DE. We draw <the straight line> AE parallel to
the straight line BC. The area ABDE is rectangular. We construct through
the point E the hyperbola that does not meet the straight lines AB and BC,
as has been shown in the fourth proposition of the second book of
Apollonius’ Conics; let the conic section be EGH. We extend the straight
line CB in the direction of B and we cut off from it the straight line BN
equal to the straight line BD. We construct at the point N a straight line
parallel to the straight line AB, let it be NU ; we extend it in the other
direction as far as M. So the angle BNU is a right angle. Let us construct
through the point N the parabola whose axis is NU and latus rectum NB, as
has been shown in Proposition 52 of Book I of Apollonius’ Conics; let the
conic section be NO. The conic section NO cuts the conic section EGH,
since the further we extend the conic section NO in the direction of O, the
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more distant it becomes from the axis NU; so it becomes more distant from
the straight line AB; and the further we extend the conic section EGH in the
direction of E, the closer it becomes to the straight line BA, as has been
shown in Proposition 14 of Book II of the Conics. So the conic section NO
cuts the conic section EGH; let it cut it at the point G.
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Fig. IV.4.2

We draw from the point G the straight line GI parallel to the straight
line AB and the straight line GKL parallel to the straight line CBN. The area
enclosed by the two straight lines IG and GK is equal to the area enclosed
by the two straight lines DE and EA, as has been shown in Proposition 12
of Book II of the Conics. So the ratio of AB to GI is equal to the ratio of
GK to BD. But BD is equal to BN and BN is equal to KL, so the ratio of AB
to GI is equal to the ratio of GK to KL. We extend EA to U, so UN is equal
to AB. We put NM equal to GI, the ratio of AB to GI is equal to the ratio of
UN to NM. But the ratio of AB to GI is equal to the ratio of GK to KL, so
the ratio of UN to NM is equal to the ratio of GK to LK. But given that the
straight line GL is parallel to the straight line IN, we have that the straight
line GL is perpendicular to the straight line NU. The area enclosed by the
straight line NL and the straight line LK, which is equal to the straight line
NB, is equal to the square of LG, as has been shown in Proposition 12 of
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Book I of the Conics.1 So the ratio of GL to LN is equal to the ratio of LK
to LG. But it has been shown that the ratio of UM to MN is equal to the
ratio of GL to LK, so the ratio of UM to MN is equal to the ratio of NL to
LG and to the ratio of GL to LK. But UM is greater than LN, NL is equal to
GI and GI is equal to NM; so NM is equal to NL, so NM is greater than LG.
We cut off MS equal to LG and we cut off MP equal to LK. So the ratio of
UM to MN is equal to the ratio of MN to MS and equal to the ratio of MS to
MP. So the magnitudes UM, MN, MS, MP are in continued proportion; UN
is equal to BA and MP is equal to LK, which is equal to BN, which is equal
to BD. So the ratio of UN to PM is equal to the ratio of AB to BD which is
the known ratio.

The magnitudes UM, MN, MS, MP are four magnitudes in continued
proportion and the ratio of the amount by which the greatest, which is UM,
exceeds the one that follows it, which is MN – by this excess amount I
mean UN – to PM, which is the smallest magnitude, is the known ratio.
That is what we wished to do.

The treatise on the solid numerical problem is completed.
Thanks be given to God, Lord of all the worlds, and may a blessing be

upon MuÌammad and those that are his.

1 This is Proposition 11 in Heiberg’s edition.



CHAPTER IV

 PRACTICAL GEOMETRY: MEASUREMENT

4.1. INTRODUCTION

Long before Ibn al-Haytham, al-Færæbî had proposed a classification of
sciences that could not be reduced to the classifications known before him.1

This classification was clearly intended to give an account of the knowledge
of the period, to devise a coherent representation of it, and, above all, to
explain the new relationships between disciplines. Speaking in terms of the
quadrivium could not provide what was required. Perhaps that is why al-
Færæbî’s successors, among them even Avicenna, adopted this new
classification.2 One of its distinguishing characteristics, as indeed of all the
later classifications it inspired, is that it includes a complex grouping of
several disciplines, whose designation is the significant term: ‘ilm al-Ìiyal
(‘science of ingenious procedures’). We have here a complex of disciplines
that, for the most part, belong among what would be known, much later, as the
‘mixed sciences’ or ‘mixed mathematics’, which are ‘mixed’ in the sense that
in them mathematics is combined with elements that relate to physical matter.
The concept underlying these disciplines is that they involve ‘knowledge’
(‘ilm) and ‘action’ (‘amal); that is ‘science’ and ‘art’, the categories being
inclusive rather than exclusive. On one hand, it is possible to introduce the
‘rules of the art’ together with its instruments, when we are concerned with
defining the specific subject under investigation; on the other hand, this body
of knowledge can be applied in the study of objects that lie outside it. Thus if

1 Al-Færæbî, IÌsæ’ al-‘ulºm, ed. ‘U. Amîn, 3rd ed., Cairo, 1968.
2 Ibn Sînæ, ‘Épître sur les parties des sciences intellectuelles’, transl. R. Mimoune, in

Études sur Avicenne, dirigées par J. Jolivet et R. Rashed, Collection Sciences et philosophie
arabes - Études et reprises, Paris, 1984, pp. 143–51 and R. Rashed, ‘Mathématiques et
philosophie chez Avicenne’, in Études sur Avicenne, pp. 29–39; reprinted in Optique et
Mathématiques: Recherches sur l’histoire de la pensée scientifique en arabe, Variorum
reprints, Aldershot, 1992, XV.
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knowledge aims at action, action must in turn be based on knowledge. Again
in accord with this new representation, a body of knowledge can henceforth
take on the status of a science without conforming to either the Aristotelian or
the Euclidean model. This new relationship between knowledge and action,
between science and art, removed the lines of demarkation that a certain kind
of Aristotelianism had, at least in theory, established between the two, and
conferred a recognized status on the application of mathematics and the
sciences.

Embedded in this complex of the ‘science of ingenious procedures’ we
find many disciplines, among them the art of measurement or mensuration. Of
course, this art of measurement, which had been studied well before the time
of al-Færæbî, had already given rise to a very rich literature. Thus, in his
Fihrist, al-Nadîm mentions a number of names, such as those of al-Îasan ibn
al-∑abæÌ, Ibn Næjiya, Ibn Barza and others. We can add those of al-Khwærizmî
himself, al-Kindî, Abº Kæmil, al-QabîÒî, Sinæn ibn al-FatÌ and others, and, a
little later, ‘Abd al-Qæhir al-Baghdædî, al-Isfizærî, al-Karajî and his successors,
to mention only a few. So the list is a rather long one and we should require at
least one substantial volume if we were to examine all these writings on
mensuration. Here we shall simply describe the various types of works into
which the literature may be divided.

Euclid’s Optics3 provides the earliest example of the first type of
investigation, that of a three-dimensional (stereometric) problem. The matter
was taken up by al-Kindî,4 and, later on, by Sinæn ibn al-FatÌ, under the
revealing title al-misæÌæt al-manæÂiriyya (‘optical mensuration’). The problem
is then studied by al-QabîÒî,5 and no doubt one could find many others. Ibn al-
Haytham is concerned with it in an independent text, a short essay called On
Knowing the Height of Upright Objects, on the Altitude of Mountains and the
Height of Clouds.6 Another example of the same type, but with no proof, is the

3 Euclide, L’Optique et la Catoptrique, Works translated for the first time from Greek
into French by Paul Ver Eecke, Paris, 1959, Propositions 18 to 20.

4 Sur la rectification des erreurs [On the Correction of Errors], in R. Rashed,
L’Optique et la Catoptrique d’al-Kindî, Leiden, 1996, Propositions 19 to 22.

5 A. Anbouba, ‘Un mémoire d’al-QabîÒî (4e siècle H.) sur certaines sommations
numériques’, Journal for the History of Arabic Science, 6, 1982, pp. 181–208, esp.
pp. 188–9.

6 R. Rashed, Ibn al-Haytham and Analytical Mathematics, London, 2012, p. 412, no.
62, and see below.
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text attributed to Ibn al-Haytham: On the Determination of the Height of
Mountains.

The second type of text on mensuration is also old; it first appears as a
chapter in books on algebra, such as that by al-Khwærizmî, and more generally
in treatises on Îisæb (the science of calculation), such as those by al-Bºzjænî,
al-Karajî, al-Baghdædî, al-Færisî and others. Most of the texts that deal with
mensuration belong to this type, which, as far as we know, seems not to have
interested Ibn al-Haytham.

The third type is specific to geometers. One example is a treatise by
Thæbit ibn Qurra. This is a book without proofs in which the author gives
formulae for finding areas of plane figures with straight and curved edges,
together with volumes of some solids, including the cube as well as the
sphere.7

The fourth and final type is represented by Ibn al-Haytham’s book On the
Principles of Measurement (Fî uÒºl al-misæÌa). In what is in fact a manual,
the author is concerned to lay down solid foundations to underpin his practice.
This treatise is of great importance, both historical and epistemic: for we are in
fact confronted by the work of a theoretical geometer, and no minor one, one
of the greatest, who is writing for surveyors. Ibn al-Haytham is certainly not
the first to have taken this course. Indeed his predecessor Ibn Sinæn had
written a practical manual for the artisans who constructed sundials. But, as
far as I know, this type of text is not to be found among the writings of any of
the great geometers of the Hellenistic period. The new spirit is manifest in the
mathematician’s dual approach, his two closely linked intentions: to set out
geometrical foundations for a practical art, here that of measurement; to
provide practitioners with the rules they need to apply. Here again Ibn al-
Haytham appears as bringing a tradition to its fulfilment, a tradition that
included Thæbit ibn Qurra, Ibræhîm ibn Sinæn and doubtless many others. But,
as for making a detailed reconstruction of this tradition, scholars have hardly
begun to do the work required. Here we shall go no further than to examine
the writings of Ibn al-Haytham. There are four of them: the two we have
already mentioned (which have come down to us); a third whose title is
recorded by old biobibliographers: On a Problem of Measurement (Fî mas’ala

7 Fî misæÌat al-ashkæl al-musa††aÌa wa-al-mujassama, edition, French translation and
commentary in R. Rashed, ‘Thæbit ibn Qurra et l’art de la mesure’, in id. (ed.), Thæbit ibn
Qurra. Science and Philosophy in Ninth-Century Baghdad, Scientia Graeco-Arabica, vol.
4, Berlin/New York, 2009, pp. 173–209.
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fî al-misæÌa),8 wording that suggests we have a study of a specific problem.
Finally, we may note that, in his preface to his treatise Fî uÒºl al-misæÌa, Ibn
al-Haytham himself refers to a piece he wrote when young, on the same
subject and with the same title, lost at the same time as ‘many original
manuscripts’ of his writings. It is possible that Fî mas’ala fî al-misæÌa is the
same as the lost text, whose title may have been corrupted.

4.2. MATHEMATICAL COMMENTARY

4.2.1. Treatise on the principles of measurement

The plan of the book is clear and well suited to the purpose of the work: to
provide surveyors with a rigorous but elementary geometrical manual of their
art. After an introduction which explains the basic notions concerned –
measurement, unit of measurement, measurable magnitudes – Ibn al-Haytham
provides a short first chapter on measuring lines, only straight lines and arcs of
circles, these being the only lines his readers will need to use. His second
chapter deals with the measurement of areas: rectangle, triangle (using what is
now known as ‘Heron’s formula’9), convex polygon, circle. The third chapter
is devoted to the measurement of volumes: polyhedron, cylinder, cone, sphere.
The fourth chapter describes an experimental method for finding the height of
a general body. Ibn al-Haytham concludes with a reminder of the results and
procedures that will be of use.

Let us have a brief look at the contents of the various chapters. Ibn al-
Haytham, like the Banº Mºsæ long before him,10 begins by explaining that the
unit of measurement is a conventional unit, initially chosen for lengths of
lines: we have, for instance, the conventional length of a line segment called a
‘cubit’. The units for areas and volumes are derived from this one: the square

8 Cited by al-Qif†î, Ibn Abî UÒaybi‘a and in the Lahore list, see R. Rashed, Ibn al-
Haytham and Analytical Mathematics, London, 2012, p. 412, no. 65.

9 Thæbit says of this formula: ‘Some have claimed it comes from India and others have
reported it as due to the Greeks’ (On the Measurement of Plane and Solid Figures, ed.
R. Rashed in Thæbit ibn Qurra. Science and Philosophy in Ninth-Century Baghdad,
pp. 182–3).

10 R. Rashed, Founding Figures and Commentators in Arabic Mathematics. A history
of Arabic sciences and mathematics, vol. 1, Culture and Civilization in the Middle East,
London, 2012, Chapter I.
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unit of area is the square whose side is the unit of length, and the cubic unit of
volume is the cube whose edge is the unit of length. The measurement of a
magnitude – length, width, depth – is its expression in terms of the unit
associated with it. In other words, the measurement of a magnitude is the
number, rational or irrational, that expresses the ratio of the magnitude to the
magnitude of the same kind taken as the unit. The meaning of the word ‘ratio’
as used here is that given in Definitions 1, 2, 3, 7 and 9 of Book V of the
Elements.

In the chapter on the measurement of lines, Ibn al-Haytham considers only
the kinds of line handled by surveyors: straight lines and arcs of circles. We
measure a straight line by placing on it, one part after another, ‘the complete
cubit or certain parts of it’. The measurement obtained, that is, the number by
which we multiply the unit, is a rational number. Here Ibn al-Haytham does
not mention the case in which this procedure would only yield an approximate
value of the measurement, something he will mention later, for instance for
arcs.

For the measurement c of a circular arc, say that of the circumference of
the circle with diameter d, and the measurement a of an arc whose ratio to the
circumference is a number k, Ibn al-Haytham here repeats known results,

without proof: c ≈ 22
7

d  and a = kc, and indicates that, for surveyors, the

procedure is to measure d and find k. He returns to this question later on, and
to the method for finding d and k, in his chapter on the measurement of areas.

In the second chapter, on the measurement of areas, Ibn al-Haytham
considers only the ones that will be of concern to surveyors: plane areas. He
writes ‘spherical, cylindrical or conical surfaces do not come into their art of
measurement’. He begins with the measurement of the rectangle and gives a
proof for the calculation of the area of the rectangle assuming that its two
dimensions have a common aliquot part taken as the unit of length; he does
not mention other cases.

Ibn al-Haytham then goes on to consider the area of the triangle; the area
of a right-angled triangle follows immediately from that of the rectangle, and
we then go on, using Elements I.37, to the area S of a general triangle with

base b and height h, S = 1
2

b · h. The problem for surveyors is thus to find the

height h. Ibn al-Haytham then makes a very detailed study of the triangle,
taking the lengths a, b, c of the three sides as known, and gives ways of
answering the following questions:

1. How to know whether the triangle is right-angled or not?
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2. How to calculate the height from a particular vertex? The calculation
involves considering a segment of the base opposite the vertex in question
called the ‘foot of the height’. Three cases are then considered:

• height from a vertex whose angle is obtuse,
• height from a vertex whose angle is acute,
• height above the greatest side – this calculation is valid whatever the

angles of the triangle are.
Let a be the greatest side of the triangle, BC = a, let h be the height AD

and x the foot of the height, x = BD, we have

x = a2 + c2 − b2

2a
,

h2 = c2 − x2 = c2 −
a2 + c2 − b2( )2

4a2 .

BD

A

C

c

h

x

b

a

Fig. 4.1

Starting from this calculation of the height we can derive Heron’s formula.
From the last expression above we have

h
a

a b c a c b b c a b a c2
2

1
4

= + +( ) + −( ) + −( ) + −( ) ;

but

S2 = 1
4

a2h2 = a + b + c

2
⎛
⎝

⎞
⎠

a + c − b

2
⎛
⎝

⎞
⎠

b + c − a

2
⎛
⎝

⎞
⎠

b + a − c

2
⎛
⎝

⎞
⎠ .

Let us put p = a + b + c

2  
, hence

S2 = p (p – b) (p – a) (p – c).

Ibn al-Haytham later derives this formula by a different method, without
using the height. His proof involves the centre and radius r of the circle
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inscribed in the triangle. If 2p is the perimeter of the triangle, we have S =
p · r, where p2r2 = p(p – a)(p – b)(p – c), hence S2 and thus S. This is in fact
the method already used by the Banº Mºsæ.11

Ibn al-Haytham then considers convex polygons. The idea is as follows:
any convex polygon can be dissected into triangles, so its area is the sum of
the areas of these triangles, and each of these areas can be expressed in terms
of the three sides of the triangle concerned. It is true that every convex n-sided
polygon can be dissected into n – 2 triangles, by joining any vertex – say A –
to each of the others.

A

B

C

D

E

F

G

Fig. 4.2

The area of the polygon is equal to the sum of the areas of the n – 2
triangles obtained. Ibn al-Haytham says that the division is carried out by
means of the chords of the angles of the polygon. His assertion is true for a
quadrilateral, a pentagon or a hexagon, in which the n – 3 chords will give the
n – 2 triangles.

A
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C

D

E

F

A

B

C
D

E

Fig. 4.3

11 R. Rashed, Founding Figures and Commentators in Arabic Mathematics, Proposi-
tion 7, p. 46.
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But for n ≥ 7, the division into triangles would require straight lines other
than chords. So if n  = 2p, we would have p chords, the polygon would be
dissected into p triangles whose bases are these chords and a polygon having
these p chords as sides. If n = 2p + 1, we would have p chords, hence p
triangles with the chords as their bases and a polygon with p + 1 sides: the p
chords and one side of the polygon. In both cases, the sides of the initial
polygon can be measured and Ibn al-Haytham gives a method of calculating
the chords. It then remains to dissect the polygon with p sides or with p + 1
sides. The dissection is carried out once we have found the angles of the
polygon. For example let us take a polygon ABCDEFG (Fig. 4.2); AD and AE
are not chords of the angles of the heptagon. In Fig. 4, we can draw all the
chords AC, CE, EG that are the bases of three triangles whose vertices are B,
D and F, there then remains a quadrilateral that one can divide into triangles
by drawing the diagonal AE. The straight line AE is not the chord of an angle
of the heptagon, but it is the chord of the angle G  of the triangle AGE.
Obtaining a value for the length of this chord is possible either by making an
exact measurement, or by the method described later for finding a chord. In
fact, when GE is found, the triangle FGE is known, and the angle FGE will
also be known; this gives AGE AGF FGEˆ ˆ ˆ= −  and we know the two sides
enclosing the angle.

A

B

C

D

E

F

G

Fig. 4.4

Ibn al-Haytham then gives a procedure for evaluating the chord. Let us
consider a triangle BAC; we want the value of AC, the chord of the angle B,
starting from the lengths AB and BC. The surveyor must choose a point on BC,
say D, so that in triangle BDE, similar to BCA, the length DE can be found by

measurement. But we have AC

DE
= BC

BD
; so if the person making measurements

takes BD to be one cubit, we get AC = DE · BC.
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C

B

D

A

E

Fig. 4.5

Ibn al-Haytham then returns to the area of the circle and describes
Archimedes’ proof in The Measurement of a Circle.

The area Σ of the circle with diameter d and circumference 2p is given by

the expression Σ = p
d

2
.

Ibn al-Haytham also notes that Archimedes found that the ratio 2 p

d
 has an

approximate value 22
7

, hence p ≈ 11
7

d  and Σ ≈ 11
14

d2 or again

Σ = d2 − 1
7

+ 1
14

⎛
⎝

⎞
⎠ d2 .

When we are not given the centre and diameter of the circle, the surveyor
needs to be able to find the value of the diameter d. Ibn al-Haytham gives a
procedure for finding the length of the diameter.

C

B D

A

E

Fig. 4.6

Let DB  be a general chord of the circle, let E  be its midpoint; the
perpendicular bisector of the chord passes through the centre of the circle, it
cuts the circle in A and C and AC is thus a diameter; we have

BE = ED  and  EA · EC = BE · ED = BE2,
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hence

EC = BE2

EA
  and  AC = EA + BE2

EA
.

The length of the diameter is then known if we know the length of the
chord BD and that of the sagitta AE.

This procedure is of interest because if the diameter AC is very large, or
cannot be found by surveying, we can dispense with measuring its length
directly. We choose a chord BD that is small enough for its length and that of
its sagitta to be easy to measure.

Ibn al-Haytham says that he summarizes Archimedes’ method of finding
the area of the circle. In view of the historical interest of this account, we shall
give a brief description of it. We require to prove:

The area Σ of a circle of radius R and circumference 2p is equal to the
product p · R or, as we shall see later, we can obtain it ‘by multiplying its
semi-diameter by its semi-perimeter, that is the number of the multiple of the
cubit contained in the semi-diameter and the number of the multiple of the
cubit contained in the semi-perimeter’.

Let us put U = p · R.
1. If U < Σ, then Σ – U = S, so S < Σ.
Let E be the centre of the circle, AC and BD two diameters perpendicular

to one another, ABCD is thus a square inscribed in the circle. The tangents to
the circle at the points A, B, C, D define a square NMLX circumscribed about
the circle. The diagonals of this square cut the arcs AD, DC, DB, BA in their
midpoints K, I, H, G respectively. The tangent at the point K is parallel to AD.
From A and D we draw perpendiculars to AD; we thus construct a rectangle;
let its area be s, we have

s > area segment (AKD).

We have in succession:

• area (NMLX) > Σ  and  area (NMLX) = 2 area (ABCD),

so

area (ABCD) > 1
2

Σ,
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hence

Σ – area (ABCD) < 1
2

Σ.

Let r1 be the first remainder, r1 < 1
2

Σ.

• s > area segment (AKD)  and  s = 2 area triangle (AKD), so

area triangle (AKD) > 1
2

 area segment (AKD),

hence

area segment (AKD) – area triangle (AKD) < 1
2

 area segment (AKD).

We proceed in the same way for the other three segments whose chords
are the sides of the square ABCD. We obtain the second remainder

r2 = Σ – area (AKDICHBG) < 1
2

 r1,

hence

r2 < 1

22 Σ .

We repeat the procedure until we obtain a remainder

rn < 1

2n Σ < S .

Let us suppose that the polygon AKDICHBG has area Σn and provides a
solution to the problem, that is to say that

Σ – Σn < S or Σn > U.

We have
area (EAKD) = area triangle (AED) + area triangle (AKD)

 = 1
2

AD · EO + 1
2

AD · OK = 1
2

AD · EK;
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so if the perimeter of ABCD is 2pn-1, we have Σn = pn-1 · R. But Σn > U, hence
pn-1 · R > p · R and pn-1 > p; which is impossible because pn-1 < p.
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Fig. 4.7

In this first part, Ibn al-Haytham uses the square NMLX to prove that

area (ABCD) > 1
2

Σ, so as to be able to apply Proposition X.1 of the Elements:

we have Σ > S, we take away more than half of Σ and repeat the procedure.

2. If U > Σ, we have three cases.
a) U = area (NMLX)   b) U > area (NMLX) c) U < area (NMLX).

Let 2p1 be the perimeter of the figure NMLX circumscribed about the
circle, then area (NMLX) = p1 · R.

a) U = area (NMLX) ⇔  p  · R  = p1 · R  ⇔  p  = p1, which is impossible

because the arc AKD = 1
4

 p  and  AM + MD = 1
4

 p1  and  AM + MD > AKD, so

p1 > p.

b) U > area (NMLX) ⇔  p  · R  > p1 · R  ⇔  p > p1,  which is impossible
because p1 > p.

c) U < area (NMLX).
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We put U – Σ = S; we then have

area (NMLX) – Σ > S,

area (NMLX) – Σ = r1 = 4  [area of the curvilinear triangle (AKDM)],

and
r1 > S.

We then consider the tangents at the points K, I, H, G, midpoints of the
arcs AD, DC, CB, BA and we obtain the circumscribed octagon. Let us call the
midpoints of the arcs U′ . We have

MQ > QK  and  QK = QA ⇒ MQ > QA
     ⇒ area (MKQ) > area triangle (KQA),

hence
area (MKQ) > area portion (KQAU′ ),

area (QMS) > area [portion (KQAU′ ) + portion (KSDU′ )],

consequently

area (QMS) > 
 

1
2

 area curvilinear triangle (AKDM),

so

4 area (QMS) >  1
2

 r1,

hence

r1 – 4 area (QMS) < 1
2

 r1.

Let us put r2 = area circumscribed octagon – Σ; we have

r2 < 1
2

 r1.
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If we again double the number of sides of the circumscribed polygon by
drawing the tangents to the circle at each of the points U′, and if we repeat the
same procedure, we take away more than half of r2 and we obtain

r3 < 1
2

 r2 ⇒ r3 < 1

22  r1;

so successive remainders decrease. We repeat the procedure until we obtain

rn < 1

2n−1  r1 < S.

Let Σn be the area of the polygon that gives a solution to the problem; if
2pn  is its perimeter, we have

Σn = pn · R;

we have
rn = Σn – Σ < S ⇒ pn · R < U ⇒ pn · R < p · R,

which is impossible because pn > p.

Notes: In this second part of the proof, we make the hypothesis that U = p · R
> Σ. The square NMLX is circumscribed about the circle, so if its perimeter is
2p1, we have p < p1 and area (NMLX) = p1 · R.

So we must have p · R < p1 · R, that is U < area (NMLX); this is what Ibn
al-Haytham establishes in a) and b) by showing that U ≥ area (NMLX) is
impossible.

Now if U < area (NMLX) and U – Σ = S, we have

area (NMLX) – Σ > S.

We have
area (NMLX) – Σ = r1 (shaded area),

which satisfies r1 > S. From this area r1 we remove a part equal to
4 [area (MQS)] >  

2
 r1. So we fulfil the conditions for applying Elements X.1.
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Fig. 4.8

A simple comparison with Archimedes’ Measurement of a Circle, in the
Greek or the Arabic versions, shows that Ibn al-Haytham is reformulating
Archimedes’ procedure in the language of his own period. But that is not what
we are concerned with here.

Ibn al-Haytham then goes on to consider the area S of a sector of a circle,
and shows that if l is the length of the circular arc that defines the sector, we
have from Elements VI.31

S l

p
S

l d

Σ
= ⇒ = ⋅

2 2 2
.

Next he considers the area of a segment of a circle. If the segment is less
than a semicircle, we can find its area from that of the corresponding sector by
subtracting from the area of the sector the area of the triangle whose vertex is
the centre of the circle and whose base is the chord of the arc. So we need to
know the length l of the arc that defines the sector or the segment. This length
l is known if we know the ratio k of the arc in question to the complete
circumference.

Ibn al-Haytham then gives a method for finding an approximate value of
the ratio k that is as precise as possible. This method is based on constructing
an auxiliary arc equal to a quarter of a circle whose radius is the chord of the
arc in question. The actual construction of a ratio equal to the ratio k is carried
out on the arc by using compasses whose opening is chosen by repeated trial.

Let ABC be the arc we wish to measure, AC its chord and EB its sagitta.
Let us draw the circle with centre A and radius AC; it cuts the line AB in H and
the perpendicular to AC at A in D; CHD is a quadrant of a circle; we have

E

EEE

E
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Let BB′ be the diameter through B; the arc BCB′ is a semicircle cut off by
the inscribed angle BAB′ = 1 right angle; the arc BC is cut off by the angle
BAC. We have

BC

BCB

BAC CAH

′
= =

ˆ ˆ

1 1 right angle  right angle
;

from which we get
ABC BC

BCB

CH

CDcircumference
=

′
= .

If the arc to be measured is very large, that is subtended by a very long
chord, we take a point M  on AC and we replace the quadrant of the circle
CHD by the quadrant of the circle MNP; we then have

(*) CH

CD

MN

MP
= ;

the measurements can then be made on a smaller figure.
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The choice of a point M  on AC defines a homothety with centre A and

ratio AM

AC
. The arc CHD  that defines the ratio CH

CD
 has as its homothetic

counterpart the arc MNP, and we have (*). We may note that Ibn al-Haytham
states very clearly that he wants to subject the arc CHD to a reduction and
proposes to take a part AM to stand for AC . So he is giving himself the

homothety (A, AM

AC
).

So Ibn al-Haytham’s method reduces to measuring, with compasses, two
arcs CH and HD (or MN and NP) whose sum is a quadrant of a circle. Ibn al-
Haytham assumes that the size of the opening of the compasses is chosen so
that one can apply it (that is step the compasses) an integral number of times
between C and H (or M and N) on the one hand and between H and D (or N
and P) on the other; let it be m times and n times respectively. Then we have
m equal chords between C and H and m + n equal chords between C and D.
There are equal arcs that correspond to these equal chords, so

CH

CD

m

m n
=

+
.

It is clear that this method can find the ratio between the two arcs only
with some degree of approximation, which can always be improved.

Fig. 4.10

Ibn al-Haytham then explains in great detail that the required ratio may be
irrational. But the method recommended leads to a ratio k that is rational. So
the surveyor must find the number k to an approximation so close that the
difference between the value he finds for k and the exact ratio is so small that
it has no effect on the results in which the required ratio plays a part.
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After studying the areas of surfaces, Ibn al-Haytham comes to solids, but
only those that engage the attention of surveyors, that is, solids bounded by
plane faces – polyhedra – spheres, cylinders and cones.

The first polyhedron he investigates is the rectangular parallelepiped. For
the calculation of its volume, Ibn al-Haytham gives a proof for the case where
all three dimensions have a common aliquot part that is taken as the unit of
length; he does not mention other cases. The reasoning assumes that each of
the dimensions of the rectangular parallelepiped is an integer number of
cubits, that is that each of the dimensions is a multiple of a length taken as a
unit, and that the unit of volume is the cube whose edge is that unit. But we
know from Elements XI.32 that if two parallelepipeds have the same height,
their volumes are proportional to their bases; so, whether or not the measure-
ments of the three dimensions in terms of the unit are integer numbers, we can
make use of that property.

Ibn al-Haytham considers only the volume of the rectangular parallelepi-
ped and does not indicate how to go on to find the volume of the general par-
allelepiped, nor that of the upright prism and the oblique prism. He does, how-
ever, refer to the result concerning these solids and indicates that, from
Elements XII.7, the volume of the pyramid is one third of the volume of the
prism on the same base and with the same height.

Ibn al-Haytham then explains that, by dividing up the faces of any poly-
hedron along the chords of their angles, we can dissect the polyhedron into
pyramids and the volume of the polyhedron is the sum of the volumes of these
pyramids. So for the surveyor, the problem consists of knowing how to find
the base and height of a pyramid. Now, the base of a pyramid is a triangle or a
polygon. If it is a triangle, we merely need to measure the three sides to cal-
culate its area. If it is a polygon, its area will be the sum of the areas of the tri-
angles made by the chords of the angles of the polygon, as we saw earlier. In
any case, we need to be able to find the measurement of these chords, even if
the base of the solid is on the ground. Ibn al-Haytham thus proposes the
following procedure for finding the chord of an angle of the base of a solid.

The procedure consists of constructing, in the plane of the base of the
solid, but outside the actual solid, an angle xBy equal to the angle xOz of the
base. To do this, we apply along one of the sides of the angle a ruler with
parallel edges By || Oz, and along the side Ox a ruler whose edge, aligned with
Ox, cuts By at the point B. The angle B is equal to the angle under investiga-
tion (angles with parallel sides).
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Fig. 4.11

Once angle xBy is found, we mark off on the sides enclosing that angle the
measured lengths of BE and BD, the two sides of the angle of the base of the
solid.
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D
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x

y

Fig. 4.12

We then return to the method described earlier for finding the length of a

chord. If BA = 1 and BC = BD

BE
, we have

BD

BC
= BE

BA
;

the triangles ABC and EBD are similar. We measure AC and from it we find

DE AC
BE

BA
= ⋅ ,
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hence
DE = AC · BE.

If the base is on a smooth surface, that is, one that is uniform, without
roughness, we can extend the sides of the base to obtain an angle opposed at
the vertex to the angle of the base, and thus equal to the angle in question.

Thus we have two methods of obtaining an angle equal to the angle under
investigation:

a) Using two rulers, the first of which has parallel edges and a certain
width, we construct an angle whose sides are parallel to the sides of the base.

b) We extend the sides of the angle in question along the ground, if that is
possible; we obtain an angle that is opposite at the vertex to the required angle
of the base.

Whether the base of the pyramid is a triangle or a general polygon, the
other faces are triangular. To measure the height, Ibn al-Haytham makes use
of points and segments that lie inside the polygon of the base. He then uses a
plane auxiliary figure on which he can carry out the constructions needed to
obtain the segments to be measured. Thus he considers two faces with a
common edge such as AC. The planes ACB, ACD, BCD form the trihedral
angle at the vertex C, which is called ‘the angle of the pyramid’.

B

D

A

C

Fig. 4.13

Ibn al-Haytham then uses constructions in the plane of the base of the
pyramid to find a value for the height.
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Let AE and AG be the heights of the triangles ABC and ACD. Let LIK be a
triangle such that LIK BCDˆ ˆ= , LI = CE and IK = CG. We have

a) If ILKˆ  = 1 right angle, then CEGˆ  = 1 right angle. But CEAˆ  = 1 right
angle, so CE is perpendicular to the plane EAG. Let GO || CE, then G O is
perpendicular to the plane EAG, so GO ⊥ GA, but GA ⊥ DC, so GA is perpen-
dicular to the two lines GO and GC, and thus to their plane, that is to the plane
BCD; so AG is the height of the pyramid.

Similarly, if IKLˆ  = 1 right angle, then AE is the height of the pyramid.

BD

A

E

C

S
U

G

O

H

Fig. 4.14

b) If neither of the angles ILK, IKL is a right angle, we construct at L and
K perpendiculars to the lines enclosing the angle LIK. The perpendiculars
must intersect, say in a point M. If the two angles at L and K are acute, M lies
inside the angle LIK; if one of the two angles at L or K is obtuse, M lies out-
side angle LIK.

L

IK
N

M

M

K

L

I

Fig. 4.15

At G and E we construct perpendiculars to the lines CG and CE; the per-
pendiculars intersect in H, a point that corresponds to point M.
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Let HS || CE and HU || CG. By hypothesis we have CEAˆ  = 1 right angle,
CEHˆ  = 1 right angle, so CE  is perpendicular to the plane AHE and
HS ⊥ (AHE), hence HS ⊥ AH. Similarly,CGAˆ  = 1 right angle, CGHˆ  = 1 right
angle, so CG ⊥ (AHG) and consequently HU ⊥ (AHG), hence HU ⊥ AH. So
the straight line AH is perpendicular to the plane SHU, that is to the plane
BCD. So the straight line AH is the height of the pyramid. To find the value of
the height AH, we consider the right-angled triangle AEH, and we have AH2 =
AE2 – EH2. But EH = LM, a length that can be measured in the plane figure,
and AE is a length that can be measured on the face ABC of the pyramid, and
AH2 = AE2 – LM2, so AH can be calculated.

Ibn al-Haytham next considers the volumes of the cylinder and cone on a
circular base. If S is the area of the base and h the height of a right cylinder,
the volume, V, is given by V = S · h.

Fig. 4.16

Let there be a straight line joining the centres of the circles that form the
bases; this line is the height of the cylinder and it is equal to the length of a
generator. Let h be the value of the height, V the required volume and S the
area of the base.

We cut off on the height a length, up from the base, equal to the unit, and
through the point we obtain we draw a plane parallel to the plane of the base.
We thus obtain a cylinder with base S and unit height; let its volume be v. We
have

S v

unit of area unit of  volume
= .

If we choose uniform units, the area of the base and the volume of the
small cylinder are numerically equal: S = v.
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Ibn al-Haytham then imagines the height being divided into h parts, each
equal to the unit. By drawing planes parallel to the base we obtain a number h
of cylinders, each equal to the first small cylinder, so

V = h · v = h · S.

We may note that, from Elements XII.14, we have V

v
= h

1
, hence the above

equality holds good for any number h that measures the height (integer or not).
As for the volume of the oblique cylinder, we know that it is equal to that

of the right cylinder with the same base and the same height.
Ibn al-Haytham then comes to the volume of a right cone and of an

oblique cone and notes that it is equal to one third of the volume of the cylin-

der that has the same base and the same height as it does, so V = 1
3

S · h.

To find the area S of a circular base, we measure its circumference 2p,

from which we find the diameter d p≈ ⋅2
7

22
 and S

p d= ⋅
2

.

We shall see later how to find the height h.

Ibn al-Haytham ends his study of volumes of solids with the volume of the
sphere. Not only did he know the works of his predecessors on this topic,
notably Archimedes and the Banº Mºsæ, but he himself had also worked out
the volume of the sphere in a treatise12 composed before the one on Measure-
ment. So he had established that

V = area of a great circle × 2
3

 of the diameter.

Ibn al-Haytham explains how to construct in a plane a circle equal to the
great circle of the sphere and find its diameter. He proposes the following pro-
cedure. Using compasses opened so that the distance between the points is e,
we draw on the sphere a circle with pole L. We then take two general points X
and Y on this circle. The midpoints of the arcs XY, the points G and I, are then
found by approximation: we vary the opening of the compasses until it allows
us to find the point G such that GX = GY, so then GX GY=  and we then find
the point I such that IX = I Y, so that IX IY= . The line segment IG is the

12 Qawl fî misæÌat al-kura, in R. Rashed, Les Mathématiques infinitésimales, vol. 2,
pp. 295–323; English translation in Ibn al-Haytham and Analytical Mathematics.
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diameter of the circle we drew. If K is the midpoint of the segment IG, the
straight line LK passes through the centre of the sphere and gives us LM, the
diameter of the sphere. The length of GI can be measured by an opening of the
compasses; but the same is not true for the lengths LK and L M, which lie
inside the sphere. Ibn al-Haytham then tells us how to use the known lengths,
LI = LG = e and IG = 2 IK = 2h, to construct a plane figure the same as the
figure ILGM. We draw a line segment AB with midpoint C and AB = IG, so
CA = IK = h; on its perpendicular bisector we take the point D such that
AD = LG = e. The perpendicular to AD at A cuts DC in E.

C
B

D

A

E

L

M

I

K

<X>
<Y>

G

H

Fig. 4.17

The right-angled triangle DAE in the plane figure is equal to the triangle
LGM in the three-dimensional figure, because they are both similar to a right-
angled triangle with hypotenuse e (LG = AD = e) and side h (IK = AC = h) and
they have one side equal, LG = AD.

Thus we can measure the diameter DE in the plane figure, or calculate DE
from the known lengths e and h; AD = e, AC = h. We have

DC2 = AD2 – AC2 = e2 – h2,

hence
DC e h= −2 2

.

Moreover
AD2 = DC · DE,
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hence

DE
e

e h
=

−

2

2 2
.

We can also write
AC2 = DC · CE,

hence

CE
h

e h
=

−

2

2 2
,

hence

DE = e2 − h2 + h2

e2 − h2
.

We put DE = d; the area of the great circle is

S = π d2

4
≈ 11

14
d2 = d2 − 1

7
d2 − 1

14
d2

and the volume of the sphere is V = S × 2
3

 d.

We may note that the important thing about the plane figure is that it
allows us to measure the lengths DC = LK and DE = LM. But the calculation
of these lengths from the known ones GL = LI = e and KI = h can be carried
out using triangle LGM in the three-dimensional figure.

We may also note that the opening of the compasses – a distance GL = LI
= e between the points – that is used to draw a circle with pole L on the sphere
is arbitrary. The precision of the result obtained by this procedure depends on
how careful the practitioner is in finding the points I and G, the midpoints of
the two arcs of the circle with pole L, because these points can only be
obtained by trial and error, adjusting the opening of the compasses.

The last chapter of Ibn al-Haytham’s treatise deals with a problem that is
of capital importance for surveyors: to find a height by experimental means –
the height of a pyramid, a cylinder, a cone or a solid body standing on the
ground. The required height is the length of the perpendicular from the highest
point of the solid body to the plane of the base. The procedure is particularly
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useful when one or both of the two points, the vertex or the foot of the
perpendicular, is inaccessible.

The procedure makes use of a rod and a plumb line, both of a length
greater than the height of the observer. On the rod, whose tip is X, we carve a
circular mark round the shaft at a distance XY equal to one cubit, the chosen
unit of measurement. The observer then uses the plumb line to find the height
h of his eye above the ground: using a finger he holds the line up to his eye;
then he moves the string up or down by sliding it round his finger, until the
lead weight touches the ground. The length of string between the finger and
the weight is then the required height h. He records this length on the rod,
starting from the point Y, and he obtains the point Z, he then carves a circular
mark round the rod at this point; we have

XY = 1  and  YZ = h.
X

Y

Z

Fig. 4.18

The remainder of the rod may end in a point that allows it to be easily
driven into the ground.

Now let AU be the height we want to measure; if we are considering a
wall, or a mountain, the ground is represented by the line BC . We have
AU ⊥ BC.

The rod XYZ is driven into the ground in the position DGE where
DE ⊥ BC, DG = XY and GE = YZ. The observer finds the position from which
he can take a simultaneous sighting of the points D, the tip of the rod, and A,
the vertex of the body whose height it is required to measure; let that position
be HI; H represents the eye and I the midpoint of the foot. We have HI || DE.
He makes a hole in the ground at the point I, and notes the distance IE = l1. He
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draws the straight line IE that passes through the point U. He then pulls the
rod out of the ground, and moves it to the position MNP closer to the required
height AU, say to point P on EU where MP ⊥ EU, MN = XY and NP = YZ. The
observer then finds the position from which he can take a simultaneous sight-
ing of the point M and the vertex A. Let this position be KL, where K is the eye
and L the midpoint of the foot, L lies on the straight line IU. He makes a hole
in the ground at the point L and notes the distances LP = l2 and LI = d.

A

E

S

U CB

M

N

D

G

H

I J L

K

P

Fig. 4.19

The plane defined by HI  and DE is perpendicular to the plane of the
ground and contains the straight line AU. The points I, L, P , U  lie on the
straight line IE which the observer has drawn. The points H, K, G, N lie on a
line parallel to IE which cuts AU in S.

So the known lengths are:

HI = KL = GE = MP = h, DG = MN = 1, which are given.
IE = l1, LP = l2, IL = d, which are measured along the straight line IU.

The triangles HDG and HAS are right-angled and similar; we have

HG

GD

HS

SA
= .

In the same way, triangles KMN and KAS are right-angled and similar; we
have

 
MN

NK
= AS

KS
.

But MN = GD, hence
HG

NK
= HS

KS
.
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But we have HS > KS, hence HG > NK and consequently IE > LP.

Let J be a point on the segment IE such that EJ = LP = NK, so we have

EI

EJ
= HS

KS
,

hence
EI

IJ
= HS

HK
.

But HK = IL, so
HS

IE
= IL

IJ
,

and

(1) HS · IJ = EI · IL;

from the equality HG

GD
= HS

SA
,
 
 where GD = 1, we get

(2) HS = HG · SA.

From (1) and (2) we get

HG · SA · IJ = EI · IL.

But HG = EI, hence SA · IJ = IL and consequently SA = IL

IJ
. So the height AU

is equal to

AS + SU = IL

IJ
+ GE ,

which can be expressed in terms of the lengths measured by the practitioner

AU
d

l l
h=

−
+

1 2

,
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where h is the height of the eye from the ground and the lengths l1, l2 and d are
measured along a straight line drawn on the ground, all these lengths being
accessible, which explains the amount of trouble taken to find the points that
define these lengths.

Ibn al-Haytham ends his book with a ‘surveyor’s repertory’, in which he
repeats all the results and procedures for measurement, without the proofs, no
doubt to make it easier for the practitioner to find the formula he needs. In its
own right and because of its position in the book, this repertory fulfils the pur-
pose Ibn al-Haytham had set himself.

We may note that, in the course of this book, Ibn al-Haytham reduces the
measurement of curved lines to that of straight ones, and the measurement of
surface areas to that of planes, so that in the end everything reduces to linear
measurements.

These measurements are referred to an arbitrary unit; so they are
expressed by numbers, rational or otherwise. Ibn al-Haytham is in effect
introducing a numerical concept of the ratios of magnitudes.

As elsewhere in his work, Ibn al-Haytham’s procedure is orderly; the
properties and proofs in stereometry are modelled as closely as possible on the
analogous properties and proofs of plane geometry. Thus, in this treatise, as in
his treatise on figures with equal perimeters or equal areas, polygons are
dissected into triangles and, by an analogous process, polyhedra are dissected
into pyramids.

Ibn al-Haytham’s chief concern in this treatise is to provide rigorous
proofs as a foundation for practical geometry. Perhaps that is why he pays no
attention to the problem of errors in measurements.

4.2.2. A stereometric problem

The manuscript tradition identifies Ibn al-Haytham as the author of two
short essays on a problem in stereometry. The first is called On Knowing the
Height of Upright Objects, on the Altitude of Mountains and the Height of
Clouds (Fî ma‘rifat irtifæ‘ al-ashkæl al-qæ’ima wa-‘amidat al-jibæl wa-irtifæ‘
al-ghuyºm). The second essay has the title On the Determination of the Height
of Mountains (Fî istikhræj ‘amidat al-jibæl). These two essays give different
treatments of the same problem. The problem, as we have said,13 belongs to an

13 See above, p. 470.
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ancient tradition that in some respects goes back to Euclid’s Optics; it was
considered by al-Kindî, Sinæn ibn al-FatÌ, al-QabîÒî, and no doubt many
others, and Ibn al-Haytham himself had solved it in his manual. If we compare
the two solutions, we can see at once that the basic idea is the same, although
the method employed in the manual is more subtle, and also more convenient.
It may be that the essay presents a first attempt at a solution that Ibn al-
Haytham returned to when writing his manual, which would mean this latter
was written later. In that case, it seems very likely that the former text, the
essay, would have been of no more than merely historical interest to Ibn al-
Haytham himself.

The problem is to provide a method of calculating the height AB of an
object that is inaccessible to direct measurement, that is, whose foot is at a
distance that cannot be measured. Ibn al-Haytham makes use of a rod of given
height DE, which he sets up parallel to the height AB, in two different posi-
tions, DE and GH, in succession, and he finds the position of the eye that
allows one to see the vertex A and the tip of the rod at the same time (that is,
one directly in front of the other). Ibn al-Haytham’s method reduces to
measuring three distances: two distances from the eye to the foot of the rod,
say CD in the first case and KH in the second; and the distance between the
two positions of the eye.

Let the height to be measured be AB above the horizon Bx. Let us consider
a rod DE of given length that can be placed in any position, but such that
DE ⊥ Bx. By trial and error we find the position C of the eye such that the
sight line CA passes through E. The rod is them moved closer to the height
AB; let its new position be GH and let K be the new position of the eye, where
K, G, A are aligned. We have

(1) AB

BC
= DE

DC
and

(2) AB

KB
= HG

KH
= DE

KH
.

We have BK < BC, hence KH < DC. Let I, a point on CD, be such that
DI = HK. We have

(3) ID

DE
= KH

HG
= KB

AB
.
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From (1) and (3) we get

CD

DI
= CB

BK
⇒ CI

ID
= CK

KB
;

from this last relation and (3), we get

CI

DE

CK

AB
AB

DE CK

CI

DE CK

CD KH
= ⇒ = ⋅ = ⋅

−
.

We know the length DE and we can measure the distances CK and CI
along the horizontal line Bx, so we can calculate AB.

A

BH

G

K

E

DICx

Fig. 4.20

All in all, in this essay Ibn al-Haytham offers surveyors a simple method
of calculation, even if the practical procedure is not convenient. For instance,
how could one place the eye on the horizontal line Bx? This fault will be
remedied in his manual.

The second essay – On the Determination of the Height of Mountains –
differs from the first one not only in its purpose but also in its method and its
style. In this second essay, the author is attempting to respond directly to the
requirements of surveyors by providing them with a quantitative rule that can
be applied immediately, some would say a recipe, whereas in the first essay he
makes a point of supplying a proof of the proposed rule. Further, in this sec-
ond essay, the author gives a fixed numerical value to one parameter, which
reinforces the impression that we do indeed have a recipe. Moreover, whereas
in the first essay the author employs a rod that he moves in order to carry out
the two sightings that are required, this time he keeps the rod fixed and puts a
marks on it for making the two observations. In this treatise, contrary to Ibn
al-Haytham’s habits, there is no explicit statement of his assumptions. To
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understand how he may have derived his rule, let us draw a figure to take the
place of the one that is missing from the manuscript that has come down to us,
where the copyist has left a space for it, but has not filled it in.

A

B C
D

E

F

G

HIJK

Fig. 4.21

IF is the rod, length 5 1
2

 cubits, ID is the observer’s height, 3 1
2

 cubits (an

assumption the author does not make explicitly), DG = GF = 1 cubit. At G we
put a mark on the rod. The observer carries out a first sighting in which B, F,
A are aligned (AH is the altitude to be measured, B is the eye of the observer).
He then makes a second sighting in which C, G, A are aligned (C is the eye of
the observer).

Let l1 = d(K, J) be the distance between the two observation points;
l2 = d(J, I) the distance between the second observation point and the rod;

h = DI = CJ = BK = EH = 3 1
2

 cubits, x the unknown height HA, s = d (H, K).

Immediately, we have

• >

• =
−

+

• =
+( )

−

l l

x
l

l l
h

s
l l l

l l

1 2

1

1 2

1 1 2

1 2

2

,

,

.

To set these essays in the context of the period, let us compare them with
two other essays, by Sinæn ibn al-FatÌ and Abº ∑aqr al-QabîÒî respectively.
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In a text called Optical Mensuration (al-MisæÌæt al-manæÂiriyya),14 Sinæn
ibn al-FatÌ addresses the same problem: measuring the height OJ of a
mountain.

Let the eye, at G, look towards the mountain peak O. We take a rod EG
perpendicular to GO at G. Through B, an arbitrary point on GE, we draw
BA ⊥ EO. The right-angled triangles OGE and BAE have a common angle E,
so

EA

BA
= EG

GO
,

hence

GO
BA EG

EA
= ⋅ .

We then use a rod HI  of known height that is placed so as to be
perpendicular to EJ in a position such that G, H and O are aligned. We have

GH

HI
= GO

OJ
,

hence

OJ
GO HI

GH
= ⋅ .

We assume that we can measure GH.

We may note that Sinæn ibn al-FatÌ first supposes that the eye is at G, and
then takes it to be at the point E on the straight line perpendicular to the sight
line GO at G. Then, from a point B on EG, he draws BA perpendicular to the
sight line EO. However, he does not explain how to draw perpendiculars to
straight lines defined by a line of sight, nor how to measure the segments BA,
EG, EA and GH, which either lie on a sight line, like segments GH and EA, or
on a perpendicular to a sight line, like segments EG and BA. One can certainly
imagine a system of hollow rods to give material form to the straight lines and
the segments, but Sinæn ibn al-FatÌ does not propose anything like this. Unlike
those of Ibn al-Haytham, his procedure is somewhat conceptual.

14 See Appendix II.
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A
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G

Fig. 4.22

Abº ∑aqr al-QabîÒî’s solution is different again. In order to find a height
AB that is inaccessible to direct measurement, he employs an astrolabe to find
the height of the point A above the horizon for two positions C and D of the
eye of the observer. He then makes use of the sines of the measured angles
and of their complements. The calculations are carried out by means of right-
angled triangles.

Let ACBˆ = α  and ADBˆ = β ; then

sin ˆ sinACB = α , sin ˆ cosBAC = α ,
sin ˆ sinADB = β , sin ˆ cosBAD = β .

Al-QabîÒî then carries out the following calculation:

cos
cos sin

sin
sin cos cos sin

sin

sin

sin
.β α β

α
α β α β

α
α β

α
− = − =

−( )

Let CD = d, then AB = d sinβ sinα
sin α − β( ) = h.

For a general triangle ADC, we have

AC DC

DACsin sin ˆβ
= ;

now DACˆ = −α β , hence

AC = d sinβ
sin α − β( ) .
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In triangle ABC, we have AB = h = AC sin α, hence

h = d
sinα sinβ
sin α − β( ) ,

which is the result given by al-QabîÒî.

So the method requires the use of an astrolabe and recourse to a
trigonometric table for the calculations. The only length to be measured is the
distance CD between the two positions of the eye.

D C

A

B

αβ

Fig. 4.23

Unlike al-QabîÒî, Ibn al-Haytham is addressing himself to surveyors and
taking into account the means they use. They do not need to employ an
astrolabe, or to consult a trigonometric table; they merely need to measure two
or three distances.

4.3. HISTORY OF THE TEXTS

4.3.1. On the Principles of Measurement

Ibn al-Haytham’s treatise On the Principles of Measurement (Fî uÒºl al-
misæÌa) only narrowly escaped suffering the same fate as other writings that
are now lost. For this text, contrary to what is affirmed by some modern
historians and biobibliographers, we have in fact no complete manuscript, but
only fragments. The only fragment that has so far been printed, and that
without scholarly editing, is in the India Office Library in London. It is this
fragment that has, against all the evidence, been taken to be the whole text.
Until now, no other fragment has been examined.
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In the course of our research on this treatise, we have been able to obtain
four fragments, which luckily complement one another, and thanks to which
we have been able to reconstruct the whole of the treatise. We give here the
editio princeps together with the first translation and study of the work.

1. The first fragment, by far the most substantial, is in St Petersburg, in the
Library of the Oriental Institute, no. B 2139. It forms part of a collection that
begins with al-Fawæ’id al-bahæ’iya, by Ibn al-Khawwæm al-Baghdædî,
followed by the piece by Ibn al-Haytham, then the treatise of al-Îisæb by al-
Karajî.

Ibn al-Haytham’s text occupies fols 100r–139v, each folio is 22.3 × 13.4
cm. The text is transcribed in a rectangle 18.8 × 10.4 cm, drawn in red; each
folio has 15 lines, and each line contains about 13 words. The writing is in
naskhî, in black ink; titles are underlined in red ink, and the geometrical
figures are drawn in the same red ink. Unfortunately, the outer edges of the
folios have been affected by damp, sometimes making reading very difficult.

These texts were copied by a certain Abº Bakr ibn Khalîl al-Tæjir (?), as is
indicated in the colophon of the treatise by Ibn al-Khawwæm:

ÆÆÆ ©dłU²�« UNKF�® dŠU²�« qOKš sÐ dJÐ uÐ√ qOK'« tÐ— WLŠ— v�≈ ÃU²;« nOFC�« b³F�« U¼d¹d% s� ⁄d
Ë
We know nothing about this copyist, except that he had a somewhat

mediocre grasp of orthography. The number of mistakes in fact suggests that
Abº Bakr did not belong to the learned classes. This text is designated by L.

2. The second fragment, the one we referred to above, is in the India
Office Library in London, no. 1270, fols 28v–32v, designated by I. We have
spoken about this manuscript several times, since it contains numerous
treatises by Ibn al-Haytham.15 The treatise On the Principles of Measurement,
like the treatise that precedes it in the manuscript – On a Proposition of the
Banº Mºsæ – has suffered an significant accident, pointed out by a reader long
ago. While the latter text is cut off towards the end, the former is cut off at the
beginning, and the two treatises are presented continuously as one single
work. Everything seems to point to this accident having happened in the
manuscript from which this same manuscript was copied. The accident did not
fail to attract the attention of a reader, who wrote in the left-hand margin:

vÝu� wMÐ W�UÝ— dš¬ UM¼ s�  U
 b�

15 See for example Ibn al-Haytham and Analytical Mathematics, p. 33; and here,
Chapter III.
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‘missing here <is> the end of the treatise on a proposition of the Banº Mºsæ’;

and in the right-hand margin he wrote:

UN�Ë√  U
 w²�« WŠU�*« W�UÝ— UM¼ s�
‘From here <we have> the treatise on measurement, whose beginning is
missing’.

And this lacuna is rather substantial.

3. The third fragment is in Istanbul, Süleymaniye, FætiÌ 3439, fols
103v–104v, designated by F. We have already told the little we know about
this manuscript.16

4. The fourth fragment is part of a manuscript in the National Library in St
Petersburg, no. fyrk Arabic 143, fols 13v–15v. In fact we have a collection of
mathematical writings in which the first treatise is the Book on Measurement
by Abº Bakr al-Mæristænî. The copyist gives the date of the transcription in
the colophon of this first treatise:

WzUL²ÝË …dAŽ w²MŁ« WMÝ ‰Ë_« lOÐ— s� dOš_« dAF�« w

that is to say, during the month of July 1215. The writing is in nasta‘lîq, and
the treatise is designated here by D. We note that this manuscript has been
damaged by damp, which sometimes makes reading difficult.

Investigation of variants and omissions shows that these four manuscripts
certainly belong to four different families: each one is lacking words and
sentences in an individual way.

The editions, translations and studies do not amount to much. As we have
indicated, only the fragment in the India Office has been read: E. Wiedemann
has made a German translation of its final Memento, that is, pages 31r to 32v

only, and not of the fragment as a whole, as some historians and
bibliographers have recently suggested.17 This rather free partial translation is
not accompanied by a study. It is this same fragment that was published later,

16 Ibn al-Haytham and Analytical  Mathematics, p. 33.
17 E. Wiedemann, Aufsätze zur arabischen Wissenschafts-Geschichte, Hildesheim/

New York, 1970, vol. 1, pp. 534–42.
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without any critical examination of the text;18 in any case, it represents only a
little more than a third of the Treatise.

4.3.2. On Knowing the Height of Upright Objects, the Altitude of Mountains
and the Height of Clouds

This essay – Fî ma‘rifat irtifæ‘ al-ashkæl al-qæ’ima wa-‘amidat al-jibæl
wa-irtifæ‘ al-ghuyºm – does not appear in the list of the writings of Ibn al-
Haytham established by the old biobibliographers. The case is in no way
unique, and does not necessarily cast doubt on the authenticity of the text. It
might at most encourage us to check whether this essay was perhaps an extract
from another treatise by Ibn al-Haytham. But this is not so: the method
employed here is different from those applied in the two other treatises that we
know. Further, this essay has come down to us in four manuscripts, duly
attributed to Abº ‘Alî ibn al-Haytham:

The first manuscript forms part of an important collection in the Columbia
University Library, New York, Smith Or. 45/12, fols 243v–244r, here
designated by K.

We have already had recourse to this manuscript to establish texts of
writings by al-Khayyæm, by Sharaf al-Dîn al-™ºsî and by al-Sijzî, and we have
shown each time that it was the single original from which the copyist of the
collection Leiden Or. 14 had transcribed these texts. On this occasion, Ibn al-
Haytham’s treatise is again not an exception. This manuscript probably dates
to the thirteenth century, it has been copied in naskhî script and all the figures
are drawn by the copyist. Moreover, examination of the manuscript shows that
several parts have been lost, probably pages torn out, and even a whole
treatise by al-Qºhî, whose title has been recorded with the other titles that are
included, on the first page (fol. 1r). The work in question is The Art of the
Astrolabe by Demonstration.

The second manuscript forms part of the important collection Leiden Or.
14, fols 236–237, here designated by L. We have just referred to this
collection and noted that for several treatises contained in it, its single original
was the manuscript Smith Or. 45. Let us return once more to its history.

We know from R.P.A. Dozy, according to the catalogue he compiled in
1851, that Golius, the seventeenth-century mathematician and Arabist, while

18 Ibn al-Haytham, Majmº‘ al-rasæ’il, Osmænia Oriental Publications Bureau,
Hyderabad, 1938–1939.
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travelling in the Orient, at Aleppo had employed al-Darwish AÌmad to
transcribe the last three books of Apollonius’ Conics. That copy was
completed on 15 Dhº al-Ìijja 1036, that is, on 27 August 1627. It was at about
this date that Golius had had Or. 14 transcribed. Dozy writes about this:

Opera, a Nicolao in usum Golii descripta, continentur Codice 14. Pleraque
eorum mathematici sunt argumenti, quumque inter ea inveniantur quae unica
sunt in Europa, Golio Codicem unum pluresve commodatos esse ab Orientali
quodam viro suspicor, quos, quum venales non essent, in Orientem remisit.19

So, according to what Dozy conjectures, it was the Arab Nicholas, then
resident in Amsterdam, who copied this manuscript for Golius, who then sent
the manuscripts used for the copy back to the Orient, one of these copies being
Smith Or. 45.

In our previous writings, we have followed Dozy. Recently, J. J. Witkam
has rejected Dozy’s conjecture and maintained that Or. 14 was copied at
Aleppo at the same time, and the end of the 1620s. He writes:

De codex Or. 14 in de Leidse Universiteitsbibliotheek is zo’n verzameling van
afschriften, die voor Golius in Aleppo gemaakt is, duidelijk op kanselarij-
papier, en door een Aleppijnse schrijver geschreven. De figuren in de
wiskundige tractaten werden door Golius later met de hand bijgetekend in
daarvoor aangebrachte uitsparingen in de tekst.20

More explicitly, J. J. Witkam writes in connection with this manuscript
Or. 14, in a note he kindly communicated to us:

Collective volume with texts in Arabic, and one in Persian (no. 22), European
paper (from the Dutch consular chancellery in Aleppo?), 501 pp, and blanks.
Copies made by al-Darwish AÌmad (his colophon on p. 163, but he is the
copyist of the entire volume) in Aleppo for Jacobus Golius. The drawings in No.
1 were made by Golius himself, who occasionally wrote Ìawæshî as well. The
other drawings and figures appear to be by the copyist. Golius had most texts in
this volume copied because he apparently could not acquire the originals. The
exception to this is, of course, the first text in the volume, which is a working
copy of the MS in his private collection.

In turn we can show that this collection includes manuscripts transcribed
from various sources, the most important of which is the collection Smith Or.

