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IBN AL-HAYTHAM AND

ANALYTICAL MATHEMATICS

This volume provides a unique primary source on the history and philosophy of
mathematics and the exact sciences in the medieval Arab world. The second of
five comprehensive volumes, this book offers a detailed exploration of Arabic
mathematics in the eleventh century as embodied in the legacy of the celebrated
polymath al-Hasan ibn al-Haytham.

Extensive analyses and annotations from the eminent scholar, Roshdi Rashed,
support a number of key Arabic texts from Ibn al-Haytham’s treatises in infinitesi-
mal mathematics, translated here into English for the first time. Rashed shows how
Ibn al-Haytham’s works demonstrate a remarkable mathematical competence in
mathematical subjects like the quadrature of the circle and of lunes, the calcu-
lation of the volumes of paraboloids, the problem of isoperimetric plane figures
and solid figures with equal surface areas, along with the extraction of square and
cubic roots, etc.

The present text is complemented by the first volume of A History of Arabic
Sciences and Mathematics, which focused on founding figures and commentators
in the ninth- and tenth-century Archimedean–Apollonian mathematical ‘School
of Baghdad’. This constellation of works illustrates the historical and epistemo-
logical development of ‘infinitesimal mathematics’ as it became clearly articu-
lated in the oeuvre of Ibn al-Haytham.

Contributing to a more informed and balanced understanding of the internal
currents of the history of mathematics and the exact sciences in Islam, and of its
adaptive interpretation and assimilation in the European context, this fundamental
text will appeal to historians of ideas, epistemologists and mathematicians at the
most advanced levels of research.

Roshdi Rashed is one of the most eminent authorities on Arabic mathematics
and the exact sciences. A historian and philosopher of mathematics and science
and a highly celebrated epistemologist, he is currently Emeritus Research Director
(distinguished class) at the Centre National de la Recherche Scientifique (CNRS)
in Paris, and is the former Director of the Centre for History of Arabic and Medieval
Science and Philosophy at the University of Paris (Denis Diderot, Paris VII). He
also holds an Honorary Professorship at the University of Tokyo and an Emeritus
Professorship at the University of Mansourah in Egypt.
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David James



16. GERMAN ORIENTALISM
The study of the Middle East and Islam from 1800 to 1945

Ursula Wokoeck
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FOREWORD

This book is a translation of Les Mathématiques infinitésimales du IXe

au XIe siècle, vol. II: Ibn al-Haytham. The French version, published in
London in 1993, also included critical editions of the Arabic texts of all the
writings by Ibn al-Haytham that were translated into French and were the
subject of analysis and commentary in the volume.

The commentary has been translated by Ms Susan Glynn. Ibn al-
Haytham’s texts have been translated by Roger Wareham, from the French
translation, and Aline Auger, CNRS, and I have revised the translation
using the original Arabic. In the course of this revision, we benefited from
the help of Dr N. El-Bizri, to whom I wish to express my thanks. I also
express my deep thankfulness to Mr Joe Whiting, to Ms Anna Calander
and to the proofreader at Routledge. Mme Aline Auger prepared the
camera-ready text and compiled the indexes. I take this occasion to offer
her my thanks.

      Roshdi Rashed
Bourg-la-Reine, June 2012





PREFACE

It falls to the lot of very few thinkers to be counted among that elite
group who have succeeded in perfecting a scientific tradition by recasting
its very meaning. Each follows their own road when setting out on this
adventure, but all ultimately lead to the new idea that is slowly maturing
among the old, and each forges the most appropriate tools in order to
advance that idea. While the verb ‘to perfect’ in this sense certainly
involves a search through the past to reveal the many potentialities lying
there, it also implies the profound thought processes needed to identify new
possibilities, and to build the tools to realize them. A scientific tradition
can only be accomplished in the wake of victorious science, and through
the work of researchers who gain strength on a daily basis from their
illustrious forebears. Ibn al-Haytham is an outstanding example of this
class and, like those who emulated him, he was unfailingly inventive in the
mathematical sciences of his time. His work ranged widely, from his
reform of optics, and physics in general, his criticism of the Ptolemaic
model in astronomy and the basis he laid down for future research, to his
work in the various branches of mathematics, especially infinitesimal
mathematics in which finite division is used in the pursuit of infinite
refinement. If we have done no more, it is this that we have sought to
demonstrate in this volume.

In the first volume of this series, we examined the early research in this
field from the first half of the ninth century through to the end of the tenth.
Each of the edited1 and translated texts, and the commentaries that
accompany them, are important mileposts in the development and
transformation of Archimedean research in the years before Ibn al-
Haytham. The road is a long one, and in our journey along it we have met
the Banº Mºsæ, Thæbit ibn Qurra, his grandson Ibræhîm ibn Sinæn, al-
Khæzin, Ibn Sahl and al-Qºhî. These names, and the renown in which they
are held, confirm the pre-eminent position enjoyed by the Archimedeans
for over a century and a half. The work of these mathematicians was not
confined to infinitesimal mathematics; they also developed research into
geometrical transformations and projections. This was the inheritance that

1 The princeps edition of all these treatises, with their translation into French, have
been published in Les Mathématiques infinitésimales du IXe au XIe siècle. Vol. II: Ibn
al-Haytham, London, al-Furqæn Islamic Heritage Foundation, 1993.



xiv PREFACE

came down to Ibn al-Haytham, and it was this rich and living tradition that
he worked to renew.

This volume is intended to supply a reconstitution of this historical
fact, and it is therefore entirely dedicated to the works of Ibn al-Haytham
on infinitesimal mathematics. It was he, as we shall see, who radically
overhauled the study of lunes, making him a worthy successor to
Hippocrates of Chios, but one who was infinitely closer to Euler. It was he
who developed the ancient methods of integration, taking them further in
the infinitesimal direction, and achieving results that were later
rediscovered by Kepler and Cavalieri. And it was he who truly founded the
study of solid angles as part of his work on isoperimetrics and isepiphanics,
combining projections with infinitesimal determinations for the first time,
to my knowledge. All these points will be developed fully in this volume
describing the history of this work. Here, we offer the reader the translation
of eight of the nine treatises in this field that have survived to the present
day, together with their detailed analyses. The texts and their commentaries
are preceded by an introduction, in which the acts and writings of Ibn al-
Haytham are treated as rigorously as possible with the aim of dispelling a
possible confusion of which we consider him to have been the victim. This
volume, the second in this series, may also be considered to be the first
volume of the mathematical works of Ibn al-Haytham and of his
predecessors and contemporaries.

Roshdi Rashed
Bourg-la-Reine, October 1992



INTRODUCTION

IBN AL-HAYTHAM AND HIS WORKS ON INFINITESIMAL
MATHEMATICS

1. IBN AL-HAYTHAM: FROM BASRA TO CAIRO

Arab mathematicians who are as famous as Ibn al-Haytham can be
counted on the fingers of one hand. This mathematician who was also a
physicist, rapidly gained a celebrated reputation in the world for his work on
optics, astronomy and mathematics, which appeared first in Arabic, both in
the East and the West, then in Latin under the familiar name of Alhazen
(from his first name al-Îasan), as well as in Hebrew and Italian.

But such fame, though justified by the importance of his contributions
and his scientific reforms, contrasts markedly with the all too obvious lack of
information we have on the man himself, on his mentors and on his own
scientific milieu. This universally recognized scientist, who, even in the
twelfth century, was honoured with the evocative title of ‘Ptolemy the
Second’, was to be further shrouded in the mists of legend by the sheer
weight of his work. In fact, our sources are reduced to stories told by
eleventh- and twelfth-century biobibliographers, wherein legend becomes
confused with historical accounts, stories which modern biobibliographers
still reproduce today in their entirety or in part.1 And yet even the briefest

1 There is an abundance of biographical and bibliographical material on Ibn al-
Haytham, which in the main follows the accounts of Ibn Abî UÒaybi‘a. Here are some
examples:
H. Suter, Die Mathematiker und Astronomen der Araber und ihre Werke, Leipzig,

1900; Johnson Reprint, New York, 1972, pp. 91–5.
C. Brockelmann, Geschichte der arabischen Literatur, 2nd ed., I, Leiden, 1943,

pp. 617–19; 1st ed., pp. 469–70; Suppl. I, Leiden, 1937, pp. 851–4; Suppl. III,
Leiden, 1942, p. 1240.

F. Sezgin, Geschichte des arabischen Schrifttums, V, Leiden, 1974, pp. 358–74. Cf.
also vol. VI, Leiden, 1978, pp. 251–61.

G. Nebbia, ‘Ibn al-Haytham, nel millesimo anniversario della nascita’, Physis IX, 2,
1967, pp. 165–214.



2 INTRODUCTION

of glances would reveal the contradictions contained in these narratives and
highlight the uncertainties which surround Ibn al-Haytham, his life, some of
his writings and even his very name. But then contradictions and
uncertainties form an inevitable part of the biobibliographies of thinkers and
philosophers.

It is well known that historical disciplines have played an important role
in Islamic civilization; there was in this classical era an unprecedented
growth in annals and chronicles, bibliographical dictionaries of jurists,
grammarians and scholars, etc. The latter sources listed authors, giving both
biographical notes and bibliographies, sometimes accompanied by accounts
given by contemporaries and successors, in order to prove the level of
importance of the works. However, in sharp contrast to their professional
colleagues whom they studied, these Islamic biobibliographers were not
always rigorous in their application of the critical method; and when it came
to factual evidence, they were prone to use instead contradictory
romanticized and picturesque stories, as a means of attracting attention to
their own works. They were keen to create a portrait of the ideal man of the
day; a tolerant and objective scholar who had devoted his entire life to the
quest for the truth, but whose learning would not lead him to deny religious
Revelation. In short, these flights of fancy are a trademark of these
biobibliographies and it should be borne in mind that such sources require a
meticulous critical study.

The case of Ibn al-Haytham offers a prime example of such
biobibliographic practice: the temptation to use the imagination was all the
greater as he was not only a distinguished scholar, but also a subject under
the Caliph al-Îækim, a character who was, to say the very least, unusual.
Described by some as a megalomaniac, unpredictable, excitable and violent,
quite simply idolized by others, this caliph could not have failed to ignite the
romantic imagination of chroniclers and historians. Just one meeting
between the two, the scholar and the caliph, would have been enough to

A. Sabra: the article concerning Ibn al-Haytham in Dictionary of Scientific Biography,
ed. C. Gillispie, vol. VI, New York, 1972, pp. 204–8; The Optics of Ibn al-
Haytham, Books I–III, On Direct Vision, 2 vols, London, 1989, vol. II, pp.
XIX–XXXIV.
To these must be added the studies of:

E. Wiedemann, ‘Ibn al-HaiÚam, ein arabischer Gelehrter’, Festschrift J. Rosenthal ...
gewidmet, Leipzig, 1906, pp. 149–78.

M. NaÂîf, Al-Îasan ibn al-Haytham, buÌºthuhu wa-kushºfuhu al-baÒariyya, 2 vols,
Cairo, 1942–1943, especially vol. I, pp. 10–29.

M. Schramm, Ibn al-Haythams Weg zur Physik, Wiesbaden, 1963, especially pp. 274–
85.
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enliven a story which was in danger of being extremely ordinary, even dull:
the tale of a great scholar born in the second half of the tenth century, who
after an intensely hard working life, as witnessed by his writings, died some
time after 1040.

This study of Ibn al-Haytham begins by highlighting the particularly
uncertain style of biobibliography at this time, not merely as a warning, but
in order to pose the following questions:

How, armed with so little information, is it possible to arrive at the
truth? How to untangle legend from fact? It will be necessary to examine
documents and writings to sift the true from the likely, the unconfirmed and
the uncorroborated from the purely fictional imaginings and the window-
dressing. The aim is to clearly formulate those questions which remain
unanswered to this day and to outline certain problems which, it must be
acknowledged, may well remain unsolved for some time to come.

Five biobibliographical sources have been used – not all of equal
importance and not all independent of each other. The oldest, and also the
shortest, is the book by ∑æ‘id al-Andalºsî (420/1029–462/1070): ™abaqæt
al-umam.2 Then comes Tatimmat Òiwæn al-Ìikma,3 written by al-Bayhaqî
(499/1105–6–565/1169–70), a Muslim from the Eastern province, in the
region of Nayshabur in Khuræsæn. The next – and most important – is from
al-Qif†î (568/1172–646/1248): Ta’rîkh al-Ìukamæ’.4 After this comes a text
recently discovered in a manuscript in Lahore,5 written in 556/1161, which
includes various titles of Ibn al-Haytham’s writings. Ibn Abî UÒaybi‘a
(596/1200–668/1270)6 incorporated the source of the Lahore manuscript
and the writings of al-Qif†î into his more complete version. And finally,
there is a catalogue of the works of al-Îasan ibn al-Haytham in a
manuscript discovered in the town of Kuibychev, Siberia, which differs only

2 R. Blachère, Kitæb ™abaÈæt al-Umam (Livre des Catégories des Nations),
Paris, 1935; ed. H. Bº‘alwæn, Beirut, 1985.

3 Ed. M. Kurd ‘Alî entitled Tærîkh Ìukamæ’ al-Islæm, Arab Language Academy of
Damascus, 1st ed., 1946; 2nd ed., 1976. See M. J. Hermosilla, ‘Aproximación a la
Ta†immat Òiwæn al-Ìikma de Al-Bayhakî’, in Actas de las II Jornadas de Cultura Arabe
e Islámica, Instituto Hispano-Arabe de Cultura, Madrid, 1980, pp. 263–72. Cf.
D. M. Dunlop, ‘al-BayhaÈî’, EI2, vol. I, pp. 1165–6.

4 Al-Qif†î, Jamæl al-Dîn ‘Alî ibn Yºsuf, Ta’rîkh al-Ìukamæ’, ed. J. Lippert,
Leipzig, 1903. Cf. also corrigenda and addenda to this edition by H. Suter, as appeared
in Bibliotheca Mathematica, 3rd series, 4, 1903, see pp. 295–6.

5 Cf. note 31.
6 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. A. Müller, 2 vols,

Cairo/Königsberg, 1882–1884, vol. II, pp. 90–8.
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slightly from the one given by Ibn Abî UÒaybi‘a.7 From this, we can see
that easily the most important sources are: ∑æ‘id, al-Bayhaqî, al-Qif†î, and
Ibn Abî UÒaybi‘a. We will go through them one by one.

Al-Bayhaqî tells, in his Ptolemy II: Abº ‘Alî ibn al-Haytham,8 of the
arrival of Ibn al-Haytham in Egypt, and his meeting with the Caliph al-
Îækim, where he presented his scheme to control of the flow of the Nile.
The story continues with the project being bluntly refused by the caliph,
followed by Ibn al-Haytham’s flight into Syria and then a few finishing
anecdotal touches, to complete the portrait of Ibn al-Haytham as the ideal
scholar of his time. The whole biography ends with al-Bayhaqî’s description
of a fatal illness and a deathbed scene, complete with last words.

The following passage, taken from this same biography, illustrates the
most important part of the story:

He had written a book on the mechanics in which he proposed an
ingenious procedure of controlling the Nile when it flooded the fields. He
took this book and went to Cairo. He stopped at an inn. As soon as he sat
down, he was summoned: ‘The Ruler of Egypt, named al-Îækim, is at the
door and is asking for you.’ Abº ‘Alî went out with his book. Abº ‘Alî was
a small man and had to stand on a banquette by the door of the inn to reach
up to the Ruler of Egypt who was perched atop an Egyptian donkey, and
dressed in full chain mail armour. When the Ruler of Egypt had examined
his book he said: ‘You are mistaken. The cost of this procedure is greater
than the advantages it will bring to the cultivation of the land.’ And he
ordered that the banquette should be destroyed, and rode away. Abº ‘Alî,
much in fear of his life, escaped into the night.9

Nothing in this story is precise enough to be checked: the picture of al-
Îækim perched up on the donkey, violent and raging, is a stereotype that
has been passed on by chroniclers before al-Bayhaqî’s time; he must have
borrowed it from them,10 as others would do from him. Hence, this writer

7 B. A. Rozenfeld, ‘The list of physico-mathematical works of Ibn al-Haytham
written by himself’, Historia Mathematica 3, 1976, pp. 75–6.

8 Al-Bayhaqî, Tærîkh Ìukamæ’ al-Islæm, pp. 85–8.
9 Ibid., pp. 85–6.
10 Al-Qalænsî, Dhayl Tærîkh Dimashq, Beirut, 1908, pp. 59–80. Abº al-MaÌæsin

ibn Taghrî Birdî, al-Nujºm al-zæhira fî mulºk MiÒr wa-al-Qæhira, 4 vols, Cairo, 1933,
vol. IV, pp. 176–247. It should be remembered that al-Îækim encouraged the study of
science and founded in Cairo the ‘House of Science’ (Dær al-‘ilm), as described by al-
Maqrîzî, Kitæb al-mawæ‘iÂ wa-al-i‘tibær bi-dhikr al-khi†a† wa-al-æthær, ed. Bºlæq, 2
vols, Cairo, n.d., vol. I, pp. 458–9, recently reissued, undated in Cairo. See article by
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embellished his tale with picturesque details found in stories more than a
century after the death of Ibn al-Haytham. As for the flight of Ibn al-
Haytham into Syria, and his living there, this is mentioned only by al-
Bayhaqî and contradicts what we almost definitely know about the
mathematician in his lifetime. It would therefore seem best to dismiss all
fanciful descriptions as pure invention and to believe only that which can be
proved – namely the following:

Ibn al-Haytham was not originally from Egypt, but was there during the
reign of al-Îækim, and had amongst his papers a hydraulic scheme which
might have been of interest to the State; he wrote a book on Ethics, another
on Astronomy, promoting alternatives to Ptolemy’s models of the
movement of heavenly bodies. Although al-Bayhaqî refers to these two
books in somewhat vague terms, they are easily identifiable.11

Al-Bayhaqî’s biography became widely known and was taken up again
later in a much talked-about work by al-Shahrazºrî,12 which was brought
out at the same time as al-Qif†î’s biography.

Al-Qif†î’s biography is by far the most important of all: written almost a
century after al-Bayhaqî’s version, and two centuries after the death of Ibn
al-Haytham, it is rather more of a biobibliography, and clearly not based on
the earlier al-Bayhaqî’s biography. Al-Qif†î, who was born in Egypt and
then lived in Syria,13 was much better informed of the scientific traditions of
the time than al-Bayhaqî, who was born and raised in Khuræsæn. Al-Qif†î’s
biobibliography was, as mentioned previously, taken up by al-Shahrazºrî,
then by Ibn Abî UÒaybi‘a, Ibn al-‘Ibrî,14 and then again by later

M. Canard about al-Îækim, ‘al-Îækim bi-Amr Allæh’, EI2, vol. III, pp. 79–84, for an
example of the prevailing stereotypes.

11 This is most probably to do with the similarity of Doubts on Ptolemy and Trea-
tise on Ethics; both appearing on the list of al-Qif†î as well as on the list of Ibn Abî
UÒaybi‘a.

12 Al-Shahrazºrî, Nuzhat al-arwæÌ wa-raw≈at al-afræÌ fî tærîkh al-Ìukamæ’ wa-al-
falæsifa, Osmænia Oriental Publications Bureau, Hyderabad, 1976, vol. II, pp. 29–33.

13 Al-Qif†î born in Qif†, Upper Egypt, began his education in Cairo, before going at
the age of 15 with his father to Jerusalem. He later went to Aleppo. About his life and the
history of his book, see especially: A. Müller, ‘Über das sogenannte Ta’rîkh al-Ìukamæ’
des al-Qif†î’, in Actes du VIIIe Congrès International des Orientalistes tenu en 1889 à
Stockholm et à Christiana, Sect. I, Leiden, 1891, pp. 15–36; the preface by J. Lippert
to the edition of Ta’rîkh al-Ìukamæ’, pp. 5–10; C. Nallino, Arabian Astronomy, its
History during the Medieval Times, conferences pronounced in Arabic at the
University of Cairo, Rome, 1911, pp. 50–64.

14 Ibn al-‘Ibrî, Tærîkh mukhtaÒar al-duwal, ed. O.�P.�A. ∑æliÌænî, 1st ed., Beirut,
1890; repr. 1958, pp. 182–3.
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biobibliographers. The following translation of its main part will serve to
illustrate just how important the text is:

Al-Îækim, Alawite Ruler of Egypt, who had a liking for philosophy,
received information about him (Ibn al-Haytham) and his excellence in this
domain. He therefore wanted to see him. Al-Îækim was then told what he
had said: ‘If I was in Egypt, I would have controlled the Nile so that it might
be possible to profit from it in any state, in flood or not. I have heard tell the
river starts from a high point at the furthest end of Egypt’. Al-Îækim
became even more anxious to see him, and secretly sent to him a large
amount of money, which persuaded him to come. Ibn al-Haytham departed
for Egypt and al-Îækim went out to meet him on his arrival, in a Mu‘izite
village at the gates of Cairo, known as al-Khandaq;15 orders were given to
receive him generously. Ibn al-Haytham took some little time to rest and al-
Îækim then asked him to start his Nile project. He went out with a group of
artisans who would help with the construction and architecture in the
geometric exercises he imagined. But once he had travelled the length of
the country and had seen the monuments of these ancient peoples – which
had been constructed using the best and most perfect of geometric art – as
heavenly figures, full of marvellous geometry and design, he was convinced
that his own project was no longer possible. The knowledge of his
forebears was most certainly equal to his own, and if what he imagined was
possible, they would already have done it. His enthusiasm therefore was
diminished and his project was halted. When he came to an elevated area
known as the Cataracts, south of the town of Aswan, from where the waters
of the Nile flow, he observed, and he carried out tests on both the ebb and
flow of the river; he found that the results did not correspond to those he
sought and became convinced that the things he had promised had been
based on errors. He came back ashamed and defeated and presented his
excuses in such a way that al-Îækim seemed to accept them and agreed.
Then al-Îækim gave him responsibility for certain administrative duties,
which he accepted more out of fear than desire. He was sure that it was a
mistake to accept, because al-Îækim was an unpredictable man and shed
blood without cause for the very slightest reason he could think of. Ibn al-
Haytham was in great torment for a long time, thinking of ways to be rid of
this responsibility, and yet the only solution he could think of was to feign
madness and insanity.16

15 Ibn Duqmæq, Kitæb al-intiÒær li-wæsi†at ‘aqd al-amÒær, ed. Bºlæq, Cairo, n.d.,
2nd part, p. 43. The author pinpoints this village. For more see al-Maqrîzî, Kitæb al-
mawæ‘iÂ wa-al-i‘tibær bi-dhikr al-khi†a† wa-al-æthær, vol. II, pp. 136–7.

16 Al-Qif†î, Ta’rîkh al-Ìukamæ’, pp. 166–7.
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Al-Qif†î then tells us that after the death of al-Îækim (411/1020), Ibn al-
Haytham stopped being ‘mad’ and took up his research work again, as well
as copying manuscripts – such as works by Euclid, Ptolemy’s Almagest,
and The Intermediate Books (al-Mutawassi†æt) to earn a living.17 He cites as
evidence a certain doctor Yºsuf al-Fæsî al-Isræ’îlî,18 who also confirms that
Ibn al-Haytham died in Cairo around the year 431/1039.19 And finally, he
produces a list of about sixty of Ibn al-Haytham’s titles, which we will return
to later.

Al-Qif†î’s biography differs from the version of al-Bayhaqî on two
counts: it is written by an author who was undeniably better informed of the
life and work of this learned man of Egypt – that much is certain. However
his biobibliography is surprising in its wealth of detail, scattered in great
profusion to describe the meeting between Ibn al-Haytham and al-Îækim as
well as the travels of the mathematician to Upper Egypt, his state of mind
and his closest thoughts. Such detail almost two centuries after the event
could only have been provided by an autobiography; but al-Qif†î did not
have such a document at his disposal, or he would have said so – as he had
done in his article on Avicenna. And so therefore it might be rather
incautious to set much store by all these descriptions.

Let us now proceed to define the elements which are common to both
biographies of Ibn al-Haytham; although, as we have already stressed, both
stand alone and the later version does not derive at all from the earlier one.

17 Ibid., p. 167.
18 Instead of al-Fæsî J. Lippert read al-Næshî, but mentions the first name as per Ibn

Abî UÒaybi‘a. This copyist error should not lead us to believe that this person was
unknown to al-Qif†î and would need a long explanation which would be superfluous to
Ibn al-Haytham’s biography. In fact, this person was a personal friend of al-Qif†î, as he
himself wrote (p. 393) in an article entirely dedicated to him. There, al-Qif†î gives the full
name ‘Yºsuf ibn IsÌæq al-Sabtî al-Maghribî, Abº al-Îajjæj, residing in Aleppo, native of
Fæs’ (p. 392). According to al-Qif†î, he died in the first ten days of Dhº al-Ìijja, 623H,
i.e. end of November 1226. Al-Qif†î reports other sightings of him in Baghdad, for
example, in a crowd being harangued by Ibn al-Maristæniyya railing against science
(p. 229). He is also mentioned by Ibn Abî UÒaybi‘a (vol. II, p. 213) and by Ibn al-‘Ibrî
(pp. 242–3). See also M. Munk, ‘Notice sur Joseph ben-Iehouda ou Aboul’hadjâdj
Yousouf ben-Ya’hya al-Sabti al-Maghrebi, disciple de Maïmonide’, Journal Asiatique,
3rd series, 14, 1842, pp. 5–70. As he himself says, his evidence is hearsay.

19 This is what al-Qif†î records from Yºsuf al-Isræ’îlî: ‘I heard that Ibn al-Haytham in
the course of one year copied three books in his chosen specialist area: that is, Euclid, the
Intermediate Books, the Almagest. When he began to transcribe them, somebody gave
him 150 Egyptian dinars. This became a regular fee, which he lived off during the year.
He carried on like this up to his death in Cairo around 430 or soon after’ (Ta’rîkh al-
Ìukamæ’, p. 167).
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The two authors both confirm that Ibn al-Haytham arrived in Egypt, met al-
Îækim, and showed him a hydraulic project which was turned down: at
least, this is what we see if each of the texts is divested of its more blatant
romantic elements and embellishments.

On Ibn al-Haytham’s country of origin, al-Bayhaqî is silent, whereas al-
Qif†î tells us it is BaÒra, in Iraq.20 A manuscript of the Book on Optics by
Ibn al-Haytham copied by his own son-in-law, AÌmad ibn MuÌammad ibn
Ja‘far al-‘Askarî, provides corroboration of al-Qif†î’s statement. For it is in
BaÒra that this copy had been made, immediately after the death of his
father-in-law. It might be possible to counter this evidence with a quotation
from ∑æ‘id al-Andalºsî who describes the mathematician as ‘The Egyptian
Ibn al-Haytham’.21 However, a single description by ∑æ‘id does not carry
the same weight as the BaÒra connection. And it was in fact common at the
time to find people named either after the place where they were born, or,
equally, after the place that they had come to regard as home.22 Moreover,
there is only one letter different between al-MiÒrî (the Egyptian) and al-
BaÒrî (from BaÒra), and this might easily have been confused in the
Maghrebi script used by ∑æ‘id.

It is therefore highly likely that Ibn al-Haytham came to Egypt from
BaÒra in the time of al-Îækim, that is to say toward the end of the tenth
century or in the first few years of the following century. Al-Îækim was in
fact born in 375/985; his reign began in 386/996 and ended with his
assassination in 411/1020. Other sources confirm that Ibn al-Haytham was in
Cairo in the following decades, one such source being the judge Abº Zayd
‘Abd al-RaÌmæn ibn ‘ïsæ ibn MuÌammad ibn ‘Abd al-RaÌmæn,23 exactly as
∑æ‘id24 had maintained. There is further confirmation within Ibn al-
Haytham’s own writings, which indicates at the very least a familiarity with

20 He writes ‘Al-Îasan ibn al-Îasan ibn al-Haytham Abº ‘Alî the geometrician from
BaÒra, living in Egypt…’.

21 ∑æ‘id al-Andalºsî, ™abaqæt al-umam, p. 150.
22 Note also that al-Khæzinî, in his Mîzæn al-Ìikma, also calls him ‘Ibn al-Haytham

al-MiÒrî’, ‘Ibn al-Haytham, the Egyptian’, Osmænia Oriental Publications Bureau,
Hyderabad, 1940–1941, p. 16.

23 This is what Blachère wrote based on Ibn Bashkuwæl no 725 ‘Born in Cordoba,
was Cadi of Toledo, of Tortosa, then Denia, under the Emir al-Ma’mºn ibn Dhî al-Nºn,
protector of ∑æ‘id. He died in 473/1080’ (p. 116, note 4). Note that Ibn Bashkuwæl
(Kitæb al-∑ila, ed. Sayyid ‘Izzat al-‘A††ær al-Îusaynî, Cairo, 1955, no. 728) quotes him
under the name of ‘Abº Zayd ‘Abd al-RaÌmæn ibn MuÌammad ibn ‘¡sæ ibn ‘Abd al-
RaÌmæn’; note the inversion of ibn MuÌammad’.

24 ‘He informed me that he met him (Ibn al-Haytham) in Egypt in the year 430
[1038–39]’ (∑æ‘id al-Andalºsî, ™abaqæt al-umam, p. 150).
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the Egyptian milieu of the time. And finally, there is also the fact that Ibn
Ri≈wæn, the well-known doctor from Cairo and a contemporary of Ibn al-
Haytham’s, wrote a book entitled On Discussions which Took Place with
Ibn al-Haytham on the Milky Way and the Place.25

But had Ibn al-Haytham, on his arrival in Egypt, really met al-Îækim to
present his hydraulic project to him? On this point, we are reduced to
relying on the statements of al-Bayhaqî and al-Qif†î. But their retelling of
the event (the place, the scene itself, the consequences) is not consistent and
the noticeable discrepancies between the two versions suggest that this is
indeed a distant echo of a scene that each of the two biographers had
struggled to imagine and one which they had reanimated in a flurry of
detail. The only sustainable argument is presented by al-Bayhaqî. He
produces as evidence of the existence of the hydraulic scheme, a book
which had been written by Ibn al-Haytham some time before, and which
dealt with ‘engineering procedures’26 or ‘Mechanics’; but there is no record
of this book and we do not know if it ever existed, as al-Bayhaqî is the only
one to refer to it. Yet even if we do question the details given by these
biographers, we need not necessarily dismiss as pure invention the ‘distant
echo’ or embellished memories referred to above. Ibn al-Haytham
– mathematician and physician – was also an engineer, as will be shown in
some of his other works; and it was natural, according to the custom of the
age, that a scholar should be received by the Caliph.27 Briefly then, it is
certain that Ibn al-Haytham arrived in Egypt at the end of the tenth century
or soon afterwards, most probably from BaÒra, and probably bringing with
him a hydraulic project which he was later to present to al-Îækim. It is

25 It is this same Ibn Ri≈wæn who copied the treatise of Ibn al-Haytham on The
Light of the Moon which work was finished on the Friday midway through Sha‘bæn
422, which is Friday 7 August 1031. Cf. al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 444; Ibn Abî
UÒaybi‘a, ‘Uyºn al-anbæ’, II, p. 104. Cf. also J. Schacht and M. Meyerhof, The
Medico-Philosophical Controversy between Ibn Bu†læn of Baghdad and Ibn Ri≈wæn
of Cairo, Cairo, 1937, p. 46.

26 Perhaps this is the book ‘Uqºd al-abniya (On Architecture), quoted by al-
Qalqashandî in ∑ubÌ al-a‘shæ, ed. Bºlæq, Cairo, n.d.; repr. 1963, vol. 7, p. 476. See
also Tashkupri-Zadeh, MiftæÌ al-Sa‘æda, ed. Kamil Bakry and Abdel-Wahhab Abº’ L-
Nur, Cairo, 1968, vol. I, p. 375 (see p. 538).

27 We know from al-Maqrîzî (Kitæb al-mawæ‘iÂ wa-al-i‘tibær bi-dhikr al-khi†a† wa-
al-æthær, vol. I, p. 459) that in fact al-Îækim granted audiences to learned men and joined
in discussions with them. It is therefore possible to read ‘In 403 (1012–1013) a group of
arithmetic and logic specialists from the House of Science, a group of legal experts –
among them ‘Abd al-Ghanî ibn Sa‘îd – and a group of doctors were invited to an audience
with al-Îækim. Each group came alone to hold discussions in his presence. He later gave
them all payment.’



10 INTRODUCTION

equally probable that, if al-Qif†î is to be believed, Ibn al-Haytham lived in
the neighbourhood of al-Azhar Mosque.28

We know nothing of Ibn al-Haytham’s life in Cairo.29 Al-Qif†î’s reports
are rather unsubstantial, especially the episode concerning Ibn al-Haytham’s
feigning madness up until the death of al-Îækim. His death, however, is
much better documented; and we see that it was after 432 (September
1040). Actually the first report of his death is one to which we have already
referred – that of al-Isræ’îlî. He stated that Ibn al-Haytham died around 430
(1038) ‘approximately in the year 430, or soon afterwards’. But since we
have already seen that the Andalusian Judge Abº Zayd met Ibn al-Haytham
in Egypt in 430, he must therefore have died some time after this date. Al-
Qif†î himself wrote, quoting al-Isræ’îlî, ‘I saw in his own (Ibn al-Haytham’s)
handwriting a volume on geometry which he wrote in the year 432’, i.e.
1040–41.30

Of the two biographies written by al-Bayhaqî and al-Qif†î, the latter is
definitely the worthier of the two. However, even this work later became
entangled in another tradition, the result of an unfortunate ‘confusion’,
which lasted until the twelfth century and which had in some way been
fuelled by Ibn Abî UÒaybi‘a. This ‘confusion’ is the subject of the
investigation which follows next.

28 This is confirmed by al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 167.
29 Ibn Abî UÒaybi‘a, still confusing names, talks of two disciples of Ibn al-

Haytham. These disciples, although not up to the same high standard as their master,
were an Emir and a doctor. The first is Emir Abº al-Wafæ’ al-Mubashshir ibn Fætik who
is not known in the world of mathematical sciences. The second is the doctor IsÌæq ibn
Yºnus, who had noted the Observations of Ibn al-Haytham on Diophantus’ Art of
Algebra – or Arithmetic. Cf. Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, pp. 98–9. And it
may well be that it is Ibn al-Fætik who is the dedicatee in Ibn al-Haytham’s Treatise on
the Compasses of Great Circles to ‘His Excellency the Emir, may God increase his
power’ (ms. India Office, Loth 734, fols 116v–118r).