19 Catalogus Codicum Orientalium Bibliothecae Academiae Lugduno Batavae,
Leiden, 1851, p. XV.

20 Jacobius Golius (1596-1667) en zijn handschriften, Oosters Genootschap in
Nederland 10, Leiden, 1980, p. 53.
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45. Of 26 treatises included in the Leiden manuscript, 12 have as their only
original the manuscript at Columbia. They are the following treatises:

1. Maqæla fî al-Jabr wa-al-muqæbala by al-Khayyæm,21

2. I≈æÌ al-Burhæn ‘alæ Ìisæb al-kha††ayn by Abº Sa‘îd al-∑æbi’,
3. Glosses by Abº al-FutºÌ ibn al-Sarî on the preceding treatise,
4. Muqaddima li-Òan‘at æla tu‘rafu bihæ al-ab‘æd by al-Sijzî,
5. Treatise on the asymptotes to an equilateral hyperbola by al-Sijzî,22

6. Treatise on the asymptotes to an equilateral hyperbola by al-Qummî,
7. Maqæla fî ma‘rifat irtifæ‘ al-ashkæl al-qæ’ima wa-‘amidat al-jibæl wa-

irtifæ‘ al-ghuyºm by Ibn al-Haytham,
8. Mas’ala dhakarahæ Abº NaÒr al-Færæbî fî al-maqæla al-ºla min al-fann

al-awwal fî al-mºsîqî,
9. Min kalæm Abî al-FutºÌ ibn al-Sarî,
10. Maqæla fî istikhræj al-qu†b ‘alæ ghæyat al-taÌqîq of Ibn al-Haytham,
11. Kitæb Òan‘at al-as†urlæb bi-al-burhæn by al-Qºhî, followed by the

commentary of Abº al-‘Alæ’ ibn Sahl,23

12. Mas’ala sa’alahæ Shams al-Dîn Amîr al-Umaræ’ al-NiÂæmiyya ilæ
Sharaf al-Dîn al-™ºsî.

The third manuscript forms part of the collection in the Malik Library in
Teheran, no. 3433, fols 1v–2r, designated by A.

This manuscript was transcribed at the NiÂæmiyya school in Baghdad, in
the middle of the month of Rabî‘ al-awwal, in the year 557 of the Hegira, that
is in March 1162. The writing is in careful naskhî and the text has no glosses
or crossing out. However, there is nothing to indicate that the copyist revised
his copy by comparing it with the original. The single correction concerns a

21 Edition, French translation and commentary in R. Rashed and B. Vahabzadeh, Al-
Khayyæm mathématicien, Paris, 1999; English version: Omar Khayyam. The Mathemati-
cian, Persian Heritage Series no. 40, New York, 2000.

22 Edition, French translation and commentary in R. Rashed, ‘Al-Sijzî et Maïmonide:
Commentaire mathématique et philosophique de la proposition II–14 des Coniques
d’Apollonius’, Archives internationales d’histoire des sciences, 119, 37, 1987, pp. 263–96;
repr. in Optique et Mathématiques: Recherches sur l’histoire de la pensée scientifique en
arabe, Variorum reprints, Aldershot, 1992, XIII.

23 See R. Rashed, Géométrie et dioptrique au Xe siècle: Ibn Sahl, al-Qºhî et Ibn al-
Haytham, Paris, 1993; English transl. Geometry and Dioptrics in Classical Islam, London,
2005.
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gloss that was added after the text and which is found in [K], it refers to a
method attributed to Sa‘d al-Dîn ibn As‘ad ibn Sa‘îd al-Hamadhænî.

The fourth manuscript belongs to a collection in the library of Majlis
Shºræ in Teheran, no. 2773/2, fols 19–20; here it is designated by I. This
collection also contains the commentary on this text of Ibn al-Haytham by Ibn
AÌmad al-Îusaynî MuÌammad al-Læhjænî (fols 1–17). This commentary was
completed on Sunday 25 Dhº al-qa‘da 1105, that is 18 July 1694. The text by
Ibn al-Haytham is in the same hand; so it to was copied at about that date. The
copyist has transcribed the final gloss by al-Hamadhænî, but without naming
its author and reversing ‘the correction’ by the copyist of [A]. Thus he writes
in the text ‘the correction’ of this last and in the margin the corrected word;
this seems to indicate that [A] was the original from which this copy was
made.

So we have two families of manuscripts: the family [K, L], where L is a
copy of K and of it only; and the family [A, I], where I is a copy of A and of it
only.

The two families have a common origin that goes back to the manuscript
whose copyist added the gloss by al-Hamadhænî, that is, to before the mid
twelfth century.

4.3.3. On the Determination of the Height of Mountains

Unlike the preceding one, this essay appears under its title in the list of Ibn
Abî UÒaybi‘a (Fî istikhræj ‘amidat al-jibal). But at the moment we know of
only a single manuscript. The attribution to al-Îasan ibn al-Îasan ibn al-
Haytham is explicit; the vocabulary is that of Ibn al-Haytham; the style, to
some extent concerned with experimental matters, is that of Ibn al-Haytham
the natural philosopher. However, it remains to point out some traits that do
not belong to the style of Ibn al-Haytham as a mathematician: the absence of a
proof in a properly rigorous form; the presence of a hypothesis that is not
made explicit (the height of the observer being 3 1

2
 cubits); a rather peculiar

step for finding s (he multiplies by l1 + l2 then he divides by the same quantity
instead of, as he usually does, appealing to the fact that the two triangles AEB
and FDB are similar). Perhaps we have a version of Ibn al-Haytham’s initial
text made by someone else, but there is nothing to authorize such a conjecture.
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The only manuscript of this text is Arch. Seld. A 32 in the Bodleian
Library in Oxford, fols 187r–188r. The copyist has left a space for a figure,
which he did not draw when revising the copy against the original. This latter
must have had a figure, or also an empty space. The writing is naskhî, and the
colophon is in nasta‘lîq. The copyist explicitly states that he has revised the
copy against the original; he added in the margin a correction and an omission.

Like the preceding ones, this text has not been critically established, or
translated or studied before now.



4.4. TRANSLATED TEXTS

AAAAllll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----HHHHaaaayyyytttthhhhaaaammmm

4.4.1. On the Principles of Measurement

4.4.2. On Knowing the Height of Upright Objects, the
         Altitude of Mountains and the Height of Clouds

4.4.3. On the Determination of the Height of Mountains



In the Name of God, the Compassionate, the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Principles of Measurement

In my youth I had composed a book on the principles of measurement.
Then events took place that completely destroyed many of the original
copies of my writings: this book was among the group of things that were
lost to me. After some time had elapsed, a friend to the sciences, moved by
a virtuous inclination, asked me to compose something on measurement for
him. I accordingly returned to this book in order to help him; it contains the
principles of everything that is used in <making> measurements. I do,
however, suspect that, in some of its expressions and proofs, there may be
differences from the expressions in the first book and its proofs. I have,
moreover, added complementary material that does not appear in the first
book. If it so happens that some people who study this science come across
two copies of this book in which the expressions differ, they should note
that this is for the reason just given. I now begin my explanation of
measurement.

The measurement of magnitudes is their evaluation in terms of the
magnitude given as the measure. The magnitude given as the measure is a
straight line whose magnitude is a matter of agreement, so that all
magnitudes are evaluated in terms of it,1 such as the bushel that is agreed
upon to evaluate all measures of bulk2 and like the mithqæl and the ar†æl in
terms of which we evaluate things that are weighed. The line that the
surveyor calls a cubit or magnitude depends on a suggestion from someone
who began by choosing to adopt it.

Magnitudes that can be measured may be divided into three kinds,
which are lines, surfaces and solid bodies. The measurable lines that we
need to measure are the sizes of distances, the lengths of surfaces of solid
bodies and their widths, and the heights of tall solids. Measurable surfaces

1 It is assumed that these are linear magnitudes.
2 This seems to be concerned with an instrument for measuring dry materials.
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are the surfaces of solid bodies. Measurable solid bodies are all the bodies
of the kind we seek to measure.

As for the lines, they can be divided into five kinds which are straight
lines, circular ones and the three sections that are the sections of cones; in
their art surveyors use only straight lines and circular ones.3

Surfaces may be divided into three kinds which are plane, convex and
concave; in their art surveyors use only plane surfaces. As for convex and
concave surfaces, they are surfaces <that are> spherical, cylindrical,
conical or surfaces compounded from these and they (such surfaces) play
no part in their art of measurement although these surfaces can be reduced
to plane surfaces, because for each of them we can determine a ratio to the
set <of figures> that it contains.4 This has been shown in books by
geometers and in this manner the measurement of all surfaces is reducible
to the measurement of these plane surfaces.

As for bodies, they are of only one kind, that of everything that has a
length, a width and a depth, except that their shapes are different.

The measurement of lines is their evaluation in terms of the same cubit,
the measurement of surfaces is their evaluation in terms of the square of the
cubit and the measurement of bodies is their evaluation in terms of the cube
of the cubit. The quantity of the measurement of lines is the number of the
multiple of the cubit they contain. The quantity of the measurement of
surfaces is the number of the multiple of the square of the cubit that they
contain. The quantity of the measurement of bodies is the number of the
multiple of the cube of the cubit that they contain.

Procedure for measuring lines: if they are straight lines, we carry out
their measurement by applying the cubit, to part after part, on the lines until
it exhausts them, either the whole straight line, or some of its parts; for
circular <lines>, that is to say the circumference of a circle, the procedure
of measuring it consists of measuring the diameter of the circle, so as to
then multiply the number of the multiple of the cubit contained in the
diameter by three and a seventh; what we obtain is the quantity of the
measurement of the circumference of the circle. Archimedes has shown
that the circumference of the circle is <the product of> its diameter and
three and a seventh, to an extremely close approximation. It is in this
manner that we learn the quantity of the measurement of the circumference
of the circle. As for an arc of a circle, the quantity of its measurement is

3 This provides a glimpse of the related problem of the rectification of the three
conic sections. We may note that Ibn al-Haytham had addressed this problem in the text
that was lost.

4 He is envisaging the measurement of curved surfaces by the inscription and
circumscription of plane figures.
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known when we know its ratio to the complete circumference. We shall
show later how to find this ratio, when we discuss the measurement of a
sector of a circle.

Procedure for measuring surfaces in general: this will be done by
measuring their lengths and their widths and multiplying the ones by the
others, as we shall show later.

Procedure for measuring bodies in general: this will be done by
measuring their bases and their heights and multiplying the ones by the
others, as we shall show later.

The procedure for measuring surfaces by a detailed account in terms of
the art will be as we shall describe it: it has been shown that all surfaces
can be reduced to plane surfaces and that the plane surfaces with which the
surveyor’s art is concerned are those bounded by straight lines and circular
lines. And among the plane surfaces bounded by straight lines, some have
parallel sides and right angles and the others do not.

For a surface with parallel sides and right angles,5 we carry out its
measurement by measuring one of its lengths and one of its widths and then
multiplying the number of the multiple of the cubit in the length by the
number of the multiple of the cubit in the width; what we obtain is the
number of the multiple of the square of the cubit in the surface.

Example: The surface ABCD has parallel sides and right angles. Let the
cubit given as the measure go into AB four times and go into BC three
times; we multiply four by three, we have twelve.

I say that the quantity of the measure of the surface A C is twelve
cubits, that is to say the multiple twelve of the square of the cubit given as
the measure.

Proof: We divide up AB into equal parts: each of them is equal to one
cubit; we shall have four parts, let them be AE, EG, G H, HB. We also
divide up BC into equal parts; we shall have three parts, let them be BI, IK,
KC. We draw from the points E, G, H straight lines parallel to the two
straight lines BC and AD, let the straight lines be EV, GM  and HL. We
draw from the two points I and K straight lines parallel to the two straight
lines AB and DC; let the two straight lines be IU and KP. Let the straight
line IU cut the straight lines HL, GM and EV at the points O, S and Q; the
surfaces AQ, ES, GO and HI are equal quadrilaterals whose sides are equal
and whose angles are right angles. They are equal because their bases –
which are AE, EG, GH, HB – are equal, and they are between two parallel
straight lines which are AB and UI. Their sides are equal because each of
their widths, which are AU, EQ, GS and HO, is equal to the straight line BI

5 That is, a rectangle.
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and BI is equal to each of the <straight lines> BH, HG, GE, EA, which are
the lengths of these quadrilaterals. They are at right angles since the angle
HBI is a right angle and the straight line IO is parallel to the straight line
BH, so <the sum of> the angles HBI and OIB is equal to two right angles
and the angle HBI is a right angle; so the angle OIB is a right angle and the
two angles BHO and HOI are opposite the two angles OIB and HBI; so
they are equal to them, so the quadrilateral BHOI is right-angled. In the
same way, we show that each of the quadrilaterals OG, GQ, QA is right-
angled, and that the quadrilaterals AQ, ES, GO, HI thus have equal sides
and right angles;6 the number of these squares is the number of the straight
lines AE, EG, GH, HB, which is the number of the multiple of the cubit in
AB.
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Fig. IV.1.1

In the same way, the surfaces AI, UK and PC are equal since their
bases – which are BI, IK  and KC – are equal and they are between the
parallel straight lines AD and BC; and the number of these surfaces is equal
<to the number> of the straight lines BI, IK, KC, which is the number of the
multiple of the cubit in BC. If we multiply the number of the squares which
are in the surface AI by the number of the surfaces AI, UK, PC, what we
obtain is the number of everything the surface AC contains by way of equal
squares, each of which is equal to the square HI, which is the square of the
cubit given as the measure. But the number of the squares contained in the
surface AI is the number of the straight lines AE, EG, GH and HB, which is
the number of the multiple of the cubit in AB. The number of the surfaces
AI, UK and PC is the number of the straight lines BI, IK and KC, which is
the number of the multiple of the cubit in BC. So if we multiply the number

6 They are thus squares.
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of the multiple of the cubit in AB by the number of the multiple of the cubit
in BC, we have <that> the number of the multiple of the square of the cubit
contained in the surface AC with parallel sides and right angles. That is
what we wanted to prove.7

Among the rectilinear surfaces that are not right-angled, some are
bounded by three straight lines and others are bounded by more than three
straight lines. Those that are bounded by more than three straight lines can
all be divided into triangles. The general method for measuring all
rectilinear surfaces is the method for measuring triangles; those bounded by
three straight lines are triangles and we measure them as we measure
triangles, and surfaces bounded by more than three straight lines are
divided into triangles each of which will be measured separately; we then
find the sum of the measures of all the triangles into which the surface has
been divided; what we obtain is the measure of the complete surface.

Among triangles, some have a right angle, some have an obtuse angle
and some have acute angles. We measure each of them by finding the
perpendicular drawn from its vertex to its base, and then multiply that
perpendicular by half the base; what we obtain is the measure of the
triangle, that is to say that we multiply the number of the multiple of the
cubit in the perpendicular by the number of the multiple of the cubit in half
the base; what we obtain is the number of the multiple of the square of the
cubit in the triangle.

Example: ABC is a triangle; first let it be right-angled. Let the right
angle be the angle ABC, the point A  its vertex; so its perpendicular
<height> is the straight line AB and its base is the straight line BC.

D A

C B

Fig. IV.1.2

I say that its measure is what we obtain from the product of AB and
half BC.

Proof: We draw from the point C a straight line parallel to the straight
line AB, let it be CD; we have CD perpendicular to BC. We draw from the
point A a straight line parallel to the straight line BC, let it be AD; then

7 We may note that the only geometrical result used is the angle property of parallel
lines (Elements, I.29).
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ABCD is a parallelogram with right angles. So the quantity of its measure is
what we obtain from the product of the multiple of the cubit in AB and the
multiple of the cubit in BC, as has been shown in the preceding proposition.
But the triangle ABC is half the surface ABCD,8 so the quantity of its
measure is half what we obtain from the product of AB and BC. But the
product of AB and half BC is half the product of AB and BC, so what we
obtain from the product of AB and half BC is the quantity of the measure of
the triangle ABC. That is what we wanted to prove.

Let the triangle ABC have an obtuse angle or have acute angles. Let us
draw from the point at its vertex, which is A, the perpendicular AD.

I say that the quantity of the measure of the triangle ABC is what we
obtain from the product of AD and half BC.
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Proof: We draw from the points B and C two straight lines parallel to
the straight line AD, let it be BE and CG. They are perpendicular to the
base BC. We draw from the point A a straight line parallel to the straight
line BC. Let it meet the two straight lines BE and CG at the points E and G;
then the surface EBCG is a parallelogram with right angles, so the quantity
of the measure of this surface is what we obtain from the product of EB and
BC. But the triangle ABC is half of the surface EBCG, because they are on
the same base and between two parallel straight lines.9 So the quantity of
the measure of the triangle ABC is half the quantity of the measure of the
surface EBCG; so the product of EB and half BC is the quantity of the
measure of the triangle ABC. But EB is equal to AD, because the surface
ADEB is a parallelogram, so the quantity of the measure of the triangle
ABC is what we obtain from the product of AD, which is the perpendicular,
and half BC, which is the base of the triangle. That is what we wanted to
prove.

It remains for us to show how we know that a triangle has a right angle
or an obtuse angle or acute angles, and how to find the perpendicular if the
triangle has an obtuse angle or acute angles.

8 Euclid, I.34.
9 Euclid, I.36 and 37.
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The method for finding out the nature of the triangle consists of
multiplying its greatest side by itself, that is to say the number of the
multiple of the cubit in the greatest side <is multiplied> by itself; we note
<this square>, we then multiply each of the other two sides by itself, we
add up the <results> and we compare <the sum> with the first square. If the
sum of the two squares is equal to the first square, then the triangle has a
right angle, as has been shown at the end of the first book of the work of
Euclid10 and we shall obtain its measure by multiplying half one of the two
smaller sides by the other; what we obtain is the quantity of its measure, as
has already been shown.

If what we obtain from the squares of the two smaller sides is smaller
than the first square, then the triangle has an obtuse angle and if what we
obtain from the squares of the two smaller sides is greater than the first
square, then the triangle has acute angles.

To find the perpendicular <height> for a triangle with an obtuse angle,
we take away from the square of the greatest side the sum of the squares of
the two smaller sides, we take half of what remains, we then divide this
half by the base of the triangle, that is to say that we divide the number
which is in that half by the number of the multiple of the cubit in the base,
and we note the quotient, which we call the foot of the perpendicular;11 if
we find its perpendicular in this way, the base of the triangle with an obtuse
angle will be one of the two smaller sides; let one or the other be taken as
the base, then the foot of the perpendicular will be in the extension of that
side, because from each of the angles of the triangle we can draw a
perpendicular to the side opposite it. If we obtain the foot of the
perpendicular, we multiply it by itself, we take away its square from the
square of the smaller side that is on the side of the vertex of the triangle,
that is to say the smaller side that has not been considered to be the base;
we take the root of what remains of the square of this side, this is the
perpendicular.

C B D

A

Fig. IV.1.412

10 Euclid, Elements, I.47.
11 Here, this expression refers to the segment BD.
12 This figure does not appear in the manuscript.
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Example: Let there be a triangle with an obtuse angle as before, that is
to say ABC; its angle ABC is obtuse. It has been shown in the twelfth
proposition of the second book of Euclid’s work that the square of AC is
equal to the square of AB, plus the square of BC, plus twice the surface
enclosed by CB and BD. If we subtract the square of AB and the square of
BC, added together, from the square of AC, what remains is twice the
product of CB and BD. If we take half of it, we obtain the product of CB
and BD . But for any product obtained by multiplying one of the two
numbers by the other, if it is divided by one of these two numbers, the
quotient we obtain is the other number. That is why if we divide half what
remains of the square of AC by the straight line BC, the quotient we obtain
is the straight line BD which is called the foot of the perpendicular. But the
triangle ADB has a right angle, so the square of AB is equal to the square of
AD, plus the square of DB. If we subtract the square of DB from the square
of AB, what remains will be the square of AD. If we take its root, what we
obtain is the straight line AD, that is to say the number of the multiple of
the cubit in AD. But the straight line AD is the perpendicular of the triangle
ABC, which has an obtuse angle, and the perpendicular lies outside the
triangle. It is in this way that we find the perpendicular of a triangle that
has an obtuse angle.

As for the triangle with acute angles, each of its angles is thus acute
and each of its sides can be considered to be the base because, for each of
its sides, a perpendicular can be drawn to the side from the opposite angle.
To find the perpendicular for a triangle with acute angles, we suppose one
of its sides is the base and we multiply one of the two remaining sides by
itself; we note <the square>, we then multiply the remaining side by itself,
we multiply the base by itself, we add up these two squares and from <their
sum> we then subtract the first square that we noted; we take half of what
remains, we then divide this half by the base; the quotient we obtain is the
foot of the perpendicular. If we obtain the foot of the perpendicular, we
multiply it by itself, we then take away <its square> from the square of the
remaining side – the side whose square was added to the square of the base
– we take the root of what remains, which will be the perpendicular.

D

A

C B

Fig. IV.1.5
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Example: Let there be the preceding triangle with acute angles, which
is the triangle ABC whose angle ABC is acute and whose base is BC. It has
been shown in the thirteenth proposition of the second book of Euclid’s
work that the square of AC is less than the sum of the square of AB and the
square of BC by twice the surface enclosed by the two straight lines CB and
BD. So if we subtract the square of AC, which is one of the two remaining
sides (other than the base), from the sum of the squares of AB and BC, what
remains is twice the product of CB and BD; if we take half of this, we have
the product of CB and BD; if we divide that by BC, the quotient we obtain
is BD, and BD is called the foot of the perpendicular. But the triangle ABD
is right-angled, and the angle ADB is a right angle because AD  is
perpendicular to BC; so the square of AB is equal to the sum of the square
of BD and the square of AD. If we subtract the square of BD from the
square of AB, what remains is the square of AD. If we take its root, we have
the straight line AD which is the perpendicular of the triangle. This is the
way in which we find the perpendicular of a triangle with acute angles.

We can find the measure of all triangles by a single method which is
the method <used> for a triangle with acute angles, because in every
triangle there are two acute angles, and the remaining angle is different. So
if in every triangle there are two acute angles, then we can find its
perpendiculars and its measure by a single method which consists of
finding the perpendicular of a triangle with acute angles, and this <is done>
by putting the greatest side of the triangle as the base of the triangle if the
triangle is scalene; if it is isosceles, we suppose that one of its sides, which
is not the smallest of its sides, is a base, and if it is equilateral, we suppose
one of its sides is a base; we then multiply one of the two remaining sides
by itself, we note <the square>, we multiply the remaining side of the two
remaining sides by itself, similarly we multiply the base by itself, we add
up the last two squares, from which we subtract the square we noted. The
sum of these two squares cannot but be greater than the square we noted –
because the square of the base alone is not smaller than the square we
noted; if we subtract the first square we noted, from the two squares added
up, and if we take half of what remains and we divide it by the base, the
quotient we obtain is the foot of the perpendicular; to complete finding the
perpendicular, we proceed as described before so as to find the
perpendicular of the triangle. If we obtain the perpendicular, we multiply it
by half the base and what we obtain is the measure of the triangle.

Proof of this procedure: In any triangle that has a right angle or an
obtuse angle, the greatest side is the one opposite the right angle or the
obtuse angle; if we put the greatest side of the triangle as the base, the two
remaining sides are opposite two acute angles. If we square one of the two
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remaining sides and we note <the square>, what we note will be the square
of the side opposite an acute angle and the two squares we added up will be
the squares of the two sides that enclose an acute angle, in this way the
perpendicular we find is the perpendicular drawn from the right angle or
the obtuse angle to the base of the triangle which is the chord of this angle.
The method for finding the perpendicular of a triangle with a right angle or
an obtuse one and for finding its measure will be, in this way, the method
for finding the perpendicular of a triangle with acute angles and its
measure.

If there is not a side in the triangle that is the greatest side, the triangle
cannot but have acute angles, because in a triangle with a right angle or an
obtuse one, the side that is the chord of the right angle or the obtuse angle
is always greater than each of the two remaining sides.

We can find the measure of all triangles by a single general method in
which we do not need to find the perpendicular; and this <is done> by
adding up the sides of the triangle and taking half of the sum; we then
multiply this half by the amount by which it exceeds one of the sides of the
triangle, we multiply what we obtain by the amount by which this half
exceeds another of the sides of the triangle and we multiply what we obtain
by the amount by which this half exceeds the remaining side among the
sides of the triangle; we take the root of the product; what we obtain is the
measure of the triangle.

<a> Example: Let there be a triangle whose sides are ten, eight and six.
We add up the three, we have twenty-four; we take half, we have twelve,
which we multiply by the amount by which twelve exceeds six, which is
six; we have seventy-two; we then multiply seventy-two by the amount by
which twelve exceeds eight, which is four, we have two hundred and
eighty-eight; we then multiply two hundred and eighty-eight by the amount
by which twelve exceeds ten, which is two, we have five hundred and
seventy-six, of which we take the root; we have twenty-four, which is the
measure of the triangle; this triangle has a right angle, because the square
of ten is equal to the square of eight and the square of six, added together.
The angle enclosed by eight and six is a right angle, the measure of the
triangle is the product of eight and half of six, which is three, which is
twenty-four.
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Fig. IV.6
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<b> Proof of the general method we mentioned: We assume we have
the triangle ABC, a triangle of any kind, we divide its angle ABC into two
equal parts with the straight line BD, we divide its angle ACB into two
equal parts with the straight line CD and from the point D we draw the
perpendiculars DE, DH and DG. Since the angle HBD is equal to the angle
EBD, and the angles at the two points H and E are right angles, and the
straight line BD is common to the two triangles HBD and EBD, accordingly
the two triangles are equal and have equal sides, the perpendicular DH is
equal to the perpendicular DE and the side HB is equal to the side BE.
Similarly, we show that the perpendicular DG is equal to the perpendicular
DE13 and the side EC is equal to the side CG, so the perpendiculars DH,
DE and DG are equal and the product of DG and half of AC is the measure
of the triangle ADC. So the product of the perpendicular DE and half of the
perimeter of the triangle is <the sum> of the measures of the triangles ADB,
BDC, CDA. But <the sum of> these three triangles is the complete triangle
ABC, so the product of half the perimeter of ABC and the perpendicular DE
is the measure of the triangle ABC. So the product of the square of the
number of the multiple of the cubit in DE and the square of the number of
the multiple of the cubit in half of the perimeter of the triangle is the square
of the measure of the triangle, because for two numbers one of which is
multiplied by the other, if the product is then multiplied by itself, what we
obtain is equal to what we get by multiplying the square of one of the two
numbers by the square of the other. But the product of the square of one of
the two numbers and the square of the other is the product of one of the two
numbers and itself and <the product> of what we obtain and the square of
the other. But the product of one of the two numbers and itself and then
<the product> of what we obtain and the square of the other number is the
product of one of the two numbers and the square of the other and then
<the product> of what we obtain and the first one, because what we obtain
from the product of the numbers one by another, by commuting, is always
the same. So the product of the square of the semiperimeter of the triangle
and the square of DE is the product of the semiperimeter and the square of
DE and <the product> of what we obtain and the semiperimeter. So the
product of the number of the multiple of the cubit in the semiperimeter of
the triangle ABC and the square of the number of the multiple of the cubit
in DE and then <the product> of what we obtain and the number of th
multiple of the cubit in the semiperimeter, is the square of the area of the
triangle ABC.

13 Ibn al-Haytham does not say that ED is the radius of the circle inscribed in the
triangle.
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<c> Moreover, the square of AD is equal to the <sum of the> squares
of AH and HD, because the angle at H is a right angle; similarly the square
of AD is equal to the <sum of the> squares of AG and GD, so the squares of
AH and HD are equal to the <sum of the> squares of AG and DG; but the
square of HD is equal to the square of GD, because we have shown that
DH is equal to D G; it remains <that> the square of AH is equal to the
square of AG , so AH  is equal to AG , H D is equal to GD and AD  is
common; so the two triangles AHD and AGD have sides and angles equal
and the angle HAD is equal to the angle GAD. Moreover, given that the
angle BED is a right angle and the angle BDE is acute, we make the angle
BDK a right angle; similarly the angle CDE is acute, we make the angle
CDI a right angle, so it is equal to the angle DEI and the angle DIE is
common to the two triangles DIE and DIC; it remains <that> the angle IDE
is equal to the angle DCI. But the angle DCI is equal to the angle DCL and
the angle DCL is equal to the angle LDG because the two triangles LDG
and DCL are similar; so the angles IDE and LDG are equal, the angles DEI
and DGL are equal because they are right angles and the straight line DE is
equal to the straight line DG; so the two triangles DIE and DLG have equal
sides and angles, the straight line IE is equal to the straight line LG and the
angle DIE is equal to the angle DLG. Similarly, the angle DBC is half the
angle ABC, the angle DCB is half the angle ACB, the angle DAC is half the
angle BAC and <the sum> of the angles DBC, DCB and DAC is half that of
the angles of the triangle; but <the sum> of the three angles of the triangle
is equal to two right angles, so the sum of the angles DBC, DCB and DAC
is equal to a right angle. But the angle DBC is equal to the angle KDE
because the triangle EDK is similar to the triangle BDK, since the angle
BDK is a right angle; similarly the angle EDI is equal to the angle DCB, so
the sum of the two angles KDE and EDI, which is equal to the angle KDI,
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is equal to the angle that remains after the angle DAG is subtracted from a
right angle. But the angle KDI plus the angle IDB makes a right angle, so
the angle IDB is equal to the angle DAG. We have shown that the angle
DIE is equal to the angle DLG, so the angle DIB is equal to the angle ALD
and there remains the angle DBI <which is> equal to the angle LDA; so the
two triangles ADL and DBI are similar; so the ratio of BI to ID is equal to
the ratio of LD to LA and the ratio of DI to IE is equal to the ratio of DL to
LG; the ratio compounded from the ratio of BI to ID and the ratio of ID to
IE, which is the ratio of BI to IE, is the ratio compounded from the ratio of
DL to LA and the ratio of DL to LG, and the ratio compounded from these
two ratios is the ratio of the square of DL to the product of AL and LG; so
the ratio of BI to IE is the ratio of the square of DL to the product of AL and
LG. But the square of DL is the product of CL and LG, because the right-
angled triangle CLD is similar to the triangle DLG; so the ratio of CL to LD
is equal to the ratio of DL to LG, so the ratio of BI to IE is equal to the ratio
of the product of CL and LG to the product of AL and LG; but the ratio of
the product of CL and LG to the product of AL and LG is the ratio of CL to
LA, since we take away LG from both; so the ratio of BI to IE is equal to
the ratio of CL to LA. By composition, the ratio of BE to EI is equal to the
ratio of CA to AL. But we have shown that EI is equal to LG, so the ratio of
CA to AL is equal to the ratio of BE to LG and is equal to the ratio of the
whole to the whole, so the ratio of the sum of AC and BE to AG is equal to
the ratio of BE to EI; now we have shown that AG is equal to AH, that CG
is equal to CE and that BE is equal to BH, so the sum of AC and BE is the
semiperimeter of the triangle ABC; so the ratio of the semiperimeter of the
triangle ABC to AG is equal to the ratio of BE to EI and it is compounded
from the ratio of BE to ED and the ratio of DE to EI; but the ratio of DE to
EI is equal to the ratio of CE to ED, because the two triangles CED and
DEI are similar, so the ratio of BE to EI is compounded from the ratio of
BE to ED and the ratio of CE to ED; but the ratio compounded from these
two ratios is the ratio of the product of BE and EC to the square of ED, so
the ratio of BE to EI is equal to the ratio of the product of BE and EC to the
square of ED. But we have shown that the ratio of BE to EI is equal to the
ratio of the semiperimeter of the triangle ABC to the straight line AG, so the
ratio of the semiperimeter of the triangle ABC to the straight line AG is the
ratio of the product of BE and EC to the square of ED; the product of the
semiperimeter of the triangle and the square of ED is thus equal to the
product of BE and EC and <the product> of what we obtain and AG. If we
once again multiply the whole by the semiperimeter, the two <products>
are also equal. The product of the semiperimeter and the square of DE, then
<the product> of what we obtain and the semiperimeter, is equal to the
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product of BE and EC, then <the product> of what we obtain and AG, then
<the product> of what we obtain and the semiperimeter. But the product of
the semiperimeter and the square of DE, then <the product> of what we
obtain and the semiperimeter, is the product of the square of the
semiperimeter and the square of DE, as we have mentioned for the product
of numbers one by another: if we commute, it is still the same. The product
of the square of the semiperimeter and the square of DE, which we have
shown to be equal to the square of the measure of the triangle, is equal to
the product of BE and EC, then <the product> of what we obtain and AG,
then <the product> of what we obtain and the semiperimeter. But the
product of BE and EC, then <the product> of what we obtain and AG, then
<the product> of what we obtain and the semiperimeter, is equal to the
product of the semiperimeter and AG, then <the product> of what we
obtain and EC, then <the product> of what we obtain and BE, because the
product of numbers one by another remains the same if we commute. So
the product of the semiperimeter and AG, then <the product> of what we
obtain and EC, then <the product> of what we obtain and BE, is equal to
the square of the measure of the triangle. Now we have shown that AC plus
BE is the semiperimeter, similarly AB plus CE is the semiperimeter, since
HB is equal to BE, and HA is equal to AG and EC is equal to CG. Similarly
BC plus AG is the semiperimeter, so the straight line AG is the amount by
which the semiperimeter exceeds the side BC, CE is the amount by which
the semiperimeter exceeds the side AB and BE is the amount by which the
semiperimeter exceeds the side AC. But we have shown that if we multiply
the semiperimeter by AG, then <multiply> what we obtain by CE, then
<multiply> what we obtain by BE, then the product is the square of the
measure of the triangle. So if we multiply the semiperimeter by the amount
by which it exceeds the side BC, which is AG, then <multiply> what we
obtain by the amount by which the semi<perimeter> exceeds the side AB,
which is EC, then <multiply> what we obtain by the amount by which the
semi<perimeter> exceeds the side AC, which is B E, the product is the
square of the measure of the triangle. Now <we have shown> earlier that
the product of numbers one by another, remains the same if we commute;
and this is allowed whatever the exceeding amounts we commute. So if we
multiply the semiperimeter of the triangle by the amount by which it
exceeds one of the sides of the triangle, whichever side this is, if we then
multiply what we obtain by the amount by which the semi<perimeter>
exceeds one of the other sides of the triangle, then <multiply> what we
obtain by the amount by which the semi<perimeter> exceeds the remaining
side, the product is the square of the measure of the triangle. If we take the
root of the product, we have the measure of the triangle; I mean what we
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obtain from what I have mentioned and <again> draw attention to
concerning the product of the numbers that are homonyms for each of the
numbers of the multiples of the cubit contained by the straight lines and
<the product> of the numbers that are homonyms for each of the numbers
of the multiples of the square of the cubit contained by the surfaces. That is
what we wanted to prove.

We have thus given a complete treatment of the measurement of
triangles.

All rectilinear surfaces can be divided into triangles, so the measure of
all rectilinear surfaces can be reduced to the measure of triangles by
dividing each of these surfaces into triangles, measuring each of these
triangles separately and then adding up all the measures; what we obtain is
the measure of <each of> these surfaces. Now we have shown above that
we measure a rectangle by multiplying one of its sides by the side that
makes a right angle with the former one. However, there is no method of
finding out that the angles of a surface14 are right angles except to draw the
two diagonals, which then divide it up into four triangles, each of them (the
diagonals) dividing it (the surface) into two triangles. We then test each of
the four triangles, and do this by testing its sides. If in each of them (the
triangles) there is a right angle and if the right angles are those that are
opposite the diagonals, then the surface is a rectangle; and if that is not so,
it is not a rectangle.

But if there is no method for measuring a surface which does not have
right angles, except by dividing it into triangles and finding the sides of the
triangles, and if <the sum> of the measures of the triangles is the measure
of the surface, then <knowing> the measure of the triangles into which this
surface is divided dispenses us from testing the surface.15 The principle
used as the basis for measuring all rectilinear surfaces is the measurement
of triangles. It remains to show how to divide surfaces into triangles. The
division of surfaces into triangles may be carried out by determining the
chords <on which> the angles of the surface <stand>, but one cannot, for
every surface, measure out the chords that divide it up, because the
unevennesses in certain surfaces give rise to obstacles and impediments
that make it impossible to measure out the chords. But we can determine
the chords that divide up rectilinear surfaces without measuring out the

14 The surface under consideration is a convex quadrilateral.
15 That is from knowing, in the case of a convex quadrilateral, whether the angles

are right angles.
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chords. The method for determining the chord of any angle enclosed by
two straight lines is the one we shall describe:

We measure out the two straight lines that enclose the angle, then we
cut off a cubit on one of the two; we divide the other straight line by the
former straight line,16 and we cut off on the other side – the one that is on
the other side of the angle – a magnitude equal to the quotient. We then
draw a straight line from the first point of division to the second point of
division, we multiply the quantity of its magnitude, which we have
obtained, by the first side from which we cut off a single cubit; what we
obtain is the chord that joins the ends of the two straight lines that enclose
the angle.

Example: The two straight lines AB and BC enclose an angle ABC. We
wish to know the magnitude of the chord AC ; we know A B and the
magnitude of BC. On BC we cut off a single cubit, that is BD. We then
divide AB by B C ; we cut off on the other side, <that is> on AB, a
magnitude equal to the quotient, let it be BE. We draw a straight line from
D to E, which is not difficult because it is close by and small, and we find
the value of the straight line DE; what we obtain we <then> multiply by BC
and what we obtain is the magnitude AC.
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E

Fig. IV.1.8

Proof: We have divided AB by BC , we have obtained BE; so the
product of BC and BE is the magnitude AB; but the product of AB and BD
is the magnitude AB, because BD is equal to unity, so the product of AB
and BD is equal to the product of CB and BE, the four magnitudes AB, BC,
BD and BE are magnitudes in proportion, the ratio of AB to BE is equal to
the ratio of BC to BD and the straight line AC is parallel to the straight line
ED , as was proved in book six of the work of Euclid.17 But the two
triangles ABC and EBD are similar; so the ratio of AC to ED is equal to the
ratio of CB to BD and the product of AC and DB is equal to the product of

16 See following page.
17 Euclid, Elements, VI.2.



ON THE PRINCIPLES OF MEASUREMENT 529

CB and BE; but the product of AC and DB is AC, because DB is unity,18 so
the product of CB and BE is AC. That is what we wanted to prove.19

Thus this method enables us to divide all rectilinear surfaces into
triangles and dividing them will be simple and easy.

As for the circle, we obtain its measure by multiplying its semidiameter
by its semiperimeter, that is to say the number of the multiple of the cubit
contained in the semidiameter <is multiplied> by the number of the
multiple of the cubit contained in the semiperimeter; what we obtain is the
measure of the circle, that is to say the number of the multiple of the square
of the cubit contained in its surface.

This was understood clearly by Archimedes thanks to a proof he set out
in connection with this notion. Here we give an extremely brief summary
of the proof.

Let there be a circle ABCD with centre E.
I say that the product of its semidiameter and its semiperimeter is equal

to its measure.
Proof: It cannot be otherwise. If it were possible, let the product of its

semidiameter and its semiperimeter be greater or smaller than its measure.
<1> Let the product of the semidiameter of the circle and its

semiperimeter be equal to <the measure> of the figure U, first let the latter
be smaller than the measure of the circle and let the amount by which the
circle exceeds the figure U be the magnitude of the figure S. We draw in
the circle two diameters that cut one another at right angles, let these be the
two diameters AEC and BED; we join the straight lines AB, BC, CD, DA.
The figure ABCD will be a quadrilateral with equal sides and right angles.
We cause to pass through the points A, B, C and D straight lines that are
tangents to the circle; let the straight lines be NAM, MDL, LCX, XBN; so
the figure NMLX is a quadrilateral with equal sides and right angles,
because the sides are parallel to the diameters that cut one another at right
angles and are equal to them. The square ABCD  is half of the square
NMLX, so the square ABCD is greater than the semicircle.20 We join the

18 The operations Ibn al-Haytham mentions throughout this part of his work apply
to the numbers that measure the segments with the cubit taken as the unit.

19 The segments are represented by their numerical measures, once the unit of
length has been chosen. This allows a segment to be identified with its product by the
unit; an analogous procedure is to be found, in a different context, in ‘Umar al-
Khayyæm, in his Algebra; see R. Rashed and B. Vahabzadeh, Al-Khayyæm mathémati-
cien, Paris, 1999.

20 Without saying so, Ibn al-Haytham assumes here that the square NMLX
circumscribed about the circle has an area greater than that of the circle (Archimedes,
The Sphere and the Cylinder, Postulate 4).
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straight lines EOGN, EOKM, EOIL, EOHX,21 thus the angles AEB, AED,
DEC, CEB have been divided, each of them into two equal parts, because
the straight line AE is equal to the straight line EB, the straight line EN is
common and the base AN is equal to the base BN; so the angle AEG is
equal to the angle BEG; similarly for the remaining angles. So each of the
arcs AD, DC, CB  and BA has been divided into two equal parts, at the
points K, I, H, G. We join the straight lines AK, KD, DI, IC, CH, HB, BG
and GA. The triangle AKD will be greater than half the segment AKD,
because if we draw at the point K a straight line that is a tangent to the
circle, it will be parallel to the straight line AD, because the tangent is
perpendicular to the diameter EK and the diameter EK is perpendicular to
the straight line AD. If from the points A and D we draw to the tangent two
<lines> perpendicular to the straight line AD, a parallelogram is formed
that is greater than the segment AKD22 and the triangle AKD is half of this
parallelogram; so the triangle AKD is greater than half the segment AKD.
Similarly for all the remaining triangles that are homologous to the triangle
AKD, each of them is greater than half the segment AKD. Similarly for all
the remaining triangles that are homologous to the triangle AKD, each of
them is greater than half the segment in which it is inscribed. If we also
divide the arcs AK, KD, DI, IC, CH, HB, BG and GA, each of them into two
equal parts, and if we put in the straight lines that are their chords, we
generate triangles that are (each) greater than half the segments in which
they are inscribed. If we continue to proceed in this way, it follows that we
cut off from the circle <an area> more than half of it and <then> from what
remains <cut off> more than half of that. But the magnitude S is the amount
by which the circle exceeds the magnitude U which is smaller than it is; so
S is smaller than the circle.

But for two unequal magnitudes, if we cut off from the greater of them
more than half of it, and from what remains more than half of it, and if we
continue to proceed in this way, it necessarily follows that there remains a
magnitude smaller than the smaller magnitude.23

21 The midpoints of the four chords AB, BC, CD, DA are all given the same letter,
O.

22 Archimedes, The Sphere and the Cylinder, Postulate 4.
23 Ibn al-Haytham is referring to Euclid, Elements, X.1; see also his own

proposition, in R. Rashed, Les Mathématiques infinitésimales, vol. 2, pp. 495–7 and the
critique by Ibn al-Sarî pp. 498–510; English translation in Ibn al-Haytham and
Analytical Mathematics.
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Let the excess amounts that remain from the circle, whose sum is
smaller than the figure S, be the segments AK, KD, DI, IC, CH, HB , BG
and GA. So the figure AKDICHBGA is greater than the figure U. But since
the straight line KE is perpendicular to the straight line AD, the product of
EO and half of AD is equal to the measure of the triangle AED. Similarly,
the product of KO and half of AD is the measure of the triangle AKD, so the
product of EK, which is the semidiameter of the circle, and half of AD, is
the measure of the figure AEDK. Similarly, the product of the semidiameter
and half of AB is the measure of the figure AEBG; similarly for the part that
remains. So the product of the semidiameter of the circle and the semi-
perimeter of the figure ABCD is the measure of the figure AKDICHBG,
which is greater than the figure U, which is obtained from the product of
the semidiameter of the circle and half its perimeter. The product of the
semidiameter of the circle and half the perimeter of the figure ABCD is thus
greater than the product of the semidiameter of the circle and its
semiperimeter, so the semiperimeter of ABCD is greater than the semi-
perimeter of the circle and the perimeter of that figure is greater than the
perimeter of the circle; so the straight line AD , which is a part of the
figure24

 as the arc AKD is a part of the circumference of the circle, is greater
than the arc AKD. But a straight line is the shortest line joining two points,
and something that comes closer to it is shorter than something that
becomes more distant from it, so the straight line AD is shorter than the arc
AB; however it is greater than it, which is impossible. So the figure U is not
smaller than the circle.

24 That is to say a part of the perimeter ABCD.
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<2> I say that the figure U is not, either, greater than the circle. If that
were possible, let it be greater than it; if it is greater than the circle, it is
either equal to the figure NMLX, or smaller than it, or greater than it. But
the product of EA, which is the semidiameter of the circle, and half AM, is
equal to the measure of the triangle MEA; similarly the product of ED,
which is the semidiameter of the circle, and half DM  is equal to the
measure of the triangle DEM; similarly for the triangles DEL, LEC, XEC,
XEB, NEB and NEA; so the product of the semidiameter of the circle and
the semiperimeter of the figure NMLX is the measure of the figure NMLX.

<a> If the figure U is equal to the figure NMLX, then the product of the
semidiameter of the circle and its semiperimeter is equal to the product of
the semidiameter of the circle and the semiperimeter of the figure NMLX,
so the perimeter of the figure NMLX is equal to the perimeter of the circle;
but the line AMD is a part of the perimeter of this figure, as the arc AKD is
a part of the perimeter of the circle, so the line AMD is equal to the arc
AKD. But the arc AKD is shorter than the line AMD, because the arc is
closer to the straight line AD  than the line AMD is, so the arc AKD is
shorter than the line AMD; but it is equal to it, which is impossible. So the
figure NMLX is not equal to the figure U.

<b> If the figure NMLX were smaller than the figure U, we show as
before that the perimeter of the figure NMLX would be smaller than the
perimeter of the circle; which is impossible.

<c> If the figure NMLX is greater than the figure U, let the amount by
which the figure U exceeds the circle be the magnitude of the figure S.
Since the figure NMLX is greater than the figure U, the amount by which it
exceeds the circle will be greater than the magnitude S. The excesses have
the magnitude of the figures by which the figure NMLX exceeds the circle
and <their sum> is greater than the magnitude S. We cause to pass through
the points H, I, K, G straight lines that are tangents to the circle, let them be
the straight lines QKS, FIJ, UHR, VGP, and we join the straight lines EQ,
ES, EF, EJ, EU, ER, EV, EP; let these straight lines cut the circumference
of the circle at the points U'.25 Since KS is a tangent to the circle and EK is
a semidiameter, EK is perpendicular to QS, so the angle QKM is a right
angle, so the angle MQK is acute and the straight line MQ is greater than
the straight line QK. But the straight line QK is equal to the straight line
QA, because they are tangents drawn to the circle from the same point; so
the straight line MQ is greater than the straight line QA and the triangle
QMK is greater than the triangle KQA; but the triangle QKA is greater than
the part <of it> enclosed by the two straight lines K Q, QA  and the arc
AU'K; so the triangle MQK is greater than the part KQAU'K. Similarly the

25 The same letter, U′, is used for several points.
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triangle MKS is greater than the part adjacent to it, so the triangle QMS is
greater than the part adjacent to it and the triangle QMS is greater than half
of the part AMDKA; similarly the triangles PNV, RXU, JLF are <each>
greater than half the part in which they are inscribed. If we cause to pass
through the points U'26 straight lines that are tangents to the circle, they cut
off parts that are again triangles that are greater than half the former ones;
we show this as we showed it for the triangle QMS. If we continue to
proceed in such a way, we cut off these excess amounts, <the amounts> by
which the figure NMLX exceeds the circle, <parts> greater than half of
them and also more than half of what remains. These excess amounts are
greater than the magnitude S. But for two unequal magnitudes, if we cut off
from the greater of them more than half of it, and from what remains more
than half of that, and if we continue to repeat this procedure, it necessarily
follows that there remains a magnitude smaller than the smaller magnitude.
Let the excess amounts at the points Q, S, F, J, U, R, V and P be smaller
than the magnitude S; but the magnitude S is the amount by which the
figure U exceeds the circle; the excess amounts found at the points Q, S, F,
J, U , R, V and P on the circle are smaller than the magnitude U. So the
figure QSFJURVP is smaller than the magnitude U. But the straight line
EK which is the semidiameter of the circle is perpendicular to the straight
line QS, so the product of EK and half QS is the measure of the triangle
EQS; similarly for the remaining triangles. The product of the semidiameter
of the circle and the semiperimeter of the figure QSFJURVP is the measure
of that figure, but that figure is smaller than the figure U; now <the
measure of> the figure U is the product of the semidiameter of the circle
and the semiperimeter of the circle, so <the measure of> the figure
QSFJURVP is smaller than the product of the semidiameter of the circle
and its semiperimeter and the perimeter of the figure QSFJURVP is smaller
than the perimeter of the circle; now, for this figure, the perimeter of the
circle is smaller than its perimeter, as has been proved earlier; which is
impossible. So the figure U is not greater than the circle nor smaller than it,
so it is equal to it.

But <the measure of> the figure U is the product of the semidiameter
of the circle and its semiperimeter; consequently the product of the
semidiameter of the circle and its semiperimeter is equal to the measure of
the circle. That is what we wanted to prove.

Archimedes then determined the ratio of the diameter of the circle to its
circumference to the closest possible approximation, because the diameter

26 The same letter, U′, is used for the midpoints of each of the arcs AK, KD, AG
and GB.
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does not have an exact ratio to ratio to the circumference,27 because they do
not belong to the same genus; which is why, for determining this ratio, he
employed a form of approximation. If he adopted this method, it is because
his purpose in doing so was to determine the measure of the circle; the
approximation in the ratio of the diameter to the circumference does not
change the measure of the circle and the discrepancy in the former (the
ratio) does not have a noticeable effect on the measure of the circle; he then
found <that> the ratio of the diameter of the circle to its circumference is
equal to the ratio of one to three and a seventh. He <wrote> a separate
treatise on this notion which is available for people to read. So if anyone
wishes to measure a circle, he measures its diameter, which he then
multiplies by three and a seventh and what he obtains is the perimeter of
the circle. He then takes half of this perimeter and half the diameter, he
multiplies one by the other; what he obtains is the measure of the circle. If
he so wishes, he multiplies the whole diameter by a quarter of the
perimeter, and if he wishes, he multiplies the whole perimeter by a quarter
of the diameter; what he obtains from all this is the same.

We can determine the measure of the circle in another way also by
multiplying the diameter by itself, from the result we <then> subtract a
seventh of it, plus half of a seventh; thus what remains is the measure of the
circle, and that is in agreement with the first procedure.

Proof: The perimeter is equal to three times the diameter plus a
seventh, so the perimeter is twenty-two sevenths of the diameter and a
quarter of the perimeter is five sevenths of the diameter plus half a seventh
of it; the product of the diameter and a quarter of the perimeter is the
measure of the circle, so the product of the diameter and five sevenths of it,
plus half of a seventh of it, is the measure of the circle. But five sevenths of
the diameter plus half of a seventh of it, is less than the complete diameter
by a seventh of it, plus half of a seventh of it; the product of the diameter
and five sevenths of it, plus half of a seventh of it, is less than the product
of the diameter with itself, by the product of the diameter and a seventh of
it plus half of a seventh of it; but the product of the diameter with itself is
the square of the diameter and its product with five sevenths of itself, plus
half of a seventh of it, is less than its square by the magnitude of its product
with a seventh of itself, plus half a seventh of it, which is a seventh of the

27 This means that the ratio is not that of an integer to an integer. In his work on
squaring the circle, Ibn al-Haytham states, on the contrary, that the ratio exists even if
we cannot know it. Here, he seems to be making a concession to a common belief by
taking curves and straight lines to belong to two different categories. This belief was no
doubt more familiar to the readers of this treatise.
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square plus half a seventh of it. So if we multiply the diameter by itself and
if from that we subtract a seventh of it, plus half of a seventh of it, what
remains will be the product of the diameter and five sevenths of it, plus half
of a seventh of it, <a product> that has been shown to be equal to the
measure of the circle. So if we multiply the diameter of the circle by itself
and if we subtract from that one seventh of it, plus half of one seventh of it,
what remains will be the measure of the circle. That is what we wanted to
prove.

We shall now show how to determine the diameter of the circle,
because for a circle, we have not, in general, <been given> its diameter
and, in general, the centre of a circle is not <given> in a way that allows us
to cause to pass through it a straight line that will be the diameter.

The method of determining the diameter of the circle is to draw in it an
arbitrary chord which we then divide into two equal parts; we draw from its
midpoint a straight line at right angles that ends on the circumference of the
segment cut off by the chord, we then measure the chord, we measure the
perpendicular, we multiply half the chord by itself, we divide the product
by the perpendicular and we add the perpendicular to the quotient; what we
obtain is the diameter of the circle.

Example: Let there be the circle ABCD whose diameter we wish to
know. In the circle we draw an arbitrary chord, let it be the straight line
BD, which we divide into two equal parts at the point E. We draw from the
point E the straight line EA perpendicular to the straight line BD, which we
extend on the side of E until it meets the circle; let that straight line be
AEC.
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Proof: Since the straight line BD is a chord in the circle, and has been
divided into two equal parts at the point E and we have drawn from the
point E the perpendicular AEC, the centre of the circle will lie on the
straight line AEC, as has been shown in the first proposition of the third
book of the work of Euclid. So the straight line AC is the diameter of the
circle. Since the straight lines AC and BD intersect inside the circle, the
product of AE and EC is equal to the product of BE and ED, as has also
been shown in the third book.28 But the product of BE and ED is equal to
the square of BE, since BE is equal to ED, so the square of BE is equal to
the product of AE and EC. So if we divide the square of BE by the straight
line EA, the quotient will be the straight line EC to which we add the
perpendicular, which is the perpendicular EA; we obtain CA; so CA is the
diameter of the circle.

So if in the circle we draw an arbitrary chord which we divide into two
equal parts and if we draw at its midpoint a perpendicular to <reach as far
as> the circumference of the segment cut off by the chord, if we then
multiply half the chord by itself and if we divide that (the result) by the
perpendicular, if we add the quotient to the perpendicular, then the sum is
the diameter of the circle. That is what we wanted to prove.

How to measure a sector of a circle. We measure the sector by
multiplying the side that is the semidiameter of the circle by half the arc of
the sector; what we obtain is the measure of the sector.

As for a segment of a circle, it is the complement of the triangle of the
sector. We measure the sector, we then measure the excess triangle and we
subtract it from the measure of the sector, what remains is the measure of
the segment of the circle.

Example: Let the sector be ABC.
I say that the product of AB and half the arc BEC is the measure of the

sector.
Proof: We complete the circle, let it be BDC; so the point which is the

vertex of the sector is the centre of the circle, since a sector is a figure
whose vertex is the centre of a circle and its base an arc of the circum-
ference of the circle. So the ratio of the arc BEC to the circumference of the
circle is equal to the ratio of the surface of the sector ABEC to the surface
of the complete circle, as has been shown by a proof analogous to the one
Euclid presented in the final proposition of the sixth book. The ratio of half
the arc BEC to half the circumference of the circle is thus equal to the ratio
of the sector to the complete circle; but the ratio of half the arc BEC to half

28 Euclid, Elements, III.35.
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the circumference of the circle is equal to the ratio of the product of the
straight line AB, which is the semidiameter of the circle, and half the arc
BEC, to the product of AB and half the perimeter of the circle which is the
measure of the surface of the circle. The ratio of the product of AB and half
the arc BEC to the measure of the surface of the circle is equal to the ratio
of the measure of the surface of the sector ABEC to the measure of the
surface of the circle. So the product of the straight line AB, which is the
semidiameter of the circle, and half the arc BEC, is the measure of the
surface of the sector ABEC. That is what we wanted to prove.29
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If we measure the triangle ABC and take it away from the measure of
the sector, what remains is the measure of the segment BEC, because the
sector is the sum30 of the triangle ABC and the segment BEC.

It remains to show how to find the magnitude of the arc of the sector
and of the segment, and this is because for an arbitrary sector, its arc is not
known and, for a segment of an arbitrary circle, its arc is not known. A
known arc is one whose ratio to the circumference of the circle is a known
ratio. In fact if the ratio of the arc of the sector or the segment to the
circumference of the circle is not known, then there is no way to find the
measure of the sector or the segment, so we cannot find them until we
know the ratio of the arc to the circumference of the circle.

The method for finding the ratio of any arc to the circumference of its
circle is to divide the chord of the arc into two equal parts, to draw from its

29 The result is valid, irrespective of whether the sector is smaller or greater than a
semicircle.

30 This corresponds to the case in which the segment in question is smaller than a
semicircle. Ibn al-Haytham does not consider the case of a segment greater than a
semicircle.
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midpoint a perpendicular that ends on the arc and to join the end of the
chord to the end of the perpendicular by a straight line, to erect at the end
of the chord a perpendicular to the chord, to take the end of the chord as
centre and, with the distance to the other end of the chord, draw an arc of a
circle that cuts31 the perpendicular erected at the end of the chord; this arc
is a quarter of a circle because it subtends a right angle at the centre of its
circle. We extend the straight line that joins the end of the chord to the end
of the first perpendicular until it reaches the arc which is a quarter of a
circle, then we find the size of the arc that lies between this straight line
and the end of the chord through which the quarter circle passes, by means
of compasses, so that the compasses give a size for this arc, either once or
several times, and we also find the size of the complete quarter circle;32

from this we obtain the ratio of the arc, which lies between the chord and
the straight line that cuts the arc, <that is its ratio> to the quarter circle; this
ratio is the ratio of the first arc, whose ratio we are looking for, to the
circumference of its circle.

Example: Let the arc be ABC. We wish to know its ratio to the circum-
ference of its circle; so we draw the chord AC which we divide into two
equal parts at the point E. We draw the perpendicular EB, we join AB and
at the point A  on the straight line AC  we erect a perpendicular to the
straight line AC; let it be AD. We take A as centre and with distance AC we
draw an arc of a circle; let it be CHD. So the arc CD is a quarter circle,
because the angle CAD is a right angle. We extend the straight line AB until
it meets the arc CD; let it meet it at the point H.33 So if we evaluate the arc
CH in terms of a magnitude by which we <also> evaluate the complete arc
CHD, these <values> give us the ratio of the arc CH to the arc CD.34

I say that the ratio of the arc CH to the arc CD is the ratio of the arc
ABC to the circumference of the whole circle.

31 Lit.: separates.
32 See note 34 below.
33 If the arc ABC is less than a semicircle, H lies on the extension of AB. If ABC is

greater than a semicircle, H lies between A and B.
34 Ibn al-Haytham is recommending a system of trial and error to find an opening

of the compasses that fits into the arc a whole number of times. This procedure, known
in English as ‘stepping’, was used by craftsmen to make toothed wheels. See note 48
below. [note J. V. Field]
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Proof: The angle CAH  is at the centre of the circle CHD  and it is
inscribed in the circumference of the circle ABC. So the arc CB is twice
<the arc> similar to the arc CH, and the arc ABC is twice the arc BC; so the
arc ABC is four times <the arc> similar to the arc CH. Thus the ratio of the
arc CH to a quarter of its circle is equal to the ratio of the arc ABC to its
complete circle. But the arc CHD is a quarter circle, so the ratio of the arc
CH to the arc CD is equal to the ratio of the arc ABC to its complete circle.
That is what we wanted to prove.

If we take a point on the chord AC, in any position on it that we wish,
and if with A as centre and the distance of this point we draw an arc of a
circle that cuts the straight line AC, this arc is a quarter circle; we cut off on
this arc an arc similar to the arc CHD. This notion is necessary if the arc
ABC is of a considerable magnitude. From this stage onwards we make a
reduction in the arc CHD and instead of AC we use a part of the straight
line AC, which thus takes the place of AC35 and from it there follows the
determination of the ratio; it is in this way that we shall determine the ratio
of the arc to the circumference of its circle.

However, for a general arc, its ratio to its circle is not necessarily a
numerical ratio36 because, since for two arbitrary arcs the ratio of one to the

35 See above, pp. 484–5.
36 That is to say rational.
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other is not necessarily a numerical ratio, so for the arc CH its ratio to the
arc CD is not necessarily a numerical ratio. But if the ratio of these two
arcs one to the other is not a numerical ratio, then it is not possible that one
common magnitude, that we can specify, can evaluate each of them. So if
the ratio of the arc CH to the arc CD is not a numerical ratio, then the ratio
of the arc ABC to the circumference of its circle is not a numerical ratio. If
the arc is of this kind, then we cannot express it; if this happens in regard to
measure, then the ratio of something inexpressible leads to something we
can express by means of a ratio such that there is no perceptible
discrepancy between it and the true ratio. Similarly, if a magnitude is
inexpressible (irrational), then it leads to something we can express by way
of a magnitude such that the discrepancy between it and that magnitude is
not perceptible, because a practical art cannot carry out real operations
without making use of a kind of approximation in cases where one cannot
achieve extreme accuracy.

This method is the one Archimedes adopted for determining the ratio of
the diameter of the circle to its circumference. The method by which we
determine the ratio of the arc CH to the arc CD is to decrease the opening
of the compasses37 until it is as small as possible; we use this (the small
compass opening) to measure out the arc CH and the arc C D; so if we
decrease the opening of the compasses, we necessarily arrive at a
magnitude that measures out the two arcs, even if the ratio is not a
numerical ratio; in fact if the parts become smaller and smaller, the
difference by which one of the two arcs exceeds an arc that has a
<numerical> ratio with the other arc becomes smaller and smaller until this
difference has become imperceptible.

It is in this way that we can determine the ratio of the arc CH to the arc
CD, which is equal to the ratio of the arc ABC to the circumference of its
circle.

We have completed the explanation of the procedures for measuring all
surfaces whose measures are used, which are rectilinear surfaces and the
circle.

Procedure for measuring solids, a detailed technical exposition: among
solids there are those that are enclosed by plane surfaces, those that are
enclosed by surfaces that are not plane and those that are enclosed by some
plane surfaces and some that are not plane. Among the solids enclosed by

37 That is to say the separation of the points of the compasses. The method of trial
and error that follows is akin to ‘stepping’ used to divide an arc, see note 34 above and
note 48 below. [note J. V. Field]
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plane surfaces, there are those that have parallel faces and those that have
faces that are not parallel. Among those with parallel faces, there are some
that have perpendicular faces and some that do not have perpendicular
faces.

The measure of a solid with parallel faces and faces that are
perpendicular38 is obtained by multiplying the length of its base by its
width, then <multiplying> what we obtain by the height of the solid, that is
to say that we multiply the number of the multiple of the cubit that is in the
length of its base by the number of the multiple of the cubit that is in the
width of the base, then we multiply the product by the number of the
multiple of the cubit that is in the height. Any one of its faces can be taken
as the base and any one of its sides can be taken as the height, since all its
sides are perpendicular to its faces.