30 Al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 167. Note also that according to the doctor Ibn
Bu†læn, as recorded by Ibn Abî UÒaybi‘a (‘Uyºn al-anbæ’, I, pp. 242–3), Ibn al-Haytham
as well as other learned men, philosophers, lawyers, men of letters and poets had fallen
prey to epidemic illnesses and they all died in the same decade. Among them, al-Sharîf al-
Murta≈æ, who died in 449/1044, and Abº al-Îusayn al-BaÒrî, who died in 436/1044.
But also from the same group Abº al-‘Alæ’ al-Ma‘arrî, died 449/1058; the poet Mihyær al-
Daylamî himself died in 428/1037. This list also includes the philosopher Ibn al-SamÌ
who died in 1027, the doctor and philosopher Abº al-Faraj ibn al-™ayyib who died in
1043. In fact the deaths ran over two and not just one decade. However, the majority of
the group died in the fourth decade of the eleventh century.
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2. AAAALLLL----ÎÎÎÎAAAASSSSAAAANNNN    IIIIBBBBNNNN    AAAALLLL----ÎÎÎÎAAAASSSSAAAANNNN    AAAANNNNDDDD    MMMMUUUUÎÎÎÎAAAAMMMMMMMMAAAADDDD    IIIIBBBBNNNN    AAAALLLL----ÎÎÎÎAAAASSSSAAAANNNN:
MATHEMATICIAN AND PHILOSOPHER

In order of merit, the most important biobibliographies of Ibn al-
Haytham are: the one written by al-Qif†î and the one written by Ibn Abî
UÒaybi‘a. The article devoted to Ibn al-Haytham included in Ibn Abî
UÒaybi‘a’s ‘Uyºn al-anbæ’ is the most thorough and is the one most often
referred to by modern biobibliographers. But its importance has as much to
do with the fact that Ibn Abî UÒaybi‘a collects – albeit in a disorderly
fashion – information from several different sources. He uses statements
from his contemporaries as well as information from the earlier biography
by al-Qif†î. He also uses a text containing the autobiography of MuÌammad
ibn al-Îasan, and also a catalogue of the writings of al-Îasan ibn al-Îasan
up to the end of 429/October 1038. This text and this catalogue were taken
by Ibn Abî UÒaybi‘a from a previous text compiled before 556/1161 and
this is also the source of the Lahore manuscript which was copied at the
same time.31 Essentially, Ibn Abî UÒaybi‘a considered that both MuÌammad
and al-Îasan were one and the same person, and this opinion has survived
until the present day. But we should ask ourselves whether this is a
considered opinion or whether it is the result of simple confusion: this
question is all the more serious since it challenges the very authenticity of
certain works by al-Îasan ibn al-Haytham.

Let us first of all examine the article by Ibn Abî UÒaybi‘a on Ibn al-
Haytham. It is a composite of several fragments, not considered coherent by
the author’s own standards nor by anyone else later. It begins with a
preamble, then goes on to comment on propositions of his contemporary,
the geometrician ‘Alam al-Dîn; it continues by quoting in extenso al-Qif†î’s
biography, and finishes by reproducing the autobiography and catalogue of
works of MuÌammad ibn al-Îasan up to October 1038. In fact, it is no
more than a collection of fragments taken from a wide variety of sources,
with a preamble which only serves to emphasize the rhapsodic quality of the
whole work. It is also remarkable that Ibn Abî UÒaybi‘a seems totally
unaware of the glaring contradictions which appear as a result of his various

31 This is the manuscript which belonged to the Nabî Khæn family in Lahore.
M. Anton Heinen, who discovered the existence of this manuscript, authenticated the
two texts: the autobiography of MuÌammad and the list of al-Îasan by identifying the
two separate names. Cf. ‘Ibn al-HaiÚams Autobiographie in einer Handschrift aus dem
Jahr 556 H/1161 A. D.’, in U. Haarmann and P. Bachmann (eds), Die islamische Welt
zwischen Mittelalter und Neuzeit, Beiruter Texte und Studien 22, Beirut, 1979,
pp. 254–77.



12 INTRODUCTION

borrowings from different versions, at least where it concerns the name of
his subject. In the paragraph taken from al-Qif†î’s biography, the scholar
appears under the name ‘Abº ‘Alî al-Îasan ibn al-Îasan ibn al-Haytham’.
Yet we see at the end of the biography that Ibn Abî UÒaybi‘a quotes a
catalogue of works as belonging to ‘al-Îasan ibn al-Îasan ibn al-Haytham’.
Between this paragraph and this catalogue, Ibn Abî UÒaybi‘a inserts the
autobiography of ‘MuÌammad ibn al-Îasan’, as well as two lists of his
writings and works, without the slightest explanation. Perhaps this
contradiction is the reason why he felt it necessary, consciously or not, to
put together the composite name which is at the top of the preamble to the
article: ‘Abº ‘Alî MuÌammad ibn al-Îasan ibn al-Haytham’.32 This is what
he writes: ‘Ibn al-Haytham: Abº ‘Alî MuÌammad ibn al-Îasan ibn al-
Haytham, native of BaÒra, who travelled to Egypt and lived there until the
end of his life.’33 He goes on to describe his moral and intellectual qualities
and adds the following comments: ‘he produced reports and commentaries
on many of Aristotle’s books; similarly, he produced commentaries on many
of Galen’s medical books. He was an expert in the principles of the art, laws
and rules of medicine generally, but he was not a practitioner and was not
trained in the use of medicines.’34 In a nutshell, Ibn Abî UÒaybi‘a presents
us with a philosopher in the Greek tradition, a medical theoretician, with a
good knowledge of the works of Galen, but nothing like a mathematician of
great note. We will see that this is an exact portrait of MuÌammad and not
of al-Îasan, insofar as he is portrayed in the works available to us.

Ibn Abî UÒaybi‘a delves deep into the propositions of his contemporary,
the geometrician ‘Alam al-Dîn ibn Abî al-Qæsim al-Îanafî35 (1178/9–
1251). However, as they are drawn from the geometrician’s own reading of
al-Qif†î’s biography, it really adds nothing new. He goes on to say that Ibn
al-Haytham lived at first in BaÒra and the surrounding area, that he was
appointed as a minister, that he wanted to devote himself to science, since he
was attracted to medieval vertu and to wisdom, that he then feigned
madness to divest himself of his ministerial responsibilities, and that he finally
left for Cairo and settled in the neighbourhood of al-Azhar Mosque. This

32 In the article on al-Mubashshir ibn Fætik, which directly follows the one devoted
to Ibn al-Haytham, Ibn Abî UÒaybi‘a always writes the name of the latter as ‘Abº ‘Alî
MuÌammad ibn al-Îasan ibn al-Haytham’, ‘Uyºn al-anbæ’, vol. II, p. 99.

33 Ibid., vol. II, p. 90.
34 Ibid. Our italics.
35 Just like al-Qif†î, this mathematician was born in Upper Egypt in 574/1178–79,

emigrated to Syria and died there in Damascus in 649/1251. Cf. H. Suter, Die Mathe-
matiker und Astronomen der Araber, p. 243, and C. Brockelmann, Geschichte der
arabischen Literatur, I, p. 625 [474]; Supp. I, p. 867; Supp. III, p. 1241.
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version is as close as it possibly could be to al-Qif†î’s version, with the
exception that, most probably as a result of an unreliable memory, ‘Alam
al-Dîn transposes the BaÒra years and what al-Qif†î says are the Cairo
years, and on top of that makes Ibn al-Haytham into a minister.

Following on from ‘Alam al-Dîn’s evidence, Ibn Abî UÒaybi‘a then
reproduces al-Qif†î’s text, but without bringing out these discrepancies.
Next, he quotes from the autobiography of MuÌammad ibn al-Îasan, a
work which is very much in the tradition of Galen’s Libris Propriis.36

MuÌammad describes his curriculum, his intellectual views and his writings
up to around 417/1026, by which time he had reached the age of 63 lunar
years – which would place the time of his birth at around 354/965. His
curriculum is definitely that of a philosopher, who at 63, had already written
twenty-five dissertations on mathematics and astronomy, forty-four on logic,
metaphysics and medicine as well as a dissertation to show how worldly
matters and religious matters come into being as a result of philosophical
disciplines; finally ‘other writings where the original documents are no
longer with him, but which are with the people of BaÒra and al-Ahwæz’.37

In this first list, we find for example: ‘the answer to seven mathematical
problems about which I had been asked in Baghdad and to which I replied’
and also ‘reply to a problem raised by Ibn al-SamÌ al-Baghdædî’,38 and yet
another ‘review of the response to a problem raised by some Mu‘tazilite in
BaÒra’.39

There then comes a second list, also in the handwriting of MuÌammad
ibn al-Îasan, which encompasses works from 417/1026 to 419/1028:
fourteen dissertations on philosophy, three on astronomy, one on geometry,
two on optics and one on medicine. Amongst these dissertations, we also
find for example, ‘a geometrical problem which had been addressed to him
in Baghdad during the months of the year four hundred and eighteen
(1027–8)’,40 a letter addressed to Abº al-Faraj ‘Abdallæh ibn al-™ayyib al-

36 On the relationship between the autobiography of MuÌammad ibn al-Haytham and
the model proposed by Galen in the Libris Propriis, cf. F. Rosenthal, ‘Die arabische
Autobiographie’, Studia Arabica: Analecta Orientalia 14, 1937, pp. 3–40.

37 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 96.
38 Philosopher of the school of Baghdad, died in 1027. Cf. S. M. Stern, ‘Ibn al-

SamÌ’, Journal of the Royal Asiatic Society, 1956; repr. in S.�M. Stern, Medieval Arabic
and Hebrew Thought, ed. F.�W. Zimmermann, London, 1983.

39 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 95.
40 Ibid., vol. II, p. 97
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Baghdædî, who was a philosopher and medical doctor in Baghdad,41 on
‘some notions on physical sciences and theology’ and a treatise in response
to the same Abº al-Faraj, criticizing his views on natural forces in the
human body, which differed from those of Galen.

Ibn Abî UÒaybi‘a wrote at the bottom of this second list: ‘I confirm: this
is the end of what I have found in the hand of MuÌammad ibn al-Îasan ibn
al-Haytham, the author – may God have mercy on him’ and goes on
immediately ‘This is also a catalogue (fihrist) that I have found of the books
of Ibn al-Haytham up to the end of the year 429 (2 October 1038).’42 But,
in order to shed more light on the behaviour of Ibn Abî UÒaybi‘a and these
two statements (in particular the latter, where there is no mention made of a
first name), let us now consider the Lahore manuscript, which had access to
the same source.

This manuscript contains a collection of treatises from several
mathematicians, including some by Ibn al-Haytham, together with various
lists of works. It is here, between page 174 and the middle of page 184, that
we find the autobiography of MuÌammad ibn al-Îasan, including two lists
of his works: and this is definitely the text quoted by Ibn Abî UÒaybi‘a. The
text is not followed by the list of al-Îasan’s works as it is in Ibn Abî
UÒaybi‘a’s version, but is followed by a list of the works of the philosopher
al-Færæbî; this fills the other half of page 182 and page 183.43 It is not until
page 184 that we find the ‘list of books by al-Îasan ibn al-Îasan ibn al-
Haytham up to the end of the year 429’.44 This is a shortened list, but you
only have to compare this with the list of al-Îasan’s works copied by Ibn
Abî UÒaybi‘a to see that the two lists originate from the same source. It is
possible to see from the order of the lists, the insertion of al-Færæbî’s list
between the autobiography of MuÌammad ibn al-Îasan and al-Îasan ibn

41 On Abº al-Faraj ‘Abdallæh ibn al-™ayyib, died in 1043, see G. Graf, Geschichte
der christlichen arabischen Literatur, Rome, 1947, vol. II, pp. 160–76; Ibn Abî
UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 97.

42 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 97.
43 We read: ‘the list of works by Abº NaÒr MuÌammad ibn MuÌammad ibn

Turkhæn al-Færæbî based on those copied in the hand of Ibn al-Murakhkhim’. The latter
was a judge in Baghdad between 541 and 555/1146–1160 and was a man of philosophy
and science. He also copied a work on optics by Ibn Sahl (see R. Rashed, Geometry and
Dioptrics, pp. 13–14). The copyist of the Lahore manuscript, part of the NiÂæmiyya
school, is both a contemporary of Ibn al-Murakhkhim and his fellow citizen.

44 We read in the manuscript: ‘Full and final list of al-Îasan ibn al-Îasan ibn al-
Haytham (ilæ ækhirihi).’ However this description does not make sense, as it is clear that
there is something missing; this can be corrected with the help of Ibn Abî UÒaybi‘a. It
should read ilæ ækhiri <sanat 429> (‘until the end of the year 429’).
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al-Îasan’s list, that the copyist of the Lahore manuscript, and a fortiori his
source, did not go as far as identifying MuÌammad and al-Îasan as the
same person – unlike Ibn Abî UÒaybi‘a. Whereas on Ibn Abî UÒaybi‘a’s list
works were attributed to ‘Ibn al-Haytham’ without first names, here, the
same works are explicitly attributed right from the beginning to ‘al-Îasan
ibn al-Îasan ibn al-Haytham’.45 Moreover, the title of the list referred to
above was replaced by Ibn Abî UÒaybi‘a, with the telling phrase ‘this is also
a catalogue I found of the works of Ibn al-Haytham’ (wa-hædhæ ay≈an
fihrist wajadtuhu li-kutub Ibn al-Haytham),46 which was meant to establish
some sense of continuity between MuÌammad’s autobiography and al-
Îasan’s list. If there is any confusion, then, as far as we can tell from our
present sources of information, the fault lies with Ibn Abî UÒaybi‘a.47

We seem therefore to have discovered two separate persons:
MuÌammad, linked to Baghdad (where he was to be found in 1027) and to
ancient Southern Iraq, and al-Îasan, who lived in Cairo well before 1020.
The following will prove this assertion:

I. Al-Îasan always used the name of al-Îasan ibn al-Îasan ibn al-
Haytham, never MuÌammad ibn al-Îasan. In an Arabic translation of
Apollonius’ Conics,48 copied by Ibn al-Haytham, the colophon to the third
book reads:

45 This is further confirmed by the list of Ibn al-Haytham’s works found in the
Kuibychev manuscript. Almost identical to the one Ibn Abî UÒaybi‘a gives under the
name of Ibn al-Haytham, it should really be credited to al-Îasan ibn al-Îasan ibn al-
Haytham.

46 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 97.
47 We see already a slight error creeping into the Lahore manuscript – but this does

not truly constitute what might be called confusion. The copyist writes the following
colophon to the autobiography of MuÌammad: ‘This is the end of what has been
discovered to be in the hand of the author. May peace be upon us. I have transcribed this
in the City of Peace (Baghdad) in the school of al-NiÂæmiyya, on the last days of Òafar of
556 H’; this is followed by the usual invocations. He then adds: ‘he had a treatise on light
and yet another on the rainbow’ ‘wa-lahu maqæla fî al-≈aw’ wa-ay≈an maqæla lahu fî
qaws quzaÌ’ (fol. 182, line 11; Heinen, ‘Ibn al-HaiÚams Autobiographie’, p. 272).
However, these two titles are not mentioned in the autobiography of MuÌammad and
refer to two well-known titles by al-Îasan. This must therefore be the copyist’s own
addition to the Lahore manuscript and not from the author, as this phrase is missing from
Ibn Abî UÒaybi‘a’s copy. It is these similar-sounding names which are the source of
confusion, but as far as we are aware, Ibn Abî UÒaybi‘a is the only one to hastily identify
the two authors as one and the same person.

48 See Apollonius: Les Coniques (I–VII), commentaire historique et mathématique,
édition et traduction du texte arabe par R. Rashed, Berlin/New York, 2008–2010.
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Al-Îasan ibn al-Îasan ibn al-Haytham transcribed this volume, diacritised
and corrected from beginning to end and concluded his commentary in the
month of ∑afar, in the year 415. He wrote these lines on Saturday, the sixth
day of the aforementioned month [Saturday 20 April 1024].49

There still exists in St. Petersburg today, a preserved manuscript,
containing a collection of Ibn al-Haytham treatises and an Ibn Sahl text,
copied from an original of Ibn al-Haytham’s, and signed by Ibn al-Haytham
himself in the same way, al-Îasan ibn al-Îasan ibn al-Haytham.50 (The
Ibn Sahl text had itself been copied by Ibn al-Haytham, which explains its
presence in the original manuscript.) Kamæl al-Dîn al-Færisî informs us that
he undertook the editing of al-Îasan’s treatise on the rainbow and the halo
from a copy of an original which was in Ibn al-Haytham’s handwriting, with
the colophon ‘This book has been transcribed, the whole diacritised and
corrected from start to finish by reading by al-Îasan ibn al-Îasan ibn al-
Haytham. He wrote these words in the month of Rajab, in the year 419
Hegira (August 1028).’51

II. When Ibn al-Haytham’s son-in-law, AÌmad ibn MuÌammad ibn
Ja‘far al-‘Askarî al-BaÒrî, copied some of the books on the Optics, he
always transcribed the name of his father-in-law as: al-Îasan ibn al-Îasan
ibn al-Haytham, and never MuÌammad.52

III. Mathematicians and astronomers such as al-Khayyæm, al-Samaw’al,
and al-Færisî, etc., who had either read or produced a commentary on Ibn
al-Haytham, used the name al-Îasan ibn al-Îasan ibn al-Haytham or Abº
‘Alî ibn al-Haytham, but never MuÌammad.

IV. According to MuÌammad’s autobiography as well as the two lists of
his works up to the year 419/1027–28, all works of al-Îasan referred to by

49 Cf. the manuscript of Apollonius’ Conics transcribed by Ibn al-Haytham – ms.
2762, the Aya Sofya collection in the Süleymaniye Library. M. Næzim Terziofilu
published a facsimile of this manuscript in the Collection of Publications of the
Mathematical Research Institute no. 44, Istanbul, 1981. See also M. Schramm quoting
this colophon in his Ibn al-Haythams Weg zur Physik, p. IX.

50 More later on this manuscript – St. Petersburg (Leningrad) B1030.
51 Cf. Kamæl al-Dîn al-Færisî, Kitæb TanqîÌ al-manæÂir li-dhawî al-abÒær wa-al-

baÒæ’ir, Osmænia Oriental Publications Bureau, Hyderabad, 1347–48/1928–30, vol. II,
p. 279. This is the version of his name we find with Ibn al-Murakhkhim, al-Khayyæm, al-
Samaw’al, al-‘Ur≈î and many others. We have seen none at all writing his name as
MuÌammad.

52 Cf. M. NaÂîf, Ibn al-Haytham, buÌºthuhu wa-kushºfuhu al-baÒariyya, p. 13; cf.
R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005, pp. 34–6. Al-
‘Askarî copied the whole of Optics sometime around 1083–1084. This copy was execu-
ted in BaÒra, with the seventh and final book being finished on Friday 26 January 1084.
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Ibn Abî UÒaybi‘a up to 1038, as well as in the Lahore and Kuibychev
manuscripts (that is several thousand folios of mathematics, optics and
astronomy comprising the most advanced research of the age and for a long
time to come), would, without exception, have been composed over
something like 10 years and a half (between the 29th day of Jumædæ the
Second 419 and the 29th day of Dhº al-Ìijja 429), which is impossible.
There ought also to be a fair number of the writings of al-Îasan listed on
one or the other of MuÌammad lists: but there are none. In fact, the number
of titles common to both, which we shall go on to discuss, is precisely two –
out of a grand total of ninety-two!

V. Another important fact: the two lists of the works of MuÌammad up
to 25 July 1028 makes no mention of any works on the rainbow and the
halo. However, we know that al-Îasan had finished a treatise with this title
in the month of Rajab 419, which is the beginning of August 1028. If the
two authors were in fact one and the same person, it might be reasonable to
expect that the book would appear on at least the second of MuÌammad’s
lists, which dates from 25 July 1028. This is not an ex silentio argument:
MuÌammad’s mind must have been full of this treatise, which he finished at
the same time as compiling this list.

VI. Yet to the best of our knowledge, there are no works attributed to
al-Îasan – either books or dissertations, appearing on either of the
MuÌammad lists, and vice versa. In the case of mathematical works on
optics and astronomy (except for a few rare cases, which will be discussed
later), all extant writings of al-Îasan can be found in catalogues of works
which earlier biographers had drawn up in the name of al-Îasan. However,
there is evidence of a different kind of error, which must have been created
by various copyists – that of altering al-Îasan ibn al-Îasan to al-Îasan
ibn al-Îusayn or al-Îusayn ibn al-Îasan by adding the letter î to his first
name or that of his father.53

VII. The cross-references in the extant works of al-Îasan all concern
writings which appear on the lists of al-Îasan’s works drawn up by al-
Qif†î, by Ibn Abî UÒaybi‘a and in the Lahore manuscript, but never works
grouped under the name of MuÌammad. It is the same for references which
appear in the works of later mathematicians; they always refer back to the
works of al-Îasan, on the aforementioned lists. Only one book out of the
total of ninety-two causes some difficulties, and that is: On the
Configuration of the Universe. This issue will be returned to at a later stage.

VIII. Examination of the catalogues of works by MuÌammad and by al-
Îasan make the distinction between the two writers very clear, both in

53 See Supplementary Notes.
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terms of form and content. There are ninety titles by MuÌammad, recorded
on the two lists of works; there are ninety-two titles by al-Îasan, according
to the Ibn Abî UÒaybi‘a list, which records works up to October 1038.
Comparing MuÌammad’s titles with al-Îasan’s, there are only two which
are duplicated: Fî hay’at al-‘ælam (On the Configuration of the Universe)
and Fî Ìisæb al-mu‘æmalæt (On the Arithmetic of Transactions).54 The way
these two texts have been handed down to us creates serious problems over
their authenticity. The declared aim of its author in the first text,55 is to
present the planetary orbits, based on Ptolemy’s astronomy, in terms of
simple and continuous movement of solid spheres. However, the author
does not in any way consider the technical problems raised by such a
presentation and does nothing to resolve the astronomical or mathematical
difficulties which arise. But in the famous Doubts on Ptolemy, we have al-
Îasan on an incomparably higher theoretical and technical level than in The
Configuration of the Universe, criticizing the configuration of the universe
as seen by Ptolemy. Within these pages, al-Îasan shows all the required
technical skills to deal with the problem of the relation between geometric
and astronomical models and the physical description of the universe. This
begs the question: is this book, attributed to al-Îasan in Arabic as well as in
Latin and Hebrew translation, really his?56 Could he have written it in his
youth? But if this were the case, he would have said so: he usually did: in his
work in mathematics, his research on lunes;57 in astronomy, his treatise on
The Movements of Each of the Seven Planets;58 and in optics, in his famous
Kitæb al-Manæzir (Optics).59

54 See Supplementary Notes [1] and [2].
55 This text was edited and translated into English; Y. Tzvi Langermann, Ibn al-

Haytham’s On the Configuration of the World, New York/London, 1990.
56 Had people taken MuÌammad’s work for that of al-Îasan, because of the nature

of the titles and of the mathematical and astronomical prestige of the latter? If this substi-
tution did take place, it is relatively early – that is well before the thirteenth century, as it
was already apparent from al-Khiraqî’s book Kitæb muntahæ al-idræk fî taqæsîm al-aflæk,
ms. Paris, BN 2499 (and he died in 527/1132). This latter work describes the idea of On
the Configuration of the Universe without actually naming the book. He attributes the
idea to Abº ‘Alî ibn al-Haytham and goes on to review it. He writes (fol. 2v): ‘Abº ‘Alî
ibn al-Haytham exaggerated in this description and did not prove anything of the theories
he advanced but restricted himself to describing the modality of the positions of the
spheres and their rotation with the planets according to the order and arrangement given in
their (astronomers) books’. See also Supplementary Note [2].

57 Vide infra, Chapter I.
58 In this treatise Ibn al-Haytham revisits his previous works; he tackles afresh the

problem of distances of the sun and the planets. He writes in his introduction: ‘Let it be
known that whosoever examines this book and other works before this and finds
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Are there – apart from in these two texts – other common titles? It is
tempting to consider adding a third work on analysis and synthesis to the
list, but this would not really stand up to scrutiny. Al-Îasan did in fact write
a treatise on Analysis and Synthesis60 (Fî al-taÌlîl wa-al-tarkîb), whereas
under the name of MuÌammad there is: Kitæb fî al-taÌlîl wa-al-tarkîb al-
handasiyyayni ‘alæ al-tamthîl li-al-muta‘allimîn wa-huwa majmº‘ masæ’il
handasiyya wa-‘adadiyya Ìallaltuhæ wa-rakabtuhæ (Book on Geometrical
Analysis and Synthesis Including – for Students – a Collection of
Geometrical and Arithmetical Problems which I have Composed and
Solved). These are two very different titles with two very different
approaches. Al-Îasan’s treatise is in fact, by the author’s own admission,
very closely linked to another treatise written by him immediately
afterwards, On the Knowns (Fî al-ma‘lºmæt).61 In these two texts, al-Îasan
examines the problems of the fundamental principles of mathematics – such
as the existence of a general geometrical discipline – and develops the
theory of demonstration; whereas MuÌammad’s title tells us of his intention
without any ambiguity, which is to teach students, using geometrical and
numerical examples, how to proceed to the solution of problems by means

differences in what is said about distances should know that this is because this book
records distances of planets with extreme precision whereas the previous works recorded
distance according to the conventional method used by mathematicians’ (see our edition
and commentary in Les Mathématiques infinitésimales, vol. V, p. 267, 11–15).

59 Ibn al-Haytham writes in his Book on Optics (Kitæb al-ManæÂir, Books I–II–III,
ed. A. Sabra, Koweit, 1983, p. 63; The Optics of Ibn al-Haytham, London, 1989,
p. 6): ‘We formerly composed a treatise on the science of optics in which we often follo-
wed persuasive methods of reasoning; but when true demonstrations relating to all objects
of vision occurred to us, we started afresh the composition of this book. Whoever, there-
fore, comes upon the said treatise must know that it should be discarded, for the notions
expressed in it are included in the content of the present work.’ This is very likely the
treatise by Ibn al-Haytham mentioned as number 27 in Ibn Abî UÒaybi‘a’s list and as
number 26 in the Lahore manuscript, entitled Treatise on Optics according to the
Method of Ptolemy – Maqalæ fî al-manæÂir ‘alæ †arîqat Ba†lamiyºs.

60 See our study ‘L’analyse et la synthèse selon Ibn al-Haytham’, in R. Rashed
(ed.), Mathématiques et philosophie de l’antiquité à l’âge classique, Paris, 1991,
pp. 131–62; and ‘La philosophie des mathématiques d’Ibn al-Haytham. I: L’analyse et
la synthèse’, MIDEO 20, 1991, pp. 31–231, where al-Îasan ibn al-Haytham’s treatise
is edited and translated into French. See now Les Mathématiques infinitésimales, vol.
IV: Méthodes géométriques, transformations ponctuelles et philosophie des
mathématiques, London, 2002.

61 Cf. our edition and French translation in ‘La philosophie mathématique d’Ibn al-
Haytham. II: Les Connus’, MIDEO 21, 1993, pp. 87–275; Les Mathématiques infi-
nitésimales, vol. IV.
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of analysis and synthesis. The first is addressed to mathematicians interested
in the fundamental principles of their discipline and is intended, as the title
suggests, as an original study, whereas the other is written as a textbook.

It could therefore be said that, out of the ninety-two books and
dissertations attributed by Ibn Abî UÒaybi‘a to al-Îasan, only two of those
titles also figure amongst the ninety-two titles attributed to MuÌammad, and
both these titles bring with them problems of attribution and authenticity. It
could therefore be concluded that the list of works attributed to MuÌammad
and the list of works attributed to al-Îasan are totally separate.

IX. All books and dissertations attributed to al-Îasan are intended for
research purposes: they all contain solutions to scientific problems raised
either by him or by one of his predecessors. Even when he gives a
commentary on previous works, his aim is to show the difficulties he
encountered and to propose new solutions: one only has to read the
Commentary on Euclid’s Premises or Resolution of the Doubts in Euclid’s
Book and his Dubitationes in Ptolemaeum to see this. Close examination of
the titles shows that they correspond exactly to the content of the books; in
fact, it is in these books that al-Îasan reveals his views in some depth. It is
also a fact that al-Îasan never composed summaries that aimed at
facilitating the access of students to the books of contemporary writers or
those of an earlier age, with the exception, perhaps, of Discourse on Light
which condenses the major theories of his Book on Optics.

Another distinguishing feature of al-Îasan’s works, and equally
important, is that all the titles are about mathematics, astronomy, optics and
construction of mathematical instruments. It is a completely different story
for MuÌammad: his works are in the main summaries of and commentaries
on the writings of earlier writers: Euclid’s Elements and Optics; Apollonius’
Conics (some of the books at least); Ptolemy’s Almagest and Optics;
Aristotle’s Physics, Meteorology, and De Animalibus, etc. On the other
hand, MuÌammad’s writings on mathematics, astronomy and optics
represent, at the most, one third of the whole of his work, with the other
two thirds devoted to philosophical and medical works.

In order to better appreciate his style, let us look more closely at an
example of one of the books: The Summary by MuÌammad Ibn al-Îasan
ibn al-Haytham of the Book of Menelaus on the Recognition of Quantities
of Different Substances Mixed Together. He writes:

I studied the book of Menelaus on the method of distinguishing the
weights of various different substances such as gold, silver and copper
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contained within a composite in order to find the quantity of each of the
substances in the composite without altering its form; I subsequently found
the experiments and demonstrations to be unclear and problematical for any
one who would wish to use them for this purpose; I therefore summarised
and rationalised this treatise and proved it in such a way so that it would be
completely clear to anyone with a conceptual understanding of geometry.62

This kind of practice is not restricted to this treatise; it can also be seen,
for example, in his commentary on the Almagest.

X. As mentioned above, there are at least two books known to have
been written under the name of MuÌammad ibn al-Îasan ibn al-Haytham:
the Commentary on the Treatise of Menelaus as well as the Commentary on
the Almagest. The latter is especially important as it confirms certain facts
related by MuÌammad in his own autobiography. This point will be
discussed further later.

This commentary exists in a manuscript in the Ahmet III collection in
the Topkapi Saray Museum in Istanbul, no. 3329 (2) in 124 folios, copied in
655/1257. But this unique manuscript is not complete. On the first line we
see the name MuÌammad ibn al-Îasan ibn al-Haytham in its entirety, which
then appears in the shortened version of MuÌammad ibn al-Îasan in the
body of the text.63 This does not in itself pose a problem for the attribution
of the treatise. However this commentary does appear as a title on the list of
works by MuÌammad, copied by Ibn Abî UÒaybi‘a, and in the Lahore
manuscript.

In the first of his two autobiographical lists, MuÌammad does in fact
note as his third book: ‘The Commentary on the Almagest, and the
summary thereof in an attempt to elucidate it, with a preliminary
explanation using calculations. If God grants me life and time enough to do
it, I will return again to the commentary in a more comprehensive manner
and in accordance with numerical and calculatory methods.’64 This
corresponds exactly to what is contained in the preamble to his
commentary:

I found that the main intention of the majority of those who have given
their commentary on the Almagest  was to describe the chapters on

62 Lahore manuscript, fols 44–51, under the name of MuÌammad ibn al-Îusayn ibn
al-Haytham. A second copy can be seen under the name of MuÌammad ibn al-Îasan ibn
al-Haytham in the ms. 81 (Medicine and Alchemy) by Nabî Khæn.

63 Fol. 121v.
64 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 93. A. Heinen, ‘Ibn al-HaiÚams

Autobiographie’, p. 262.
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calculation and to expand them, revealing aspects other than those revealed
by Ptolemy, without clarifying those chapters containing ideas too obscure
for beginners.

MuÌammad goes on to criticize al-Nayrîzî as follows:

in this way al-Nayrîzî filled his book with endless variations of the same
chapters on calculation, motivated by the desire to inflate and glorify what
he wrote.

MuÌammad then sums up his own efforts in these terms:

I had the idea of setting out a proposition in the commentary of this book,
the Almagest, where my principal objective would be to elucidate subtle
ideas for the benefit of students. I would add to this a commentary on the
calculation of the zijs; Ptolemy had not given prominence to these
calculations, abridging them and even omitting them from this work, relying
on agile minds to find solutions for themselves and to arrive at deductions
using the principles he referred to in his book.65

This perfect correspondence between the autobiography and the
Commentary on the Almagest is not the only one; there is a second
coincidence, equally remarkable, again concerning the Commentary.
MuÌammad writes, in the course of his commentary on shadows: ‘Ibræhîm
ibn Sinæn, mentioned this in his book, and I have myself commented on the
question of shadows, their properties and all related astronomical questions,
in an independent book.’66 Let us now return to the autobiographical list of
MuÌammad: he has on his list at number 21: ‘a book on the instrument of
shadow, which is an abridged summary of the book of Ibræhîm ibn Sinæn
on the same subject (Kitæb fî ælat al-Âill ikhtaÒartuhu wa-lakhaÒtuhu min
kitæb Ibræhîm ibn Sinæn fî dhælika)’.67 Not only do we see a perfect
agreement between the Commentary and the autobiography, but he
categorically states that his book on shadows is none other than an abridged
version of Ibn Sinæn’s work.68

65 Ms. Ahmet III, 3329/2, fol. 1v.
66 Ibid., fol. 91r.
67 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, vol. II, p. 94; A. Heinen, ‘Ibn al-HaiÚams

Autobiographie’, p. 264.
68 We see from an autobiographical list of Ibræhîm ibn Sinæn that he wrote a book on

The Instruments of Shadows (Ælæt al-aÂlæl). See R. Rashed and H. Bellosta, Ibræhîm
ibn Sinæn. Logique et géométrie au Xe siècle, Leiden, 2000, p. 8. It is possible that this
commentary of Ibn Sinæn’s book has been confused with a book by al-Îasan ibn al-
Haytham, Maqæla fî kayfiyyat al-aÂlæl (On the Formation of Shadows) and yet the com-
mentary of the Almagest has been incorporated in the list of works of al-Îasan. Cf.
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We now intend to leave this investigation of the correspondence
between the autobiography and the Commentary of the Almagest in order
to examine its style and composition. We can see that, just as in the
Commentary on the Book of Menelaus, it is a summary and an explanation
for teaching purposes. If further proof were needed, one has only to read
MuÌammad’s review of all Nayrîzî’s work as well as the wording of his
own project. At times, it is unmistakably a student audience that he is
addressing: ‘Know ye, o beginner (I‘lam ayyuhæ al-mubtadi’).’ This
pedagogical style seems to pervade the book. MuÌammad  himself,
throughout his commentary, develops his philosophical arguments at length
– in true Hellenic/Islamic tradition – and it is not unusual to find him
introducing a philosophical argument at the end of a piece of mathematical
reasoning. It must be acknowledged that MuÌammad peppers his books
with a fair number of scholars: Euclid, Archimedes, Apollonius, Autolycos
of Pitania, Hypsicles, al-Nayrîzî, the Banº Mºsæ, Thæbit ibn Qurra, his
grandson Ibn Sinæn, and even Galen.

So it would seem that the only way to identify MuÌammad and al-
Îasan would be by accepting some errors and contradictions along the way.
There is no written evidence that he produced a commentary on the
Almagest – nothing in a catalogue of his works – not even a reference
within other works of his, nor is there any evidence that he wrote a
commentary and summary of Ibn Sinæn’s book on shadows. As a
generalization, one could say that there is no record of his ever having
produced either an abridged or a summarized work of commentary. When
he composed commentaries – such as the one on the Elements – it was to
demonstrate the internal difficulties of the book, its inherent structure and
sequence of proofs. Moreover, the stylistic markers which we have picked
up in MuÌammad’s work are completely foreign to al-Îasan’s work. Al-
Îasan did not address himself to beginners, or resort to a philosophical
argument to conclude a piece of mathematical reasoning, and, apart from
the introduction, where he sets out the problem, he is fairly economical with
references and names.

There is more to come: this Commentary of the Almagest contains
developments of arguments which run counter to those mentioned in the
writings of al-Îasan, even in his youth. For example, the Commentary of
the Almagest attempts to explain the phenomenon of the magnification of
objects immersed in water – and in turn the phenomenon of ‘lunar illusion’
(the magnification of planets on the horizon) – in terms of reflection. This

A. Sabra, ‘Ibn al-Haytham’, Dictionary of Scientific Biography, vol. VI, pp. 206–8.
See Supplementary Notes.
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explanation would have been based to some degree on a text by al-Kindî,
which indicated that the author had no knowledge of refraction.69 As for al-
Îasan, he belonged to a different optical tradition, which was more in tune
with Ibn Sahl. He knew from a very early stage about the rules of
refraction,70 and he applied this knowledge in his early works on The
Visibility of Stars,71 where he deals with this same question of lunar illusion.
For further evidence of style and knowledge, we can also look at
MuÌammad’s way of studying the isepiphanic problem: The Sphere is the
Largest of the Solid Figures with Equal Surfaces. There are many different
elements in this work which would indicate that this is not a book to
attribute to al-Îasan, even if there had been no confusion between himself
and MuÌammad.

XI. In conclusion then, the titles as well as the content of the extant
works of al-Îasan prove that their author not only contributed to optics and
astronomy (a critique of the Ptolemaic model), but also to mathematics
(Archimedean mathematics, theory of conics). He was also responsible for
the application of the theory of conics to geometrical construction, the
theory of numbers, and the creation of geometrical instruments. All of this
work provided essential building blocks for the science of mathematics. But
we can find no evidence of studies in medicine or philosophy (in the Hellenic
tradition), except a short tract on ethics.

Whereas with MuÌammad we encounter a philosopher, a medical
theoretician, who is well versed in the current mathematical learning of his
day, and particularly astronomy. This would also have been the case for
philosophers in the Hellenistic/Islamic tradition such as al-Kindî, al-Færæbî
and Avicenna. According to letters to contemporaries and notes on various
locations where works were produced, he seems to have lived in Baghdad
and in southern Iraq.

All these facts are perfectly checkable; and they illustrate how the
confusion in identity arose between the mathematician and the philosopher.
In fact, the misunderstanding must be laid at the door of Ibn Abî UÒaybi‘a,
since the source he used for his work does not confuse the two. (This can be
clearly seen in the Lahore manuscript.) The similarity of both names, and
the fact that the philosopher wrote commentaries on mathematical,

69 R. Rashed, ‘Fºthi†os (?) et al-Kindî sur “l’illusion lunaire”’, in M.-O. Goulet,
G. Madec, D. O’Brien (eds), SOFIHS MAIHTORES . Hommage à Jean Pépin, Paris,
1992.

70 R. Rashed, Geometry and Dioptrics.
71 Mss Lahore, fols 36–42; Tehran, University Library 493, fols 29r–36r.
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astronomical and optical books, could well have been the source of the
confusion; and once there was an amalgam of the two persons, this created
an amalgam of the written works.

Obviously, the discussion of the problem which has been opened here
requires more historical and biobibliographical research, and one hopes this
is a task which will be undertaken in the future. It is also to be hoped that a
clearer picture of al-Îasan will emerge, together with a better understanding
of his works. Perhaps at the same time it will be possible to reveal more
about MuÌammad’s works on philosophy and logic, given his relationship
with Ibn al-SamÌ and Ibn al-™ayyib of the Baghdad School, whose works
are likely to contain items of great interest.72

3. THE WORKS OF AAAALLLL----ÎÎÎÎAAAASSSSAAAANNNN  IBN AL-HAYTHAM ON INFINITESI-
MAL MATHEMATICS

Making the distinction between al-Îasan and MuÌammad gives us a
very clear picture of the mathematician and the philosopher, and when we
shed new light on their works, we raise even more questions. We can no
longer avoid investigating the authenticity of the works of the
mathematician. In fact, we have already given examples of books bearing his
name, where the authenticity was, to say the least, doubtful. Surely these
works are worth investigating in greater depth? This applies primarily to
those writings which fall into the shadowy area where treatises appear on
both lists under the same title. Much more surprising are those books
specifically attributed to MuÌammad, which, without any hesitation or
further investigation, historians have equally happily ascribed to al-Îasan.
To the best of my knowledge, no one has examined the content and style of
the Commentary of the Almagest by MuÌammad, nor his Commentary on
Menelaus, nor has anyone looked into the authorship of Asymptotes73 (a

72 For further arguments, see Supplementary Notes and Les Mathématiques
infinitésimales, vol. III, pp. 937–41 and vol. IV, pp. 957–9.

73 We have previously commented that MuÌammad mentioned in his autobiographi-
cal list a treatise on asymptotes. As for al-Îasan, there is nothing anywhere in a catalogue
of his writings, nor in his own statements, to suggest that he might have written a disser-
tation on this topic. However there is a Treatise on the Existence of Two Lines which
Draw Closer but do not Touch – Risæla fî wujºd kha††ayyn yaqrubæn wa-læ yaltaqiyæn,
ms. Cairo, Dær al-Kutub 4528, fols 15v–20r. This text is anonymous but the copyist
writes in the colophon: ‘It is possible to say from the style of writing that this is Ibn al-
Haytham’s work (wa-yufham min ‘ibærætihæ annahæ ta’lîf Ibn al-Haytham)’ without
explaining the reasons which led to this conclusion. We have ourselves edited, translated
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work which appears on MuÌammad’s list in his own handwriting), before
attributing it to al-Îasan.

And there are those today who would attribute even more works to him
that he did not write.74

and analysed this text (‘Le pseudo-al-Îasan ibn al-Haytham: sur l’asymptote’, in
R. Fontaine, R. Glasner, R. Leicht and G. Veltri (eds), Studies in the History of
Culture and Science. A Tribute to Gad Freudenthal, Leiden/Boston, 2011, pp. 7–41)
and we can confirm without a shadow of a doubt that this is not the work of al-Îasan ibn
al-Haytham. Could it be by MuÌammad ibn al-Haytham? It is actually the kind of
commentary which we have come to expect from him. But this is not sufficient reason to
attribute the text to him and the question remains open whilst we await the discovery of
new evidence.

74 Apart from the Commentary on the Almagest, A. Sabra (‘Ibn al-Haytham’, p.
208) attributes to al-Îasan ibn al-Haytham an anonymous text – Library Medicæ
Laurenziana, or. 152, fols 97v–100r – entitled: Kalæm fî taw†i’at al-muqaddamæt li-‘amal
al-qu†º‘ ‘alæ sa†Ì mæ bi-†arîq Òinæ‘î (Introduction to the Lemmas for the Construction
of Conic Sections by the Mechanical Method). The arguments invoked in favour of this
attribution are the following: firstly, in his treatise On Parabolic Burning Mirrors, Ibn al-
Haytham makes reference to an instrument used in the construction of conic sections; and
secondly, this fragment follows on directly from a manuscript of this treatise in the same
manuscript from Florence.

Al-Îasan ibn al-Haytham, it is true, mentions in his treatise On Parabolic Burning
Mirrors an instrument to construct conic sections. We have discussed this question and
shown that the idea of this particular instrument and this particular construction is found
in Ibn Sahl’s tradition (Geometry and Dioptrics, pp. 297ff.). But does this fragment
from Florence represent part of the treatise, or is there even a small chance that it might be
by Ibn al-Haytham? Examination of the text shows that this is not the case; it is full of
elementary mathematical errors and is the work of a much inferior mathematician. More-
over there is no real argument to support such a conjecture: the following two examples
will serve to prove that the Florence manuscript could not be by al-Îasan.

1) The author wants to prove:
Let AB be a segment, let C be a point on AB and

let Ax, By, and Cz be perpendiculars to AB. If the two
points E and D on Cz are such that

(1)  CE · CB = CA · CD,

then the straight lines AE and BD intersect By and Ax
respectively at H and G, and AG = HB.

ACB

D

H

zy x

G

E

The author derives from (1) that
CE

CA

CD

CB
= .

However
CE

CA

HB

AB
=   and  CD

CB

AG

AB
= ;
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It is true that the situation is not quite as dramatic as it seems. But we
should really re-examine al-Îasan’s scientific works, and in particular, those
which fall into this confused area. The kind of rigorous critical review which
was once upon a time considered the norm requires the application of
various methods. The most immediate task, which is also the simplest, is to
carefully compare the available catalogue of works of al-Îasan, and to
research all cross-references made by him to his works as well as any
mention of his treatises by later writers. In supplementary notes to this
volume, we have set out a table which gives all the information we have
gathered so far. Although not complete, this table will, in the fullness of time
and with the addition of new research, become something more important.
As it stands, it is more of a preliminary work, which does not deal at all with
the study of each group of writings according to their content and language.
And it will only be at the very end of our various lines of enquiry that we
can hope to resolve the question of authenticity, which affects the whole
body of work.

therefore HB = AG.
So it is clear that, if C is chosen randomly, then it is not possible, as the author

wishes, to restrict the condition that CD < CE.
In fact, according to the hypothesis,

CD < CE if CA > CB,
CD = CE if CA = CB,
CD > CE if CA < CB.

2) The first proposition is devoted to the construction of a parabola knowing the
vertex B, the axis AB and a point C on the parabola.

The author gives a construction by points, beginning with the equation y2 = ax.
With the projection of C on the axis being point D,

construct on BD a rectangle DE so that BD · BE =
CD2; the length BE is the latus rectum of the parabola
BE = a.

However, the author does not explain the
construction of rectangle BDOE. Let Hx be a perpen-
dicular to AB, construct F so that HF = BE = a; the
circle with diameter BF intersects Hx at point G, so
that HG2 = HB · HF; point G is therefore on the para-
bola and so is its symmetrical point G′.

The construction is repeated, taken from another
point I on the axis and with points K and K′.
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H F

G

O
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x y

G C

K
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′

I

The proof of this lemma as well as the proposition leaves a lot to be desired and
could not possibly have come from a mathematician in the same class as Ibn al-Haytham.
The text is peppered with other faults of this kind, and some more serious. The fact that
this anonymous fragment comes after a text by Ibn al-Haytham does not seem sufficient
reason to attribute it to him.
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Our aim here is more modest: and that is, to consider this problem of
authenticity – but only insofar as it relates to the group of al-Îasan’s
writings on infinitesimal mathematics. In fact our task here is easier than for
other groups of his writings: there is no title of al-Îasan on infinitesimal
mathematics which appears in the grey area. There is only one title on the
list of MuÌammad  which deals with this subject and that is On  the
Asymptotes; this means that the writings which we know of are the most
advanced research works of the day – the most difficult – and could only be
the work of an eminent mathematician, that is, al-Îasan  and not
MuÌammad.

The following lists of al-Îasan’s works indicate the kind of treatises he
wrote: List I is drawn up by al-Qif†î; List II by Ibn Abî UÒaybi‘a, and List
III (incomplete) from the Lahore manuscript.

INFINITESIMAL MATHEMATICS75 I II III

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII

On the Lunes
On the Quadrature of the Circle
Exhaustive Treatise on the Figures of Lunes
On the Measurement of the Paraboloid
On the Measurement of the Sphere
On the Division of Two Different Magnitudes
On the Sphere which is the Largest of all the Solid Figures...
On the Greatest Line lying in a Segment of Circle
On the Indivisible Part
On the Sum (or all) of the Parts
On Centres of Gravity
On the Qaras†ºn (infinitesimal mechanics)

6
15
—
5
33
46
28
—
32
45
—
—

20
30
21
17
16
40
26
81
65
32
14
67

18
23
21
20
14
41
25
Part
62
30
12
Part

*
*
*
*
*
*
*

APPROXIMATION OF ROOTS
1
2

On the Cause of the Square Root
On the Extraction of the Side of the Cube

25
24

70
47

Part
43

*
*

None of these titles appears on MuÌammad’s own lists of his works.

The first twelve titles (to which, if ever it was written, should be added
the treatise referred to in II by al-Îasan) seem on the face of it to divide
nicely into the following four groups, to which we will return in greater
detail later:

1) quadrature of lunes and of a circle;
2) measurement of curved solids;
3) isoperimetric and isepiphanic problems
With the exception of VIII, works in the above-mentioned groups have

all come down to us. And although IX remains lost, we can tell from the

75 * means: ms. available; – means: it is missing.
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title that it would probably have dealt with the proof of infinite division. This
was a hotly debated issue at the time, as we can see from the work of al-
Sijzî, one of Ibn al-Haytham’s predecessors.76 The tenth title remains
obscure: perhaps this was where Ibn al-Haytham discussed the sum of parts
in infinite numbers.

4) This last group is made up of treatises XI and XII. Sadly, however,
these two obviously important works remain lost and the only surviving
remnant we have is a meagre abstract in the hand of al-Khæzinî. It is largely
a list of definitions which he describes as being ‘after Abº Sahl al-Qºhî and
Ibn al-Haytham al-MiÒrî’.77

We will add, as an appendix to the treatises which deal with infinitesimal
mathematics, two further texts: one on the extraction of the square root and
the other on the extraction of the cube root. By including these treatises,
however, we do not mean to imply that Ibn al-Haytham specifically
proposed a clear relationship between the problem of approximation
encountered in these cases and the problems of infinitesimal geometry. We
will explain our reasons for this in due course.

We will now translate the nine treatises known to us.78 The first of these
texts was considered lost until now and the treatise dealing with the square
root was unknown. With the exception of the treatise on the Quadrature of
the Circle, this is the first time any of these texts have been edited. In order
to clarify them, we have observed the strictest of rules of research which we
have explained many times before. Let us briefly look at the manuscripts
which we have used for the edition of these texts.

I. Treatise on the Lunes – Qawl fî al-hilæliyyæt

Al-Qif†î cites a treatise On the Figures of Lunes (Fî al-ashkæl al-
hilæliyya) written by Ibn al-Haytham. As this is the only title he quotes, it
would be reasonable to wonder whether he meant this treatise or treatise III.
But in the Lahore manuscript, where we see reference to both treatises, the
former has the same title as in al-Qif†î’s work, which would lead one to

76 R. Rashed, ‘Al-Sijzî et Maïmonide: Commentaire mathématique et philosophique
de la proposition II-14 des Coniques d’Apollonius’, Archives internationales d’his-
toire des sciences 37.119, 1987, pp. 263–96; id., Œuvre mathématique d’al-Sijzî.
vol. I: Géométrie des coniques et théorie des nombres au Xe siècle, Les Cahiers du
Mideo 3, Louvain-Paris, 2004.

77 Al-Khæzinî, Mîzæn al-Ìikma.
78 The Arabic edition of all these treatises is published in Les Mathématiques infi-

nitésimales, vol. II.
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believe that this is the treatise to which al-Qif†î refers. Ibn Abî UÒaybi‘a also
cites the two treatises, attributing both to al-Îasan, but gives the title as the
Abridged Treatise on the Figures of Lunes (Maqæla mukhtaÒara fî al-
ashkæl al-hilæliyya). Perhaps the term ‘abridged’ (mukhtaÒara) – used by
Ibn al-Haytham in the second treatise to describe the first one – was put in
to distinguish the one from the other. (Note here that the term mukhtaÒara
means ‘succinct’ and not a summary of a text already written.)

So we can see that this text had already been cited twice by Ibn al-
Haytham: in the Exhaustive Treatise on the Figures of Lunes and in the
treatise on the Quadrature of the Circle. Both these references can be
verified, and they provide all the more evidence of an authentic work. We
have had the great good fortune to have seen a single manuscript containing
the entire collection of the works of Ibn al-Haytham. This has come from
the ‘Abd al-Îayy Collection, housed in the university library of Aligarh in
India, no. 678/55. It was copied in 721/1321–22 in al-Sul†æniyya, in
nasta‘lîq script, in 45 folios. However, the examination of the manuscript
reveals that it has been damaged, probably recently: some sheets are missing
and the forty-five remaining are in disorder, and there are traces of
humidity. Each folio measures 218 ×  76mm, with 33 lines on each page and
approximately 9 words per line. This collection includes the following works
of Ibn al-Haytham: The Measurement of the Sphere; The Quadrature of the
Circle; The Cause of the Square Root (the texts which are translated here).
There are also: The Burning Mirrors; The Resolution of Doubts on the First
Book of the Almagest; The Construction of Great Circles using a Small
Instrument or On the Compasses of the Great Circles, and a fragment of
The Lemma on the Regular Heptagon. It also contains the commentary by
al-Ahwæzî on the 10th book of the Elements. The text on the lunes covers
fols 14v–16v.

II. The Quadrature of the Circle (Qawl fî tarbî‘ al-dæ’ira)

This title is on the three lists of works by Ibn al-Haytham (al-Qif†î, the
Lahore manuscript, and Ibn Abî UÒaybi‘a) and is cited in his treatise On the
Resolution of Doubts on Euclid’s Book.79 However this short tract is often
found as part of the Intermediate Books (al-Mutawassi†æt), in the majority
of collections of manuscripts. We have therefore edited this text using only
manuscripts which we have been able to examine at first hand and not the
whole range of those which we know to exist. The following is a list of those
manuscripts:

79 Ms. Istanbul, University 800, fol. 167r.
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A - Istanbul, Aya Sofya 4832 II/21, fols 39v–41r

B - Patna, Khudabakhsh 3692, without numbering, 3 folios
C - Istanbul, Carullah 1502/15, fols 124v–126r

D - Tehran, Danishgæh 1063, fols 7r–9v

E - Aligarh, ‘Abd al-Îayy 678, fols 10r–11v, 30v–30r

I - Tehran, Majlis Shºræ 205/3, fols 93–101
K - Tehran, Malik 3179, fols 107v–110r

M - Meshhed 5395/1, fols 1v–3r

R - Istanbul, Beshir Aga 440, fol. 151r

T - Tehran, Sepahsælær 559, fols 84v–85r

X - Tehran, Majlis Shºræ 2998, 1 folio without numbering
V - Roma, Vatican 320, fols 1v–6v

It should be noted that
1) manuscript R does not contain the text of Ibn al-Haytham, but merely

a commentary added to it;
2) manuscript from Cairo, Dær al-Kutub, Taymºr – Riyæ≈a 140 (fols

136–7) is not Ibn al-Haytham’s text, but a summary and a later
commentary;

3) two manuscripts of the text of Ibn al-Haytham found in Berlin before
the Second World War – fol. 258 and quart. 559 – which were consulted by
H. Suter, have since been lost;80

4) the objection which is to be found at the end of Ibn al-Haytham’s text
only appears in manuscript E.

It would be too long and tedious to give results of the examination of all
these manuscripts and their comparison here. In any case, such an
examination would not provide an authentic stemma, but merely a
classification by group which would indicate the history of the manuscript
tradition and which might be represented thus:

{ ( B, T, K), ([D, (I, M), X, C], A) } and {E, V}.

There are two main families, the first made up of three sub-families, and
the second sub-family in its turn made up of three sub-families.

80 We are indebted to Dr. H.O. Feistel, Staatsbibliotek, Orientabteilung, for this
information.
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H. Suter prepared a draft copy of the text of this treatise, working from
two manuscripts in Berlin (since lost) and the Vatican manuscript.81 This
work, not least as a translation of the treatise into German, has provided a
valuable research tool for historians.

III. Exhaustive Treatise on the Figures of Lunes – Maqæla mustaqÒæt fî
al-ashkæl al-hilæliyya

This is exactly how the title of this work appeared in two lists of the
writings of al-Îasan – both in the Lahore manuscript list and in the Ibn Abî
UÒaybi‘a list. It was even used by al-Îasan himself in his book On the
Resolution of the Doubts on Euclid’s Elements where he writes:

We have written a treatise on the figures of lunes in which we demonstrated
that amongst lunes there are those which are equal to a right-angled
triangle. The Ancients stated a part of this; however, this statement was
particular; that is to say ‘limited’ to a single lune – constructed on the side
of a square inscribed in a circle. But what we have shown here is of
universal <application>; we have considered and revealed cases of all
different kinds of lunes. We can say that the lune is surrounded by two arcs
and yet is equal to a right-angled triangle, which is to say that the area of
the lune is equal to the area of a triangle. Thus it can be shown that
although the two arcs surrounding the lune are not in direct proportion to
the sides of the triangle, this does not rule out the equality of their areas. We
have also shown that the sum of a lune plus a complete circle equals a
triangle. We also have an independent treatise (mufrada) in which we have
shown that it is possible that a circle be equal to a square.82

The above description by Ibn al-Haytham and his mention of the
different kinds of lunes apply to this treatise and not to treatise I. This
treatise actually contains five propositions, including those of Hippocrates of
Chios. Ibn al-Haytham also mentions here his own treatise on The
Quadrature of the Circle.

This treatise has come down to us in its entirety in four manuscripts, to
which we may add a very important fragment.

This text was in fact part of a very fine collection of the writings of al-
Îasan ibn al-Haytham, held in St. Petersburg, and copied on an autograph:
manuscript B1030, Oriental Institute 89, fols 50r–72v, and 133v–144r. This
manuscript was checked against Ibn al-Haytham’s autograph in 750/1349,
as we can see from information on the first page, and the whole collection is

81 H. Suter, ‘Die Kreisquadratur des Ibn el-HaiÚam’, Zeitschrift für Mathematik
und Physik 44, 1899, pp. 33–47.

82 Ms. University of Istanbul 800, fol. 167r.
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in the same hand, a rather mediocre nasta‘lîq. Within the text there are four
omissions of exactly one phrase each and eleven omissions of one or two
words each. This manuscript is denoted as L in the following stemma.

The second manuscript is Octavo 2970 from the Staatsbibliothek of
Berlin, copied at Samarkand in nasta‘lîq. Our text, copied in 817/1414,
covers fols 24r–43v (denoted as B). The geometrical figures are no longer
visible – at least on the microfilm available to us. There are four omissions of
one phrase each and nine omissions of one or two words.

The third manuscript is from the ‘Æ†if Library in Istanbul, no. 1714, fols
158r–177v (denoted as T). We have shown that this manuscript was copied
from the second, and only from this one.83

The fourth manuscript is from the India Office in London, no. 1270/12,
Loth 734, fols 70r–78v (denoted as A). We do not have the date of its
transcription, which could have been tenth century Hegira. This text has two
omissions of one phrase each and nine of one or two words.

The fifth manuscript is the fragment we found. It is the famous FætiÌ
3439 manuscript from the Süleymaniye Library in Istanbul. This manuscript
had been copied in 806/1403–44 and our fragment is found in fols 115r–
117r (denoted as F). It is difficult to read due to the faded ink, but we can
see four omissions of one phrase and eleven omissions of one or two words.

By examining omissions found in each individual manuscript as well as
omissions common to all manuscripts, along with various additions, spelling
and other mistakes, we can suggest the following stemma:

Autograph

L
B

T

A

F
x

x

IV. Treatise on the Measurement of the Paraboloid – Maqæla fî
misæÌat al-mujassam al-mukæfî’

Mentioned in three lists of works by Ibn al-Haytham, it is also cited by
him in his Treatise on the Measurement of the Sphere. Our original edition
was published in 1982, then slightly amended in the light of information
obtained from the 1270 India Office manuscript (already referred to), fols

83 See particularly Geometry and Dioptrics, p. 37.
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56v–69v.84 H. Suter has done a ‘free’ translation of this text into German.85

By ‘free’ I mean that the translator often gives the sense of the text without
following it to the letter, and even misses out certain paragraphs, especially
those where translation would be problematic. On the whole, H. Suter
explains the content of the text in a precise manner with the exception of a
few paragraphs and the last part.

V. Treatise on the Measurement of the Sphere – Qawl fî misæÌat al-
kura

This appears on Ibn al-Haytham’s list of works, which he cites in his
Treatise on the Principles of Measurement. He writes ‘As for the sphere,
the method of measurement is … which we have also shown in another
separate treatise (fî qawl mufrad).’86

This text was available to us in five manuscripts: the first, referred to
earlier, is from the Staatsbibliothek in Berlin Octavo 2970/13, and appears in
fols 145r–152r (this manuscript is denoted as B in the stemma). It was copied
in 839/1435–6, as indicated in the colophon. The geometrical figures are
illegible and there are three omissions of a phrase and two omissions of one
word.

The second manuscript is the 1714/20, fols 211r–218r, from the ‘Æ†if
library in Istanbul, denoted as T. This is in fact, as we have said earlier, a
straight copy of the one which came before, and from no other source.

The third manuscript is the Aligarh (India) manuscript, already
described, fols 1r-5r and 13v–14v (denoted as O). This manuscript has
fourteen omissions of a single phrase and twenty-six omissions of one or
two words. The copyist not only copied from the original, but, as is clear
from the critical apparatus, also used another copy.87

The fourth manuscript, mentioned earlier, is B1030 from St. Petersburg
– Oriental Institute 89 (denoted as L). Several pages are missing, and the

84 R. Rashed, ‘Ibn al-Haytham et la mesure du paraboloïde’, Journal for the His-
tory of Arabic Sciences 5, 1982, pp. 191–262; Les Mathématiques infinitésimales,
vol. II.

85 H. Suter, ‘Die Abhandlung über die Ausmessung des Paraboloides von el-Îasan
b. el-Îasan b. el-ÎaiÚam’, Bibliotheca Mathematica, 3rd series, 12, 1911–12,
pp. 289–332.

86 Les Mathématiques infinitésimales du IXe au XIe siècle, vol. III: Ibn al-
Haytham. Théorie des coniques, constructions géométriques et géométrie pratique,
London, 2000, p. 610; Arabic p. 611, 8.

87 Les Mathématiques infinitésimales, vol. II, p. 311, 1.
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beginning of the text is incomplete: there only remains a fragment of the
very end, fols 73r–77r.

The fifth manuscript is the 1446 (old number 176) from the National
Library in Algiers, denoted here as C. The copyist had done his transcription
from an original whose pages were in some disorder, and, as he was
obviously unfamiliar with the topic, he has mixed up various parts of the
text. It should therefore be read in the following order:

113r–116v (line 14) → 117v (line 6)–118r (middle of the last line) →
116v (lines 15–22)–117v (line 6) → 118r (middle of the last line)–119v.
This manuscript has 13 omissions of one phrase and 21 omissions of one

or two words. Examination of the manuscripts as well as the copying errors
would seem to suggest the following stemma:

L

x

x

x

C
O

B

T

Autograph

x

VI. Treatise on the Division of two Different Magnitudes Mentioned in
the First Proposition of the Tenth Book of Euclid – Fî qismat al-
miqdærayn al-mukhtalifayn al-madhkºrayn fî al-shakl al-awwal min al-
maqæla al-‘æshira min kitæb Uqlîdis

This short treatise appears on the three lists of Ibn al-Haytham’s works,
but as a shortened title on both al-Qif†î and the Lahore manuscript lists. In
this treatise Ibn al-Haytham himself makes implicit reference to two
preceding treatises when he writes: ‘For some geometrical notions that we
have determined, we were faced with the need to take one half away from
the greater of the two different magnitudes, and then one half from the
remainder […].’88 Ibn al-Haytham also refers specifically to the treatise in
his book Resolution of the Doubts in Euclid’s Elements. He writes: ‘we
have devoted to this notion a treatise to demonstrate its universality, even
though it is an extremely short summary and we composed it before the
Resolution of the Doubts’.89

88 Vide infra, p. 235.
89 Ms. University of Istanbul 800, fol. 143v.
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Finally, Ibn al-Sarî, one of Ibn al-Haytham’s successors, wrote a treatise
criticizing it, quoting the exact title of the work and its introduction.90

This text was made available to us by the manuscript already referred to
many times – Manuscript B 1030 from St. Petersburg, fols 78v–81r.

VII. Treatise on the Sphere which is the Largest of all the Solid Figures
having Equal Perimeters, and on the Circle which is the Largest of all the
Plane Figures having Equal Perimeters91 – Qawl fî anna al-kura awsa‘
al-ashkæl al-mujassama allatî iÌæ†ætuhæ mutasæwiya wa-anna al-dæ’ira
awsæ‘ al-ashkæl al-musa††aÌa allatî iÌæ†ætuhæ mutasæwiya

Whereas al-Qif†î mentions this treatise under the title ‘The sphere is the
largest of the solid figures’, in the Lahore manuscript list it appears as
‘Spheres are the largest of the solids – al-ukar awsa‘ (wa-sharÌ in the
manuscript) al-mujassamæ’. Judging by these shortened titles it seems that
the title found on Ibn Abî UÒaybi‘a’s list is an original. Ibn al-Haytham
himself cites this treatise in his book On the Resolution of Doubts on the
Almagest as well as in his Treatise on Place. He writes in the former: ‘We
have written an exhaustive treatise on this notion, showing by means of
certain proofs that the sphere is the largest of the solid figures with similar
and equal perimeters and that the circle is the largest of the plane figures
with similar and equal perimeters.’92 In his Treatise on Place, he also writes:
‘We have shown this idea in our book: The Sphere is the Largest of the
Solid Figures having Equal Perimeters.’93

This text came down to us in three manuscripts:
1) Berlin Oct 2970/9, fols 84r–105r;
2) the copy which was made of it, that is ‘Atif 1714/18, fols 178r–199v;
3) manuscript from the scientific collection in Tehran – Majlis Shura,

Tugæbunî 110, fols 462–502.
In the Berlin manuscript there are one omission of a phrase and seven of

one word. And in the Tehran manuscript, which is a collection of 581 pages,
there are nine omissions of one phrase each and six omissions of one word.

90 See Supplementary Note [4].
91 It is clear that in the case of volumes, the word should read ‘surface’, not

‘perimeter’. However, as Ibn al-Haytham uses the same word for both solid and plane
figures, which should be understood as ‘that which surrounds’, we have decided to keep
the same word ‘perimeter’ in both cases to maintain the unity of vocabulary.

92 Ms. Aligarh, fol. 23v.
93 Les mathématiques infinitésimales du IXe au XIe siècle, vol. IV: Méthodes

géométriques, transformations ponctuelles et philosophie des mathématiques, Lon-
don, 2002, p. 672; Arabic p. 673, 15–16.
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We have edited this treatise using both the Berlin and Tehran manuscripts,
each belonging to its own very separate manuscript tradition.

Let us now come to two treatises on the extraction of roots and on
approximation, which are given in the Appendix.

1. Treatise on the Cause of the Square Root, its Doubling and its
Displacement – Maqæla fî ‘illat al-jadhr wa-i≈‘æfihi wa-naqlihi

The title reported by al-Qif†î is different from that given by Ibn Abî
UÒaybi‘a: Treatise on the Cause of Hindu Reckoning. This difference
diminishes somewhat in importance when we read the end of the treatise,
and Ibn al-Haytham’s proposition: ‘This is what we wished to explain in
relation to the causes of the displacement of square roots and their doubling
in the Indian calculus.’94 However, it is possible that the title reported by the
biobibliographers might be more of a summary of what we have just read
or of something similar. It might equally refer to a fundamentally different
treatise – larger and more detailed – and whether work on the cause of the
square root represented only a minor part of it. This conjecture should not
be rejected a priori: as it stands, the treatise on roots is incomplete – without
any of the preambles which Ibn al-Haytham usually gave, and without any
of the introductions where he usually sets out the problem and underlines
the originality of his methods.

This text belongs to the Aligarh collection mentioned earlier, fols 17r–
19r.

2. Treatise on the Extraction of the Side of a Cube – Fî istikhræj ≈il‘
al-muka‘‘ab

This text figures on all three lists with several variations. Al-Qif†î’s list
uses the plural ‘sides (a≈læ‘)’, not the singular; and in the Lahore
manuscript list there is no mention of the word ‘extraction (istikhræj)’. We
viewed the text from a single manuscript, which formed part of the earlier-
mentioned Kuibychev Library collection, fols 401v–402r. It breaks off
abruptly at fol. 402r. There is also a Russian translation of this text.95

94 Vide infra, p. 356.
95 A. Akhmedov, ‘Kniga ob izvletcheni rebra kouba’, Matematika i astronomia v

troudakh outchionikh srednebekovovo vostoka izdatel’stvo ‘fan’, Tashkent, 1977,
pp. 113–17.





CHAPTER I

THE QUADRATURE OF LUNES AND CIRCLES

1.1. INTRODUCTION

The first group of works by Ibn al-Haytham on infinitesimal
mathematics was on the quadrature of lunes and circles. The problem he
wanted to solve was how to calculate in a rigorous way the area enclosed
between the arcs of circles and to find out in every case – whether with
lunes or circles – the exact quadrature of these curvilinear areas. The
problem of the infinitesimal is ever-present in the proportion of circles under
consideration or in the proportion of the squares of their diameters. No
other mathematician, before or since Ibn al-Haytham, writing in Greek,
Arabic or Latin, has contributed as much to this area of study, or to
advance this kind of research, right up until the last decades of the
seventeenth century. We are aware that this may come as a surprise,
especially as the works of Ibn al-Haytham are still largely unknown.

As we have already seen, earlier biobibliographers attributed three titles
which dealt with this area of study to Ibn al-Haytham, two on lunes and one
on the quadrature of the circle; they are:

I. Treatise on the Lunes.
II. Treatise on the Quadrature of the Circle.
III. Exhaustive Treatise on the Figures of Lunes.

These are the only writings attributed to Ibn al-Haytham by early
biobibliographers, and the only ones to which he himself refers in various
different works. It is particularly propitious that we have been able to view
all the above titles, as this has facilitated our appreciation of his contribution
in this area of work as well as the development of his thought. It is
interesting to note that the last of the three treatises is by far the most
substantial; they are listed above in chronological order of writing. In treatise
II, Ibn al-Haytham specifically refers to treatise I, from which he borrows
two propositions. In treatise III, he also refers to treatise I, as a first attempt
which had been superseded. In fact, treatise II must have been written
before treatise III: if this were not the case, Ibn al-Haytham would have cited
treatise III, which also contained relevant propositions and which was,



40 CHAPTER I

according to the author, more complete than treatise I and destined to
replace it. But that is not the case. This formal argument, albeit, connects to
another reason which goes right to the heart of the content of the treatises.

Everything started with the short treatise I, conceived and compiled
from the perspective of the quadrature of a circle. Ibn al-Haytham declared
that he was drawn to research this area in preparation of treatise I when he
came across a result ‘mentioned by the Ancients’ in a work on ‘the figure
of the lune which is equal to a triangle’; in other words, he refers here to the
result ascribed to Hippocrates of Chios. Ibn al-Haytham then went on to
rework two of the four propositions which, together with a technical lemma,
make up treatise I, in the Treatise on the Quadrature of the Circle.