Example: Let there be the solid ABCDEGHI with parallel faces and
with all the faces perpendicular.39

I say that its measure is the product of the length of its base and its
width, then <the product of> what we obtain and the height, that is to say
that the number of the multiple of the cube of the cubit in the solid BI is the
product of the number of the multiple of the cubit in AB, which is the
length of the base, and the number of the multiple of the cubit in BC, which
is the width of the base, and the number of the multiple of the cubit in BG,
which is the height of the solid.
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38 If the solid is a rectangular parallelepiped, each face is perpendicular to the four
faces that surround it.

39 See preceding note.
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Proof: We divide up AB into cubits, let them be AK, KL, LM and MB;
we also divide up BC into cubits, let them be BN, NP and PC, and we draw
through the dividing points straight lines parallel to the sides of the base.
We thus divide up the base into right-angled quadrilaterals whose sides are
equal and perpendicular; each is equal to the square BMXN which is the
square of the cubit, as we showed in the first proposition of this book. We
then divide up BG, the height of the solid; let us cut off a single cubit, that
is BJ. We also cut off a single cubit from each of the <straight lines> AE,
DI, CH, at the points O, S, U. We join the straight lines JO, OS, SU and UJ,
then the quadrilateral JOSU is equal to the quadrilateral ABCD ; it is
parallel to it, because the perpendiculars BJ, AO, DS and CU are equal. We
draw from the parallel and perpendicular straight lines in the base planes
perpendicular to the base; they then divide up the quadrilateral OJUS into
equal squares <that are> also equal to the squares into which the base has
been divided and <the planes> divide up the solid BS into equal cubes, each
of which is equal to the cube BMNXJQFR; the cube BMNXJQFR is the
cube of BM which is the cubit. Thus the solid BS is divided up by the
planes perpendicular to the base into equal cubes each of which is equal to
the cube of the cubit; the number of these cubes is the number of the
squares into which the base was divided, because the base of each of these
cubes is one of the squares in the base, and the number of the squares into
which the base was divided is the number obtained from the product of the
number of the multiple of the cubit that is in the length of the base and the
number of the multiple of the cubit that is in the width of the base. So the
number of cubes in the solid BS is the number obtained from the product of
the number of the multiple of the cubit that is in the length of the base and
the number of the multiple of the cubit that is in the width of the base. If we
then divide up the height of the solid into cubits, <and> if we then draw
from the dividing points planes parallel to the base, solids are formed each
of which is equal to the solid BS, so the number of the multiple of the solid
BS in the solid BI is the number of the multiple of the cubit in the height of
the solid BI. But each of the solids into which the solid BI is divided
contains cubes whose <number> is equal to the number of the cubes of the
cubit contained by the solid BS, so the number of the multiple of the cube
of the cubit contained by the solid BI is the number we obtain from the
product of the number of the multiple of the cubit in the length of the base
and the number of the multiple of the cubit in the width of the base and the
number of the multiple of the cubit in the height of the solid.

The quantity of the measure of any solid with parallel faces and right
angles is what we obtain from the product of the length of the base and its
width, and then from the product of what we obtain and the height of the
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solid, I mean that the number of the multiple of the cube of the cubit that
the solid includes is the product of the number of the multiple of the cubit
in the length of the base and the number of the multiple of the cubit in the
width of the base and the number of the multiple of the cubit that is in the
height of the solid. That is what we wanted to prove.

But solids enclosed by planes do not all have parallel faces and those
among them that have parallel faces do not all have perpendicular faces.
The method for measuring solids that do not have parallel faces and solids
with parallel faces that are not at right angles is to divide them up into
pyramids, then to measure each of these pyramids separately and add up
their measures; the sum we obtain is then the measure of the complete
solid.

Moreover, for the solid with parallel faces at right angles, we do not
know it has right angles until we have checked its angles, and there is no
method of checking its angles except by dividing up all its faces into
triangles. But if we divide up all its faces into triangles, then we are
dividing the solid into pyramids. And if we divide the solid into pyramids,
we can measure each of these pyramids separately, and if we add up <the
measures>, what we obtain is the measure of the whole solid. The general
method for measuring all solids enclosed by plane surfaces is to measure
the pyramid.

The method for measuring the pyramid is to measure its base, then to
multiply what we obtain by a third of the height; what we obtain is its
measure, because it has been shown in book twelve of the work of Euclid40

that any rectilinear pyramid is one third of a prism enclosed by faces with
parallel sides and two opposed equal and parallel bases, and that the
measure of such a prism is the product of its base and its whole height; so
the measure of the pyramid is the product of its base and a third of its
height. We have shown how to measure the base of the pyramid, because
the base of the pyramid is a surface with rectilinear sides and we have
shown above how to measure surfaces with rectilinear sides; so it remains
to show how to determine the height of a pyramid. It also remains to show
how to divide up the surfaces of solids into triangles so as, by this means,
to divide up the solid into pyramids.

We carry out the division of the faces of the solid into triangles by
means of determining chords of the angles. But this can be carried out on
all the faces of a solid with rectilinear sides by the method we demonstrated
for finding the chords of angles, in proposition six of this treatise, except

40 Euclid, Elements, Book XII, Proposition 7 and corollary.
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for the base of the solid, because it is not possible to work inside the solid;
so let us employ the procedure described below.

We shall now show how to find the chords of the angles of the base.

We construct two rulers, one of which has a certain width; we attach
the one that has a certain width to one of the two sides that surround the
angle of the base whose chord we wish to determine. We place the ruler so
that a part of it goes beyond the angle, then we attach the other ruler to the
other side of the base that, with the first side, encloses the angle in
question. We fit the end of this second ruler to the end of the first ruler,
thus in the plane of the first ruler, <the one> that has a certain width, there
is formed an angle equal to the angle of the base, because the outer edge of
the ruler that has a certain width is parallel to the edge of it attached to the
side of the solid that is the side of the base and the straight line drawn
against the edge of the second ruler lies along the other side of the base; so
the angle enclosed between the straight line drawn in the plane of the ruler
and the edge of the first ruler is equal to the angle of the base of the solid. If
we obtain this angle, we fix the ruler that has a certain width in a plane, we
draw against the edge that is adjacent to the solid a straight line in the
plane, then we fit the second ruler onto the straight line drawn in the plane
of the first ruler, <the one that> has a certain width, and we draw against
the edge of this ruler a straight line in the plane; it then forms in the plane
an angle equal to the angle in the plane of the ruler, because the first
straight line is parallel to the edge of the ruler that has a certain width
which lies alongside the angle which is in the plane of the ruler and the
second straight line lies alongside the straight line drawn in the plane of the
ruler. If we obtain this angle in the plane, on one of these two straight lines
we cut off a cubit, we divide the number of the multiple of the cubit that is
in the side of the solid homologous to the other straight line of the angle by
the number of the multiple of the cubit in the side of the solid homologous
to the first straight line, we take away a number equal to the quotient of the
straight line that remains from the two straight lines of the angle drawn in
the plane, and we join the point of intersection and the end of the first cubit
with a straight line, then we evaluate this straight line, we multiply what we
obtain from evaluating it by the number of the multiple of the cubit that is
in the side of the solid homologous to the straight line from which we cut
off a single cubit; what we obtain is the chord of the angle of the base of
the solid, a chord that cuts off a triangle from the base of the solid.

Example: The angle ABC is the angle equal to the angle of the base of
the solid. Let AB be a single cubit; let BC be equal to the quotient of the
side of the solid homologous to the straight line CB <divided> by the side
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homologous to the straight line BA. We join AC and find its value. We
multiply the magnitude we found for it by the side of the solid homologous
to the straight line AB.

B

D
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E

C

Fig. IV.1.14

I say that what we obtain is the chord that joins the two ends of the
sides of the base.

Proof: If we extend the two straight lines BA and BC as the straight
lines BE and BD, if we put BE equal to the side of the solid homologous to
the straight line BA, if we put BD equal to the side of the solid homologous
to the straight line BC and if we join ED, then ED will be equal to the
chord that joins the two ends of the two sides of the solid. The two sides EB
and BD are equal to the two sides of the solid and the angle EBD is equal to
the angle of the base of the solid, so the base ED41 is equal to the chord that
is opposite the angle of the base of the solid. But it has been shown in the
sixth proposition of this treatise that the product of AC and BE is equal to
the magnitude of the straight line DE, so the product of AC and BE is equal
to the chord that divides up the base of the solid in a plane. That is what we
wanted to prove.

If the base of the solid lies in a single plane, we extend the two sides of
the base; thus there is formed, outside the solid, an angle equal to the angle
of the base of the solid; we construct in this angle the analogue of what has
been constructed in the angle ABC. So by this means we obtain the required
chord.

How to determine the height of the pyramid. This is done as follows.
We determine the two perpendiculars of two triangles among the triangles
seen on the outside of the pyramid, which go to the same angle among the
angles of the pyramid, and the base of the pyramid may be a triangle or a

41 The base ED of the triangle EBD.
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polygon, provided the two vertices of the triangles of the pyramid are the
same point. We determine the two feet of the <perpendiculars in the> two
triangles and we draw in a plane an angle equal to the angle of the base of
the pyramid that <forms> with the two angles of the two triangles the angle
of the pyramid, as we have shown above. We then cut off on the two
straight lines of this angle drawn in the plane two straight lines equal to the
two feet of the two triangles; we join their endpoints, this forms two angles
and a triangle. We then examine the two angles: if one is a right angle, then
the height of the triangle that cuts off the foot for which the angle at its
endpoint is not a right angle is the height of the pyramid. We carry out our
examination of the angles by multiplying each of the sides of the triangle
by itself and adding up the results two by two to compare <the sum> to the
third. So if two of them <have a sum> equal to the square of the third, then
the angle enclosed by the two is a right angle, if their sum is smaller, then
the angle enclosed by the two is greater than a right angle and if their sum
is greater, then the angle enclosed by the two is smaller than a right angle.
And if one of the two angles is not a right angle, then at the endpoint of
each of these two straight lines we erect a perpendicular and we extend
them; they meet one another; when they meet, we find the value of one of
them and we multiply it by itself, then we multiply by itself the height of
the triangle that cuts off in the triangle the foot at the end of which we
erected the straight line whose value we found, then we take away the
square of the straight line from the square of that height, we take the root of
what remains; what we obtain is the height of the pyramid.
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Example: Let the pyramid be ABCD, with base BCD, vertex the point
A, the remaining triangles ABC, ABD and ACD . We wish to know its
height.
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We find the heights of the triangles ABC and ACD; let the heights be
AE and AG. The two straight lines EC and CG are thus their feet. Let us
draw in a plane an angle equal to the angle ECD; let the angle be LIK. We
cut off LI equal to EC and IK equal to CG. We join LK. We then consider
two angles equal to the angles ILK and LKI. If one of these two angles is a
right angle, then the height of the triangle whose foot is the other side of
the angle is the height of the pyramid, that is to say that if the angle ILK is a
right angle, then the perpendicular AG is the height of the pyramid and if
the angle IKL is a right angle, then the perpendicular AE is the height of the
pyramid. And if neither of these two angles is a right angle, then we erect at
the points L and K perpendiculars to the two straight lines LI and KI; let
them be LM and KM. We extend them, they meet one another; let them
meet one another at the point M. But if the two angles ILK and IKL are
acute, then if the straight lines meet one another, that will be inside the
angle LIK, that is to say that the straight line drawn from the angle to the
point where they meet cuts the angle LIK. And if one of the two angles
ILK, IKL is obtuse, the meeting <point> is outside the angle, that is to say
that the straight line drawn from the angle to the meeting point falls outside
the angle. If the angle ILK is obtuse, then the angle INL is acute, so the
angle KNM is acute and the angle NKM is a right angle, and the two
straight lines meet one another outside the angle. When the two straight
lines meet one another, we find the value of one of the two straight lines
that are LM and KM; for example let this be LM. We multiply it by itself
and we subtract its square from the square of AE; we take the root of what
remains; what we obtain is the height of the pyramid.

The proof of all this consists of imagining that in the base of the
pyramid we have a straight line that joins the two points E and G; let the
straight line be EG. So we have ECG equal to the triangle LIK. So if the
angle ILK is a right angle, then the angle CEG is a right angle.
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Thus I say that the perpendicular AG is the height of the pyramid.
Proof: We draw from the point G a straight line parallel to the straight

line CE, in the plane of the base; let it be the straight line GO. Since the
angle CEG is a right angle and the angle CEA is a right angle, the straight
line CE is perpendicular to the plane AEG. Since the straight line GO is
parallel to the straight line CE, accordingly the straight line GO will also be
perpendicular to the plane AEG, so the angle OGA is a right angle. But the
angle CGA is a right angle, so the straight line AG is perpendicular to the
plane that contains the straight lines C G and GO. But the plane that
contains these two straight lines is the plane of the base of the pyramid, so
the straight line AG  is perpendicular to the plane of the base of the
pyramid; so it is the height of the pyramid.

Similarly, if the angle IKL is a right angle, we show that the perpendi-
cular AE is the height of the pyramid.

But if neither of the two angles ILK, IKL is a right angle and if the two
straight lines meet one another at the point M, then we imagine we have
two perpendiculars drawn from the points E and G to the straight lines CE
and CG; so they meet one another as the two straight lines LM and KM met
one another, because the triangle ECG is equal to the triangle ILK and is
similar to it. Let the two perpendiculars meet one another at the point H.
We join AH and we cause to pass through H a straight line parallel to the
straight line CE, in the plane of the base of the pyramid, let it be HS, and a
straight line parallel to the straight line CG, also in the plane of the base, let
it be HU. Since the angle CEH is a right angle and the angle CEA is a right
angle, the straight line CE is perpendicular to the plane of the triangle AEH;
but since the straight line HS is parallel to the straight line CE, the straight
line HS will also be perpendicular to the plane of the triangle AEH, so the
angle SHA is a right angle. But since the angle CGH is a right angle and the
angle CGA is a right angle, the straight line CG is perpendicular to the
plane of the triangle AGH; but the straight line HU is parallel to the straight
line CG, so the straight line HU is perpendicular to the plane of the triangle
AGH, so the angle UHA is a right angle; now the angle SHA is a right
angle, so the straight line AH is perpendicular to the two straight lines SH
and UH, so it is perpendicular to the plane that contains these two straight
lines; but these two straight lines are in the plane of the base of the pyra-
mid, so the straight line AH is perpendicular to the plane of the base of the
pyramid, so it is the height of the pyramid. But since AH is perpendicular to
the plane of the base, it makes a right angle with every straight line in the
plane of the base, the angle AHE is a right angle, so the triangle AEH is
right-angled, so the square of AE is equal to the square of AH  plus the
square of HE; so if we subtract the square of HE from the square of AE,
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what remains is the square of AH. But HE is equal to LM; so if we subtract
the square of LM from the square of AE, what remains is the square of AH,
if we take its root, we then have AH, which is the height of the pyramid.
That is what we wanted to prove.

We can also find the heights of pyramids by a method different from
this; it is a method by which we can find the heights of all tall bodies and
by which we can find the heights of mountains and of tall things; we
demonstrate that later.

If we take one of the faces of the pyramid as a base of the pyramid, <a
face> other than its natural base, which is the base of the solid, and if we
find the perpendicular dropped to that base from the angle of the pyramid
that is opposite to it,42 by means of the first procedure that we have set out
for determining the height of the pyramid and if we multiply the measure of
this base by a third of this height, what we obtain is the measure of the
pyramid.

All the bodies on which surveyors carry out measurements are bodies
with plane faces, cylinders on a circular base, cones on a circular base, or
spheres, and nothing apart from these belongs to the art of measurement.
We have shown <in the present work> how to measure all bodies with
plane faces.

The cylinder on a circular base is one whose two bases are two equal
and parallel circles and which is enclosed by a single rounded surface. The
method for measuring this cylinder is to measure its base and to measure its
height, then to multiply the measure of the base by the height; what we
obtain is the measure of the cylinder.

If the cylinder is at right angles to its base, then this is clear, because
the length of the cylinder is its height. So if we consider a piece of the
cylinder one cubit in height and if from the end of the cubit we draw a
plane parallel to the base, then a part is cut off from the cylinder, <a part>
whose base is the base of the cylinder and its height a single cubit. The
number of the multiple of the cube of the cubit in this part is the number of
the multiple of the square of the cubit in the base, because we have erected
on every part of the base a part of the solid of revolution. So the ratio of the
part of the base to the base as a whole is equal to the ratio of the part of the
solid to the solid as a whole. The number of the multiple of the cube of the
cubit in the solid which is a part of the cylinder is thus equal to the number
of the multiple of the square of the cubit in the base. Then when we

42 This comment only applies to a pyramid with a triangular base. If a pyramid with
apex S has as its base a quadrilateral ABCD, if we take SAB as base, we can no longer
regard the solid as a pyramid.
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imagine the height of the cylinder has been divided into cubits and we
cause to pass through each dividing point a plane parallel to the base, the
cylinder will be divided into parts whose number is equal to the number of
the multiple of the cubit in the height of the cylinder; each of these parts
will be equal to the first part whose height is a single cubit. So the number
of the multiple of the cube of the cubit that is in the whole cylinder is the
product of the number of the cube of the cubit that is in the single first part
and the number of the multiple of the cubit that is in the height of the
cylinder. But the number of the multiple of the cube of the cubit that is in
the first part is the number of the multiple of the square of the cubit that is
in the base. So if we multiply the measure of the base by the height of the
cylinder, the product is thus equal to the measure of the cylinder.

As for the oblique cylinder, it is equal to the right cylinder whose base
is the base of the oblique cylinder and whose height is equal to its height.
We show this by the proofs in book twelve of the work of Euclid.43 So the
method for measuring the oblique cylinder is to measure its base then
determine its height and multiply the measure of the base by the height;
what we obtain is the measure of the oblique cylinder.

The method for measuring the cone44 consists of measuring its base and
multiply <the measure> by a third of the height; thus what we obtain is the
measure of the cone if <the axis of the> cone is perpendicular to its base or
inclined, because it has been shown in book twelve of the work of Euclid45

that any cone whose base is a circle is a third of the cylinder whose base is
its base and whose height is its height.

How to measure the bases of cylinders and cones. This is done by
finding the circumference of its base; what we obtain for the magnitude of
the circumference is divided by three and a seventh; the quotient we obtain

43 Euclid, Elements, Book XII, Propositions 10 to 15; the cones and cylinders
investigated are cones and cylinders of revolution (Les Œuvres d’Euclide, translated
literally by F. Peyrard, Paris, 1966, proofs given on p. 397). Ibn al-Haytham perhaps
means to imply that the reasoning for going from the right cylinder to the oblique
cylinder should be deduced from the reasoning Euclid presents in the last part of
Proposition 31 of Book XI for going from the right parallelepiped to the oblique
parallelepiped. See The Thirteen Books of Euclid’s Elements, translated with intro-
duction and commentary by Th. L. Heath, Cambridge, 1908; repr. New York, Dover
Publications, 1956.

44 Lit.: the rounded cone, which we shall henceforth translate as ‘cone’. By using
this expression ‘rounded cone’, Ibn al-Haytham wished to distinguish between pyramid
(makhrº†) and cone (makhrº† mustadîr).

45 Euclid, Elements, XII.10, for the right cone.
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is the diameter of the base; when we obtain the diameter of the base and its
circumference, we then find the measure of the circle by the method we
have set out above in connection with measuring the circle.

As for the procedure for determining the heights of inclined cylinders
and inclined cones, we show that later.

The method for measuring the sphere is to measure a great circle of the
sphere, then multiply the measure of the circle by two thirds of the
diameter of the circle, which is the diameter of the sphere; what we obtain
is the measure of the sphere. In fact, the sphere is two thirds of the cylinder
whose base is <equal to> a great circle of the sphere and whose height is
equal to the diameter of the sphere. Geometers46 have proved this in their
books and their books are available, and we too have proved it in a separate
treatise.

How to find a great circle on the sphere. This is done as we shall
describe. We open the compasses by an arbitrary amount, then we put <the
tip of> one of its two legs on a point of the sphere, then with the other leg
we draw a circle on the surface of the sphere, then we remove the
compasses while maintaining their adjustment47 and we mark two points on
the circumference of the circle, that is on the sphere; the circle is thus
divided into two arcs, we divide each of the two arcs into two equal parts
using another pair of compasses with which we step out one of the two
arcs. We increase and decrease the opening of the compasses until we can
step out the arc in two moves, so the arc is divided into two equal parts;48

we make a mark at its midpoint, then we step out the other arc in the same

46 Specifically the Banº Mºsæ, On the Knowledge of the Measurement of Plane
and Spherical Figures, Proposition 15 (see Founding Figures and Commentators in
Arabic Mathematics, Chapter I).

47 That is to say while preserving the opening of the instrument.
48 This is an example of stepping being used to divide an arc into equal parts. In

this case we have simple bisection, and stepping is used only because, for practical
reasons, operations cannot be carried out inside the circle. However, the method can
also be employed to obtain any number of equal divisions on a circle and there is every
reason to suppose it was well known to craftsmen in Ibn al-Haytham’s time (and indeed
almost certainly since Antiquity). Some such method would have been convenient for
laying out the teeth on the gear wheels of the ‘Box of the Moon’ described by al-Bîrºnî,
a calendrical device that includes wheels with 7, 19 and 59 teeth (see Donald R. Hill,
‘Al-Bîrunî’s mechanical calendar’, Annals of Science, 42, 1985, pp. 139–63; reprinted in
J. V. Field, D. R. Hill and M. T. Wright, Byzantine and Arabic Mathematical Gearing,
London, 1985). Ibn al-Haytham’s testimony is of historical interest because artisan
practices are rarely the subject of written descriptions. Moreover, it seems to be among
the earliest known accounts of stepping. [Note J. V. Field]
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way until it is divided into two equal parts and we make a mark at its
midpoint. If we obtain these two points, then they divide the circumference
of the circle into two equal parts. The straight line that we imagine joining
these two points is the diameter of the circle. We open the second pair of
compasses and we put <the tip of> one of its two legs at one of these two
points that divide the circumference of the circle into two equal parts and
we open the compasses until <the tip of> the other leg reaches the other
point. So if <the tips of> the two legs of the compasses reach the two
opposite points, then the opening of the compasses will be equal to the
diameter of the circle drawn on the surface of the sphere; we then position
the two <tips of> the legs of these compasses on a plane surface so that
<the tips of> its legs leave a mark on the plane surface, then we put a ruler
across these two points and we join the two points with a straight line, so
this straight line will be equal to the diameter of the circle drawn on the
surface of the sphere. We divide this straight line into two equal parts and
we draw from its midpoint a perpendicular to the straight line; we then take
the first compasses, we put one of the <tips of its> two legs on the end of
the straight line we divided and we cause the other leg of the compasses to
move until it meets the perpendicular we erected; it will necessarily meet
the perpendicular, because the opening of the first compasses is greater
than the semidiameter of the circle that they drew on the sphere, since the
position of the <tip of the> second leg of the first compasses is the pole of
the circle that they drew on the sphere, and any straight line drawn from the
pole of a circle on the sphere to its circumference is greater than the
semidiameter of the circle; that can be shown from the book of the
Sphærica of Theodosius. So if the <tip> of the leg of the compasses meets
the perpendicular to the straight line, at the position where they meet we
mark a point, we join this point to the end of the straight line on which the
<tip of the> leg of the compasses stands with a straight line, then we extend
the perpendicular in the other direction and at the end of the straight line
drawn from the end of the straight line we divided we erect, as far as the
perpendicular, a straight line at right angles that we extend until it meets
the perpendicular. The straight line cut off on the perpendicular between
this straight line and the first straight line is the diameter of the sphere.

If we wish, we may find the value of half the straight line that is equal
to the diameter of the circle drawn on the sphere and we find the value of
what is cut off from the perpendicular, then we multiply the result of the
evaluation of half the straight line by itself, we divide what we obtain by
the magnitude of what has been cut off from the perpendicular, to what we
obtain we add the perpendicular, the sum will be the diameter of the sphere.
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If we multiply it by itself and from that subtract a seventh and half of a
seventh, what remains will be the great circle of the sphere. So if we
multiply the measure of this circle by two thirds of the diameter, what we
obtain is the measure of the sphere.

To prove that it is the diameter of the sphere, we put the straight line
equal to the diameter of the circle drawn on the sphere, the straight line AB,
which we divide into two equal parts at the point C; we draw from the point
C the straight line CD perpendicular to the straight line AB; let the point D
be that found by the <tip of the> leg of the first compasses. We join AD and
we erect on AD a straight line at a right angle; let it be AE. We extend DC
until it meets AE; it is necessary that it meets it because the angle CAE is
acute and the angle ACE is a right angle, let them meet one another at the
point E.

I say that DE is equal to the diameter of the sphere.
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Proof: We imagine the circle drawn on the sphere <to be> the circle
GHI; let the value of its diameter found by the compasses be the straight
line GI and let L be its pole. We divide the straight line GI into two equal
parts at the point K, so the point K is the centre of the circle. We join LK,
LK will be perpendicular to the plane of the circle because any straight line
drawn from the point L to the circumference of the circle is equal to the
straight line LG , and any straight line drawn from the point K to the
circumference of the circle is equal to the straight line KG, because the
point K is the centre of the circle; two straight lines drawn from the points
L and K to a point on the circumference of the circle are thus equal to the
straight lines LG and GK. But the straight line LK is common to all the
triangles; so all the triangles formed are equal to the triangle LKG and their
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angles at the point K are equal to the right angle LKG, so the straight line
LK makes a right angle with any straight line drawn from the point K to the
circumference of the circle; so the straight line LK is perpendicular to the
plane of the circle. But any straight line drawn from the centre of the circle
and perpendicular to its plane passes through the centre of the sphere; this
has been proved in Theodosius’ book the Sphærica. So we imagine the
straight line LK <to be> extended until it ends on the surface of the sphere.
It meets the surface of the sphere at the point M, so the straight line LM is a
diameter of the sphere. We join GM ; it forms the triangle LGM . We
imagine the plane of the triangle LGM cutting the sphere, on its surface, it
forms a circle whose centre is the centre of the sphere; this too has been
shown in Theodosius’ book the Sphærica. Let this circle be the circle
GLIM, thus this circle lies on the surface of the sphere and its centre is the
centre of the sphere. But if its centre is the centre of the sphere, then it is a
great circle of the sphere and its centre lies on the straight line LM. If the
centre of the circle GLIM lies on the straight line LM, the straight line LM
is a diameter of the circle and the arc LGM is a semicircle, so the angle
LGM is a right angle, the triangle GLM is similar to the triangle GLK; so
the ratio of ML to LG is equal to the ratio of GL to LK. The product of ML
and LK is equal to the square of LG.

Similarly, the angle EAD is a right angle and the angle ACD is a right
angle, so the triangle ADE is similar to the triangle ADC. So the product of
ED and DC is equal to the square of AD. But AD is equal to GL, AC is
equal to GK, the square of AD is equal to <the sum> of the squares of AC
and CD and the square of GL is equal to <the sum> of the squares of GK
and KL, so the square of CD is equal to the square of KL, so CD is equal to
KL. But since the product of ED and DC is equal to the square of AD, and
AD is equal to GL, the product of ED and DC is equal to the square of GL
and the product of ML and LK is equal to the square of GL, so the product
of ED and DC is equal to the product of ML and LK; but DC is equal to LK,
so the straight line DE  is equal to the straight line LM; but LM is the
diameter of the sphere, so the straight line DE is equal to the diameter of
the sphere. That is what we wanted to prove.

But since the angle DAE is a right angle, and AC is perpendicular to
DE, the product of EC and CD is equal to the square of AC. So if we divide
the square of AC by the straight line CD, the quotient is the straight line
CE. So if we add to it the straight line CD, the sum will be the straight line
DE, which is equal to the diameter of the sphere.
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What we have explained is the method for measuring all the bodies that
are used in the art of the surveyor.49

It remains for us to show how to determine the heights of bodies if
their height is unknown, whether such bodies are cylinders on a circular
base or bodies with straight edges or walls or buildings or mountains such
that one cannot reach either their peak or the point at the foot of their
perpendicular height. The method for this is to take a straight rod whose
length is not less than five cubits, then to measure from its endpoint a
single cubit, by means of the cubit used for measurement,50 then to mark at
the end of the cubit a distinctive sign on the rod, circularly around the rod;
we then take a thread at the end of which there is heavy lead weight. The
observer holds onto a part of the thread, and remains upright, he puts the
thread against one of his eyes and lets the lead weight go, increasing or
decreasing the length of the thread until the end of the lead weight is on the
surface of the ground. He then marks a sign on place on the thread where it
was at his eye, then he puts this thread against the straight rod and puts the
sign that is on the thread on the sign that is on the rod and which is the end
of the cubit measured out on the rod. Then he pays out the thread on the
side with the plumb bob and lays it along the rod, he holds the weight in his
other hand and pays out the thread along the length of the rod, then, at the
position on the rod reached by the end of the plumb bob, he marks a
distinctive sign which cannot be removed, circularly around the rod. Thus
there will be a part of the rod remaining, because the height of a man and a
cubit add up to less than five cubits. If the observer wishes to determine the
height of any body or the height of a mountain, let him stand upright on the
ground opposite the body whose height he wishes to determine; he then
drives the rod into the earth and arranges that the measured cubit is in the
upper part of the rod, he drives the rod into the ground until all that remains
of the rod beyond the measured parts has disappeared and he adjusts the
rod until it is standing vertically in the surface of the ground, without
leaning sideways. When the rod has been set up and is standing upright, the
observer positions himself behind it, looks at the body whose height he
seeks to know and selects a particular place on it – if it is a pyramid, that
will be the point at its apex, if it is a wall or a cylinder or a mountain, that
will be a particular place – then he moves forwards and moves backwards,
he leans right and left and, in all these cases, he looks at the top of the rod
and the place he selected until he can see them at the same time; if he sees
them at the same time, then he covers one of his two eyes and looks with

49 That is to say all the things surveyors measure.
50 The cubit used for the measurement probably refers to a standard rod carried by

the surveyor. [Note J. V. Field]
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the other eye and fixes his gaze on the top of the rod. If he fixes his gaze on
the top of the rod, he must see the body whose height he wishes to know,
because it is behind the rod and in the same direction as the rod. So if he
sees the tall body, then let him direct his glance to the top of the rod; he
bends to right and left, moves forwards and backwards, and adjusts his
posture as much as possible until he sees the place on the body that he
selected at the same time as the top of the rod to which he is directing his
glance and sees at the same time only the top of the rod and in the direction
of the top of the rod only this place, and so as he sees both of them with
one of his two eyes. When that happens, he keeps his leg still, <that is the
leg> on the side of the eye with which he is looking, then sits down and
puts his finger on the point on the surface of the ground below the midpoint
of his foot on the side of the eye with which he was looking, then he takes
his leg away from that position and marks this point with a distinctive sign
that cannot be effaced, either by means of a small rod that he drives in at
that point or by a small hole dug at that point. If he is proceeding in this
way, at this stage he draws a straight line on the surface of the ground from
the position of the sign to the foot of the rod that was set up, then he
measures out that straight line by means of the cubit used for measurement
– the cubit being divided into parts that are as small as possible – then he
notes the magnitude of the straight line and records it. He then pulls up the
rod from its place in the ground and extends the straight line drawn on the
earth in the direction of the body whose height he seeks to know, then he
puts a mark on a point of that straight line, sets the rod at that point, drives
it into the earth deep enough for the magnitude of the remainder in the
lower part of the rod to be hidden from view; he adjusts how it stands until
it is upright and vertical. Then he positions himself behind the rod and
places his foot on the straight line drawn on the surface of the earth and
looks at the place he selected on the tall body, he moves forwards and back,
leans right and left, covers the eye he covered the first time and looks with
the eye he looked with first, and directs his glance to the top of the rod until
he sees the top of the rod and the place he selected on the tall body at the
same time. If he sees them at the same time, he keeps his foot still, <that is
the foot> on the side of the eye with which he was looking, he sits down
and, at the midpoint of his foot, he makes on the surface of the ground a
distinctive mark that cannot be effaced, then he measures out the straight
line between this mark and the position of the rod, using the cubit used for
measurement, notes the magnitude and records it. If he obtains the two
magnitudes we mentioned, he also measures out the distance between the
position of his foot during the first sighting and the position of his foot
during the second sighting, he notes that magnitude also and records it,
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then he subtracts the second magnitude from the first magnitude. The
second magnitude cannot but be smaller than the first, we shall show that
later. If he subtracts the second from the first, there will be something
remaining from the first one, he then notes this remainder, then he divides
the magnitude of the distance between the two positions of his foot by this
remainder, he adds to the quotient the magnitude of the rod measured with
the plumb line; what he obtains is the height of the body whose height we
seek, whether that is a mountain or anything else.
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Proof of this procedure: let the mountain or cylinder or pyramid or
<other> body whose height we wish to know be called ABC; let the rod that
we have set up on the surface of the ground the first time be the straight
line DE, let the cubit measured on this be DG, let the measurement of the
rod by the plumb line be GE and let the remainder of the rod be driven into
the ground. Let the height of the observer be HI and let the point H be the
position of the eye through which he makes sightings and the point I be the
midpoint of his foot, and let the place selected on the tall body be the point
A. We draw the visual ray51 from the point H that passes through the end of
the rod, that is the point D, and through the point A, which is the place
selected on the body, let the ray be HDA; so HDA is a straight line because
the visual ray is propagated only in a straight line; that has been shown in
the book of Optics. Let the straight line IE be the straight line drawn on the
surface of the ground, and let the rod, in the second case, be the straight
line MP; let the cubit measured on it be MN, so NP is what is measured on
it by the plumb line. Let the observer, in the second case, be KL; we draw
the ray K M A , it will be a straight line. Since HI , K L, GE , NP  are
perpendicular to the surface of the ground, they are all parallel, I mean by
these perpendiculars the perpendiculars to the straight lines that join the

51 In his reform of optics, Ibn al-Haytham rejected all the various theories of visual
rays. The conventional term he uses here has the sense of ‘line of sight’.
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midpoints of the positions we mentioned.52 Since they are erected on the
same straight line, they are all in the same plane; since they are all
measured by the plumb line, they are all equal, so the line that passes
through the points H, K, G, N is a single straight line parallel to the straight
line IP. Let us draw this straight line, let it be the straight line HKGN, and
let us imagine a straight line starting from the point A  parallel to the
straight lines HI, KL, GE , NP, which are parallel; let the straight line be
AU. So this straight line is perpendicular to the surface of the ground
because it is parallel to the straight lines we mentioned that are perpendi-
cular to the surface of the ground. This straight line meets the straight lines
HN and IP if we extend them, because the straight line AU is parallel to the
two straight lines HI and DE and starts from the point A which belongs to
the straight line HA which is in the plane of the two straight lines HI and
DE; so the straight line AU is in the plane of the two straight lines HI and
DE, which are parallel, and the two straight lines HN and IP are in the
plane of these two parallel straight lines; so the straight line AU meets the
two straight lines HN and IP if we extend them. Let us imagine <that> the
two straight lines HN and IP are extended, let the straight line AU meet
them, let the meeting of the straight line AU with the straight line HN be at
the point S and let its meeting with the straight line IP be at the point U.
Since the straight line AS is parallel to the straight line DG, the ratio of HG
to GD is equal to the ratio of HS to SA, because the triangles HGD and HSA
are similar. Since the straight line AS is parallel to the straight line MN, the
ratio of MN to NK is equal to the ratio of AS to SK; but MN is equal to DG
because each is a single cubit, so the ratio of DG to NK is equal to the ratio
of AS to SK; so, by the ratio of equality, the ratio of HG to NK is equal to
the ratio of HS to SK. But HS is greater than SK, so the straight line HG is
greater than the straight line NK; but HG is equal to IE, because the area
HIEG is a rectangle; but the straight line KN is equal to the straight line LP,
so the straight line IE is greater than the straight line LP; which is what we
stated earlier that we were going to prove.

We put JE equal to LP. So the ratio of IE to EJ is equal to the ratio of
HG to NK; but the ratio of HG to NK is equal to the ratio of HS to SK, so
the ratio of IE to EJ is equal to the ratio of HS to SK. By inversion (of the
ratios) and composition,53

 the ratio of SH to HK is equal to the ratio of EI to
IJ. If we permute, we have <that> the ratio of SH to IE is equal to the ratio

52 By hypothesis, the points I, L, E, P all lie on the straight line IU; this straight line
joins the points I and L, which represent the midpoint of the observer’s foot in each of
the two positions that are mentioned.

53 After inverting the two ratios, it would be necessary to subtract unity from the
two members, and then to invert again to obtain the result.
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of HK to IJ. But HK is equal to IL, because the area HILK is a rectangle, so
the ratio of SH to IE is equal to the ratio of LI to IJ, so the product of EI
and IL is equal to the product of SH and IJ.

Similarly, the ratio of HG to GD is equal to the ratio of HS to SA, so the
product of HS and GD is equal to the product of AS and H G; but the
product of HS and GD is HS because GD is unity, so the product of AS and
HG is equal to the magnitude HS, and the product of HS and IJ is equal to
the product of EI and IL; the product of AS and HG, then <the product of>
what we obtain and IJ, is thus equal to the product of EI and IL. But HG is
equal to IE, so the product of AS and IE, then <the product of> what we
obtain and IJ, is equal to the product of EI and IL. But the product of
numbers one with another remains equal if we commute them, so the
product of AS and IJ, then <the product of> what we obtain and IE, is equal
to the product of LI and IE; so if the magnitude IE is taken away from both,
we have <that> the product of AS and IJ is equal to the magnitude IL and if
we divide IL by the magnitude IJ, we have the quotient AS; but SU is equal
to GE, the magnitude of the plumb line, EJ is equal to LP which is the
second magnitude and EI is the first magnitude, so the straight line IJ is the
remainder that is the amount by which the first magnitude exceeds the
second magnitude, and IL is the magnitude of the distance between the two
positions of the foot of the observer. So if we divide the magnitude IL,
which is the magnitude of the distance between the two positions of the
foot of the observer, by IJ, which is the amount by which the first magni-
tude exceeds the second magnitude, and if we add to the quotient the
magnitude GE, which is the magnitude of the plumb line, the sum will be
AU which is the height of the body ABC whose height we seek, because AU
is perpendicular to the surface of the ground. That is what we wanted to
prove.

We have completed the explanation of the procedures for all the
measurements of magnitudes used in the art of surveyors, by means of their
proofs and their causes. This is the matter to which we intended to draw
attention in this treatise. But since what is used in all that we have
considered of the art of measurement is only the practical procedure and
since surveyors do not make use of any proofs when making their measure-
ments, we need to excerpt from the sum of what we have explained in this
treatise the practical procedures we have mentioned, so that they may be
accessible and easy for someone who wishes to acquire instruction in the
art of measurement and make use of the practical procedures.
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An Account of the Procedures for Measurement set out in this Treatise

All the plane figures whose measurement is undertaken by the surveyor
are rectilinear figures, circles or pieces of them. All the solid figures whose
measurement is undertaken by the surveyor are rectilinear solids, circular
cylinders, cones and spheres.

The measurement of all plane rectilinear figures can be reduced to the
measurement of triangles and to the determination of the chords of the
angles that divide the surfaces into triangles. We carry out the measurement
of all triangles by adding up the sides of the triangle and taking half the
sum, then multiplying that half by the amount by which it exceeds one of
the sides of the triangle, then multiplying what we obtain by the amount by
which that half exceeds one of the other sides of the triangle, then
multiplying what we obtain by the amount by which that half exceeds the
remaining side of the triangle; we take the square root of what we obtain,
that will be the measure of the triangle.

To determine the chords of the angles, we cut off one cubit from one of
the two sides that enclose the angles, then we divide the magnitude of the
other side by the magnitude of the first side; we cut off on the other side <a
magnitude> equal to the quotient and we join the two cutting <points> by a
straight line, we find the value of that straight line, and we multiply what
we obtain as its value by the magnitude of the first side; what we then
obtain is the chord.

We carry out the measurement of circles by determining the diameter
of the circle and multiplying the diameter by itself and subtracting from its
square a seventh of the square and half of a seventh of it; what remains is
then the measure of the circle.

We determine the diameter of the circle, if the diameter is unknown, by
drawing an arbitrary chord in the circle, dividing it into two equal parts and
from its midpoint drawing a perpendicular as far as the arc the chord has
cut off. We then find the value of half the chord and we find the value of
the perpendicular, then we multiply the magnitude of half the chord by
itself, we divide <the square> by the magnitude of the perpendicular and
we add the perpendicular to the quotient; <the sum> is the diameter of the
circle.

The measure of a sector of a circle is the product of its side and half its
arc. We carry out the measurement of a segment of a circle by completing
it to give us a sector and measuring the sector, then measuring the triangle
of the sector and subtracting it from the measure of the sector; what
remains is the measure of the segment.
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We determine the ratio of the arc to the circumference of the circle by
drawing the chord of the arc and dividing the chord into two equal parts,
drawing a perpendicular from its midpoint as far as the arc and joining the
endpoint of the chord to the endpoint of the perpendicular by a straight line
that we extend; then erecting, at the endpoint of the chord from which we
drew the straight line, a straight line at a right angle. We take this endpoint
as centre and, with the distance to the other endpoint of the chord or with a
part of that distance on the chord, we draw an arc of a circle so that this arc
cuts the two straight lines drawn from the endpoint of the chord. We then
find the value of the arc cut off by the straight line from the midpoint in
terms of a magnitude that gives a value for the whole arc that is a quarter of
a circle, from that we obtain the ratio of the small arc to a quarter of a circle
and it will thus be the ratio of the first arc to the circumference of its circle.

The measurement of all rectilinear bodies reduces to measuring
pyramids. We carry out the measurement of a pyramid by measuring its
base and multiplying it by a third of its height, what we obtain is its
measure.

The measurement of the base of the pyramid, if the base is a triangle, is
as the measurement of triangles; and if the base is a polygon, we carry out
<the measurement> by dividing the base into triangles; their (polygons’)
division into triangles is done by determining the chords of the angles.

We determine the chords of the angles of the base of a solid, whether it
is a pyramid or something else, by finding an angle equal to the angle of
the base in a plane, and this <is done> by considering two rulers; we attach
one of them to one of the two sides of the base <around the angle> and we
position the end of that ruler beyond the angle, then we attach the second
ruler to the other side enclosing the angle, then we draw against the edge of
that ruler a straight line in the plane of the first ruler, then we put the first
ruler in a plane and we fit the second ruler to the straight line drawn against
the first ruler, then we draw against the two edges of the rulers, that is to
say the two inner edges, two straight lines; we thus form in the plane an
angle equal to the angle of the base of the solid; we find the chord of that
angle by the method <given> above for finding the chords of angles. So
this chord is the chord of the angle of the base of the solid. If the base of
the solid is in a continuous plane, we extend the two sides of the base, we
thus form outside the solid an angle equal to the angle of the base of the
solid. We proceed as we proceeded for the angle we mentioned before; we
then obtain the chord we wanted.
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We carry out the measurement of a circular cylinder by measuring its
base and multiplying it by the height; if the cylinder is set on its base at
right angles, then its height is its length; if it is inclined, we shall show later
how to find its height.

We determine the measure of its base by finding the value of the
circumference of its base, we divide the magnitude we obtain by three and
a seventh; what we obtain is its diameter. When we have obtained the
diameter <of the base>, we determine its measure as we have set out above.

We carry out the measurement of a cone by measuring its base, then
multiplying the measure of its base by a third of its height; what we obtain
is its measure.

We carry out the measurement of a sphere by determining the measure
of the greatest circle that can be drawn on it (a great circle), then
multiplying the measure of that circle by two thirds of its diameter; what
we obtain is the measure of the sphere.

We determine the diameter of the sphere by drawing on the surface of
the sphere an arbitrary circle by means of compasses <the point of> one of
whose legs we place on the surface of the sphere; with <the point of> the
other leg we draw a circle on the surface of the sphere; we then mark on the
circumference of this circle two points, the circle is thus cut into two arcs
each of which we divide into two equal parts54 using another pair of
compasses with which we step out the circumference of this circle.55 If
each of the two arcs is divided into two equal parts, then the circumference
has been divided into two equal parts; we then put <the tip of> one of the
legs of a second pair of compasses on one of the two opposite points and
we move the other leg until <its tip> reaches to the point opposite that one.
We then place <the tips of> the two legs of these compasses on a plane and
with <the tips of> its two legs we make two marks that we then join by a
straight line. We draw from the midpoint of this straight line a perpen-
dicular to the line, then we put <the tip of> one of the legs of the first
compasses at the endpoint of the straight line we divided and we cause the
other leg to move until it meets the perpendicular. We then mark the
position of <the tip of> this leg on the perpendicular. We then find the
value of half the straight line we divided and we find the value of what has
been cut off from the perpendicular. We multiply the magnitude of half the
straight line by itself and we divide <the square> by the magnitude of the
perpendicular; we add the perpendicular to what we obtain, so the sum is
the diameter of the sphere. When we obtain the diameter of the sphere, we
multiply it by itself, we subtract <from the square> a seventh and half a

54 The points that divide the arcs are at opposite ends of a diameter.
55 On stepping, see note 48 above.
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seventh of it; what remains is the measure of the greatest circle that can be
drawn on the sphere. We then multiply the value of the measure of the
circle by two thirds of its diameter; what we obtain is then the measure of
the sphere.

To determine the heights of pyramids, cylinders, mountains, walls and
all tall bodies, we consider a straight rod whose length is not less than five
cubits, in terms of the cubit used for measurement. We then measure out on
this rod a single cubit by means of the cubit used for measurement. At the
end of the cubit we make a distinctive mark around the top of the rod.

The observer next takes a thread at the end of which there is a lead
weight, he then holds the thread in his hand and remains standing, then he
applies a point on the thread to one of his eyes, then he releases the thread,
increases and decreases <its length> until the lead weight touches the
surface of the ground; when that happens he marks with a sign the place on
the thread applied to his eye, then he applies the thread to the straight rod
and superimposes the sign on the thread on the sign that is on the rod and
which is at the end of the cubit. With his other hand, he pays out the thread
until the end of the lead weight reaches a point on the rod. When this
happens, he puts a mark on the place on the rod which is at the end of the
thread; part of the rod will remain over because the sum of <the lengths of>
the plumb line and the cubit ls less than five cubits. If the observer wishes
to know the height of one of the bodies, let him stand facing the body, then
drive the rod into a place on the ground, between himself and the tall body,
and arrange matters so that the cubit measured out on the rod is on the side
of the upper part of the rod; he drives the rod into the earth until the part of
it that remained over disappears. He adjusts the rod until it is at right angles
to the surface of the ground, then he places himself behind the rod and
looks at the top of the rod and the top of the thing whose height he wishes
to know and directs his glance to a particular place on the top of the thing,
if the top of it is not a point; he then covers one of his eyes and looks with
the other and looks at the top of the rod, then he moves forwards and back,
bends to the right and bends to the left until he can see at the same time
both the top of the rod and the place he had selected on the top of the thing;
when this happens he sits down and puts his finger on the place on the
ground that is beneath the midpoint of his foot, <that is the foot> on the
same side as the eye he was looking with, and puts a mark at that place;
then he draws a straight line from that mark to the foot of the rod; he then
measures that straight line with the cubit used for measurement – let that
cubit be divided into parts as small as possible. He notes the magnitude of
the straight line and records it. He then pulls up the rod from its position
and extends the straight line drawn on the surface of the ground in the
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direction of the thing, he then makes a mark on this straight line and puts
the rod on this mark and arranges matters so that the cubit measured out on
the rod is on the side of the upper part of the rod; he drives the rod into the
earth until the part that remained over disappears. The observer places
himself behind the rod and covers the eye he covered <before> and looks
with the other eye and puts his foot, <that is the foot> on the side of the eye
he is looking with, on the straight line drawn on the surface of the ground
and looks at the top of the rod until he sees the top of the rod at the same
time as the place that he selected at the top of the thing; when that happens
he sits down and makes a mark at the place beneath the midpoint of his
foot. He measures out the straight line that lies between the mark and the
foot of the rod and subtracts this magnitude from the first magnitude; what
remains from the straight line is the part that becomes the divisor. He then
measures out the straight line that runs between the position of his foot in
the first case and the position of his foot in the second case, and he divides
what he obtains by the remainder he recorded. We add to the quotient the
magnitude of the rod measured by the plumb line; the sum is the height of
the thing whose height we sought.

These are the practical procedures that surveyors need in their art. Here
we complete this treatise.



In the name of God, the Compassionate, the Merciful

TREATISE BY THE SHAYKH ABª ‘ALï IBN AL-HAYTHAM

On Knowing the Height of Upright Objects, the Altitude of
Mountains and the Height of Clouds

We take AB as the height of a mountain or of an object and we wish to
know what it is.

A

BH

G

K

E

DIC

Fig. IV.2.1

We set up an object on the surface of the ground, such as DE; let the
observer move forwards and back until he sees the top of the object at the
same time as the top of the mountain; under these conditions let the eye be
shown as the point C, the object as DE  and the line of sight as CA. We
imagine the straight line BDC on the surface of the ground. So the ratio of CB
to BA is equal to the ratio of CD to DE. We now remove the object DE and
place it in a position closer to the mountain, such as HG. Let the observer
move forwards and back until he sees the top of the standing object at the
same time as the top of the mountain, as he did in the first case; in this second
case let the eye be shown as K and the line of sight as KGA, then the ratio of
AB to BK is equal to the ratio of GH to HK. But since the straight line BK is
smaller than the straight line BC, the straight line H K is smaller than the
straight line CD. We cut off from CD <a piece> equal to HK, let it be ID. The
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ratio of ID to DE is equal to the ratio of KH to HG, but the ratio of CB to BA is
equal to the ratio of CD to DE and the ratio of AB to BK is equal to the ratio of
ED, which is equal to GH, to DI, which is equal to HK. So, by the ratio of
equality, the ratio of CD to DI is equal to the ratio of CB to BK; by separation,
the ratio of CI to ID is equal to the ratio of CK to KB. But the ratio of CI to ID
is equal to the ratio of CK to KB and the ratio of ID to DE is equal to the ratio
of KB to BA, thus, by the ratio of equality, the ratio of CI to DE is equal to the
ratio of CK to AB. So the product of KC and DE is equal to the product of CI
and AB. So if we multiply CK, <which is> known, by DE, <which is> known
– because it is the object – and if we divide by CI, then the quotient is AB.
That is what we wanted to prove.

The treatise is completed. Thanks be given to God, Lord of the worlds,
may blessing be upon His prophet MuÌammad and those that are his, the pure.
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TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Determination of the Height of Mountains

If someone wishes to know the height of a mountain, of a high building, or
of one of the bodies that have a height, he should employ a straight rod, whose
length is five cubits and a half. Let him measure off a single cubit from one of
its two ends, and make a distinctive black mark, round, around the rod, at the
end of the cubit. Then he measures out on the rod another cubit, following on
from that cubit, and at the end of it makes a round black mark, again <one that
is> easy to see. The measurement can be done by means of a short straight
ruler, whose length is a single cubit. Let this ruler be divided into sixty equal
parts, so that we can make use of its parts in what follows. If he wishes to
know the height of a mountain or of a body that has a height, he goes to a
place close to the mountain, without being extremely close to it. He relies on
finding a piece of flat ground, or almost flat; he drives the rod into the earth
and sets it up in the ground so that it is vertical; he pushes it into the earth until
the second mark drawn on the rod is level with his eye, then he consolidates
<the supports for> the base of the rod, so that it cannot lean and stays vertical.
Then he moves back and covers one of his two eyes; he looks at the mountain
and the top of the rod; he takes a sighting of a place at the top of the mountain
that is distinct either because there is a protruding part on the mountain, or
there is a rock, or sufficiently vivid colour, to enable him to recognize this
place if he looks at it later. He moves backwards and forwards until he sees
this place on the mountain at the same time as the top of the rod, that is to say
that he sees them in the same direction; and in such a way that the sighting is
carried out by only one of the two eyes. If this place is determined, then let
him sit down and make a mark on the earth at the midpoint of the position of
his foot, that is to say the foot that is on the <same> side as the eye with which
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he saw the mountain and the rod at the same time. He drives in a small rod at
this place so that the mark does not disappear.

Then, he takes a little wax, <a piece> about the size of a walnut, which he
sticks on one or the other of the faces of the upright rod, on the position of the
higher circular mark, that is to say the first mark. Then he moves back and
covers one of his two eyes, and he looks at the thing stuck onto the rod and the
chosen place at the top of the mountain, until he sees the chosen place at the
top of the mountain and the piece of wax at the same time, that is to say in the
same direction. When this place is determined, he again make a mark under
the mild point of his foot and there too drives in a small rod. When he has
done that, he measures out the distance between the first mark on the ground
and the second mark; this measurement is carried out by means of the divided
ruler, and he determines the measurement by <using> the parts of the <cubit>
ruler because in the majority of cases the distance will not simply be a whole
number of cubits, but often <will be> cubits and parts of a cubit, and perhaps
only parts of a cubit, without any whole cubits. Then we measure out the
second distance, <the distance> that is between the second mark on the ground
and the upright rod, and we determine this distance with extreme accuracy. If
we determine the two distances, then you will always find <that> the first
distance, that is to say the one between the two marks on the ground, is greater
than the distance between the second mark and the rod.

You subtract the second distance from the first distance, and you note
what remains; then you add the two distances, you multiply the result by the
first distance, you divide the product by <the quantity> that was noted, you
double the quotient, you divide the result by the sum of the two distances and
you add three and a half cubits to the result. What we obtain is the height of
the mountain or of a body whose height was sought. And what we obtain from
the first division before doubling, is the distance there is between the first
mark on the ground and the foot of the perpendicular <dropped from the top>
of the mountain. That is what we wanted to show.

The comparison with the original copy is completed.
Finished by the grace of God and His blessings. Blessed be the best of His

created beings, the prophet MuÌammad, and those that are his. Let there be
peace.



APPENDIX I

A RESEARCH TRADITION: THE REGULAR HEPTAGON

1. HISTORY OF THE TEXTS

We cannot come to a deep understanding of the unprecedented
flowering of research on the regular heptagon in the final third of the tenth
century if we confine ourselves to recounting events and describing
construction procedures – work that has, moreover, already been carried
out satisfactorily by A. Anbouba.1 Understanding on that level comes
through undertaking two tasks that are inseparably linked. First of all we
must carry out exploratory work, so as to shed light on the position of this
research in relation to its own theoretical and technical aims. As we have
shown, once such work has been carried out, the research on the heptagon
is seen to be part of a much larger enterprise on which geometers were then
engaged, but along with them also algebraists, an enterprise dedicated to
investigating geometrical constructions, notably those that employed conic
sections. But to follow the course of development of this enterprise, at least
in part, and to uncover the exact significance of this research, we needed to
establish texts of all available works, assess the various testimonies and
evaluate the documents; establishing this basic framework was made all the
more necessary by the fact that the construction of the heptagon was the
subject of controversy so impassioned that it attracted attention, and a little
censure, from contemporaries of the events concerned, such as al-Bîrºnî,2

1 ‘Tasbî‘ al-Dæ’ira (La construction de l’heptagone régulier)’, Journal for the
History of Arabic Science, 1, 2, 1977, pp. 352–84.

2 ‘The centuries have passed, writes al-Bîrºnî, and we have arrived at our own
time, a time rich in things <that are> surprising, unprecedented and amazing, and <a
time> that combines contraries; I mean the richness of sources of knowledge in this
time and the natural disposition of its men to recognize the near-perfection and
completeness in every branch of learning, the increase of distinction among them as
well as the capacity to discover amazing things that had defeated the illustrious
Ancients; and side by side with all this, the appearance of behaviour that runs counter to

 (Cont. on next page)
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and later, at least indirectly, from Ibn al-Haytham.3 So we needed to
establish texts of all the writings that have come down to us from Ibn al-
Haytham’s predecessors and his immediate successors. That is the task to
which this bulky appendix is dedicated.4

So what we are giving here is the English translation of these writings,
but not of the summary versions that have sometimes been made from
them.

A single occurrence is not necessarily significant: three collections
combine the majority of the writings – Cairo, Dær al-Kutub, 41; Paris,
Bibliothèque Nationale, 4821; Istanbul, Süleymaniye, Aya Sofya 4832. The
remaining texts are found in other collections; we shall first look at these
collections.

                                           
(Cont.) what we have just said, in contradiction with it, on the part of the majority of
those among them who are in rivalry; they are animated by jealousy, conflicts dominate
and they are so opinionated that some appropriate things that belong to others and pride
themselves on what is not theirs; some pillage others’ learning and make it theirs to sell
it for gain; they ensure that others are blind to what they are doing themselves, but vent
all their anger upon anyone who has seen through them and bear him hatred and enmity;
this is what has happened to a group of eminent mathematicians of our time, regarding
the regular heptagon and, with it, trisection of an angle; regarding duplication of the
cube, and other things […].’

This passage from Kitæb maqælîd ‘ilm al-hay’a (ed. M.-T. Debarnot, Damascus,
1985, p. 95) is valuable testimony from one of the members of the mathematical
community (that is indeed what it is), concerning some of the behaviour during
controversies that, as we see, relate in particular to the classical problems of geometrical
construction.

3 See the introduction to his treatise on the heptagon, p. 441.
4 We gave the editio princeps of more or less all these writings – only one of which

has already been the subject of a critical edition, and that edition was unsatisfactory; the
work in question was the treatise by al-Sijzî (see below) – as well as the French
translation of the edited texts, in Mathématiques infinitésimales, vol. III.
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I. The manuscript collection 41 Dær al-Kutub (Cairo) includes 32
treatises and short works. It is one of the most important collections of
scientific manuscripts – in mathematics and astronomy – that is now
known. It includes some rare texts, and some unique ones, for instance a
copy of Ibn Abî Jarræda’s version of the Sections of the Cylinder and its
Lateral Surface by Thæbit ibn Qurra,5 a copy of the Book on the Synthesis
of the Problems Analysed by Abº Sa‘d al-‘Alæ’ ibn Sahl,6 as well as others
by Ibn Qurra, by al-Qºhî, by al-Bîrºnî, and so on. It also contains five
treatises on the regular heptagon, composed in the period that we are
concerned with here: a piece by Abº al-Jºd, the one by al-Sijzî, the treatise
by al-Shannî and an anonymous text, in addition to the one attributed to
Archimedes. Apart from the middle folios 87v to 94v, it is in a single hand.
It was indeed copied relatively recently, in the eighteenth century, by the
famous MuÒ†afæ ∑idqî, in careful naskhî script. We have already several
times come across this copyist, who is well educated and familiar with the
mathematical sciences.7 The copy is, on the whole, without glosses or
additions. But MuÒ†afæ ∑idqî does sometimes intervene, and give his
version rather than a true copy. This is what he did in a treatise by al-Qºhî
on the volume of the paraboloid8 in this same collection. He also intervened
in the text on the regular heptagon attributed to Archimedes.

The different treatises brought together in this collection were
transcribed between 1146 and 1153, that is, between 1733 and 1740.
However, most of the copies were completed in 1740. Being all by one
hand, this collection does not raise any problems relating to specific texts.
For the moment we shall not touch on the question of its sources. The case
is very different for the collection in Paris.

II. The collection 4821 of the Bibliothèque Nationale in Paris is no less
important than the preceding one. It is moreover much older. It too contains
rare texts, sometimes unique ones; five pieces on the heptagon: one by Abº
al-Jºd, the one by al-Sijzî, the one by al-∑æghænî, and two treatises by al-
Qºhî . But as several hands are at work in the transcription of this

5 R. Rashed, Founding Figures and Commentators in Arabic Mathematics. A
history of Arabic sciences and mathematics, vol. 1, Culture and Civilization in the
Middle East, London, 2012, pp. 381–458.

6 R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005,
pp. 444–89.

7 See, for example, Geometry and Dioptrics, pp. 10, 22, 27; Founding Figures and
Commentators in Arabic Mathematics, pp. 126, 127, 129, 464, 585, 586.

8 Founding Figures and Commentators in Arabic Mathematics, pp. 583–7.
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collection, we need to give a once and for all description of it, so as not to
have to return to the matter.9

In its present state, the volume has 86 paper leaves (230 × 150 mm). It
was copied in Iran, but is to be found in Turkey, at Istanbul, in the fifteenth
century (if we are to believe the seals and ownership indications on fol.
1r).10 Originally, this collection included eighteen treatises, three of which
have been missing for a long time. The table of contents transcribed on fol.
1r is evidence of this. It is written in black ink, and states that the
manuscript contains:

– The Second Book of Euclid with the Additions of al-Qºhî,
– The Sphericity of the Earth by al-Khæzin,
– The Book of Abî Sa‘d al-‘Alæ’ ibn Sahl on the Critical Examination of

the Book by Ptolemy on Optics (incomplete).11

A later hand has noted in red ink, above the titles in the contents, the
number of the folio on which the work appears; in the case of the three lost
treatises, their absence is noted.

Let us now turn to the treatises that are preserved, in the order:
1. Treatise on the Construction of the Side of the Regular Heptagon in

the Circle by Abº Sahl al-Qºhî, fols 1v–8r. As a rule, each folio has 16
lines, sometimes 17, with about eight words in each. The copyist (hand A)
notes in the colophon that he has compared the copy with its original; and,
in fact, a marginal note on fol. 3v is in his hand, and is probably to be
explained within the framework of that revision. Hand B has put in two
marginal notes, on fols 1v and 6v.

Copyist A did not give his name in the colophon. His handwriting,
naskhî, has a certain similarity (but no more) to that of al-Îusayn
MuÌammad ibn ‘Alî, who transcribed fols 29v–36v of the collection. We

9 The summary description given by G. Vajda [Index général des manuscrits
arabes musulmans de la Bibliothèque nationale de Paris, Publications de l’Institut de
recherche et d’histoire des textes, Paris, 1953], and his unpublished description of the
manuscript preserved in the Department of oriental manuscripts of the BnF, are not
adequate for the task of disentangling the complicated historical network, textual and
conceptual, within which this fundamentally important manuscript plays its part.

10 On fol. 1r we read that this collection was the property of ‘Abd al-RaÌmæn ibn
‘Alî [...] at Constantinople in 891/1486, then that of Alî ibn Amr Allæh ibn MuÌammad
in Rajab 970/1563. Then it belonged to Sulaymæn ibn Yºsuf in Rama≈æn 1077/1677,
and then to Îunayn Îalabî (or Celebi) in 1089/1678-1679. Later it was taken into the
Bibliothèque Nationale in Paris.