All the evidence seems to point to Ibn al-Haytham knowing that the
quadrature of the circle was closely linked to that of certain lunes and
wanting to explore this in greater depth in a preliminary treatise, where he
would study the area of these lunes and even the area of a circle and lunes
(cf. Proposition 5 of the first treatise). Looked at from this perspective, one
could say that treatise I and treatise II form part of a tradition which
stretches back as far as Hippocrates of Chios.

In fact, in the Treatise on the Quadrature of a Circle [II], Ibn al-
Haytham does not add any more new and important mathematical results to
those he had revealed in the first treatise. But if we stop at that statement,
we would be missing the point of this text: we can actually see him
developing a train of mathematico-philosophical thought here. We have
attempted to unravel this in another piece of work.1 There are notions here
that connect with the question concerning existence in mathematics: how it
relates to ‘constructability’, and how it was formulated based on the notion
of ‘the known’. The train of thought begun in this text reaches its
culmination in two substantial treatises which came after this one – Ibn al-
Haytham’s Analysis and Synthesis (al-TaÌlîl wa-al-tarkîb) and Known
Things (al-Ma‘lºmæt).2 In treatise II we can recognize expressions identical
to those used in these two later treatises. This is an indication of how keen

1 See our study ‘L’analyse et la synthèse selon Ibn al-Haytham’, in R. Rashed
(ed.), Mathématiques et philosophie de l’antiquité à l’âge classique, Paris, 1991,
pp. 131–62; id., Les mathématiques infinitésimales du IXe au XIe siècle, vol. IV:
Méthodes géométriques, transformations ponctuelles et philosophie des mathéma-
tiques, London, 2002.

2 R. Rashed, ‘La philosophie des mathématiques d’Ibn al-Haytham. I. L’analyse et
la synthèse’, MIDEO 20, 1991, pp. 31–231 and ‘La philosophie des mathématiques
d’Ibn al-Haytham. II. Les connus’, MIDEO 21, 1993, pp. 87–275; Les mathématiques
infinitésimales, vol. IV.
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Ibn al-Haytham was to pursue this line of enquiry and also provides
additional proof of the authenticity of these writings.3

These two treatises form a mathematical and historical homogeneous
sub-group; and their mathematico-philosophical examination should be
viewed as essential and not merely as a diversion, which may or may not be
taken into account on the whim of a historian. This not only has implications
for Ibn al-Haytham’s other works, but as we have already shown,4 it also
reflects an unprecedented interest in the question of existence i n
mathematics.

In the third treatise, on figures of lunes, the orientation of Ibn al-
Haytham’s work changes completely; it undergoes a profound transfor-
mation, both in terms of scope and understanding. In fact, in this larger
treatise, the perspective of quadrature of the circle is abandoned: the study
of lunes is no longer intended to contribute, directly or indirectly, to the
solution of this problem, but is presented from now on as a chapter on the
quadrature of a particular class of curvilinear areas. Ibn al-Haytham expands
on results obtained in the first treatise, and by increasing the number of
examples, he arrives at a large number of results, which, to this day,
historians insist on attributing to much later mathematicians. Briefly, it seems
that this research led Ibn al-Haytham to discover a great deal about the use

of sin2 x

x
.

Of the three of Ibn al-Haytham’s treatises, historians seem only to be
aware of the one which deals with the quadrature of the circle.5 As we said
earlier,6 the first of the three treatises was considered lost; as for the third, it
has never been the subject of research. Such incomplete knowledge must
surely colour a historian’s judgement and gives a false idea of the history of
this area in mathematics. Even very recently, Ibn al-Haytham’s contribution

3 On this problem, see the Introduction.
4 We raised this question, but without sufficient emphasis, in ‘La construction de

l’heptagone régulier par Ibn al-Haytham’, Journal for the History of Arabic Science 3,
1979, pp. 309–87, which we revisited as a topic in its own right in ‘Analysis and Syn-
thesis according to Ibn al-Haytham’.

5 See for example C. J. Scriba, ‘Welche Kreismonde sind elementar quadrierbar?
Die 2400 jährige Geschichte eines Problems bis zur endgültigen Lösung in den Jahren
1933/1947’, Mitteilungen der mathematischen Gesellschaft in Hamburg XI.5, 1988,
pp. 517–34.

6 Cf. Introduction, p. 29.
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was characterized as a ‘superficial generalization’7 of some of the results
obtained by Hippocrates of Chios, which ‘did not represent any real
progress’.8 We will see that this is not the case at all and that this third
treatise was in fact the beginnings of a chapter in infinitesimal mathematics.

We shall therefore examine these three treatises in order of their
redaction. We will briefly transcribe the content of the first two, bringing out
salient points. We will then move on to the systematic transcription of the
contents of the third treatise, adding a mathematical commentary; this will
allow the modern reader to follow more easily, without problems in
language or overlong descriptions.

1.2. MATHEMATICAL COMMENTARY

1.2.1. Treatise on Lunes

This treatise is in the form of a letter sent by Ibn al-Haytham to
someone addressed in the preamble in fairly formal terms – ‘My Lord,
Master’ – which would indicate that its recipient is a man of letters or
science, possibly of the upper class, and not necessarily in power. However,
in his third treatise we learn that it was one of his friends ‘who was conten-
ted with particular propositions’;9 we know nothing more about this indivi-
dual, but a lot more about the reasons which led Ibn al-Haytham to engage
in research on lunes. The knowledge he has of information from Ancient
mathematicians (Hippocrates of Chios’s well-known result, proving the area
of a lune equal to that of a triangle) is in itself precious evidence. We discuss
elsewhere the dissemination of this result in Arabic.10

The treatise comprises a brief preamble, four propositions and a lemma.
Ibn al-Haytham used the basic tenets again twice: once in his treatise on the
Quadrature of the Circle and then in his third treatise.

In Propositions 1, 2, 3 and 5 he takes a semicircle ABC and studies lunes
L1 and L2 as limited by arcs AB and BC and a semicircle. In Propositions 1,
2 and 5 he assumes that arc AB equals one sixth of the circumference, and
in Proposition 3, he considers B as any point on the circumference of the

7 C. J. Scriba, ‘Welche Kreismonde sind elementar quadrierbar?’, p. 517. This
judgement is quite fair if we stop at the simple mathematical results obtained in
Quadrature of the Circle, but not if we go further and see the full value of the discussion
on  mathematical existence.

8 Ibid., p. 523.
9 Vide infra.
10 Cf. Volume III.
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semicircle. Proposition 4 is a more or less technical lemma necessary to
prove Proposition 5. Such is the structure of this short treatise of Ibn al-
Haytham. Let us set out the propositions themselves.

C

B

A

L

L1

2

Fig. 1.1

Proposition 1:
L1 + 1

24  circle (ABC) = 1
2 tr.(ABC).

In the course of his proof, Ibn al-Haytham considers a point E on arc
AB such that arc AE is equal to one eighth of the circumference, and a point
I, at the intersection of radius DE and chord AB. He then proves that
sect.(ADE) = 1

2 circle (AGB) and deduces

tr.(ADI)  = lune (AGBE) + port.(EBI),
tr.(BAD) = lune (AGBE) + port.(EBI) + tr.(BID),
tr.(BAD) = lune (AGBE)  + sect.(BED).

C

B

D

E

I G
H

A

Fig. 1.2

But EB = 1
24  of the circumference, hence sect.(BED) = 1

24 circle (ABC),
hence the result.

However, it is not necessary to introduce these two points E and I. In
fact, we have

sect.(ADB) = 1
6  circle (ABC) and 1

2 circle (AGB) = 1
8  circle (ABC);
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hence
sect.(ADB) = 1

2 circle (AGB) + 1
24  circle (ABC).

By taking away segment (AEB) from the two members, we obtain the
result.

Proposition 2:
L2 = 1

2 tr.(ABC) + 1
24  circle (ABC).

It should be noted that these first two propositions are directly linked
with the case of two lunes studied in Proposition 13 of the Exhaustive Trea-
tise, which, as we will see later, is an application of Propositions 8 and 9.

C

B

D

E

I

G

A

Fig. 1.3

Proposition 3:
L1 + L2 = tr.(ABC);

B is any point on the circumference.

C

B

A

G

E

H

I

Fig. 1.4
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The proof that Ibn al-Haytham constructs for this proposition is the
same as that given by the Ancients (Hippocrates of Chios, according to
Eudemus),11 and is based on the ratio of the area of the circle to the square
of its diameter, and also on Pythagoras’ theorem.  From the latter, it can be
deduced:

 1
2  circle (AEB) + 1

2  circle (BHC) = 1
2  circle (ABC),

and by taking segm.(AGB) + segm.(BIC) away from the two members, the
result is obtained.

Proposition 5:
 L2 + 1

2 tr.(ABC) = L3 + 1
8  circle (ABC),

with L3 a lune similar to L1, such that L3 = 2L1.
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This proof relies on Propositions 2, 3 and 4. Proposition 4 deals with the
study of the ratio of two similar lunes. Ibn al-Haytham begins by proving
that the ratio of similar segments is equal to the square of the ratio of their
bases (a proof which is the subject of Lemma 5 in the Exhaustive Treatise);
he then goes on to deduce from this the ratio of the two lunes.

This gives us some idea of the methods used by Ibn al-Haytham and the
principal results of this short treatise.

11 Cf. T. L. Heath, A History of Greek Mathematics, 2 vols, Oxford, 1921, vol.
I, pp. 191–201 and O. Becker, Grundlagen der Mathematik, 2nd ed., Munich, 1964,
pp. 29–34.
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1.2.2. Treatise on the Quadrature of the Circle

As we have already said, this treatise depends on the previous one, and
shows us Ibn al-Haytham’s reasons for engaging in research on lunes. If the
number of manuscripts is any indication of how well known this work was,
and if the many commentaries referred to are indications of its popularity,
then it goes without saying that this is Ibn al-Haytham’s most widespread
and most popular piece of mathematical work ever. It is true to say that in
this piece of writing, Ibn al-Haytham raises a traditional yet crucial question:
is it possible to square a circle exactly?

To reply to this question, he begins by recalling two results from the
previous treatise: the first and the third propositions. He gives a new proof
of the third proposition:

   circle (BGC)
circle (ABE)

 = 
BC2

BA2 ,  from XII.2 of the Elements,

circle (BGC) + circle (ABE)
circle (ABE)  = 

AC2

BA2 = circle (ABC)
circle (ABE)

 ;
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Fig. 1.6
hence

1
2 circle (ABC) = 1

2 (BGC) + 1
2 (ABE).

The sum of segment (ABH) and segment (BCI) is taken away from each
side of the equality; it follows that

(1) L1 + L2 = lune (AEBH) + lune (BGCI) = tr.(ABC);

if B is the midpoint of the semicircle ABC, the two lunes are equal, and from
(1) we derive

(2) L1 = tr.(ABD).
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Ibn al-Haytham then considers a circle with diameter HE, with H and E
being the midpoints of two arcs AB which limit lune AEBH, and he studies
the ratio of this circle to this lune, to obtain the quadrature of circle AC. He
notes firstly that circle (HE) < lune (AEBH) = L1, he then reasons as follows:
this circle is known, L1 is also known, therefore

circle (HE)
L1

 = k,
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I

C D U

B
N E

L
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K
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T

S O

Q P X

B

UD

Fig. 1.7

a ratio that exists ‘even if no one knows what the ratio is or even if it is
impossible for anyone to know it’.12

Let DU be such that  DU
DA

 = k, then  tr.(BDU)
tr.(BDA)

 = 
DU
DA

 = k ; therefore

 
tr.(ABD)

L1
 = 

tr.(BDU)
circle (HE)

 ;

and if (2) is taken into account, then circle (HE) = tr.(BDU).
But we know how to construct a square (SPQO) equivalent to tr.(BDU),

therefore

tr.(BDU) = square (SQPO) = circle (HE).

Then a square of side QX is constructed such that QP
QX

 = 
E H
AC   and XT  the

square constructed on QX; so we have

 
square (XT)
square (QO)

 = 
QX2

QP2 = 
AC2

EH2 = 
circle (ABC)
circle (HE)

 ;

the equality, circle (HE) = square (QO), finally leads to circle (AC) =
square (XT).

12 Vide infra, p. 101.
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We can say that Ibn al-Haytham’s reasoning relies on the existence of
the number k, a ratio of two plane surfaces. From the existence of k, it is
possible to deduce the existence of segments DU, QP and QX, even if their
construction is not possible except when k is known. However, the following
(not calculated by Ibn al-Haytham) gives the values as

HE = R [√2 – 1], circle (HE) = π 
R2

4  (√2 – 1)2, k = 
π (√2 – 1)2

2 ,

and the side of the square equivalent to the circle is R√π. We may notice
immediately the circularity, since knowledge of k and of π are linked.

Ibn al-Haytham’s text has been commented on and criticized by at least
two mathematicians: NaÒîr al-Dîn al-™ºsî and another who might have
been, according to the colophon, Ibn al-Haytham’s contemporary, ‘Alî ibn
Ri≈wæn or al-Sumaysæ†î.

The first critique by al-fi‚s¬ emphasizes the length of the text and pro-
poses another method.

Let a circle of diameter DE be inscribed in square (BC) with side AB.
The circle is part of the square, therefore their ratio exists:

square (BC)
circle (DE)

 = k [we have k = 4
π

].
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Fig. 1.8

Let BG such that AB
BG

 = k and BH such that AB
BH

 = 
B H
BG

, then  
AB2

BH2 = 
A B
BG

 =

k, hence
square (BC)
square (BI)

 = k.

And it follows that
 circle (DE) = square (BI).
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Al-™ºsî’s commentary adds nothing fundamental to the text of Ibn al-
Haytham. His reasoning also relies on the existence of the number k, the
ratio of two plane surfaces. In fact, it is from the existence of k that the
existence of segments BG and BH and therefore that of the square BI can
be deduced.

The second objection, raised by ‘Alî ibn Ri≈wæn or al-Sumaysæ†î, is
more important than the one from al-™ºsî, since it goes right to the heart of
Ibn al-Haytham’s contribution. It has its basis in mathematical philosophy
and can be summarized as follows: a proof of existence does not solve the
problem of construction, on whose effectiveness we rely for our knowledge
of the property in question.

1.2.3. Exhaustive Treatise on the Figures of Lunes

This treatise, written a long time after the first, as the author himself
indicates, is very different. Ibn al-Haytham describes it as ‘exhaustive’,
whereas the first one is described as ‘abridged’. This treatise is composed
using apodictic methods whereas the other proceeds ‘according to particular
methods’.13 The latter is destined to replace the former with new research
on lunes. Our task can be therefore defined as follows: to transcribe this
book, following its various twists and turns, and to note its unifying features
as well as any of its shortcomings.

It must be said straightaway that in the first treatise, lunes L1 and L2 are
associated with semicircles (ABC, AEB and BGC). In the second treatise, Ibn
al-Haytham again takes up this study and generalizes the results of
Propositions 1, 2 and 3, by expanding them to any given arcs AB and BC
such that

AB + BC ≤ 12  circumference.

In all cases, the arcs that define lunes L1 and L2 are similar to the arc of
a semicircle (ABC), whereby the triangle (ABC) occurs in such a way that
angle B is equal to or bigger than a right angle.

The calculation of the areas of lunes involves the sums or differences
between the areas of sectors or triangles, and their comparison in turn relies
on the ratio of angles and the ratio of segments.

Ibn al-Haytham begins by establishing four lemmas based on various
types of triangle ABC that are required for his proposed study: with a right
angle at point B in Lemma 1, or with an obtuse angle at point B in Lemmas

13 Vide infra, p. 107.
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2, 3 and 4. Throughout the text, and wherever there is a case of two
triangles similar to the initial triangle, he establishes an unequal relation
between ratios of angles and ratios of segments. The results of these lemmas,
which the author then goes on to use in Propositions 9 to 12, prove the role
of the function f as defined by

f(x) = 
sin2x

x

in the study of lunes.

We now come to a more detailed exposition of the method we have just
outlined, beginning with this group of four lemmas.

Lemma 1. — If  ∏ABC = 
π
2

, BA < BC and BD ⊥ AC, then 
DA
AC < 

∏ACB
π/2  and

DC
AC >  

∏BAC
π/2

.
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Fig. 1.9

Since BA < BC, then DA < DC and circle (B, BA) cuts [DC] at E and
cuts [BC] at G.  The half-line BD cuts the circle at H, beyond D. We have

 
tr.(BCE)
tr.(BDE) > 

sect.(BEG)
sect.(BEH)

,

hence

 
tr.(BCD)
tr.(BDE) > 

sect.(BHG)
sect.(BEH) 

 = 
∏CBD
∏EBD

.

Therefore

(1) 
CD
ED = 

CD
DA > 

∏CBD
∏DBA

    (as ED = DA and ∏EBD = ∏DBA),

hence
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CD  + D A
DA  > 

∏CBA
∏DBA

 .

But  ∏DBA = ∏ACB and ∏CBA = π
2

, so

  
DA
AC  <  

∏ACB
π/2 .

In the same way, from (1) we can deduce

 
CD

DA  + C D  > 
∏CBD

∏DBA�+� ∏CBD
 ;

but ∏CBD = ∏BAC, hence

 CD
AC > 

∏BAC
π/2

 .

Comments:

1)  DA

AC

DA

AB

AB

AC
C =    =  sin2⋅  and DC

AC
A =  sin2 .

Therefore the above proof gives the following result:

If  0 <  C <  
π
4

 <  A <  
π
2

, then sin2 C

C
 <  

2

π
 <  

sin2 A

A
.

If A = C = π
4

, then sin2 A

A
 =  

sin2 C

C
 =  

2

π
.

This is how Lemma 1 is written, taking the radian as a unit.

2) The method used in the proof of this lemma leads to the
establishment of the proposition:

α < β < π
2

 ⇒ tan β
tan α > 

β
α ,

as the hypothesis ∏ABC = α + β = π
2

 is not involved in the establishment of

(1), only the hypothesis α < β < π
2

 is involved.

A very similar method is used to establish the proposition:
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α < β < π
2

 ⇒ sin β
sin α  < 

β
α .

Let ∏xOy = α, ∏xOz = β  with β > α.  A circle with centre O cuts Oy at A
and Oz at B and Ox at D;  straight line BA cuts Ox at C. Then

tr.(AOB)
tr.(AOC) < 

sect.(AOB)
sect.(AOD)

,

from which we deduce
tr.(BOC)
tr.(AOC) < 

sect.(BOD)
sect.(AOD)

.

B

O K H D
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x
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z

Fig. 1.10

The two triangles have the same base OC, so

tr.(BOC)
tr.(AOC) = 

BK
AH

 = 
sin β
sin α  ;

hence

 
sin β
sin α  < 

β
α   or   

sin β
β  < 

sin α
α .

Therefore over interval ]0, π
2

[, function  sin x
x

  is decreasing.

Lemma 2. — If ∏ABC > π
2

, AB < BC and ∏BDA = ∏ABC, then

 DA
AC < 

 ∏ACB
π  –   ∏ABC

 .
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C E K D A

B

H
I

Fig. 1.11

Let E be such that ∏BEC = ∏BDA  =  ∏ABC, so BE = BD and 
DA
DB = 

A B
BC =

EB
EC (as ADB , ABC  and BEC  are similar triangles), hence DA  · EC  =

BD · BE = BD2. But DA < DB, DB = BE and EB < EC,  hence DA < EC.

On the other hand, DA · DC < AC

2






2

,14 and it follows that DA · EC < AC

2






2

,

hence BD2 < AC

2






2

 or BD < 
AC
2 .

We know that EB < EC. Let I be a point beyond B such that EI = EC,
so CI > CB > CE. Therefore circle (C, CB) cuts CI at H between C and I
and CE at K beyond E. Following the argument used in (1) on circular
sectors HCB and BCK, and triangles ICB and BCE, then

area (HCB)
area (BCK)  = 

∏ICB
∏BCE

 < 
tr.(ICB)
tr.(BCE) ;

and by composition
∏ICB�+� ∏BCE

∏BCE
 < tr.(ICB)�+�tr.(BCE)

tr.(BCE)  ;

hence
∏ICE
∏BCE

 < 
tr.(ICE)
tr.(BCE) = 

EI
EB  or  EB

EI  < 
∏BCE
∏ICE

 .

But

IE = EC and ∏ICE = 
1
2 ∏BEA = 

1
2 (π – ∏ABC) and 

EB
EC  = 

DA
DB ;

14 If O is the midpoint of [AC], then DA · DC = OA2 – OD2; therefore DA · DC <
OA2.



54 CHAPTER I

therefore
DA
DB < 

∏ACB
1/2�(π�–� ∏ABC)

 .

But we have proved that  DB < 
AC
2 ; therefore  

DA
AC < 

∏ACB
π�–� ∏ABC

 .

Comments:  
DA
AC = 

DA
AB · 

AB
AC = 

AB2

AC2 = 
sin2 C

sin2 B
 . Lemma 2 is therefore written as

B > π
2

 and C < π
4

 ⇒ sin
2 C

sin2 B
 < 

C
π  – B  .

If we set B1 = π – B, then sin2 B = sin2 B1 and B1 > C (as B1 – C = A),
hence

C < B1< π
2

 and C < π
4

 ⇒ sin
2 C

C  < 
sin2B1

B1
 .

Lemma 3. — If angle ABC  is obtuse, AB <  BC, ∏BAC ≤ π
4

, then

 
EC
CA <  

∏BAC
π�–� ∏ABC

  (E is a point on AC such that   �∏BEC = ∏ABC).
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Let M  be the centre of the circumscribed circle and let G  be the
diametrically opposed point to A, E as defined in (2), therefore BEC is
similar to ABC.  Straight line BM cuts AC at I. Let MH be perpendicular to

AC, then H is the midpoint of AC. Circle (M, MI) cuts AC at N. As ∏ABC is

obtuse, then πABC < 
1
2 circle.
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a) If πABC ≤ 
1
4 circle, then ∏AMC ≤ π

2
, ∏MAC  = ∏MCA ≥ π

4
,  ∏AGC ≤ π

4
,

therefore ∏AGC ≤ ∏MAC. But ∏MIC  >  ∏MAC   ≥ π
4

, therefore ∏MIC > ∏AGC; it

follows that ∏BIC < ∏ABC. But by construction ∏BEC = ∏ABC, therefore ∏BEC >
∏BIC and it follows that E is between I and C.

Ibn al-Haytham writes ‘it is clear that 
CH
HN > 

∏CMH
∏HMN 

’.

This result can be established as in Lemma 1, based on triangles MHN
and CMN and sectors described by circle (M, MI). We can deduce that

 
CH
HI > 

∏CMH 
∏HMI 

;

hence
IC
CH < 

∏IMC
∏HMC

  and  
IC
CA < 

∏BMC
∏CMA

 .

But
∏BMC = 2 ∏BAC  and  ∏CMA = 2 (π – ∏ABC);

hence
IC
CA < 

∏BAC
π�–� ∏ABC

.

It follows that
EC
CA < 

∏BAC
π�–� ∏ABC

 .

b) If πABC > 1
4

 circle, then ∏AMC > π
2

. But ∏BAC ≤ π
4

, therefore πBC ≤ 
1
4

circle.

C
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I

M AG

Fig. 1.13
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• If πBC = 1
4

 circle, then ∏BMC= π
2

 and ∏MBC =  ∏BAC = π
4

; therefore

∏BIC = ∏ABC, I and E thus coincide. The conclusion is as in the first part.
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• If πBC < 1
4

 circle, then ∏BMC < π
2

 and ∏MBC > π
4

.

So ∏MBC > ∏BAC. However ∏CBE = ∏BAC; therefore ∏CBE < ∏CBM and
it follows that E is between I and C, and that H is in all cases between I and
C. The result is obtained as previously.

Therefore if ∏ABC is an obtuse angle, AB < BC and ∏BAC ≤ π
4

, then

 
EC
CA < 

∏BAC
π�–� ∏ABC

 .

Comments: The result proved in Lemma 2 for ∏C, the smallest of the acute

angles, is still valid for the acute angle ∏�A , if ∏�A  ≤ π
4

. This result is written as

sin2 A
A  < 

sin2 B
π  – B

    or   
sin2 A

A
 < 

sin2B1
B1

  (as B1 > A).

Lemma 4. — With the hypotheses that ∏ABC is an obtuse angle, that

AB < BC, ∏BAC > π
4

,  and with E such that ∏BEC = ∏ABC, under what

conditions do we arrive at

 
EC
CA > 

∏BAC
π�–� ∏ABC

 ?
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Let there be a circle with diameter CD and centre K and let I be a point
of segment KD. From point I, the perpendicular to KD cuts the circle at B

and gives πBC > 1
4

 of circumference, hence ∏BAC > π
4

.

C

B

L
E

A

K I M
D

Fig. 1.15

Reciprocally, if ∏BAC > π
4

, then the projection I of B on diameter CD is

between K and D.
In the right-angled triangle BDC, from Lemma 1, we have

IC
CD > 

∏BDC
π/2 ,

hence
IC
CD > 

∏BKC
π  = 

πBC
πCBD .

From this, we can deduce  
ID
IC < 

πBD
πBC

 . There exists a part πAB of πDB such that

ID
IC = 

πBA
πBC

 .

Let M be the projection of A on DC, between I and D, and let E be the

intersection of CA and BI,15 then ∏DAC = ∏CIE = π
2

, therefore ∏ADC = ∏IEC =

π – ∏ABC, and it follows that ∏BEC = ∏ABC.

15 Note that if L is the intersection of BK and CA, then L will be between C and E;
this remark also comes into Proposition 12.



58 CHAPTER I

On the other hand 
CI
I M = 

CE
EA > 

CI
ID = 

πBC
πBA

; we can deduce that

 
EC
CA > 

πBC
πCBA

 .

But
πBC
πCBA

 = 
∏BKC
∏CKA

 = 
∏BAC
∏ADC

 = 
∏BAC

π�–� ∏ABC
 ,

so

 
EC
CA > 

∏BAC
π�–� ∏ABC

 .

This argument is based on point A defined by 
πBA
πBC

 = 
I D
IC

 . If another point

A′  between A and D is considered, then 
CI
ID > 

πBC
πBA′

 .

Point E′ is associated with point A′  on BI and then 
E′C
E′A′ > 

CI
ID

 , therefore

E′C
E′A′ > 

πBC
πBA′

 , and it can be concluded in the same way that 
E′C
E′A′ > 

∏BA′C
π�–� ∏A′BC

 .

 Summary: By adding to hypotheses ∏ABC obtuse, πAB < πBC, ∏BAC > π
4

, E

on BC such that ∏BEC  = ∏ABC, the following condition: I the orthogonal
projection of B on diameter CD of the circle circumscribed about ABC

satisfies   ID
IC

 ≤ 
πBA
πBC

 ,16  then

 
EC
CA > 

∏BAC
π�–� ∏ABC

 .

Comments:
1) The result proved in Lemma 4 can therefore be set out in the

following form:

Given that A > π
4

, it is possible to find an angle B0 (which therefore

depends on A) such that B
1 ≥ B0 ⇒ 

sin2 A
A  > 

sin2 B1
B1

.

16 The condition laid down is therefore sufficient so that 
EC
CA > 

∏BAC

π�–� ∏ABC
. It is not

necessary (see Proposition 12).
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2) To understand Ibn al-Haytham’s method, it is necessary to study the
relation

(1)  
CE
CA < 

∏BAC
π�–� ∏ABC

 .

Suppose ∏CDA = α,  ∏CDB = β = ∏BAC, β < α < π
2

; then πCA = 2α, πCB =

2β, πAB = 2(α  – β), πBC > πAB ⇔ 2β > α.

In Lemma 3, it is assumed that πBC ≤ 
1
4 circle,  i.e. β  ≤ π

4
, α  must

therefore satisfy β < α < 2β.

In Lemma 4, it is assumed that πBC > 
1
4 circle, β  > π

4
; this should

therefore give β < α < π
2

 . We saw that (1) ⇔ 
CI
CM < 

πBC
πAC

  (2). But

CI = CB sin β = CD sin2 β
CM = CA sin α = CD sin2 α.

Condition (2) becomes

sin2 β
sin2 α

 < 
β
α

or even
sin2 α

α  > 
sin2 β

β .

Let

f(α) = sin2 α
α ,  0 < α < π

2
.

f′(α) = 2α  sin α  cos α  – sin2 α
α2  = 

sin α  cos α
α   2 −





tanα
α

.

Over interval 0
2

,
π




, tan α

α  increases from 1 to +∞, therefore a unique

value α0 exists such that  tan α0

α0
 = 2.
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• For α = 60° = 
π
3, we find  tan α

α   ≅ 1.66,

α = 70° = 
7π
18, we find  tan α

α   ≅ 2.18;

then α0 ≅ 70° = 
7π
18 ≅ 1.22 rd, or to be more precise α1 = 1.16556119 rd,

say 66° 49′54″.
Therefore function f presents a maximum M.

• For α  = α 0, we find M  ≅  0.72, and for α  = α 1, we find M  =
0.724611354.

lim
α →0

  f (α ) =  0

f f
π π

π4 2










 ≅ =   =  

2
  0.64  and  f

π
π6





 ≅ =  

3
2

  0.48.

Fig. 1.16

If β ≤ π
4

, as in Lemma 3, then  f(β) < 2
π

  and 2β < π
2

.

∀  α ∈ ]β, 2β [,  f(α) > f(β);

which in this case gives  
CE
CA < 

∏BAC
π�–� ∏ABC

 .

If β > π
4

, as in Lemma 4, then f(β) > 2
π

.

• For π
4

 < β < α0, there exists a unique value α1, α1 ∈ α π
0 2
,




, such

that f(α1) = f(β).

a) if β < α < α1, then f(α) > f(β); hence  
CE
CA < 

∏BAC
π�–� ∏ABC

 .
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b) If α = α1, then f(α) = f(β); hence  
CE
CA = 

∏BAC
π�–� ∏ABC

 .

c) If α1 < α < π
2

, then f(α) < f(β); hence  
CE
CA > 

∏BAC
π�–� ∏ABC

 .

• For α0 ≤ β < π
2

, then ∀  α ∈ β π
,

2





, then f(α) < f(β); hence

 
CE
CA > 

∏BAC
π�–� ∏ABC

 .

We note that for each value of β > π
4

 (for πBC  > 
1
4 circle), there is an

associated value α1 of α for which 
CE
CA = 

∏BAC
π�–� ∏ABC

  which leads to a lune

equivalent to a triangle (see Comments on Proposition 12). The case of

Proposition 13, corresponding to β = π
4

 and α1 = π
2

, is the limit case; this

leads to two equal lunes, each one equivalent to a triangle.

3) The determination of point A such that 
πAB
πBC

 = ID
IC  is possible because

they are arcs of the same circle.

If  
DI
IC = 

1
2 or 

DI
IC = 

1
2n, then we successively divide an arc in half up to the

point where one part of DC is homologous with DI.
Ibn al-Haytham does not give any indication of the construction of A if

ID
IC = k, where k is any ratio.

If for example  
ID
IC = 1

3
, the construction of point A  on arc πBD  is

effected by trisection of angle ∏BKC.

Three technical lemmas 5, 6 and 7 follow this group of four lemmas.

Lemma 5. — A circle equivalent to a sector of a circle of a given
diameter AD; let ACB be the sector of the circle. Then

sect.(ABC)
circle (ABD) = 

πAB
the complete circumference .
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Arc πAB  and the complete circumference are of the same type of
magnitude, and their ratio exists whether it is a known ratio or not;
whatever this ratio is, a straight line E exists such that

E
AD = 

πAB
the complete circumference .

A straight line GI is then defined such that  
GI
E  = 

A D
GI ,  which then gives

E
AD = 

GI2

AD2 . Let GHI be a circle with diameter GI, then

 
circle (GHI)
circle (ABD) = 

GI2

AD2 = 
sect.(ABC)

circle (ABD)
,

then sector (ABC) and circle (GHI) have the same area.

Comments:
1) Ibn al-Haytham gives no explanation for the construction of E and

GI.

If the ratio 
E

AD  is a known rational number, the construction of E from

AD is immediate as is the construction of GI mean proportional between E
and AD.

If the ratio 
E

AD is not a known number, the fact which interests Ibn al-

Haytham is that E exists and, consequently, GI and the circle of diameter GI
also exist.

2) The argument here should be referred back to that used in his treatise
On the Quadrature of the Circle.
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Lemma 6. — The ratio of surfaces of two similar segments in two different
circles is equal to the ratio of surfaces of the two circles and the ratio of
the squares to the bases.

Let ABC and EGH be two similar segments in two different circles with
centres D and I.
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I D

Fig. 1.18

Then ∏ADC = ∏EIH and triangles ADC and EIH are similar and

tr.(ADC)
tr.(EIH)  = 

AD2

IE2  = 
AC2

EH2 = 
circle (ABC)
circle (EGH)

 = 
sect.(ADC)
sect.(EIH)

 .

From this, we can deduce

segm.(ABC)
segm.(EGH) = 

circle (ABC)
circle (EGH)

 = 
AC2

EH2 .

Comment:  Ibn al Haytham makes use of Proposition XII.2 of the Elements
here, which he has cited in his treatise On the Quadrature of the Circle.

Lemma 7. — If segments ABC and AEB are similar and if the small arc
πAB of the first circle and arc πAEB of the second are on the same side of

the straight line AB, then arc  πAEB is outside the first circle.

Segments ABC and AEB are similar, if AK is the tangent at A to circle

ABC and AK′ the tangent at A to circle AEB, then ∏KAC = ∏K′AB; but ∏KAB <

∏KAC, hence ∏KAB < ∏K′AB, therefore AK is in angle ∏K′AB, and AK cuts arc
πAEB. Point K of arc AEB is outside circle ABC, and any point of segment

[AK] is in the lune between arcs AEB and AIB.
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Points A and B are common to the two circles, the small circle therefore
has an arc AB outside the larger one, therefore this arc is arc AKB.

Comment: If arc AEB and arc AIB were on either side of straight line AB,
arc AEB would then be inside the larger circle.

Proposition 8. — If B is any point of a semicircle ABC, and ADB and
BEC the two semicircles constructed on AB and BC, then

lune (ADBGA) + lune (BECHB) = tr.(ABC).
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Fig. 1.20

Same proof as that given in the treatise On the Quadrature of the
Circle.

Proposition 9. — If πBA = πBC = 1
4

 circle, then

lune (ADBGA) = lune (BECHB) = tr.(ABI) = tr.(BIC).
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Fig. 1.21

If πAB < πBC, then circle (N) exists such that

lune (ADBGA) + (N) = tr.(ABI)
lune (BECHB) – (N) = tr.(BCI).
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Let BM ⊥ AC; AB2 = AM · AC, therefore

 
M A
AC  =  

AB2

AC2  = 
1/2 circle (ADB)
1/2 circle (ABC)

.

On the other hand, according to Lemma 1:

M A
AC  < 

∏ACB

π/2
,

hence
M A
AC  < 

∏AIB
π  = 

sect.(AIBG)
1/2�circle�(ABC) ;

therefore

sect.(AIBG) > 
1
2 circle (ADB).
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According to Lemma 5, any circular sector is equal to a circle, therefore
a circle (C 1) exists and a circle (C 2) exists, and they are equivalent
respectively to sector (AIBG) and semicircle (ADB), which gives (C

1) > (C2).
Ibn al-Haytham deduces from this that a circle (N) exists such that

(C1) = (C2) + (N), therefore sector (AIBG) = semicircle (ADB) + (N); by
taking away segment (AGB) from the two members, this becomes

tr.(AIB) = lune (ADBGA) + (N).

Taking into account Proposition 8 and the equality

tr.(AIB) = tr.(BIC) = 
1
2 tr.(ABC),

we have
tr.(BCI) = lune (BECHB) – (N).

Proposition 10. — Let B  be a point on an arc πABC < 
1
2 circle, and

construct on AB and BC segments similar to segment ABC and let points

N and O on AC be such that ∏BNA = ∏BOC = ∏ABC. Circle K exists such
that

lune (ADBHA) + lune (BICMB) + (K) = tr.(ABC) + tr.(ENO).
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Triangles ABC, ANB and BOC are similar. Then

CA
A N = 

CA2

AB2 = 
segm.(ABC)
segm.(ADB)

and
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AC
C O = 

AC2

CB2 = 
segm.(ABC)
segm.(BIC)

 ;

hence
AC

AN + CO = 
segm.(ABC)

segm.(ADB) + segm.(BIC)
 .

But
AC

AN + CO = 
tr.(AEC)

tr.(EAN) + tr.(ECO)
 .

From this, we can deduce

AC
AN + CO = 

sect.(AECB)
segm.(ADB) + segm.(BIC) + tr.(AEN) + tr.(CEO)

 .

We have AC > AN + CO, therefore

sect.(AECB) > segm.(ADB) + segm.(BIC) + tr.(AEN) + tr.(CEO).

 X exists as a part of sector (AECB) such that

AC
AN + CO = 

segm.(AECB)
X

 ,

with X = segm.(ADB) + segm.(BIC) + tr.(AEN) + tr.(CEO).

The difference: sect.(AECB) – X is a sector of circle (E, EA) and a circle
(K) exists which is equal to this sector. Therefore

sect.(AECB) = segm.(ADB) + segm.(BIC) + tr.(AEN) + tr.(CEO) + (K).

The sum: segm.(AHB) + segm.(BMC) + tr.(AEN) + tr.(CEO) is common
to the two members; there remains:

lune (ADBHA) + lune (BICMB) + (K) = tr.(ABC) + tr.(ENO).

Let PN || EA, P on AB, let PE cut AC at S, and let OQ || EC, Q on BC;
QE cuts AC at U, this gives tr.(ASP) = tr.(ESN) and tr.(CUQ) = tr.(EUO),
therefore (EPBQ) = tr.(ABC) + tr.(ENO), and it follows that

lune (ADBHA) + lune (BICMB) + (K) = (EPBQ).
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Proposition 11. — This proposition takes up the hypotheses of Proposition

10, as well as the notations and the figure. Note that the hypothesis
πABC < 12 circle implies  ∏ABC  is obtuse, and it follows ∏BAC + ∏BCA < π

2
. It

is assumed that ∏BAC ≥ ∏BCA, therefore ∏BCA  ≤ π
4

; but equally ∏BAC  ≤ 
π
4

(11c) or ∏BAC > π
4

 (12).
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a) If πABC < 
1
2 circle and πAB = πBC, then lune (ADBHA) = lune (BICMB)

and tr.(PEB) = tr.(QEB); hence

lune (ADBHA) + 
1
2 (K) = tr.(PEB),

lune (BICMB) + 
1
2 (K) = tr.(QEB),

(immediate result as per Proposition 10).

b) If πABC < 
1
2 circle and πAB <  πBC, then a complete circle (Z) exists,

(Z) ≠ 
1
2 (K), such that

 lune (ADBHA) + (Z) = tr.(PEB).

c) If ∏BAC ≤ π
4

, therefore a complete circle (Z′) exists such that

 lune (BICMB) + (Z′ ) = tr.(QEB), (Z′ ) = K – (Z).
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Proof: We have seen before (see Comment 2 after Lemma 4) that

 
N A
AC < 

∏BCA
π�–� ∏ABC

 .

But ∏BEA = 2 ∏BCA and ∏AEC = 2(π – ∏ABC), hence

 
N A
AC < 

∏BEA
� ∏AEC

 ,

or even

 
N A
AC < 

sect.(BEA)
 sect.(CEA)

 .

But

 
N A
AC = 

segm.(ADB)
segm.(ABC) ,

hence

segm.(ADB)
segm.(ABC)  < 

sect.(BEA)
sect.(CEA)

.

Therefore a sector Y exists, which is part of sector BEA, such that

segm.(ADB)
segm.(ABC) = 

Y
sect.(CEA)

 = 
AN
AC

 = 
tr.(AEN)
tr.(AEC)

 ;

hence
segm.(ADB)
segm.(ABC) = 

Y – tr.(AEN)
sect.(CEA) – tr.(AEC)

 = 
Y – tr.(AEN)
 segm.(ABC)

,

therefore Y – tr.(AEN) = segm.(ADB); but tr.(AEN) = tr.(APE), hence

segm.(ADB) + tr.(APE) = Y.

A circle Z exists such that Y + Z = sect.(AEB), therefore

segm.(ADB) + tr.(APE) + Z = sect.(AEB).

The sum segm.(AHB) + tr.(APE) is common to the two members, and
there remains lune (ADBHB) + Z = tr.(PEB).

Moreover, if ∏BAC ≤ π
4

, then 
OC
CA < 

∏BAC
π�–� ∏ABC

, and we show, as for the

small lune, that a circle Z′  exists such that lune (BICMB) + Z′  = tr.(QEB).
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According to Proposition 10, the two circles Z and Z′  associated with

the lunes are such that Z + Z′  = K,  with K being the circle associated with
the sum of the two lunes.

Proposition 12. — Same problem assuming ∏BAC > π
4

 .
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As in Proposition 11, 
N A
AC < 

∏BCA
π�–� ∏ABC

 , therefore the conclusion (b)

remains true.
But O  is between L  and A  (see later) and it is possible that

  
OC
CA < 

∏BAC
π�–� ∏ABC

, as in Proposition 11 and, in this case, the conclusion (c)

remains true; or 
OC
CA > 

∏BAC
π�–� ∏ABC

 , which is the author’s hypothesis.

With the hypotheses defined in this way and (K) as the complete defined
circle in Proposition 10, a complete circle (G) exists such that

lune (BICMB) = tr.(BEQ) + (G)
lune (ADBHA) + (G) + (K) = tr.(BEP).

Proof: We know that

O C
CA = 

BC2

AC2 = 
segm.(BIC)
segm.(CBA)

 = 
tr.(OEC)
tr.(CEA)

 = 
segm.(BIC) + tr.(OEC)

sect.(ECBA)
 .

But
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∏BAC
π�–� ∏ABC

 = 
∏BEC
∏CEA

 = 
sect.(BECM)
sect.(ECBA)

  and  tr.(OEC) = tr.(QEC);

hence

 
segm.(BIC) + tr.(QEC)

sect.(ECBA)
 > 

sect.(BECM)
sect.(ECBA)

 .

A complete circle (G) exists such that

segm.(BIC) + tr.(QEC) = sect.(BECM) + (G).

Taking away the two members segm.(BMC) + tr.(QEC), this leaves

lune (BICMB) = tr.(BEQ) + (G).

In Proposition 10 we saw that a complete circle (K) existed such that

lune (ADBHA) + lune (BICMB) + (K) = tr.(BEP) + tr.(BEQ);

hence
lune (ADBHA) + (G) + (K) = tr.(BEP).

Comments:
1) Suppose (G) + (K) = (Z);  (Z) > (K), then

lune (ADBHA) + (Z) = tr.(BEP),

lune (BICMB) = tr.(BEQ) + (Z) – (K).

2) If  
OC
CA = 

∏BAC
π�–� ∏ABC

 , then (G) = (O), (Z) = (K) and then

lune  (BICMB) = tr.(BEQ).

Note that Ibn al-Haytham did not indicate this result which leads to a
lune equivalent to a triangle and, consequently, equivalent to a square.

Comment on Lemmas 3 and 4 and Propositions 11 and 12:
Lemmas 3 and 4 and Propositions 11 and 12 use a triangle ABC

satisfying ∏ABC as obtuse and BC > BA and where point E of BC is such

that ∏BEC = ∏ABC.

In 3 and in 11, it is assumed that ∏BAC ≤ π
4

  [Figs 1.26 and 1.27].

In 4 and in 12, it is assumed that ∏BAC > 
π
4

  [Fig. 1.28].
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πBC < 
1
4

 circle, CE < CL [Fig. 1.26].

C

B

E
L

A

DMI K

Fig. 1.26

πBC = 
1
4

 circle, CE = CL [Fig. 1.27].
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Fig. 1.27

πBC > 
1
4  circle, CE > CL [Fig. 1.28].
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Fig. 1.28

Let K be the centre of the circle circumscribed at ABC, let CD be the
diameter from point C and let I be the intersection of BE and CD. We have
∏ABC + ∏ADC = π and by hypothesis ∏BEC = ∏ABC, therefore ∏AEI + ∏ADC =

π, and it follows ∏EID  = π
2

, since ∏DAE = π
2

; therefore in the three cases

above, BI ⊥ DC.
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Let L be the intersection of BK and CA, and from this:

If ∏BAC < π
4

, πB C  < 1
4

 circle, I is between C and K , therefore E is

between C and L, CE < CL [Fig. 1.26].

If ∏BAC = π
4

, πBC = 1
4

circle, I = K, therefore E = L, CE = CL [Fig.

1.27].

If ∏BAC > π
4

, πBC > 1
4

 circle, I is between K  and D , therefore E is

between L and A and CE > CL [Fig. 1.28].

In the three cases:  
LC
CA < 

∏BAC
π�–� ∏ABC

 .

In Lemma 3, by hypothesis,  ∏BAC ≤ π
4

, therefore CE  ≤ CL and it

follows  
CE
CA < 

∏BAC
π�–� ∏ABC

 .

But, in Lemma 4,  ∏BAC > π
4

, therefore CE > CL and it is not possible

to conclude anything about arcs πBC and πBA without a complementary
hypothesis.

The condition for

(1)   
CE
CA < 

∏BAC
π�–� ∏ABC

 :

we have  π – ∏ABC = ∏ADC  and  ∏BAC = ∏BDC, and, on the other hand, if

AM ⊥ CD, then  
CE
CA = 

CI
CM , and it follows

(1) ⇔  CI
CM <  

∏BDC
∏ADC

  ⇔   
CI
CM <  

πBC
πAC

    (2).

But CM = CI + IM  and  πAC = πAB + πBC, from which we can deduce

(3)     
EC
CA < 

∏BAC
π�–� ∏ABC

  ⇔   IM
IC  >  

πAB
πBC
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and

(4)    
EC
CA ≥ 

∏BAC
π�–� ∏ABC

  ⇔   IM
IC  ≤ 

πAB
πBC

 .

Note that (4) is therefore a necessary condition and sufficient so that the

inequality  
EC
CA ≥ 

∏BAC
π�–� ∏ABC

  is satisfied.

Ibn al-Haytham showed that  
EC
CA > 

∏BAC
π�–� ∏ABC

  (strict inequality) is satisfied

if

(5)   I D
IC ≤ 

πAB
πBC

 .

Then ID > IM, hence  
ID
IC > 

I M
IC , and it follows that condition (5) given

by Ibn al-Haytham is sufficient to have  
EC
CA > 

∏BAC
π�–� ∏ABC

 , but is not necessary.

Ibn al-Haytham then goes on to examine particular cases for which it is
possible to determine the circles which are used in the expression of the
surface of lunes as their ratio to a given circle.

Proposition 13. — If  ∏ABC = π
2

  and  πAB = 
1
2 πBC,  then if circle (K) =

1
24 circle (ABC) and circle (M) = 

1
12 circle (ABC), then

lune (AEBNA) + (K) = tr.(ABD),
lune (BHCIB) – (K) = tr.(BCD),
lune (AEBNA) + (M) = lune (BHCIB).
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AB = AD  = DC . Sector (ADB) is a third of semicircle (ABC) and
semicircle (AEB) is a quarter of semicircle (ABC); hence

sect.(ADB) – 
1
2 circle (AEB) = 

1
24 circle (ABC) = (K).

If segment BNA is taken away from the two terms of the difference, then
tr.(ABD) – lune (AEBNA) = (K), hence lune (AEBNA) + (K) = tr.(ABD).

Next, according to Proposition 8: tr.(BCD) + (K) = lune  (BHCIB). And
since tr.(BCD) = tr.(ABD), then lune (AEBNA) + (M) = lune (BHCIB).

Proposition 14. — Particular case of Proposition 11a with πABC = 
1
3 of the

circumference.

Let (S) and (U) be two complete circles such that (S) = 
1
9  circle (ABC)

and (U) = 
1
2 (S), then

lune (AHBIA) + lune (BKCMB) + (S) = (GPBQ),
lune (AHBIA) + (U) = tr.(PBG),
lune (BKCMB) + (U) = tr.(QBG).
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AC is the side of the equilateral triangle inscribed in circle ABC and AB
the side of the hexagon, hence

AB2 = 
1
3 AC2 = BC2.

Similarly

DA2 =  
1
3 AB2 =  

1
9 AC2;
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hence

DA =  
1
3 AC,

and for the same reason

CE =  
1
3 AC,   DE  =  

1
3 AC = DB = EB.

Therefore

AB2 + BC2 = 
2
3

 AC2;

hence

segm.(AHB) + segm.(BKC) = 2
3

  segm.(ABC).

But

tr.(AGD) + tr.(EGC) =  2
3

 tr.(AGC),

therefore

segm.(AHB) + segm.(BKC) + tr.(AGD) + tr.(EGC) =  
2
3 sect.(AGCB).

But

(S) =  
1
9 circle (ABC) =  

1
3 sect.(AGCB),

tr.(AGD) = tr.(AGP)  and  tr.(EGC) = tr.(GQC);

hence

segm.(AHB) + segm.(BKC) + tr.(AGP) + tr.(GQC) + (S) = sect.(AGCB).

By taking away from the two members the sum:

segm.(AIB) + segm.(BMC) + tr.(AGP) + tr.(GQC),

this leaves

lune (AHBIA) + lune (BKCMB) + (S) = quad.(BPGQ).17

17 Quad.(BPGQ) = quad.(ABCG) – [tr. (APG) + tr. (GQC)]

  = 2 tr.(ABC) – 2
3

 tr.(ABC) =  
4
3
  tr.(ABC).
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But the two lunes are equal and moreover

tr.(PBG) = tr.(BGQ) =  
1
2 quad.(BPGQ), (U) =  

1
2 (S);

therefore
lune (AHBIA) + (U) = tr.(PBG)

lune (BKCMB) + (U) = tr.(BGQ).

Proposition 15. — This proposition applies to two cases; the first (15a) is a
particular case of Proposition 10.

Let πAC = 
1
3 circumference, πAB =  

1
4  circumference, and let (AEB) and

(BHC) be similar segments to (ABC); let BD cut AC at I and let L on AC

be such that ∏BLC = ∏ABC. And let there be two circles of diameters NP
and QS such that

circle (NP) =  
1
3 circle (ABC)  and   

NP2

QS2 = 
circle (NP)
circle (QS) = 

AC
IL ,

therefore

lune (AEBMA) + lune (BHCKB) + circle (QS) = tr.(ABC) + tr.(DIL).
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Fig 1.31

Proof: According to the data, ∏AIB = ∏ABC = 
2π
3 ,18 triangle AIB and ABC on

the one hand, and BLC and ABC on the other hand are similar, then

18 We have  ∏ABC =  
2π
3  = ∏ADC. As  ∏ADB  is a right angle, angle ∏IDC is  

2π
3   –  

π
2 =

π
6; moreover, ∏DCI  subtends arc πAC′ = π –  

2π
3   =  

π
3 , then  ∏DCI  =  

π
6  and  ∏DIC =

 π – 2 ·  
π
6
  =  

2π
3 .
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AB2 = CA · AI   and   CB2 = AC · CL.

From this, we can deduce

IA + CL
AC  = 

AB2 + BC2

AC2   = 
segm.(AEB) + segm.(BHC)

segm.(ABC)

        = 
tr.(AID) + tr.(LDC)

tr.(ADC)

         = 
segm.(AEB) + segm.(BHC) + tr.(AID) + tr.(LDC)

sect.(ADCB)
 .

Therefore

IA + CL
AC  = 

segm.(AEB) + segm.(BHC) + tr.(AID) + tr.(LDC)
circle (NP)

 .

But

 
circle (QS)
circle (NP) = 

IL
AC

  and  IA + CL + IL = AC;

hence

segm.(AEB) + segm.(BHC) + tr.(ADI) + tr.(LDC) + circle (QS)
= circle (NP) = sect.(ADCB).

The parts common to the two members are: segm.(AMB), segm.(BKC),
tr.(ADI), tr.(LDC), and it follows

(1) lune (AEBMA) + lune (BHCKB) + circle (QS) = tr.(ABC) + tr.(DIL).

If d is the diameter of circle ABC, then

AC2 = 
3
4 d2,  AB2 = 

1
2 d2;

hence

AB2 = 2
3

 AC2,

hence

IA = 2
3

 AC  and  IC = 1
3

 AC,  since 
I A
AC = 

AB2

AC2.

But
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∏AIB = ∏BLC = ∏ABC = 
2π
3  ;

hence
∏BIL = ∏BLI = 

π
3,

triangle BLI is therefore equilateral and BL = IL. But

BL
LC = 

AB
BC    and  AB > BC, since πBC =  1

3  
πAB;

hence BL > LC, from which we can deduce LI > LC, 2 LI > IC, and it
follows

LI >  
1
6 AC,19  and circle (QS) >  

1
6 

circle (NP);

therefore

circle (QS) >  
1
18 circle (ABC).

15b . —  If circles (F) and  (U) are defined by (F) = 
1
36 circle (ABC),

(U) = (QS) – (F) [(QS) >  
1
18 

circle (ABC) has already been seen], then

lune (AEBMA) + (F) = tr.(ABI)
lune (BHCKB) + (U) = tr.(BIC) + tr.(IDL).

 We know that

sect.(ADBM) =  
1
4 circle (ABC), sect.(ADCB) = 1

3
 circle (ABC),

therefore

sect.(ADBM) =  
3
4 sect.(ADCB).

On the other hand

19 The calculus of BC in the isosceles triangle BDC, BDCˆ =





π
6

, gives BC 2 =

 
d2

4  (2 – √3). Moreover,  
CL
AC = 

CB2

AC2 , hence  
CL
AC  =  

2 – √3
3

 . But   
IC
AC =  

1
3
 , so  

LI
AC  =  

IC – C L
AC

=  
√3 – 1

3
   and   

circle (QS)
circle (NP)

 =  
√3 – 1

3
 , hence circle (QS) =  √3 – 1

9
  circle (ABC).
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AB2 = 2
3

 AC2,

hence

segm.(AEB) = 2
3

 segm.(ABC),

and

AI = 2
3

 AC;

hence

tr.(ADI) = 2
3

 tr.(ADC).

 It follows that

segm.(AEB) + tr.(ADI) =  2
3

 sect.(ADCB)

and
sect.(ADBM) – [segm.(AEB) + tr.(ADI)]

=  
1
12 sect.(ADCB) =  

1
36 circle (ACB) = (F);

hence
sect.(ADBM) = segm.(AEB) + tr.(ADI) + (F).

By taking away from the two members the sum of segm.(ABM) +
tr.(ADI), this leaves

lune (AEBMA) + (F) = tr.(ABI)

 or

(2) lune (AEBMA) +  
1
36 circle (ABC) = tr.(ABI).

From (1) and (2) we can deduce

lune (BHCKB) + (QS) – (F) = tr.(ABC) + tr.(DIL) – tr.(ABI),

therefore
lune (BHCKB) + (U) = tr.(BIC) + tr.(DIL).
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Proposition 16. —  Let πAB =  
1
6 circle, πBC = 1

3
 circle, E midpoint of AD

and G such that AG =  
3
8 GC, [AG =  

3
11 

AC, hence G between E and C].

If πAH =  
1
4 πAB, then πHB = 

3
8 πBC.

The straight line CH cuts BE at I; so ∏BIC =  ∏HBC.20 Let GK || AH, K
between I and C, hence

KH
KC = 

GA
GC = 

πHB
πBC

 =  38 ,

from which we can deduce

CK
HC = 

πBC
πHBC

    and   
IC
HC  > 

πBC
πHBC

    (since IC > KC);

but

 
πBC
πHBC

  = 
∏BDC
∏CDH

  = 
∏BHC

π�–� ∏HBC
 = 

sect.(BDCM)
sect.(CDHB),

therefore
IC
HC >  

sect.(BDCM)
sect.(CDHB) .
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20   ∏BIC  =  ∏HIE,   and in the inscribed quadrilaterals AHBC and AHIE, the angles
∏HBC and ∏HIE have the same complement ∏HAC, then  ∏HBC = ∏HIE = ∏BIC.
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Let S on IH be such that ∏BSH = ∏HBC and let SO || DH and IN || DC.

Sector (CDHB) is a known part of circle (ABC), [in fact πAH = 
1
4 πAB = 

1
24 of

the circumference, therefore sect.(CDHB) = 
11
24 of the circle (ABC)].

Let (F) be a circle equivalent to this sector, therefore to 
11
24 of (ABC); let

(U) and (J) be two circles such that

(U)
(F) = 

SI
HC

    and   (J)
(F)

 = 
IK
HC

 .

Let (HQB ) and (BLC ) be similar segments to segment (ABC )
constructed on HB and BC, then according to Proposition 10

(1) lune (HQBPH) + lune (BLCMB) + (U) = tr.(DOB) + tr.(DNB).

On the other hand

 
IK
CH

 = 
IC
CH

  – 
KC
CH

  = 
IC
CH

  – 
πBC
πHBC

  = 
IC
CH

  – 
sect.(BDCM)
sect.(CDHB)

and

 IK
CH

 =  
(J)
(F)

 = 
(J)

sect.(CDHB)
,

therefore

 
IC
CH

 = 
sect.(BDCM) + (J)

sect.(CDHB)
 .

But because of similar triangles BIC and HBC

 
IC
CH

 = 
BC2

CH2 = 
segm.(BLC)
segm.(CBH)

 = 
tr.(IDC)
tr.(CDH)

 = tr.(DNC)
tr.(CDH)

,

 
IC
CH

 = 
segm.(BLC) + tr.(DNC)

sect.(CDHB)
 ,

from which we can deduce

segm.(BLC) + tr.(DNC) = sect.(BDCM) + (J).

By taking away from the two members the sum of segm.(BMC) +
tr.(DNC), this leaves

(2) lune (BLCMB) = tr.(BDN) + (J).
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From (1) and (2), we deduce

lune (HQBPH) + (U) + (J) = tr.(DOB).

 In summary: In a circle with centre D, where the givens are πBC = 
1
3 circle

and πBH = 
1
8 circle, and segments similar to segment HBC are constructed on

BC and BH, in this way lunes (HQBPH) and (BLCMB) can be determined.

If circles (F), (U) and (J) are defined by (F) = 
11
24 of the given circle, then 

(U)
(F)

= 
SI
HC

   and  (J)
(F)

 = 
IK
HC

, with points K, I and S as points of HC which satisfy

 
KH
KC

 = 
3
8, ∏BIC = ∏BSH = ∏CBH,

and if O is the point of BH and N the point of BC such that SO || DH,
IN || DC, then

lune (BLCMB) = tr.(BDN) + (J),
lune (HQBPH) + (U) + (J) = tr.(DOB).

Proposition 17. — Let πAC = 1
3 circumference, πAB = 1

4 circumference,

(AEB) segment similar to (ABC), (ANB) semicircle, circle (K) = 1
36 circle

(ABC), then lune  (ANBEA) = tr.(ADI) + (K).
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If AM  is a tangent at A  to arc πAEB , then ∏MAB  = π
3. However the

tangent at A to arc πANB is perpendicular to AB, therefore AM cuts arc
πANB, and this arc is wholly outside the circle AEB.
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According to Proposition 15: lune (AEBHA) + (K) = tr.(ABI); hence by
adding tr.(ADI) to the two members: lune (AEBHA) + (K) + tr.(ADI) =
tr.(ABD).

But according to Proposition 9: lune (ANBHA) = tr.(ABD); from which
can be deduced: lune (ANBEA) = tr.(ADI) + (K).

Let (LGP) be a right isosceles triangle which is equivalent to triangle

(ADI). Arc πLQP of circle (G, GP) and semicircle (LSP) determine the lune
(LSPQL).

S

LP
Q

G

K

Fig. 1.34

According to Proposition 9: lune (LSPQL) = tr.(LGP); however
tr.(LGP) = tr.(ADI), therefore lune (ANBEA) = lune (LSPQL) + (K).

Proposition 18. — (D) designates the surface of circle (D, DA). Let πAB =
πBC = 16 of the circumference, let segments (AEB) and (BIC) be similar to

segm.(ABC), (AFC) semicircle of diameter AC, L and M on AC such that
∏BLA = ∏BMC = ∏ABC = 2π

3 , with (N) and (U) as given circles (N) = 19 
(D),

and (U) = 1
24 

(D), and (P) = (N) + (U), therefore

fig.(AFCIBEA) + tr.(DLM) = (P).

Let AS be a tangent at A to arc πAEB, then

∏SAL = ∏SAB + ∏BAC = π3 + 
π
6 = 

π
2

.

Therefore arcs πAEB and πAFC are tangents at A.  We know that B is

inside circle AFC, therefore arc  πAEB is inside circle AFC,21 and similarly

21 According to Elements III.13.
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for arc  πBIC. The straight line AD cuts the circle (D, DA) again, at G, then
πCG = πAB. We have tr.(ADC) = tr.(CDG) < sect.(CDG) = 16 

(D) and tr.(DLM)

=  13 
tr.(ADC). Therefore tr.(DLM) <  12 

(N). But according to Proposition 14:

(1) lune (AEBHA) + lune (BICKB) + (N) = tr.(ABC) + tr.(DLM).

Let (U) =  1
24 

(D); we know according to Proposition 13 that

(2) lune (AFCBA) = tr.(ADC) + (U) = tr.(ABC) + (U).
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From (1) and (2), we deduce

lune (AEBHA) + lune (BICKB) + (N) – tr.(DLM) + (U) = lune (AFCBA),

hence
(N) – tr.(DLM) + (U) = fig.(AFCIBEA).

We set (N) + (U) = (P), then (P) = fig.(AFCIBEA) + tr.(DLM).

Note that (P) =  19 (D) +  1
24 (D) = 11

72 (D)  and  tr.(DLM) =  13 tr.(ABC).

Proposition 19. — A portion of a circle comprised between two parallels
and equal to a quadrant of a circle is to be constructed.
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A

B

E

C
D

Fig. 1.36

On a circle with centre D, take points A, B, C such that ∏BDC =  π
2  

and

DA || BC. If E is the midpoint of arc BC, then straight lines BE and CA
satisfy the problem.

If ∏BDC  = 
π
2

, then  ∏BCD  = ∏CBD  = ∏BDA =  
π
4

 . Therefore πAB = πEC =

πEB, hence

1) segm.(AB) = segm.(EC) = segm.(BE)

2) ∏EBC = ∏BCA, therefore straight lines BE and AC are parallel.

On the other hand, since AD || BC, then tr.(BAC) = tr.(BDC); hence

tr.(BAC) + tr.(BEC) = tr.(BDC) + tr.(BEC),
quadr.(ABEC) = quadr.(DBEC),
quadr.(ABEC) + segm.(AB) + segm.(EC)

= quadr.(DBEC) + segm.(BE) + segm.(EC),

portion (EBAC) = sector (BDCE) = 14 
circle (ABC).

Proposition 20. —  On the first circle (ABH), are points A, B, C, D, such

that πAB = πBC = πCD =  
1
8 of the circumference. Arc AEGD is constructed

symmetrically to ABCD with πAE = πEG = πGD.

Therefore according to Proposition 19: BC || AD || EG, and each of the
portions of circles (ABCD) and (AEGD) between parallel lines is equal to a
quadrant of a circle.
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Therefore

portion (ABCD) + portion (AEGD) = 12 
circle (ABH);

it follows that

lune (AHDGE) + segm.(GE) + segm.(CB) =  12 
circle (ABH).

But
segm.(GE) = segm.(BC) = segm.(AE) = segm.(DG),

therefore
lune (AHDGE) = portion (ABCD) + quadr.(AEGD).

Suppose (I) = 
1
4 circle (ABH) and let KMN be a right isosceles triangle,

and ∏M  =  
π
2

, such that tr.(KMN) = quadr.(AEGD). Then

lune (AHDGEA) = (I) + tr.(KMN).

Arc πKUN of circle (M, MK) and semicircle (KPN) determine the lune
KPNUK, so

lune (KPNUK) = tr.(KMN);

therefore
lune (AHDGEA) = lune (KPNUK) + (I).
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Proposition 21. — Property of lunes where two arcs form the sum of a
complete circle [lune from Proposition 20 has this property].
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Fig. 1.38
 Let (H, HA) be a circle, with a chord AC of this circle separating arcs

πADC and πABC ( πADC < πABC ). Let πAEC be the symmetrical arc of circle
πADC. The perpendiculars to AC at A and C, at its midpoint G and at any

point O, determine in lune (ABCEA) the segments AL, CK, EB and MQ
which are all equal.

Comment: The perpendicular to the chord AC at its midpoint G cuts the arcs

of the lune at E  and B . The two arcs πAEC  and πLBK correspond in a

translation of vector EB. Hence the result announced as AL = EB = QM =
CK.

Note that this property of the translation associated with two equal
circles is studied by Ibn al-Haytham in his treatise On Known Things,
Proposition 11.22

Proposition 22. — If lunes constructed on similar arcs πANB and πDOE of

two circles (H) and (I) are limited by similar arcs πAKB and πDME, then

 
lune  (AKBNA)
lune  (DMEOD) = 

(H)
(I)  .

22 R. Rashed, Les mathématiques infinitésimales, vol. IV.
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Similar segments are associated to similar arcs, and therefore according
to Proposition 6:

AB2

ED2 = 
(H)
(I)

 = 
segm.(ANB)
segm.(DOE)

 = 
segm.(AKB)
segm.(DME)

,

and it follows that

AB2

ED2 = 
(H)
(I)

 = 
lune (AKBNA)
lune (DMEOD)

 .

Proposition 23. —  Let two circles (K) and (I) such that (I) = 3(K) and in
each of them a chord on the side of hexagon AB and EG respectively.

On AB we construct an equilateral triangle ABD, D outside the circle,

and on EG an arc πEPG equal to a third of the circumference, therefore

lune (EPGOE) = fig.(ADBMA).
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Proof: Let EH be the side of the inscribed equilateral triangle and L on EH

such that ∏GLE = ∏EGH, therefore according to Proposition 14:
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lune (EPGOE) + 
1
18 (I)  = tr.(EGN) + tr.(ILN)

  = tr.(HLI) = 
2
3 tr.(EIH)

  =
 

2
3

(EIG).

But we know that (I) = 3(K), therefore EG2 = 3AB2, and it follows that

tr.(EIG)    = 3 tr.(AKB),
2
3

tr.(EIG) = 2 tr.(AKB) = lozenge (ADBK);

hence

lune (EPGOE) + 
1
18 (I) = lozenge (ADBK).

On the other hand,

sect.(AKBM) = 
1
6 (K) = 

1
18 (I);

therefore
lune (EPGOE) = lozenge (ADBK) – sect.(AKBM)
lune (EPGOE) = fig.(ADBMA).

If arc πASB is constructed on AB equal to one third of the circumference,
the lunes (EPGOE) and (ASBMA) are similar, therefore

3 · lune (ASBMA) = fig.(ADBMA)

and
2 · lune (ASBMA) = fig.(ADBSA).

This proposition ends the Exhaustive Treatise of Ibn al-Haytham, the
most substantial treatise on lunes ever to be known before the eighteenth
century.
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In the name of God, the Merciful, the Compassionate

TREATISE OF AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On Lunes

Upon my examining – may God bless our Lord, the master, with
permanence and may He bestow upon him everlasting happiness and
prosperity – the shape of the lune, equal to a triangle as mentioned by the
Ancients, its admirable property and its astonishing composition lead me to
ponder on the properties of lunes and on the curious notions that occur in it.
It is thus that I have deduced the propositions I enclose in this treatise. I
disclose them in his presence so that he may know them, meditate and use
them to show the virtues of geometry and its hidden notions. I implore God
to grant me his good assistance so that I may be faithful to my promises. Of
them, He is the Master.

<1> If we draw in a circle any diameter and a chord equal to half the
diameter, if we join the centre to the extremities of the chord and construct
on the chord a semicircle, then the sum of the generated lune and the circle
forming one part of twenty-four parts of the first circle is equal to the
generated triangle.

Example: We produce in the circle ABC, of centre D, the diameter AC
and the chord AB equal to half the diameter and we join DB. We construct
on the straight line AB the semicircle AGB and we draw a circle H equal to
one part of twenty-four parts of the circle ABC.
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A

Fig. I.1.1
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I say that the sum of the lune AGBE and the circle H is equal to the
triangle ABD.

Proof: We separate the arc AE equal to an eighth of the circle and we
join DIE. Since the straight line AB is half of diameter AC, the square of AB
is equal to a quarter of the square of AC and the ratio of the square of AB
to the square of AC is equal to the ratio of the circle to the circle, because
the ratio of the circle to the circle is equal to the ratio of the square of the
diameter to the square of the diameter. Therefore, the circle of diameter AB
is a quarter of the circle ABC, and half of the circle AGB is an eighth of the
circle ABC. However, the arc AE is an eighth of the circle ABC, therefore
the sector AED is an eighth of the circle ABC. Yet, we have shown that half
of the circle AGB is an eighth of the circle ABC, therefore the sector AED is
equal to half of the circle AGB. Subtracting the common portion AEI, there
remains the triangle AID equal to the lune AGBE plus the portion BEI. We
take the common triangle BID; the triangle ABD will be equal to the lune
AGBE plus the portion BEI plus the triangle BID. However, the portion
BEI plus the triangle BID is the sector BED; therefore, the triangle ABD is
equal to the lune AGBE plus the sector BDE. However, AE is an eighth of
the circle and AB is a sixth of the circle; therefore, EB is one part of twenty-
four parts of the circumference of the circle, and the sector BED is one part
of twenty-four parts of the circle. But the circle H is one part of twenty-four
parts of the circle, so the sector BED is equal to circle H; consequently, the
sum of the lune AGBE and of the circle H is equal to the triangle ABD. That
is what we wanted to prove.