11 Perhaps this incomplete text has survived under the title Proof that the Celestial
Sphere is not of Extreme Transparency. See Geometry and Dioptrics, pp. 144–9.
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may also observe that on page 8r, well below the colophon, there is a line of
Persian verse in the hand of Abº IsÌæq b. ‘Abd Allæh al-Kºbnænî:

Next to it, a third hand confirms the identity of the last one:

‘Writing of the master of great mathematicians, who revived the traces of the
sciences of past philosophers, his Excellency Abº IsÌæq ibn ‘Abd Allæh al-
Kºbnænî […]’.

This very probably identifies him as an owner of the collection. Again
in another hand, we read, under the name of al-Kºbnænî: ‘Commentator on
the Fawæ’id Bahæ’iyya composed by Khawwæm Baghdædî’, followed by
the signature of Sayyid Jalæl al-Dîn Tehrænî,12 with the place – Paris – and
the date – 1936.

2. Al-Ghurba al-gharbiyya by al-Suhrawardî, fols 8v–9r. We have a
short treatise on philosophy transcribed much later, on Tuesday 17 Jumædæ
al-ºlæ of the year 744 (7 October 1343), on two folios that had been left
blank.

3. On the Construction of the Side of the Heptagon by al-Sijzî, fols
10v–16v. Each folio has 16 to 18 lines, with about 10 to 11 words. The
script is naskhî, in the same hand as that of the preceding mathematical text
(number 1). At the end of the copy, we read: ‘Transcribed from a damaged
copy, with which it (the transcription) has been compared; praise be to God
(nuqila min nuskha saqîma wa-qºbila bihæ wa-Allæh al-Ìamd)’. The
transcribed copy further includes three additions that are of significance for
the history of the text. The first is on fol. 11r (allædhî), the second, fol. 13v

(ka-kha†† AD); the third, a complete sentence, is on fol. 15v: qu†ruhu al-
mujænib DB, above this has been written the letter Â, an abbreviation
conventionally used by copyists for the word al-Âæhir – which means that
this sentence was difficult to read in the original. These additions are in the
same anonymous hand B in which most of the treatises of the collection are
transcribed, notably the writings on the regular heptagon. So, as in the case
of Text 1, copyist B must have had access to the original used by copyist A.
From this point on, it does not seem overly bold to suppose there was some

12 Jalæl al-Dîn Tehrænî is a scholar and a great collector of manuscripts, who has
recently died.



574 APPENDIX I: A RESEARCH TRADITION

degree of collaboration between the two men. This hypothesis will,
moreover, be confirmed by the fact that copyist B is known, this time as a
matter of certainty, to have collaborate with the third copyist of the
collection, al-Îusayn MuÌammad ibn ‘Alî.

4. On the Construction of the Regular Heptagon Inscribed in a Given
Circle by al-Qºhî, fols 17v–23r. Each folio has 17–19 lines, each with about
11 words. This text was copied in naskhî by copyist B. Everyone who has
spoken about this manuscript has confused the two hands.

The colophon tells us that B transcribed this text at ‘Kushk Hamadhæn
(at the fort of Hamadhæn) on Thursday 13 Rajab 544 AH’, that is 16
November 1149, from an authoritative original – no less than an autograph
text by al-Sijzî. It is a remarkable fact that several texts copied by B were
taken from this autograph.

The copy shows two important crossings-out, on 18v and 22r,
corresponding to repetitions that the copyist himself has struck out; there is
a single addition, on 21r, used to indicate his place in the text.

5. Treatise by al-∑æghænî for ‘A≈ud al-Dawla, fols 23v–29r. These
pages are in the same hand as Text 4 and show the same characteristics.
The copy was completed two days after the previous item, in the same
place, and again from al-Sijzî’s autograph. It contains neither additions nor
glosses, and the two crossings-out (fol. 23v) are again there to remove
repetitions in the transcription.

6. The Construction of a Regular Pentagon in a Known Square by al-
Qºhî, fols 29v–33v. Each folio has 18 or 19 lines, each of about 10 words.
The writing, naskhî, is according to the colophon, in the hand of al-Îusayn
MuÌammad ibn ‘Alî. There are only two added words, on 30v and 32v, in
the hand of the copyist. He completed the transcription on Tuesday 15
Rama≈æn 544 AH, that is 16 January 1150.

We know that al-Îusayn and B were collaborating in their copying
because here, as in the following treatise, which was copied by the same
person, it is B who took on the task of drawing the geometrical figures.
Since al-Îusayn begins his copying on the verso of fol. 29, whose recto
had been copied by B, we are compelled to conclude that the two men
worked together, at the same time (the beginning of winter 1149–1150).

7. On the Knowledge of the Magnitude of the Distance Between the
Centre of the Earth and the Position of a Shooting Star, by al-Qºhî, fols
34r–36v. Each folio has 18 lines, each with about 11 words. This text is in
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naskhî script, in the hand of al-Îusayn MuÌammad ibn ‘Alî, transcribed,
like the preceding one, on Tuesday 15 Rama≈æn 544 AH. We see no
additions or glosses. After the colophon, we read, in another hand, in
Persian, that the copy was completed on 15 Rama≈æn l’an 544, ‘at Asad,
God knows it’.13

8. Letter of Abº al-Jºd to Abº MuÌammad ‘Abd Allæh ibn ‘Alî al-
Îæsib, fols 37v–46r. Each folio has 18 lines, each with about 11 words. The
text, like all those that now follow in the manuscript, was copied by B,
again from the autograph by al-Sijzî and again at the same place, Kushk
(Fort) of Hamadhæn, on Wednesday 12 Rajab 544 AH, that is the day
before the copy of the fourth text, on 15 November 1149. In all there are
two words added in the margin by the scribe, words omitted during the
copying (37v–39v).

9. Commentary on the First Book of the Almagest by Abº Ja‘far al-
Khæzin, fols 47v–67v. It is in the same hand as the preceding text, and is
presented in the same form. The additions and crossings-out are by the
copyist and, as for the preceding treatises, were made at the time of the
transcription itself and not when comparing the copy with the original. We
have already established a text of this work, translated it and written
comments on it.14

10. The Surface of any Circle is Greater than the Surface of any
Regular Polygon with the Same Perimeter, by al-Sumaysæ†î. This text – fol.
68 – presented here as anonymous, is that by al-Sumaysæ†î. It is in the same
hand as the preceding text, and, like that one, has no colophon. We have
already established a text of this work also, translated it and written
comments on it.15

11. Glosses by Maslama ibn AÌmad al-Andalusî on the Planisphere of
Ptolemy, fols 69v–75v. The same characteristics. The colophon tells us that

13 See Geometry and Dioptrics, pp. 1008–17.
14 Mathématiques infinitésimales, vol. I, pp. 737–829; English translation in

Founding Figures and Commentators, pp. 551–76. We have, like everyone else,
confused this copyist with al-Îusayn MuÌammad ibn ‘Alî (Mathématiques infinité-
simales, vol. I, p. 740; Founding Figures and Commentators, p. 507) being misled by
our confidence in the catalogue of the manuscripts. We ask readers to accept our
apologies.

15 Mathématiques infinitésimales, vol. I, p. 830–3; English translation in Founding
Figures and Commentators, pp. 577–8.
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the copy was produced at Asadæbæd, a town close to Hamadhæn , on
Wednesday 11 Sha‘bæn 544, that is 14 December 1149.

12. A Chapter that does not Belong in the Book (the Planisphere) of the
Sayings of Maslama ibn AÌmad, fols 76r–81v. Same characteristics.

13. Copy of an Autograph text by ‘Abd Allæh ibn al-Îasan al-Qºmasî,
pupil of YaÌyæ ibn ‘Adî, fol. 82. This text, a translation from Syriac
attributed in the manuscript to Ibn ‘Adî, is also copied by B.

14. On the Generation of the Climate by al-Nayrîzî, fols 82v–86r. By
the same anonymous hand, the copy was completed, according to the
colophon, at Hamadhæn, on 13 Sha‘bæn 544, that is two days after Text 11,
which was copied at Asadæbæd.

So we see that three different scribes took part in the copying of this
collection: copyist A, whose original was in the hands of the anonymous B
– who transcribed the majority of the treatises – and, finally, al-Îusayn
MuÌammad ibn ‘Alî. These texts were copied, in 1149–1150, in the
immediate environs of Hamadhæn and Asadæbæd – this is certain for B and
al-Îusayn, very probable for A. So everything suggests that the three
copyists collaborated in the transcription of these mathematical texts
(which are on the highest level), even if we should perhaps see B as the
master in charge of the project. The texts on the heptagon copied by B are
all taken from an original that is an autograph by al-Sijzî [4, 5, 8].

Let us now turn to the treatises whose texts are translated here.
1. Book of the Construction of the Circle Divided into Seven Equal

Parts by Archimedes (Kitæb ‘amal al-dæ’ira al-maqsºma bi-sab‘at aqsæm
mutasæwiya li-Arshimîdis)

There exists only one copy of this text, the one transcribed by MuÒ†afæ
∑idqî , ms. 41 in Dær al-Kutub, fols 105r–110r. The transcription was
completed ‘on Sunday the seventh day of Jumædæ al-ºlæ of the year one
thousand one hundred and fifty-three’, that is on 31 July 1740. Moreover,
there is nothing to indicate that MuÒ†afæ ∑idqî compared the copy with his
original. We have already noted that often what we have is more like a
rewritten version than a copy, and moreover it is not unusual for MuÒ†afæ
∑idqî to incorporate into his version proofs that come from mathematicians
of the end of the tenth century, such as al-Îubºbî (transcribed ‘al-Juyºbî’)
and al-Shannî. This has, as it were, the advantage of sketching a more
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precise portrait of the faqîh and mathematician, al-Îubºbî,16 of whom we
still know very little.

The text of this book has never been established before. It is, however,
widely available and well known since the German translation was made of
it by C. Schoy in 1927,17 and, more recently, the Russian translation by B.
Rosenfeld.18

Abº al-Jºd wrote three treatises, the first of which, as we have
explained before, has been lost.19 We still have the following treatises:

16 Abº ‘Alî al-Îasan ibn Hærith al-Îubºbî is a correspondent of Abº al-Wafæ’ al-
Bºzjænî. As his contemporaries indicate, he is a faqîh (a jurist in Islamic law) and a
mathematician. Thus we learn from the manuscript Bodleian, Thurston 3, that Abº al-
Wafæ’ al-Bºzjænî wrote a treatise titled ‘The reply of Abº al-Wafæ’ MuÌammad ibn
MuÌammad al-Bºzjænî to what he was asked by the faqîh (jurist) Abº ‘Alî al-Îasan ibn
Îærith al-Îubºbî: the determination of the area of triangles without determining the
perpendiculars or their feet’ (fol. 3):

We also meet him in the correspondence exchanged between Abº NaÒr ibn ‘Iræq
and al-Bîrºnî. The latter writes:

‘Until the book of our Master Abº al-Wafæ’ MuÌammad ibn MuÌammad al-
Bºzjænî reached the faqîh (jurist) Abº ‘Alî al-Îubºbî: <the book> in which he mentions
that anyone who ponders on my book on Azimuths…’ (Risæla fî ma‘rifat al-qusiy al-
falakiyya, in Rasæ’il Abî NaÒr ManÒºr ibn ‘Iræq ilæ al-Bîrºnî, Hyderabad, 1948, 8th
treatise, p. 2). See F. Sezgin, Geschichte des arabischen Schrifttums, Leiden, 1974, V,
p. 336.

See also the treatise titled Fî tashrîÌ al-kura, very probably by al-Îubºbî, in ms.
Cairo, Dær al-Kutub, no. 1202.

17 C. Schoy began by translating Propositions 17 and 18 in ‘Graeco-Arabische
Studien nach mathematischen Handschriftender Viceköniglichen Bibliothek zu Kairo’,
Isis, 8, 1926, pp. 21–40; and then went on to translate the whole treatise in Die
trigonometrischen Lehren des persischen Astronomen Abº’l RaiÌæn MuÌammad Ibn
AÌmad al-Bîrºnî, Hanover, 1927.

18 This translation was published in I. N. Weselowskii, Archimed-socinenja,
Moscou, 1962.

19 It seems that this text by Abº al-Jºd was still in circulation at the beginning of
the thirteenth century. In fact, the copyist of the manuscript in the Bodleian (Thurston
no. 3, fol. 129r) wrote in the margin beside the lemma given by al-Sijzî, that deals with
the division D2 by Abº al-Jºd, that Abº al-Jºd had given it in this first essay:

(Cont. on next page)
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2.1. Treatise by Abº al-Jºd on the Construction of the Heptagon in the
Circle (Kitæb ‘amal al-musabba‘ fî al-dæ’ira li-Abî al-Jºd MuÌammad ibn
al-Layth)

This treatise belongs to the same collection as the preceding one, fols
117v–120r, and is thus still in the hand of MuÒ†afæ ∑idqî, who completed his
copy of it on Wednesday 10 Jumædæ al-ºlæ 1153 AH, that is 3 August 1740.
Like the preceding one, this text contains no glosses or additions, and there
is nothing to encourage us to suppose that MuÒ†afæ ∑idqî revised it by
comparing it with his original. The text of the treatise has never been
established or translated before.

2.2. Treatise by Abº al-Jºd on the Account of the Two Methods of al-
Qºhî and al-∑æghænî (Risælat Abî al-Jºd MuÌammad ibn al-Layth ilæ Abî
MuÌammad ‘Abd Allæh ibn ‘Alî al-Îæsib fî †arîqay Abî Sahl al-Qºhî wa-
shaykhihi Abî Îæmid al-∑æghænî fî ‘amal al-musabba‘ al-mutasæwî al-
a≈læ‘ fî al-dæ’ira)

This treatise has come down to us in a single copy, number 8 in the
collection 4821 described before, in the hand of the copyist B and not that
of al-Îusayn MuÌammad ibn ‘Alî as has been claimed.

                                           

(Cont.)

‘I found this (that is the division D2) in a letter by Abº al-Jºd MuÌammad ibn al-
Layth <addressed> to the Master ‘Abd Allæh ibn AÌmad ibn al-Îusayn, and he
remarked: “I know no one who has preceded me in this construction, according to
what geometers have recognized and what their books have stated up to this point
in time, that is the end of the year three hundred and fifty-eight of the Hegira”, and
he mentioned Abº Ja‘far al-Khæzin’.

This testimony, although very brief, is nevertheless very important. It is the only one
that has come down to us from someone who has read this essay by Abº al-Jºd, without
being committed to one side or the other in the controversy. It confirms certain
statements made by both Abº al-Jºd and his detractors concerning the division D2, and
discreetly raises the veil over Abº al-Jºd’s interests, by reminding that he mentions the
name of al-Khæzin – who is one of the first mathematicians who tried to solve a cubic
equation with the help of the intersection of the curves of two conics. Now this is
precisely one of the chief preoccupations of Abº al-Jºd, according to the testimony of
his successor al-Khayyæm.



HISTORY OF THE TEXTS 579

2.3. An abridged version of the preceding treatise is in Oxford,
Bodleian Library, Thurston 3, fols 133r–134r. Part of the date of
transcription of this version has been effaced and all we have is ‘Friday 2
Sha‘bæn of the year six hundred …’ (fol. 134r). On fol. 136r, the date
written by the copyist is effaced in the same way. On the other hand, on
fols 69r and 92v respectively we read the dates: ‘the end of the month of
Rajab in the year six hundred and seventy-five’ and ‘seven Rajab in the
year six hundred and seventy-five’. So we can assuredly fill in the effaced
part to read ‘2 Sha‘bæn six hundred and seventy-five’, that is, 8 January
1277.

A relatively recent copy of Thurston 3 is in Oxford, Bodleian Library,
Marsh 720, fols 261r–264r.

We gave the editio princeps of the two texts 2.2 and 2.3, but the
translation only of the first, 2.2, in Mathématiques infinitésimales, vol. III.

3.1. Book by al-Sijzî on the Construction of the Heptagon (Kitæb
AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl al-Sijzî fî ‘amal al-musabba‘ fî al-
dæ’ira wa-qismat al-zæwiya al-mustaqîma al-kha††ayn bi-thalætha aqsæm
mutasæwiya)

This book exists in three manuscripts. We find it, written in the hand of
MuÒ†afæ ∑idqî, in the collection 41 of Dær al-Kutub, Cairo, referred to
above, fols 113v–115v. This copy, designated by Q, was transcribed on
Tuesday 9 Jumædæ al-ºlæ 1153 AH, that is 2 August 1740.

The second manuscript is number 4821 in the Bibliothèque Nationale,
Paris, fols 10v–16v, in the hand of al-Îusayn MuÌammad ibn ‘Alî. It was
very probably copied at Hamadhæn or at Asadæbæd about 1149–1150. We
have designated it by B.

The third manuscript belongs to the collection Reshit 1191 in the
Süleymaniye Library of Istanbul, fols 80v–83r, designated by T. We have a
collection of works by al-Sijzî, copied in nasta‘lîq by the same hand.

Now, examining omissions as well as other accidents of copying shows
that Q and T are related. Their common ancestor must very probably have
been in Istanbul, and it is a copy of that manuscript that MuÒ†afæ ∑idqî
transcribed. In 1926, C. Schoy translated the text of Q into German, but
without giving a critical edition of it.20 An edition and a translation of the
text have recently been published.21

20 C. Schoy, ‘Graeco-Arabische Studien nach mathematischen Handschriften…’.
21 See J. P. Hogendijk, ‘Greek and Arabic Constructions of Regular Heptagon’,

Archive for History of Exact Sciences, 30, 1984, pp. 197–330, on pp. 292–316. The
edition (see apparatus criticus in Mathématiques infinitésimales, vol. III, pp. 739–57)
and the English translation remain completely unsatisfactory, despite the notable effort.
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3.2. As was the case for the Treatise by Abº al-Jºd, the collection
Thurston 3 in the Bodleian Library, fol. 129, includes an abridged version
of the preceding book. The collection Marsh 720, fols 267v–268r, also
includes a late copy of this latter.

This abridged version deliberately omits all the beginning of the book,
a little more than three pages in our edition, as well as all the historical and
polemical references that appear in the body of the text.

It is possible that this abridged version was made from a copy in the
tradition of manuscript B. If we look at the example of the omission
(qu†ruhu al-mujænib BD) in other manuscripts, the omission is repaired in
B and is found in the abridged version.

We give the editio princeps of this version, but without translating it;
the translation of the complete version is enough.

4.1. Solution by al-Qºhî for the Construction of the Regular Heptagon
in a Given Circle (Istikhræj Wayjan ibn Rustum al-ma‘rºf bi-Abî Sahl al-
Qºhî fî ‘amal al-musabba‘ al-mutasæwî al-a≈læ‘ fî dæ’ira ma‘lºma)

This treatise has come down to us in five known manuscripts:
Fols 222v–225r, in Dær al-Kutub 40, also in the hand of MuÒ†afæ ∑idqî,

who completed the transcription on Monday 29 Dhº al-qa‘da 1159, that is,
13 December 1746; designated here by Q. We have shown that this
manuscript has the same ancestor as the important manuscript 4832 in Aya
Sofya, Istanbul.22

Fols 17v–23v, of the collection 4821 in the Bibliothèque Nationale,
Paris, in the hand of the anonymous copyist we have called B (and not that
of al-Îusayn MuÌammad ibn ‘Alî), who transcribed it from the autograph
by al-Sijzî, designated here by B.

Fols 145v–147v, of the collection Aya Sofia 4832 in the Süleymaniye
Library, in Istanbul. We have described this collection, and shown that it
was transcribed at the latest in the sixth century of the Hegira (twelfth
century).23 This manuscript was transcribed from Abº ‘Alî al-∑ºfî;
designated by A.

Fols 65v–67r, of the collection 1751 in the University of Tehran;
designated by D.

Fols 215v–219v, of the collection 5648 in the Åæhiriyya Library of
Damascus. We have here a recent copy of the manuscript 40 of Dær al-
Kutub, as we have shown more than once.24 So we have not taken this
Damascus manuscript into account in establishing the text.

22 Founding Figures and Commentators, pp. 126 and 464.
23 Ibid., pp. 124–5.
24 Ibid., p. 126
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We note immediately an important difference that separates these
manuscripts into two families, B on one side, and A, D and Q on the other:
the introductory section in B is notably different from that in A, D and Q.
Moreover, a synthesis is presented differently in each of the traditions. This
difference compelled us to establish texts of the two versions in parallel.

A more careful examination of the accidents of copying allows us to
refine our analysis, and eventually to establish the following stemma:

x

x

x 971 

1149
B

D

A

Q

Abº ‘Alî al-∑ºfî x

before 1173

1746

?

al-Sijzî

The text of this treatise has not been established before. There is a
German translation25 from the copy by MuÒ†afæ ∑idqî.

4.2. The collection Thurston 3, fol. 130 includes an abridged version of
this text; again we have established the text here without translating it.

4.3. Treatise on the Construction of the Side of the Regular Heptagon
Inscribed in the Circle, by al-Qºhî (Risæla fî ‘amal ≈il‘ al-musabba‘ al-
mutasæwî al-a≈læ‘ fî al-dæ’ira li-Abî Sahl al-Qºhî)

There exist two manuscripts of this treatise. The first belongs to the
collection 4821 in the Bibliothèque Nationale, Paris, fols 1v–8r, designated
by B. As we have already said, this copy is in the hand A, and no doubt
dates from the years 1149–1150.26

The second manuscript belongs to the collection in the India Office,
London, no. 461 (Loth 767), fols 182v–189r, designated by I. We have set
out all we know about this collection, which was copied in India around
1784.27 We have shown that a substantial part of this collection (the treatise
by Sharaf al-Dîn al-™ºsî on The Equations) was taken from a single
original, a manuscript that today is in India (Khuda Bakhsh, no. 2928),
which itself was copied in 696 AH, that is in 1297.

25 Y. Samplonius, ‘Die Konstruktion des regelmässigen Sibeneckes nach Abº Sahl
al-Qºhî Waifian ibn Rustam’, Janus, 50, 1963, pp. 227–49.

26 For the history of the manuscript tradition, see above p. 571 and Mathématiques
infinitésimales, vol. III, p. 657.

27 R. Rashed, Sharaf al-Dîn al-™ºsî, Œuvres mathématiques, Paris, 1986, vol. I,
pp. XLII–XLVII.
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So it is from these two different manuscript traditions that this text will
be established (for the first time).

5. Treatise by al-∑æghænî for ‘A≈ud al-Dawla <on the Regular
Heptagon> (Risælat AÌmad ibn MuÌammad ibn al-Îusayn al-∑æghænî ilæ
al-Malik al-jalîl ‘A≈ud al-Dawla ibn Abî ‘Alî Rukn al-Dawla)

This treatise has come down to us in a single version, which is part of
the collection 4821 in the Bibliothèque Nationale, Paris, fols 23v–29r, in the
hand of the anonymous copyist B (and not that of al-Îusayn MuÌammad
ibn ‘Alî), which was copied from the autograph by al-Sijzî. The copy by al-
Sijzî is itself dated 12 Shawwal 360, that is, 7 August 971, and the
transcription of the anonymous copyist is dated 15 Rajab 544, at
Hamadhæn, that is 18 November 1149. It has crossings-out (fol. 23v), made
in the course of the transcription, removing words or phrases that were
repeated, but there are no glosses or additions. This text has never been
established or translated before.

6. Book on the Discovery of the Deceit of Abº al-Jºd, by al-Shannî
(Kitæb tamwîh Abî al-Jºd fî mæ qaddamahu min al-muqaddimatayn li-
‘amal al-musabba‘ bi-za‘mihi li-Abî ‘Abd Allæh MuÌammad ibn AÌmad al-
Shannî)

This book has come down to us in complete form in only one
manuscript, Dær al-Kutub 41, Cairo, in the hand of MuÒ†afæ ∑idqî, fols
129v–134v, whose copy was completed on Sunday 21 Jumædæ al-ºlæ 1153
AH, that is 14 August 1740; it is designated by Q. In addition to this there
are some fragments in two other manuscripts.

The first belongs to the Université St Joseph in Beirut, no. 223, fols
16–19, designated by L. This fragment lacks three words and two sentences
that are present in Q.

The second is part of the collection T-S Ar. 41.64 in the University
Library, Cambridge. This fragment – designated by C – consists of two
pages. The fragment lacks a word and a sentence that are present in Q.

This text, which is difficult to read in places, has not been established
or translated before.

7. On the Determination of the Chord of the Heptagon, by NaÒr ibn
‘Abd Allæh (Risæla NaÒr ibn ‘Abd Allæh fî istikhræj watar al-musabba‘)

This text belongs to the collection Thurston 3, fol. 131, recopied in
Marsh, fols 266r–267r, in the Bodleian Library, Oxford. There cannot be
any doubt that here, as for the preceding texts, we have an abridged version
of an original that today still cannot be found, if it is not definitively lost.
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As we have repeated several times, the collection Thurston 3 was copied in
675 AH, that is in 1277.

This text has never been established or translated before.
8. Synthesis for the Analysis of the Lemma on the Regular Heptagon

Inscribed in the Circle, Anonymous (Tarkîb li-taÌlîl muqaddimat al-
musabba‘ al-mutasæwî al-a≈læ‘ fî al-dæ’ira)

This text is part of the collection D æ r al-Kutub, Cairo, 41, fols
100v–101v. It is in the hand of MuÒ†afæ ∑idqî, who completed the copy on
Monday Jumædæ al-ºlæ 1153 AH, that is, 15 August 1740.

Like the others, this text has not been established or translated before.

9. Treatise on the Proof for the Lemma Neglected by Archimedes, by
Kamæl al-Dîn ibn Yºnus (Risælat al-mawlæ Kamæl al-Dîn ibn Yºnus ilæ
khædimihi MuÌammad ibn al-Îusayn fî al-burhæn ‘alæ îjæd al-muqaddima
allatî ahmalahæ Arshimîdis fî kitæbihi fî tasbî‘ al-dæ’ira wa-kayfiyyat
dhælika)

This treatise has come down to us in two versions, which have
repeatedly been confused: one is complete, the other is abridged. Let us
begin with the first one.

This version exists in two collections: one in Kuwait, the other in
Istanbul. The first is in Dær al-æthær al-islæmiyya, LNS 67, fols 138v–140r,
copied by the mathematician ‘Abd al-‘Azîz al-Khilæ†î.28 He did not give his
name in the colophon, but he had done so in the colophon of the treatise
that precedes the one by Kamæl al-Dîn ibn Yºnus. The end of this treatise
in fact immediately precedes the beginning of the following one, on the
same page. As the copy of the first was completed on 11 Dhº al-Qa‘da 630
AH, the one by Kamæl al-Dîn ibn Yºnus was copied shortly after that date,
that is after 19 August 1233. The writing is in naskhî, the figures have been
drawn in red ink. We designate this manuscript by the letter K.

The second manuscript of the complete version appears in the
collection AÌmet III, no. 3342, on three unnumbered folios, in the Topkapi
Saray Museum in Istanbul. The script is naskhî, and we shall designate this
collection by I.

We should note that K and I are not independent. Comparing with K, I
is lacking the name of the addressee of the treatise, the introductory
passage (three lines), four words, which are all to be found in the abridged
version – which, on the whole, permits us to conclude that they were not
added by K. On the other hand, K and I have seven errors in common,
while I has six errors of its own and K two errors. Is manuscript I a

28 R. Rashed, Sharaf al-Dîn al-™ºsî, Œuvres mathématiques, vol. I, pp.
XXXVI–XXXVII.
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descendant of K, or do they have the same immediate ancestor? It is
difficult to pass judgement on the basis of three pages, but we can say that
they are definitely related.

The abridged version has also come down to us in two manuscripts, if
we do not count Marsh 720.

The first is part of the collection Thurston 3, fols 128v–129r, dated 675
AH (see fols 69v, 92v), designated by O. To that we may add the
seventeenth-century copy of that collection: Marsh 720, fols 257r–258v, a
copy we shall not consider in establishing the text.

The second manuscript is part of the collection Genel 1706/8, fols
184v–186r, in Manisa, in Turkey,29 designated by C.

In this abridged version, the introductory paragraph (3 lines) and the
name of the addressee are absent. A group of terms has been eliminated,
such as kha††, satÌ, nisba … . But, although it is abridged, this version
includes three additional sentences, one of which appears to be due to the
scribe omitting some words by accidentally skipping to the same word later
in the text. Our edition gives these sentences in italics. Finally, the last
paragraph is different from what it is in the complete version, and, further,
it includes many incoherencies. Let us conclude by noting that C is not a
copy of O and that the latter is not a copy of the first either: a sentence is
lacking in O but is found in C and in the complete version; but on the other
hand, four words of O are absent from C.

In the circumstances, we have given the editio princeps of both
versions, as well as a French translation of the text established for the
complete version in Les Mathématiques infinitésimales, vol. III. Here, we
are giving the English translation of the first version.

29 This collection was copied in Tabrîz in 699 AH (fol. 210r), see also above,
pp. 33ff.



1111....2. TRANSLATED TEXTS

1.2.1. Book of the Construction of the Circle Divided into Seven
Equal Parts by Archimedes

1.2.2. Treatise by Abº al-Jºd on the Construction of the
Heptagon in the Circle

1.2.3.�Treatise by Abº al-Jºd on the Account of the Two Methods
of al-Qºhî and al-∑æghænî

1.2.4.�Book by al-Sijzî on the Construction of the Heptagon

1.2.5. Solution by al-Qºhî for the Construction of the Regular
Heptagon in a Given Circle

1.2.6. Treatise on the Construction of the Side of the Regular
Heptagon Inscribed in the Circle, by al-Qºhî

1.2.7.�Treatise by al-∑æghænî for ‘A≈ud al-Dawla

1.2.8. Book on the Discovery of the Deceit of Abº al-Jºd, by al-
Shannî

1.2.9. On the Determination of the Chord of the Heptagon, by
NaÒr ibn ‘Abd Allæh

1.2.10.�Synthesis for the Analysis of the Lemma on the Regular
Heptagon Inscribed in the Circle (Anonymous)

1.2.11. Treatise on the Proof for the Lemma Neglected by
Archimedes, by Kamæl al-Dîn ibn Yºnus



In the name of God, the Compassionate, the Merciful

Book of the Construction of the Circle Divided
into Seven Equal Parts by Archimedes

TRANSLATED BY
ABª AL-ÎASAN THÆBIT IBN QURRA OF ÎARRÆN

A Single Book in Eighteen Propositions

I say, after the praise of God and <invoking> his blessing upon his
Prophet and chosen one and on his family, his companions and his friends:
when I wished to transcribe this book, I had obtained only a copy <that
was> damaged and suffered from the ill effects of the ignorance of the
copyist and his lack of understanding. I did all I could by way of making
sure I checked the problems, carried out the synthesis for the analyses and
presented the propositions in easy and accessible terms; and I have
introduced some proofs by modern scholars – with the support and help of
God.

Propositions

– 1 – We draw AB and we mark on it two points C and D such that the
square of CD is equal to the sum1 of the squares of AC and DB.

I say that the square of AB is equal to twice the product of AD and CB.

B D C A

Fig. 1.1

1 In such expressions we have added the term ‘sum’ in order to conform with
English usage.
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And that is because the sum of the squares of AC and DB is equal to the
square of CD; so if, on one side and on the other, we add the square of CD
plus twice the product of AC and CD, we shall have the sum of the three
squares of AC, CD, DB and twice the product of AC and CD equal to twice
the square of CD plus twice the product of AC  and CD. But twice the
square of CD plus twice the product of AC and CD is equal to twice the
product of AD and DC; so the sum of the three squares of AC, CD and DB
and twice the product of AC and CD is equal to twice the product of AD
and DC. Since the square of AD is equal to the sum of the squares of AC,
CD and twice the product of AC and CD, we have the sum of the squares of
AD and DB equal to twice the product of AD and DC. We add on one side
and on the other twice the product of DB and AD, we have the sum of the
squares of AD and DB and twice the product of AD and DB, that is to say
the square of AB equal to twice the product of AD and DC and <that> of
AD and DB, that is to say twice the product of AD and CB. That is what we
wanted.

– 2 – In another way: since the square of AB is equal to the sum of the
three squares of AC, CD and DB plus the three <terms that are> twice the
products of AC and CD, of AC and DB and of CD and DB, and since the
square of CD is equal to the sum of the squares of AC and DB, the square
of AB is equal to twice the square of CD plus the three <terms that are>
twice the products of AC and CD, of AC and DB and of CD and DB. But
Since twice the product of AB and CD is equal to twice the square of CD
plus twice the products of AC and CD and of DB  and CD, we have the
square of AB equal to the sum of twice the products of AB and CD and of
AC and DB. But twice the product of AB and CD is equal to the sum of
twice the products of CB and CD and of AC and CD, and the sum of twice
the products of AC and CD and of AC and DB is equal to twice the product
of AC  and CB. The square of AB is thus equal to the sum of twice the
products of CB and CD and of AC  and CB , that is to say to twice the
product of AD and CB. That is what we wanted.

B D C A

Fig. 1.2

– 3 – For every right-angled triangle, twice the product of the sum of
one of the sides that enclose the right angle and the hypotenuse, considered
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as a single straight line, and the sum of the other side and the hypotenuse,
considered as a single straight line, is equal to the square of the whole
perimeter considered as a single straight line.

D A

B

C E

Fig. 1.3

Let the triangle be ABC with its right angle at B; let us extend AC on
one side and on the other and let us put AD equal to AB and CE equal to
CB. It is clear that DC is equal to AB plus AC, that AE is equal to AC plus
CB, that DE is equal to the perimeter of the triangle, and that the square of
AC is equal to the sum of the squares of AB and BC, that is to say of AD
and CE; twice the product of DC and AE is thus equal to the square of ED.
That is what we wanted.

I say, in another way that comes from Abº ‘Alî al-Îubºbî: since the
product of DC and AE is equal to the square of AC plus the three products
of AC and CE, of AC and AD and of AD and CE – but the square of AC is
equal to the sum of the squares of DA and CE – twice the product of DC
and AE is equal to the sum of the three squares of DA, AC and CE and the
three <terms that are> twice the products of AC and CE, of AC and AD and
of AD and CE; but this sum is equal to the square of DE, consequently
twice the product of DC and AE is equal to the square of DE. That is what
we wanted.

– 4 – For every right-angled triangle, if from its right angle we drop a
perpendicular to the hypotenuse, then the square of the perimeter,
considered as a single straight line, is equal to twice the product of the
hypotenuse and the sum of the perimeter and the perpendicular <that was>
dropped, considered as a single straight line.

Let the triangle be ABC, the right angle B and the perpendicular we
draw BD. Let us extend AC on one side and on the other and let us cut off
EA equal to AB, CG equal to BC and GH equal to BD.

I say that the square of EG is equal to twice the product of AC and EH.
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DA

B

CE G H

Fig. 1.4

And this is because the ratio of GH, that is to say BD, to CG, that is to
say BC , is equal to the ratio of E A, that is to say AB, to AC . So by
composition, the ratio of HC to CG is equal to the ratio of EC to AC. By
permutation, the ratio of CH to EC is equal to the ratio of CG to AC. By
composition, the ratio of EH to EC is equal to the ratio of AG to AC, so the
product of EH and AC is equal to the product of EC and AG, and twice the
product of EH and AC is equal to twice the product of EC and AG; but
twice the product of EC and AG is equal to the square of EG, consequently
the square of EG is equal to twice the product of AC and EH. That is what
we wanted.

– 5 – In another way: let us return to the triangle and its perpendicular,
let us extend BC on one side and on the other and let us cut off CG equal to
AC, BE equal to AB and EH equal to BD.

I say that the square of EG is equal to twice the product of GC and GH.

DA

B

C

E

G

H

Fig. 1.5

And this is because the product of BE, that is to say AB, and BC, is
equal to the product of EH, that is to say BD, and GC, that is to say AC; we
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have twice the product of EB and BC equal to twice the product of EH and
CG. The sum of the squares of EB and BC is equal to the square of CG. But
the square of EC is equal to twice the product of EB and BC plus the sum
of the squares of EB and BC, so the square of EC is equal to the sum of
twice the product of EH and CG and the square of CG. We add to the two
sides the square of CG, we have the sum of the squares of EC and CG
equal to twice the product of EH and CG plus twice the square of CG. But
since the square of EG is equal to twice the product of GC and CE plus the
squares of GC and CE, that is to say equal to twice the square of GC plus
twice the <sum of the> products of GC and EH and of GC and CE, which
is equal to twice the product of GC and CE plus twice the square of CG,
that is to say twice the product of CG and GH, then the square of EG is
equal to twice the product of GC and GH. That is what we wanted.

I say, in another way that comes from Abº ‘Alî al-Îubºbî: since the
square of GE is equal to the sum of the three squares of EB, BC and GC
plus twice the products of GC and CE and of BC and BE, and since twice
the product of GC and GH is equal to twice the square of GC plus twice the
product of GC and CH – but the square of GC is equal to the sum of the
squares of BE and BC – and since twice the product of GC and CH is equal
to the sum of twice the products of GC and EH and of GC and CE – but
twice the product of GC and EH is equal to twice the product of EB and BC
– so twice the product of GC and GH is equal to the sum of the three
squares of EB, BC and GC and twice the products of GC and CE and of BC
and BE, consequently the square of GE is equal to twice the product of GC
and GH. That is what we wanted.

In another way that comes from Abº ‘Abd Allæh al-Shannî: since the
square of GE is equal to the sum of the two squares of GC and CE plus
twice the product of GC and CE, and since the square of CE is equal to the
sum of the squares of CB and BE – that is to say the square of GC – plus
twice the product of CB and BE, the square of GE is equal to twice the
square of GC plus twice the products of GC and CE and of CB and BE. But
twice the square of GC plus twice the product of GC and CE is equal to
twice the product of GC and GE, and twice the product of CB and BE is
equal to twice the product of GC and EH, so the sum of twice the products
of GC and GE and of GC and EH is twice the product of GC and GH and
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in consequence the square of GE is equal to twice the product of GC and
GH. That is what we wanted.

– 6 – For every right-angled triangle with unequal sides, the sum of the
square of the perimeter, considered as a single straight line, and the square
of the difference between the two sides that enclose the right <angle> is
equal to the square of the sum of the hypotenuse and one of the sides,
considered as a single straight line, plus the square of the sum of the
hypotenuse and the other side, considered as a single straight line.

Let the triangle be ABC with its right angle at B. Let us cut off from BC
the straight line BD equal to AB.

I say that the square of the perimeter, considered as a single straight
line, plus the square of DC is equal to the square of the sum of AB and AC,
considered as a single straight line, plus the square of the sum of AC and
BC considered as a single straight line.

D

A

B

C

Fig. 1.6

And this is because the sum of the squares of BC and BD is equal to the
square of CD plus twice the product of BC and BD. Now BD is equal to
AB, so the square of AC is equal to the square of CD plus twice the product
of AB and BC. We add to the two sides the square of AB plus twice the
product of AB and AC, the result is the sum of the squares of AB and AC
plus twice the product of AB and AC, that is to say the square of the sum of
AB and AC, considered as a single straight line, is equal to the sum of the
squares of AB and CD plus twice the product of AB and the sum of AC and
CB, considered as a single straight line. Let us also add to the two sides the
square of the sum of AC and BC, considered as a single straight line, so the
square of the sum of AC and BC, considered as a single straight line, plus
the square of the sum of AB and AC, considered as a single straight line, is
equal to the sum of the squares of AB and CD plus the square of the sum of
AC and BC, considered as a single straight line, plus twice the product of
AB and the sum of AC and BC, considered as a single straight line. But the
square of AB plus the square of the sum of AC and BC, considered as a
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single straight line, plus twice the product of AB and the sum of AC and
BC , considered as a single straight line, is equal to the square of the
perimeter of the triangle. The square of the sum of AC and BC, considered
as a single straight line, plus the square of the sum of AB and AC ,
considered as a single straight line, is consequently equal to the square of
the perimeter of the triangle, considered as a single straight line, plus the
square of CD. That is what we wanted.

– 7 – In another way: let the triangle be ABC and the right angle B; let
us extend AC on one side and on the other and let us make AE equal to AB,
CG equal to CB and GH equal to the amount by which BC exceeds AB,
then EC is equal to the sum of AB and AC, AG is equal to the sum of AC
and BC, and EG as a whole is equal to the perimeter of the triangle.

I say that the sum of the squares of EG and GH is equal to the sum of
the squares of EC and AG.

A

B

CE H G

Fig. 1.7

And this is because the square of AC is equal to the sum of the squares
of AB and BC, that is to say of CH and CG; but the sum of the squares of
CH and CG is equal to the square of GH plus twice the product of CH and
CG, so the square of AC is equal to the square of GH plus twice the product
of CH and CG. But CH is equal to AE, so the square of AC is equal to the
square of GH plus twice the product of AE and C G. We add to the two
sides twice the product of EA and AC, then the square of AC plus twice the
product of EA and AC is equal to the square of GH plus twice the product
of EA  and AG. We also add to the two sides the square of EA, then the
square of EC is equal to the sum of the squares of EA and GH and twice the
product of EA and AG. We next add the square of AG to the two sides, then
the sum of the squares of EC  and AG  is equal to the sum of the three
squares of EA, AG and GH and twice the product of EA and AG. But the
square of EG is equal to the sum of the squares of EA and AG and twice the
product of EA and AG, so the sum of the squares of EG and GH is equal to
the sum of the squares of EC and AG. That is what we wanted.
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I say, in another way that comes from Abº ‘Alî al-Îubºbî: since the
sum of the squares of EC and AG is equal to the sum of the squares of EA
and GC, twice the square of AC and the sum of twice the two products of
EA and AC and of CG and AC, and since the sum of the squares of EG and
GH is equal to the sum of the four squares of EA, AC, CG and GH and
twice the three products of EA and CG, of EA and AC and of AC and CG –
but twice the product of EA and CG, that is to say of CH and CG, is equal
to twice the square of CH, plus twice the product of GH and C H –
accordingly if we add to the two sides the square of GH, the square of GH
plus twice the product of EA and CG is equal to the sum of the squares of
CH and CG, that is to say <equal to> the sum of the squares of EA and CG.
But the sum of the squares of EA and CG is equal to the square of AC, so
the sum of the squares of EG and GH is equal to the sum of the squares of
EA and CG, twice the square of AC, and twice the products of EA and AC
and of AC and CG. Consequently, the sum of the squares of EG and GH is
equal to the sum of the squares of EC and AG. That is what we wanted.

In another way that comes from Abº ‘Abd Allæh al-Shannî: since the
square of EC is equal to the sum of the squares of EA and AC and twice the
product of EA and AC, and since the square of AG is equal to the sum of
the squares of AC and CG and twice the product of AC and CG – but the
sum of the squares of EA and CG is equal to the square of AC  –
accordingly the sum of the squares of EC and AG is equal to three times the
square of AC plus twice the products of EA and AC and of CG and AC. But
since the sum of twice the square of AC, twice the products of EA and AC
and of CG and AC and twice the product of EA and C G is equal to the
square of EG, then if we add up and subtract what is common <to the
terms>, there remains the sum of the squares of EC and AG plus twice the
product of EA and CG <which is> equal to the sum of the squares of EG
and AC. We add to the two sides the square of GH and we suppose the two
straight lines EA and CH as being a single straight line divided into two
equal parts to which has been added the excess HG, then the square of the
sum of EA and CG and the square of HG is equal to the sum of the squares
of EA and CG. But twice the product of EA and CG plus the square of GH
is equal to the sum of the squares of EA and CG, that is to say <equal to>
the square of AC. So if we subtract that, there remains the sum of the
squares of EG and GH <which is> equal to the sum of the squares of EC
and AG. That is what we wanted.
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– 8 – We draw AB and on it we mark two points C and D such that the
product of CD and AB is equal to the product of AC and DB.

I say that twice the product of AB and CD is equal to the product of AD
and CB.

D AB C

Fig. 1.8

And this is because the product of AC and DB is equal to the product of
CD and AB. But the product of C D and AB is equal to the sum of the
products of AC and CD and of CB and CD, so the product of AC and DB is
equal to the sum of the products of AC and CD and of CB and CD; so twice
the product of AC and DB is equal to the sum of the three products of AC
and CD, of BC and CD and of AC and DB, so twice the product of AB and
CD is equal to the sum of the products we mentioned. But the sum of the
products of AC and CD and of AC and DB is equal to the product of AC
and CB, so twice the product of AB and C D is equal to the sum of the
products of AC and CB and of BC and CD; but the sum of the products of
AC and CB and of BC and CD is equal to the product of AD and CB, so
twice the product of AB and CD is equal to the product of AD and CB. That
is what we wanted.

– 9 – Let there be a right-angled triangle ABC – its right angle is B –
circumscribed about the circle DEG; we join DE, we extend it and we
extend CB until they meet one another in a point H.

I say that BH is equal to AD.
A

B C

D

E

H G

Fig. 1.9

Proof: We join AH . Since DA  is equal to A E, since DE has been
extended and since AH meets it, the product of HD and HE plus the square
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of AE is equal to the square of AH.2 But the square of AH is equal to the
sum of the squares of AB and BH, so the sum of the product of HD and HE
and the square of AE is equal to the sum of the squares of AB and BH. But
the product of HD and HE is equal to the square of HG, so the sum of the
squares of AB and BH is equal to the sum of the squares of AE and HG. We
subtract the square of BH from the two sides, there remains the square of
AB <which is> equal to the sum of twice the product of HB and BG and the
squares of BG and AE. We subtract the square of AE from the two sides,
there remains the sum of twice the product of AE and EB and the square of
EB <which is> equal to the sum of twice the product of HB and BG and the
square of BG. But the square of EB is equal to the square of BG, so there
remains twice the product of AE and EB <which is> equal to the product of
HB and BG; but EB is equal to BG, so AE, that is to say AD, is equal to BH.
That is what we wanted.

– 10 – Let us return to the figure in its <present> form and let us say:
the ratio of CH to HB is equal to the ratio of DC to EB.

A

B C

D

E

H

I

G

Fig. 1.10

Proof: We draw from the point C the perpendicular CI, we extend HD
and we extend both <lines> to meet one another in I. Because CI and AE
are parallel, the triangle ICD is similar to the triangle ADE and the ratio of
AE to CI is equal to the ratio of AD to CD. By permutation, the ratio of AE
to AD is equal to the ratio of CI to CD. But AE is equal to AD, so CI is
equal to CD. But since the ratio of CH to HB is equal to the ratio of CI to
EB, the ratio of CH to HB is thus equal to the ratio of CI, that is to say CD,
to EB. That is what we wanted.

2 See Mathematical commentary.
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– 11 – Let us return to the figure in its <present> form and let us say:
the product of AD and DC is equal to the area of the triangle.

A

B C

D

E

H G

Fig. 1.11

Proof: Since the ratio of HC to HB is equal to the ratio of CG to GB,
accordingly the product of HC and BG is equal to the product of HB and
CG. Since the product of HG and BC is equal to twice the product of AD
and DC3 – but HB is equal to AE and BG is equal to BE and the whole of
the straight line AB is equal to the straight line HG – the product of AB and
BC is equal to twice the product of AD and DC; but the product of AB and
BC is equal to twice the area of the triangle, so the product of AD and DC
is equal to the area of the triangle. That is what we wanted.

– 12 – In another way: let us suppose <we have> a right-angled triangle
ABC with its right angle at B, circumscribed about the circle DEG.

3 Comment: It seems possible that some intermediate steps have been omitted in
the Arabic text.

We have HC

HB

GC

GB
=  (because GC = CD and GB = EB), so

HC · GB = HB · GC = HB · CD = AD · CD,

because from Proposition 9, HB = AD.
On the other hand

HG · BC = (HB + BG) (CG + GB)
   = HB · CG + HB · BG + BG · CG + GB2

   = HB · CG + BG (HB + BG + GC)
    = HB · CG + HC · BG = 2AD · CD.
But from Proposition 9, HG  = AB , so AB  · BC = 2A D · CD, hence AD · CD =

area (ABC).
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A

B C

D

E

H G

Fig. 1.12

I say that the product of AD and DC is equal to the area of the triangle.
And this is because the straight line AD is equal to AE and since CD is

equal to CG, thus the square of AC is equal to the sum of the squares of AE
and CG and twice the product of AD and DC. But the square of AC is equal
to the sum of the squares of AB and BC, so the sum of the squares of AB
and BC is equal to the sum of the squares of AE and C G and twice the
product of AD and DC. If we subtract the sum of the squares of AE and GC
from the two sides, there remains the sum of the squares of EB and BG and
twice the products of EB and AE and of CG and GB <which is> equal to
twice the product of AD and DC. But the square of EB is equal to the
square of BG and the sum of the square of BG and the product of CG and
GB is equal to the product of CB and BG, so the sum of twice the products
of EB and AE and of CB and BG is equal to twice the product of AD and
DC. But EB is equal to BG, so the sum of twice the products of GB and AE
and of EB and CB is equal to twice the product of AD and DC. But since
twice the product of AE and BC is equal to the sum of twice the products of
GB and AE and of CG and AE, that is to say <equal to> twice the product
of A D  and DC, accordingly if we add each of the two sides to its
homologue in the other two and if we subtract the common <element>
twice the product of GB  and AE, there remains the sum of twice the
products of AE and CB and of EB and CB <which is> equal to four times
the product of AD and DC. So twice the product of AD and DC is equal to
the sum of the products of AE and BC and of EB and BC, that its to say of
AB and BC; but the product of AB and BC is twice the area of the triangle,
consequently the product of AD and DC is equal to the area of the triangle.
That is what we wanted.
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– 13 – In another way: let us put each of the straight lines DH and EI
equal to CD,4 so BI is equal to CB. Since the square of AC is equal to the
sum of the square of AD and DH and twice the product of AD and DH, and
since it is also equal to the sum of the squares of AB and BI, accordingly
the sum of the squares of AD and DH and twice the product of AD and DH
is equal to the sum of the squares of AB and BI. But the sum of the squares
of AD and DH and twice the product of AD and DH is equal to the sum of
the square of AH and four times the product of AD and DH, so the sum of
the squares of AB and BI is equal to the sum of the square of AH and four
times the product of AD and DH. But the sum of the square of AH and four
times the product of AD and DH is equal to the sum of the square of AI and
twice the product of AB and BI. So if we subtract the squares of AH and AI
which are equal to one another, there remains four times the product of AD
and DH <which is> equal to twice the product of AB and BI. If we take half
of this, we thus find <the area of the triangle>. That is what we wanted.

A

B C

D

E

HI

G

Fig. 1.13

– 14 – Let ABC be a right-angled triangle and B the right angle, and let
AD be equal to AB and EC equal to BC.

I say that the product of ED and the perimeter of the triangle is equal to
four times the area of the triangle.5

4 This concerns a different figure, the points H and I are different from those that
were used earlier. Here we need to take H on AD and I on AE, with DH = EI = CD =
CG.

5 The result follows immediately:

ED · perimeter = (AB + BC – AC) (AB + BC + CA) = (AB + BC)2 – CA2;

but AB2 + BC2 = CA2, hence

ED . perimeter = 2 AB · BC = 4 · area (ABC).
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I H C D E A G

B

Fig. 1.14

Let us extend AC on one side and on the other and let us put GA equal
to AB, CH equal to CB and HI equal to ED; the sum GH is equal to the
perimeter of the triangle. Since the sum of the straight lines CA and HI is
equal to the sum of AB and BC, the sum of twice the product of AC and GH
and the product of HI and GH is equal to the square of GH. But the square
of GH is equal to the sum of the three squares of GA, AC and CH and twice
the three products of GA and AC, of GA and CH and of AC and CH. Then
the sum of twice the product of AC and GH and the product of HI and GH
is equal to the sum of the three squares of GA, AC and CH and twice the
three products of GA and AC, of GA and CH and of AC and CH. But the
product of AC and GH is equal to the sum of the square of AC and the
products of GA and AC and of CH and AC; but the square of AC is equal to
the sum of the squares of GA and CH, so twice the product of AC and GH
is equal to the sum of the three squares of GA, AC and CH and twice the
products of GA and AC and of CH and AC. If we subtract from the two
sides twice the product of AC and GH, <which is> common <to them>,
there remains the product of HI and GH <which is> equal to twice the
product of GA and CH, that is to say twice the product of AB and BC. But
the product of A B and BC  is equal to twice the area of the triangle,
consequently the product of HI and GH, that is to say ED , and the
perimeter of the triangle, is four times the area of the triangle. That is what
we wanted.

– 15 – Let there be a semicircle ACDB with centre G and containing
the chord AC. We divide the arc BC into two equal parts at D, we join DB
and we put AE equal to AC.

I say that the product of GB and BE is equal to the square of DB.
Let us join DC, DA, DG, DE; because the arcs CD and DB are equal,

the two angles CAD and DAB are equal. Now AC is equal to AE and AD is
common, so DE is equal to CD, that is to say to DB, and the angle DEB is
equal to the angle DBE, that is to say to BDG, so the ratio of EB to BD is
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equal to the ratio of DB to BG, and the product of GB and BE is equal to
the square of DB. That is what we wanted.

B

D

C

E G A

Fig. 1.15

– 16 – Let us return to the preceding figure. We say that the product of
the semidiameter and AC plus the square of DB is equal to twice the square
of the semidiameter.

B

D

C

E G A

Fig. 1.16

Twice the square of GB, that is to say the product of AB and GB, is
indeed equal to the product of GB and AE, that is to say of GB and AC, that
is to say of the semidiameter and AC, plus the product of GB and EB. Now
from what went before, the product of GB and EB is equal to the square of
DB, so twice the square of GB is equal to the product of the semidiameter
and AC plus the square of DB. That is what we wanted.

– 17 – Let us suppose <we have> a square ABCD. We extend the side
AB in the direction of A as far as E; we join the diagonal BC and we put
one end of the ruler at the point D and the other end on the straight line EA
<which is> such that it cuts EA at the point G and makes the triangle GAH
equal to the triangle CID. We draw from the point I the straight line KIL
parallel to AC.
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I say that the product of AB and KB is equal to the square of GA, that
the product of GK and AK is equal to the square of KB and that each of the
straight lines BK and GA is longer than the straight line AK.

AB

CD

EG

H

I

K

L

Fig. 1.17

And this is because the product of CD and IL is equal to the product of
GA and AH, thus the ratio of the straight line CD, that is to say AB, to GA is
equal to the ratio of AH to IL. Since each of the triangles GAH and GKI is
similar to the triangle ILD, accordingly the ratio of AH to IL is equal to the
ratio of GA to LD, that is to say KB, so the ratio of AB to GA is equal to the
ratio of GA to KB and the ratio of IL, that is to say AK, to KI, that is to say
KB, is itself also equal to the ratio of LD, that is to say KB, to GK. The
product of AB and KB is thus equal to the square of GA and the product of
GK and AK is equal to the square of KB and each of the straight lines GA
and KB is longer than the straight line AK. That is what we wanted.

– 18 – We wish to construct a circle divided into seven equal parts.
Let us draw AB with known endpoints and on it let us mark two points

C and D such that the product of AD and CD is equal to the square of DB,
that the product of CB and DB is equal to the square of AC6 and each of the
straight lines AC and DB is longer than CD, by the preceding construction.
From the straight lines AC, CD and DB we construct a triangle CED such
that the side CE is equal to the straight line AC and the side DE is equal to
the straight line DB . We join AE and E B, we circumscribe about the
triangle AEB a circle AEBHG and we extend the straight lines EC and ED
to <meet> the circumference; let them meet it at the points G and H. We

6 This assumes we know how to construct the points C and D that give the range
(A, C, D, B), of type I, construction by means of conic sections, which the author does
not discuss.
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join BG and let us draw from the point C the straight line CI to the <point
of> intersection (of EH and BG).

A
B CD

E

G

H

I

Fig. 1.18

Because the two sides of the triangle ACE, AC and CE, are equal, the
angle EAC is equal to the angle AEC and the arc AG is equal to the arc EB.
But since the product of AD and CD is equal to the square of DB, that is to
say DE, accordingly the triangle AED is similar to the triangle CED, the
angle DAE is equal to the angle CED and the arc GH is equal to the arc EB.
The three arcs EB, AG and GH are equal to one another, GB is parallel to
AE and the angle CAE, that is to say CED, is equal to the angle DBI. But
given that the angle CED is equal to the angle DBI, that the angle CDE is
equal to the angle IDB and the straight line ED is equal to the straight line
DB, then CD is equal to DI, CE is equal to IB and the four points B, E, C, I
<all> lie on the same circle. Since the product of CB and DB is equal to the
square of AC, that is to say EC, and since the straight line CB is equal to
<the straight line> IE and since DB  was equal to the straight line DE ,
accordingly the product of IE and ED is equal to the square of EC and the
triangle IEC is similar to the triangle CED, so the angle DCE is equal to the
angle EIC. But the angle DCE is twice the angle CAE, so the angle CIE is
twice the angle CAE. But the angle CID is equal to the angle DBE, so the
angle DBE is twice the angle CAE and the arc AE is twice the arc EB. But
since the angle DEB is equal to the angle DBE, accordingly the arc HB is
also twice the arc EB. So we divide each of the arcs AE and BH into two
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equal parts <that are also> equal to the arc EB, consequently the circle
AEBHG is divided into seven equal parts. That is what we wanted.

Praise be to God alone, and blessing upon him who is the last of the
Prophets. The correction and drafting of this honourable copy has been
accomplished by the pen of the man who made the corrections, humble
before God the All-Highest al-Îæjj MuÒ†afæ ∑idqî ibn ∑æliÌ – may God
pardon him and pardon all Muslims.

Sunday, the seventh day of Jumædæ al-ºlæ of the year one thousand one
hundred and fifty-three.



In the name of God, the Compassionate, the Merciful

TREATISE BY ABª AL-JªD MUÎAMMAD IBN AL-LAYTH

On the Construction of the Heptagon in the Circle,
which he sent to AAAAbbbbºººº    aaaallll----ÎÎÎÎaaaassssaaaannnn    AAAAÌÌÌÌmmmmaaaadddd    iiiibbbbnnnn    MMMMuuuuÌÌÌÌaaaammmmmmmmaaaadddd    iiiibbbbnnnn    IIIIssssÌÌÌÌææææqqqq

aaaallll----GGGGhhhhææææddddîîîî; composed using the two procedures by which he
distinguished himself

He said: knowing your concern for gaining instruction, the authentic
nature of your talent in matters of geometry and your inclination to learn
more, I shall enable you to profit in this respect through something that has
become clear to me among matters that others found difficult – unless
others have found this without our knowing about it, and without our
seeing any trace of it.

I had proceeded by analysis of this proposition, that is to say on the
heptagon, as far as an isosceles triangle in which each of the two angles at
the base is three times the third angle, so that the angles of this triangle are
seven times the small angle and this small angle is a seventh of the sum of
the angles of the triangle, which is equal to two right angles, so that, if the
triangle is fitted into an arc of a general circle, its two sides cut off a
seventh from the circumference. I then carried out analysis on this triangle
as far as <obtaining> a straight line with known endpoints, divided up into
two parts such that the product of the whole straight line and one of the
parts is equal to the square of a straight line whose ratio to the other part is
equal to the ratio of the whole straight line to the sum of the latter and the
other part. Then I constructed the said triangle, as a whole, by analogy with
the construction of the pentagon starting from an isosceles triangle in which
each of the angles at the base is twice the third angle; the sum of the angles
of the triangle is thus equal to five times the small angle, and this latter is a
fifth of two right angles.
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I learned that a certain geometer arbitrarily attributed this construction
to Abº Sahl al-Qºhî, then that he changed part of it and claimed it for his
own, as I was told, without, as an act of will, engaging so far as to discover
a similar construction, and without his animal passions allowing him to
think of any propositions at all. Some years, and no small number of them,
after what I did, Abº Sahl al-Qºhî composed a treatise on this figure, in
which he relies upon Archimedes’ lemmas, <to be found> in a treatise in
which the latter seeks to determine the chord of a seventh <part of a circle>
and in which he assumed a proposition that he did not prove, which he did
not refer to in any book and which is: we suppose for this that we have a
square ABCD; we draw the diagonal AC and from the point D we draw a
straight line that cuts the diagonal AC in E and the side BC in G and which
meets the extension of AB in H, <a line> such that the triangle CED is
equal to the triangle BGH.

A B

CD

E

G

H

Fig. 2.1

Abº Sahl al-Qºhî avoided mentioning the square and by using two
conic sections he divided a straight line into parts like those of the straight
line DEGH, and <in> their ratio, and he found the chord of a seventh <of a
circle>.

His treatise indicates that I was innovative in what I did and that I stood
out from the others by the route I followed, and in which I was ahead of
everyone else.

Abº Îæmid al-∑æghænî later composed a treatise on this figure, in
which he addressed himself to this square and drew the straight line DEGH
in accordance with the condition we mentioned, that very condition, and for
that he made use of three hyperbolas, two opposite conic sections and a
third one, in a long construction and using many figures and straight lines. I
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myself proceeded to carry out the analysis for this square by means of the
straight line I mentioned, it (the square) is subjected to analysis, giving us
something simpler than that, more obvious, more correct and more lucid
and by means of this I found what was sought, in a single proposition.

<Proposition>: Let us suppose <that> for a square ABCD with equal
sides and angles, in which is drawn the diagonal AC, we extend BC to I to
make CI equal to BC, we construct a parabola whose vertex is the point I,
whose axis is IB and whose latus rectum is CD, as has been shown in
proposition fifty-six1

 of the first book of the Conics; let the conic section be
IKL. We construct a hyperbola whose vertex is the point C, its transverse
diameter twice AC, and whose latus rectum is equal to the transverse
diameter, as has been shown in proposition fifty-eight2

 of the book we
mentioned; let the conic section be CL. It necessarily cuts the parabola IKL;
let it cut it in L . We draw from the point L <the straight line> L M
perpendicular to CB; we draw from the point M the straight line MD which
cuts AC in N and we extend it to meet the extension of AB in S; from the
point N we drop the perpendicular NE to AB and we construct on the base
BE a triangle BGE whose two sides BG and EG are equal and each equal to
SB.

I say that the angle BGE is a seventh of two right angles and that if it is
fitted into an arc of a general circle, its sides cut off one seventh from the
circumference of the circle.

Proof: We extend DC, which meets the parabola at the point K, we
complete the rectangle AL and we add to AB, <the line> AH equal to BS.
We draw the straight line GH and from the point G the perpendicular PG to
the midpoint of BE, and starting from the straight line EH the perpendicular
UO to the mid point of EH, and we join UE. The two straight lines AD and
AB do not meet the hyperbola CL, because the tangent at its vertex between
the hyperbola and one of the asymptotes is equal to AC and because the
square AC is a quarter of the area applied to the transverse diameter and to
the latus rectum, from what has been shown in the first proposition of the
second book of the Conics, and the square AC will be equal to the rectangle
AL, from what has been shown in the eighth3 proposition of the book we

1 Proposition 52 in Heiberg’s edition.
2 Proposition 54 in Heiberg’s edition.
3 Proposition 12 in Heiberg’s edition.
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mentioned. We take away the common rectangle AM, there remains the
rectangle MD <which is> equal to the rectangle BL, so the ratio of CM to
BM is equal to the ratio of LM to CD. But CK is equal to CD, because the
square of the perpendicular dropped from the parabola onto its axis is equal
to the rectangle of the part cut off from the axis, which is CI, and its latus
rectum which is CD, which are equal, from what has been shown in
proposition fourteen4 of the first book of the Conics. So the ratio of CM to
BM is equal to the ratio of LM to CK and the ratio of the square of CM to
the square of BM is equal to the ratio of the square of LM to the square of
CK. But the ratio of the square of LM to the square of CK is equal to the
ratio of IM to IC, cut off from the axis by these straight lines, as has been
shown in proposition nineteen5 of the book we mentioned. The ratio of the
square of CM to the square of BM is thus equal to the ratio of IM to IC.
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Fig. 2.2

We join I, D with a straight line. It has been shown that the ratio of IM
to IC is equal to the ratio of DM to DN because the two straight lines ID

4 Proposition 11 in Heiberg’s edition.
5 Proposition 20 in Heiberg’s edition.
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and CN are parallel. So the ratio of the square of CM to the square of BM is
equal to the ratio of DM to DN. As for the ratio of the square of CM to the
square of BM, it is equal to the ratio of CM to BM repeated twice,6 that is to
say the ratio of DM to SM repeated twice, so the ratio of DM to SM, the
ratio that is repeated twice, is equal to the ratio of the product of DM and
CM to the product of SM and BM.7 As for the ratio of DM to DN, it is equal
to the ratio of the product of DM and CM to the product of DN and CM, so
the ratio of the product of DM and CM to the product of SM and BM is
equal to the ratio of the product of DM and CM to the product of DN and
CM. The product of DN and CM is thus equal to the product of SM and
BM. So the ratio of DN to SM  is equal to the ratio of B M to CM by
proportionality. But the ratio of BM to CM is equal to the ratio of SB to CD,
so the ratio of DN to SM is equal to the ratio of SB to CD. On the one hand,
CD is equal to AB and on the other hand the ratio of DN to SM is equal to
the ratio of AE to SB, so the ratio of SB to AB is equal to the ratio of AE to
SB, so the product of AB and AE is equal to the square of SB. But AH is
equal to SB, so the product of AB and AE is equal to the square of AH.
Similarly, the ratio of AS to AD is equal to the ratio of ES to EN. On one
side AD is equal to AB and on the other side EN is equal to AE, so the ratio
of AS to AB is equal to the ratio of ES to AE. By permutation, the ratio of
AS to ES is equal to the ratio of AB to AE and, by inversion, the ratio of AS
to AE is equal to the ratio of AB to BE.8 So the product of AS and BE is
equal to the product of AE and AB. On the one hand AS is equal to BH and,
on the other hand, it has been shown when we first stated that AB times AE
is equal to the square of AH, so the product of BH and BE is equal to the
square of AH, that is to say <equal> to the square of BG. So the ratio of BH
to BG is equal to the ratio of BG to BE; but the angle GBE is common to
the two triangles BGE and BGH, so the two triangles BGE and BGH are
similar and the side GE is equal to the side BG; so the side GH is equal to
the side BH. Similarly, the ratio of AB to AH is equal to the ratio of AH to
AE; by composition, the ratio of BH to AH is equal to the ratio of EH to AE
and, by permutation, the ratio of BH to EH is equal to the ratio of AH to
AE; again by composition, the ratio of BH to half the sum of BH and EH is

6 That is to say CM repeated twice to BM repeated twice.
7 We have DM

SM

CM

BM
= , hence DM

SM

DM CM

SM BM
⎛
⎝

⎞
⎠ = ⋅

⋅

2

.

8 AS

AB
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AE
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AB − AE
⇒ AS

AE
= AB

BE
.
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equal to the ratio of AH to half of EH. On the one hand half of the sum of
BH and EH is equal to PH and on the other hand half of EH is OH; now
BH is equal to GH, so the ratio of GH to PH is equal to the ratio of AH to
OH. But the ratio of GH to PH is equal to the ratio of UH to OH; but it is
equal to the ratio of AH to OH, so UH is equal to AH and AH is equal to
GE, and UE is equal to UH, so the straight lines UH, UE and EG are equal;
that is why the angle EUG is twice the angle H and the angle GEB is equal
to <the sum of> the two angles EGH and AHG, so the angle GEB is three
times the angle H, and it is equal to the angle EBG, so the angle EBG is
three times the angle H. Similarly, the angle BGH is three times the angle
H, the sum of the two angles GBH and BGH is six times the angle H, the
sum of the angles of the triangle BGH is seven times the angle H, and the
sum of the three angles of the triangle BGH, that is to say seven times the
angle H, is equal to two right angles; but the angle BGE is equal to the
angle H, because the two triangles BGE and BGH are similar, so the angle
BGE is also a seventh of two right angles. If one of these two angles is
fitted into an arc of a general circle, the two sides enclosing the angle cut
off a seventh from the circumference. That is what we wanted to construct.

As for my former letter about the construction of the heptagon, in
which I was ahead of everyone and I distinguished myself from others by
the route I followed, I repeat it here for you in its entirety in a single
proposition proved with the aid of God and His assistance.

For this purpose let us suppose <we have> a straight line AB whose
two endpoints are known. We add to it <the line> BI equal to A B, we
construct on it the square BIKL and we construct a parabola whose vertex10

is the point A , its axis AI, its latus rectum AB, as has been shown in
proposition fifty-six9

 of the first book of the Conics; let the conic section be
AM. We construct a hyperbola whose vertex10 is the point B, its transverse
diameter twice the diagonal of the square BIKL, and whose latus rectum is
equal to the transverse diameter, as has been shown in proposition fifty-
eight11 of the book we mentioned; it necessarily cuts the parabola AM; let it
cut it in M, let the conic section be BM. From the point M we drop the

9 Proposition 52 in Heiberg’s edition.
10 Lit.: beginning.
11 Proposition 54 in Heiberg’s edition.
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perpendicular MD onto AB and let us construct on the base AD a triangle
ACD  whose sides A C  and CD are equal, each being equal to the
perpendicular MD.

A
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M

Fig. 2.3

I say that the angle ACD is a seventh of two right angles and that the
angle ABC is also a seventh of two right angles.

If this is so, then it is clear that if one of the two angles is fitted into an
arc of a general circle, its two sides cut off a seventh from the
circumference of the circle.

Proof: We join K and D with a straight line; let it cut the side LB in N.
We extend DM and KL; let them meet at the point S. Let us draw from the
midpoints of AD and BD two perpendiculars to AB, GC and EH; we join
DH. Now the straight lines KI and KS do not meet the hyperbola MB, from
what has been shown in the first proposition of the second book of the
Conics; and the ratio of BI to SM, <lines> which meet the conic section
<and are> parallel to the asymptotes, is equal to the ratio of KS to KI ,
<lines> cut off on the two asymptotes of the conic section by the two
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straight lines we mentioned, as has been shown in the eighth12 proposition
of the book we mentioned and other propositions of the book of the Conics.
Now BI is equal to KL and KI is equal to SD, so the ratio of KL to SM is
equal to the ratio of KS to SD. But the ratio of KS to SD is equal to the ratio
of KL to LN, so the ratio of KL to LN is equal to the ratio of KL to SM; LN
is equal to SM, lastly BN is equal to MD and the ratio of BN to BD is equal
to the ratio of IK to ID. Now BN is equal to MD and IK is equal to AB, so
the ratio of MD to BD is equal to the ratio of AB to ID. Now we have put
AC equal to MD, so the ratio of AC to BD is equal to the ratio of AB to ID.
The square of MD – the perpendicular dropped from the parabola AM to its
axis AI – is also equal to the product of AB – its latus rectum – and AD, cut
off from the axis by the perpendicular MD, from what has been shown in
proposition fourteen13 of the first book of the Conics. But AC is equal to
MD, so the product of AB and AD is equal to the square of AC, and the ratio
of AB to AC  is equal to the ratio of AC  to AD; but the angle CAD  is
common to the two triangles ABC and ACD, so they are similar; but CD is
equal to AC , so BC  is equal to AB. But it has been shown in our first
statement that the ratio of AC to BD is equal to the ratio of AB to ID; so the
ratio of AC to BD is equal to the ratio of BC to ID; but BE is half of BD and
BG is half of ID; so the ratio of AC to BE is equal to the ratio of BC to BG.
But the ratio of BC to BG is equal to the ratio of BH to BE; so the ratio of
BH to BE is equal to the ratio of AC to BE, BH is equal to AC and DH is
equal to BH; so DH is equal to AC. So the straight lines BH, DH and CD
are equal; that is why the angle DHC is twice the angle ABC and the angle
DCH is equal to the angle DHC, so the angle DCH is also twice the angle
ABC; but the angle ADC is equal to the sum of the two angles DCB and
ABC, so the angle ADC is three times the angle ABC. Similarly, the angle
ACB is three times the angle ABC, so <the sum> of the two angles ACB and
CAB is six times the angle ABC and the sum of the angles of the triangle
ABC is seven times the angle ABC; the angle ABC is thus a seventh <of the
sum> of the angles of the triangle ABC, that is to say a seventh of two right
angles. But the angle ACD is equal to the angle ABC because the two
triangles ACD and ABC are similar, so the angle ACD is a seventh of two
right angles.

12 Proposition 12 in Heiberg’s edition.
13 Proposition 11 in Heiberg’s edition.
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If one of these two angles ABC and ACD  is fitted into an arc of a
general circle, its two sides cut off a seventh from the circumference. That
is what we wanted to prove.

God has made it easier for us, thanks be to Him, to find the chord of a
seventh of the circle, before everyone else and after them by two methods
which are peculiar to us, which is more evident, clearer and more lucid than
what others have done since the first construction. Thanks be given to God,
all powerful and great, for His assistance and His support and may His
blessings and His peace be upon MuÌammad and those that are his.

Completed on Wednesday 10 of Jumædæ al-ºlæ, the year one thousand
one hundred and fifty-three.



In the name of God, the Compassionate, the Merciful

TREATISE BY ABª AL-JªD MUÎAMMAD IBN AL-LAYTH
ADDRESSED TO THE EMINENT MASTER

ABª MUÎAMMAD ‘ABD ALLÆH IBN ‘ALï AL-ÎÆSIB

On the Account of the Two Methods of the Master AAAAbbbbºººº    SSSSaaaahhhhllll    aaaallll----QQQQººººhhhhîîîî
the Geometer, and of his Own Master AAAAbbbbºººº    ÎÎÎÎææææmmmmiiiidddd    aaaallll----∑∑∑∑æææægggghhhhæææænnnnîîîî,

and on the Route he himself Took to Construct
the Regular Heptagon in the Circle

I have received the treatise of the Master, my Lord – may God continue
to help him – including the two treatises composed by the pre-eminent
Master Abº Sahl al-Qºhî and our Master the geometer Abº Îæmid al-
∑æghænî – may God sustain them – on finding the chord of a seventh of the
circle, which were brought to him from Baghdad. Accordingly, I gave
thanks for the favour he had done me in sending them to me; may God
reward him for having sent them and give him his due <reward>. I show
the route each of them took in his construction, as well as the route I
followed for this, and which made me stand out in finding it (the chord); as
well as the state of doubt engendered in the construction of our Master Abº
Îæmid – may God sustain him – because of an error that occurred, perhaps
when the copyist was making the transcription, so that the Master – may
God allow him to continue to exercise his powers – may know from my
treatise what the three methods are, and how much is known by the author
of each of them.

I say that each of the two geometers we mentioned intended to <prove>
the proposition that Archimedes introduced in his treatise on the
construction of the heptagon, <a proposition> that he assumed without
carrying the construction or proving it in that treatise – unless he had made
a correction to it somewhere else, and this proposition had been handed
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down to some, not to others – <a proposition> he continued to believe was
true. God knows <the truth of> this. Each of these two pre-eminent Masters
sought to correct the proposition and to prove it.

Let there be a square ABCD; if we draw its diagonal BC, and we extend
its side BD indefinitely and we draw from the angle A a straight line that
cuts the diagonal in E and the side CD in G and meets the extension of the
straight line BD in H, it forms two equal triangles ACE and DGH, inside
the square and outside it.

The Master Abº Sahl, by his mastery of the art and his skill in
geometry avoided all mention of this square and the two equal triangles
inside it and outside it, instead he ignored all of them and went on to why
they had been drawn and the reason for their being constructed, namely for
the division of a given straight line into three parts such that the product of
the sum of the first and the second parts and the first one is equal to the
square of the third part and the product of the sum of the second and third
parts and the second one is equal to the square of the first part; from these
three parts he constructed a triangle and he showed that one of its angles is
twice the second angle and four times the third angle, that is to say its three
angles are successive terms in double proportion, so that the sum of its
angles is once, plus twice, plus four times, that is to say seven times the
smallest angle, and the smallest angle is a seventh of two right angles, so
that if he fitted it into the circumference of a general circle, its two sides cut
off a seventh.

This is a triangle known to Archimedes; and all those who have
constructed the heptagon by using motion and an instrument, have
constructed the heptagon with the help of this triangle.
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The straight line divided into these parts at the points E and G is the
straight line AH, because if the triangle ACE is equal to the triangle DGH
and if the two angles CAE and DHA are equal because they are alternate
internal angles, their sides are inversely proportional: the ratio of AE to GH
is equal to the ratio of DH to AC. But the ratio of DH to AC – since the
triangles ACG and DHG are similar – is equal to the ratio of GH to AG, so
the ratio of AE to GH is equal to the ratio of GH to AG, the product of AG
and AE is equal to the square of GH, and the product of the sum of the first
and second parts and the first is equal to the square of the third part.
Similarly, if we draw EI perpendicular to BD, the ratio of IH to IE, that is
to say IB, is equal to the ratio of BH to AB, that is to say BD. So if we
permute, the ratio of IH to BH is equal to the ratio of IB to BD, but if we
separate <ratios>, the ratio of IH to IB is equal to the ratio of IB to ID, and
the product of IH and ID is equal to the square of IB. But since the parts of
AH are in the same ratio as the parts of BH, accordingly the product of the
sum of the second and third parts of AH, which is EH, and EG, the second
part, is equal to the square of AE, the first part, and the parts of BH, which
are BI, ID and DH, are in this same ratio.

The Master Abº Sahl divided the straight line into three parts in these
ratios, without however mentioning the square or the two equal triangles,
because of the superiority of his knowledge and the penetration of his
intelligence – using two intersecting conic sections, a hyperbola and a
parabola, and starting from them he constructed the triangle we mentioned;
he showed that its angles were in a series of double ratios, and in this way
he obtained that one of the angles was a seventh of two right <angles>; he
then constructed the heptagon by fixed geometry in the treatise that bears
his name.

As regards our Master Abº Îæmid – may God sustain him – he sought
<to prove> the same proposition that was introduced by Archimedes, that is
to say <concerning> the square with diagonal BC, and the straight line AH.

I say that the triangle ACE is equal to the triangle DGH; he set about
his analysis with the help of three hyperbolas, two opposite conic sections
and a third one that cuts one of the <other> two. He then proceeded by
synthesis, by which he established the construction with the help of a
straight line divided into three parts in the ratios we mentioned; he then
completed his treatise as others completed theirs. Perhaps the doubts about
his treatise arise from an error that is due to the copyist when making the
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transcription of the original, I shall remove them and I shall correct what is
defective.

For this I set up a square ABCD  with diagonal BC  and side B D
indefinite in the direction of D. He wished to draw from the point A a
straight line to cut the straight line BC at the point E, CD at the point G, to
meet BD in H and to be such that the triangle ACE formed inside the square
is equal to the triangle DGH formed outside it. He increased AC by CI
which is equal to it and constructed two opposite conic sections which pass
through the points A and I and which have as asymptotes the two straight
lines BC and DC – that is to say, if we extend the two straight lines BC and
DC in the direction of C, for example so that the opposite angles they make
at C are obtuse when the two straight lines in question are extended; we are
concerned with the conic sections KL and PN; and he constructed a third
hyperbola which passes through the point C and has as asymptotes the
straight lines AB and BD; let the conic section be MN. This conic section
cuts the conic section PN, because if we extend the conic section PN it
meets the straight line BD and if we draw the conic section MN, it does not
meet it; let the two conic sections PN and MN cut one another at the point
N. Then from N he dropped a perpendicular NH to BD, and he joined AH,
which cuts BC in E and CD in G. He said that he had constructed what he
sought and had divided up AH into three parts in E and G in the ratios in
question.
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Proof: He drew the straight line CN and extended it on one side and on
the other to the extended straight lines AB and BD; it met them at the points
U and Q. It cut the conic section KL at the point O. The two straight lines
CQ and UN were separated off between the conic section MN and its two
asymptotes, so they are equal, as Apollonius showed in the sixth
proposition of the second book of the Conics. But the two angles A and H
are right <angles> and UH is parallel to AC and is equal to it,1 so CU is
parallel to AH. But the square of CO – drawn from the angle of the conic
section KL towards it – is equal to the product of AG, which is parallel to it
and intercepts the angle supplementary to the angle of the conic section,
and AE which is the excess of the latter, between the conic section and the
asymptote, from what Apollonius showed in the seventh proposition of the
book we mentioned. But CO is equal to CN, because they lie between the
two opposite conic sections and their angles, from what Apollonius has
shown in the thirty-first proposition of the first book of the Conics. But CN
is equal to GH, because they are parallel; consequently the product of AG
and AE is equal to the square of GH. He drew the perpendicular EF to BD.
From the preceding we have shown that the product of FH and FD is equal
to the square of BF; similarly the product of EH and EG is equal to the
square of AE. Similarly BH is divided <as required> because the ratio
between its parts is equal to the ratio between the parts of AH , so the
product of BD and BF is equal to the square of DH and the product of FH
and FD is equal to the square of BF.

He then constructed a triangle one of whose sides is equal to BF, the
second equal to FD and the third equal to DH. He extended the side equal
to FD on one side and on the other so that each of the two added parts is
equal to the one of the two remaining sides of the triangle that is on its side.
We obtain the well known triangle constructed by Archimedes and others
who have sought to construct the heptagon using an instrument and
movement, with the help of the lemma he had assumed, because the angles
of this triangle follow one another in double ratio, that is to say in the ratio
of one to two and of two to four, and the sum of them all is seven, and the
unit is one seventh of seven. One of its angles is one seventh of two right
<angles>. He fitted it into the circumference of the circle so as to cut off a
seventh of it between the two sides <of the angle>, and this is obvious.

1 The two right-angled triangles QCA and NHA are similar and their hypotenuses
CQ and UN are equal, so we have UH = AC and NH = QA; but NH || QA, so CU || AH.
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For my part – may God sustain my Master and Lord – it was because of
the modest extent of my knowledge, the lack of depth in my art, that I
wished to approach something far from my usual concerns and to conquer
something difficult; so I followed the route laid down by Euclid in the early
part of his book on the Elements for inscribing the pentagon in the circle,
the place where he introduces an isosceles triangle in which each of the
angles at the base is twice the remaining angle, so that the sum of its three
angles is equal to five times its smallest angle and the latter is a fifth of the
sum of the three angles which is equal to two right <angles>. He fitted this
small angle into the circumference of a circle and he extended its sides,
which cut off a fifth of it (sc. of the circumference of the circle). I then
knew that, if I construct an isosceles triangle such that each of the two
angles at the base is three times the remaining angle, then the sum of its
three angles is equal to seven times its smallest angle and the latter is a
seventh of the sum of the three angles, which is equal to two right
<angles>; so that if I fit it into the circumference of a general circle, it cuts
off, with its two sides, a seventh <of the circumference>.
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For the analysis I supposed that the triangle ABC was like this: the two
sides AB and AC are equal, each of the angles ABC and ACB is three times
the angle BAC, and I proceeded by analysis. So I cut off from the angle
ACB an angle BCD equal to the angle BAC and I cut off from the angle
ADC an angle ADE equal to the angle BAC, so the side AE is equal to the
side ED, because of the equality of the angles DAE and EDA, that is why
the angle DEC is equal to twice the angle DAE. Since the angle ACB is
equal to three times the angle BAC, and since we cut off from it the angle
BCD equal to the angle EDA and equal to the angle BAC, we are left with
the angle ECD <which is> equal to twice the angle DAE, that is to say
equal to the angle DEC, so the side DC is equal to the side DE; but since
the angle B is common to the two triangles ABC and DBC, and since the



ON THE ACCOUNT OF THE TWO METHODS 621

angle BCD is equal to the angle BAC, accordingly the isosceles triangle
ABC is similar to the triangle BCD; so this latter is also isosceles, so the
side BC is equal to the side CD. The straight lines BC, CD, DE and EA are
equal. But because the triangles ABC and BCD are similar, the ratio of AB
to BC is equal to the ratio of BC to BD, so the product of AB and BD is
equal to the square of BC. But AE is equal to BC, so the product of AB and
BD is equal to the square of AE. From the points C and E I dropped the two
perpendiculars CI and EG to the straight line AB; they are thus parallel and
the ratio of AE to AG is equal to the ratio of AC, that is to say AB, to AI. To
AB I added AH, equal to AD; the whole of BH will thus be equal to twice
AI. But AD is twice AG, that is why the ratio of AE to AD is equal to the
ratio of AB to BH. So we have divided AB, for example at the point D, into
two parts such that the product of AB and one of them, which is BD, is
equal to the square of AE and the ratio of AE to the other part of AB, which
is AD, is equal to the ratio of the whole of AB to BH. I found BH equal to
the sum of the two straight lines AB and AD, I then knew that if I divide a
given straight line into two parts such that the product of the whole straight
line and one of the two parts is equal to the square of a straight line whose
ratio to the other part is equal to the ratio of the whole straight line to the
sum of this latter and the other part, I shall obtain an isosceles triangle such
that the sum of its angles is seven times its small angle, and from that there
follows, from what I have shown earlier, the construction of the regular
heptagon in a circle, because I have fitted its small angle into its
circumference and a seventh has been cut off from the circumference by its
two sides.

I have omitted describing the analysis to avoid excessive length and to
be sparing of weighty argument; I have assumed we have a straight line
AB, I have sought to divide it into two parts in the ratio we mentioned, that
is to say so that the product of AB and one of its two parts is equal to the
square of a straight line whose ratio to the second part is equal to the ratio
of AB to the sum of the latter and the other part. It was not possible for me
to do this except by using two intersecting conic sections, a hyperbola and
a parabola. I divided it using them, I constructed the triangle on which I
had carried out the analysis and by using this latter I cut off a seventh of the
circumference of the circle. I composed the treatise that bears my name in
the year three hundred and fifty-eight from the Hegira addressed to the
Eminent Shaykh Abº al-Îusayn ‘Ubayd Allæh ibn AÌmad, may God give
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him long life. In this same year I had described the first draft of this treatise
to the Master, my Lord, may God cause his power to endure.

Anyone who has examined my construction of the heptagon and the
constructions <put forward> by others will know that I stood out on
account of the route I followed, and that at the time I was the one who
came closest (sc. to solving the problem). The pre-eminent Master Abº
Sahl al-Qºhî and our excellent Master the geometer Abº Îæmid al-
∑æghænî, may God sustain them, followed Archimedes’ route, corrected the
lemma he stated, and built on the foundation he had provided. And they did
well. But dividing the given straight line into two parts, as I did it, is more
immediate than dividing it into three parts, as they did; and the analogy I
employed in constructing the isosceles triangle in which each of the angles
at the base is three times the remaining angle is valid for all polygons that
have an odd number of sides, but their analogy is not valid for all polygons:
it is in fact possible to find an isosceles triangle such that each of the angles
at the base is five times the remaining angle, we then obtain the polygon
with eleven equal sides inscribed in the circle; and there does not exist a
triangle whose three angles are successively in general ratios of doubling,
<a triangle> such that we obtain a polygon with eleven sides inscribed in
the circle. The same is true for the majority of regular polygons whose
number of sides is odd. We also know that the parabola is more accessible
than the hyperbola. Our Master Abº Îæmid, may God sustain him, instead
of it used two hyperbolas, which is why his construction of that and of
everything else is less accessible.

I recognize the advance that Master Abº Sahl – may God give him long
health and pre-eminence – made over me and those like me; I also
recognize that he is unique in his time as regards the art of geometry; and I
recognize that our Master Abº Îæmid – may God sustain him – is capable
of constructing the heptagon and other interesting geometrical figures. He
has worked on them in the perfect manner, and practiced it with great skill.

State duties have prevented me from undertaking <the study of> these
constructions, and high responsibilities have caused me to turn away from
this art, <responsibilities> that I did not seek. Indeed for several years some
of them took me away from studying them (geometrical problems) and
from teaching them. So there are geometers who deny <my having> the
least knowledge and <object to> the slightness of my work, and foster the
illusion that I borrowed it and did not create it. That is why I asked the
person whom one consults, the Master, my Lord – may God cause his
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power to endure – him who is moderate, pre-eminent, and learned in the
sciences; the just witness and the truthful judge of my earlier book – <I
asked him> to inquire of the Master geometers present at the court – may
God load it with his blessings and may he sustain them (the geometers) –
whether anyone had constructed the heptagon using a single conic section
and if anyone, to their knowledge, acknowledged having constructed the
regular hendecagon in a circle; and for him to make the reply known to me,
so that, if I send my construction of the two figures concerned, they do not
desist from denouncing it, as they have done many times, in denouncing
others, and in attributing them (the constructions) to others than myself. It
is from God that aid and assistance come to us, and it is from him there is
strength and power. God is all we need, and it is from him that there comes
the best of our help. It is to him that we render thanks for inspiring us so
that we should know it (the construction); and it is from him that we ask
support to grasp that of which we are ignorant and in which we are lacking.

I show the analysis for what I constructed before in connection with the
heptagon, in preparation for addressing to the Master, my Lord – may God
cause his power to endure – my treatise devoted to this construction. Thus
he will know that it is more accessible and easier than what others have
done, and than what I myself did before.
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For this let us draw a circle BEG circumscribed about a quadrilateral
BEGH; let the sides EG, GH, BH be equal because the three arcs EG, GH,
BH are equal; let each of them be twice the arc BE, so their sum is six times
the arc BE and the circumference of the whole circle is seven times the arc
BE. Seven times the arc BE is thus the circumference of the circle BEG and
the chord BE is the side of the heptagon inscribed in the circle BEG. If we
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extend GE and HB, they meet one another; let them meet in A. We draw
EH. So the angle GEH is equal to twice the angle EHB, because the arc GH
has been assumed to be twice the arc BE. But the angle GEH is equal to
<the sum> of the two angles EAH and AHE, so <the sum> of the two
angles EAH and AHE is twice the angle AHE; the angle EAH is equal to the
angle AHE, the side A E is equal to the side EH and AE is equal to A B
because EG is equal to BH; and the angle AGH is equal to the angle AHG
because the two arcs EG and BH are equal. From the point E we drop the
perpendicular EI to AB; so AI is equal to IH; we cut off from AI <the line>
IC equal to IB, so that leaves AC <which is> equal to BH; but BH is longer
than BE, AC is longer than BE. We cut off from AC <the line> AD, equal to
BE. Since the ratio of BE to AB is equal to the ratio of GH to AH, because
BE and GH are parallel, and since AD is equal to BE and AC equal to BH,
that is to say <equal to> GH, accordingly the ratio of AD to AB is equal to
the ratio of AC to AH. By separation, the ratio of AD to DB is equal to the
ratio of AC to CH. If we permute <the ratios>, then the ratio of AD to AC is
equal to the ratio of DB to CH. But CH is equal to AB, because AC is equal
to BH and CB is common, so the ratio of AD to AC is equal to the ratio of
DB to AB. By separation, the ratio of AD to DC is equal to the ratio of DB
to AD, so the product of DB and DC is equal to the product of AD by itself.
Similarly, we join CE; but CI is equal to IB and the angle I is a right angle,
so CE is equal to BE; but the angle B is common to the two triangles ABE
and CBE, so they are similar and the ratio of AB to BE is equal to the ratio
of BE to BC. But BE is equal to AD, so the ratio of AB to AD is equal to the
ratio of AD to BC, and the product of AB and BC is equal to the square of
AD. Now the product of BD and DC was also equal to the square of AD.

This analysis has thus led to dividing a given straight line into three
parts such that the product of the whole straight line and the third part is
equal to the square of the first part and the product of the sum of the second
and third parts and the second <part> is also equal to the square of the first
part. This is more accessible and easier than dividing a straight line into
three parts such that the product of the sum of the first and the second parts
and the first <part> is equal to the square of the third part and the product
of the sum of the second and the third parts and the second <part> is equal
to the square of the first part, as was proposed by Archimedes and as has
been constructed by the Master Abº Sahl and our Master Abº Îæmid –
may God sustain them – in order to construct the heptagon. It is also easier
than dividing the straight line into two parts such that the product of the
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complete straight line and one of them is equal to the square of a straight
line whose ratio to the other part is equal to the ratio of the whole straight
line to the sum of the straight line and this other part, which is what I did
before, also in order to construct the heptagon. It is easy to divide the
straight line in the ratio concerned by all the procedures described above,
but I divide it by means of a single conic section, whereas all the other
procedures divided it either by using two conic sections, a parabola and a
hyperbola, or by using three hyperbolic conic sections.

I also mention the synthesis, but without the proof of the corrected
lemma to be found in the treatise devoted to this construction.

Let there be a given straight line AB divided at the points C and D such
that the product of AB and BC is equal to the square of AD and similarly
the product of BD and DC is equal to the square of AD.2 We construct the
triangle ABE, with AE equal to AB and BE equal to AD. We extend AB and
AE to H and G so that each <of the straight lines> BH and EG becomes
equal to AC. We join GH and we draw a circle BEG circumscribed about
the quadrilateral BEGH; this is easy.

I say that the three sides EG, GH, BH are equal, that each of the three
arcs that they cut off is twice the arc BE, that the arc BE is a seventh of the
circumference of the circle BEG and that the chord BE is the side of the
regular heptagon inscribed in the circle BEG.

Proof: The product of DB and DC is equal to the square of AD, the
ratio of AD to DC is equal to the ratio of DB to AD. By composition, the
ratio of AD to CA is equal to the ratio of DB to AB. But AB is equal to CH,
because AC is equal to BH and CB is common, so the ratio of AD to AC is
equal to the ratio of DB to CH. By permutation, the ratio of AD to DB is
equal to the ratio of AC to CH. By composition, the ratio of AD to AB is
equal to the ratio of AC to AH. But AD is equal to BE and AC is equal to
BH, so the ratio of BE to AB is equal to the ratio of BH to AH. But the ratio
of BE to AB is equal to the ratio of G H to AH because GH and BE are
parallel, so the ratio of GH to AH is equal to the ratio of BH to AH, and GH
is equal to BH; so it is equal to EG. The straight lines EG, GH, BH are thus
equal and the three arcs EG, GH, BH are also equal.

Similarly, we join EC, we divide up CB into two equal parts at the
point I and we join EI. Since the product of AB and BC is equal to the
square of AD and since BE is equal to AD, the product of AB and BC is

2 The author does not indicate here how to construct this division (see the construction
by Abº al-Jºd, in Text 2.2, p. 605).
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equal to the square of BE, so the ratio of AB to BE is equal to the ratio of
BE to BC. But the angle ABE is common to the triangles ABE and CBE, so
they are similar. But AB is equal to AE, so CE is equal to BE, EI is perpen-
dicular to CB and AI is equal to IH, because AC is equal to BH and CI is
equal to IB; so AE is equal to EH and the angle A is equal to the angle EHB.
But the external angle GEH is equal to <the sum> of the angles A and EHB
which are equal, so the angle GEH is twice the angle EHB, so the arc GH is
twice the arc BE. The same holds for each of the arcs EG and BH which is
twice the arc BE, and the sum of the arcs EG, GH, HB is six times the arc
BE, so the circumference of the circle BEG, as a whole, is seven times the
arc BE, the arc BE is a seventh of the circumference of the circle BEG and
the chord BE is the side of the regular heptagon inscribed in the circle BEG.
That is what we wanted to prove.

The figure for this proposition is given above.

If I address the treatise devoted to this construction to the Master, my
Lord – may God continue to sustain him – once he has given his approval
to the allusions I make in it, he will know the proof, by means of a single
conic section, of the lemma to which I have referred – if God so wills.
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G

Fig. 3.5

I used – may God sustain the Master, my Lord – with a single section,
<one of> the conic sections, in what I constructed before, two lemmas be-
longing to the book of the Elements. The first: if we draw from the point B
of the straight line AB, the diameter, a straight line that cuts the circle ACB
in C and if we draw from the point A a perpendicular to AB to meet the
extension of BC in D, <we wish to know> how to draw starting from the
straight line CD a straight line, for example the straight line EG, parallel to
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AD, which cuts the circumference in H and is such that the ratio of EH to
GH is equal to a given ratio.

This is easy if we divide AD at the point I in the given ratio, by drawing
BI which necessarily cuts the circumference; let it cut it in H. We cause to
pass through this point <the line> EG parallel to AD, then the ratio of EH to
GH is equal to the given ratio, and this is clear.

Second lemma: We draw EG parallel to AD, the perpendicular, so that
it is equal to the straight line joining A and H. This too is not inaccessible.

I never sent the treatise about the construction of the lemma I had
introduced earlier. It is from God that there comes assistance for the truth
by his goodness.

Finished thanks be to God and transcribed from a copy made by
AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl al-Sijzî. Finished at the fort of
Hamadhæn, on Wednesday 12.7.544 – may the blessing of God be upon His
prophet MuÌammad and those that are his.



In the name of God, the Compassionate, the Merciful

BOOK BY
AÎMAD IBN MUÎAMMAD IBN ‘ABD AL-JALïL AL-SIJZï

On the Construction of the Heptagon in the Circle
and the Trisection of a Rectilinear Angle

He said: we are astonished to come across someone who seeks <to
acquire> the art of geometry and gives himself to it and, when he borrows
from eminent ancients, sees in them weaknesses and shortcomings; in
particular when it is a beginner and a pupil, who knows little of geometry,
so that he starts to imagine that after some minimal effort there will come
to him things which he considers easy of access and within the grasp of the
understanding, whereas they are past the understanding of those who are
experienced in this art and have been trained in it.

Would that I could know by what power, by what intuition, by what
skill and by what insight, he thought so well of himself as to find the
heptagon by starting from the preliminaries in the manner of someone who
reads part of the introductory book, that is to say Euclid’s book on the
Elements, without being either skilful or practiced, and that he belittles
those who have distinguished themselves in this art.

And there is surely no need to believe in weakness on the part of the
eminent Archimedes, despite the fact that in geometry he is in advance of
all other geometers: indeed his attainments in geometry were such that the
Greeks called him ‘the Geometer’ – it is Archimedes, and no other among
the ancients or the moderns, who received that name1 – on account of his
eminence in the art of geometry. He was extremely diligent in designing
useful things, and thanks to his great intellect he succeeded in making
instruments, machines and mechanical devices, he established the lemmas

1 Lit.: his name.
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for the heptagon and he took the right route; it is through the power of his
intellect that we have a grasp of the heptagon, and Heron owed his
understanding of machines to the power of his (Archimedes’) intellect,
because of his care and his diligence in matters of mathematics. Despite his
eminence, his primacy and his rank in the art of geometry, this miserable
misguided man taxes Archimedes with inadequacy and proposes the first of
his <own> preliminaries, bad, corrupt, far from the road to truth, and
incapable of leading to the construction of the heptagon. This deceit which
misled no one but himself and by which he expected to deceive someone
else, would only work on someone who does nothing good in geometry,
not even as a beginner. And further, he then attributes to Archimedes things
that would be an insult to anyone endowed with the least understanding,
not to mention geometers; and he claims that the lemma introduced by
Archimedes is more difficult than what he seeks, and he finds fault with his
method of proceeding and taxes him with imitation. What Archimedes did
is very beautiful, in the proof he obtained from the lemmas for the
heptagon, and in what he wrote in his book, so that he who is not worthy
cannot draw profit from them, as is the case for this pitiable man.

I too, after having borrowed from the learned work of Archimedes and
from the preliminaries in Apollonius, and in particular from modern
scholars such as al-‘Alæ’ ibn Sahl, I retained this notable and admirable
proposition as something precious, as something I was able to make use of,
in a very small step, <a proposition> concerning the trisection of a
rectilinear angle with the help of the first book of Apollonius’ work on the
Conics.

Now, I shall describe how matters stand and I begin with what is said
by the self-deceiver, so that it may be a lesson for beginners, and I show
how thoroughly suspect his remarks are and his construction fallacious; I
shall go on to the lemmas for the heptagon, and I shall continue by
<considering> the construction of the heptagon. I shall finish this book
with the trisection of a rectilinear angle, and I pray to God for assistance.

This is the beginning of his book, and the order of these lemmas.
He2 said: among the many lemmas that he introduced for the division

of the circle into seven equal parts, Archimedes imitated3 a lemma whose
construction he has not shown and which he has not proved; and it perhaps

2 Abº al-Jºd.
3 Here the translation follows the sense as understood by al-Sijzî, cf. above, p. 305.
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involves a more difficult construction and a less accessible proof than the
matter for which he introduced it. It is the following:

He4 said that he – he means Archimedes – said: Let us draw the
diagonal of the square ABCD, say AC. Let us extend AB to E, without an
endpoint, and let us draw from a point of BE, say E, a straight line to the
corner of the square, at the point D, which cuts the diagonal AC at the point
G and the side BC  at the point H, so that the triangle BHE outside the
square is equal to the triangle CDG.
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Fig. 4.1

Archimedes wished – from what he imitated in this matter – to draw a
perpendicular GI to AB to divide AB in I so that the product of AI and the
whole of AE is equal to the product of AB and IE and the product of AB and
AI is equal to the square of BE. But the division of AB in accordance with
this condition is easier to carry out and to prove than the act of drawing a
straight line E D  in accordance with the condition mentioned by
Archimedes. Perhaps this latter is not possible without dividing the straight
line A B in accordance with the condition mentioned and perhaps the
division of AB is similarly more difficult than the division of the circle into
seven equal parts.

In what has come into my mind for this chapter, I engage, on a
different basis, upon a shorter route, a simpler construction and lemmas
that are less numerous and easier.

The first is this one: If we draw a circle with distance of a
perpendicular to a straight line, then it touches the straight line on which
the perpendicular was erected, as the straight line AB is perpendicular to

4 This is still Abº al-Jºd, quoted by al-Sijzî.
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CD at the point B, and if we draw with distance AB a circle BEG, I say that
it touches the straight line CD, the proof of this is easy.

A

BC D

E

G

Fig. 4.2

Second lemma: We wish to draw from one of the sides of a given
triangle, say the side AB of the triangle ABC, to the second side, which is
BC , a straight line, equal to what it cuts off from it outside the small
triangle, and parallel to the third side, which is AC.

A B

C

<M>

<N>

Fig. 4.35

Third lemma: We wish to draw a straight line whose ratio to a known
straight line, say the straight line AB, is a known ratio, say the ratio of C to
D.

AB C D

Fig. 4.4

5 In the figure in manuscript [B], al-Sijzî (or the copyist?) draws DI – here NM –
without later using it; in manuscript [T], we have DE instead of DI.
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Fourth lemma: We wish to divide up a known straight line, say the
straight line AB, into two parts such that the product of the whole straight
line and one of the two parts is equal to the square of a straight line whose
ratio to the other part is a known ratio; let the ratio be <that of> C to D.

AB
C D<M>

Fig. 4.5

These lemmas are those on which he relied when constructing the
heptagon. Then, for the construction of the heptagon, he ordered that a
given straight line be divided into two parts such that the product of the
whole straight line and one of the two parts is equal to the square of a
straight line whose ratio to the other part is equal to the ratio of the whole
straight line to the sum of the whole straight line and this part. He gave the
ratio in the fourth proposition and for the construction of the heptagon he
used another ratio, different from the one he introduced in his lemma ; and
he believed it is possible to construct that by means of the lemma in the
fourth proposition. But the construction is not possible except by means of
conic sections, and, for someone who, in geometry, knows neither the cone
nor the sections, it would be by means of the lemmas presented in the
books of the ancients, thanks to which it is possible to construct the
heptagon <that is> for someone who adds his lemmas to them. But by
means of his lemmas, and by others analogous to them, it is difficult to find
the hexagon inscribed in the circle – which carpenters make on the lids of
cauldrons by means of a single opening of the compasses – a fortiori if it is
a matter of finding the heptagon. This is his mistake and his deception in
regard to the lemmas for the heptagon and its construction.

Let us now begin on what we have found out in connection with the
heptagon, its lemmas and the trisection of a rectilinear angle.

Lemma: We wish to divide a straight line AB into two parts at <a
point> C, for example, such that the ratio of the straight line equal in the
power to AB times BC to the straight line AC is equal to the ratio of AB to
the sum of AB and AC, considered as a single straight line.

We extend BA to D such that AD is equal to AB; we apply to AD the
square ADEG and we construct through the point A a hyperbola such that
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the two straight lines EG and ED do not meet it, but continually come
closer to it, from <proposition> four of <book> two of the Conics of the
eminent Apollonius, and from <proposition> one in the translation of
IsÌæq; let it be KAH. We construct on the axis BD a parabola such that its
latus rectum is AB, let it be LBH. We draw from the intersection of the two
conic sections, which is the point H, the perpendicular HC to the straight
line AB.
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Fig. 4.6

I say that we have divided the straight line AB at the point C in the way
that we wished.

Proof: We extend EG and CH until they meet one another in J; we
draw HIM parallel to JE and AIG parallel to CJ, since the rectangle MJ is
equal to the square GD, accordingly JI will be equal to ID. We take the
common rectangle IC, then the rectangle JA is equal to the rectangle HD.
But the rectangle HD is <the product> of the straight line C H and the
straight line CD and JA is CA times AG, that is to say AB, so AB times AC
is equal to CH times CD. So the ratio of CH to AC is equal to the ratio of
AB to CD, but CH is equal in the power to AB times BC since AB is the
latus rectum of the parabola LBH; but CD is AB plus CA, so the ratio of the
straight line which in the power is equal to AB times BC to the straight line
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CA is equal to the ratio of the straight line BA to BA and AC considered as a
single straight line. So we have constructed what we wished. That is what
we wanted to prove.

Abº Sa‘d al-‘Alæ’ ibn Sahl has proved this proposition by using the
method of analysis and our synthesis is a part of his analysis.

Here is another lemma: We wish to construct on a straight line AB an
isosceles triangle such that each of its angles at the base is three times the
remaining angle.
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Fig. 4.7

Let us divide AB into two parts at C, <a point> such that a straight line,
say the straight line AD, is equal in the power to AB times AC; so its ratio
to CB is equal to the ratio of AB to AB and BC considered as a single
straight line, from the preceding construction. We draw BD equal to AB
and to enclose with AD an angle D.

I say that the triangle ABD is what is sought and that each of the two
angles A and D is three times the angle B.

Proof: We join DC; since the ratio of AD to CB is equal to the ratio of
AB to AB and BC, considered as a single straight line, and since AB is
smaller than AB and BC combined, AD is consequently smaller than CB.
We take from CB, BE <which is> equal to AD; we draw EF parallel to AD
and we draw FH and DG perpendicular to AB. Since the product of AB and
AC is equal to the square of AD, the ratio of AB to AD in the triangle ABD
is equal to the ratio of AD to AC in the triangle ADC and the angle A of the
two triangles is common, so the triangle ADC is similar to the triangle
ABD, so the straight line DC is equal to the straight line AD and AG is
equal to GC. But since GC is half of AC and CB is half of twice CB, we
have that GB is half of AB plus half of CB also, and the ratio of EB, which
is equal to AD, to half of CB is equal to the ratio of AB to half of AB and of
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CB, that is to say GB. But the ratio of FB, which is equal to EB, to HB, is
equal to the ratio of DB, which is equal to AB, to GB. So the ratio of EB to
HB is equal to the ratio of AB to GB, that is to say to half <the sum of> AB
and BC; but the ratio of EB to half CB is also equal to the ratio of AB to
BG. Consequently half of CB is equal to HB, so the straight line FC is
equal to the straight line FB, that is to say EB. So the straight lines AD, DC,
FC, FB are all equal, but the angle ACD is equal to the <sum> of the two
angles CDF and DBC and the angle DFC is twice the angle B, the angle
ACD, that is to say the angle CAD, is thus three times the angle B. Each of
the two angles A and D in the triangle ABD is three times the angle B. So
we have constructed what we wished. That is what we wanted to construct.

<Proposition>: We wish to construct in a circle ABC a heptagon with
equal sides and equal angles.
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Fig. 4.8

We construct an isosceles triangle EGD  such that each of the two
angles E and G is three times the angle D and we construct in the circle
ABCH a triangle whose angles are equal to the angles of the triangle EGD,
that is the triangle ABC; we draw BH such that the angle CBH is equal to
the angle BAC and let us divide up the angle HBA into two equal parts with
the straight line BI. It is clear that the three angles CBH , HBI, IBA are
equal. We do to the angle BCA what we did to the angle CBA and we draw
the straight lines CJ, CK. Since the six angles which are at the <points> B
and C are equal and equal to the angle A, their arcs, which are CH, HI, IA,
BJ, JK, KA, are equal and equal to the arc BC; so we have constructed in
the circle ABCH a regular heptagon. That is what we wanted to construct.
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Here is a lemma for the trisection of a rectilinear angle.
The semicircle ACB is given, the straight line AG is known in position,

the diameter is AB and the centre is D. We wish to find on the diameter AB
a point, say the point E , such that if we draw from this point to the
circumference of the semicircle ACB a straight line parallel to the straight
line AG, say the straight line EC, its square, that is to say <the square of>
EC , is equal to the straight line BE times ED . Let us construct on the
diameter DB a hyperbola such that its transverse diameter is DB and its
latus rectum is equal to the straight line DB and such that the ordinates are
at an angle equal to the angle GAB; that is the conic section DCH which
meets the circumference of the semicircle at the point C. We draw C E
parallel to AG.
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Fig. 4.9

I say that EB times ED is equal to the square of EC.
Proof: The ratio of EB times ED to the square of EC is equal to the

ratio of DB to the latus rectum. But DB is equal to the latus rectum, BE
times E D  is consequently equal to the square of EC . So we have
constructed what we wished. That is what we wanted to construct.

Once we have introduced the preceding <result>, trisection of a
rectilinear angle becomes easy.

Let the angle BAC be given, we wish to divide it into three equal parts.
Let us extend BA to D to whatever length we want and let us construct on
the diameter AD a semicircle AGD with centre E. Let us draw HG parallel
to AC and such that HD times HE is equal to the square of HG using the
preceding construction. Let us join GD and GE and let us draw AI parallel
to EG.
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I say that the angle BAI is twice the angle IAC.
Proof: Since the product of HD and HE is equal to the square of HG,

we have <that> the ratio of HD to HG in the triangle HDG is equal to the
ratio of HG to HE in the triangle HGE; but the angle H is common to the
triangles, so the two triangles are similar and the angle HDG is equal to the
angle HGE; consequently, the angle HGE is equal to the angle EGD, but
the exterior angle HEG is equal to twice the angle EGD, and since EG is
equal to ED, the angle HEG is twice the angle EGH; but the angle AHG,
which is equal to the angle BAC, is equal to the sum of the two angles HGE
and GEH <which are> interior <angles> of the triangle; now the angle BAI
is equal to the angle HEG; and finally the angle IAC <which is> equal to
the angle EGH, so the angle BAI is twice the angle IAC. We divide the
angle BAI into two equal parts, so we have divided the angle BAC into
three equal parts. That is what we wanted to prove.

The book of AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl on the heptagon
and the trisection of the rectilinear angle is completed.
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Solution by Wayjan ibn Rustam
Known by the Name AAAAbbbbºººº    SSSSaaaahhhhllll    aaaallll----

QQQQººººhhhhîîîî for the Construction of the
Regular Heptagon in a Given Circle

There have appeared in the time
of our Lord the Great King the
victorious ‘A≈ud al-Dawla – may
God give him long life and cause
his power to endure – many noble
sciences, of belles lettres, of refined
arts, of ingenious constructions; a
large political outlook, a high-
minded life, justice dispensed
widely, prosperity in every region,
security for the people, <these have
appeared> in his reign and at the
time of his glory.

There have also appeared many
geometrical propositions which had
not appeared in the time of any
King, when they (mathematicians)
had the intention of bringing them
out and had done everything to

In the name of God,
 the Compassionate, the Merciful

Treatise by AAAAbbbbºººº    SSSSaaaahhhhllll    aaaallll----QQQQººººhhhhîîîî
Wayjan ibn Rustam on the

Determination of the Side of the
Heptagon

God, Thanks be rendered to
him, has made to appear in the time
of Our Lord the Great King the
victorious and triumphant, ‘A≈ud
al-Dawla, may God give him long
life and cause his glory to endure,
<together with> his eminence, his
authority, his power and his rule,
many branches of the sciences and
belles lettres, and many kinds of
research and inquiry, which were
hidden and did not reveal them-
selves come into the open; as stran-
gers, they did not make themselves
available; being haughty, they did
not lower themselves or submit;
being distant, they were neither
easily met with nor accessible.
There also appeared, thanks to the
good fortune of his reign and the
happiness of its spirit, many subtle
geometrical propositions, which
required much preparation before
one could approach them and which
were so difficult to envisage for the
Ancients that they bequeathed  <the
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resolve them, because they knew
that this family of mathematical
sciences, as astronomy, numbers,
weights, centres of gravity and
similar matters of philosophical ma-
thematics and comparable sciences
that indeed belong among the true
sciences which are not susceptible
to corruption, or to change, or to
criticism, or to attack, as others are
susceptible to them – because their
premises are necessarily true, their
arguments are true and their proofs
satisfy all the premises and
syllogisms. The easiest part among
all these propositions that have
appeared in the course of these
blessed times is a proposition that
the Ancients who are mentioned as
associated with it worked actively
to resolve, without any one of them
succeeding. God, powerful and
great, achieved it, in the reign of our
Lord, the Great King the victorious
‘A≈ud al-Dawla, may God give him
long life and cause his power to
endure by the hand of the King’s
servant; this is the construction of
the regular heptagon in the circle.

task of> examining them to the
Moderns, so difficult were these
<propositions> for the most
distinguished among them, and
arduous for the most eminent.
Defeated, they turned away from
<seeking> solutions, and they fled
from <attempting to> resolve them,
shedding their perspicacity and their
power, and, when faced with these
<propositions>, they saw their
vigour and their energy melt away.
But, all this, once they had worn out
all their efforts to find solutions,
and exhausted all their means of
deducing them, confident as they
were in what their good faith had
promised them: the survival of geo-
metry for all time, its development
beyond their life spans, its perma-
nence as a beautiful unchanging
memory and a treasure huge and
inexhaustible, and moreover the
benefit it offers to the mathematical
sciences, in particular <those con-
cerning> numbers, sounds, heaven-
ly bodies, weights, and everything
that is like them, is connected with
them, goes with them and is close to
them; even more, to all theoretical
sciences in general, it being given
that the science of geometry is a
model that sets the standard for
what is true, a guide one follows to
find truth, because its foundation is
well established, its reasoning is
stable and continuous, not suscep-
tible to damage: it is not subject to
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any weakness nor can any corrup-
tion, any blow, reach to it; no rejec-
tion, no refusal <to believe> chan-
ges it; it is incomparable in regard
to truth, and there is nothing similar
in regard to nobility. The simplest
among those <propositions of
which proofs are> still sought, is to
know the side of the regular
heptagon in the circle. The inge-
nuity of the eminent geometers we
have mentioned, and notably Archi-
medes, who worked on it, without
any of them being so fortunate as to
succeed. The attention of the sub-
ject of our Lord the Great King,
victorious and triumphant, ‘A≈ud
al-Dawla, may God give him long
life, cause his power to endure and
sustain his victory, <his attention>
turned to it, and he found <a
solution>; he pays him (the King)
homage by making the approach to
the matter simple, and in giving a
proof of it, hoping that it will meet
with a kindly reception from him, if
God so wishes. It is He who is all I
need and he is the best support.

– 1 – We wish to construct in a known circle ABC the side of the
regular heptagon.

By analysis, we suppose that the straight line BC is the side of the
regular heptagon inscribed in the circle ABC and that the arc AB is twice
the arc BC which is a seventh of the circumference of the circle; let us join
the two straight lines AB and AC; so the angle ACB is twice the angle BAC,
because the ratio of the arc to the arc is equal to the ratio of the angle to the
angle if the two angles are on the circumference or at the centre; so we
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have that the arc ADC  is four times the arc BC  and twice the arc AB,
because we have supposed the arc BC is a seventh of the circumference of
the circle. The angle ABC is thus also four times the angle BAC. But the
angle BCA is twice the angle CAB, so the angle ABC is twice the angle
BCA. So in the rectilinear triangle ABC, the angle ABC is twice the angle
ACB and four times the remaining angle BAC.

A

B C

D

Fig. 5.1

So the analysis has led to the construction of a rectilinear triangle in
which one of the angles is twice one of the two remaining angles and four
times the last angle.

– 2 – We wish to construct a rectilinear triangle in which one of the
angles is twice one of the two remaining angles and four times the last
angle.

By analysis, we suppose that one of the angles of the triangle ABC,
which is the angle A B C, is twice the angle BCA and four times the
remaining angle BAC.

We put the straight line C D equal to the straight line AC  on the
extension BC, and we join the straight line AD. The angle BCA is twice the
angle ADC, because it is exterior to the triangle ACD and it is equal to <the
sum> of the two angles CAD and CDA which are equal. But the angle ABC
is equal to twice the angle ACB, so the angle ABC is four times the angle
ADB. But the angle ABC is also four times the angle BAC, so the angle
ADB of the triangle ADB is equal to the angle CAB of the triangle CAB. But
the angle ABC is common to the two triangles, so the remaining angle of
one of the two triangles is equal to the remaining angle of the other
triangle. So the two triangles ABD and ABC are similar and the ratio of DB
to BA is equal to the ratio of BA to BC. The product of DB and BC is thus
equal to the square of BA.
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Fig. 5.2

We put the straight line B E equal to the straight line AB on the
extension of the straight line BD, and we join the straight line AE. So the
product of DB and BC is equal to the square of BE. Similarly, since the
angle ABC is exterior to the triangle ABE, it is accordingly equal to the sum
of the two angles BAE and AEB which are equal, so the angle ABC is twice
the angle EAB. But the angle ABC is twice the angle ACB, so the angle
ACB of the triangle ACE is equal to the angle BAE of the triangle ABE. So
if we take the common angle to be AEB, then the remaining angle in one of
the two triangles is equal to the remaining angle in the other triangle; so the
two triangles ACE and ABE are similar, so the ratio of CE to EA is equal to
the ratio of AE to EB and the product of CE and EB is equal to the square
of EA; but the straight line EA is equal to the straight line AC because the
angle ACE is equal to the angle AEC. But the straight line AC is equal to
the straight line CD, so the straight line CD is equal to the straight line AE,
the square of the straight line CD is equal to the square of the straight line
AE, and thus the product of CE and EB is equal to the square of the straight
line CD. But it has been shown that the product of DB and BC is equal to
the square of BE. So the straight line ED is divided at the two points B and
C such that the product of CE and EB is equal to the square of CD and the
product of DB and BC is also equal to the square of BE.

The construction of the triangle as we have described has led to finding
a straight line, let it be ED, divided at the points B  and C such that the
product of DB and BC is equal to the square of BE and the product of CE
and EB is equal to the square of CD.

– 3 – We wish to find this by analysis and we suppose that AB is a
straight line and is divided at the points C and D such that the product of
BC and CD is equal to the square of AC and the product of DA and AC is
equal to the square of DB.
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DB

E

IG

C A

Fig. 5.3

We draw the straight line EC perpendicular to the straight line AB and
equal to the straight line CD, the straight line CG is equal to the straight
line DB on the extension of the straight line EC, and each of the straight
lines GI and AI is parallel, respectively, to one of the straight lines AC and
CG. Since the straight line GC is equal to the straight line BD and the
straight line CE is equal to the straight line DC, the product of GE and EC
is equal to the product of BC and CD. But the product of BC and CD is
equal to the square of AC, so the product of GE and EC is equal to the
square of AC; but the square of AC is equal to the square of GI and the
straight line EC is equal to the straight line CD, so the product of CD and
EG is equal to the square of GI. So the point I lies on the outline of the
parabola with axis the straight line EG, vertex the point E and latus rectum
the straight line CD. Similarly, since the product of DA and AC is equal to
the square of DB, and since the square of DB is equal to the square of CG,
accordingly the product of DA and AC is equal to the square of GC; but the
square of GC is equal to the square of A I because the area ACGI is a
parallelogram, so the product of DA and AC is equal to the square of AI. So
the point I also lies on the outline of the hyperbola with vertex the point C,
with axis and latus rectum both equal to the straight line DC; in fact the
ratio of the product of DA and AC to the square of AI is equal to the ratio of
the transverse diameter to the latus rectum for the hyperbola. Thus if we
suppose we have the straight line CD, which is the axis of the hyperbola
and which is equal to the latera recta of the two conic sections, known in
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position and magnitude, the outlines of the hyperbola and the parabola will
be known in position. The point I, which is their point of intersection, is
thus known, the straight line IA is known because it is perpendicular to the
straight line AB, <which is> known in position, at the known point I. So the
straight line DB is known, because it is equal to the straight line AI and
each of the straight lines AC, CD and DB is known, so the straight line AB
is divided at the two points C and D such that the product of BC and CD is
equal to the square of AC and the product of DA and AC is equal to the
square of DB. That is what we wanted to construct.

– 4 – We wish to show that if the straight line AB is divided at the
points C and D such that the product of AD and DC is equal to the square
of DB and the product of CB and BD is equal to the square of AC, as we
have described, then <the sum of> two of the parts is greater than the
remaining part.

AB CD

Fig. 5.4

Proof: Since the product of AD and DC is equal to the square of DB,
the straight line DB is the mean proportional between the two straight lines
AD and DC. But AD is <the sum of> two of the parts of the straight line AB
and it is greater than the remaining part DB, because AD is greater than DC
and DB is greater than DC. Similarly, since the product of CB and BD is
equal to the square of AC, the straight line AC is the mean proportional
between the two straight lines CB and BD and the straight line CB, which is
<the sum of> two of the parts of the straight line AB, is greater than the
remaining straight line AC, because BC, the first <part>, is greater than CD,
the third. Similarly, since <the sum> of the two straight lines AC and DB is
greater than the straight line DB and since the straight line DB is greater
than the straight line CD, the sum of the two straight lines AC and DB is
greater than the remaining straight line CD. So <the sum> of two parts of
the straight line AB, if this latter is divided as we have described, is greater
than the remaining part. That is what we wanted to prove.

– 5 – We wish to find a straight line divided as we have described.



646 APPENDIX I: ABª SAHL AL-QªHï

By synthesis, we take it that each of the two lines AB and AC  is
straight, that they are equal and of known magnitude and that they enclose
a right angle; we extend each of them and we construct in the plane of the
two straight lines AB and AC a parabola with latus rectum the straight line
AC, with vertex the point B and axis the straight line BA, let the conic
section be BDE. We also put in the same plane a hyperbola with axis the
straight line AC, equal to its latus rectum, and with vertex the point A, let
the conic section be DAE. We take each of the straight lines EG and EH
parallel to each of the straight lines AH and AG and we put the straight line
IC equal to one of the straight lines AH or GE.
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Fig. 5.5

I say that the straight line GI is divided at the points C and A such that
the product of IA and AC is equal to the square of AG and the product of
CG and AG is equal to the square of IC.

Proof: The straight line IC is equal to the straight line AH and the
straight line CA is equal to the straight line AB, so the straight line HB is
equal to the straight line AI and the product of IA and AC is equal to the
product of HB and AC; but the product of HB and AC is equal to the square
of EH, because AC is equal to the latus rectum of the parabola BDE and the
straight line EH is an ordinate; so the product of IA and AC is equal to the
square of EH; but the square of EH is equal to the square of AG, because
the area AHEG is a parallelogram, so the product of IA and AC is equal to
the square of AG.
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Similarly, since the conic section DAE is a hyperbola, since its axis is
the straight line AC which is equal to its latus rectum, as we have assumed,
and since the straight line EG is an ordinate, accordingly the product of CG
and GA is equal to the square of EG, because the ratio of the product of CG
and GA to the square of EG is equal to the ratio of the diameter of the
hyperbola to its latus rectum, as Apollonius showed in Proposition 201 of
Book I of the Conics. So the product of CG and GA is equal to the square
of EG; but the square of EG is equal to the square of IC, so the product of
CG and GA is equal to the square of the straight line IC. But it has been
shown that the product of IA and AC is equal to the square of the straight
line GA, so the straight line IG has been divided at the points C and A such
that the product of IA and AC is equal to the square of the straight line AG
and the product of CG and GA is equal to the square of the straight line IC.
That is what we wanted to prove.

– 6 – We wish to construct a
triangle with rectilinear sides as we
have described.

By synthesis, we find a straight
line AB divided at the points C and
D such that the product of BC and
CD is equal to the square of AC and
the product of DA and AC is equal
to the square of DB. From three
straight lines equal to the straight
lines AC, CD and DB, we construct
a triangle; this construction is easy
and accessible because <the sum
of> two of the straight lines is
greater than the remaining one as
we have shown; let the triangle be
CDE such that DE is equal to D B
and CE equal to AC.