<2> If we produce in a circle one of its diameters and the side of an
equilateral triangle, join the centre to the extremities of the chord and
construct on the chord a semicircle, then the generated lune is equal to the
generated triangle plus the circle forming one part of twenty-four parts of
the circle.

Example: We produce in the circle ABC, of centre D, the diameter AC,
and a chord AB equal to the side of the equilateral triangle and we join DB.
We construct on AB a semicircle and we draw the circle I equal to one part
of twenty-four parts of the circle ABC.

I say that the lune AEBG is equal to the triangle ABD plus the circle
I.

Proof: We join BC. As AB is the chord of the triangle and ABC is a
semicircle, the arc BC is one sixth of the circle. The straight line BC is
therefore half a diameter and ABC is a right angle because it lies in a
semicircle. The square of AC is therefore equal to the square of AB plus the
square of BC. But the square of BC is a quarter of the square of AC; there
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remains the square of AB which is three quarters of the square of AC. The
circle, of diameter AB, is therefore three quarters of the circle ABC, and the
semicircle AEB is three quarters of the semicircle ABC. However, the arc
AB is two thirds of the arc ABC, therefore the sector AGBD is two thirds of
the semicircle ABC. But the circle I is one part of twenty-four parts of the
circle, so the circle I is half of the sixth of the semicircle ABC, the sector
AGBD is two thirds of this half, and the sum of the sector AGBD and of the
circle I is three quarters of half of the circle ABC. We have thus shown that
half of the circle AEB is equal to the sector AGBD plus the circle I.
Subtracting the common portion AGB, there remains the lune AEGB equal
to the triangle ABD plus the circle I. That is what we wanted to prove.
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Fig. I.1.2

<3> If we produce any diameter in a circle and join any point marked
on its circumference to the two extremities of the diameter by two straight
lines on which we construct two semicircles, then the sum1 of the generated
two lunes is still equal to the generated triangle.

Example: We produce in the circle ABC any diameter AC, we mark any
point on its circumference – let it be point B – and we join the two straight
lines AB and BC on which we construct the two semicircles AEB and BHC.
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Fig. 1.3

1 The word sum has sometimes been inserted to serve a clearer translation.
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I say that the sum of the two lunes AEB and BHC is equal to the
triangle ABC.

Proof: The angle ABC is a right angle, therefore the square of AC is
equal to the sum of the squares of AB and BC. The circle ABC is therefore
equal to the sum of the two circles whose diameters are AB and BC, and the
semicircle ABC is equal to the sum of the two semicircles AEB and BHC.
Subtracting the two common segments AGB and BIC, there remains the
triangle ABC equal to the sum of the two lunes AEBG and BHCI. That is
what we wanted to prove.

<4> If two lunes are <defined> from similar arcs,2 then the ratio of one
to the other is equal to the ratio of the squares of their bases, one to the
other.

Example: The two lunes ABCD and HIKL <are defined> from similar
arcs; their bases are AC and HK.

I say that the ratio of the lune ABCD to the lune HIKL is equal to the
ratio of the square of AC to the square of HK.
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Fig. I.1.4

Proof: We draw two circles ADC and HLK; let their centres be the two
points E and G. We join EA, EC, GH and GK. Since the arc ADC is similar
to the arc HLK, the ratio of the circle to the circle is equal to the ratio of the
sector ACE to the sector HKG. However, the ratio of the circle to the circle
is equal to the ratio of the square of AC to the square of HK. Therefore, the
ratio of the sector to the sector is equal to the ratio of the square of AC to
the square of HK. But the ratio of the triangle ACE to the triangle HKG is
equal to the ratio of the square of AC to the square of HK also, because of

2 ‘Similar’ is understood here to mean: in relation of one to the other.
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the similarity of the two triangles. There remains the ratio of segment ADC
to segment HLK equal to the ratio of the square of AC to the square of HK.
Likewise, the segment ABC is similar to the segment HIK; therefore the
ratio of the segment ABC to the segment HIK is equal to the ratio of the
square of AC to the square of HK. We subtract the two segments ADC and
HLK, which follow the ratio of the square of AC to the square of HK; there
remains the ratio of the lune ABCD to the lune HIKL equal to the ratio of
the square of AC to the square of HK. That is what we wanted to prove.

<5> If we draw in a circle the side of an equilateral triangle, on which
we construct a semicircle, if we then divide the arc <associated with> the
triangle into two halves and if we join the two straight lines, then the sum of
the lune and the triangle thus generated is equal to the sum of another lune
and a circle.

Example: We draw in the circle ABC the straight line AB, equal to the
side of an equilateral triangle, on which we construct a semicircle AGB; we
divide <the arc> AEB into two halves at point E and we join AE and EB.

I say that the sum of the lune AGBE and the triangle AEB is equal to
the sum of another lune and a circle.

Proof: We define the centre, let it be D; we draw the diameter ADC, we
join BD, DE and BC, we construct on the straight line BC the semicircle
BRC, we construct HI whose square is equal3 to twice the square of BC,
and we construct on HI a lune from two arcs similar to the two arcs BFC
and BRC; let it be the lune HIKL. We construct the circle M equal to an
eighth of the circle ABC.
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I say that the sum of the lune AGBE and the triangle AEB is equal to
the sum of the lune HKIL and the circle M.

3 Lit.: we construct the square of HI equal…
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As each of <the straight lines> AE, EB and BC intercepts a sixth <of
the circle>, the lunes constructed on them, which are similar to the lune
BRCF, are equal and the three triangles AED, EDB and BDC are equal. But
the sum of the lune BRCF and the circle, which is one part of twenty-four
parts of the circle ABC, is equal to the triangle DBC; the sum of the three
lunes constructed on the straight lines AE, EB, BC – which is three times
the lune BRCF plus the circle, which is an eighth of the circle ABC – is
therefore equal to the sum of the three triangles AED, EDB and DBC. But
the lune HKIL is twice the lune BRCF; the sum of the two lunes HKIL and
BRCF is therefore three times the lune BRCF. But the circle M is one
eighth of the circle ABC, so the sum of the two lunes HKIL and BRCF and
of the circle M is equal to the sum of the three triangles, which are AED,
EDB and BDC. But the three triangles are the quadrilateral AEBC, and the
quadrilateral AEBC is the sum of the two triangles AEB and ABC, so the
sum of the two lunes HIKL and BRCF and of the circle M is equal to the
sum of the two triangles AEB and ABC. But since the point B lies on the
circumference of the circle and since we have drawn the two straight lines
AB and CB from the two extremities of the diameter on which we have
constructed the two lunes AGBE and BRCF, the sum of the lunes is equal
to the triangle ABC. But the sum of the two lunes HKIL and BRCF and of
the circle M is equal to the sum of the two triangles ABC and AEB, so the
sum of the two lunes HKIL and BRCF and of the circle M is equal to the
sum of the two lunes BRCF and AGBE and of the triangle AEB. We then
subtract the lune BRCF common to both sides; there remains the sum of
the lune AGBE and the triangle AEB equal to the sum of the lune HKIL
and the circle M. That is what we wanted to prove.

The treatise on the lunes is completed. Thanks be to God, Lord of the
worlds.
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TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Quadrature of the Circle

Many philosophers have believed that the area of a circle cannot be
equal to the area of a square limited by straight lines. This notion has been
revisited many times in their dialogues and controversies, but we have
discovered no early or modern work containing a polygonal figure exactly
equal to the area of a circle. Archimedes made use of a certain
approximation1 in his work on the measurement of the circle, and this latter
notion is among those that have reinforced the opinion of the philosophers
in their conviction. Given this, we have thought deeply about this notion,
and it has been revealed to us that it is possible, not difficult, and has
analogues: namely, that there can exist a lune enclosed by two arcs of two
circles that is also equal to a triangle, and there can also exist a lune and a
circle whose sum is equal to a triangle. We have shown several different
figures of this species in our book On Lunes. But as this is so for figures of
lunes, we have become more and more convinced that it is possible for the
area of a circle to be equal to the area of a quadrilateral with straight sides.
We have therefore given our utmost attention to this notion, until it was
made apparent to us through a proof that it is possible and that there is no
ambiguity as to this possibility. We have therefore written this treatise.

We say that, if one of the diameters is drawn in a circle, and any point is
then marked on one of its halves so formed, and if we join this point to the
extremities of the diameter by two straight lines, and if we then construct
two semicircles on these two straight lines, then the sum of the two lunes
formed by the circumference of these two semicircles and the circumference
of the first circle is equal to the triangle formed in the first circle. We have
proved this notion in our book On Lunes, and we repeat the proof here.

Let there be a circle on which lie A, B and C, and let D be its centre.
We draw the straight line ADC through the point D; AC will then be the
diameter of the circle. We mark a point B on the circumference, we join the

1 Lit.: a certain simplification.
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two straight lines AB and BC, and we construct two semicircles AEB and
BGC on the two straight lines AB and BC.

I say that the sum of the two lunes AEBHA and BGCIB is equal to the
triangle ABC.
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Fig. II.2.1

Proof: The ratio of any two circles, one to the other, is equal to the ratio
of the square of the diameter of one to the square of the diameter of the
other, as has been shown in Proposition 2 of Book 12 of the Elements. The
ratio of the circle BGC to the circle BEA is therefore equal to the ratio of
the square of CB to the square of BA. Composing, the ratio of the sum2 of
the squares of CB and AB to the square of AB is equal to the ratio of the
sum of the circles BGC and BEA to the circle BEA. But the sum of the
squares of CB and AB is equal to the square of AC. Therefore, the ratio of
the square of AC to the square of AB is equal to the ratio of the sum of the
circles BGC and BEA to the circle BEA. But the ratio of the square of AC
to the square of AB is equal to the ratio of the circle ABC to the circle BEA.
The ratio of the sum of the circles BGC and BEA to the circle BEA is
therefore equal to the ratio of the circle ABC to the circle BEA. The circle
ABC is therefore equal to the sum of the circles BGC and BEA. The
semicircle ABC is therefore equal to the sum of the semicircles AEB and
BGC. If we remove the two portions AHB and BIC which are common to
the circle ABC and the sum of the circles AEB and BGC, there remains the
triangle ABC which is equal to the sum of the two lunes AEBHA and
BGCIB. That is what we wanted to prove.

If the two arcs AHB and BIC are equal, then the two straight lines AB
and BC will also be equal, the two circles AEB and BGC will be equal, their
halves will be equal, and the two lunes AEBHA and BGCIB will be equal.
We join BD; the two triangles ABD and BDC will be equal. But we have
shown that the sum of the two lunes is equal to the triangle ABC. If the two
lunes are equal and the two triangles ABD and BCD are equal, then each of

2 We have occasionally inserted the word ‘sum’ where required in the translation.



ON THE QUADRATURE OF THE CIRCLE 101

the lunes is equal to each of the triangles, and the lune AEBHA is equal to
the triangle ABD.

Now that we have proved this, we go back to the circle, the lune
AEBHA and the triangle ABD, and we divide the straight line BA into two
halves at the point K. The point K will then be the centre of the circle AEB.
We join DK and we extend it so that it cuts the two arcs AHB and AEB at
the points H and E. The straight line DKHE will then be a diameter of the
circle ABC and a diameter of the circle AEB, as it passes through their
centres. We divide the straight line EH into two halves at the point L. With
L at the centre, we draw a circle at a distance LH and let this be the circle
HMEN. This circle will then be tangent to the circle ABC on the outside and
tangent to the circle AEB on the inside, as it meets both of these circles at
the extremity of a diameter that is common to these two circles and to the
circle which is tangent to them. The circle HMEN therefore lies entirely
within the lune AEBHA. Consequently, this circle is itself a part of this lune.
But any magnitude has a ratio to any other magnitude of which it is a part,
even if no one knows what the ratio is or even if it is impossible for anyone
to know it, as the ratio between magnitudes does not depend upon them
being known by anyone, nor upon anyone’s ability to determine them and
hence know them. The ratio between the magnitudes is a specific notion to
those that are of the same type (jins). Therefore, if two magnitudes are of
the same type, and if each of them is limited, finite and fixed in its
magnitude and does not change in any way, either by increasing, reducing,
or changing its type, then the ratio of one to the other is one single fixed
ratio which does not change and which does not modify its form in any
manner whatsoever.

For any magnitude, a part of that magnitude is of the same type if the
part is limited, finite and does not change in its magnitude, or outline, or
shape, and if the whole magnitude is also fixed in its state and does not
change in its type, or magnitude, or outline, or shape. If both the magnitude
and the part of the magnitude have this property, then the whole magnitude
has a single fixed ratio to the part of the magnitude, which does not change
or vary in any manner whatsoever.

If the circle ABC is known in magnitude,3 then its circumference is
known, its diameter is also known, and its centre is known. The diameter
AC is therefore known, the arc AB which is one quarter of the
circumference is known, the straight line AB is known, the straight line BD

3 Ibn al-Haytham’s terms in this paragraph on ‘known in magnitude’ should be
looked at in conjunction with his treatise on The Knowns. Cf. ‘La philosophie des
mathématiques d’Ibn al-Haytham. II. Les Connus’, MIDEO 22, 1993, pp. 87–275, see
pp. 97ff.
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is known, and the triangle ABD is known. By the term ‘known’ I wish to
express that which I stated in describing the circle ABC, i.e. that it is fixed in
its state and does not change, as mathematicians use the word ‘known’ to
mean ‘that which does not change’. And the semicircle AEB will be known
as the straight line AB, which is its diameter, is known. The arc AEB is
known as it does not change, and the arc AHB is also known. Therefore, the
lune AEBHA is known, i.e. it is fixed according to the same property and it
does not change, neither in its type, nor in its magnitude, nor in its outline.
By its ‘type’, I mean that it is a plane surface. The straight line KE, which is
the half-diameter of the circle, is known, and the straight line KH is known
as the two points K and H are known. The remaining straight line EH is also
known as it does not change, neither in its magnitude, nor its type, nor its
outline. But the straight line EH is the diameter of the circle HMEN, and
therefore the circle HMEN is known. Its magnitude, outline and shape do
not change. But the circle HMEN is a part of the lune AEBHA, and neither
the lune AEBHA nor the circle HMEN change in any way. They are also of
the same type as one is a part of the other. Therefore, the lune AEBHA has
a fixed ratio with the circle HMEN according to the same property, and this
ratio does not change in any way. But the ratio of any one magnitude to
one of its parts is the same as the ratio of any other magnitude to its similar
part. The ratio of the lune AEBHA to the circle HMEN is therefore equal to
the ratio of the straight line AD to one of its parts, whether or not we know
the magnitude of this part, or even if we are unable to determine it or to
succeed in finding it. Let this part be DU. Then the ratio of AD to DU will
be equal to the ratio of the lune AEBHA to the circle HMEN. Therefore the
ratio of AD to DU is a fixed ratio that never changes, as the ratio of the lune
to the circle is a fixed ratio that does not change. If the ratio of AD to DU is
a fixed ratio that never changes, then the straight line DU is a unique
straight line that does not change, as the straight line AD is a straight line
with a known magnitude whose magnitude does not change. We join BU so
that BUD is a triangle. The ratio of the triangle ABD to the triangle BDU is
equal to the ratio of the straight line AD to the straight line DU. But the
ratio of AD to DU is equal to the ratio of the lune AEBHA to the circle
HMEN, and therefore the ratio of the triangle ABD to the triangle BDU is
equal to the ratio of the lune AEBHA to the circle HMEN. By permutation,
the ratio of the triangle ABD to the lune AEBHA is equal to the ratio of the
triangle BDU to the circle HMEN. But we have already shown that the lune
AEBHA is equal to the triangle ABD. Therefore the circle HMEN is equal to
the triangle BDU. But any triangle is equal to a square, as has been shown
at the end of the second Book of Euclid’s Elements.4

4 Euclid, Elements, II.14.
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Let us construct a square equal to the triangle BDU, and let this be the
square SQPO. The circle HMEN will be equal to this square SQPO. But the
ratio of the diameter AC to the diameter EH is a known ratio,5 as each of
these two diameters has a known magnitude. Let the ratio of AC to EH be
equal to the ratio of XQ to QP. Then the ratio of the square of AC to the
square of HE is equal to the ratio of the square of XQ to the square of QP.
We construct a square on the straight line XQ, and let this square be the
square XT. The ratio of the square of AC to the square of EH is equal to the
ratio of the square XT to the square QO. But the ratio of the square of AC
to the square of HE is the ratio of the circle ABC to the circle HMEN.
Therefore, the ratio of the square XT to the square QO is equal to the ratio
of the circle ABC to the circle HMEN. But the square QO is equal to the
circle HMEN. Therefore, the square XT is equal to the circle ABC.
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In this proof, we have shown that any circle is equal to a quadrilateral
with straight sides.

But how can we find this square? We will discuss this in a separate
treatise,6 as our aim in this treatise was simply to prove that this notion is
possible, and to show that the opinion of anyone who believes that a circle
cannot be equal to a quadrilateral with straight sides is wrong. We have
shown, by means of the proofs described in this treatise, that any circle is
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6 It is easy to understand that this treatise on the construction of a square equal to a
circle was never written. And one would search in vain for any mention in the writings of
ancient bibliographers or in those of Ibn al-Haytham himself. The author of the Objection
(pp. 105–6) notes that the treatise of Ibn al-Haytham ‘has not yet appeared, and it is not
mentioned in the list of his writings’. Let us note also that al-Îasan ibn al-Haytham’s
critic, despite the validity of this objection, did not grasp Ibn al-Haytham’s real intention,
which was to inscribe the circle in the square to perfection and to revive the method
proposed by his critic. His subsequent work on lunes was really a way of avoiding work
on ratios of rectilinear figures to curved figures in order to concentrate on ratios between
homogeneous figures – circles and lunes.
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equal to a quadrilateral with straight sides. It has therefore been shown from
this that the belief of this group is false, and that it is true that any circle is
equal to a quadrilateral with straight sides. The truths of these intelligible
notions does not depend on their being found or determined in act by any
human being. If it can be proved that such a notion is possible, then the
notion becomes true, whether or not it is determined in act by a human
being. That which we have written in order to identify this notion is
sufficient. That is the objective that we have sought in this treatise.

The treatise on the quadrature of the circle is complete.

I make the following addition to this treatise:

While it was sufficient to establish that which was sought by establishing
the possibility of it in the manner described, it would have been possible to
avoid such a long proof by means of a shorter explanation, saying the
following:
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Let AB be a known straight line on which is constructed the square BC,
which is also known, and within it the circle DE, which is also known as its
diameter DE, which is equal to AB, is known. As the circle is a known part
of a known whole, which is the square, then it has a ratio to it. Let this ratio
be equal to the ratio of BA to BG. We draw BH between them, in
continuous proportion such that the ratio of AB to BH is equal to the ratio
of BH to BG and we construct the square BI on BH. The ratio of AB to
BG, i.e. the ratio of the square BC to the circle DE, is therefore equal to the
ratio of the square BC to the square BI. Therefore, the ratio of the square
BC to the circle DE and its ratio to the square BI are the same. Therefore,
the circle DE is equal to the square BI.
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We have found that which we sought, and without any need for the
perplexity offered by some other earlier and modern authors.

Objection

If the notion mentioned by the Shaykh Abº ‘Alî in this treatise were
proved by means of his proof, then it would have been possible to prove it
using the same technique in a much easier fashion than that which he
employed: If we draw in any circle a square, then this square is a part of the
circle and the part has a certain ratio to the whole, as he has described, even
if this ratio is not known. Let this ratio be equal to the ratio of this square to
another square. Then the ratio of the square constructed within the circle to
the circle and its ratio to another square are the same, and therefore the
circle is equal to this other square.

However, to my eyes he has done nothing in this treatise, as that which
was sought was to construct a square equal to the circle. Whether this is
possible or not in the divine knowledge does not help us in finding that
which is sought. In saying that this is possible without our having the ability
<to construct it> adds nothing to the belief held by the earlier authors, as
their affirmation was in fact simply that, until now, this has not been found
by means of a proof. This explanation is no clearer than the affirmation
made regarding the chord of one degree, as if the chord of one and a half
degrees is known and the chord of one half-degree plus one quarter is
known, then the chord of one degree exists, but its ratio to the diameter is
not known at the present time, despite the fact that they are of the same
type.

If the knowledge of something is inaccessible to us, then that thing is
inaccessible, and our conviction that knowledge of it is possible is of no use
whatsoever. If one examines the writings on these notions, they can be
divided into three groups as follows: The notion is known, i.e. it has been
established by means of a proof; it is known or knowledge of it is
inaccessible; or that knowledge of the notion is inaccessible, i.e. that it has
not been established by a proof that it is either known or that its knowledge
is inaccessible, like knowledge of the chord of one ninth part of a circle, or
the knowledge of the chord of one degree. There are many similar cases to
these latter two in this third group. Neither has he shown that knowledge of
the squaring of the circle is necessary, and neither has he produced that
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which he promised. No treatise on this subject has yet appeared, and it is not
mentioned in the list of his writings.

I found this objection transcribed at the end of the treatise. I think that it
was written by either Ibn al-Sumaysæ†î or the doctor ‘Alî ibn Ri≈wæn.7

7 Doctor Ibn Ri≈wæn is not unknown. His biobibliography is to be found in al-Qif†î,
Ta’rîkh al-Ìukamæ’, and Ibn Abî UÒaybi‘a, ‘Uyºn al-anba’. See also J. Schacht and
Max Meyerhof, The Medico-Philosophical Controversy between Ibn Butlan of
Baghdad and Ibn Ridwan of Cairo, Cairo, 1937, p. 12. The titles of these works show
that he is concerned with philosophy, not mathematics. Al-Sumaysæ†î, as his name
indicates, is a Persian from Sumaysæ†, the same provenance as various other scholars. He
is known for his text al-Dæ’ira awsa‘ al-ashkæl, see Founding Figures and
Commentators in Arabic Mathematics, vol. I, p. 546.



In the Name of God, the Merciful, the Compassionate

EXHAUSTIVE TREATISE BY AL-ÎASAN IBN AL-ÎASAN
IBN AL-HAYTHAM

On the Figures of Lunes

Some of my friends have questioned me regarding the figure of the lune
constructed on the circumference of a circle. I therefore wrote a brief trea-
tise on the figures of lunes according to particular methods, as he that ques-
tioned me was in haste and would be content with particular propositions.

After a certain time had passed, an idea came to me in relation to this
notion. I then arrived at its determination using scientific methods and, using
this notion, I also arrived at the determination of other species of lunes
which were not included in the first treatise. I then decided to write a treatise
on these figures, in which I made an exhaustive treatment of everything that
could be said about this notion. As a result, I wrote this treatise, beginning
with the lemmas used in the proofs.

Lemmas

– 1 – Let there be any right-angled triangle such that the sides enclosing
the right angle are of different lengths, and such that, if a perpendicular is
dropped from the right angle onto the base, which is the hypotenuse, then
the ratio of the lesser part of the two parts of the base to the entire base is
less than the ratio of the angle – of all the angles of the triangle – which
intercepts the shorter side, to the right angle, and the ratio of the greater
part of the two parts of the base to the entire base is greater than the ratio
of the angle which intercepts the longer side to the right angle.

Example: Let there be a triangle ABC, in which the angle ABC is a right
angle, and let the side AB be less than the side BC. Draw the perpendicular
BD.
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I say that the ratio of DA to AC is less than the ratio of the angle
ACB to a right angle, and that the ratio of DC to CA is greater than the
ratio of the angle BAC to a right angle.

Proof: We make DE equal to DA and we join BE; CB will then be
greater than BE, and BE will be greater than BD, as the angle BDC is a
right angle. Taking the point B as the centre, we draw the arc of a circle at a
distance BE. This will cut the straight line BC and lie outside the straight line
BD. Let this be the arc GEH. The ratio of the triangle BCE to the triangle
BED will therefore be greater than the ratio of the sector BGE to the sector
BEH. By composition, the ratio of the triangle BCD to the triangle BDE is
greater than the ratio of the sector BGH to the sector BHE. The ratio of the
straight line CD to the straight line DE is therefore greater than the ratio of
the angle HBG to the angle HBE. But ED is equal to DA, and the angle
DBE is equal to the angle DBA. The ratio of CD to DA is therefore greater
than the ratio of the angle CBD to the angle DBA. By composition, the ratio
of CA to AD is greater than the ratio of the angle CBA to the angle DBA.
By inversion, the ratio of DA to AC is therefore less than the ratio of the
angle ABD to the angle ABC. But the angle ABD is equal to the angle ACB,
and the angle ABC is a right angle. Therefore, the ratio of DA to AC is less
than the ratio of the angle ACB to a right angle.
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Similarly, since the ratio of CD to DA is greater than the ratio of the
angle CBD to the angle ABD, the ratio of AD to DC is, by inversion, less
than the ratio of the angle ABD to the angle DBC. Composing, the ratio of
AC to CD is less than the ratio of the angle ABC to the angle DBC. By
inversion, the ratio of DC to CA is therefore greater than the ratio of the
angle CBD to the angle CBA. But the angle CBD is equal to the angle BAC.
Therefore, the ratio of DC to CA is greater than the ratio of the angle BAC
to a right angle. That is what we wanted to prove.
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– 2 – We also say that, if the triangle ABC has an obtuse angle such
that the angle ABC is obtuse and the straight line AB is less than the
straight line BC, and if a straight line BD is drawn such that the angle
BDA is equal to the angle ABC, then the ratio of DA to AC is less than
the ratio of the angle ACB to the supplement1 of the angle ABC.
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Proof: We also draw BE such that the angle BEC is equal to the angle
BDA. The angle BED will then be equal to the angle BDE, the two straight
lines BD and BE will be equal, and the ratio of AD to DB will be equal to
the ratio of AB to BC. Similarly, the ratio of BE to EC will be equal to the
ratio of AB to BC. The ratio of AD to DB is therefore equal to the ratio of
BE to EC, so the product of CE and DA is equal to the square of DB. But
the straight line AD is less than the straight line DB, and it is therefore less
than the straight line EC. It is therefore very much less than the straight line
DC. But the product of CD and DA is very much less than the square of
one half of AC. Therefore, the product of CE and DA is very much less than
the square of one half of AC, and the square of DB is <very much> less
than the square of one half of AC. Therefore, DB is less than one half of AC,
so the ratio of DA to one half of AC is less than the ratio of DA to DB. But,
as the ratio of BE to EC is equal to the ratio of AB to BC, BE is less than
EC. We extend EB, we make IE equal to EC, and we join CI; IC will then
be greater than CB. But CB is greater than CE as the angle BEC is obtuse.
Taking the point C as the centre, we draw the arc of a circle at a distance
CB; let it be the arc KBH. The ratio of the straight line IE to the straight line
EB will then be greater than the ratio of the angle ICE to the angle BCE.
By inversion, the ratio of BE to EI is less than the ratio of the angle BCE to
the angle ICE. But the angle ICE is one half of the angle BED which is
equal to the supplement of the angle ABC. But the straight line IE is equal

1 Lit.: to the angle which is the supplement.
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to the straight line EC. The ratio of BE to EC is therefore less than the ratio
of the angle ACB to one half of the supplement of the angle ABC. But the
ratio of BE to EC is equal to the ratio of AD to DB. The ratio of AD to DB
is therefore less than the ratio of the angle ACB to one half of the
supplement of the angle ABC. But we have shown that the straight line DB
is less than one half of AC. The ratio of DA to one half of AC is therefore
very much less than the ratio of the angle ACB to one half of the
supplement of the angle ABC. The ratio of DA to the whole of AC is
therefore less than the ratio of the angle ACB to the whole supplement of
the angle ABC. That is what we wanted to prove.

– 3 – We also say that, if the angle BAC is not greater than half a
right angle, then the ratio of EC to CA is less than the ratio of the angle
BAC to the supplement of the angle ABC.

We take up the shape of the triangle in order to not increase the draw-
ings of lines; let it be the triangle ABC. We draw the circumscribed circle; let
it be the circle ABCG and let its centre be M. We join the straight line AM
and we extend it as far as G. We join the straight lines MIB, MC and CG.
As the angle ABC is obtuse, the arc ABC is less than one half of a circle. It is
therefore either greater than one quarter of a circle or not greater than one
quarter of a circle.
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If the arc ABC is not greater than one quarter of a circle, then the angle
AMC is not greater than a right angle. The angle AGC is therefore not
greater than one half of a right angle. If the angle AMC is not greater than a
right angle, then each of the two angles MAC and MCA is not less than one
half of a right angle; they are either equal to one half of a right angle or
greater than one half of a right angle. But the angle AGC is either one half
of a right angle or is less than one half of a right angle. Therefore, the angle
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AGC is not greater than the angle MAC. But the angle MIC is greater than
the angle MAC. Therefore, the angle MIC is greater than the angle AGC, so
the angle BIC is less than the angle ABC. The angle BEC is therefore
greater than the angle BIC. The point E therefore lies between the two
points I and C. We drop a perpendicular from the point M onto AC; let it be
MH. The point H therefore lies between the two points I and C as MH
divides the arc ABC into two halves if it is extended. We make HN equal to
HI.

If we take the point M as the centre and draw an arc of a circle at a dis-
tance MN, it can clearly be seen that the ratio of CH to HN, which is equal
to HI, is greater than the ratio of the angle CMH to the angle HMN, which
is equal to the angle HMI. The ratio of CH to HI is therefore greater than
the ratio of the angle CMH to the angle HMI. By inversion, the ratio of IH
to HC is therefore less than the ratio of the angle IMH to the angle HMC.
By composition, the ratio of IC to CH is less than the ratio of the angle IMC
to the angle HMC, and the ratio of IC to CA is less than the ratio of the
angle BMC to the angle CMA. But the angle BMC is twice the angle BAC,
and the angle CMA is twice the angle AGC, which is equal to the supple-
ment of the angle ABC. The ratio of IC to CA is therefore less than the ratio
of the angle BAC to the supplement of the angle ABC. The ratio of EC to
CA is therefore very much less than the ratio of the angle BAC to the sup-
plement of the angle ABC.

If the arc ABC is greater than one quarter of a circle, then the angle
AMC is greater than a right angle. But we have stated in the hypothesis that
the angle BAC is not greater than one half of a right angle, and it must
therefore be either one half of a right angle or less than one half of a right
angle. The arc BC is therefore either one quarter of a circle or less than one
quarter of a circle. If the arc BC is one quarter of a circle, then the angle
BMC is a right angle, the angle MBC is one half of a right angle, and the
angle BAC is one half of a right angle. The angle CBI is therefore equal to
the angle BAC. But the angle ACB is common, and therefore the angle BIC
is equal to the angle ABC and the point E is the same as the point I.

We can show – as we did in the first part – that the ratio of IC to CA is
less than the ratio of the angle BAC to the supplement of the angle ABC,
and that the point E is the same as the point I. The ratio of EC to CA is
therefore less than the ratio of the angle BAC to the supplement of the angle
ABC.

If the arc BC is less than one quarter of a circle, then the angle BMC is
less than a right angle. The angle MBC is therefore greater than one half of
a right angle, and the angle BAC is less than one half of a right angle.
Therefore, the angle MBC is greater than the angle BAC, the angle CBE is
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less than the angle MBC, and the point E lies between the two points I and
C.

Using this method, we have shown that, in all cases, the ratio of IC to
CA is less than the ratio of the angle IMC to the angle CMA, as the perpen-
dicular MH always falls between the two points I and C, since the arc CB is
greater than the arc BA. If the point E lies between the two points I and C,
the straight line EC is less than the straight line IC, and the ratio of EC to
CA will then be very much less than the ratio of the angle BMC to the angle
CMA. But the angle CMA is twice the supplement of the angle ABC and the
angle BMC is twice the angle BAC. The ratio of EC to CA is therefore less
than the ratio of the angle BAC to the supplement of the angle ABC. If the
angle BAC of the obtuse-angled triangle ABC is not greater than one half of
a right angle, then the ratio of EC to CA is less than the ratio of the angle
BAC to the supplement of the angle ABC. That is what we wanted to prove.

– 4 – We also say that, if the angle BAC is greater than one half of a
right angle, then the ratio of EC to CA may be greater than the ratio of
the angle BAC to the supplement of the angle ABC.2
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Let us draw a circle on which lie A, B, C and D. Let K be its centre. We
draw the diameter CKD, and we assume a point anywhere on the straight
line KD; let it be I, from which we draw the perpendicular IB, and we join
the straight lines CB, BD and KB. The triangle DBC will then be a right-
angled triangle. The ratio of IC to CD is therefore greater than the ratio of
the angle BDC to a right angle, as has been shown in the first proposition of
this treatise. The ratio of IC to CD is therefore greater than the ratio of the

2 Here, the author is considering a condition that is sufficient to verify the result.
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angle BKC to two right angles; it is therefore greater than the ratio of the
arc BC to the arc CBD. By inversion, the ratio of DC to CI is less than the
ratio of the arc DBC to the arc CB. By separation, the ratio of DI to IC is
therefore less than the ratio of the arc DB to the arc BC. The ratio of DI to
IC is therefore equal to the ratio of a part of the arc DB to the arc BC. Let
this part be the arc AB.3 We join the straight lines CEA, AB and AD. The
angle DAC is therefore a right angle, and the angle ABC is obtuse. As the
angle DAC is a right angle, it is equal to the angle EIC. But the angle ACD
is common to the two triangles ADC and EIC. Therefore, the angle ADC is
equal to the angle IEC. But the angle ADC is equal to the supplement of the
angle ABC, so the angle IEC is equal to the supplement of the angle ABC.
The angle BEC is therefore equal to the angle ABC. We draw the perpen-
dicular AM. The ratio of CI to IM will then be equal to the ratio of CE to
EA. But the ratio of CI to IM is greater than the ratio of CI to ID, so the
ratio of CE to EA is greater than the ratio of CI to ID. But the ratio of CI to
ID is equal to the ratio of the arc CB to the arc BA. Therefore, the ratio of
CE to EA is greater than the ratio of the arc CB to the arc BA. By inver-
sion, the ratio of AE to EC is less than the ratio of the arc AB to the arc BC.
Composing, the ratio of AC to CE is less than the ratio of the arc ABC to
the arc CB. By inversion, the ratio of EC to CA is therefore greater than the
ratio of the arc BC to the arc CBA. We join AK. The ratio of the arc BC to
the arc CBA is equal to the ratio of the angle BKC to the angle CKA. The
ratio of EC to CA is therefore greater than the ratio of the angle BKC to the
angle CKA. But the angle BKC is twice the angle BAC, and the angle CKA
is twice the angle ADC which is equal to the supplement of the angle ABC.
The ratio of EC to CA is therefore less than the ratio of the angle BAC to
the supplement of the angle ABC.

It must necessarily be the same if the ratio of the arc AB to the arc BC
is greater than the ratio of DI to IC, as the ratio of CI to ID will be greater
than the ratio of the arc CB to the arc BA. But the ratio of CE to EA is
greater than the ratio of CI to ID, so the ratio of CE to EA is greater than
the ratio of the arc CB to the arc BA. We can show – as we have shown
previously – that the ratio of EC to CA is greater than the ratio of the angle
BAC to the supplement of the angle ABC.