I say that the angle ECD of the
triangle ECD  is twice the angle

<6> We wish to construct a tri-
angle with rectilinear sides as we
have described.

By synthesis, we find a straight
line AB divided at the points C and D
such that the product of AD and CD
is equal to the square of DB and the
product of BC and DB <is> equal to
the square of AC. From three straight
lines equal to the straight lines AC,
CD, DB, we construct a triangle; his
construction is easy and accessible,
because <the sum of> two of the
straight lines is greater than the
remaining one, as we have shown; let
the triangle be CDE such that DE is
equal to DB and CE equal to AC.

I say that the angle EDC of the
triangle ECD is twice the angle ECD

1 This is Proposition 21 in Heiberg’s edition and 21 in the translation of the Banº Mºsæ.
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EDC  and that it is four times the
angle CED.

AB
CD

E

G

Fig. 5.6.1

Proof: We put the straight line
CG equal to the straight line C D
and let us join the straight lines DG,
EA, EB. Since the product of BC
and CD is equal to the square of AC
and the square of AC is equal to the
square of CE, accordingly the prod-
uct of BC and C D is equal to the
square of CE, so the ratio of BC to
CE  is equal to the ratio of CE  to
CD. But the angle BCE is common
to the two triangles BCE and DCE,
so the two triangles BCE and DCE
are similar. The angle CED of one
of the two triangles is thus equal to
the angle EBD of the other triangle.
But the angle EDC <which is> exte-
rior to the triangle EDB is equal to
<the sum of the> two equal interior
angles DEB and DBE because the
straight line D B  is equal to the
straight line DE; so the angle EDC
is twice the angle EBD. But the an-
gle EBD is equal to the angle CED,
so the angle EDC  of the triangle
EDC is twice the angle CED. Simi-
larly since the angle ECD is <an>

and four times the angle CED.

AB CD

E

G

Fig. 5.6.2

Proof: We put the straight line
DG equal to the straight line CD and
let us join the straight lines CG, EA
and EB. Since the product of AD and
DC is equal to the square of BD and
the square of B D  is equal to the
square of DE, the product of AD and
DC is equal to the square of DE, so
the ratio of AD to DE is equal to the
ratio of DE to CD. But the angle ADE
is common to the two triangles ADE
and DCE, so the two triangles ADE
and DCE are similar. The angle CED
of one of the two triangles is equal to
the angle EAD of the other triangle.
But the angle ECD <which is> exte-
rior to the triangle ECA is equal to
<the sum of the> two equal interior
CEA and CAE, because the straight
line CA is equal to the straight line
CE; so the angle ECD  is twice the
angle EAC. But the angle EAC is
equal to the angle CED, so the angle
ECD of the triangle EDC is twice the
angle CED. Similarly, since the angle
EDC is <an> exterior <angle> of the
triangle CGD, it is thus equal to <the
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exterior <angle> of the triangle
CGD, it is thus equal to <the sum of
the> two equal interior angles CDG
and CGD, because the straight line
CG is equal to the straight line CD,
thus the angle ECD  is twice the
angle DGC . Similarly, since the
straight line CE  is equal to the
straight line AC and the straight line
GE is equal to the straight line DA –
in fact the straight line CG is equal
to the straight line CD – the product
of GE and EC is equal to the prod-
uct of DA and AC. But the product
of DA and AC is equal to the square
of DB, so the product of GE and EC
is equal to the square of DB; but the
square of DB is equal to the square
of DE, because the straight line DE
is equal to the straight line DB, so
the product of GE and EC is equal
to the square of DE. So the ratio of
GE to ED is equal to the ratio of ED
to EC. But the angle GED is com-
mon to the triangles GED and CED,
so the triangle GED is similar to the
triangle CED and the angle EDC is
equal to the angle EGD. But the an-
gle ECD is twice the angle DGE, so
the angle ECD  is twice the angle
EDC. But it has been shown that the
angle EDC is twice the angle CED,
so the angle ECD is four times the
angle CED. Consequently one of
the two angles of the triangle ECD
is twice one of the remaining angles
and four times the remaining angle.
That is what we wanted to prove.

sum of the> two equal interior angles
DCG and CGD, because the straight
line DG is equal to the straight line
CD, thus the angle EDC is twice the
angle D G C . Similarly, since the
straight line DE is equal to the
straight line BD and the straight line
GE equal to the straight line CB – in
fact the straight line DG is equal to
the straight line CD – thus the prod-
uct of GE  and ED  is equal to the
product of CB and BD. But the prod-
uct of B C  and BD  is equal to the
square of CA, so the product of GE
and ED is equal to the square of AC;
but the square of AC is equal to the
square of CE, because the straight
line CE is equal to the straight line
AC; so the product of GE and ED is
equal to the square of CE . So the
ratio of GE to EC is equal to the ratio
of EC to ED. But the angle GEC is
common to the triangles GEC and
CED, so the triangle GEC is similar
to the triangle CED  and the angle
ECD is equal to the angle EGC. But
the angle EDC  is twice the angle
CGE, so the angle EDC is twice the
angle ECD . But it has been shown
that the angle ECD is twice the angle
CED, so the angle EDC is four times
the angle CED. Consequently, one of
the two angles of the triangle ECD is
twice one of the two remaining
angles and four times the third angle.
That is what we wanted to prove.
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– 7 – We wish to find the side of the regular heptagon inscribed in a
given circle ABC.

By synthesis, we construct a rectilinear triangle one of whose angles is
twice one of the two remaining angles and four times the other angle; let it
be the triangle DEG such that the angle DEG is twice the angle EGD and
four times the other remaining angle; we construct in the circle ABC the
triangle ABC, let each of its angles be equal to one of the angles of the
triangle DEG: the angle ABC to the angle DEG, the angle ACB to the angle
DGE and the remaining angle to the remaining angle.

A
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D

G E

I

Fig. 5.7

I say that the straight line BC  is the side of the regular heptagon
inscribed in the circle ABC.

Proof: The angle DEG is twice the angle DGE and four times the angle
EDG, so the angle ABC is twice the angle ACB and four times the angle
BAC. So the arc AIC is twice the arc AB and four times the arc BC because
the ratio of the arc to the arc in the same circle is equal to the ratio of the
angle to the angle, whether these angles be on the circumference or at the
centre. But the arc AB is twice the arc BC, so the whole arc CIAB is six
times the arc BC, so the circumference of the circle is seven times the arc
BC, so the straight line BC is the side of the regular heptagon inscribed in
the given circle ABC. So we have constructed in the given circle ABC the
side of the regular heptagon. That is what we wanted to prove.

The treatise is completed.



In the name of God, the Compassionate, the Merciful

Treatise on the Construction of the Side of the Regular Heptagon
Inscribed in the Circle by AAAAbbbbºººº    SSSSaaaahhhhllll    aaaallll----QQQQººººhhhhîîîî

Mathematicians agree in recognizing Archimedes is eminent and holds
first place among the Ancients, because they have taken note of how many
beautiful and advanced things he discovered, and <how many> difficult
and abstruse propositions, in the highly valued demonstrative sciences;
clear testimony is to be found in his surviving books, such as the book On
Centres of Gravity, the book On the Sphere and the Cylinder, and the other
books, each of which represents a summit beyond which nothing more is to
be found. Thus they believed that what he had trouble in solving, and what
he did not succeed in completing, <were matters> in which no one would
ever find a way to achieve a solution, and no one else would find a route
that led to the result – this is what they believed regarding the construction
of the side of the regular heptagon inscribed in the circle, on the basis of
what could be deduced from the book he had composed on the subject. It is
a subtle book whose purpose he did not fulfil nor did he achieve his aim in
finding the heptagon by a single method, not to speak of more than one; as
God has given it to be accomplished by the subject of our Lord, Abº al-
Fawæris ibn ‘A≈ud al-Dawla, and by his servant, Wayjan ibn Rustam.

– 1 – We wish to find in a known circle ABCD the side of the inscribed
regular heptagon.

By analysis, we suppose that each of the straight lines AB and BC is a
side of the regular heptagon inscribed in the circle ABCD. Each of the arcs
AB and BC is a seventh of the circumference of the circle ABCD. If we
divide it up, each of the arcs AB and BC is a fifth of the arc ADC, so the arc
ADC is five times each of the arcs AB and BC and the angle ABC is five
times each of the angles BAC and BCA, because the ratio of the arc to the
arc in the circle is equal to the ratio of the angle to the angle, whether the
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angles are on the circumference or whether they are at the centre. The
triangle ABC is isosceles and the angle ABC is five times each of the
remaining angles BAC and BCA. So we have reduced this <problem> to the
construction of an isosceles triangle in which one of the angles is five times
each of the two remaining angles.

A

B

C

D

Fig. 6.1

<2> Thus we wish to construct an isosceles triangle in which one of the
angles is five times each of the two remaining angles.

By analysis, we suppose we have an isosceles triangle ABC in which
the angle ABC is five times each of the angles BAC and BCA; we suppose
that the line CBDE is straight, that the angle BAD is equal to each of the
angles BAC and BCA and that the straight line DE is equal to the straight
line DA.

A

BC D E

Fig. 6.2

Since the angle ACD is equal to the angle BAD and the angle ADB is
common to the triangles ACD and ABD, the remaining angle is equal to the
remaining angle and the triangle ACD is similar to the triangle ABD. So the
ratio of the straight line CD to the straight line DA is equal to the ratio of
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the straight line DA to the straight line DB, so the product of CD and DB is
equal to the square of the straight line DA. But the straight line DA is equal
to the straight line DE, so the product of CD and DB is equal to the square
of the straight line DE.

Similarly, since the angle ABC is five times the angle BCA and the
angle BCA is equal to the angle BAD, the angle ABC is equal to five times
the angle BAD. But the angle ABC is equal to the sum of the angles BAD
and BDA, so the sum of the angles BDA and BAD is five times the angle
BAD. If we separate <ratios>, then the angle BDA will be four times the
angle BAD; but the angle ABD is twice the angle BCA, because the triangle
ABC is isosceles and the angle ABD is an exterior <angle> of the triangle
ABC. But the angle BCA is equal to the angle BAD, so the angle ABD is
twice the angle BAD and the angle ADB is four times the angle BAD. That
is why the angle ADB is twice the angle ABD and the angle ADB is twice
each of the angles DAE and DEA, because the triangle ADE is isosceles and
the angle ADB is an exterior <angle> of it; so the angle ABD is equal to
each of the angles DAE and DEA. But since the angle ABD is equal to the
angle DAE and the angle AED is common to the two triangles ABE and
ADE, accordingly the remaining angle is equal to the remaining angle and
the two triangles AEB and ADE are similar; so the ratio of BE to E A is
equal to the ratio of the straight line EA to the straight line ED and the
product of BE and ED is equal to the square of the straight line EA. But the
straight line EA is equal to the straight line AB, because the angle AEB is
equal to the angle ABE and the straight line AB is equal to the straight line
CB because the triangle ABC is isosceles; so the product of BE and ED is
equal to the square of the straight line BC. But the product of CD and DB is
equal to the square of the straight line DE. So there must be a certain
straight line divided in the ratio of CB, BD and DE so that the product of
CD and DB is equal to the square of DE and the product of BE and ED is
equal to the square of BC. So we have reduced <the problem> to finding a
straight line divided in this ratio.

<3> We wish to find a straight line divided in this ratio.
By analysis, we suppose that the straight lines AB, BC, CD are in this

ratio, that is to say that the product of AC and CB is equal to the square of
CD and the product of BD and D C is equal to the square of A B. We
suppose that the straight line CE  is equal to the straight line CD, the
straight line BG is equal to the straight line AB, they are parallel and make
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a known angle with the straight line CA, the angle ABG is divided into two
equal parts by the straight line KBI and the line ECI is straight. Since the
product of the straight line AC and the straight line CB is equal to the
square of CD and the square of the straight line CD is equal to the square of
the straight line CE, the product of AC and CB is equal to the square of the
straight line CE. But the angle ECB is known, so the point E lies on the
outline of the hyperbola – which is BE – whose transverse diameter is the
straight line AB, and whose latus rectum is equal to its transverse diameter
– which is the straight line AB – and the angle of the ordinates is the angle
ECB.
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Fig. 6.3

Similarly, the straight line BC is equal to the straight line CI, because
the angle CBI is equal to the angle BIC and the straight line CD is equal to
the straight line CE; so the product of IE and EC is equal to the square of
BA, that is to say to the square of BG, because the two straight lines AB and
BG are equal. So the product of IE and EC is equal to the square of the
straight line GB. The point E also lies on the outline of the hyperbola which
is GE, whose asymptotes are the two straight lines BD and BK and which
passes through the point G. If we take AB of known magnitude and known
in position, all these straight lines will be known in position, the point G is
known and each of the conic sections BE and GE is known in position, so
the point E is known, and the point C is known, because the angle EBC is
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known; so each of the points A, B, C, D is known. That is what we wished
to know.

<4> If the straight line AB is divided at the points C and D as we have
described, that is to say points such that the product of the straight line BC
and the straight line CD is equal to the square of the straight line AC and
the product of the straight line DA and the straight line AC is equal to the
square of the straight line DB, I say that the sum of two of the straight lines
AC, CD and DB is greater than the remaining straight line.

B D C A

Fig. 6.4

Proof: Since the product of BC and CD is equal to the square of AC,
the ratio of BC to CA is equal to the ratio of CA to CD. But the straight line
BC is greater than the straight line CD, so the straight line BC is greater
than the straight line CA , and since the straight line CA  is the mean
proportional between the straight lines BC and CD, the straight line CA is
accordingly greater than the straight line CD; but the straight line BC is two
parts of the three parts, that is to say the sum1 of the straight lines BD and
DC, so it is greater than the remaining part, which is AC.

Moreover, since the straight line AC is greater than the straight line
DC, it will be, with <the addition of> the straight line DB, much greater
than the straight line CD, so the sum of the two straight lines AC and DB is
greater than the remaining straight line CD. Similarly, since the product of
the straight line DA and the straight line AC is equal to the square of DB,
the straight line DB is accordingly the mean proportional between the two
straight lines DA and AC. It is for this reason that the straight line DA is
greater than the straight line DB; but the straight line DA is two parts of the
three parts, so the sum of the two parts AC and CD is greater than the
remaining part DB. The straight line AB being divided into parts, as we
have described, then the sum of two of the parts is greater than the
remaining part. That is what we wanted to prove.

1 We have added the word ‘sum’ to conform with English usage.
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<5> We wish to find a certain straight line that can be divided in this
ratio.

By synthesis, we take the straight line AB, known in position and in
magnitude, and the straight line AC, equal to the straight line AB, making a
known angle: we divide the angle CAB into two equal parts by means of
the straight line DAE, and we draw BAG to be a straight line. We construct
through the point A a hyperbola whose transverse diameter is the straight
line AB and whose latus rectum is equal to the straight line AB; so the angle
of its ordinates is equal to the angle CAB; let AI be the outline of the conic
section. Again, we construct through the point C  a hyperbola whose
asymptotes are the straight lines AD and AG; let the conic section be CI; so
the conic sections cut one another at the point I. We draw the straight line
IKE, its ordinate, and we put the straight line KG equal to the straight line
KI.

I say that the parts of the straight line BG <divided> at the points A and
K are as we wished, that is to say that the product of the straight line BK
and KA is equal to the square of KG and the product of the straight line AG
and GK is equal to the square of the straight line AB.
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Fig. 6.5

Proof: Since the conic section AI is a hyperbola, its transverse diameter
the straight line AB, which is equal to its latus rectum, and the ratio of the
product of BK  and KA  to the square of KI is equal to the ratio of its
transverse diameter to its latus rectum, which are equal, accordingly the
product of BK and KA is equal to the square of KI. But the square of KI is
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equal to the square of KG, because the two straight lines KI and KG are
equal. So the product of BK and KA is equal to the square of KG.

Similarly, the straight line KA is equal to the straight line KE because
the angle KEA is equal to the angle KAE and the straight line KG is equal to
the straight line KI; so the straight line AG is equal to the straight line EI.
So the product of AG and GK is equal to the product of EI and IK; but the
product of EI and IK is equal to the square of AC, since the two straight
lines AD and AG do not meet the hyperbola CI that passes through the
point C and since the straight line CA is parallel to the straight line IKE; so
the product of AG and GK is equal to the square of AC; but the square of
AC is equal to the square of AB because the lines are equal. It is for this
reason that the product of AG and GK is equal to the square of AB. But the
product of BK and KA is equal to the square of KG. So we have found the
straight line BG divided at the points K and A such that the product of BK
and KA is equal to the square of KG and the product of AG and GK is equal
to the square of AB, as we described. That is what we wanted to prove.

<6> We wish to construct an isosceles triangle in which one of the
angles is five times each of the remaining angles, as we have said in the
analysis.

By synthesis, we find a straight line AB divided at the points C and D
such that the product of BC and CD is equal to the square of CA and the
product of DA and AC is equal to the square of DB, <a straight line> whose
construction we have shown above.

Since the sum of two of the straight lines AC, CD, DB is greater than
the remaining straight line, accordingly we construct a triangle from three
straight lines equal to the <straight lines> AC, CD, DB, let it be the triangle
CDE, and we join the straight line BE.

I say that the triangle BDE is isosceles and the angle BDE is five times
each of the angles DEB and DBE.

AB CD

E

I

Fig. 6.6
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Proof: We join the straight line AE and we make the straight line DI
parallel to the straight line AE, and the straight line ECI, so the straight line
CI is equal to the straight line CD – because the triangle ACE is isosceles –
and the product of IE and EC is equal to the product of the straight line DA
and AC. But the product of the straight line DA and AC is equal to the
square of DB, that is to say to the square of the straight line ED, because
the two straight lines DB and DE are equal. So the product of IE and EC is
equal to the square of ED, thus the ratio of IE to ED is equal to the ratio of
ED to EC; but the angle DEC is common, so the angle EDC is equal to the
angle EID. But the angle ECD is twice the angle CID, because the triangle
CID is isosceles. So the angle ECD is twice the angle EDC and the angle
EDC is twice the angle EBD, because it is <an> exterior <angle> of the
isosceles triangle EDB. But the angle EBD is equal to the angle DEC,2 so
the angle EDC is twice the angle DEC and the angle ECD is four times the
angle CED. If we combine, the sum of the angles ECD and CED is five
times the angle CED ; but the angle EDB, an exterior <angle> of the
triangle CED, is equal to the sum of the angles ECD and DEC, and the
angle CED is equal to the angle EBD, so the angle EDB is five times the
angle EBD. But the angle EBD is equal to the angle DEB, because the
triangle EDB is isosceles. So the triangle EDB is isosceles and one of its
angles, which is the angle EDB, is five times each of the angles DEB and
DBE. So we have constructed an isosceles triangle in which one of the
angles is five times each of the two remaining angles; it is the triangle
EDB. That is what we wanted to prove.

<7> We wish to construct in the known circle ABCD the side of a
regular heptagon.

By synthesis, we construct the isosceles triangle EGI in which the
angle EGI is five times each of the remaining angles GEI and EIG, as we
have shown above. In the circle ABCD we inscribe a triangle ABC similar
to the triangle EGI and such that the straight line AC is homologous to the
straight line EI.

I say that each of the straight lines AB and BC is a side of the regular
heptagon inscribed in the circle ABCD.

2 The equality EBD DECˆ ˆ=  is a consequence of the hypothesis BC · CD = AD2 = EC2

which means that the triangles BCE and ECD are similar.
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Proof: Since the angle EGI is five times each of the angles GEI and
GIE, the angle ABC is five times each of the angles BAC and BCA. So the
arc ADC is five times each of the arcs AB and BC, because the ratio of the
arc to the arc in the circle is equal to the ratio of the angle to the angle,
whether these angles are on the circumference or at the centre. If we
combine the arcs, the whole circumference of the circle ABCD is seven
times each of the arcs AB and BC. So each of the arcs AB and BC is a
seventh of the circumference of the circle ABCD. It is for this reason that
each of the straight lines AB and BC is the side of the regular heptagon
inscribed in the circle ABCD. So we have constructed in the circle ABCD
the side of the regular heptagon, which is AB or BC . That is what we
wanted to prove.

The treatise on the construction of the side of the regular heptagon
inscribed in the circle is completed.



In the Name of God, the Compassionate, the Merciful

TREATISE BY AÎMAD IBN MUÎAMMAD IBN AL-ÎUSAYN AL-
∑ÆGHÆNï FOR HIS MAJESTY THE KING ‘A⁄UD AL-DAWLA

IBN ABï ‘ALï RUKN AL-DAWLA

Since the Good is something one seeks ardently for its own sake, the
Good is thus what one truly seeks, and he who seeks it is blessed in the
absolute sense. Among the qualities of the man who is blessed are good
conduct and perfection in his actions. If this is as we have said, if this
defines the man who does good and the man who is blessed, then our Lord
the victorious Great King, ‘A≈ud al-Dawla, may God give him long life, is
in truth a man who does good and is blessed, he whose high actions and
virtuous life is certainly known to all. Eyes are drawn to him, and hearts
agree in obeying him.

Among the blessings of kings and rulers there is the emergence of
sciences that take shape in their time. The determination of the chord of the
heptagon resisted the efforts of geometers. Archimedes had stated a lemma
whose proof would have made it possible to find the chord of the heptagon.
And this is the way the problem was passed down to our own time. Then a
solution to it, using fixed geometry, came to AÌmad ibn MuÌammad ibn al-
Îusayn al-∑æghænî, who accomplished this in the reign of the victorious
Great King, ‘A≈ud al-Dawla. May God give him long life and heap
happiness upon His Highness; his are the times we are proud to live in, and
we are proud of the virtues that characterize him and for which he is
celebrated. I pray to God that he may lengthen his days and that he may
continue his blessings for ever; may he fulfil the hopes that scholars have
of him; may he help them to gain their due reward for what service they
can render, each according to what he can do.

When I was living in Rayy, I had sent this problem to his library, which
prospers thanks to the favourable effect of his rank and benefits by his good
fortune. Now, I have given it another form in which I have shown how to
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reduce the problem to the lemma, then I have recast it as synthesis; and
through this <essay> have rendered a service to the King, my great
victorious Lord – may God give him long life. It is from God that we beg
for assistance, and it is from him that we ask for help. It is he who brings us
fulfilment, and we entrust ourselves to him, our best support.

– 1 – The circle ABC is known: how should we proceed to inscribe in it
a regular heptagon?

A B

H

C

Fig. 7.1

Let us suppose, by analysis, that this has been done. Let the straight
lines AH, BH, BC be some of the sides and let us imagine AB and AC to
have been joined. Since the arc AB is twice the arc BC, the angle ACB is
twice the angle BAC, and since the arc AC is twice the arc AB, the angle
ABC is twice the angle ACB. So if we construct a triangle whose angles are
in proportion with the ratio of doubling, then the problem is solved.

– 2 – We suppose, by analysis, that in the triangle ADU the angle AUD
is twice the angle ADU and the angle ADU is twice the angle DAU. Let us
imagine that we have extended DU to H and to B, so that DH is equal to
AD and UB equal to AU, and AH and AB are joined. It is clear that the
angle AUD is twice the angle ABU, so the angle BAU is equal to the angle
ADU and the angle B is common, so the triangle ADB is similar to the
triangle AUB, and the ratio of DB to AB is equal to the ratio of AB to BU.
But AB is equal to AD, because the angle D is equal to the angle B; but AD
is equal to DH, so the ratio of BD to DH is equal to the ratio of DH to BU.
Similarly, since the angle ADU is twice each of the angles DAU and AHU,
the angle AHU is equal to the angle DAU. But the angle AUD is common,
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so the triangle AUD is similar to the triangle AUH, and the ratio of UH to
AU, that is to say to BU, is equal to the ratio of AU, that is to say BU, to
UD.

A

BH D U

Fig. 7.2

The analysis of this problem has led us to find a straight line <divided>
into these parts.

– 3 – Let us take the straight line AB on which there are the two points
D and E; let us suppose that the ratio of AD to DB is equal to the ratio of
DB to AE and the ratio of BE to AE is equal to the ratio of AE to ED. We
construct on AD the square AI, we join the diagonal AI and we join FB.

AB CD E

FG

H

I

K

Fig. 7.3

I say that if we draw from the point H a perpendicular to AB, then it
ends at the point E.

If it were otherwise, let it end at the point C. We extend it to G. It is
clear that GI is equal to GH, similarly CH is equal to AC, so the ratio of BC
to CH, that is to say to AC, is equal to the ratio of FG, that is to say AC, to
GH, that is to say to GI, that is to say to CD, and the ratio of BC to AC is
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equal to the ratio of AC to DC. By composition and permutation, we have
that the ratio of AB to AD is equal to the ratio of AC to CD. But since we
have supposed that the ratio of BE to AE is equal to the ratio of AE to ED,
by composition and permutation, we have that the ratio of AB to AD, which
was equal to the ratio of AC to CD, is equal to the ratio of AE to ED, so the
ratio of AC to CD is equal to the ratio of AE to ED; which is absurd. Conse-
quently, the perpendicular drawn from H ends at E. That is what we wanted
to prove.

– 4 – Let us return to the same figure; let the perpendicular be GHE.
Since we have supposed that the ratio of AD to BD, that is to say the ratio
of FK to KB, is equal to the ratio of BD to AE, that is to say to the ratio of
BK to FH, the ratio of FK to KB is consequently equal to the ratio of KB to
FH. But the ratio of FK to KB is equal to the ratio of FI to DB, so the ratio
of KB to FH is equal to the ratio of FI to DB. But the angle IFH is equal to
the angle B, so the triangle BDK is equal to the triangle FIH.

AB D E

FG

H

I

K

Fig. 7.4

The analysis of this problem has led us to another proposition, which
is:

– 5 – Let there be the square ABCD, we extend the straight line BD on
the side of the point D and we join the diagonal BC; we wish to draw a
straight line from the point A, say the straight line AH, so that the triangle
AEC is equal to the triangle GDH.
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Let us suppose by analysis that this has been done and that the straight
line AH solves the problem.1 Let us imagine that we have completed the
rectangular area DL and let us imagine the straight line XI′ drawn parallel
to the straight line AH; AC will thus be equal to I′H and XC will be equal to
KI′ because the two triangles AXC and KI′H are similar. Since the triangle
AEC is equal to the triangle GDH and the angle EAC is equal to the angle
GHD, their sides are inversely proportional, and the ratio of GH to AE is
equal to the ratio of AC to DH. But the ratio of AC to DH is equal to the
ratio of AG to GH, so the ratio of AG to GH is equal to the ratio of GH to
AE, and the product of AG and AE is equal to the square of GH. Now the
product of AG  and A E is smaller than the square of AC, because the
perpendicular drawn from the point C to AG ends at a point between the
two points E and G; so AC is longer than GH, that is to say <longer than>
CK; but XC is longer than AC, consequently XC is much longer than CK.
Let us imagine we have OC equal to KC, consequently the product of AG
and AE will be equal to the square of OC. So if we construct a hyperbola
that passes through the point A and is such that the asymptotes are CB and
CD, that is the conic section PQ , it passes through the point O, as
Apollonius showed in the seventh proposition of the second book of the

1

 Lit.: makes the problem.
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work2 the Conics, and the conic section PQ will be known in position. But
since we have shown that XC is equal to KI′, if we construct a hyperbola
that passes through the point C and has asymptotes XB and BI′, it passes
through the point K, as Apollonius showed in the sixth proposition of the
second book of the work the Conics3 and it is known in position. Let this
conic section be MN. We have also shown that AC is longer than GH; so it
is longer than CL. We make CI equal to AC. If we construct through the
point I the hyperbola that is opposite to the conic section PQ, it passes
through the point K, as Apollonius showed in the thirty-first proposition of
the first book of the work of the Conics,4 and it too is known in position.
Let IK be this conic section; so the conic section IK is known in position;
now the conic section MN was too; so the point K is known and the point C
also. So the straight line CK is known in position, the point A is known and
AH is parallel to CK; so AH is known in position. That is what we wanted
to prove.

– 6 – Synthesis corresponding to that analysis: We take the square
ABCD, we extend BD , we join BC  and we take CI  equal to AC. We
construct two opposite hyperbolas5 that pass through the points A and I and
are such that their asymptotes are BC and CD; let them (the conic sections)
be PQ and KI. We construct a hyperbola that passes through the point C
and is such that the straight lines AB and BD are its asymptotes; let the
conic section be MN. The two conic sections MN and IK necessarily cut
one another in a point between AI and BH, because, indeed, if it is extended
the straight line BD cuts the conic section IK; let them cut one another at
the point K. We join KC, we draw the perpendicular KH to BD and we join
HA.

I say that the triangle GDH is equal to the triangle AEC.
Proof: We extend the straight line KC to the points X and I′. It is clear

that XC is equal to KI′ 6 and that the triangle AXC is similar to the triangle
KI′H; so I′H is equal to AC and they are parallel; so AH is parallel to XI′.
But since the points O and K lie on the two opposite conic sections PQ and

2 This is Proposition 11 of Book II.
3 This is Proposition 8 of Book II.
4 This is Proposition 30 of Book I.
5 Lit.: two hyperbolic sections.
6 From Proposition 8 of Book II; the author does not give a reference.
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IK, accordingly OC will be equal to KC , as Apollonius showed in the
thirty-first proposition of the first book of the work the Conics.7 And since
the two straight lines CB and CD do not meet the conic section PQ and we
have drawn AG and OC to be parallel, accordingly the product of GA and
AE is equal to the square of OC, as Apollonius showed in the seventh
proposition of the second book of the work the Conics,8 that is to say the
square of GH; so the product of AG and AE is equal to the square of GH.
So the ratio of AG to GH is equal to the ratio of GH to AE. But the ratio of
AG to GH is equal to the ratio of AC to DH, because the triangles AGC and
GHD are similar, so the ratio of AC to DH is equal to the ratio of GH to
AE; the two angles EAC and GHD are equal, and the triangle AEC is thus
equal to the triangle GDH. That is what we wanted to prove.
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– 7 – Once that has been proved, we take the square ABCD, together
with the straight line AH, and we draw the perpendicular OEU.

Since the angle OCE is half a right angle and the angle O is a right
angle, OC is equal to OE and similarly EU is equal to BU. But since we
have shown that the ratio of AG to GH is equal to the ratio of GH to AE,

7 This is Proposition 30 of Book I.
8 This is Proposition 11 of Book II.
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accordingly the ratio of BD to DH is equal to the ratio of DH to BU. Simi-
larly, the ratio of HU to UE, that is to say to UB, is equal to the ratio of AO
to OE because the triangles AOE and EUH are similar. But OE is equal to
OC, that is to say to UD, so the ratio of UH to UB is equal to the ratio of
UB to U D. But since we have shown in our last proposition that BD is
longer than DH,9 the sum of BU and UD is longer than DH. Similarly we
have shown here that BU is the mean proportional between HU and UD; so
BU is smaller than the sum of DU and DH; but BU is longer than UD, so
the sum of BU and DH is longer than DU, and <the sum> of two of the
three straight lines BU, UD and DH is longer than the third; so they can be
used to construct a triangle. Similarly, we can construct a triangle whose
sides are equal to the straight lines AE, EG, GH starting from the straight
line AH and the points E and G.10
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Fig. 7.7

We take the straight line BH with the points D and U and we construct
the triangle AUD such that BU is equal to AU and AD equal to DH.

I say that the angles of the triangle AUD are in proportion in double
ratio, that is to say that the angle UAD is half the angle ADU and the angle
ADU is half the angle AUD.

Proof: We join AB and AH and we extend AU to <the point> G such
that GU is equal to DU. It is clear that the angle DAH is equal to the angle
DHA; so the angle UDA is twice the angle DAH. But since the ratio of UH
to UB, that is to say to UA, is equal to the ratio of UA to UD, the triangle
AUH is similar to the triangle AUD and the angle UAD is thus equal to the
angle AHD. But the angle ADU is twice the angle AHD, so the angle ADU

9 It has been shown that AC > GH; but AC = BD and GH > DH, so BD > DH.
10 The ranges (B, U, D, H) and (A, E, G, H) are similar because AB || EU || GD.
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is twice the angle DAU. Similarly, the ratio of BD to DH, that is to say of
AG to AD, is equal to the ratio of DH, that is to say AD, to BU, that is to
say to AU; so the triangle ADG is similar to the triangle AUD and the angle
ADG is equal to the angle AUD; but the angle AUD is equal to the sum of
the angles AGD and UDG, and since UD is equal to UG, the angle ADU is
equal to the angle AGD, and the angle AUD is thus twice the angle ADU.
That is what we wanted to prove.
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Fig. 7.8

The same is true for the angles of the triangle AUD and those of the
triangle AUH.

– 8 – Once these lemmas have been proved, we take the circle ABC and
in it we wish to inscribe a regular heptagon.
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Fig. 7.9
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We inscribe in it a triangle similar to the triangle AUD, which is the
triangle ABC, such that the angle ABC is the homologue of the angle AUD
and the angle ACB is the homologue of the angle ADU. We divide up the
angle ABC into four equal parts by the straight lines BG, BE, BD; we divide
up the angle ACB into two equal parts by the straight line CH and we join
the straight lines AH, BH, AG, GE, ED and DC. Since the angles ACH,
BCH, ABG, GBE, EBD, DBC are equal and equal to the angle BAC, the
arcs are equal and the heptagon AGEDCBH is regular. That is what we
wanted to construct.

The problem is completed. Thanks be rendered to God. May the
blessing and the grace of God be upon MuÌammad and those that are his.

I solved this problem on Saturday the 12th day of the month of
Shawwæl in the year 360; the 27th day of the 5th month <340 in the era of
Yazdegerd>.

<Copy> completed at the fortress of Hamadhæn, on Saturday 15.7.544
of the Hegira, from a copy in the hand of AÌmad ibn MuÌammad ibn ‘Abd
al-Jalîl al-Sijzî.

Thanks be rendered to God. May the blessing and the grace of God be
upon our master MuÌammad and those that are his.



In the Name of God, the Compassionate, the Merciful

Book on the Discovery of the Deceit of Abºººº  al-Jººººd
concerning the Two Lemmas he Introduced in order, as he Claimed,

to Construct the Heptagon
by

ABª ‘ABD ALLÆH MUÎAMMAD IBN AÎMAD AL-SHANNï

Since geometry holds the highest rank among the sciences, those who
distinguish themselves in it are very few in number, though one loses count
of those who make the attempt, so great is their number. It has been said
that those truly learned in this art, that is to say in the science of geometry,
are three: Euclid, Archimedes and Menelaus. Euclid, for his part, was the
first to bring together the fundamentals of geometry; he put them in order,
and marked out the routes to get to them; he made them accessible, to such
a point that it is from his time onwards that this science has developed. As
regards Archimedes – thanks to his zeal in this science and his working on
abstruse notions like the study of mechanics and the instruments required –
he attained such a peak of achievement that the Greeks called him ‘the
Geometer’. No other, neither among the ancients nor among the moderns,
has deserved that name, such is his superiority and his pre-eminence. He
set out a proposition and introduced it for constructing the regular heptagon
in the circle; but, since he was not able to complete it from the
fundamentals of geometry, he left it as it was, while nevertheless showing
that, if it is granted, then, from that fact, we <can> construct the heptagon;
in this he followed the example set by Euclid, when the latter was not able,
using the fundamentals he had assembled, to find the chord of the heptagon
in the circle, nor to find a third of an angle with straight sides, which, if it
were found, would allow one to find the chord of the heptagon in the circle;
he did not mention it, and did not introduce any statement (of a
proposition). However, it is far from true that either he or Archimedes was
unable to do this, or that <in doing as they did> they were following some
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other example.1 Archimedes did the same in his book on The Sphere and
the Cylinder, where he wished to divide the sphere in a given ratio by the
plane of a circle; he needed to divide the diameter of the sphere in the said
ratio – this is Proposition 4 of the second book of the work – something he
could not carry out using the fundamentals from Euclid; he then gave the
ratio, but left out the construction, but later Eutocius of Askelon wrote a
commentary on this book and divided the diameter in this ratio with the
help of two intersecting conic sections, a hyperbola and a parabola.

The proposition he (Archimedes) introduced to construct the heptagon
is the following:

Let there be a square ABCD, we draw its diagonal AC, we extend the
side AB to infinity on the side of B: how do we draw from the point D a
straight line, for instance the straight line DGHE, so that the triangle DGC
is equal to the triangle HBE?

A B

CD

E

G
H

I

Fig. 8.1

Archimedes in fact wished to drop the perpendicular GI to AB and in
this way divide the straight line AE at the points I and B so that the product
of AB and AI is equal to the square of BE and the product of EI and IB is
equal to the square of AI.

Proof: In the triangle DGC which is equal to the triangle BHE the angle
GDC is equal to the angle E of the triangle BHE. The sides which enclose
the two equal angles are inversely proportional: so the ratio of BE to DC is
equal to the ratio of DG to EH. But the ratio of BE to DC is equal to the
ratio of EH to DH, so the ratio of EH to HD is equal to the ratio of DG to
HE. But since the parts of the straight line DE are in the ratio of the parts of

1 Lit.: to imitate each of them in a thing. The Arabic sentence is ambiguous. See the
note on the verb qallada.
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the straight line AE,2 accordingly the ratio of EB to BA is equal to the ratio
of AI to EB and the product of AB and AI is thus equal to the square of BE;
similarly, the ratio of EI to IG, that is to say AI, is equal to the ratio of AE
to AD, that is to say AB. By permutation, the ratio of EI to AE is equal to
the ratio of AI to AB and, by separation, the ratio of EI to AI is equal to the
ratio of AI to IB, so the product of EI and IB is equal to the square of AI.

But since the straight line BE is the mean proportional between the
straight lines AB and AI, the straight line BE is smaller than the sum of AI
and IB. The straight line AI is also a mean proportional between the straight
lines IE and IB, so AI is smaller than the sum of the straight lines IB and
BE. But the straight line IB is smaller than each of the straight lines AI and
BE, thus the sum of the straight lines AI and BE is greater than the straight
line IB. So it is possible to construct a triangle from these three parts. Let us
construct it; let the triangle be ABC, and let the side AB be equal to the side
AI, the side BC equal to <the side> IB and the side AC equal to <the side>
BE. So it is clear that the angles of the triangle ABC are successively in
double ratio, that is to say the angle B is twice the angle C and the angle C
is twice the angle A.

A

BD

G

EC

Fig. 8.2

Proof: We extend the straight line BC in both directions to the points D
and E in such a way that DB is equal to AB and EC is equal to AC; we
extend AB in the direction of B as far as G in such a way that BG is equal to
BC. We join AD, AE and CG. It is clear that the angle CAE is equal to the
angle CEA, so the angle BCA is twice the angle CAE. But since the ratio of
EB to BD, that is to say to BA, is equal to the ratio of AB to BC, the triangle
AEB is similar to the triangle ABC, so the angle BAC of the triangle ABC is

2 That is to say that the ranges (D, G, H, E) and (A, I, B, E) are similar; we in fact have
AD || IG || BH (see al-∑æghænî, p. 668).
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equal to the angle AEC, that is to say to the angle EAC of the triangle AEB.
The angle ACB is thus equal to the angle EAB, that is to say to twice the
angle CAB. Similarly, the ratio of CD to CE, that is to say the ratio of AG
to AC, is equal to the ratio of CE, that is to say AC, to BD, that is to say AB.
So the triangle ACG is similar to the triangle ABC; the angle ACB of the
triangle ABC is thus equal to the angle AGC of the triangle AGC. But CB is
equal to BG, the angle ACB is thus equal to the angle BCG. But the angle
ABC is twice the angle BCG, that is to say twice the angle ACB. Now it has
been shown that the angle BCA is twice the angle CAB; thus the angle CAB
is a seventh of the sum of the angles of the triangle ABC. We fit the angle
CAB into the circumference of the circle, the two sides AC and AB then cut
off one seventh of it.

This proposition remained in this state until it was possible for Abº
Sahl Wayjan ibn Rustum al-Qºhî and for Abº Îæmid AÌmad ibn
MuÌammad ibn al-Îusayn al-∑æghænî, for each of them, to carry out what
was required by using conic sections; both of them being among those to
whom is accorded primacy, skill and distinction in this art and in particular
Abº Sahl al-Qºhî who was unique in his time both for his mastery and for
his skill, avoided mentioning the square and the two equal triangles, and he
went beyond it to arrive at why they had been drawn and the reason for
which they had been constructed, that is the division of the straight line into
three parts such that the product of the sum of the first and the second parts
and the first is equal to the square of the third part, and the product of the
sum of the second and the third parts and the second is equal to the square
of the first part. He proceeded to his analysis with the help of two
intersecting sections, from among the conic sections, a hyperbola and a
parabola, then he proceeded to the synthesis and on it he based <the
construction of> the heptagon.

As for Abº Îæmid, he intended <to prove> the proposition, that is to
say <including> the square and the two equal triangles. He proceeded to his
analysis by means of three hyperbolas: two opposite sections and another
which cuts one of them; he next proceeded to the synthesis and on that he
based <the construction of> the heptagon.

All that I have said about the precedence accorded to Archimedes and
about his pre-eminence – even if it is too well known to require description
– and then about what followed from these two talented men, Abº Sahl al-
Qºhî and Abº Îæmid al-∑æghænî, and that they had recognized
Archimedes’ pre-eminence, that they confirmed what he said, adopted the
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basis he had established, corrected what he had been able to say and to
introduce as a lemma, all that has led <us> to Abº al-Jºd MuÌammad ibn
al-Layth, who, by being audacious and unjust together with lacking a store
of experience in science, reached the point of supposing that Archimedes,
in the matter of the lemma he had introduced, had stooped to imitation –
such is the admiration he conceives for his own brutish intelligence; and he
claimed for himself the construction of the heptagon using simple lemmas,
from the book of the Elements, <lemmas> that are easily found and
acquired.

The first is the following: If we construct a circle with the distance of a
perpendicular to a straight line, then it touches the straight line on which
the perpendicular was erected.

The second: To draw from one of the sides of a given triangle to its
second side a straight line parallel to the third side and equal to what it cuts
off from the second side outside the smaller triangle.

The third: To find a straight line whose ratio to a known straight line is
a known ratio.

The fourth: To divide a known straight line into two parts such that the
product of the whole straight line and one of its two parts is equal to the
square of a straight line whose ratio to the other part is equal to a given
ratio.

He noted this ratio and later in the construction of the heptagon he used
another ratio, different from the one he had introduced, and which is the
division of a straight line into two parts such that the product of the whole
straight line and one of its two parts is equal to the square of a straight line
whose ratio to the other part is equal to the ratio of the whole straight line
to the sum of this straight line and the other part. He believed, because of
his ignorance and his having learned so little, that the ratio of this straight
line to the sum of this straight line and this part was equal to a known ratio;
thus he provided the same proof for that and based <the construction of
the> heptagon on it, although in fact this division is the same as the one
that was presented by Archimedes, as I shall show at the end of this book.

Thus Abº al-Jºd wished to divide a straight line, for example AB, in
this ratio at a point C such that the product of AB and AC is equal to the
square of a straight line whose ratio to the straight line CB is equal to the
ratio of AB to the sum of AB and BC and the square of this straight line is
that of a straight line smaller than the straight line BC, since its ratio to BC
is equal to the ratio of AB to the sum of AB and BC. Let this straight line be
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BE; it is possible for us to construct on the straight line AC an isosceles
triangle ADC, with AD and DC <equal>; let each of them be equal to the
straight line BE. We join BD, we draw EF parallel to AD, we draw FH, DG
perpendicular to AB and we join FC. Since the product of AB and AC is
equal to the square of EB, that is to say to the square of AD, the ratio of AB
to AD of the triangle ABD is equal to the ratio of AD to AC of the triangle
ADC; but the angle A is common to the two triangles, which are thus
similar, and DB will be equal to AB. But since GC is half of AC and BC is
half of twice BC, accordingly GB is half of the sum of AB and BC. The
ratio of EB, which is equal to AD, to half of BC, is equal to the ratio of AB
to half of <the sum of> AB and BC, that is to say GB. But the ratio of FB,
which is equal to EB, to BH, is equal to the ratio of DB, which is equal to
AB, to GB, that is to say to half of <the sum of> AB and BC. So the ratio of
EB to half of BC and to BH is the same. So BH is half of BC, the straight
line FC is consequently equal to FB, that is to say to EB; so the straight
lines AD, DC, FC, FB are all equal. But the angle ACD is equal to <the
sum> of the angles CDF and FBC, and the angle DFC is twice the angle B,
so the angle ACD, that is to say the angle CAD, is three times the angle B,
and the sum of the angles of the triangle ABD is the seven times the angle
B.
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Fig. 8.3

This treatise came into the hands of Abº Sa‘îd AÌmad ibn MuÌammad
ibn ‘Abd al-Jalîl al-Sijzî; the unrighteousness of what it said and the error
in its <proposed> construction were clearly apparent to him. Abº Sa‘îd al-
Sijzî desired to divide the straight line in the ratio prescribed by Abº al-Jºd
for constructing the heptagon, but he found that could not be done.
Accordingly he wrote to Abº Sa‘d al-‘Alæ’ ibn Sahl the geometer and asked
him for the <method of> dividing the straight line in the ratio concerned. It
was possible for al-‘Alæ’ ibn Sahl to divide up the straight line in this ratio
by using two intersecting sections, conic sections, a hyperbola and a
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parabola. He carried out his analysis and he dispatched it to Abº Sa‘îd al-
Sijzî. When this reached Abº Sa‘îd al-Sijzî, he carried out the synthesis on
which he based <the construction of> the heptagon and he claimed it as his
own. Here is his synthesis:

We wish to divide a straight line AB in the ratio we mentioned. We
extend BA to D , so as to make AD  equal to AB; let us apply to AD the
square ADEG; we construct through the point A a hyperbola such that the
straight lines EG and ED do not meet it, which is the conic section AHK;
we also construct on the axis BD a parabola such that its latus rectum is
equal to AB, which is the conic section BHL. We draw from the <point of>
intersection of the two conic sections, which is the point H, the <straight
line> HC perpendicular to AB.
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Fig. 8.4

I say that we have divided the straight line BA at the point C, in the way
we wished.

Proof: We extend EG and CH to meet one another in J. We draw HIM
parallel to JE and AIG parallel to CJ. Since the rectangle MJ is equal to the
square GD, accordingly <the area> JI will be equal to <the area> ID. The
rectangle IC is added to both3 (JI and ID), so the rectangle JA is equal to
the rectangle CM. But the rectangle CM is the product of CH and CD, and

3 Lit.: we take the surface IC in common.
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JA is <the product of> CA and AG, that is to say AB. So <the product of>
AB and AC is equal to <the product of> CH and CD, so the ratio of CH to
AC is equal to the ratio of AB to CD. But CH in the power is equal to <the
product of> AB and BC since AB is the latus rectum of the parabola BHL.
But CD is AB plus CA, so the ratio of the straight line that is equal in the
power to <the product of> AB and BC to the straight line CA is equal to the
ratio of the straight line BA to BA plus AC, considered as a single straight
line. So we have constructed what we wanted.

News of what al-‘Alæ’ ibn Sahl had constructed in order to divide the
straight line in this ratio later reached Abº al-Jºd. He changed it very little,
and that in the sense of completely avoiding any mention of the ratio and
going on to what can be constructed. He recognized that the ratio of CH to
AC, that is to say of IA to AC, is equal to the ratio of AB, that is to say DE,
to DC. So he drew in the rectangle CE the diagonal that of necessity passes
through the point I, and showed that AI is equal to CH; but he did not draw
the straight line HM and then he based <the construction of> the heptagon
on that, and claimed it as his own as he had claimed what Abº Sahl had
constructed for dividing the straight line, which he needed to construct the
heptagon we have already mentioned.

Indeed, in what he wrote to Abº Sa‘îd al-Sijzî in reply to the question
concerning the division of the straight line that was mentioned above,4 al-
‘Alæ’ ibn Sahl mentioned the analysis of a proposition which he had also
asked him about, which is the following:

ABCD is a parallelogram in which there has been drawn a diagonal
which is BC; the side CD has been extended indefinitely in the direction of
D. How may we draw a straight line, say the straight line AEGH, in such a
way that the ratio of the triangle BEG to the triangle GDH is a given ratio?
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Fig. 8.5

4 This is a range of type II.
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He said, in long and emphatic statements, at the end of his analysis of
this proposition: as for the ratio between the two triangles AEB and GDH,
there is no method for arriving at this, and if we had found a way of
achieving it, we should have adopted it. I do not understand how he came
to find it so difficult that he abandoned it and how he had so good an
opinion of himself in what he said, because there is a certain proportion
between the two problems and it is possible to find it, because if the area
ABCD is a square and if the triangle AEB is equal to the triangle GDH, then
it is the proposition introduced by Archimedes for constructing the
heptagon, and for which Abº Sahl al-Qºhî adopted the approach of
dividing the straight line, in the ratio found there (i.e. in Archimedes’
lemma). Here is his synthesis:
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Abº Sahl al-Qºhî said in his treatise: to find a straight line divided into
three parts such that the product of the sum of the first and the second parts
and the first is equal to the square of the third part, and the product of the
sum of the second and third parts and the second is equal to the square of
the first part. He supposed he had the two straight lines CD and DE, equal
and each of them perpendicular to the other. He constructed a parabola
whose vertex is the point C, whose latus rectum is equal to CD and whose
axis lies on the extension of CD; let the conic section be CG; he construc-
ted a hyperbola with vertex the point D, a transverse diameter that is its
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axis DE and is equal to its latus rectum; it necessarily cuts the parabola, say
at the point G. He drew GB perpendicular to CD and GH parallel and equal
to DB; he added to CB, AC equal to GB and he showed that the straight line
AB had been divided at the two points C and D in the ratio we mentioned.

Abº al-Jºd later said in his collection entitled Geometr ica l
<Collections>, after quoting what al-‘Alæ’ ibn Sahl said about this: I have
myself found how to do what al-‘Alæ’ ibn Sahl said was impossible; by
which he means to give the ratio between the two triangles AEB and GDH
of the preceding proposition.

He then said: here is his lemma, and then came the figure constructed
by Abº Sahl, the very same figure, except that, knowing that the ratio of
the square of HG to the area enclosed by HE and HD is equal to the ratio of
the latus rectum of the hyperbola to its transverse diameter, <a latus
rectum> which has been supposed to be <equal to> any straight line, such
as the straight line K; he put its ratio to the straight line DE as the given
ratio,5 then he constructed the conic section DG such that its latus rectum is
K and its transverse diameter <is equal to> DE. So the straight line AB will
be divided at the two points C and D, the product of BC and CD is equal to
the square of AC and the ratio of the square of BD to the area enclosed by
DA and AC is equal to the given ratio. He took a parallelogram, say AEGB,
in it he drew the diagonal AG and divided its side AB in this ratio at the
points C and D; he drew CI parallel to AE and joined EI, ID which he
extended, as he did the side GB, as far as where they met at the point H. He
then showed that the line EDH is a straight line6 and that the ratio of the
triangle EIA to the triangle BDH is equal to the given ratio.
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5 See Livre sur la synthèse des problèmes analysés par Abº Sa‘d al-‘Alæ’ ibn Sahl, in
R. Rashed, Géométrie et dioptrique au Xe siècle, Paris, 1993, Appendix I, p. 187.

6�Al-Shannî does not show that E, I, D are collinear (see Géométrie et dioptrique au Xe

siècle, Appendix I, page CII).
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He also laid claim to Menæchmus’ construction for finding two straight
lines between two straight lines so that the four are in continued proportion,
a construction he incorporated into this book that he named the
Geometrical <Collections>, after having mentioned Thæbit’s construction
for this.

He then said: what I have done, myself, is in terms of the most accessi-
ble and the most lucid. The book by Eutocius in which he assembled the
statements made by the Ancients in regard to finding two straight lines
between two straight lines so that the four are in continued proportion,
attests to this. In this book Eutocius reported on two methods due to
Menæchmus; in one of them he used two conic sections, a hyperbola and a
parabola, and in the other, two parabolic sections. It is <as follows>.

Since we wish to shed light on his case, I shall give an account of it
here together with what he himself changed and the construction carried
out by Menæchmus.

Menæchmus said: we take
two straight lines AB and BC, one
being perpendicular to the other;
we extend each of them to
infinity and we construct a pa-
rabola such that its axis is BC and
its latus rectum BC; and another
parabola such that its axis is AB
and its latus rectum A B. These
two parabolas cut one another at
the point G . We draw GE  and
GD parallel to the straight lines
AB and BC; they will be means in
proportion between the straight
lines AB and BC.
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Fig. 8.8

As for Abº al-Jºd, he took the two straight lines AB and BC <which
are> known in that one is perpendicular to the other, and constructed a
parabola with axis AB and latus rectum AB and another parabola with axis
BC and latus rectum BC. They cut one another at the point G, he drew GD
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and GE parallel to AB and BC and showed that they are means in propor-
tion between AB and BC.

I cannot permit myself to impute this to his having chosen to be brief,
as has happened to others in many procedures, because of what we know
about his case and because of the deceit <we know he practised> in many
of his procedures.

When Abº Sa‘îd al-Sijzî learned of what Abº al-Jºd had done in
connection with this proposition that was established by al-‘Alæ’ ibn Sahl,
in claiming it for himself, he was excessively insulting and critical, in
revealing his (Abº al-Jºd’s) case and his portrait, and he stated all this in a
treatise. But this poisonous creature7 did not draw back in the face of what
had been heaped on him, that is the shame that attaches to someone who
gets everything muddled up; and under the violent, heavy blow, he did not
lower his eyes and he put his honour at risk by what he endured. Abº al-
Jºd then wrote to Abº MuÌammad ‘Abd Allæh ibn ‘Alî al-Îæsib, claiming
to have constructed the heptagon. He began by giving an indication of the
two methods of the two masters, Abº Sahl al-Qºhî and Abº Îæmid al-
∑æghænî, while disparaging their construction, and maintaining that both of
them were intending to prove the proposition that Archimedes introduced
in his treatise on the construction of the heptagon, and which he assumed
without carrying out the construction or proof in this treatise; and <said>
both of them desired to correct it and prove it. For my part, <he said>, I
have made the inaccessible approachable and smoothed out what was
difficult, and I have done this and that … He then set out the construction
we mentioned before.

He then said: by what I constructed previously, I have distinguished
myself and I am in advance of all of them since the analysis resulted in
dividing a given straight line into three parts such that the product of the
whole straight line and the third part is equal to the square of the first part,
and the product of the sum of the second and third parts and the second is
equal to the square of the first part.

And he said: this is much easier than the division of the straight line
into three parts such that the product of the sum of the two parts, the first
and the second, and the first, is equal to the square of the third part, and the
product of the sum of the two parts, the second and the third, and the
second, is equal to the square of the first part, <the division that> was

7 This refers to Abº al-Jºd.
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carried out by Abº Sahl and Abº Îæmid; and this is also easier than the
division of the straight line into two parts such that the product of the
whole straight line and one of its two parts is equal to the square of a
straight line whose ratio to the other part is equal to the ratio of that straight
line to the sum of the latter and the part already mentioned, <a division> I
myself carried out earlier.

He then said: it being given that all these constructions are carried out
either by means of intersecting conic sections, a hyperbola and a parabola,
or by means of three hyperbolas, as for me, I divided the straight line into
its three parts by means of a single conic section. However, I did not send
you the construction and the treatise that is devoted to it, until you ask the
geometers of the prestigious court if one of them had constructed the
heptagon by means of a single conic section, so that, if I send my
construction, their behaviour towards me will not be as bad as it was on
several occasions when they attacked me and attributed to other people
things I had discovered; he means the construction of al-‘Alæ’ ibn Sahl
which he had earlier ascribed to himself, and other similar impostures. If
this person who deceives himself, that is to say Abº al-Jºd, had mentioned
this construction in this book, in which he taxes these two eminent men
with incompetence and copying, that would have been the better for him
and for this passage in his book. If he did not do so, the unhappy man
<nevertheless> pursued his purpose by saying at the end of his treatise: in
what I constructed earlier I used, together with the single conic section, two
lemmas from the Elements.
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The first: if we draw from point B of a straight line AB, the diameter, a
straight line that cuts the circle ACB in C; if we draw from the point A a
perpendicular to AB so that it meets the straight line BC produced in D,
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<we wish to know> how to draw starting from the straight line CD a
straight line, such as the straight line EG, parallel to AD and which cuts the
circumference <of the circle> in <the point> H such that the ratio of EH to
GH is equal to a given ratio.

He said: this is in fact easy if we divide AD at the point I in the given
ratio by drawing BI, which necessarily cuts the circumference; let it cut it
in H. We cause to pass through this point <the line> EG parallel to AD,
then the ratio of EH to GH is equal to the given ratio.

Second lemma: Let us draw EG parallel to AD, the perpendicular, so as
to make it equal to the straight line joining A and H.

He said: This too is not inaccessible. We extend AB to I; we put the
ratio of AB to BI equal to the ratio of AD to AB; we put the product of AB
and BI equal to <the product of> IG and GB, we draw from the point G a
perpendicular to the diameter AB, such as the straight line GHE, which cuts
the circumference in H, and we join AH. He claimed, without proving it,
that AH is equal to EG.
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I wished, for my part, to set out a proof of <the proposition> he had
stated, I examined it closely and thus found that he had made a mistake, but
he had observed it worked that way if the perpendicular AD is equal to the
diameter AB. Whether he had had that idea or not, he imagined – being
ignorant and negligent – that this led to what he wanted and <served> his
purpose <even> if AD is longer or shorter than AB, and he accordingly
supplied a single proof of this <proposition>, or perhaps he knew about it
and let himself be blinded by incompetence and in this way intended to
commit a fraud; or perhaps he was looking for <no more than> a
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proposition that satisfied him and those like him, people who are on a par
with him in his shallowness and mediocrity of understanding.

I shall set out the proof that there are defects in what he did in this
proposition, and I shall abandon it after having introduced a proposition I
need for the notion I have in mind, with God’s aid – he is sufficient my
most excellent help.

I say: for any straight line divided in a ratio that has a mean and two
extremes, if we add to its smaller part a straight line that causes the smaller
part to become equal to the greater one, then the smaller part plus the
straight line that has been added to it is divided in a ratio that has a mean
and two extremes and its smaller part is the straight line that has been
added to it.

I show this by <considering> an example: Let the straight line AB be
divided at the point C in a ratio that has a mean and two extremes; let the
smaller part be AC, let us add to AC, AD to make the complete line CD
equal to CB.

B DC A

Fig. 8.11

I say that the straight line DC is divided in a ratio which has a mean
and two extremes at the point A and that its smaller part is AD.

Proof: Since the product of AB and AC is equal to the square of BC,
that is to say the square of AC plus the product of AC and CB, that is to say
DA and AC plus twice the square of AC, and since DC is equal to CB and
its square is equal to the square of CB, that is to say the squares of DA and
AC plus twice the product of DA and AC, we take away the product of DA
and AC, a single time, from both sides and the square of AC, a single time,
from both sides, it remains <that> the product of DA and AC plus the
square of DA, that is to say the product of D C and DA, is equal to the
square of AC. The straight line DC is thus divided at the point A in a ratio
that has a mean and two extremes and its smaller part is AD. That is what
we wanted to prove.

Having introduced that, we come back to the problem and return to the
figure. We say: if AD is equal to AB and if we put the ratio of AB to BI
equal to the ratio of AD to AB, then we have BI equal to AB. We put the
product of AB and BI, that is to say the square of BI, equal to the product of
IG and GB, so the straight line AB is divided at the point G in a ratio that
has a mean and two extremes and its smaller part is AG, from what we have
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shown above. We draw the perpendicular E H G , which cuts the
circumference at the point H, and we join AH. Since the product of AB and
AG  is equal to the square of AH, because the triangles inscribed in the
semicircle and the triangle AGH are similar – but the product of AB and AG
is equal to the square of GB – so the straight line GB is equal to the straight
line AH. But AD is equal to AB and EG is parallel to AD, so EG is equal to
GB, that is to say to AH. That is what we wanted to prove.

AB

C

D

E

G

H

I

Fig. 8.12

I say that if the perpendicular AD is longer or shorter than the straight
line AB; if we put the ratio of AB to BI equal to the ratio of AD to AB; if we
put the product of IG and GB equal to the product of AB and BI; if we draw
GE parallel to AD and if we join AH, then AH will never be equal to EG.

Proof: This cannot be so; if it were possible, let AH be equal to EG.
Since the ratio of AD to AB is equal to the ratio of AB to BI and since the
product of AB and BI is equal to the product of IG and GB, the ratio of AB
to BG is equal to the ratio of GI to IB. By separation, the ratio of AG to GB
is equal to the ratio of GB to BI; but the ratio of AD to AB is equal to the
ratio of EG to GB, so the ratio of EG to GB is equal to the ratio of AB to BI.
By permutation, we have <that> the ratio of EG, that is to say AH, to AB, is
equal to the ratio of AB to BI, that is to say the ratio of AG to GB, from the
above; so the ratio of AH  to AB is equal to the ratio of AG  to GB. By
inversion, the ratio of AB to AH, that is to say the ratio of AH to AG, is
equal to the ratio of BG to AG, so AH, that is to say EG, is equal to GB, so
AD is equal to AB; now we have taken it to be longer or shorter; this is
absurd and cannot be so.

Given that I have shown that what he constructed in this proposition is
defective, it has thus been shown that what he constructed from it is
defective, even though that has not reached me.



BOOK ON THE DISCOVERY OF THE DECEIT OF ABª AL-JªD 687

Abº al-Jºd wished to divide the straight line in the same ratio that is to
be found in the first division itself, if he could succeed in this, then
construct the heptagon as he had constructed it by this procedure, and make
it clear that this is another ratio, distinct from the one constructed by al-Alæ’
ibn Sahl, although this division is also the division introduced by
Archimedes for constructing the heptagon. He relies on it (the division), as
I shall now show.

Let there be the straight line AB divided at the point C such that the
product of AB and AC is equal to the square of a straight line, say BE, and
let the ratio of BE to BC be equal to the ratio of AB to the sum of AB and
BC.

B E C A D

Fig. 8.13

I say that the straight line AB has also been divided at the points C and
E such that the product of AB and AC is equal to the square of BE and the
product of AE and EC is also equal to the square of BE.

Proof: The ratio of AB to the sum of AB and BC is equal to the ratio of
BE to BC. By separation, the ratio of AB to CB is equal to the ratio of BE to
CE. By permutation, the ratio of AB to BE is equal to the ratio of CB to CE.
By separation, the ratio of AE to EB is equal to the ratio of EB to EC, so the
product of AE and EC is equal to the square of BE. That is what we wanted
to prove.

Next we extend AB to D in the direction of A so that AD is equal to BE.
I say that the straight line ED has been divided in the ratio ascribed to

Archimedes, that is to say that the product of AE and EC is equal to the
square of AD and the product of DC and CA is equal to the square of EC.

Proof: The product of DE and AC is equal to the product of AE and EC,
the ratio of E D  to E A will be equal to the ratio of EC  to CA . By
permutation, the ratio of ED to EC will be equal to the ratio of EA to AC.
By separation, the ratio of DC to EC will be equal to the ratio of EC to CA,
so the product of DC and CA is equal to the square of EC; but the product
of AE and EC was equal to the square of AD. That is what we wanted to
prove.
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What is surprising in this man is not that he made a mistake in what he
did, or that he laid claim to work done by someone else, but what is
surprising is what occurred to his imagination, and that he believed it; and
that he should have had so good an opinion of himself, notably in what he
alleged and claimed, in regard to dividing a straight line in this ratio by
means of a single conic section, although he knew this was not <found>
possible by any of the Moderns such as al-‘Alæ’ ibn Sahl, Abº Sahl al-Qºhî
and Abº Îæmid al-∑æghænî, despite their being the leaders in this science,
for their practice and their superiority over all their contemporary
colleagues, except by using two sections from among the conic sections.
And we may note, also, that he rejects their constructions and ascribes their
procedure and their results to imitation. May God preserve us from
pretending to know things we do not know, and we ask him for success so
that we may give thanks for what we understand; this is in his hands. There
is no strength or power, save from Him.

The treatise is completed – thanks be rendered to God alone, blessing
and peace be upon him who is the last of the prophets.

Sunday 21 Jumædæ al-ºlæ, in the year one thousand one hundred and
fifty-three.



TREATISE BY NA∑R IBN ‘ABD ALLÆH

On the Determination of the Chord of the Heptagon

He said: the circle ABC is given; we wish to construct in it the chord of
the regular heptagon.

A

B C

Fig. 9.1

Let us suppose, by the method of analysis, that we have constructed it
and that it is BC. Let us divide <the arc> BAC into two equal parts in A and
let us join BA and CA; they are equal. Since the arc BC is a seventh of the
circle, each of the arcs BA and AC is three sevenths of it and each of them
is three times the arc BC. From what has been shown by Euclid, each of the
angles B and C is three times the angle A.

Thus analysis has led to constructing an isosceles triangle in which
each of the angles at the base is three times the angle at the vertex.

A B

C

D E

Fig. 9.2

Let us suppose, by the method of analysis, that we have found it; let it
be the triangle ABC in which each <of the angles> B and C is three times
<angle> A. We construct <the angle> BCD equal to A; now <the angle>
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CDA is common to the two triangles ACD and BCD, so AD to DC is equal
to DC to DB, and AD by DB is equal to the square of DC. Let us put DE
equal to DC; so AD by DB is equal to the square of DE. Let us join CE;
since CBA is equal to BDC plus BCD and it is three times <angle> A, that is
to say <three times> BCD, accordingly BDC is twice BCD; but it is also
twice each of the <angles> DEC and DCE; now E is common, so AE to EC
is equal to EC to ED, and AE by ED is equal to the square of EC, that is to
say of CA, because the angles E and A are equal, say BA;1 so AE by ED is
equal to the square of AB; but AD by DB was equal to the square of DE.

So the analysis has led to finding three straight lines such as AB, BD
and DE, put together to make a single straight line, such that the product of
the whole straight line and the part that is at one of the ends is equal to the
square of the part that is at the other end and the product of the sum of the
part on the end2 and the part in the middle and <the part> in the middle is
equal to the square of the part at the other end.3
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E

L

M

K

N

Fig. 9.3

Let AB be known in position and magnitude.
We suppose by the method of analysis that we have found the two

remaining <straight lines>, let them be BD and DE subject to the condition
that AE by ED is equal to the square of AB, and AD by DB is equal to the

1 By hypothesis we have CA = BA.
2 That is on this second end.
3 That is on the first end.
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square of DE. We draw from A the perpendicular AN equal to AB and we
draw from D the perpendicular DG equal to DE. We join NB and we extend
it to L; it is known in position. We extend it on the other side to K and from
A <we draw> MAK parallel to NBL; it is also known in position, so GD to
LK is equal to DE to BA, so KG by GD is equal to the square of AB, that is
to say of AN; but it is parallel to GK and MA, AE are known in position, so
N and G are on the outline of the hyperbola of which MA and AE are the
asymptotes, and N is known. The conic section that passes through N and G
is thus known in position and magnitude. Similarly, AD by DB is equal to
the square of DE, that is to say of DG, so B and G are on the outline of a
hyperbola with transverse diameter and latus rectum AB and its axis BE,
which is extended. But AB is known in position and magnitude and B is
known; so the conic section that passes through B  and G is known in
position and magnitude. The point of intersection of the two conic sections,
which is G, is known and GDK, which is known in position, because it is at
a known angle, meets ADE, known in position, and MAK , known in
position; so K is known; D and L are likewise known and each <of the
straight lines> GD and DL is known; the same is true for each <of the
straight lines> DE and DB, so D and E are likewise known. That is what we
wanted.

The synthesis of this problem is like this: the straight line AB is known
in position and magnitude. We wish to find two straight lines put together
to make a single straight line as we have described it.

We draw from A the perpendicular AN equal to AB; we join NB, and
from A <we draw the straight line> MAK parallel to NB, and we cause to
pass through N the hyperbola NG, such that MA and AB are its asymptotes;
<and> through B the hyperbola BG such that its transverse diameter and its
latus rectum are AB and its axis is BE extended. We draw from G, a point
of intersection of the two conic sections, the <line> GD perpendicular to
AB and we extend it to K; we put DE equal to DG.

I say that BD and DE are the lines we required.
Proof: Since NG is a hyperbola and MA and AE are its asymptotes, and

from the centre to the conic section we have drawn <the straight line> AN
and KLDG which is parallel to it, and which cuts the angle which is next to
the angle between the asymptotes,4 accordingly KG by GD, that is to say

4 That is the angle formed by an asymptote and the extension of the other one.
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AE by ED, is equal to the square of AN, that is to say to the square of AB.
But since BG is a hyperbola whose transverse diameter and latus rectum
are AB and whose axis is BE extended, we have AD by DB equal to the
square of DG, that is to say to the square of DE. That is what we wanted.

We wish to construct a triangle of the form we have described.
We find three straight lines put together as we have shown and we con-

struct with <centre> A and distance AB a circle KC; and with <centre> D
and distance DE a circle EC; we join AC.

I say that the triangle ABC is as we required.

A B D E

CK

Fig. 9.4

Proof: We join DC and EC. Since AD by DB is equal to the square of
DE, that is to say to the square of DC, accordingly AD to DC is equal to
DC to DB; so the two triangles ADC and BDC are similar, and BCD is
equal to A. But since AE by ED is equal to the square of EC,5 we have
<that> A is equal to ECD, so ECD is equal to BCD; but BDC is twice ECD,
so it is twice BCD; but ABC is equal to BCD plus BDC, so ABC, which is
equal to ACB, is three times BCD, that is to say <three times> BAC. So we
have constructed a triangle as we required.

We wish to construct in a circle known in position and magnitude the
chord of the regular heptagon.

We construct a triangle of the form we have explained and we draw in
the circle a triangle that is similar to it. Since each of the angles at the base
is three times the angle at the vertex, each of the arcs of the angles at the
base is three times the arc of the angle at the vertex; so the arc on which the
angle at the vertex stands is a seventh of the circumference and its chord is
the side of the regular heptagon. That is what we wanted to prove. From
God, strength and power.

5 We have DE · AE = AB2, but it has not been shown that EC = AB.



In the name of God, the Compassionate, the Merciful

Synthesis for the Analysis of the Lemma on the Regular Heptagon
Inscribed in the Circle

(ANONYMOUS)

We wish to divide a straight line into two parts such that the product of
the whole straight line and the sum of the straight line and one of the parts
is equal to the square of a known straight line whose ratio to the whole
straight line is equal to the ratio of the part we mentioned to the part that
remains.
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Fig. 10.1

We suppose <we have> a straight line say AB and the perpendicular
GB, which is equal to it. We complete the square AKGB and we cause to
pass through the point A a hyperbola such that the straight lines KG and GB
are its asymptotes, a construction Apollonius shows in Proposition 4 of
Book II of the work the Conics; let the conic section be AH. We extend the
straight line AB on the side of A to the point E such that AE is equal to AB;
we extend the straight line GB indefinitely on the side of B. We construct a
parabola with vertex the point E, whose transverse diameter, which is an
axis, is the straight line EB extended, whose latus rectum is equal to the
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straight line EA and the angle of the ordinate is a right angle; it (the
parabola) necessarily cuts the hyperbola – let it cut it at the point H; this is
the conic section E H . We draw from the point H the <line> H C
perpendicular to AB.

I say that the point C is <the point> we seek.
Proof: Let us draw the <line> HD perpendicular to the straight line BG

and let us extend HC until it meets the straight line KG at the point I. But
since the two points A and H are on the hyperbola and we have drawn from
them the two straight lines AK and HI and the two straight lines AB and DH
as far as the two asymptotes and parallel to them, accordingly, from what
has been shown in Proposition 12 of Book II of the work the Conics, the
square AG, that is to say the square of AB, that is to say the product of AB
and AC and <the product of AB> and BC, is equal to the rectangle HG, that
is to say <equal> to the product of CB and GB and <the product of CB>
and BD; but GB is equal to AB, so we take away the product of AB and BC,
that is to say the product of GB and BC, since they are equal; so it remains
<that> the product of AB and AC is equal to the product of BD and BC and
thus the ratio of BD, that is to say HC, which is equal to it, to AB, is equal
to the ratio of AC to BC. But since the product of the straight line HC and
itself is equal to the product of EC and EA because we have a parabola –
but EA is equal to AB – the square of HC is equal to the product of the sum
of AB and AC and AB. Now we have shown that the ratio of the straight
line HC to AB is equal to the ratio of AC to CB. So we have divided the
straight line AB into two parts at the point C; the product of the sum of AB
and AC and AB is equal to the square of HC and the ratio of HC to AB is
equal to the ratio of AC to CB. That is what we wanted to construct.

Once this has been carried out, we suppose we
have a square ABCD whose diagonal BC has been
drawn and whose side C D has been extended
indefinitely in the direction of D; we divide the
side BD at the point G such that the product of BD
and the sum of BD and BG is equal to the square of
a straight line; let it be the straight line F, such that
the ratio of the straight line F to the straight line
BGD is equal to the ratio of BG to GD. We join the
straight line AG and we extend it until it meets the
side CD extended, at the point H.

A B
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G
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Fig. 10.2

I say that the triangle AEB is equal to the triangle DGH.
Proof: The ratio of the straight line F to BD is equal to the ratio of BG

to GD, similarly the ratio of the square of the straight line F to the square
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of the straight line BD is equal to the ratio of the square of the straight line
BG to the square of the straight line GD. But the ratio of the square of the
straight line F to the square of BD is equal to the ratio of the sum of BD
and BG to BD, it being given that the product of the sum of BD and BG and
BD is equal to the square of the straight line F. Now if we have three
magnitudes in proportion, the ratio of the first to the third is equal to the
ratio of the square of the second to the square of the third. But BD is equal
to AB and the ratio of the square of the straight line F to the square of BD is
equal to the ratio of the square of BG to the square of DG; the ratio of the
square of BG to the square of DG is accordingly equal to the ratio of the
sum of BG and AB to AB. But the ratio of the sum of BG and AB to AB is
equal to the ratio of AG to AE, because the straight line BE has divided up
the angle ABG into two equal parts and that has been shown in Proposition
<3> of Book VI of the Elements. The ratio of the square of BG to the
square of DG is equal to the ratio of AG to AE. But the ratio of the square
of BG to the square of DG is composed of the ratio of BG to DG and the
ratio of AG to GH. Now the ratio composed of the ratio of BG to DG and
the ratio of AG to G H is the ratio of the product of AG  and BG to the
product of GH and DG. But the ratio of AG to AE, if we multiply through-
out by BG, is equal to the ratio of the product of AG and BG to the product
of AE and BG, so the ratio of the product of AG and BG to the product of
GH and GD is equal to the ratio of the product of AG  and BG  to the
product of AE and BG. So the product of AE and BG is equal to the product
of GH and GD, and the ratio of AE to GH is equal to the ratio of DG to BG,
that is to say to the ratio of DH to AB; so the ratio of AE to GH is equal to
the ratio of DH to AB and, in the triangle AEB, the angle BAE is equal to
the angle DHG of the triangle DGH and the sides that enclose the two
equal angles are inversely proportional; so the triangle AEB is equal to the
triangle DGH. That is what we wanted to construct.

The treatise is completed, with the assistance of God and with his help.
Monday twenty-two Jumædæ al-ºlæ, the year one thousand one hundred

and fifty-three.



In the name of God, the Compassionate, the Merciful
May God assist us

TREATISE BY THE LORD KAMÆL AL-DïN IBN YªNUS

— may God give him enduring eminence —

FOR HIS SERVANT MUÎAMMAD IBN AL-ÎUSAYN

On the Proof for the Lemma1 Neglected by Archimedes in his Book on
the Construction of the Heptagon Inscribed in the Circle,

and How that is Done

He said – may God give him lasting glory: you have confided to me –
may God give you enduring eminence – the question of the lemma
neglected by Archimedes in his book on the heptagon inscribed in the
circle, and for which he explained neither the construction nor the proof. It
is the following:

Let there be the square ABCD; we extend the straight line AB to E, and
in it (the square) we draw the diagonal BC. We wish to draw from the point
D a straight line, such as the straight line DGIE, so that the triangle CGD is
equal to the triangle EAI.

AB

CD

E

G

I

Fig. 11.1

1 Lit.: on the proof of finding the lemma.
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You referred to the fact that AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl
al-Sijzî attached such importance to the question of this lemma that at the
beginning of his book on the regular heptagon inscribed in the circle he
discussed remarks made by the man who affirmed: ‘and it perhaps involves
a more difficult construction and a less accessible proof than the matter for
which he introduced it;  and perhaps these latter are not possible’.2 He tells
us that he proceeded to his synthesis by starting from the analysis of al-
‘Alæ’ ibn Sahl.

That Archimedes, with all the majesty of his greatness and the
eminence of his position in this science, should have appealed, to prove
what he sought, to something whose proof requires it to be preceded by
what is sought, that is truly too much. You wanted to know the truth of the
matter. I am responding to your request.

When I examined this, the proof of how to find the lemma revealed
itself to me in several ways; and it appeared to me clearly while I was
pondering the possibility of a proof of the existence of this lemma, that it
was possible to set up a proof of the existence of the following lemma,
without there being any need for it to be preceded by the latter one.3

Anyone who examines what I have set out, and handles it correctly, will
succeed in this. Moreover, this is possible starting from the very lemma
introduced by AÌmad <ibn MuÌammad ibn ‘Abd al-Jalîl al-Sijzî> whose
synthesis he carried out starting from the analysis of al-‘Alæ’ ibn Sahl, as
we shall show, even if the former did not realize this was so. I now begin
by giving the proof, in a way that does not imply that Archimedes’ proof is
circular, contrary to the opinion of the man who spoke about it in al-Sijzî’s
company.

I say: Let us return to the preceding figure. We extend CD to J and we
put DJ equal to CD; we extend BA to H, we put AH equal to AB and on AH
we construct a square, let it be the square AHKL. We construct through the
point K a hyperbola having as asymptotes the straight lines AL and AH, let
the conic section be KMO. We construct a hyperbola whose latus rectum
and transverse diameter are each equal to DJ, and whose vertex is the point
D and its axis is along the extension of CD; let the conic section be DM; it

2 The comments concerned are ones al-Sijzî attributed to Abº al-Jºd.  He means that the
construction in the lemma and its proof may not be possible.

3 This refers to the equality of the two triangles AIE and CGD.
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cuts the conic section KM, on the side of M:4 Given that if we extend HK
until it meets CD at <the point> N, CN is equal to CD and NK equal to ND,
thus it5 is smaller than the ordinate drawn from the point N <to the second
hyperbola>, since the square of the ordinate we mentioned is equal to the
product of JN and N D, which is greater than the square of NK; so the
ordinate drawn from N meets the conic section beyond the point K, after
having cut the conic section KMO; and this <is so> because the straight line
NK does not meet the conic section  KMO in any point other than the point
K, as was shown by Apollonius in the Conics.6 We draw from the point M a
perpendicular to HB, let the perpendicular be ME. We join ED, it cuts BC
at <the point> G and AC at <the point> I.
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Fig. 11.2

I say that the triangle CGD is equal to the triangle EAI.
Proof: We extend ME, it meets ND in S; we draw from the point G the

<line> GQ perpendicular to CD; since the two triangles ESD, GQD are
similar, accordingly the ratio of ES, that is to say DJ, to SD is equal to the
ratio of GQ, that is to say CQ, to QD. By composition, we have <that> the

4 The point K divides the conic section KM  into two parts and KM  is the part that
approaches the asymptote KL.

5 That is NK.
6 Apollonius, Conics, II.13.
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ratio of JS to SD is equal to the ratio of CD to DQ. But the ratio of JS to SD
is equal to the ratio of the square of MS to the square of SD, because DM is
a hyperbola. But the ratio of the square of MS to the square of SD is equal
to the ratio of the square of ES to the square of SC, given that we complete
the area AEMP, which is equal to the square KA, that is to say the square
AD, because KMO is a hyperbola. We take the common rectangle EC; the
rectangle MC is equal to the rectangle ED. So the ratio of MS to SD is equal
to the ratio of ES to SC, their squares are also in proportion, so the ratio of
CD to DQ is equal to the ratio of the square of ES, that is to say CD, to the
square of SC, so the ratio of CD to SC, that is to say EA, is equal to the
ratio of SC, that is to say EA, to DQ. But the ratio of EA to DQ is equal to
the ratio of AI to GQ because the triangles AEI and GDQ are similar, so the
ratio of CD to EA is equal to the ratio of AI to GQ, and the product of CD
and GQ, that is to say twice the triangle CDG, is equal to the product of AE
and AI, that is to say twice the triangle EAI, so the two triangles CGD and
EIA are equal. That is what we wanted to prove.

Since we have completed what we wanted <to do>, let us now turn our
attention to what AÌmad ibn ‘Abd al-Jalîl al-Sijzî left out in the lemma of
his on which he based his construction of the heptagon; and let us show
that we can divide a given straight line in accordance with the condition
that Archimedes relied on in his book on the question of the heptagon, by
the smallest of steps, and not as he had thought in his comments: ‘Perhaps
his division of that is a more difficult matter than the division of the circle
into seven parts.’ We have explained this, because it escaped him and he
found it difficult, whereas it is easy to obtain it starting from his own
lemma. For our part, we have carried out the division by several methods.

Let us construct the entire figure that he introduced to show his lemma
and on <the straight line> AC let us cut off CN, equal to CH and BP which
is also equal to it.
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Fig. 11.3

I say that AB has been divided in the required manner at the points P
and N.

Proof: We draw NS parallel to AG; it cuts HI at the point O and JG at
the point S. Since the ratio of CH, that is to say CN, to CA is equal to the
ratio of AB to <the sum of> BA and AC, from what he has said in his
lemma; by separation, the ratio of CN to NA, that is to say AI to IO, or GS,
is equal to the ratio of AB to AC, that is to say AG to GJ, and equal to the
ratio of the remainder to the remainder, that is to say of GI to JS, that is to
say CN; so the product of AI and CN which is equal to it, that is to say the
square of BP, is equal to the product of GI and IO, that is to say <the
product of> PA and AN. Since the rectangle HG is equal to the rectangle
ID, that is to say to the rectangle BI, we take the rectangle HU as common;
the rectangle UI is equal to the sum of the rectangles CU and CI. If we
subtract <from that sum> the rectangle CU, and <also subtract it> from the
rectangle UI, which is equal to it (the sum), the rectangle OG which is
equal to CU, because they are equal to the square of CH – for C U, it is
because of the parabola and for GI, it is from the preceding – there remains
CI, or NG, <which is> equal to UO. The ratio of AG, or AB, to US, or BN,
is equal to the ratio of SO, or AP, to AN. By separation, the ratio of AN to
NB is equal to the ratio of PN to NA, so the product of BN and PN is equal
to the square of NA. That is what we wanted to prove.
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APPENDIX II

SSSSIIIINNNNÆÆÆÆNNNN    IIIIBBBBNNNN    AAAALLLL----FFFFAAAATTTTÎÎÎÎ    AAAANNNNDDDD    AAAALLLL----QQQQAAAABBBBïïïï∑∑∑∑ïïïï:
OPTICAL MENSURATION

Sinæn ibn al-FatÌ is not an unknown figure; al-Nadîm and, following
him, al-Qif†î each dedicate a short article to him. This is what the former
writes:

He belongs to the peoples of Îarræn, he was pre-eminent in the art of
arithmetic and of numbers, there are among his books: the book on the dust
board (al-takht) in Indian arithmetic, the book on addition and subtraction,
the book on wills, the book on calculation of cubes, the book of commentary
on algebra and al-muqæbala of al-Khwærizmî1.

On the other hand, al-Nadîm does not mention Sinæn ibn al-FatÌ’s
dates, or what he did. All one can say is that he lived after al-Khwærizmî
and, of course, before al-Nadîm himself. In fact, in the Book on the
Calculation of Cubes,2 Sinæn ibn al-FatÌ mentions his commentary (tafsîr)
on the Algebra of al-Khwærizmî.

1 Al-Nadîm, Kitæb al-fihrist, ed. R. Tajaddud, Teheran, 1971, pp. 339–40.
2 This book has come down to us in a manuscript in Cairo, Dær al-Kutub, Riyæ≈a

260, fols 94v–105v. See R. Rashed, Entre arithmétique et algèbre. Recherches sur
l’histoire des mathématiques arabes, Paris, 1984, pp. 21–2, and n. 11; English transl.
The Development of Arabic Mathematics Between Arithmetic and Algebra, Boston
Studies in Philosophy of Science 156, Dordrecht/Boston/London, 1994.



704 APPENDIX II: SINÆN IBN AL-FATÎ AND AL-QABï∑ï

SINÆN IBN AL-FATÎ

Extracts from Optical Mensuration3

Sinæn ibn al-FatÌ says:
<1> If you want to know the length4 of the straight line DE, <as seen>

from the position D, let5 the height be the straight line DA; we draw the line
of sight from the point A to the point E. On the straight line DA you take
any magnitude you wish; let it be the straight line AC. Then from the point
C you draw a straight line to the line of sight AE; let the straight line be CB.
The visual ray goes out from the point A  to the <point> B  and to the
<point> E. You know that the ratio of the straight line AC to the straight
line CB is equal to the ratio of the straight line AD to the straight line DE,
because angle ACB is equal to angle ADE and all the angles of the triangle
ADE are equal to those of the triangle ACB, so the sides of the triangle ACB
are proportional to those of the triangle ADE.

A

B

E
D

C
S

O

Fig. 1

But if the ratio of the first to the second is equal to the ratio of the third
to the fourth, then the product of the first and the fourth divided by the
second has as quotient the third; similarly, if you divide by the third, the
result is the second; similarly, if you multiply the second by the third and
you divide the product by the fourth, the result is the first and if you divide

3 The short treatise of Sinæn ibn al-FatÌ on Optical Mensuration has come down to
us in the collection Riyæ≈a 260, fols 91v–94r in the Dær al-Kutub, Cairo.

4 Lit.: distance; this is an Arabism, but one that does not introduce any ambiguity.
5 Lit.: as if, which we translate this way in what follows.
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it by the first, the result is the fourth. So if the magnitude of AC compared
to CB is equal to the magnitude of AD compared to DE and if you know the
magnitude of AC, of CB and of AD – these three magnitudes – then you
know the magnitude of DE, because you multiply the straight line CB by
the straight line AD, you divide the product by the straight line AC, the
result is the straight line DE. This <is> in order to know the length without
measuring it <directly>.

<2> Similarly, to know a height without measuring it: Let the height of
a wall be the straight line DE; let the visual ray go out from the point A;
you erect a rod of any magnitude <at a distance less than> the distance AD;
let there be a perpendicular BC; the magnitude of CB will be known to you,
the magnitude of AC will be known to you and the magnitude of AD will be
known to you; so the height DE  will be known, from what we have
described in regard to multiplication and division.

<3> Similarly, to know the depth of something without measuring it:
Let the depth be BO, the width of the head of the well BS which is equal to
OE, the rim of the well the point B; let us move from the point B to the
point C and let the size be CA. The visual ray goes out from A towards B
and E and the ratio of AC to CB is equal to the ratio of BO to OE. But OE is
equal to BS and AC, CB and BS are three straight lines that you know. So
the straight line BO is known, from what we have set out in regard to
multiplication and division.

<4> To know the height of a mountain
without measuring it: Let the height of the
mountain be like <the length of> the straight
line OJ. In relation to it you place yourself in
the position of the point G from which there
goes out the visual ray G O. Then from the
point G you draw a perpendicular touching
the straight line GO, let it be GE.
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I J

O

H

G

Fig. 2

The visual ray goes out from the position E toward the point O; let it be
the straight line EO. You then take on the length of EG a length as you
choose, let it be EB; you draw the straight line BA as far as the ray <and
perpendicular to> EO, then the magnitude EA compared to BA is as the
magnitude EG compared to GO. But the magnitudes of EB, BA and EG are
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three magnitudes that are known to you, so the magnitude of GO is known
to you, from what we have set out in regard to multiplication and division.

If you then draw the straight line IH such that the magnitude of GH
compared to HI is equal to the magnitude of G O compared to OJ, the
magnitudes of HI, HG and GO are three magnitudes known to you, so the
magnitude of OJ is known to you, from what we have set out in regard to
multiplication and division.

These four kinds of proportionality that I have just mentioned enable
one to obtain any distance, any height or any depth <in the> plane or not
<in the> plane; understand it – if God the All-Highest so wishes.

<5> To know the width of a thing that
you cannot measure, situated in a sea: Let
BA, DE  be a sea whose edge is BE;6 you
want to know the distance AD . Starting
from the position B you know the distance
BA, from what we have described above.
You set up <the instrument> through
which, at the position B, you take a sighting
of the point A and <you turn it> until it (the
line of sight) reaches the point E, then you
measure <the distance> from B to E.

A

BE

D

C

Fig. 3

Then you put <the instrument> through which you are taking sightings
at the point E <and turn it> until it (the line of sight) reaches D. Then you
find the distance ED, in the way we have described above. If the distance
AB is equal to the distance DE, then the distance AD is equal to the distance
BE, and if one of the distances is greater than the other, then subtract the
smaller from the greater, multiply the result by itself, multiply the distance
BE by itself, add the two products and take the root of the sum; what you
obtain is the distance AD; understand it – if God the All-Highest so wishes.

The treatise of Sinæn ibn al-FatÌ on optical mensuration is completed.
Praise be to God, Lord of the worlds.

6 BA and DE are perpendicular to BE.
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AL-QABï∑ï

Fragment on Optical Mensuration7

To know the height of something <that stands> on the surface of the
ground, if we cannot reach its foot, that is as for knowing the height of
mountains.

If you want <to do> this, by measurement with an astrolabe take the
height of the summit of the mountain above the plane of the ground as
when you take the height of a heavenly body, then you move back from
this position by a distance great enough to change the height by several
degrees; then take its height a second time from that position.

<For> the first height put a sine, that is the first sine. Then subtract the
height from 90° and put the result as a sine, that is the second sine. Do the
same for the second height; you obtain the third and fourth sines. Next
multiply the second sine by the third sine, divide by the first sine, you
subtract your result from the fourth sine and you keep what is left. Next
you multiply the number of cubits between the two positions from which
you have taken the heights by the third sine and you divide by what you
were left with <at the end of the previous step>; what you obtain is the
height of the mountain or the height of the thing whose height you want to
know.

If you want to know how many <cubits there are> between the position
from which you took the first height and the foot of the perpendicular from
the <summit of the> mountain to the plane of the ground, then multiply the
quotient formed by the division <carried out> before the subtraction of the
fourth sine by the <number of> cubits between the two positions and divide
it also by what you had left over from what remained; what you obtain is
<the distance> between the first position from which you took the height

7 An extract from the treatise by Abº ∑aqr ‘Abd al-‘Azîz ibn ‘Uthmæn al-QabîÒî, Fî
anwæ’ min al-a‘dæd wa-†aræ’if min al-a‘mæl, MS Istanbul, Aya Sofya 4832, fols
85v–88r. A. Anbouba has published a critical edition of the whole of this treatise in ‘Un
mémoire d’al-QabîÒî (4e siècle H.) sur certaines sommations numériques’, Journal for
the History of Arabic Science, vol. 6, nos 1 and 2, 1982, pp. 181–208, to pp. 188–9.
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and the foot of the perpendicular from the <summit of the> mountain to the
plane of the ground.

If you want to know the distance between your eye at the position from
which you took the first height and the summit of the mountain, then
multiply the distance between the position and the foot of the perpendicular
from <the summit of> the mountain by itself, and multiply the
perpendicular from <the summit of> the mountain by itself; you add the
two products and you then take the root of this sum, this is what <distance>
there is between your eye and the summit of the mountain. That is what we
wanted to know.



SUPPLEMENTARY NOTES

I. ON THE COMPLETION OF THE CONICS

[1, Proposition 1, p. 175] In propositions 1 to 11, Ibn al-Haytham considers
only half the conic section, in the case of the parabola the curve is cut off by
its axis, in the case of the hyperbola we have half of one branch and we
have one quadrant of the ellipse.

A

B C

D A

B

C

D

Fig. 1.1 Fig. 1.2

C

B

A D

Fig. 1.3

[2, Proposition 3, page 178] We have explained (p. 42, note 42) what
Apollonius means by this notion of a ‘homologous straight line’ or the
straight line having an analogous ratio, which he introduces in Book VII of
the Conics; see VII.2 ff. Thus, for example, for a hyperbola with transverse
axis AΓ, of length d and latus rectum of length c, if B is a general point on

the hyperbola, BE the perpendicular whose foot on the transverse axis is E,
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and N is a point on the axis such that = d

c
, the homologous straight line

is AN. The term ‘homologous’, which is the translation of the Arabic shabîh
al-nisba (literally ‘of analogous ratio’), requires no explanation. In VII.3,
Apollonius introduces the notion of a homologous straight line for the
ellipse. We give here Apollonius’ text for the case of the hyperbola (VII.2):

If we produce the axis of a hyperbola in such a way that the part that lies
outside the section is the transverse diameter; if we cut off a straight line,
starting from one of the ends of the transverse diameter, in such a way that
the transverse diameter is divided into two parts whose ratio one to the
other is equal to the ratio of the transverse diameter to the latus rectum,
with the straight line that has been cut off corresponding to the latus
rectum; if we draw from the end of the transverse diameter – the end that is
also the end of the straight line that has been cut away – a straight line that
meets the section in a general point, and if we draw from this point a
perpendicular to the axis, then the ratio of the square of the straight line
drawn from the end of the transverse diameter to the rectangle enclosed by
the two straight lines that lie between the foot of the perpendicular and the
two ends of the straight line that has been cut off, is equal to the ratio of the
transverse diameter to the length by which it exceeds the straight line that
has been cut off. Let us call the straight line that has been cut off <the
straight line> having an analogous ratio.1

[3, Proposition 7, page 189] In this paragraph, Ibn al-Haytham considers the
half NX  of the parabola P  and the half VX  of the branch H V of the
hyperbola, and when he refers to asymptotes he means the half-lines wx and
wy.

To prove that X  is the only common point of the two arcs thus
identified, he employs an argument of reductio ad absurdum.

If there existed a second common point Y:
1) the straight line XY that cuts HV would cut wx and wy (Conics, II.8);
2) the straight line XY that cuts the arc NX of P would come out from

inside P, and would cut the asymptote wx, and would go on to cut the axis
of P beyond N and thus could not cut the half-line xy.

The two arcs considered have only a single common point.

1 Apollonius: Les Coniques, tome 4: Livres VI et VII, edition, translation and
commentary by R. Rashed, Berlin/New York, 2009, see pp. 354–77; Arabic pp. 353,
11–355, 2.

E
E
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II. A N E U S I S  TO DIVIDE THE STRAIGHT LINE USED BY
ARCHIMEDES

The manuscript tradition of Ibn al-Haytham’s On the Division of the
Straight Line Used by Archimedes includes after his text a different solution
proposed by another mathematician.2 The attribution to an anonymous
author is explicit, as can be seen in the first sentence. We have a neusis.

The author gives a mechanical construction to solve Archimedes’
problem. He draws ΔΑ and ΖΕ perpendicular to ΔΖ, in the same half-plane;
he marks ΔΑ = ΔΒ and ΖΓ = ΖΘ on ΔΖ produced. He then imagines three
movable straight lines ΑΧ, ΧΕ and ΕΓ, the first of which can turn about the
fixed point Α and the last can turn about the fixed point Γ while remaining
parallel to the first one; the pivot points at X and E are constrained to move
on ΔΖ and ΖΕ respectively. The solution is found when angle ΑΧΕ is a
right angle.

Angles ΔΧΑ and ΖΓΕ are equal, since ΧΑ and ΓΕ are parallel. So the
right-angled triangles ΑΔΧ  and ΧΕΓ  are similar, hence there is the
proportional relationship

ΑΔ
ΔΧ

= ΧΕ
ΕΓ

.

Thus
ΒΔ2

ΔΧ 2
= ΑΔ2

ΔΧ 2
= ΧΕ 2

ΕΓ 2
= ΧΖ 2

ΖΕ 2
,

because the right-angled triangles ΧΕΓ and ΧΖΕ are similar. Since ΖΕ2 =
ΧΖ · ΖΓ, we get

ΒΔ2

ΔΧ 2
= XΖ

ΖΓ
= ΧΖ

ΖΘ
,

which is what we wanted.
This construction is reminiscent of the one for the two proportional

means that Eutocius attributes to Plato3 and the analogous construction

2 Our edition of this text is based on the following manuscripts: Istanbul, 
440, fols 275v–276r [called B]; Istanbul, Süleymaniye, Atif 1712, fol. 147v [called O];
Istanbul, Süleymaniye, Carullah 1502, fol. 223r [called C]; Leiden, Or. 14, fols 499–500
[called L]. For the history of the texts, see above, Chapter III. Comments on this text by
F. Woepcke appear in L’Algèbre d’Omar Alkhayyæmî, publiée, traduite et accompagnée
d’extraits de manuscrits inédits, Paris, 1851, pp. 93 ff.

3 Commentaire du livre II d’Archimède Sur la sphère et le cylindre, ed. Mugler,
pp. 45–6.

EEEE
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found in the Banº Mºsæ.4 The difference is that, in these latter constructions,
the two right angles are fixed; one of the vertices runs along an axis and the
solution is found when the second vertex lies on another axis. In contrast, in
the present construction two vertices run along fixed axes and we have
found the solution when the angles are right angles.

‘In a different way, due to someone else, if we make the straight line
move: Let the straight line be ΔZ5 on which we mark the two points B and
Θ; we want to divide the straight line ΔB at the point X such that the ratio
of XZ to ΖΘ is equal to the ratio of the square of BΔ to the square of ΔX.
Let us draw from the points Δ and Z perpendiculars ΔA and ZE in the same
direction; let us cut off ΔA equal to ΔB, let us produce ΔZ to Γ and let us
cut off ZΓ equal to ZΘ. Let us imagine that at the two points A and X there
are two movable straight lines in two different directions, say the lines AX
and XE, such that AX cuts ΔB and XE cuts ZE and that when the lines
move they are always parallel,6 with the condition that the straight line
joining the two points of intersection, that is, points X and E, encloses a right
angle with each of the lines AX and XE; let the line be EX. It is then that
angle AXE is a right angle, as is angle XEΓ.

A

B

E

ΔΘΓ Z X

Fig. 3

I say that the ratio of XZ to ZΘ is equal to the ratio of the square of BΔ
to the square of ΔX because the two angles AΔX and XEΓ are right angles
and angle AXΔ is equal to angle Γ because the two lines are parallel; the
remaining angle, angle A, is equal to angle EXZ. So the two right-angled
triangles AΔX and XEΓ are similar, the ratio of AΔ to ΔX is equal to the
ratio of XE to EΓ, and the ratio of the square of AΔ, that is, the square of
BΔ, to the square of ΔX is equal to the ratio of the square of EX to the
square of EΓ, that is, the ratio of the square of XZ to the square of ZE. But
the ratio of the square of XZ to the square of ZE is equal to the ratio of XZ

4 Mathématiques infinitésimales, vol. I, pp. 52–4.
5 We have deliberately adopted here the lettering used by Archimedes.
6 He means that AX must be parallel to EΓ.
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to ZΓ, because ZE is a mean in proportion between the lines XZ and ZΓ; but
the line ZΓ is equal to the line ZΘ, so the ratio of XZ to ZΘ is equal to the
ratio of the square of BΔ to the square of ΔX; that is what we wanted.’

III. AAAA LLLL ---- QQQQ ªªªª HHHH ïïïï : THE LEMMA TO ARCHIMEDES’ DIVISION OF A
STRAIGHT LINE

Lemma: Let there be two segments, AB and C; to find on the straight line

AB, between A and B or beyond B, a point D such that AD
C

C
BD

=
2

2 , or

AD · BD2 = C3.
Here we recognize the problem raised by Archimedes in The Sphere

and the Cylinder II.4, with the sole difference that Archimedes considers a
segment C and an area Γ unrelated to C, whereas here we have Γ = C2. Al-
Qºhî’s equation is no less general, since we can always construct a segment
C′ such that C · Γ = C′,3 if we know how to insert two proportional means
between two given magnitudes. Note that the form adopted by al-Qºhî
enables him to express the problem’s conditions of solvability by bounding
above the segment C′, whereas the commentary of Eutocius gave it by
bounding above the volume C · Γ.

We suppose BE = C, with E, and D on the same side of B, and we
complete the square BEGH. Let P  be the parabola of vertex A, with axis
AB and latus rectum C; and let H  be the hyperbola of vertex G, having BE
and BH as asymptotes.

Let I be common to H  and P, ID ⊥ AB,  IK ⊥ BH.
(1) I ∈ P, whence ID2 = C · AD;
(2) I ∈ H, whence BE · EG = BK · KI = ID · DB = C2.

From (1) and (2), we deduce

ID

C
= AD

ID
= C

DB
;

hence
AD

C
= C2

DB2
,

and hence the result.
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Remark on the existence of I:
In the case of Fig. 4.2, point G, vertex of the hyperbola, is inside the

parabola, for AE = AB + C; and if F is the point of the parabola that is
projected upon AB at E, we have EF2 = (AB + C)C; therefore EF > C, and
P cuts H  at a point I of the arc AF.

However, in the case of Fig. 4.1, a discussion is necessary, which the
author does not undertake; nevertheless, he does give the condition, which
allows us to suppose that he had envisaged it.

In fact, we may have three cases:
1) The first case is that of the manuscript’s Fig. 4.1. In this case, the

parabola and the hyperbola cut one another at two points, I and I′; whence
there are two solutions, D and D′.

      

A

B

D

E G
F

I

H K

< >>’ ’D I<

  

A

B

D

E
G

F

I

H K

C

Fig. 4.1 Fig. 4.2

2) The case of Fig. 4.3. In this case, the parabola and the hyperbola are
tangent, and to the point of contact I there corresponds a point D.

A

B

D

E
G

I

HK

Fig. 4.3



SUPPLEMENTARY NOTES 716

3) The case of Fig. 4.4. In this case, the parabola and the hyperbola do
not cut one another, and there is no point D between A and B.

A

B

E
G

H

Fig. 4.4

The discussion of this problem can be reduced to that of a cubic
equation. We take the half-line AB as axis, and we suppose AB = a > 0,
AD = x > 0, and BD = a – x. We designate by c the length of the given
segment C, and we have

AD

c
= c2

BD2 ⇔ AD ⋅ BD2 = c3 ⇔ x a − x( )2 = c3 .

We suppose f(x) = x(a – x)2. This function has a maximum at point

x = a

3
, and we have M = f

a

3
⎛
⎝

⎞
⎠ = 4a3

27
. The equation is written f(x) = c3, and

we have:

1) if 0 < c3 < 4a

27

3

, the equation has three roots:

0 < x1 < a

3
< x2 < a < x3 .

A DD D B1 2 3

Fig. 4.5

2) If c3 = 4a3

27
, the equation has two roots, one double and one simple:

x x
a

1 2 3
= = , and x a3 > .
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A DD D B1 2 3=

Fig. 4.6

3) If c3 > 4a3

27
, the equation has a single root:

x3 > a.

A DB 3

Fig. 4.7

Al-Qºhî’s procedure amounts to taking two points A and B as given,
and showing that the function f(D) = AD · BD2, D ∈ [A, B], presents a

maximum for D  verifying AD = AB

3
. He did not consider D  on AB

produced; nevertheless, he affirms without the slightest ambiguity that in

order to have D between A and B, it is necessary that c3 ≤ 4a3

27
.

Now that this lemma is established, we have therefore found point D
such that

(1) AD · BD2 = C3,

with

(2) AD = AB ± BD.

Al-Qºhî indicates that in the case where AD = AB – BD, it is necessary

that c3 ≤ 4
27

AB3 – a condition that he had mentioned at the beginning of the

text.
From (2), we deduce

AD · BD2 = AB · BD2 ± BD3,

and, according to (1), we have

C3 = AB · BD2 ± BD3.

As AB and C are two known segments, we know BD according to the
lemma. But AB · BD2 is the volume of a parallelepiped (P) of altitude AB,
whose base is a square with sides equal to BD; in addition, BD3 is the
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volume of a cube constructed on this same square. If, then, C3 is the volume
of a given solid, we know how to solve the problem: construct on AB a
parallelepiped of square base, such that if a cube of the same base is added
to it or subtracted from it, the solid obtained has a known volume.

H C

I

G

E

G

K

L

N

S

M

B

O

P

D

U

A Q

Q A

U

B

O

D

P

Fig. 4.8

To generalize the problem, al-Qºhî takes as given two points A and B
and a parallelepiped (CE) of known form, and replaces the cube of volume
C3 by a parallelepiped similar to (CE) whose volume is known; let there be
the solid (KL), of which KM is an edge. The trihedral angles (C, HIG) and
(K, MNS) are equal. We suppose (KL) = V; on the straight line AB we

consider a point D such that AD

KM
= KM2

BD2
. We construct on BD (in both

cases) the solid (DO), similar to (CE) and to (KL); from its base (DP) we
construct the solid (AP) with edge AD. We show that

vol.(AP) = V.

Demonstration: Let G be a segment such that AD

G
= G

KM
; we then have7

AD

G
⎛
⎝

⎞
⎠

2

= G

KM
⎛
⎝

⎞
⎠

2

= AD

G
⎛
⎝

⎞
⎠

G

KM
⎛
⎝

⎞
⎠ = AD

KM
.

7 The letter G has two different meanings.
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But
AD

KM
= KM2

BD2 ,

and therefore

 AD

G
= G

KM
= KM

BD
;

from which we deduce
KM

BD
⎛
⎝

⎞
⎠

3

= AD

G
⎛
⎝

⎞
⎠

G

KM
⎛
⎝

⎞
⎠

KM

BD
⎛
⎝

⎞
⎠ = AD

BD
.

In addition,
AD

BD
= vol. AP( )

vol. DO( )
,

for the two solids have the same base, and

KM

BD

KL

DO
⎛
⎝

⎞
⎠ = ( )

( )

3 vol.
vol.

,

for these two solids are similar; hence the conclusion

vol.(AP) = vol.(KL) = V.

The solid constructed on AB is (AO), and we have

V = vol.(AO) ± vol.(DO), or vol.(AO) = V   m  vol.(DO).

Al-Qºhî proposes another, simpler variant of this demonstration. He
takes as given the segments AB and C; let D be on AB or on its extension,

such that AD

C
= C2

BD2
 (two possible cases).

B D A

D B A

C

E

Fig. 4.9
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On BD, we construct a parallelepiped P1; let v(BD) be its volume. And
on AD we construct a parallelepiped P2 with the same base as P1; let v(AD)
be its volume. If we construct on C a parallelepiped P similar to P1, and if V
is its volume, then v(AD) = V.

Demonstration: Let E be the segment defined by AD

E
= E

C
; then

AD

C
= AD

E
⎛
⎝

⎞
⎠

2

= E

C
⎛
⎝

⎞
⎠

2

.

But we know that
AD

C
= C2

BD2
;

we therefore have
AD

E
= E

C
= C

BD
,

hence
AD

BD
= C

BD
⎛
⎝

⎞
⎠

3

.

Yet, since P1 and P2 have the same base, we have
AD

BD
= v(AD)

v(BD)
.

In addition, the solids P and P1 are similar; therefore

V

v(BD)
= C

BD
⎛
⎝

⎞
⎠

3

,

and therefore V = vol.(AD), or else V = vol.(AB) ± vol.(BD).
We see that the extension of Archimedes’ problem proposed by al-Qºhî

may be interpreted as an ‘application of volumes’ analogous in three
dimensions to the application of areas dealt with in Book VI of Euclid’s
Elements: A segment AB being given, we seek to apply along this segment
a given volume V , with a deficiency or excess similar to a given
parallelepiped.

The editio princeps of the text8 was edited on the basis of the Leiden
manuscript Or. 168/8, fols. 80v–84v. F. Woepcke has analysed this text; see
the ‘Additions’ to his Algèbre d’Omar Alkhayyæmî, Paris, 1851; reprinted in

8 See Les Mathématiques infinitésimales, vol. III, pp. 919–35.
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Études sur les mathématiques arabo-islamiques, Frankfurt am Main, 1986,
vol. I, Appendice B, pp. 96–102.

Finally, let us note that the title of this epistle does not appear in any of
the lists of al-Qºhî’s works drawn up by the ancient bio-bibliographers. As
we know, these lists are often incomplete, and the absence of a title is no
indication with regard to its authenticity. Al-Qºhî himself does not come to
our aid, since he does not mention this epistle in any of his other writings.
Yet this argument ex silentio has no more validity, especially in view of the
affirmation at the end of the epistle: ‘This lemma was established by the
Master Abº Sahl al-Qºhî, may God be satisfied with him. I gave a copy of
it to the Master Abº al-Jºd�…’. This testimony is solid, and we have no
argument to doubt it. With regard to al-Qºhî’s correspondent, who
transmitted a copy to Abº al-Jºd, nothing enables us to identify him, at least
for the time being. We know that al-Qºhî carried out some scientific
correspondence, like the famous one he exchanged with al-∑æbi’.
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AAAAllll----QQQQººººhhhhîîîî    and the Lemma to the Division of the Straight Line
by Archimedes

In the Name of God, the Merciful, the Compassionate
On Him I rely

I took pause, O my brother, over what you mentioned of the statements
of the geometer Abº ‘Abd Allæh al-Mæhænî in a treatise intended to
comment upon the second book of Archimedes’ work on The Cylinder, the
Sphere, and the Cone, according to which he was able to deal with eight
chapters of the total of nine chapters of this work, and he was incapable of
rectifying the fourth chapter, which deals with the division of the sphere into
two parts according to a given ratio, because of the difficulty of a lemma
which he needed;9 he10 tried to solve it by algebra, which led him to
equalize the cube, the squares, and the number.11 Now, these terms are not
proportional. Thus, this is the same as the application to a given straight line
of a parallelepiped that is deficient by a cube with regard to it. You asked
me to explain this lemma. I then needed to introduce another lemma, which
facilitates the approach to it, and which is as follows.12

The two straight lines AB and C being given, we wish to divide AB at D
such that the ratio of AD to C is equal to the ratio of the square of C to the
square of BD. This is what we need for the lemma which al-Mæhænî found
difficult.

9 Archimedes.
10 That is, al-Mæhænî.
11 In the manuscript, we read: mu‘ædalat al-muka‘‘ab wa-al-amwæl ‘adadan – that

is, x3 + ax2 = c3; this, as we shall see later, is not the equation under consideration.
F. Woepcke thought this was the result of a lapsus calami, which is quite possible. It is
also probable that there was an error as early as the transcription, and that the initial
sentence read: mu‘ædalat al-muka‘‘ab wa-al-amwæl wa-al-‘adad, ‘to equalize the cube,
the squares, and the number’. In order to decide, we must find a text of this treatise from
a family other than the only one we know. In fact, what is at issue is the equation
x3 + c3 = ax2, whose terms are not proportional; for we move from affinity
x → (a – x) to the equation x3 + a2x = c3 + 2ax2.

12 Here, al-Qºhî does not take up Archimedes’ lemma in the latter’s terms (see the
commentary above).



SUPPLEMENTARY NOTES 723

This is possible only if straight line C is not longer than the straight line
that is capable of the solid having as its edge13 one-third of AB, and deficient
by a cube14 whose side is two-thirds of AB – that is, the straight line capable
of four-ninths of one-third of the cube of AB. But we want it to be the latter,
which is more general than the former. We then consider AB according to
two cases: in one, we wish to separate BD, and in the other we add BD, so
that the ratio of AD to C is equal to the ratio of the square of C to the
square of BD.

We suppose BE to be equal to C; we complete the square BEGH, and
we construct a parabola of vertex A, diameter AB, and latus rectum the
straight line C; let it be the section AI. We construct a hyperbola that passes
through point G , and such that the straight lines BE  and BH  are its
asymptotes; let it be the section GI. The two sections necessarily cut one
another; let them cut one another at I. From point I, we drop a
perpendicular to AB; let it fall at D. Apollonius has shown in his book on
Conics that the square of the perpendicular lowered from the parabola to its
diameter is equal to the product of what it separates from the diameter,
starting with the vertex of the section, by the latus rectum;15 the product of
AD by C is therefore equal to the square of ID, and the ratio of AD to ID is
equal to the ratio of ID to C.
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Fig. III.1 Fig. III.2

13 This expression renders the Arabic al-mu≈æf ilayhi, which translates literally as
‘applied to’. Here the meaning is clear.

14 The text reads ‘square’ instead of ‘cube’; this is probably a lapsus calami
brought about by analogy with the text of Euclid.

15 Conics, I.11.
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Likewise, from point I we draw the straight line IK parallel to BD, and
we extend straight line BH until it meets it at K. Straight line EG therefore
falls on the hyperbola from the asymptote in a manner parallel to the other
asymptote; similarly for the straight lines GH, KI, and ID. According to
what Apollonius has shown,16 the product of BE by EG is equal to the
product of BK by KI. But each of the <straight lines> BE and EG is equal
to C, BK is equal to ID, and KI is equal to BD; therefore, the product of ID
by BD is equal to the square of C, and the ratio of ID to C is equal to the
ratio of C to BD. We have thus shown that the ratio of AD to ID is equal to
the ratio of ID to C, and is equal to the ratio of C to BD; therefore, the ratio
of AD, the first, to C, the third, is equal to the ratio of the square of C, the
third, to the square of BD, the fourth. That is what we wanted to prove.

B D A

D B A

C

Fig. III.3

Once this lemma has been introduced, let there be AB for us in two
cases: we wish to apply to it a parallelepiped equal to a given solid, to which
we add or from which we subtract a cube;17 let the straight line C be the
side of a cube equal to the given solid. In one case, we separate BD from
AB, and in the other we add BD to it, so that the ratio of AD to C is equal
to the ratio of the square of C  to the square of BD . Straight line C is
limitless when we add it, but it is necessarily limited when we subtract it; in
other words, straight line C cannot be longer than the straight line that is
capable of a solid18 that is four-ninths of one-third of the cube of AB, whose
edge is one-third of AB, to which we have added a cube whose side is two-
thirds of AB. The product of AD by the square of BD is a parallelepiped
surrounded twice by the square of BD, and four times by the surface AD by
DB; the product of C by the square of C is the cube equal to the given solid.
The solid applied to AB in the first case is deficient with regard to AB by a
cube whose side is BD, and in the other case exceeds AB also by a cube of
side BD. That is what we wanted to prove.

This having been constructed, I would like to make this proposition
universal – that is, that the solid that is applied to AB should be equal to a

16 Conics, II.12.
17 The cube is added to or subtracted from the given parallelepiped.
18 Lit.: a cube.
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given parallelepiped, augmented or diminished by a solid similar to a
parallelepiped of known form.

Let the solid of known form be the solid CE; its angle is that which is
limited by the straight lines CG, CH, and CI. We construct a solid similar to
the given solid, like the solid KL, whose angle, equal to angle C of solid CE,
is that which is limited by the straight lines KM, KN, and KS. We subtract
BD from the given AB, in one case, and we add it in the other case, so that
the ratio of AD to KM  is equal to the ratio of the square of KM  to the
square of BD, according to the condition mentioned in the lemma, as we
have shown in the first proposition of this treatise. On BD, we construct a
solid similar to solid CE; let it be the solid DO. We complete the solid AP of
length AD, and of the width and depth <of solid> DO; let the angle which is
equal to angle C and equal to angle D of the two solids CE and DO be the
angle limited by the straight lines AD, AU, and AQ; I say that solid AP is
equal to solid KL.
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Fig. III.4

Demonstration: Between the two straight lines AD and KM, we draw
the straight line G, a proportional mean; we have the ratio of AD to KM
equal to the ratio of AD to straight line G repeated twice. Now, the ratio of
AD to KM is equal to the ratio of the square of KM to the square of BD,
and the ratio of AD to G is equal to the ratio of KM to BD; therefore, the
ratio of AD to G is equal to the ratio of G to KM, and is equal to the ratio of
KM to BD. The ratio of AD to BD is therefore equal to the ratio of KM to
BD, repeated three times. But the ratio of AD to BD is equal to the ratio of
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solid AP to solid DO, for they are in accordance with the length of a single
straight line, and of the same width and depth. But the ratio of KM to BD,
repeated three times, is equal to the ratio of solid KL to solid DO, for they
are similar; therefore, the ratios of solid AP and of solid KL to solid DO are
the same. Solid AP is therefore equal to solid KL, which is equal to the
given solid. Yet we have applied it to AB, deficient in one case and excessive
in the other by a solid DO, similar to the solid CE of known form; this is
what we wished to construct.

More accessible than this, and with fewer straight lines: if we suppose
the two straight lines AB and C, if we separate BD from AB in one case, if
we add BD to it in the other, if we suppose the ratio of AD to straight line C
to be equal to the ratio of the square of straight line C to the square of
straight line BD, and if we construct on the side BD a parallelepiped of
known form, and on straight line C a solid that is similar to it, then the latter
is equal to the solid constructed on AD with the same width, the same
depth, and angles equal to those of the solid of known form constructed on
BD.

B D A

D B A
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Fig. III.5

Demonstration: Between AD and C we draw the straight line E, a
proportional mean. We have the ratio of AD to C equal to the ratio of AD to
E repeated twice, and the ratio of the square of C to the square of BD is
equal to the ratio of C to BD, repeated twice; therefore, the ratio of AD to E
is equal to the ratio of C to BD, and the ratio of AD to E is equal to the
ratio of E to C. Therefore, the four straight lines AD, E, C, and BD are in
continuous proportion. The ratio of AD to BD is therefore equal to the ratio
of C to BD, repeated three times. But the ratio of AD to BD is equal to the
ratio of the solid constructed on AD with width, depth, and angles equal to
those of the solid of known form constructed on BD , to the solid
constructed on BD, since they are of the same width and same depth; and
the ratio of C to BD, repeated three times, is equal to the ratio of the solid
constructed on straight line C to the solid constructed on BD, since they are
similar. Therefore, the similar <solid> constructed on C is equal to the solid
constructed on the side AD, with width, depth, and angles equal to those of
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the <solid> constructed on BD; it19 is deficient with regard to AB in one of
the two cases, and it exceeds it in the other case, by the solid of known
form, one of whose sides is BD. That is what we wanted.

If we suppose the straight line C to be the side of any parallelepiped
equal to a given solid, and similar to a solid of known form, it will be equal
to the one we mentioned applied to AB, which is deficient or excessive with
regard to it by a solid similar to a solid of known form. The side of the solid
such that you wish to apply to AB an equal solid, deficient by a similar solid
to a known solid, must not be greater than that whose edge is one-third of
AB, which is the side of the similar solid, deficient by a cube of two-thirds of
AB.

This lemma was established by the Master Abº Sahl al-Qºhî – may
God be satisfied with him. I have given a copy of it to Master Abº al-Jºd –
may God have pity upon him.

19 That is, the solid constructed on the side AD.
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AL-ÎASAN IBN AL-HAYTHAM AND MUÎAMMAD IBN AL-HAYTHAM:
THE MATHEMATICIAN AND THE PHILOSOPHER

It was in a chapter with the same title, in the preceding volume, that we
pointed out a confusion that certainly dates back to the work of the
biobibliographer Ibn Abî UÒaybi‘a, and perhaps to earlier authors, and has
been perpetuated by all modern historians. The confusion is between two
figures who were contemporaries of one another: Abº ‘Alî al-Îasan ibn al-
Îasan ibn al-Haytham and MuÌammad ibn al-Îasan ibn al-Haytham. In
our earlier account we put forward many arguments, some of which
appeared to us to be irrefutable, and still appear to be so. Here we shall add
three pieces of evidence that have come to light since we wrote the earlier
account. They have not been noticed until now, and all of them lend support
to our proof.

1. Highly informative testimony is provided by the famous philosopher
Fakhr al-Dîn al-Ræzî. He mentions the name of Abº ‘Alî (al-Îasan) ibn
al-Haytham as well as that of MuÌammad ibn al-Haytham. But whereas he
refers to the former only in connection with mathematics and optics, he
discusses the latter only in a context of theology and philosophy. Thus, at no
time does al-Ræzî seem to confuse the two figures or their respective areas
of activity.

In his own works, al-Ræzî cites several treatises that he expressly
attributes to Abº ‘Alî (al-Îasan) ibn al-Haytham. These are Optics, On the
Resolution of Doubts on the Book of the Elements of Euclid, the treatise
On Place, a treatise on Proposition X.1 of the Elements and the treatise On
Errors in the Method of Making Observations. Now these titles correspond
closely with those of surviving works by al-Îasan ibn al-Haytham. Thus, in
his book al-MulakhkhaÒ, al-Ræzî cites On the Resolution of Doubts1 as well

1 Die Erkenntnislehre des ‘A≈udaddîn al-ïcî, Übersetzung und Kommentar des
ersten Buches seiner Mawæqif von Josef van Ess, Akademie der Wissenschaften und der
Literatur Veröffentlichungen der Orientalischen Kommission, vol. XXII, Wiesbaden,
1966, p. 175.
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as the treatise On Place.2 In his treatise called Higher Researches (al-
Ma†ælib al-‘æliyya), of 605 AH (1208/1209) he writes:

 w�U³�« s� qBH¹Ë ¨tz«eł√ s� ¡eł tM� qBH¹ —«bI� q� Ê√ ÊUOÐ w
 W�UÝ— r¦ON�« sÐ wKŽ wÐ_ Ê≈
 pKð lOLł ÊS
 ¨UÎLz«œ p�– qFH¹Ë ¨qJ�« v�≈ ‰Ë_« ¡e'« W³�½ q¦� ‰Ë_« ¡e'« v�≈ t²³�½ ¡eł

 ÊU� Íc�« ¡e'« v�≈ UN²KLł mK³ð fOK
 XFLł «–≈ ¨W¹UNM�« dOž v�≈ W³�M�« pKð vKŽ …–ušQ*« ¡«eł_«
Æ‰Ë_« ¡e'« s� rEŽ√

There is a treatise by Abº ‘Alî al-Îasan ibn al-Haytham that proves that if
we cut off one part of a magnitude, and from the remainder cut off a part
whose ratio to the first part is equal to the ratio of the first part to the whole,
and if we continue to proceed in this way, then if we add up the parts we
have taken, in this ratio, to infinity, the sum will not be so great as the part
that was greater than the first part.3

In other words, let A be a magnitude, αA a part of this magnitude,

where 0 < α < 1, and let there be a sequence of equal ratios 0 < αi < 1 (for

i = 1, 2, 3 …), we have for αi = α for all values of i, 
n

n

→∞
−( ) =lim 1 0α . This is

exactly what Abº ‘Alî al-Îasan ibn al-Haytham proved in his treatise On
the Division of Two Different Magnitudes4 and which he to some extent
took up again in his Commentary on Euclid’s Elements.5

So there is absolutely no doubt which source was consulted by al-Ræzî,
or about who wrote it.

A little later in the same book, al-Ræzî again cites the mathematician, in
these terms:

Æ”bOK�√ „uJý qŠ »U²� w
 sÒOÐ r¦ON�« sÐ vKŽ UÐ√ Ê≈
Abº ‘Alî ibn al-Haytham has proved in his book On the Resolution of
Doubts concerning Euclid […].6

2 Al-Ræzî uses Ibn al-Haytham’s own terms in taking up the latter’s criticism of the
traditional account of place as the surface enclosing the body. See al-MulakhkhaÒ, ms.
Majlis Shºræ, no. 827, fols 92–93. See also Les Mathématiques infinitésimales du IXe

au XIe siècle, vol. IV: Méthodes géométriques, transformations ponctuelles et
philosophie des mathématiques, London, 2002, which gives al-Ræzî’s text with a
translation into French.

3 Fakhr al-Dîn al-Ræzî, al-Ma†ælib al-‘æliyya, ed. AÌmad Îijæzî al-∑aqqæ, Beirut,
1987, VI, pp. 81–2.

4 See R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II:
Ibn al-Haytham, London, 1993.

5 Ibid .
6 Fakhr al-Dîn al-Ræzî, al-Ma†ælib al-‘æliyya, p. 165.
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In the eighth volume of the same book (p. 155), al-Ræzî writes:

 s� UÎ³¹d� UNM� bŽË ¨b�d�«  ô¬ w
 l�«u�« qK)« Ÿ«u½√ w
 W�UÝ— nM� r¦ON�« sÐ wKŽ UÐ√ aOA�« Ê≈
ÆUNMŽ “«d²Šô« sJ1 ô w²�« Áułu�« s� UÎNłË 5ŁöŁ

The Master Abº ‘Alî ibn al-Haytham has written a treatise on the kinds of
error that occur with observational instruments and he has counted about
thirty kinds, which cannot be avoided.