From all this we can show that, if the ratio of the arc AB to the arc BC
is not less than the ratio of the straight line DI to the straight line IC, then
the ratio of EC to CA is greater than the ratio of the angle BAC to the sup-
plement of the angle ABC.

It is clear that this ratio is possible – that is, that the ratio of the arc AB
to the arc BC is equal to, or greater than, the ratio of the straight line DI to

3 This therefore defines a point A on the arc BD.
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the straight line IC. This is absolutely possible as the two arcs AB and BC
belong to the same circle. Therefore the ratio between them can be any ratio
between two homogeneous magnitudes. The existence of this can effectively
be shown by a construction, and what is more, by an easy construction: If
the ratio of the straight line DI to the straight line IC is a ratio of halves –
that is, if DI is one half of IC, or one half of one half, or one half of one half
of one half, or so on to infinity – then the existence of a portion of the arc
DB such that its ratio to the arc BC is this ratio is both possible and easy,
and is also so if the arc BC is divided into two halves and its half into two
halves until the division results in the part that is homologous to the part DI
of IC. Now we make the arc AB, which is a part of DB, equal to this part
obtained following the division. The ratio of the arc AB to the arc BC will
then be equal to the ratio of the straight line DI to the straight line IC.

If DI is less than IC, then the arc CB is greater than the arc BD, and the
angle BAC is then greater than one half of a right angle, the straight line CB
is greater than the straight line BA, and the ratio of EC to CA is greater than
the ratio of the angle BAC to the supplement of the angle ABC.

It follows from what we have shown, that it is possible to find an
obtuse-angled triangle, in which the two straight lines enclosing the obtuse
angle are different, such that a straight line – drawn from the obtuse angle
to its chord and which encloses with the chord an angle equal to the obtuse
angle adjacent to the greatest side – separates, from the chord of the obtuse
angle adjacent to the greatest side, a straight line whose ratio to the entire
chord is greater than the ratio of the angle which intercepts the greatest side
to the supplement of the obtuse angle. That is what we wanted to prove.

– 5 – We also say that any sector of a circle whose vertex is at the
centre of the circle is equal to a complete circle.

Example: In the circle ABD, let there be a sector ABC whose vertex lies
at the point C, which is the centre of the circle.

I say that it is equal to a complete circle.
Proof: The ratio of the arc AB to the circumference of the circle is equal

to the ratio of the sector ABC to the entire circle. But the arc AB and the
circumference of the circle are two magnitudes of the same type, and
superposition and difference are possible between them. Any ratio between
two homogeneous magnitudes between which superposition and difference
are possible exists between any two homogeneous magnitudes between
which superposition and difference are possible. If the ratio is numeric, this is
obvious. But if the ratio is not numeric, it is still between two homogeneous
magnitudes and we have either found this ratio or we have not found this
ratio, as a ratio is a concept which is specific to homogeneous magnitudes,
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and it does not depend on our knowledge of it, nor on the fact that we have
found it. And among these ratios, there is none that is more suited to
homogeneous magnitudes than any of the others. Therefore, the ratio of the
arc AB to the circumference of the circle is equal to the ratio of a straight
line to the diameter of the circle, which is the straight line AD – we have
either found this line, or we have not found it. Let this straight line be the
straight line E and let the straight line GI be a proportional mean between
the straight line E and the straight line AD. On the straight line GI, we draw
a circle whose diameter is GI; let it be GHI. Since the ratio of the straight
line E to the straight line GI is equal to the ratio of GI to AD, the ratio of E
to AD is equal to the ratio of the square of GI to the square of AD. But the
ratio of the square of GI to the square of AD is equal to the ratio of the
circle GHI to the circle ABD, so the ratio of the circle GHI to the circle
ABD is equal to the ratio of the straight line E to the straight line AD. But
the ratio of E to AD is equal to the ratio of the arc AB to the circumference
of the circle, and the ratio of the arc AB to the circumference of the circle is
equal to the ratio of the sector ACB to the whole circle. Therefore, the ratio
of the circle GHI to the circle ABD is equal to the ratio of the sector ACB to
the circle ABD. The circle GHI is therefore equal to the sector ACB. That is
what we wanted to prove.
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– 6 – We also say that, if we have two similar segments of two
different circles, then the ratio of one to the other is equal to the ratio of
the circle to the circle and is equal to the ratio of the square of the base of
the segment to the square of the base of the segment.

Example: Let the two segments ABC and EGH be two similar segments
of two different circles.

I say that the ratio of the segment ABC to the segment EGH is equal
to the ratio of the circle to the circle.
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Proof: Let us complete the two circles, let the point D be the centre of
the circle ABC and let the point I be the centre of the circle EGH. We join
the straight lines AD, CD, EI and HI. As the two segments ABC and EGH
are similar, the two angles ADC and EIH are equal. Therefore, the two
triangles ADC and EIH are similar, and the ratio of the triangle ADC to the
triangle EIH is equal to the ratio of the square of AD to the square of EI
and equal to the ratio of the square of AC to the square of EH. But the ratio
of the square of AD to the square of EI is equal to the ratio of the circle
ABC to the circle EGH, and the ratio of the circle ABC to the circle EGH is
equal to the ratio of the sector ADCB to the sector EIHG, since the ratio of
any sector to its circle is equal to the ratio of any similar sector to its circle.
The ratio of the sector ADCB to the sector EIHG is therefore equal to the
ratio of the triangle ADC to the triangle EIH and is equal to the ratio of the
remainder to the remainder. The ratio of the segment ABC to the segment
EGH is therefore equal to the ratio of the sector ADCB to the sector EIHG.
But the ratio of the sector to the sector is equal to the ratio of the circle to
the circle, so the ratio of the segment ABC to the segment EGH is equal to
the ratio of the circle ABC to the circle EGH and is equal to the ratio of the
square of AC to the square of EH, since the ratio of these two squares is
equal to the ratio of the square of the diameter to the square of the diam-
eter. That is what we wanted to prove.
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– 7 – We also say that, if any chord is drawn within a segment of a
circle, and if a segment similar to the first segment is constructed on it,
then the entire circumference4 of the second segment will lie outside the
first circle.

4 i.e. the arc.
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Example: Let there be a segment ABC of the circle ABCD, within
which is drawn the chord AB on which is constructed the segment AEB
such that it is similar to the segment ABC.
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I say that the circumference of the segment AEB lies entirely outside
the segment ABC.

Proof: We draw the straight line AK as a tangent to the circle ABCD.
The angle KAC is then equal to the angle that lies on the segment ADC, and
the angle KAB is less than the angle which lies on the completed segment
AEB. Therefore, the straight line AK cuts the circumference of the segment
AEB and it is a tangent to the arc ABC; the straight line AK lies between the
two arcs, the angle EAI lies outside the arc AB, the angle EAB is equal to
the angle EBA, and the angle IAB is equal to the angle IBA. The remaining
angle EBI is therefore equal to the angle EAI, the entire arc AEB therefore
lies outside the segment ABC and, as a result, the arc AEB and the arc AIB
enclose a figure of lune that lies entirely outside the segment ABC. That is
what we wanted to prove.

<Propositions>

– 8 – Now that these lemmas have been proved, we say that, if a diam-
eter is drawn in a circle, and if a point is marked anywhere on either half of
the circumference, and if this point is joined to the ends of the diameter by
two straight lines, and if a semicircle is constructed on each of these straight
lines, then the sum of the two lunes formed by the circumferences of these
two semicircles and the circumference of the first semicircle is equal to the
triangle formed inside the semicircle.
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Example: Let there be a circle ABC in which is drawn the diameter AC.
We assume a point B on one half of ABC. We join the two straight lines AB
and BC and we construct two semicircles on the two straight lines AB and
BC, which are ADB and BEC.

I say that the sum of the two lunes ADBGA and BECHB is equal to
the triangle ABC.
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Proof: The ratio of any circle to any other circle is equal to the ratio of
the square of its diameter to the square of its diameter. Therefore the ratio
of the sum of the two circles ADB and BEC to the circle ABC is equal to
the ratio of the sum5 of the two squares of AB and BC to the square of AC.
But the sum of the two squares of AB and BC is equal to the square of AC,
so the sum of the two circles ADB and BEC is equal to the circle ABC. The
sum of the two halves of ADB and BEC is therefore equal to the semicircle
ABC. Removing the two common segments AGB and BHC leaves the sum
of the two lunes ADBGA and BECHB equal to the triangle ABC. That is
what we wanted to prove.

– 9 – Let us take up the same figure. Let the point I be the centre of
the circle, and join IB. If the two arcs AB and BC are equal, then the two
segments ADB and BEC will be equal. The triangles ABI and BIC are equal,
and therefore the two lunes are equal and each lune is equal to the adjacent
triangle.6

5 We occasionally add the word ‘sum’ for the purposes of translation.
6 Lit.: which follows.
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If the two arcs AB and BC are different, then the two lunes are
different. But as the two triangles are equal, we say that the sum of the
smaller of the two lunes and a complete circle is equal to the triangle that is
adjacent to the smaller lune, and that the remaining triangle plus the same
circle is equal to the remaining lune.

C

B

A

G

E

H

I

D

M

N

Fig. 3.9.2

Let the arc AB be less than the arc BC. From the point B, we draw the
perpendicular BM. The ratio of MA to AC is then equal to the ratio of the
square of AB to the square of AC, and is equal to the ratio of the semicircle
ADB to the semicircle ABC. But we have shown in the first proposition in
the lemmas that the ratio of MA to AC is less than the ratio of the angle
ACB to a right angle. But the angle AIB is twice the angle ACB, so the ratio
of MA to AC is less than the ratio of the angle AIB to two right angles. But
the ratio of the angle AIB to two right angles is equal to the ratio of the sec-
tor AIBG to the semicircle ABC. The ratio of the semicircle ADB to the
semicircle ABC is therefore less than the ratio of the sector AIB to the semi-
circle ABC, and therefore the sector AIB is greater than the semicircle ADB.
But every sector is equal to a complete circle, every semicircle is equal to a
complete circle, and the difference between the greater and the lesser of two
different circles is also equal to a complete circle. Therefore, the sector AIB
exceeds the semicircle ADB by a complete circle. Let this circle be the circle
N. The sum of the semicircle ADB and the circle N is therefore equal to the
sector AIB. Removing the common sector BGA leaves the lune ADBGA
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and the circle N, whose sum is equal to the triangle AIB. Yet, we have
shown that the sum of the two lunes is equal to the triangle ABC. If the
triangle AIB exceeds the lune ADBGA by the circle N, then the triangle BIC
is less than the lune BECHB by the circle N, and the sum of the triangle
BIC and the circle N is equal to the lune BECHB. That is what we wanted
to prove.

<Conclusion> It clearly follows from that which we have shown at the
start of this section, that any lune constructed on a quarter of a circle such
that its circumference is a semicircle is equal to the right-angled triangle
inscribed within the quarter circle.

– 10 – Let us draw another circle – on which lie A, B and C, and whose
centre is E – in which any chord is drawn cutting off a segment that is less
than a semicircle; let it be the segment ABC. We assume any point on the
arc ABC – let it be the point B – and we join the two straight lines AB and
BC. On each of the straight lines AB and BC, we construct a segment simi-
lar to the segment ABC; let these two segments be ADB and BIC. We draw
two straight lines BN and BO such that each of the angles BNA and BOC is
equal to the angle ABC. We join the straight lines EA, EC, EN and EO.
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I say that the sum of the two lunes ADBHA and BICMB and a
complete circle is equal to the sum of the triangle ABC and the triangle
ENO.

Proof: The ratio of CA to AN is equal to the ratio of the square of CA to
the square of AB, it is equal to the ratio of the square of the diameter of the
circle ABC to the square of the diameter of the circle ADB, and is equal to
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the ratio of the segment ABC to the segment ADB. Similarly, the ratio of
AC to CO is equal to the ratio of the square of AC to the square of CB, and
is equal to the ratio of the segment ABC to the segment BIC. Therefore, the
ratio of AC to the sum of the two straight lines AN and CO is equal to the
ratio of the segment ABC to the sum of the two segments ADB and BIC.
But the ratio of AC to the sum of the two straight lines AN and CO is equal
to the ratio of the triangle AEC to the sum of the two triangles AEN and
CEO, so the ratio of the segment ABC to the sum of the two segments
ADB and BIC is equal to the ratio of the triangle AEC to the sum of the
two triangles AEN and CEO, and is equal to the ratio of the whole to the
whole. The ratio of AC to the sum of AN and CO is therefore equal to the
ratio of the sector AECB to the sum of the segments ADB and BIC and the
two triangles AEN and CEO. But AC is greater than the sum of the two
straight lines AN and CO, so the sector AECB is greater than the sum of the
two segments ADB and BIC and the two triangles AEN and CEO. But the
ratio of AC to the sum of the two straight lines AN and CO is the ratio of
the arc ABC to one of its parts, and is equal to the ratio of the sector AECB
to the sector whose base is this arc and which forms a part of the arc ABC.
This sector whose base is a part of the arc ABC is therefore equal to the
sum of the two segments ADB and BIC and the two triangles AEN and
CEO. But the amount by which the sector AEC exceeds this sector is a sec-
tor within the circle ABC whose vertex is at E. It is therefore equal to a
complete circle. Let this circle be the circle K. The sector AECB is therefore
equal to the sum of the segments ADB and BIC, the triangles AEN and
CEO, and the circle K. Removing the common parts, which are the seg-
ments AHB and BMC and the two triangles AEN and CEO, leaves the two
lunes ADBHA and BICMB and the circle K, the sum of which is equal to
that of the triangles ABC and ENO. We draw the straight line NP parallel to
the straight line AE, and we join ESP. The triangle ASP will then be equal
to the triangle ESN. We draw the straight line OQ parallel to the straight line
EC, and we join EUQ. The triangle CUQ will then be equal to the triangle
EUO. Removing the two triangles ASP and CUQ from the triangle ABC,
and adding the two triangles ESN and EUO to the triangle ENO, makes the
quadrilateral EPBQ equal to the sum of the two triangles ABC and ENO.
The sum of the two lunes ADBHA and BICMB and the circle K is therefore
equal to the quadrilateral EPBQ. That is what we wanted to prove.

– 11 – Let us take up the same figure and join the straight line ELB. If
the two arcs AB and BC are equal, then the two straight lines AB and BC
are equal, the two straight lines AN and CO are equal, the two straight lines
PB and QB are equal, the two triangles PEB and QEB are equal, and the
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two lunes are equal. The sum of each of these lunes and a complete circle
equal to the semicircle K is equal to the triangle adjacent to the lune, either
the triangle PEB or the triangle QEB.

If the two arcs AB and BC are different, and if the arc AB is the lesser
of the two arcs, then the sum of the lune ADBHA and a complete circle is
also equal to the triangle PBE.
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Proof: We have shown that the ratio of NA to AC is less than the ratio
of the angle BCA to the supplement of the angle ABC. But the angle BEA is
twice the angle BCA and the angle AEC is twice the supplement of the
angle ABC. The ratio of NA to AC is therefore less than the ratio of the
angle BEA to the angle AEC; so it is less than the ratio of the sector BEA to
the sector AEC. But the ratio of NA to AC is equal to the ratio of the square
of BA to the square of AC, and is equal to the ratio of the segment ADB to
the segment ABC. The ratio of the segment ADB to the segment ABC is
therefore less than the ratio of the sector BEA to the sector AEC. The ratio
of the segment ADB to the segment ABC is therefore equal to the ratio of a
sector that is less than the sector BEA to the sector AEC. The ratio of the
sector that is less than the sector BEA to the sector AEC is therefore equal
to the ratio of NA to AC, it is equal to the ratio of the triangle AEN to the
triangle AEC, and is equal to the ratio of the amount by which the small
sector exceeds the triangle AEN to the segment ABC. The ratio of the seg-
ment ADB to the segment ABC is therefore equal to the ratio of the amount
by which the small sector exceeds the triangle AEN to the segment ABC.
The amount by which the small sector exceeds the triangle AEN is therefore
equal to the segment ADB. The segment ADB plus the triangle AEN – that
is, the triangle APE – is equal to the small sector whose ratio to the sector
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AEC is equal to the ratio of NA to AC. But the amount by which the sector
AEB exceeds the small sector is a complete circle, and therefore the sum of
the small sector and the circle is equal to the sector AEB. The sum of the
segment ADB and the triangle AEP and the complete circle is equal to the
sector AEB. Removing the common parts, which are the segment AHB and
the triangle APE, leaves the lune ADBHA and the complete circle, whose
sum is equal to the triangle PEB.

If the angle BAC is not greater than one half of a right angle, then the
ratio of OC to CA is less than the ratio of the angle BAC to the supplement
of the angle ABC. We can show – as we have shown for the straight line NA
– that the sum of the lune BICMB and a complete circle is equal to the
triangle QEB. But we have shown that, in all cases, the sum of the two lunes
and a complete circle is equal to the quadrilateral PEQB, which is the sum
of the two triangles PEB and BEQ. The sum of the two circles that are
associated with the two lunes is therefore equal to the circle that is
associated with the sum of the two lunes.

It follows from that which we have shown that the sum of each of the
two lunes and a complete circle is equal to a known triangle – provided that
the angle BAC is not greater than one half of a right angle. That is what we
wanted to prove.

– 12 – Let us take up the same figure, let the angle BAC be greater
than one half of a right angle, and let the ratio of OC to CA be greater than
the ratio of the angle BAC to the supplement of the angle ABC.7 The point
O will then lie outside the triangle BEC since we have shown that the ratio
of LC to CA is less than the ratio of the angle BAC to the supplement of the
angle ABC.

I say that the lune BICMB exceeds the triangle QEB by a complete
circle, and that the lune ADBHA plus the circle by which the quadrilateral
BPEQ exceeds the sum of the two lunes, plus the circle by which the lune
BICMB exceeds the triangle QEB is equal to the triangle PEB.

Proof: The ratio of OC to CA is equal to the ratio of the square of BC
to the square of CA, it is equal to the ratio of the segment BIC to the seg-
ment CBA, and is equal to the ratio of the triangle OEC to the triangle CEA,
and is equal to the ratio of the sum of the segment BIC and the triangle
EOC to the sector ECBA. But the ratio of the angle BAC to the supplement
of the angle ABC is equal to the ratio of the angle BEC to the angle CEA,
and is equal to the ratio of the sector BECM to the sector ECBA. The ratio
of the sum of the segment BIC and the triangle OEC – that is, the triangle
QEC – to the sector ECBA is greater than the ratio of the sector BECM to

7 See Proposition 4.
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the sector ECBA. It is therefore equal to the ratio of the sector that is
greater than the sector BECM to the sector ECBA. This large sector
exceeds the sector BECM by a complete circle. Let this circle be the circle
G. The sum of the segment BIC and the triangle QEC is then equal to that
of the sector BECM and the circle G. Removing the common parts, which
are the segment BMC plus the triangle QEC, leaves the lune BICMB, which
is equal to the triangle BEQ plus the circle G. The lune BICMB therefore
exceeds the triangle BEQ by the circle G.
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Similarly, we have shown in the tenth proposition of this treatise that
the two lunes ADBHA and BICMB plus the circle K are equal to the sum of
the two triangles BPE and BEQ. Therefore, the two triangles PEB and
BEQ exceed the two lunes by the circle K. If the triangle BEQ is less than
the lune BICMB by the circle G, then the triangle BPE exceeds the lune
ADBHA plus the circle K by the circle G. Therefore, the sum of the lune
ADBHA and the two circles K and G is equal to the triangle PEB. That is
what we wanted to prove.

– 13 – In order for this notion to be obvious, and for it to be rational,
we assume that there is a numerical ratio between the two arcs. We draw a
circle on which lie A, B and C; let D be its centre. We draw the diameter
ADC, we draw the chord AB, and we make it equal to the half-diameter. We
join BC and BD, and we construct a semicircle on each of the straight lines
AB and BC. Let these be the semicircles AEB and BHC. We make the
circle K equal to one part of twenty-four parts of the circle ABC. This is
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possible and easy. Make the circle M equal to one part of twelve parts of the
circle ABC.

I say that the sum of the lune AEBNA and the circle K is equal to the
triangle ADB, that the sum of the triangle BDC and the circle K is equal
to the lune BHCIB, and that the sum of the lune AEBNA and the circle M
is equal to the lune BHCIB.
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Proof: The square of AB is one quarter of the square of AC, and there-
fore the semicircle AEB is one quarter of the semicircle ABC. But, since AB
is equal to the half-diameter, the sector ADB is one sixth of the circle, and
one half of the circle ABC is therefore equal to three times the sector ADB
and four times the semicircle AEB. The sector ADB therefore exceeds the
semicircle AEB by one half of one sixth of the semicircle ABC. But one half
of one sixth of the half is one part of twenty-four parts of the whole. The
sector ADB therefore exceeds the semicircle AEB by the circle K, and
therefore the sum of the semicircle AEB and the circle K is equal to the sec-
tor ADB. Removing the common segment ANB leaves the lune AEBNA
and the circle K, whose sum is equal to the triangle ADB. But, if the sum of
the lune AEBNA and the circle K is equal to the triangle ADB, then the tri-
angle ADB exceeds the lune AEBNA by the circle K. But we have shown
that the triangle ABC is equal to the sum of the two lunes AEBNA and
BHCIB, and the triangle BDC is therefore less than the lune BHCIB by the
circle K. The sum of the triangle BDC and the circle K is therefore equal to
the lune BHCIB. So the lune BHCIB exceeds the triangle BDC by the circle
K. But the triangle BDC exceeds the lune AEBNA by the circle K as the
triangle BDC is equal to the triangle ADB. The lune BHCIB therefore
exceeds the lune AEBNA by twice the circle K. But the circle M is twice the
circle K, and therefore the lune BHCIB exceeds the lune AEBNA by the
circle M. That is what we wanted to prove.
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<14> Let us draw another circle on which lie A, B and C, and in which
is drawn a chord equal to the side of an equilateral triangle inscribed within
the circle; let it be the straight line AC, and let the smaller arc be ABC. We
divide it into two halves at the point B, we join AB and BC, and we draw
two straight lines BD and BE such that each of the two angles BDA and
BEC is equal to the angle ABC. On each of the straight lines AB and BC,
we construct a segment similar to the segment ABC; let them be the two
segments AHB and BKC. We make the circle S one ninth of the circle ABC,
and the circle U one half of the circle S. Let the point G be the centre of the
circle ABC. We join AG, CG, BG, DG and EG, we draw the straight line
DP parallel to the straight line GA and the straight line EQ parallel to the
straight line GC, and we join PG and QG.
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I say that the sum of the two lunes AHBIA and BKCMB and the circle
S is equal to the quadrilateral GPBQ, and that the sum of each of the
lunes and the circle U is equal to one of the triangles PBG or QBG.

Proof: The arc ABC is one third of the circle, and therefore the arc AB
is one sixth of the circle. The square of AB is then one third of the square of
AC, and the straight line DA is one third of AC. Similarly, EC is one third of
AC, therefore the sum of the two straight lines DA and EC is two thirds of
AC, and the sum of the squares of AB and BC is two thirds of the square of
AC. The sum of the two segments AHB and BKC is two thirds of the seg-
ment ABC. But the sum of the two triangles AGD and EGC is two thirds of
the triangle AGC, so the sum of the two segments AHB and BKC and the
two triangles AGD and CGE is equal to two thirds of the sector AGCB. But
the sector AGCB is one third of the circle ABC and the circle S is one ninth
of the circle ABC, so the circle S is one third of the sector AGCB. The sum
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of the two segments AHB and BKC, the two triangles AGD and EGC, and
the circle S is equal to the sector AGCB. But the sum of the two triangles
AGD and EGC is equal to the sum of the two triangles AGP and CGQ. The
sum of the two segments AHB and BKC, the two triangles AGP and CGQ,
and the circle S is equal to the sector AGCB. Removing the common parts
leaves the two lunes AHBIA and BKCMB and the circle S, whose sum is
equal to the quadrilateral BPGQ. But, since the two straight lines AB and
BC are equal, the two lunes are equal, the two triangles ABN and CBN are
equal, the two triangles GDN and GEN are equal, the two triangles PBG
and BGQ are equal, the triangle GPB is equal to the sum of the two tri-
angles ABN and GDN, and the triangle GQB is equal to the sum of the tri-
angles CBN and GEN. Therefore, the sum of each of the two lunes and the
circle U, which is one half of the circle S, is equal to one of the two triangles
PBG and BGQ, and is equal to one of the two triangles ABN or CBN plus
one of the two triangles GDN or GEN. That is what we wanted to prove.

It follows clearly from this proof that, if an arc of a circle that is less
than one quarter of the circle is intercepted by a straight line, and if a seg-
ment is constructed on this straight line that is similar to the segment
contained within twice this arc, then the sum of the generated lune and a
known circle will be equal to a known triangle.8

– 15 – Let us draw another circle on which lie A, B and C, and within
which is drawn the chord AC which cuts off one third, and draw AB which
cuts off one quarter. Let D be the centre of the circle. We join the straight
lines AD, CD, BID and BC and, on each of the two straight lines AB and
BC we construct two segments similar to the segment ABC; let them be
AEB and BHC. We draw BL such that the angle BLC is equal to the angle
ABC and join DL. We make the circle NP equal to the circle ABC, and we
draw its diameter; let it be NP. We make the ratio of the square of NP to the
square of the straight line QS equal to the ratio of AC to IL. We draw a
circle with QS as its diameter; let it be the circle QS. The ratio of the circle
QS to the circle NP is therefore equal to the ratio of IL to AC.

I say that the sum of the two lunes AEB and BHC and the circle QS is
equal to the sum of the two triangles ABC and DIL.

8 This result was demonstrated in Proposition 11a. In Proposition 15, it is shown

that, in the case where AB = 1

6
 of a circle, the ‘known circle’ is equal to 1

18
 of the circle

ABC.
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Proof: The arc ABC is one third of the circle, and therefore the angle
ABC is a right angle9 plus one third, and the angle DAC is one third of a
right angle. The arc AB is one quarter of a circle, and therefore the angle
ADB is a right angle, and the angle AIB is equal to the sum of the two
angles ADI and DAI. Therefore, the angle AIB is a right angle plus one
third. But the angle ABC is a right angle plus one third, as it is inscribed
within one third of a circle. The angle AIB is therefore equal to the angle
ABC and, as a result, the product of CA and AI is equal to the square of AB.
Similarly, the product of AC and CL is equal to the square of CB, as the
angle BLC is equal to the angle ABC. The ratio of the sum of the two
straight lines IA and LC to the straight line AC is therefore equal to the ratio
of the sum of the squares of AB and BC to the square of AC. It is equal to
the ratio of the sum of the two segments AEB and BHC to the segment
ABC, and to the ratio of the sum of the two triangles ADI and LDC to the
triangle ADC. It is therefore equal to the ratio of the sum of the two seg-
ments AEB and BHC and the two triangles ADI and LDC to the sector
ADCB. The ratio of the sum of the two straight lines IA and LC to the
straight line AC is equal to the ratio of the sum of the two segments AEB
and BHC and the two triangles ADI and LDC to the circle NP. But the ratio
of the circle QS to the circle NP is equal to the ratio of IL to AC, so the
ratio of the sum of the straight lines IA, IL and LC to the straight line AC is
equal to the ratio of the sum of the two segments AEB and BHC and the
two triangles ADI and LDC and the circle QS to the circle NP, which is
equal to the sector ADC. The sum of the two segments AEB and BHC, the
two triangles ADI and LDC, and the circle QS is equal to the sector ADCB.
Removing the common parts, which are the two segments AMB and BKC,

9 We add the word ‘angle’ for the purposes of translation, in this proposition and in
the following ones.
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and the two triangles ADI and LDC, leaves the two lunes AEBMA and
BHCKB and the circle QS, whose sum is equal to that of the two triangles
ABC and DIL.

Since the straight line AC is the side of an equilateral triangle, its square
is three quarters of the square of the diameter of the circle, and since the
straight line AB is the side of the square, its square is one half of the square
of the diameter of the circle. The square of AB is therefore two thirds of the
square of AC. The straight line IA is then two thirds of the straight line AC,
and the straight line IC is one third of AC. But each of the angles AIB and
BLC is equal to a right angle plus one third, so each of the angles BIL and
BLI is two thirds of a right angle. The triangle IBL is thus equilateral, and
the ratio of BL to LC is equal to the ratio of AB to BC. But AB is greater
than BC, as the arc AB is a quarter of a circle and the arc ABC is one third
of it, so the arc AB is three times the arc BC. The straight line BL is greater
than the straight line LC, and the straight line IL is therefore greater than
the straight line LC. But the straight line IC is one third of AC, so the
straight line IL is greater than one sixth of AC, and the circle QS is greater
than one sixth of the sector ADCB, and it is therefore greater than one part
of eighteen parts of the circle ABC.

We now make the circle F one part of thirty-six parts of the circle ABC;
the circle F will be very much less than the circle QS. We make the circle U
equal to the amount by which the circle QS exceeds the circle F.

I say that the sum of the lune AEBMA and the circle F is equal to the
triangle ABI, and that the sum of the lune BHCKB and the circle U is
equal to the sum of the two triangles BIC and IDL.

Proof: The sector ADBM is one quarter of the circle, and the sector
ADCB is one third of the circle. Therefore, the sector ADBM is three quar-
ters of the sector ADCB. But the square of AB is two thirds of the square of
AC, so the segment AEB is two thirds of the segment ABC. But the straight
line AI is two thirds of the straight line AC. Therefore, the triangle ADI is
two thirds of the triangle ADC, and the sum of the segment AEB and the
triangle ADI is equal to two thirds of the sector ADCB. The sector ADBM
therefore exceeds the segment AEB and the triangle ADI by one part of
twelve parts of the sector ADCB. But the sector ADCB is one third of the
circle. Therefore, the one part of twelve <parts> of the sector ADCB is one
part of thirty-six parts of the circle. The sum of the segment AEB and the
triangle ADI and the circle F is equal to the sector ADBM. Removing the
common parts, which are the segment AMB and the triangle ADI, leaves
the lune AEBMA and the circle F – which is one part of thirty-six parts of
the circle ABC – whose sum is equal to the triangle ABI. But the sum of the
two lunes and the circle QS is equal to the sum of the two triangles ABC
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and DIL, and the sum of the two circles F and U is equal to the circle QS;
therefore, the sum of the two lunes and the two circles F and U is equal to
the sum of the two triangles ABC and DIL.

But as we have shown that the sum of the lune AEBMA and the circle
F is equal to the triangle ABI, then the sum of the lune BHCKB and the
circle U is equal to the sum of the two triangles BIC and DIL.

But, since the circle QS is greater than one part of eighteen parts of the
circle ABC, and the circle F is one part of thirty-six parts of the circle ABC,
the circle U will be greater than the circle F. The sum of each of the two
lunes and a known circle is therefore equal to a known triangle. That is what
we wanted to prove.

– 16 – Let us also draw a circle on which lie A, B and C. Let D be its
centre. We draw a diameter ADC and we divide AD into two halves at the
point E. We draw the perpendicular EB and we join the straight lines CB,
BA and BD.
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As AE is equal to ED, and EB is perpendicular, AB will be equal to BD.
Therefore, the triangle ABD is equilateral, the arc AB is one sixth of a circle,
and the arc BC is one third of a circle. We divide the arc AB into two
halves, and its half into two halves. Let the arc AH be one quarter of the arc
AB, and let the arc HB be three quarters of the arc AB. It is therefore one
quarter plus one eighth of the arc BC, so it is greater than one third of the
arc BC. But the straight line AE is one third of the straight line EC. We
make the straight line AG equal to one quarter plus one eighth of the
straight line GC and we join the straight lines DH, BH, HA and HIC. The
angle BIC will then be equal to the angle HBC, as has been shown in the
fourth proposition of this treatise. From the point G, we drop the perpen-
dicular GK onto the straight line HC. This will be parallel to the straight line
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AH as the angle AHC is a right angle. The point K will lie between the two
points I and C as the angle EIC is acute. But as KG is parallel to HA, the
ratio of HK to KC is equal to the ratio of AG to GC, and the ratio of AG to
GC is equal to the ratio of the arc HB to the arc BC. Therefore, the ratio of
HK to KC is equal to the ratio of the arc HB to the arc BC. By composition,
the ratio of the straight line HC to the straight line CK is equal to the ratio of
the arc HBC to the arc CB. By inversion, the ratio of the straight line KC to
the straight line CH will then be equal to the ratio of the arc BC to the arc
CBH. Therefore, the ratio of IC to CH is greater than the ratio of the arc
BC to the arc CBH. But the ratio of the arc BC to the arc CBH is equal to
the ratio of the angle BDC to the angle CDH. It is equal to the ratio of the
angle BHC to the supplement of the angle HBC and is equal to the ratio of
the sector BDCM to the sector CDHB. The ratio of IC to CH is greater
than the ratio of the sector BDCM to the sector CDHB. We draw the
straight line BS such that the angle BSH is equal to the angle HBC, and we
draw the straight line SO parallel to the straight line DH. We join DO, and
we draw the straight line IN parallel to the straight line DC. We join the
straight lines DN, DI and DS and we make the circle F equal to the sector
CDHB. This is possible as the ratio of the sector CDHB to the circle ABC is
a known ratio. We make the ratio of the circle U to the circle F equal to the
ratio of the straight line SI to the straight line HC, and we make the ratio of
the circle J to the circle F equal to the ratio of the straight line IK to the
straight line HC. On the two straight lines HB and BC, we construct two
segments that are similar to the segment ABC. Let them be the segments
HQB and BLC. The sum of the two lunes HQBPH and BLCMB and the
circle U is equal to the sum of the two triangles DOB and DBN, as was
shown in the previous proposition. But, as the ratio of KC to CH is equal to
the ratio of the arc BC to the arc CBH, the ratio of IK to CH is the amount
by which the ratio of IC to CH exceeds the ratio of the arc BC to the arc
CBH. But the ratio of KC to CH is equal to the ratio of the sector BDCM to
the sector CDHB, so the ratio of IK to CH is the amount by which the ratio
of IC to CH exceeds the ratio of the sector BDCM to the sector CDHB. But
the ratio of IK to CH is equal to the ratio of the circle J to the circle F,
which is equal to the sector CDHB. The ratio of IC to CH is therefore equal
to the ratio of the sector BDCM plus the circle J to the sector CDHB. But
the ratio of IC to CH is equal to the ratio of the square of BC to the square
of CH, it is equal to the ratio of the segment BLC to the segment CBH, and
equal to the ratio of the triangle IDC to the triangle CDH, and to the ratio of
the segment BLC plus the triangle IDC – that is, the triangle DNC – to the
sector CDHB. The ratio of the segment BLC plus the triangle DNC to the
sector CDHB is therefore equal to the ratio of the sector BDCM plus the
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circle J to the sector CDHB. The sum of the segment BLC and the triangle
DNC is therefore equal to that of the sector BDCM and the circle J.
Removing the common parts, which are the segment BMC and the triangle
DNC, leaves the lune BLCMB equal to the triangle BDN plus the circle J.