Citations in al-Ræzî’s two treatises, al-MulakhkhaÒ and Higher
Researches, show that the author was familiar with some works by the
mathematician, whose names he gives without the slightest ambiguity: Abº
‘Alî ibn al-Haytham.

Let us now turn to al-Ræzî’s Opus Magnum, his Great Commentary
(al-Tafsîr al-Kabîr) on the Koran. In this work, he cites both Abº ‘Alî ibn
al-Haytham and MuÌammad ibn al-Haytham. In Volume XIII of his
Commentary, in a discussion of morning twilight, al-Ræzî writes:7

 qÐUI*« ¡«uN�« p�– …¡U{≈ Vłuð ÷—_« X% UN½u� 5Š fLA�« ∫‰UI¹ Ê√ “u−¹ ô r� ∫«u�U� ÊS

 ¨÷—_« ‚u
 n�«u�« ¡«uNK� ©qÐUI�® qÐUI*« ¡«uN�« p�– rŁ ¨©fLA�« ’d� vKŽ œuF¹ dOLC�«® t�
 Íd�¹ ‰«e¹ ô rŁ ¨÷—_« ‚u
 n�«u�« ¡«uN�« ¡uC� UÎ³³Ý ÷—_« X% n�«u�« ¡«uN�« ¡u{ ›Á¤dOBO

Íc�« tłu�« u¼ «c¼ ªUMÐ jO;« ¡«uN�« v�≈ qB¹ v²Š t� o�ö� dš¬ ¡«u¼ v�≈ ¡«u¼ s� ¡uC�« p�–

Æ›øt¦J�«¤ dþUM*UÐ ÁULÝ Íc�« tÐU²� w
 vMF*« «c¼ d¹bIð w
 r¦ON�« sÐ wKŽ uÐ√ tOKŽ ‰uŽ 
If they say: why is it not permitted to say that the Sun, when it is below the
Earth, necessarily illuminates the air that faces it, and then that air facing it
will illuminate the air that is above the Earth, and thus the light of the air
that is below the Earth will be the cause of the light of the air that is above
the Earth, then that light continues to propagate from one air to another air
that is near it until it reaches the air that surrounds us? This is the method on
which Abº ‘Alî ibn al-Haytham relied to establish this idea in his book
which he called Optics.

Having summarized the theory, al-Ræzî sets about criticizing it, and in
the process demonstrates his knowledge of Abº ‘Alî ibn al-Haytham’s
optics. On the other hand, in Volume XIV al-Ræzî develops the following
philosophico-theological thesis: God cannot be located either in a place or in

7 Fakhr al-Dîn al-Ræzî, al-Tafsîr al-Kabîr, 3rd ed., Beirut, n.d., vol. XIII,
pp. 95–6.
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a direction. Among other arguments there is one concerning the infinite
difference between God and the Universe:8

5¹d�UŠ 5Ð —uB×� r�UF�« vKŽ t�bI²
 ¨bÐ_« v�≈ ‰“_« s� r�UF�« vKŽ ÂbI²� v�UFð t½√ fO�√ ∫ qO� ÊS

ÂbI²�« «c¼ Êu� s� ÂeK¹ r�Ë ¨r�UF�« œułË ‰Ë√ ∫w½U¦�«Ë ¨‰“_« ∫UL¼bŠ√ ¨5
dÞË s¹bŠ 5Ð œËb×�Ë 
sÐ bL×� tOKŽ ‰uŽ Íc�« u¼ «c¼Ë ÆUMN¼ «cJ
 ÆW|«bÐË ‰Ë√ ÂbI²�« «cN� ÊuJ¹ Ê√ s¹d�UŠ 5Ð «Î—uB×� 

Ær�I�« «c¼ sŽ ‰UJýù« «c¼ l
œ w
 r¦ON�« 
If we say: Is it not so that the Most High existed before the Universe from
time eternal in the past and will exist to time eternal that is to come? His
existence before the Universe is thus confined between two markers, and
delimited by two limits and end points: one is eternity in the past and the
other the beginning of the existence of the Universe; and it does not
necessarily follow from the fact that his anteriority is confined between two
markers that it has a beginning and a starting point. It is so here. This is
what MuÌammad ibn al-Haytham relies on to remove in this section of the
book.

Now, if we examine the list of writings by MuÌammad ibn al-Haytham,
there are several that could be the source used by al-Ræzî. For example, we
might suggest his treatise On the Universe Regarding its Beginning, its
Nature and its Perfection (Maqæla fî al-‘ælam min jihat mabda’ihi wa-
†abî‘atihi wa-kamælihi).

It is clear that the difference in context of these citations is highly
significant, particularly since – as we have seen – al-Ræzî was a careful
reader of the mathematical writings of Abº ‘Alî ibn al-Haytham. In short,
whether it is a matter of mathematics and optics on the one hand, or one of
philosophy and theology9 on the other, al-Ræzî never makes a mistake,
either about the title or about the author, and refers explicitly to Abº ‘Alî
ibn al-Haytham, that is al-Îasan, in the former case, and to MuÌammad ibn
al-Haytham in the latter. Unless we simply reject the evidence, there are in
fact two figures, whom al-Ræzî distinguishes.

8 Ibid., vol. XIV, pp. 110–11.
9 An independent piece of information provided by Ibn Abî UÒaybi‘a gives us a

glimpse of the social context and the direction of MuÌammad ibn al-Haytham’s interests:
he is said to have made two replies to Ibn Fasænjus in the course of a controversy in
which the latter criticized the opinions of astrologers (556). Ibn Fasænjus is a very
instructive figure. As al-Najæshî (372/982.983–450/1058.1059) reports in his Rijæl, art.
704, published in Qum, Ibn Fasænjus is a literary scholar who wrote on history, poetry
and also philosophy, and from whom we have a book criticizing astrologers. He is not
known to have written anything on mathematics, astronomy or optics.
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2. Pursuing the same train of thought, we may also mention the
evidence provided by ‘Abd al-La†îf al-Baghdædî (d. 629 / 1231-2). Not
only does he cite al-Îasan ibn al-Haytham, he also composed a critical
commentary on the latter’s treatise On Place. Now, physician–philosopher
as he was, al-Baghdædî, whenever he speaks of al-Îasan ibn al-Haytham,
sees him only as a mathematician, an expert on optics and an astronomer, in
no case as purporting to be a physician or a philosopher. This is what al-
Baghdædî actually says:

ÂuKF�« w
 q{U
 qłd�« «c¼Ë Ær¦ON�« sÐ« Í√— V�×Ð ÊUJ*« WO¼U� sŽ Y×Ð√ Ê√ W�UI*« Ác¼ w
 w{dž
 dB� q¼√ s� u¼Ë ¨dþUM*« rKŽË W¾ON�« rKŽ w
 ŸU³�« q¹uÞ ¨UNŽ«u½√ w
 WFOÝb�« lÝ«Ë ¨WO{U¹d�« 

ÆVO³D�« Ê«u{— sÐ« d�UF�
My purpose in this treatise is to examine the essential nature of place
according to the opinion of Ibn al-Haytham. This author is eminent in
mathematics, greatly gifted in its various branches and well versed in
astronomy and optics; he comes from Egypt and is a contemporary of the
physician Ibn Ri≈wæn.10

In the course of his critical commentary on Ibn al-Haytham’s treatise On
Place, al-Baghdædî censures him for knowing so little about logic, and,
indirectly, for his ignorance of the writings of Aristotle. Thus he complains
about ‘his (Ibn al-Haytham’s) lack of skill in the art of logic (qillat
riyæ≈atihi bi-Òinæ‘at al-man†iq)’; or ‘neglect of the art of logic (al-ihmæl li-
Òinæ‘at al-man†iq)’. This criticism is the more significant because al-
Baghdædî seems to be well informed about Ibn al-Haytham’s writings. In
this same book, he refers to the treatise Ibn al-Haytham composed on
astronomy, called Fî Ìarakat al-iltifæf (On the Winding Movement).

In short, al-Baghdædî, who was a famous philosopher and physician, a
pupil of Ibn Næ’ilî, and a man we find in Mosul in the company of the
mathematician Kamæl al-Dîn ibn Yºnus, in Damascus, in Jerusalem, in Acre
(587/1190), in Egypt (where he met Maimonides), and who knew the
writings of philosophers, physicians and mathematicians, such as al-
Samaw’al (according to Ibn Abî UÒaybi‘a), al-Baghdædî sees in Ibn al-
Haytham only a mathematician who is ignorant in the matter of logic, that
is, in philosophy. Now, we know from Ibn Abî UÒaybi‘a that MuÌammad
ibn al-Haytham had made a summary of Porphyry’s Isagoge and Aristotle’s
Organon (his writings on logic), as well as his On the Soul, the Physics and

10 ‘Abd al-La†îf al-Baghdædî, Maqæla fî al-makæn, ms. Bursa, Çelebi 323, fols 23–
52 (text, French translation and commentary in R. Rashed, Les Mathématiques
infinitésimales, vol. IV).
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On the Heavens. We also know that he had been a physician, and had made
summaries of about thirty of the books by Galen.11

In view of such comments, if al-Îasan and MuÌammad were one and
the same, it seems impossible that al-Baghdædî, who was well informed
about the learned writings of the time, and specifically about those of al-
Îasan ibn al-Haytham, could have failed to mention the medical and
philosophical works by this author (supposedly one single author), or at least
have referred to the fact that he was a physician.

3. Finally, two titles are explicitly attributed to MuÌammad ibn al-
Haytham by al-Baghdædî (the bibliographer), in the supplement to his
bibliographical work Kashf al-Zunºn. We read:

Proofs of Prophecy (Fî ithbæt al-nubuwæt)12 – cited also by Ibn Abî
UÒaybi‘a, in the list of the works of MuÌammad ibn al-Haytham.

The Superiority of al-Ahwæz over Baghdad in Regard to Natural
Factors (Taf≈îl Ahwæz ‘alæ Baghdæd min jihat al-umºr al-†abî‘iyya)13 –
again cited by Ibn Abî UÒaybi‘a, in the list for MuÌammad.

So it seems probable that these two texts by MuÌammad were still in
circulation under his own name when al-Baghdædî wrote his Supplement.

Taken together with the evidence we put forward in the previous
volume, it seems to me that these further indications must be seem as
settling the argument. They show us that MuÌammad ibn al-Haytham still
had an existence as a historical figure at least a century after his death, and
that the error made by one biobibliographer was not shared by all the
philosophers and scholars of his time.

11 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. N. Ri≈æ, Beirut,
1965.

12 Ismæ‘îl al-Baghdædî, Hadiyyat al-‘Ærifîn, Istanbul, 1955, vol. 1, p. 23.
13 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, p. 311.
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301, 304–308, 314–326, 331, 333–
340, 350, 353–361, 363, 364, 369,
370, 373 n. 69, 375–377, 383, 402,
403, 405, 412–415, 417, 426–428,
433, 436, 439, 441, 456, 461, 477,
478, 483, 491, 514, 529, 529 n. 20,
530 n. 22, 533, 540, 571, 576, 587,
606, 615–617, 619, 622, 624, 629–
631, 641, 661, 671, 672, 674, 675,
679, 682, 687, 697–700, 712, 714,
720, 722, 722 n. 12

Aristotle: 28, 733
Asadæbæd: 576, 579

Baghdad: 508, 615
al-Baghdædî, ‘Abd al-La†îf: 733, 734
al-Baghdædî, Ismæ‘îl: 734

Banº Mºsæ: xvi, 4, 10, 10 n. 3, 23–25,
247–250, 264–267, 275, 287–289,
472, 475, 491, 504, 505, 551 n. 46,
647 n. 1, 713

Becker, O.: 1 n. 1, 412 n. 78
Bellosta, H.: 7 n. 12, 270 n. 6
al-Bîrºnî: 4, 305, 305 n. 31, 551 n. 48,

569, 569 n. 2, 571, 577 n. 16
Bruins, E. M.: 292–293 n. 6
al-Bºzjænî, Abº al-Wafæ’: 471, 577 n.

16

Clagett, M.: 411 n. 76
Conon of Samos: 1–3

al-Darwish AÌmad: 507
Debarnot, M.-Th.: 570 n. 2
Decorps-Foulquier, M.: 11 n. 6
Descartes: 354 n. 62
Dijksterhuis, E.J.: 412 n. 78
Diocles: 3, 4, 413
Dionysodorus: 413
Diophantus: 418
Dozy, R. P. A.: 428, 506, 507

Euclid: 4, 9, 29, 55, 248, 265, 299 n.
19, 341, 470, 470 n. 3, 498, 518 n.
8–9, 519–521, 528 n. 17, 530 n. 23,
536, 543, 543 n. 40, 550, 620, 629,
671, 672, 689, 720, 723 n. 14, 729,
730

Eutocius: 4, 10, 11, 22–24, 27, 31, 60,
61, 293, 412, 413, 416, 417, 672,
681, 712, 714

Fakhr al-Dîn al-Ræzî: 729–732
al-Færæbî: 469, 469 n. 1, 470, 508
al-Færisî, Kamæl al-Dîn: 471
Fermat, Pierre de: 6, 29
Field, J. V.: 538 n. 34, 540 n. 37, 551

n. 48, 555 n. 50

Galen: 734
al-Ghædî, Abº al-Îasan AÌmad ibn

MuÌammad ibn IsÌæq: 301, 303 n.
27, 343 n. 57, 605

Gherard of Cremona: 411 n. 76
Girard, Albert: 16
Golius: 428, 506, 507
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Graffin, F.: 290 n. 2

Halley, E.: 21, 26
Hamadhæn: 574–576, 579, 582, 627,

670
al-Hamadhænî, Sa‘d al-Dîn: 509
Îarræn: 24, 703
Heath, T. L.: 1 n. 1, 26, 26 n. 21, 297,

297 n. 17, 299, 299 n. 20, 412 n.
78, 550 n. 43

Heiberg, J. L.: 11, 11 n. 6, 27, 39 n.
41, 176 n. 6, 229 n. 51–53, 468 n.
1, 607 n. 1–3, 608 n. 4–5, 610 n. 9,
n. 11, 612 n. 12–13, 647 n. 1

Heron of Alexandria: 292, 292 n. 6,
472, 474, 630

Hill, D. R.: 551 n. 48
Hogendijk, J.P.: 37, 37 n. 39, 112 n.

52, 301 n. 24, 309 n. 38, 376 n. 70,
579 n. 21

al-Îubºbî, Abº ‘Alî: 294, 576, 577,
577 n. 16, 589, 591, 594

Hultsch, F.: 11 n. 6, 22 n. 10
Îunayn Îalabî: 572 n. 10
al-Îusayn MuÌammad ibn ‘Alî: 572,

574–576, 579, 580, 582
Huygens, Christiaan: 3, 3 n. 6
Hypatia: 10, 23

Ibn ‘Abd Allæh: see NaÒr
Ibn Abî Hilæl al-ÎimÒî, Hilæl: 24, 27
Ibn Abî Jarræda: 26, 33, 35, 36, 571
Ibn Abî UÒaybi‘a: 34, 422, 426, 426 n.

102, 472 n. 8, 509, 729, 732 n. 9,
733, 734, 734 n. 11, n. 13

Ibn ‘Adî, YaÌyæ: 576
Ibn ‘Alî, ‘Abd al-RaÌmæn: 572 n. 10
Ibn Amr Allæh ibn MuÌammad, ‘Alî:

572 n. 10
Ibn Barza: 470
Ibn Durayd al-Zabîdî: 305
Ibn Færis: 305
Ibn Fasænjus: 732 n. 9
Ibn al-FatÌ, Sinæn: 470, 498, 500, 501,

703, 704
Ibn al-Haytham, al-Îasan: xiii, et passim
Ibn al-Haytham, MuÌammad: 729–734
Ibn al-Îusayn, MuÌammad: 355, 583,

697
Ibn ‘Iræq, Abº NaÒr: 5, 291, 411, 413,

577 n. 16
Ibn al-Khawwæm al-Baghdædî: 504, 573
Ibn MaÌmºd ibn MuÌammad al-

Kunyænî: 428
Ibn ManÂur: 305

Ibn Mºsæ, AÌmad: 10, 24
Ibn Mºsæ, al-Îasan: 23, 247
Ibn Næ’ilî: 733
Ibn Næjiya: 470
Ibn Qurra: see Thæbit
Ibn Ri≈wæn: 733
Ibn al-∑abæÌ, al-Îasan: 470
Ibn Sahl, al-‘Alæ’: xvi, 7, 290, 301 n.

24, 302, 304, 307, 308, 313, 314,
316, 318, 319, 321, 326, 339, 344,
508, 571, 572, 630, 635, 676, 678,
680, 682, 683, 687, 688, 698

Ibn al-Sarî, Abº al-FutºÌ: 508, 530 n.
23

Ibn Sînæ: 469, 469 n. 2
Ibn Sinæn, Ibræhîm: 7, 248, 270, 270 n.

6, 471
Ibn Yºnus, Kamæl al-Dîn: 353, 355,

358–360, 364, 410, 583, 697, 733
Ibn Yºsuf, Sulaymæn: 572 n. 10
al-IÒfahænî: 25, 27
al-Isfizærî: 470
IsÌæq ibn Îunayn: 27, 634

Jolivet, J.: 469 n. 2
Jones, A.: 11 n. 6

al-Karajî: 470, 471, 504
al-Kæshî, YaÌyæ: 423
al-Khayyæm: 5, 6, 60, 305, 305 n. 31,

410, 411, 416, 418, 421, 429, 506,
508, 529 n. 19, 578 n. 19

al-Khæzin: 5, 35, 411, 413, 414, 572,
575, 578 n. 19

al-Khilæ†î, ‘Abd al-‘Azîz: 583
al-Khwærizmî: 470, 471, 703
al-Kindî: 470, 498
Knorr, W.: 412 n. 78
al-Kubnænî, Abº IsÌæq ibn ‘Abd Allæh:

573

al-Læhjænî, Ibn AÌmad al-Îusaynî
MuÌammad: 509

Lévy, T.: 33 n. 32
Lippert, J.: 25 n. 15, 426 n. 102
Loria, G.: 26

al-Maghribî, Ibn Abî al-Shukr: 25, 25 n.
20

al-Mæhænî: 5, 411, 413, 414, 722
Maimonides: 33, 35, 36, 733
al-Ma’mºn: 25
al-Mæristænî, Abº Bakr: 505
Maslama ibn AÌmad al-Andalusî: 575,

576
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Maurolico: 29
Menæchmus: 1, 681
Menelaus: 33, 671
Mimoune, R.: 469 n. 2
Mugler, C.: 28 n. 25, 412 n. 79, 417 n.

88, 712 n. 3

al-Nadîm: 10, 24, 24 n. 13, 26, 29,
293, 293 n. 7, 470, 703, 703 n. 1

al-Najæshî: 732 n. 9
NaÒr ibn ‘Abd Allæh: 362–368, 582,

689
al-Nayrîzî: 576
Nicholas (Nîqºlæws ibn Bu†rus): 507
Nicoteles of Cyrene: 2, 3
Nwyia, P.: 290 n. 2

Pappus: 4, 10–22, 26, 26 n. 22, 293
Peyrard, F.: 550 n. 43
Plato: 712
Porphyry: 733
Ptolemy: 248, 299 n. 19, 575
Pythagoras (theorem): 12, 14, 15, 21,

294

al-QabîÒî, Abº al-∑aqr: 470, 498, 500,
502, 503, 703, 707

Qæ≈î Zædeh: 269, 424, 425, 425 n. 100
al-Qif†î: 24, 25, 25 n. 15, 34, 422, 426,

426 n. 102, 472 n. 8, 703
al-Qºhî, Abº Sahl: xvi, 5, 7, 290, 296,

298, 301–304, 314, 316, 319–326,
333–339, 353, 360–364, 383, 403,
406, 407, 410, 414, 417, 441, 456,
506, 508, 571, 572, 574, 580, 606,
615–617, 622, 624, 639, 651, 674,
679, 680, 682, 683, 688, 714–727

al-Qºmæsî, ‘Abd Allæh ibn al-Îasan:
576

al-Qummî: 508
Qus†æ ibn Lºqæ: 290 n. 2, 293

Rashed, R.: 1 n. 2, 2 n. 3–4, 3 n. 6, 4
n. 7, 6 n. 8–10, 7 n. 11–13, 9 n. 1,
10 n. 3, 12 n. 7, 23 n. 11, 28 n. 26,
33 n. 32, 34 n. 33, 35 n. 34–35, 36
n. 36, 39 n. 41, 247 n. 1–2, 250 n.
3, 290 n. 3, 291 n. 5, 293 n. 8, 296
n. 14, 300 n. 22–23, 305 n. 31, 308
n. 36, 318 n. 44, 411 n. 75, n. 77,
413 n. 82, 414 n. 83–84, 416 n. 86,
418 n. 90, 421 n. 92–93, 422 n. 94,
423 n. 95–98, 428 n. 108, 429 n.
110, 469 n. 2, 470 n. 4, n. 6, 471 n.
7, 472 n. 8–10, 475 n. 11, 491 n.

12, 508 n. 21–23, 529 n. 19, 530 n.
23, 571 n. 5–8, 581 n. 27, 583 n.
28, 680 n. 5, 703 n. 2, 710 n. 1, 730
n. 4, 733 n. 10

Rayy: 661
Ri≈æ, N.: 426 n. 102, 734 n. 11
Rosenfeld, B.: 577

al-∑æbi’, Abº IsÌæq: 721
al-∑æbi’, MuÌsin Ibræhîm: 296
al-∑æghænî, Abº Îæmid: 290, 301, 302,

304, 314, 316, 321, 326–333, 340,
353, 364, 383, 571, 574, 582, 606,
615, 617, 622, 624, 661, 673 n. 2,
674, 682, 683, 688

al-Samaw’al: 733
Samir, Kh.: 290 n. 2
Samplonius, Y.: 581 n. 25
al-∑aqqæ, A.�Î: 730 n. 3
Schoy, C.: 294, 294 n. 10, 428, 577,

577 n. 17, 579, 579 n. 20
Serenus of Antinoë: 10, 23
Sesiano, J.: 430
Sezgin, F.: 428 n. 106, 577 n. 16
Shams al-Dîn: 508
al-Shannî, Abº ‘Abd Allæh: 294, 301–

303, 305–308, 313, 318, 319, 353–
355, 571, 576, 582, 591, 594, 671

Sharaf al-Dawla: 301, 333, 651
al-Shîræzî, al-Îusayn ibn ‘Abd al-Malik:

25, 25 n. 18, 27, 425
al-Shîræzî, Qu†b al-Dîn: 428
∑idqî, MuÒ†afæ: 293, 294, 297, 299,

300, 315–317, 369, 571, 576–583,
604

al-Sijzî, ‘Abd al-Jalîl: 290, 298, 300–
309, 312–314, 318, 341, 344, 346–
350, 355, 358 n. 64, 359, 359 n. 65,
362, 506, 508, 570 n. 4, 571, 573–
576, 577 n. 19, 579–582, 627, 629,
670, 676–678, 682, 698, 700

al-∑ºfî, Abº ‘Alî: 580, 581
al-Suhrawardî: 573
al-Sumaysæ†î: 575

al-Tabrîzî, ‘Abd al-Kæfî ‘Abd al-Majîd
‘Abd Allæh: 428

al-Tabrîzî, FatÌ Allæh: 428
Tajaddud, R.: 24 n. 13, 293 n. 7, 703

n .  1
Tannery, P.: 12
Tehrænî, J.: 573, 573 n. 12
Terziofilu, M.�N.: 9 n. 2, 36, 36 n. 37,

37
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Thæbit ibn Qurra: 24, 35, 247, 289,
290, 294–296, 411, 471, 571, 587,
681

Theodosius: 552, 554
Trasydoeus: 2
al-™ºsî, NaÒîr al-Dîn: 25, 27
al-™ºsî, Sharaf al-Dîn: 60, 61, 355, 410,

421 n. 92, 506, 508, 581

Ulugh Beg: 424

Vahabzadeh, B.: 6 n. 8, 291 n. 5, 300
n. 22, 305 n. 31, 411 n. 77, 414 n.
83–84, 416 n. 86, 418 n. 90, 421 n.
92–93, 428 n. 108, 508 n. 21, 529 n.
19

Vajda, G.: 572 n. 9
Van Ess, J.: 729 n. 1

Ver Eecke, P.: 1 n. 2, 2 n. 3–4, 11 n. 6,
22 n. 10, 26 n. 22, 229 n. 50, 470 n.
3

Viète: 410

Wantzel, P. (theorem): 410
Weselowskii, I. N.: 577 n. 18
Wiedemann, E.: 505, 505 n. 17
Witkam, J. J.: 507
Woepcke, F.: 429, 712 n. 2, 720, 722

n. 11
Wright, M. T.: 551 n. 48

al-Yazdî: 25

Zeuthen, H. G.: 26

SUBJECT INDEX

Abscissa: 52, 62, 63, 65, 95, 116, 120,
135, 136, 141, 144, 330, 331, 337,
349, 350, 382, 419 (see also equa-
tion)

Algebra: xvi, 5, 6, 111, 411, 414, 418,
422, 471

Aliquot part: 473, 486
Analysis and synthesis: 30–32, 38, 60,

118, 308, 319, 321, 323, 328, 330,
331, 335, 365, 367, 369, 376, 377

Angle
— acute: 77, 83, 88, 90, 100–103,

105, 107, 110–111, 163, 251, 252,
474, 489

— obtuse: 83, 88–90, 101–103, 105,
110–111, 251, 252, 474, 489

— of the ordinates: 82, 83, 90, 92,
335, 336, 375

— right: 75, 147, 150, 251–254, 256,
259, 261–265, 296 n. 12, 352, 484,
489, 490, 712, 713

— trihedral: 488, 718
Application
— of areas: 169, 720
— of mathematics and sciences: 470
— of volumes: 720
Approximate value
— of the measurement: 473
— of a ratio: 477, 483, 485
Approximation: 60, 299, 491
Arc
— auxiliary: 483

— of a circle/circular: 2 n. 5, 472, 473,
478, 483, 493, 538 n. 34, 540 n. 37,
551 n. 48

— of the parabola: 65, 66
— subtending the angle: 82–84, 87, 88,

254, 256, 262
Area
— of a circle: 477–480, 529 n. 19
— of a circular base: 490, 491
— of the great circle of the sphere: 491,

493
— plane: 473
— of plane figures with straight and

curved edges: 471
— of a polygon: 475, 479, 482
— of a rectangle: 473
— of a sector/segment of a circle: 478,

479, 483
— of solids: 486
— of a square: 478–482, 529 n. 20
— of surfaces: xvi, 473, 474, 486
— of triangles: 319, 328, 331, 358,

371, 373 n. 69, 473, 475, 479, 483,
577 n. 16; right-angled: 294, 473

Art of measurement: 470–472
Astrolabe: 502, 503
Asymptotes: 48–50, 70, 100, 107, 120,

169, 329, 335–337, 343, 344, 349,
350, 356–359, 366, 378, 383, 386,
387, 391, 392, 396, 400, 404, 415,
419, 710, 714 (see also property)
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Axis
— conjugate: 151
— of the ellipse: 17, 18, 40, 51, 61,

89, 107, 129, 135, 149, 157, 160
— of the hyperbola: 15, 16, 40, 43, 44,

48, 61, 69 n. 45, 117, 137, 164–
166, 407, 417

— orthogonal: 324, 345
— of the parabola: 12 n. 7, 38, 39, 42,

70, 77, 115–117, 161, 162, 323,
324, 343, 349, 359, 374, 377, 396,
397, 403, 404, 407, 710, 714

— principal (of the conic): 105
— of symmetry: 129
— transverse: 40, 45, 53, 66, 70, 72,

73, 79, 90, 118, 146, 158, 323, 324,
339, 366, 709

Base
— circular: 490, 491
— of a pyramid: 488
— of a solid: 487
Bisector: 335, 336, 341, 348, 380, 389
Bounding (segment, volume): 714

Chord: 39, 40, 83, 88, 169, 170, 261,
312, 314, 317, 321, 326, 341, 364,
475–479, 483–487

Circle: 1, 6, 39, 52, 72 n. 46, 73, 74,
82, 85, 89, 92, 97, 112–114, 115,
121–127, 148, 150, 152, 154, 161,
254–256, 261, 263, 290, 294, 296 n.
12, 299, 305, 306, 310, 311, 314–
318, 321, 325, 333, 339, 348, 352,
354, 365, 367, 368, 380, 382, 383,
387, 389, 393, 399, 400, 421, 472–
485, 490–492, 493, 551 n. 48

— auxiliary: 113, 157
Classification of sciences: 469
Compasses: 1, 311, 312, 483, 485,

491–493, 538 n. 34, 540 n. 37 (see
also construction)

— perfect: 7
Concave in opposite directions: 45, 70,

120
Condition
— for a solution to be possible: 45, 57,

59, 106, 107, 152, 155, 157, 161
— of solvability: 714
Cone: 472, 486, 490, 493, 550 n. 43–

45; right, oblique: 491
Conic section: 1–23, 28, 32, 36, 38, 40,

52, 60–62, 77, 80, 85, 90, 91, 94,
100, 105, 107, 113, 116, 118, 121,
143, 161, 247, 290, 297, 307, 339,

350, 354, 360, 364, 371, 374, 382,
383, 410–414, 417, 419, 569, 578 n.
19, 602 n. 6, 709

— auxiliary: 43, 53, 118, 161, 169
— central: 38, 120
— infinite: 124 n. 59, 143
— in the shape of a pine cone

(Òunºbarî): 34, 35
Construction
— auxiliary: 94, 100, 102
— geometrical: 1, 5, 8, 9, 32, 115,

289–291, 298, 309, 312 n. 40, 340,
411, 412, 416–418, 569

— mechanical: 411 n. 76, 712
— plane: 121, 169
— of solutions to problems: 60, 413
— with straightedge and compasses: 1,

32, 52, 115, 161, 299, 307, 311,
312, 341, 411

Continuity: 112 n. 52, 345, 416, 417
Convexity: 345, 417
Coordinate: 56, 57, 95, 120, 140, 155,

350, 417; axes: 108, 330, 336, 345,
348, 389, 394, 414, 417, 419; rec-
tangular: 382

Cube: 471, 718 (see also duplication)
Cubit: 472, 476, 478, 486, 494, 500,

509, 529 n. 18, 555 n. 50; unit: 473,
486

Curvature of the conic: 113
Curves: 1–3, 9, 52, 357, 365, 371 n.

68, 383, 417–419, 709
— convex: 346
— transcendental: 5, 411
Cycloid: 3 n. 6
Cylinder: 472, 486, 490, 491, 493, 550

n. 43
— oblique: 491, 550 n. 43
— right: 490, 491, 550 n. 43

Derivative: 58
Diagonal: 291, 298, 318, 320, 328,

329, 369, 371, 379, 383, 476, 478
Diameter: 28, 32, 40, 477, 478, 491
— conjugate: 15–18, 91, 92, 94, 105,

113, 147–149, 151, 153, 229 n. 50
— right: 229 n. 50
— transverse: 82, 100, 156, 169, 229

n. 50, 336, 337, 343, 356, 710
Diorism (discussion): 2, 3, 31, 38, 59–

62, 143, 157, 299, 715, 716
Direction, conjugate: 75, 90, 155
Distance: 77, 121, 123, 128, 498, 500,

503
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— between the centres and the radii:
389

— from the focus to the vertex: 7
— minimum: 126, 127
Division/range
— of Abº al-Jºd/Sijzî (D2): 302, 306,

308, 309, 312–314, 341, 344, 346,
348–351, 353–356, 358, 359, 577–
578 n. 19

— of Abº al-Jºd (D3): 314, 346, 350–
355, 362

— of Archimedes (D1): 291, 314–316,
321–324, 327, 331–336, 338, 339,
348–356, 358, 359, 363, 405, 412

— of Ibn al-Haytham (D4): 360, 363,
365

— of Ibn al-Haytham (D5): 360–362
— harmonic: 117, 121, 165, 168
— into pyramids: 486, 497
— similar: 18–21, 23, 257, 262, 267–

269, 310, 311, 331, 332, 369
— into triangles: 475, 476, 497
Duplication of the cube: 1–4, 570 n. 2

Edge: 718
Ellipse: 7, 16–18, 40, 42 n. 2, 43–45,

51–53, 60, 61, 64, 66, 67, 70, 77,
80, 82, 88–90, 92–95, 97, 100, 102,
104–107, 109, 111, 113, 116, 118,
120, 124 n. 59, 129–144, 146, 149,
150, 157, 158, 160, 709, 710

Envelope of the normals: 3 n. 6
Equality of areas: 297, 369, 371
Equation
— for the abscissae: 135, 136, 141,

144, 324, 330, 349, 367, 382, 389,
394, 400

— algebraic: 5, 411
— biquadratic: 121
— cubic: 9, 331, 408, 410, 411, 414,

578 n. 19, 716
— of the ellipse: 52, 95, 111, 132, 135,

141, 143
— of fifth degree: 6
— of first degree: 52
— of the hyperbola: 44, 53, 62, 64, 98,

140, 155, 324, 336, 339, 340, 345,
350, 366, 378, 386–388, 392, 397,
405–409

— of the parabola: 44, 62, 64, 65, 132,
135, 324, 340, 345, 350, 379, 398,
405–409, 422

— of second degree: 61
— of the tangent: 95, 98, 120
— of third degree: 5

Evolute: 3, 3 n. 6
Existence
— of an angle: 111
— of the minimum: 157
— of a point: 69, 77, 133, 138, 710; of

intersection: 3, 4, 31, 60, 87–89,
111, 120–122, 126, 127, 148–150,
154, 157, 346, 350, 358, 360, 715

— of roots: 55, 144, 383, 400
— of solutions and their number: 32,

38, 60, 113, 126, 146, 168, 417
— of a tangent: 94, 107, 115, 118
Experimental (method, means): 472, 493

Figure plane: 490, 492, 493
— auxiliary: 488
— with equal perimeters and equal

areas: 497
— three-dimensional: 492, 493
Foci (of the ellipse): 129, 135
Foot
— of the height: 474
— of the perpendicular: 494, 495, 577

n. 16, 709, 710

Generator: 490
Geometry: xvi, 1, 5, 31, 32, 36, 60,

410–413, 422, 470
— algebraic: xvi, 290
— Archimedean: xvi
— of Euclid: 4
— Greek: 1, 31, 410
— plane: 164, 497
— practical: 497

Height: 252, 265, 472–474, 493–498,
509

— of a cone or a solid body: 493
— of a cylinder: 490, 493
— of a mountain: 494, 501
— of the observer: 494, 509
— of a pyramid: 486, 488–490, 493
Heptagon (regular): 5, 118, 289–412,

476, 569–574
Heron’s formula: 472, 474
Hexagon: 299, 307, 310–312, 475
Homothety: 72 n. 46, 169, 311 n. 39,

376, 379, 389, 394, 399, 400, 485
Hyperbola: 1, 6, 7, 15, 16, 40, 42 n. 2,

43–45, 48–50, 53, 59–67, 69–74,
77, 79, 82, 88, 90–94, 97, 100,
104–107, 112, 113, 116–120, 124 n.
59, 130–132, 137–140, 143, 146,
150, 153, 158, 164, 165, 168–170,
302, 307, 320, 323, 329, 335, 336,
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340, 342–345, 348, 356, 358, 362,
363, 365, 366, 369, 370, 371 n. 68,
378, 382, 383, 386–389, 391, 392,
396, 403, 404, 407, 411, 413–416,
418, 419, 421, 709, 710, 714–716

— auxiliary: 61, 69 n. 45, 169
— conjugate: 112, 113
— equilateral: 3, 48–50, 59, 149, 160,

170, 319, 337, 339, 348, 350, 359,
362, 366, 407, 416 n. 87

— homothetic: 169
Hypotenuse: 147, 252, 265, 492

Intercalation: 2, 2 n. 5, 116
Intersection
— of circles: 394
— of conic sections: 1–7, 32, 43, 48,

49, 60–62, 75, 112, 113, 118, 121–
125, 134, 140, 143, 144, 161, 169,
313, 315, 329, 331, 348, 358, 359,
366, 367, 369, 370, 383, 389, 394,
397, 399, 406, 411, 413, 414, 417,
418, 421, 578 n. 19, 715, 716

Knowledge and action (‘ilm/‘amal):
469, 470

Latus rectum: 7, 12 n. 7, 14, 32, 40,
42–44, 48, 51, 61, 62, 66, 70, 78–
80, 82, 94, 97, 114–118, 129, 132,
135, 137, 140, 153, 157, 158, 160–
162, 167, 166, 169, 170, 229 n. 50,
320, 323, 335, 336, 340, 343, 344,
348–350, 356, 359, 366, 374, 375,
377, 396, 403, 404, 407, 408, 709,
714

Length: 40, 92, 114, 114 n. 53, 115,
121, 147–152, 157, 158, 162, 166 n.
68, 169, 312, 313, 472, 473, 477,
478, 487–500, 503, 709, 716

— auxiliary: 313
Limit (lower): 59
Limiting
— case: 40, 60, 61, 97, 100
— value: 143
Line
— homologous/in the same ratio: 42 n.

2, 116, 165, 166, 709–710
— movable: 712, 713
— of sight: 501, 557 n. 51

Magnitudes
— in continued proportion: 421
— measurable: 472
Maximum: 55, 136, 417, 716, 717

Mean (geometric): 152
Means (the two proportional —): 4,

289, 292, 712, 714
Measurement: xvi, 469–473
— of arcs of circles: 472, 473
— of areas (rectangle, triangle): 472,

473, 497
— of the diameter: 477–478
— of lines: 472, 473, 497
— of a magnitude: 472
— of straight lines: 472
— of volumes: 472
(see also area, volume)
Method of remainders: 55
Metrical relations: xvi, 15, 18, 21, 22
Minimum: 55, 57, 58, 153 n. 66, 155–

157
Mirrors, burning: 411

Neusis: 2 n. 5, 26, 116, 120, 164, 170,
297, 299, 300, 309, 309 n. 38, 312
n. 40, 411, 411 n. 76, 712

Normals: 3, 3 n. 6, 13

Octagon: 481
Optics: 423, 557 n. 51, 731, 732
Ordinate: 14, 39, 63–66, 76, 82, 83, 85,

90, 92, 94, 132–134, 138–140, 170,
335–340, 357, 414

Parabola: 1, 3, 6, 7, 12 n. 7, 14, 34, 38,
39, 42–45, 48–50, 60–66, 69, 70,
75, 77, 114–120, 124 n. 59, 130–
136, 143, 161, 162, 302, 307, 319,
320, 323, 324, 339–345, 348, 349,
354 n. 62, 358, 359, 363, 365, 369,
370, 371 n. 68, 374, 375, 377, 396,
398, 403, 404, 407, 408, 411, 413,
415–417, 419, 421, 422, 709, 710,
714–716

— auxiliary: 375, 376
Parallelepiped: 717, 718, 720
— rectangular: 486, 541 n. 38
— right and oblique: 550 n. 43
Parallelogram: 18, 21, 308, 318–321,

378, 390
Pencil of conics: 59–62, 113, 169, 364
Pentagon: 299, 475
— regular: 341
Perpendicular bisector: 122, 128, 129,

260, 341, 348, 477, 492
Plumb line: 494
Point
— collinear: 164, 680 n. 6
— concyclic: 317



752 SUBJECT INDEX

— conjugate harmonic: 133
— of contact: 21, 32, 45, 60, 75, 76,

78, 85, 90, 165, 311, 715
— fixed: 712
— of intersection: 1, 2, 4, 13, 60, 62,

66, 75, 76, 78, 83, 85, 87, 113, 115,
136, 144, 163, 168, 295–296 n. 12,
311, 320, 324, 329–331, 335–340,
343, 346, 348, 350, 357–360, 366,
367, 389, 394, 397, 407, 411, 713

— of observation: 500
Polygon: 299, 341, 476, 479, 482, 486,

488, 497
— convex: 472, 475
— regular: 299
Polyhedron: 472, 486, 497
Positions
— of axes and asymptotes: 411
— of the eye: 495, 498–503
Power of a point: 294
Prism (upright, oblique): 486
Problem
— of construction: 1, 30, 31, 289, 291,

297, 410
— geometrical: 32, 38, 60, 411, 417
— plane: 1, 27, 32, 113, 121
— quadratic: 60
— three-dimensional/solid/stereometric:

1, 3–6, 26, 32, 60, 113, 289, 292,
313, 410, 411, 418, 470, 497

Projection: xvi
— orthogonal: 41, 45, 70, 166, 330,

358, 369
— of a point: 45, 49, 70, 77, 118, 133,

134, 140, 163, 339, 340, 349, 350,
376, 378, 387, 389–392, 398 n. 73,
404

Property
— affine: 7
— of the asymptote to the hyperbola:

383
— of conic sections: 1, 7, 9, 22, 305;

local and asymptotic: 2, 32, 60
— of convexity, behaviour at infinity

and continuity: 417
— of diameters of a hyperbola and their

latera recta: 153, 153 n. 66
— of the division: 295 n. 12, 335
— of the hexagon: 312 n. 40
— metrical: 6, 7, 22
— of parallel lines: 517 n. 7
— of position and shape: xvi, 7
— projective: 7
— of the secant: 50, 185 n. 13
— of the subnormal, subtangent: 114

— of the tangent: 49, 51, 117, 165, 294
Proportion: 6, 93, 417, 421
Pyramid: 486–489, 493, 497, 549 n.

42, 550 n. 44

Quadrilateral: 372, 378, 475, 476
— convex: 527 n. 14–15
Quadrivium: 469

Radius vector: 72
Range: see Division
Ratio
— between areas: 319
— equal/unequal: 20, 21
— of magnitudes: 473, 497
— rational/irrational: 485, 539 n. 36
Rectangle: 13, 14, 18, 328, 372, 472,

473, 478
Reductio ad absurdum (argument): 1,

710
Rod: 494, 495, 498–501
Ruler: 297, 488 (see also construction)
— movable: 298

Sagitta: 478, 483
Science
— and art: 469, 470
— of calculation (Ìisæb): 471
— of ingenious procedures (‘ilm al-

Ìiyal): 470
Segment: see line, proportion
Sight: see line
Sines of the measured angles: 502
Slope
— of the diameter: 105
— of the tangent: 63, 120
Solid: xvi, 471, 486, 487, 491, 718–

720
Sphere: 417, 471, 472, 486, 491–493
Square: 299, 319, 327–331, 340, 343,

344, 348, 356, 364, 371, 387, 391,
394, 478–482, 714, 717

Square (unit of area): 472–473
Stepping: 538 n. 34, 540 n. 37, 551 n.

48, 562 n. 55
Stereometry: 497 (see also problem)
Subnormal, subtangent: 114
Sundials: 471
Symptoma: 336, 339, 364, 417

Tablet (Babylonian): 292, 292 n. 6
Tangent
— to a circle: 294, 305, 311, 478, 481,

482
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— to a conic: 14, 21, 32, 38–40, 43,
45, 48–51, 53, 60–66, 69, 71, 72,
74–85, 88–95, 97, 100, 105–107,
110, 114–118, 134, 136, 155, 161,
163, 165, 166, 169, 170, 335, 336,
397, 715

Theorem
—�of Pythagoras: 12, 14, 15, 21, 294
— of Wantzel: 410
Theory
— algebraic: 60
— of algebraic equations of degree ≤ 3:

290
— of conics: xvi, 1, 9, 21, 22, 29, 247,

411
— of numbers: 410, 418, 422
Transformations (point-to-point): xvi
Translation (affine): 311 n. 39
— of the unknown (method): 61
Triangle
— T1 (1, 5, 1): 290, 291, 314–317,

323, 326, 333–334, 338, 343, 363,
365, 384, 394, 399–401, 407

— T2 (1, 2, 4): 290, 291, 314–317,
321–327, 331, 332, 334, 335, 339,
343, 360, 363, 380, 383, 384, 400–
403, 405

— T3 (1, 3, 3): 290, 291, 303, 314,
317, 335 n. 56, 341, 343, 346, 349–
351, 361–365, 367, 368, 370, 383,
385, 386, 389, 400

— T4 (3, 2, 2): 291, 314–317, 334,
362, 363, 384, 389

— congruent: 260, 296 n. 12, 329, 383
— curvilinear: 481
— equiangular: 332
— equilateral: 292 n. 6

— isosceles: 322, 333, 338, 347–350,
365, 368, 385, 388, 390, 398; right-
angled: 374, 375; similar: 327, 341,
342, 349, 352, 368

— right-angled: 39, 114, 147, 252,
265, 294, 295 n. 12, 473, 490, 492,
495, 501, 502, 712, 713

— similar: 39, 48, 73, 74, 76, 77, 82,
83, 85, 91, 114, 121, 123, 170, 248,
249, 252–254, 256, 259–269, 295–
296 n. 12, 298, 317, 322, 325–334,
338, 339, 343, 347, 348, 357, 367,
368, 373 n. 69, 381, 385, 388, 390,
393, 394, 395, 397, 398, 399, 403,
476, 487, 495, 509, 712, 713

Trigonometric table: 503
Triplets of natural numbers: 384
Trisection of an angle: 4, 26, 170, 289,

292, 293, 362, 389, 394, 410, 570
n. 2

Unit
— of height: 490, 491
— of length: 472, 473, 486, 529 n. 19
— of measurement: 472, 494, 497
— for volumes: 473, 486, 490

Value (see also approximate)
— fixed numerical: 499

Volume
— of the cylinder and cone: 490, 491
— of the parallelepiped: 486, 717, 720
— of the polyhedron: 486
— of the prism: 486
— of the pyramid: 486, 518
— of solids: xvi, 471, 491, 718
— of the sphere: 491–493

INDEX OF WORKS

AAAAbbbbºººº    aaaallll----JJJJººººdddd
Essay (968–969): 302, 303, 306, 308,

341, 342, 610, 621–622
al-Handasiyyæt (Geometrical Collec-

tions): 680, 681
Kitæb ‘amal al-musabba‘ fî al-dæ’ira;

arsalahu ilæ Abî al-Îasan ibn
MuÌammad ibn IsÌæq al-Ghædî (On
the Construction of the Heptagon in
the Circle): 303, 303 n. 27, 304, 304
n. 29, 343, 349, 578, 605–613

Risæla ilæ Abî MuÌammad ‘Abd Allæh
ibn ‘Alî al-Îæsib fî †arîqay Abî Sahl
al-Qºhî wa-shaykhihi Abî Îæmid al-
∑æghænî (On the Account of the Two
Methods of al -Qºhî  and of a l -
∑æghænî): 307, 333, 351, 353, 575,
578, 615–627; Abridged version:
579, 580

Anonymous
On the Division of the Straight Line:

711–713
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Tarkîb li-taÌlîl muqaddimat al-mu-
sabba‘ al-mutasæwî al-a≈læ‘ fî al-
dæ’ira (Synthesis for the Analysis of
the Lemma on the Regular Hepta-
gon): 310, 350, 369–370, 383, 583,
693–695

Apollonius
Conics: xvi, 9–12, 21–35, 113, 173,

247, 248, 275, 288, 292, 411, 425,
507, 699, 723
I: 630
I (preamb.): 10, 27, 173
I. Def. 3: 229 n. 50
I.11: 723 n. 15
I.12: 43
I.12 (= I.11 Heiberg): 467–468
I.14 (= I.11 Heiberg): 608, 612
I.17: 35, 190
I.19: 35
I.19 (= I.20 Heiberg): 608
I.20: 35, 435
I.20 (=I.21 Heiberg): 647
I.21: 187
I.27: 238
I.31 (= I.30 Heiberg): 329 n. 53,
619, 666, 667
I.32: 177
I.33: 236, 236 n. 58
I.35: 14, 39, 175, 207, 236 n. 58
I.36: 113, 187
I.37: 41, 67, 78, 165, 166, 177, 178
n. 10, 198, 202, 240, 241
I.46: 236, 236 n. 57
I.52: 377, 436, 466
I.56 (= I.52 Heiberg): 607, 610
I.58 (= I.54 Heiberg): 607, 610
II.1: 607, 611
II.4: 378, 437, 466, 634, 693
II.6 (= II.8 Heiberg): 329 n. 52, 619,
666 n. 6
II.7 (= II.11 Heiberg): 329 n. 51,
330, 619, 665–667
II.8: 710
II.8 (= II.12 Heiberg): 191–192,
607, 612
II.12: 438, 467, 694, 724 n. 16
II.13: 243, 358, 699 n. 6
II.14: 383, 437, 467
II.29–30: 90, 206
II.44–53: 30, 31
II.51 (= II.49 Heiberg): 115, 174
n. 2, 208
II.52–53: 174 n. 2

II.56 (= II.50 Heiberg): 39, 77, 100,
173 n. 1, 176
II.57, 59: 91, 202
III.17: 113
III.23: 113
III.37: 165, 240
III.52: 129, 130, 219, 220
IV: 1
V: 3, 4, 60
VII: 10, 21, 35, 709
VII (preamb.): 28, 174
VII.1: 236
VII.2: 42, 42 n. 2, 67, 116 n. 55,
165, 167, 187, 240, 241, 709, 710
VII.3: 42, 42 n. 2, 116 n. 55, 710
VII.5: 12–15, 21
VII.6: 229 n. 50
VII.12: 149, 232, 235
VII.13: 15, 16, 21, 147, 229, 232–
233, 235
VII.21: 147, 159, 234
VII.22: 147, 159, 231
VII.23: 149, 231
VII.24: 16–18
VII.25: 15, 16, 21
VII.27: 16–18, 21
VII.31: 18, 21
VII.40: 153 n. 66, 155, 157
VII.48: 35
VIII: 10–37, 173–175

Plane Loci: 12, 29

Archimedes
On Centres of Gravity: 651
The Measurement of a circle: 477,

483, 533
The Sphere and the Cylinder:

Postulat 4: 529 n. 20, 530 n. 22
II.4: 3, 4, 31, 291–293, 299, 412,
414, 461, 651, 672, 714, 722

On the Spiral: 2

[Archimedes]
Kitæb ‘amal al-dæ’ira al-maqsºma bi-

sab‘at aqsæm mutasæwiya – Tarja-
mat Thæbit (Book on the Construc-
tion of the Circle Divided into
Seven Equal Parts – Translated by
Thæbit): 293–300, 316, 364, 373, n.
69, 571, 576, 587–604

aaaallll----BBBBaaaagggghhhhddddææææddddîîîî,,,,    ‘‘‘‘AAAAbbbbdddd    aaaallll----LLLLaaaa††††îîîîffff
Fî al-makæn (On Place): 733

11.7 (= 11.11 Heiberg): 191 -192,
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BBBBaaaannnnºººº    MMMMººººssssææææ
Kitæb ma‘rifat misæÌat al-ashkæl al-

basî†a wa-al-kuriyya (On the Know-
ledge of the Measurement of Plane
and Spherical Figures): 551 n. 46

Muqaddamæt kitæb al-Makhrº†æt (Lem-
mas for Apollonius’ Conics): 10, 10
n. 3, 12, 247

aaaallll----BBBBîîîîrrrrººººnnnnîîîî
Kitæb maqælîd ‘ilm al-hay’a: 569–570

n.�2
al-Qanºn al-Mas‘ºdî: 305 n. 31

DDDDeeeessssccccaaaarrrrtttteeeessss
La Géométrie, III: 354 n. 62

Euclid
Data, 79: 265
Elements: 9, 11 n. 6, 299 n. 19, 620,

626, 629, 675, 683
I.29: 517 n. 7
I.34: 518 n. 8
I.36: 518 n. 9
I.37: 473, 518 n. 9
I.47: 519, 519 n. 10
II.12: 520
II.13: 521
III.1: 536
III.35: 536, 536 n. 28
V. Def. 1–3, 7, 9: 473
VI: 720
VI.2: 528, 528 n. 17
VI.3: 695
VI.31: 483
VI.33: 536
VII: 55
X.1: 33, 480, 482, 530 n. 23
XI.31: 550 n. 43
XI.32: 486
XII.7: 486, 543, 543 n. 40
XII.10: 550, 550 n. 45
XII.10–15: 550, 550 n. 43
XII.14: 491

Optics: 470, 470 n. 3, 498
Porisms: 29

Eutocius
Commentary on The Sphere and the

Cylinder: 31, 60, 413, 672, 712 n. 3,
714

FFFFaaaakkkkhhhhrrrr    aaaallll----DDDDîîîînnnn    aaaallll----RRRRææææzzzzîîîî
al-Ma†ælib al-‘æliyya (Higher Re-

searches): 730, 730 n. 3, n. 6, 731
al-MulakhkhaÒ: 729, 730 n. 2, 731
al-Tafsîr al-kabîr (Great Commentary):

731, 732

aaaallll----FFFFæææærrrrææææbbbbîîîî
Mas’ala dhakarahæ al-Færæbî fî al-

maqæla al-ºla min al-fann al-awwal
fî al-mºsîqî: 508

Fermat
Dissertatio Tripartita: 6

IIIIbbbbnnnn    AAAAbbbbîîîî    JJJJaaaarrrrrrrrææææddddaaaa
Commentary on Sphærica: 33
Redaction of the Sections of the Cylin-

der and its Lateral Surface by
Thæbit: 571

IIIIbbbbnnnn    aaaallll----FFFFaaaattttÌÌÌÌ,,,,    SSSSiiiinnnnæææænnnn
On the Calculation of Cubes: 703, 703

n. 2
Commentary on A l g e b r a  of al-

Khwærizmî: 703
Al-MisæÌæt al-manæÂiriyya (Optical

Mensuration): 470, 501, 703–706

Ibn al-Haytham, aaaallll----ÎÎÎÎaaaassssaaaannnn
Fî ‘amal al-binkæm (On the Construc-

tion of the Waterclock): 423
Fî ‘amal al-musabba‘ fî al-dæ’ira (On

the Construction of the Heptagon in
the Circle): 5, 289, 291, 360, 364,
383, 422–426, 441–459

Fî ‘amal al-qu†º‘ (On the Construction
of Conic Sections): 7, 34

Fî anna al-kura awsa‘ al-ashkæl al-
mujassama (On the Sphere which is
the Largest of all the Solid Figures
having Equal Perimeters): 497

Fî al-ashkæl al-hilæliyya (Maqæla
mus†aqÒæt) (Exhaustive Treatise on
Lunes): 423

Fî birkær al-qu†º‘ (On the Compasses
for Conic Sections): 7

Fî Ìall shukºk fî Kitæb al-Majis†î
(Critique of the Almagest): 299 n. 19

Fî Ìall shukºk Kitæb Uqlîdis fî al-UÒºl
wa-sharÌ ma‘ænihi (Resolution of
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Doubts on Euclid’s Elements): 299 n.
19, 530 n. 23, 729, 730

Fî Ìarakat al-iltifæf (On the Winding
Movement): 733

Fî istikhræj ‘amidat al-jibæl (On the De-
termination of the Height of Moun-
tains): 471, 497, 499, 509, 567–568

Fî istikhræj arba‘a khu†º† (On the De-
termination of Four Straight Lines):
6

Fî istikhræj jamî‘ al-qu†º‘ bi-†arîq al-æla
(On the Determination of all the
Conic Sections by Means of an Ins-
trument): 7

Fî istikhræj al-qu†b ‘alæ ghæyat al-taÌqîq
(On the Determination of the
Height of the Pole with the Grea-
test Precision): 508

Fî kayfiyyat al-aÂlæl (On the Formation
of Shadows): 423

Fî khawæÒÒ al-qu†º‘ (On the Properties
of Conic Sections): 6, 34

Fî khu†º† al-sæ‘æt (On the Hour Lines):
423

Fî al-kura al-muÌriqa (On the Burning
Sphere): 423

Fî al-makæn (On Place): 729, 730, 733
Fî al-ma‘lºmæt (The Knowns): 34, 38,

60, 113
Fî al-manæÂir (Optics): 34, 557, 729,

731
Fî al-maræyæ al-muÌriqa bi-al-qu†º‘ (On

the Parabolic Burning Mirrors): 7, 9
Fî ma‘rifat irtifæ‘ al-ashkæl al-qæ’ima

wa-‘amidat al-jibæl wa-irtifæ‘ al-
ghuyºm (On Knowing the Height of
Upright Objects�…): 470, 497, 506–
509, 565–566

Fî mas’ala ‘adadiyya mujassama (On a
Solid Numerical Problem): 6, 429,
430, 465–468

Fî misæÌat al-kura (On the Measure-
ment of the Sphere): 423, 424, 491,
491 n. 12, 551

Fî misæÌat al-mujassam al-mukæfi’ (On
the Measurement of the Parabo-
loid): 9

Fî muqaddimat ≈il‘ al-musabba‘ (On
the Lemma for the Side of the Hep-
tagon): 5, 291, 358, 360, 370, 376,
426, 427, 433–440

Fî qismat al-kha†† alladhî ista‘maluhu
Arshimîdis (On the Division of the
Line Used by Archimedes): 5, 291,
428–429, 461–463, 712

Fî qismat al-miqdarayn al-mukhtalifayn
(On the Division of Two Different
Magnitudes): 730

Fî samt al-qibla (On the Direction of the
Qibla): 425 n. 100

Fî shakl Banî Mºsæ (On a Proposition
of the Banº Mºsæ): 247, 248, 269,
275–288, 423, 504

Fî al-taÌlîl wa-al-tarkîb (On the Analy-
sis and Synthesis): 34, 214 n. 43

Fî tamæm kitæb al-Makhrº†æt (On the
Completion of the Work on Conics):
6, 27–35, 38, 171–244, 709, 710

Fî tanbîh ‘alæ mawæ≈i‘ al-ghala† fî kay-
fiyyat al-raÒd (On Errors in the Me-
thod of Making Observations): 729

Fî tarbî‘ al-dæ’ira (On the Quadrature
of the circle): 534 n. 27

Fî uÒºl al-misæÌa (On the Principles of
Measurement): 471, 472, 503–505,
513–564

IIIIbbbbnnnn    aaaallll----HHHHaaaayyyytttthhhhaaaammmm,,,,    MMMMuuuuÌÌÌÌaaaammmmmmmmaaaadddd
Fî al-‘ælam min jihat mabda’ihi wa-

†abî‘atihi wa-kamælihi (On the Uni-
verse Regarding its Beginning, its
Nature and its Perfection): 732

Fî ithbæt al-nubuwæt (Proofs of Pro-
phecy): 734

Summaries of Porphyry’s Isagoge and
Aristotle’s Organon, On the Soul,
Physics and On the Heavens: 733

Taf≈îl Ahwæz ‘alæ Baghdæd (The Su-
periority of al-Ahwæz o v e r
Bagdhad): 734

IIIIbbbbnnnn    ‘‘‘‘IIIIrrrrææææqqqq,,,,    AAAAbbbbºººº    NNNNaaaaÒÒÒÒrrrr    MMMMaaaannnnÒÒÒÒººººrrrr
Risæla fî ma‘rifat al-qusiy al-falakiyya:

577 n. 16

IIIIbbbbnnnn    aaaallll----KKKKhhhhaaaawwwwwwwwææææmmmm    aaaallll----BBBBaaaagggghhhhddddææææddddîîîî
al-Fawæ’id al-bahæ’iyya: 504, 573

Ibn Sahl
Proof that the Celestial Sphere is not

of Extreme Transparency: 572 n. 11



INDEX OF WORKS 757

IIIIbbbbnnnn    aaaallll----SSSSaaaarrrrîîîî
Fî î≈æÌ ghalat Ibn al-Haytham: 530 n.

23

IIIIbbbbnnnn    SSSSiiiinnnnæææænnnn,,,,    IIIIbbbbrrrrææææhhhhîîîîmmmm
Fî rasm al-qu†º‘ al-thalætha (On Draw-

ing the Three Conic Sections): 7, 270
n. 6

IIIIbbbbnnnn    YYYYººººnnnnuuuussss
Risæla ilæ MuÌammad ibn al-Îusayn fî

al-burhæn ‘alæ îjæd al-muqaddima
allatî ahmalahæ Arshimîdis (On the
Proof for the Lemma Neglected by
Archimedes): 355, 355 n. 63, 358,
583, 697–701; Abridged version: 584

aaaallll----KKKKaaaarrrraaaajjjjîîîî
al-Îisæb: 504

aaaallll----KKKKhhhhaaaayyyyyyyyææææmmmm
al-Jabr wa-al-muqæbala (Algebra): 6, 6

n. 8, 305 n. 31, 414, 414 n. 83, 415,
415 n. 86–87, 418, 418 n. 90, 429,
508, 529 n. 19

Fî qismat rub‘ al-dæ’ira (On the Divi-
sion of a Quadrant of a Circle): 414
n. 84

aaaallll----KKKKhhhhææææzzzziiiinnnn
Commentary on the First Book of the

Almagest: 575
The Sphericity of the Earth: 572

aaaallll----KKKKiiiinnnnddddîîîî
On the Correction of Errors: 470 n. 4

Maimonides
Îawæshin ‘alæ ba‘≈ askhæl Kitæb al-

Makhrº†æt (Glosses on Some Propo-
sitions of the Conics): 33, 35, 36,
36 n. 36

aaaallll----MMMMæææærrrriiiissssttttæææænnnnîîîî,,,,    AAAAbbbbºººº    BBBBaaaakkkkrrrr
Book on Measurement: 505

MMMMaaaassssllllaaaammmmaaaa    iiiibbbbnnnn    AAAAÌÌÌÌmmmmaaaadddd    aaaallll----AAAAnnnnddddaaaalllluuuussssîîîî
Glosses on the Planisphere of

Ptolemy: 575, 576

Menelaus
Sphærica: 33

aaaallll----NNNNaaaajjjjææææsssshhhhîîîî
Rijæl: 732 n. 9

NNNNaaaaÒÒÒÒrrrr    ibbbbnnnn    ‘‘‘‘AAAAbbbbdddd    AAAAllllllllææææhhhh
Fî istikhræj watar al-musabba‘ (On the
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