But, since the sum of the two triangles DOB and DNB is equal to the
sum of the two lunes HQBPH and BLCMB and the circle U, and since the
triangle DNB is less than the lune BLCMB by the circle J, the triangle DOB
exceeds the sum of the lune HQBPH and the circle U by the circle J. The
sum of the lune HQBPH and the circles U and J is therefore equal to the
triangle DOB. That is what we wanted to prove.

– 17 – Let us draw another circle on which lie A, B and C, and draw
the chord AC which cuts off one third, and the chord AB which cuts off one
quarter. Let D be the centre of the circle. We join the straight lines AD, CD,
BID and BC and we construct a segment of a circle similar to the segment
ABC on the straight line AB. Let it be the segment AEB. We make the cir-
cle K equal to one part of thirty-six parts of the circle ABC. Then the sum of
the lune AEBHA and the circle K will be equal to the triangle ABI, as we
have shown in the fifteenth proposition of this treatise. We construct a semi-
circle on the straight line AB; let it be ANB.

I say firstly that the arc ANB lies entirely outside the arc AEB.
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Proof: We draw the straight line AM tangent to the arc AEB. The angle
MAB will then be two thirds of a right angle, and the straight line AM will
intersect the arc AN. The straight line AM is therefore bounded by the two
arcs NA and AE. Similarly, we show that the tangent drawn at the point B
intersects the arc BN. Therefore, the arc ANB lies entirely outside the arc
AEB.

Having proved this, we now say that the lune ANBEA is equal to the
triangle ADI plus the circle K.
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Proof: The sum of the lune AEBHA and the circle K is equal to the tri-
angle ABI. We take the triangle ADI common. Then, the sum of the lune
AEBHA, the circle K and the triangle ADI is equal to the triangle ADB. But
the lune ANBHA is equal to the triangle ADB, as we have shown in the
ninth proposition of this treatise. The sum of the lune AEBHA, the circle K
and the triangle ADI is therefore equal to the lune ANBHA. Removing the
common lune AEBHA leaves the lune ANBEA equal to the triangle ADI
plus the circle K.
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We also make the triangle LGP a right-angled isosceles triangle equal to
the triangle ADI. The lune ANBEA is therefore equal to the triangle LGP
plus the circle K. With G as the centre, and with its distance to L and P10 we
draw an arc of a circle; let it be LQP. We construct a semicircle on the
straight line LP; let it be LSP. Therefore, the lune LSPQL is equal to the
triangle LGP, and the lune ANBEA is equal to the lune LSPQL plus the cir-
cle K. That is what we wanted to prove.

<18> Let us draw a circle, on which lie A, B and C and whose centre is
at D, and draw the straight line AC so as to cut off one third. We divide the
arc ABC into two halves at the point B and we join the straight lines AB,
BC, AD, BD and CD. On the two straight lines AB and BC, construct two
segments that are similar to the segment ABC; let them be the segments
AEB and BIC. We draw the two straight lines BL and BM such that each of
the two angles BLA and BMC is equal to the angle ABC. We join the two
straight lines DL and DM. We make a circle N equal to one ninth of the cir-
cle ABC. The sum of the two lunes AEBHA and BICKB, and the circle N is
equal to the sum of the two triangles ABC and DLM, as we have shown in
the fourteenth proposition of this treatise. We construct a semicircle on the
straight line AC; let it be AFC.

I say firstly that the arc AFC lies entirely outside the two arcs AEB
and BIC.

10 Lit.: with the two distances L and P.
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Proof: We draw AS tangent to the arc AEB. Then the angle SAB will be
two thirds of a right angle, and the angle BAC will be one third of a right
angle. Therefore, the angle SAC is a right angle, and the straight line AS is
tangent to the arc AFC. But it is tangent to the arc AEB, so the arc AFC is
tangent to the arc AEB. Similarly, we show that the arc AFC is tangent to
the arc CIB. Therefore, the arc AFC lies entirely outside the two arcs AEB
and BIC.

Having proved this, we now say that the sum of the figure AFCBA and
a known triangle is equal to a known circle.

N U

P
A

S
F

B
E

H

L

D

G

I

C

K

M

Fig. 3.18

Proof: We produce AD as far as G, and we join CG. The triangle ACD
will then be equal to the triangle CDG and the sector CDG will be one sixth
of a circle. The triangle CDG is therefore less than one sixth of a circle and
the triangle ADC is less than one sixth of a circle. But the triangle DLM is
one third of the triangle ADC, so the triangle DLM is less than one part of
eighteen parts of the circle. But the circle N is one ninth of the circle. There-
fore, the triangle DLM is less than one half of the circle N. But the sum of
the two lunes AEBHA and BICKB and the circle N is equal to the sum of
the two triangles ABC and DLM.11 The sum of the two lunes and the
amount by which the circle N exceeds the triangle DLM is equal to the tri-
angle ABC. We make the circle U equal to one part of twenty-four parts of
the circle ABC. The sum of the two lunes, the amount by which the circle N
exceeds the triangle DLM, and the circle U is equal to that of the triangle
ABC and the circle U. But the triangle ABC is equal to the triangle ADC as
the two straight lines AB and BC are equal to the two straight lines AD and

11 This result is that established in Proposition 14.
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CD. The sum of the two lunes, the amount by which the circle N exceeds
the triangle DLM, and the circle U is equal to that of the triangle ADC and
the circle U. But the sum of the triangle ADC and the circle U is equal to
the lune AFCBA, as we have shown in the thirteenth proposition. The sum
of the two lunes AEBHA and BICKB, the amount by which the circle N
exceeds the triangle DLM, and the circle U is equal to the lune AFCBA.
Removing the two common lunes leaves the figure AFCIBEA, bounded by
three arcs, which is equal to the amount by which the circle N exceeds the
triangle DLM plus the circle U. The sum of the figure AFCIBEA and the
triangle DLM is equal to the sum of the two circles N and U.

We make the circle P equal to the sum of the two circles N and U. Then
the sum of the figure AFCIBEA and the triangle DLM is equal to the circle
P. If we construct a right-angled isosceles triangle12 and then construct a
lune on its hypotenuse, as we did in the previous proposition, then this lune
will be equal to the triangle DLM. The sum of the figure AFCIBEA and this
lune is therefore equal to the circle P. That is what we wanted to prove.

– 19 – Similarly, Euclid has shown in his book On Division13 how to
cut off a portion of a known circle between two parallel straight lines such
that the ratio of this portion to the whole circle is a known ratio. Here, we
shall show what we ourselves make of this.
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Let there be a circle on which lie A, B and C. Let D be its centre. Let
the sector DBC be equal to one quarter of the circle. We join BC, and divide

12 Right-angled isosceles triangle equivalent to the triangle DLM.
13 Euclid, Proposition 29 of the Division of Figures. See R. C. Archibald,

Euclid’s Book on Division of Figures, Cambridge, 1915, pp. 66–7.
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the arc BC into two halves at the point E. We join the two straight lines BE
and EC. We draw DA parallel to the straight line BC, and join CA, EA and
BA. The triangle ABC will then be equal to the triangle BDC. The triangle
BEC is common, and therefore the quadrilateral ABEC is equal to the quad-
rilateral DBEC. But, since the sector DBC is one quarter of a circle, the
angle BDC is a right angle, and the angle DBC is half a right angle. But the
angle BDA is half a right angle, so the arc AB is one eighth of the circle. But
the arc BE is one eighth of the circle, so the segment AB is equal to the
segment BE. Now, we take the segment AB in place of the segment BE.
The sum of the quadrilateral ABEC and the two segments AB and EC is
then equal to the sector BDCE. The segment ABEC is therefore equal to
one quarter of the circle ABC.

But, since the arc EC is equal to the arc AB, the angle CAE is equal to
the angle AEB, and the straight line AC is parallel to the straight line BE.
Therefore, the segment ABEC lies between the two parallel straight lines.
That is what we wanted to prove.

– 20 – Having proved this, now let us draw a circle on which lie A, B
and H. On this circle, we cut off the arc ABCD equal to three eighths of the
circle, and divide this arc into three eighths. Let these be the arcs AB, BC
and CD. We draw the straight line BC; it will be parallel to the straight line
AD, as we have shown in the previous proposition, and the portion ABCD
which lies between the two parallel lines is one quarter of the circle.
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On the straight line AD, we construct a portion of a circle on the other
side <of AD> equal to the portion ABCD. Let this portion be AEGD, and
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divide it also into three eighths. Let these be the arcs AE, EG and GD. We
join EG; it will be parallel to the straight line AD. The portion AEGD which
lies between the two parallel straight lines is one quarter of the circle. The
portion CBAEGDC which lies between the two straight lines BC and EG,
which are parallel, is one half of the circle ABC. The remainder is the lune
AHDGEA and the segments BC and EG, whose sum is equal to one half of
the circle ABC. The sum of the lune AHDGEA and the two segments EG
and BC is equal to the portion CBAEGDC which lies between the two
parallel straight lines EG and BC. We join the straight lines AE, DG, DC and
BA. The two segments AE and GD are equal to the two segments EG and
BC. We remove the two segments AE and GD from the portion
CBAEGDC, which lies between the two parallel straight lines EG and BC.
There remains the lune AHDGEA equal to the portion ADCB, which lies
between the two parallel straight lines AD and BC, which is one quarter of
the circle, plus the quadrilateral AEGD. Let there be a circle I, equal to one
quarter of the circle ABCD, and a right-angled isosceles triangle KMN
whose angle M is a right angle, and whose two sides MK and MN are equal.
Let this triangle be equal to the quadrilateral AEGD. The lune AHDGEA is
therefore equal to the sum of the circle I and the triangle MKN. Using the
point M as the centre, and its distance to the two points K and N,14 we draw
an arc of a circle; let it be KUN. On the straight line KN, we construct a
semicircle; let it be KPN. The lune KPNUK is equal to the triangle MKN,
and the lune AHDGEA is therefore equal to the lune KPNUK plus the circle
I. That is what we wanted to prove.

– 21 – This lune, and any other lune in which the sum of the two arcs is
a complete circle, has a property that is not shared with other lunes. The
parallel straight lines – which lie within the lune and are such that they meet
the straight line AC15 at right angles when extended – are all equal. And of
them, that which lies at the centre of the lune is equal to that which lies at its
extremity.

The proof of this is as follows: we draw a circle on which lie A, B and C
and we cut off from this circle any portion that is less than a semicircle; let it
be the segment ADC. We join AC, and on the straight line AC we construct
a segment AEC equal to the segment ADC. We divide the straight line AC
into two halves at the point G, we draw the perpendicular GEB and extend
it to D. On the arc BC, we assume any point – let it be M – and we draw
the perpendicular MQOU.

I say that the straight line MQ is equal to the straight line BE.

14 Lit.: with the two distances K and N.
15 Straight line AD in Fig. 3.20.
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Proof: BD is a diameter that we divide into two halves at the point H. H
is therefore the centre of the circle. From the point H, we draw the perpen-
dicular HP; it divides MU into two halves at the point P. Since the segment
ADC is less than a semicircle, the straight line BG is greater than the straight
line GD. We make BI equal to GD. There remains IH equal to HG. From
the point I, we draw a straight line LIK perpendicular to the straight line
BD. The segment LBK is therefore equal to the segment ADC. Let the
straight line LK intersect the straight line MU at the point N. Then the
straight line PN is equal to the straight line PO. There remains the straight
line MN equal to the straight line OU. We join AL and CK. They will be
equal and parallel, and also equal and parallel to the straight line IG. Since
BI is equal to GD, IG is the amount by which BG exceeds GD. Since MN is
equal to OU, NO is the amount by which MO exceeds OU. But NO is equal
to IG, so the amount by which BG exceeds GD is equal to the amount by
which MO exceeds OU. But GD is equal to GE, and OU is equal to OQ, so
the amount by which BG exceeds GE is equal to the amount by which MO
exceeds OQ. The straight line BE is therefore equal to the straight line MQ.
But as each of <the straight lines> BE and MQ is equal to the amount by
which BG exceeds GD, each of <the straight lines> BE and MQ is equal to
the straight line IG. But each of the straight lines AL and CK is equal to the
straight line IG, so each of the straight lines AL and CK is equal to the each
of the straight lines BE and MQ. That is what we wanted to prove.

– 22 – We also say that if two lunes from two similar segments are
constructed on two similar arcs from two circles, then the ratio of one lune
to the other lune is equal to the ratio of one circle to the other circle.
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Example: The two lunes AKBNA and DMEOD lie on two similar arcs
ANB and DOE of the two circles ABC and DEG, and the two arcs AKB
and DME are similar.

I say that the ratio of one lune to the other lune is equal to the ratio of
on circle to the other circle.

Proof: Let the centres of the two circles be H and I, and join the
straight lines AH, AB, BH, DI, DE and EI. Since the two arcs ANB and
DOE are similar, the ratio of the square of AB to the square of DE is equal
to the ratio of the square of the diameter of one circle to the square of the
diameter of the other circle; it is equal to the ratio of one circle to the other
circle, and equal to the ratio of the sector AHB to the sector DIE, and equal
to the ratio of the triangle AHB to the triangle DIE, and equal to the ratio of
the segment ANB to the segment DOE, and equal to the ratio of the seg-
ment AKB to the segment DME. The ratio of the segment AKB to the seg-
ment DME is therefore equal to the ratio of the segment ANB to the seg-
ment DOE, and equal to the ratio of the remainder to the remainder. The
ratio of the lune AKBNA to the lune DMEOD is equal to the ratio of the
segment ANB to the segment DOE. But the ratio of the segment ANB to
the segment DOE is equal to the ratio of the circle ABC to the circle DEG.
The ratio of the lune AKBNA to the lune DMEOD is equal to the ratio of
the circle ABC to the circle DEG. That is what we wanted to prove.

AB
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D

H

G

I

K

N
M

O

Fig. 3.22

– 23 – Let us draw another circle on which lie A, B and C, and draw
the side of a hexagon in this circle; let it be AB. On the straight line AB, we
construct an equilateral triangle such that part of it lies outside the circle. Let
it be ADB. We make the circle EGH equal to three times the circle ABC.
We also draw the side of the hexagon in this circle; let it be EG. On the
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straight line EG, construct a segment such that its circumference is one third
of a circle; let it be the segment EPG.

A

B

E

C
D

H
G

I

P

K

N M
SO

L

Fig. 3.23

I say that the lune EPGOE is equal to the figure ADBMA.
Proof: We mark the centres of the two circles; let them be K and I. We

draw EH equal to the side of the triangle.16 We join the straight lines AK,
BK, EI, GNI, HI and GH, and draw the straight line GL such that the angle
GLE is equal to the angle EGH. The sum of the lune EPGOE and one half
of one ninth of the circle EGH is equal to the sum of the two triangles EGN
and ILN, as we have proved in the fourteenth proposition. But the triangle
EGN is equal to the triangle IHN as the two triangles EGH and EIH are
equal and the straight line ING divides each of them into two halves. The
sum of the lune EPGOE and one half of one ninth of the circle EGH is
equal to the triangle HLI. But the triangle HLI is two thirds of the triangle
EIH, as the straight line EL is one third of the straight line EH. But the tri-
angle EIH is equal to the triangle EIG, as each of them is one half of the
quadrilateral EIHG. The sum of the lune EPGOE and one half of one ninth
of the circle EGH is equal to two thirds of the triangle EIG.

But, as the circle EGH is three times the circle ABC, the triangle EIG is
three times the triangle AKB. Two thirds of the triangle EIG is equal to
twice the triangle ABK, and the lozenge ADBK is twice the triangle ABK.
Two thirds of the triangle EIG is therefore equal to the lozenge ADBK. The
sum of the lune EPGOE and one half of one ninth of the circle EGH is
equal to the lozenge ADBK. But the sector AKB is one sixth of the circle
ABC, and the circle ABC is equal to one third of the circle EGH. The sector
AKBM is therefore equal to one half of one ninth of the circle EGH. The
sum of the lune EPGOE and the sector AKBM is equal to the lozenge
ADBK. Removing the common sector leaves the lune EPGOE which is
equal to the figure ADBMA. That is what we wanted to prove.

16 The inscribed equilateral triangle.
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On the straight line AB, we construct an arc equal to one third of a cir-
cle; let it be ASB. The ratio of the lune EPGOE to the lune ASBMA is
therefore equal to the ratio of the circle EGH to the circle ABC, and the
lune EPGOE is therefore three times the lune ASBMA. The figure ADMBA
is therefore three times the lune ASBMA; consequently, ADBSA is twice the
lune ASBMA.

If we construct a circle equal to twice the circle ABC, and if we draw
within it the side of a hexagon on which we construct one third of a circle,
then the lune so generated will be equal to the figure ADBSA.

It is possible to construct many species of lune in the ways that we have
described. Where we have made mention of rational lunes, this has been by
way of example in order to reveal the universal notion that we have previ-
ously shown. The work that we have presented in their regard is sufficient
to elucidate what we intended to show.

Let us now conclude this treatise.
The treatise is complete. Praise be to God.

May He receive the thanks that are due to Him.





CHAPTER II

CALCULATION OF VOLUMES OF PARABOLOIDS AND
SPHERES AND THE EXHAUSTION METHOD

2.1. INTRODUCTION

This second group of works on infinitesimal mathematics by Ibn al-
Haytham deals with the calculation of the volumes of curved solids using the
exhaustion method. There are three treatises of differing length by Ibn al-
Haytham on this subject, and appearing in the following order:

I. Treatise on the Measurement of the Paraboloid
II. Treatise on the Measurement of the Sphere
III. Treatise on the Division of Two Different Magnitudes Mentioned in

the First Proposition of the Tenth Book of Euclid.
As the titles show, Ibn al-Haytham refers to his predecessors: Thæbit ibn

Qurra and al-Qºhî for the paraboloid; Archimedes, the Banº Mºsæ and
possibly others for the sphere; and the third treatise had already been the
object of some discussion for Ibn Qurra and al-Qºhî. Thus Ibn al-Haytham
belongs to this mathematical tradition marked out since al-Kindî and the
Banº Mºsæ. This Archimedean tradition provided for Ibn al-Haytham
problems and methods of research. He was quick to take advantage of the
arithmetic methods of his ancient predecessor, Thæbit ibn Qurra, and,
apparently, of the rediscovery of the method of integral sums by his
immediate predecessor al-Qºhî and likely his contemporary Ibn Sahl. The
way these two methods were constructed affected the direction in which Ibn
al-Haytham would take the study of the infinitesimal, as we shall see later.

The treatises of Ibn al-Haytham represented both the avant-garde and
the end of research in this area; whilst shedding new light on its meaning,
Ibn al-Haytham’s work was also to be the last done in Arabic: no further
contributions using the exhaustion method are seen after this, nor indeed
was any further research undertaken. This is an area that no historian can
fail to investigate, as we now witness a second halt, just as brutal as the first
had been, thirteen centuries before. As is customary, we will comment here
on the arithmetic of the first two treatises.
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2.2. MATHEMATICAL COMMENTARY

2.2.1. Calculation of volumes of paraboloids

Ibn al-Haytham’s treatise on the volume of the paraboloid comprises an
introduction, where the author retraces the history of the problem and
where he takes the opportunity to acknowledge the unique contributions of
his predecessors Ibn Qurra and al-Qºhî. This is followed by a first section,
which is devoted entirely to major arithmetic lemmas necessary to his
proofs; then follows a second section, where he studies a paraboloid of
revolution, and a third section where he examines other types of paraboloids
formed by rotation of a parabola around an ordinate; it concludes with a
discussion of the method applied when using infinitesimal determinations to
measure areas and volumes. We will take up these chapters one after the
other.

2.2.2.1. Arithmetical lemmas

Ibn al-Haytham begins his treatise by proving five arithmetical lemmas,
four of which deal with the sum of the powers of n natural integers. These
four lemmas will be used in establishing the fundamental inequality.

Lemma 1:

k
n n n n

k

n

=
∑ = +( ) = +

1

21
2 2 2

.

Ibn al-Haytham’s proof is quasi-general, which is to say, it is established
for a specific number, let us say four, and it is then assumed to be valid for
any number (in the same way as it is for the specific number). This proof
can be rewritten as

Sn = 1 + 2 + … + n,

Sn = n + (n – 1) + … + 1,
hence

S
n n

n = +( )1
2

.

Lemma 2:

S k
n

n n n n nn
k

n
( )2 2

1

3 2

3
1
3

1
2

1
3

1
2

1
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= = +



 +



 = + +

=
∑ .

Ibn al-Haytham proves this lemma by using an archaic form of finite
complete induction, a form which was still being used, unchanged, in the
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seventeenth century. He uses P k S S S S Sk k k k k= +( ) = + + + … +−1 2

1 1

( )  for
this proof, which he proves for the case of 1 ≤ k ≤ 4, and in which he
expresses the recursive relation. Ibn al-Haytham’s calculation is presented in
the following manner:

(1) P S S1

2

1

2

11 1 1 1 1= +( ) = + = +( ) ;

with the help of (1) it can be proven that

(2) P S S S2

2 2

2

2

2 11 2 2 1 2 1 1 2 1= +( ) +( ) = + + +( ) + = + +( ) .

By using (2) it is possible to go to (3):

(3) P3

2 2 21 2 3 3 1 3 2 1 1 2 3 1 2 1= + +( ) +( ) = + + + +( ) + +( ) +
 = + + +S S S S3

2

3 2 1

( ) .

Similarly, following (3), we have

(4)         P4 1 2 3 4 4 1= + + +( ) +( )

  = 42 + 32 +22 + 12 + (1 + 2 + 3 + 4) + (1 + 2 + 3) + (1 + 2) + 1

  = + + + +S S S S S4

2

4 3 2 1

( ) .

This result is true for k = 1: P1 = (1 + 1) 1 = 12 + 1. We assume that the
order k is true, and we set

Pk = (k + 1) Sk,

which leads to
P S S S Sk k k k= + + + … +−

( )2

1 1.

We prove that this property is true for the order k + 1.

Pk+1   = [(k + 1) + 1] Sk+1 = (k + 1) Sk+1 + Sk+1,

Pk+1   = (Sk + (k + 1)) (k + 1) + Sk+1 = Pk + (k + 1)2 + Sk+1

 = + + + … ++ +S S S Sk k k1

2

1 1

( ) .

Having proved this inequality, Ibn al-Haytham proceeds thus: by
Lemma 1 we have

n S Sn n+( ) = +1 2( )  
1
2

Sn

( )2 + 
1
2

Sn ,
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because

S S S n nn1 2

1
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1 1 1 2 2 1 1+ + … + = ⋅ +( ) + ⋅ +( ) + … + +( )( )

   = + + … + + + + … +( ) = +( )1
2

1 2 1 2
1
2

2 2 2 2n n S Sn n
( ) ;
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Note that Ibn al-Haytham’s proof of this lemma is different from the
one given in Archimedes’ On Spirals. This lemma is proved by a similar
method by Abº Kæmil (second half of the ninth century).1

Lemma 3:
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The proof of this lemma by Ibn al-Haytham can be written as

n S nS S S n n Sn n n n n+( ) = + = + + −( ) +( ) −1 1 12 2 2 2 3

1

2( ) ( ) ( ) ( ) ( ) ;

in the same way, we show that

n S S n n Sn n n−( ) +( ) = + −( ) + −( ) +( )− − −1 1 1 2 11
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and so on, down to
n n S Sn n− −( ) +( ) = +− −1 1 11
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So, from Lemma 2, we get
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1 See Abº Kæmil: Algèbre et analyse diophantienne, editing, translation and
commentary by R. Rashed, Berlin/New York, 2012.
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But
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therefore
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As can be seen, Ibn al-Haytham’s proof uses regression and relies on
previous lemmas.

Lemma 4:
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We have
n S n nS Sn n n+( ) = + +−1 3 4

1

3 3( ) ( ) ( ) ;

as in the proof of Lemma 3, by using regression, we finally arrive at

n S S Sn n k
k

n
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1 3 4 3
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but from the previous lemma, it follows
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n S S S S Sn n n n n+( ) = + + +1
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hence
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from which we can deduce
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But from Lemmas 2 and 3, we get
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The demonstration of the four previous lemmas proves, by the
application of a complete induction (in archaic form) or of regression, the
generality of Ibn al-Haytham’s method. In fact, his method as it stands is
valid for any integer power without adding any supplementary notions. Ibn
al-Haytham identifies a general rule for the calculation of the sum of n
integers raised to any integer power, which he used in previous cases, and
which can be rewritten as

n k k ki

k

n
i

k

n
i

k

p

p

n

+( )∑ = ∑ + ∑



∑

=

+

= ==
1

1

1

1 11
,

in such a way that Ibn al-Haytham would have been able to calculate the
sum of powers iths of n as first integers for i > 5. And the only reason for
him stopping at i = 4, is because it suited his own aims. Ibn al-Haytham did
in fact make fuller use of these powers in his later proofs, specifically the one
concerning major inequality (Lemma 5).
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Lemma 5:

8
15

1 1
8

15
1 1 14 2 2

1

2
4 2 2

0

2

n n n k n n n k
k

n

k

n

+( ) ≤ +( ) −[ ] ≤ +( ) +( ) ≤ +( ) −[ ]
= =

∑ ∑ .

Ibn al-Haytham’s proof of this lemma is very long; it deserves to be
looked at again in summary, not only for the text itself, but also to show the
scope of arithmetical research being done then by this geometrician.

He first shows the identity for 0 ≤ k ≤ n:

(1) [2 (n + 1)2 – k2] k2 + [(n + 1)2 – k2]2 = (n + 1)4,

hence he deduces
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and by way of summing from (2), he arrives at
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But by Lemma 2, we have
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and from Lemma 4, we get
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From (3), (6) and (7), it follows
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Yet 2
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From (4) and (9), we get
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For any natural integer n, then (n + 1)
3
 ≥ 1, therefore
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We thus verify that
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hence for all natural integers n, it is possible to verify that
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We finally have
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However, for n ≥ 1, we get
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therefore

n k
k

n

+( ) −[ ] >
=
∑ 1 2 2

0

2 8 1 1
15
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and so the inequality is proved.
As can be seen above, proof of this inequality requires calculation of the

sum of n first natural integers to the fourth power; as a result, this not only
contributes to the understanding of the foregoing, but also to further
research into the volume of the second species of paraboloid.

2.2.2.2. Volume of a paraboloid of revolution

Ibn al-Haytham proves the following proposition once more:
The volume of a paraboloid of revolution around a diameter is equal

to half the volume of the circumscribed cylinder.
He considers three cases, whether the angle ACB is right, acute or

obtuse.
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First case: Assume that angle ACB = π
2

, let V be the volume of the

circumscribed cylinder and v the volume of the paraboloid.

B

A

M

D C

G

E

L

N

I
HS

P

W

F

Y

T

J

K

O

V

U

′

E

E

E

E

E

E

O

Q

Fig. 2.1.4

• Assume that v > 1
2

V; let v – 1
2

V = ε.

Let M be the midpoint of AC and draw MU || BC cutting the parabola
at E and BH at U. Draw SEO′ || AC and cutting BC at O′ and AH at S. Let

us denote by [EC] the solid generated by rotating surface MCO′E, and

similarly for other solids. From this

(1) [HE] + [EC] = 1
2

V  and  [BE] + [AE] = 1
2

V.

We reiterate the construction on point L, the midpoint of AM, then on
point K, the midpoint of MC. From this

[SEl] + [MEl]   = 1
2

[MS]   = 1
2

[AE],

[UEk] + [EkO′] = 1
2

[UO′] = 1
2

[BE];

therefore
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(2) [SEl] + [MEl] + [UEk] + [EkO′] = 1
2

[AE] + 1
2

[BE] = 1
4

V.

We reiterate the same construction on points O, P, N, J, the midpoints
respectively of AL, LM, MK, KC. Therefore the sum of the eight solids is

equal to half (2), that is to say, 1
8

V.

He continues to proceed in the same manner, i.e. removing solids of
type (1) and (2) from the circumscribed cylinder. The following would have
successively been removed from V:

1
2

V,  1
2

1
2

V



 ,  1

2
1
2

1
2

V











and so on. After a finite number of operations, we necessarily come to a
remainder smaller than ε, from Lemma X.1 in Euclid’s Elements (or Ibn al-

Haytham’s theorem).
Let us assume that the subdivision of the figure corresponds to the step

where the remainder is less than ε.

Let Vn be the volume of solids remaining after n steps, therefore Vn < ε
and let vn be the volume of these solids inside the paraboloid, therefore

vn < Vn and vn < ε, therefore v – vn > 1
2

V, according to the hypothesis. But

in accordance with the properties of the parabola, we have

AC

AM

CB

EM
=

2

2 ,

hence
BC2 = 2 EM2.

Similarly
BC

AC

JE

AJ

OE

AO

JE OE

AC
j j

2 2
0
2 2

0
2

= = =
+

,

hence
JE OE BC EMj

2
0
2 2 22+ = = .

In the same way we can show that

KE LE BC EMk l
2 2 2 22+ = =

and so on.
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If we denote E0 = A, E1, …, En = B, with n = 2m, the points of the
parabola corresponding to the points on the axis

F0 = A, …, Fn

2

 = M, …, Fn = C,

then it follows
E F E F BC EMi i n i n i

2 2 2 2
2+ = =− −  (0 ≤ i ≤ n)

and
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2;
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1 21
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1
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−
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Now let S E Fi i i= π 2 (1 ≤ i ≤ n – 1) be the areas of the discs of radius
E Fi i , let Sn be the area of the disc of radius E Fn n  = BC, then

S n Si
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n

n
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1 1
2

1 .

If Wi is the volumes of cylinders with base Si and height h = 1
n  AC, and

Wn the volume of cylinder of base Sn and height h, then

W n Wi
i

n

n
=

−

∑ = −( )
1

1 1
2

1 .

But
1
2

1
1
2

n W Vn−( ) < ,

because V = n Wn; therefore

W Vi
i

n

=

−

∑ <
1

1 1
2

;

but

W v v Vi
i

n

n
=

−

∑ = − >
1

1 1
2

,

which is impossible; therefore

(3) v ≤ 1
2

V.
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• Assume now that v < 1
2

V, that is v + ε = 1
2

V; and proceed as before:

successively take away half the volume of the cylinder, then half the
remainder, until the remaining volume Vn is less than any given value of ε.

Let un be part of Vn outside a paraboloid, then un < Vn. Therefore un < ε,
hence

v + un < 1
2

V;

but

v u Wn i
i

n

+ =
=
∑

1

;

therefore

W Vi
i

n

=
∑ <

1

1
2

.

But we have shown that

W n Wi
i

n

n
=

−

∑ = −( )
1

1 1
2

1 ;

yet

W W Wi
i

n

i
i

n

n
=

−

=
∑ ∑= −

1

1

1

,

therefore

W W n Wi
i

n

n n
=
∑ − = −( )

1

1
2

1  ;

hence

W W
n

W Vi
i

n

n n
=
∑ − = =

1

1
2 2

1
2

.

Therefore

W Vi
i

n

=
∑ >

1

1
2

,

which is impossible; therefore

(4) v ≥ 1
2

V;

and from (3) and (4), this finally gives

v = 1
2

V.
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Second case: Assume that angle ACB < 
π
2

.

I L H

A

D
K

C

B G

Fig. 2.1.5a

In this case, cones with vertices A′ and C′ are equal. The conical cylinder
is therefore equal to the right cylinder, and is obtained by taking away or
adding respectively cones (A′) and (C′).

• First assume v > 1
2

V.

Subdivision, as used in the first case, is considered; successively taking
away half the volume of the cylinder, then half the remaining volume as

before, until a solid greater than 1
2

V is achieved inside the paraboloid; we

then show that this solid is less than 1
2

V.

To achieve this, a parabola of diameter AC is drawn on the same figure,
giving a paraboloid P (second case) and a parabola with axis AC, giving a
paraboloid P1 (first case). The volume of the cylinder circumscribed about
P1 is called V1. Abscissae at points A, O, L, …, J, C, which divide segment
AC, are noted as x0, x1, …, xn. Point E1(xi, Yi) of P1 is associated with every
point E(xi, yi) of P. Perpendicular EE′ is dropped from E on AC. Suppose
EE′ = zi. So we have, for points associated with O and L, for example:

z

z

y

y

x

x

Y

Y
1
2

2
2

1
2

2
2

1

2

1
2

2
2= = = ,
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A

O

L

E

E

E

E

E

E

H
S

M

B

H

W

B
C

K

J

j

0

1

1

1

1

First case

Second case

′

Ψ

Fig. 2.1.5b

and more generally for 1 ≤ i ≤ n

(1) z

Y

z

Y

z

Y

BK

CB

V

V

z

Y

i

i

i
i

n

i
i

n
1
2

1
2

2
2

2
2

2

2

2

1
2

1

2

1

2

1

= = … = = … = = = =

=

∑

∑
.

The solid inscribed in P is made up of conical cylinders such as [CJEjW]

whose volume is π z2
n–1 · h h CJ

AC

n
= =



 , and is associated with the right

cylinder of the first case whose volume is π Y2
n–1 · h. From (1) we can

deduce

π πz h

V

Y h

V

i
i

n

i
i

n
2

1

2

1

1

= =
∑ ∑

=

and if volumes of internal solids inscribed in P and P1 are designated In and
In1 respectively, then

I

V

I

V
n n= 1

1

;

but in the first case we saw that: In1 < 1
2

V1 ; hence
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In < 1
2

V.

The conical solid is therefore less than half the conical cylinder, which
contradicts the foregoing; therefore

v ≤ 1
2

V.

• Assume now v < 1
2

V.

A circumscribed solid smaller than 1
2

V is constructed in a similar way.

As previously, we then show that this solid is larger than 1
2

V, and we finally

conclude that v = 1
2

V.

Third case: Assume that angle ACB > π
2

.

Fig. 2.1.5c

The same method is followed as previously and we show that v = 1
2

V.

The two last cases are linked to the first by an affine transformation,
bringing the oblique axes closer to the right-angled axes. Without going into
great detail about this transformation, suffice it to say that Ibn al-Haytham
links the two last figures to the first, point by point, and preserves the linear
relations of these figures.

Ibn al-Haytham then continues with several major corollaries to the
proof of the volume of a portion of a paraboloid of revolution. The heights
of two portions of a paraboloid are marked h and h′, and their respective
volumes by v and v′; the areas of two discs of the base of their two
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associated cylinders marked S and S′ respectively, and the volumes of these
two cylinders by V and V′ respectively.

Corollary 1. — Given a parabola of any diameter AC, and ordinate
B1CB2, a paraboloid generated by part ACB1 and a paraboloid generated
by part ACB2 have the same volume.

A

B

E

C

E

B1

2

2

1

Fig. 2.1.5d

Corollary 2. — If S, S′ and h, h′ are respectively the bases and the heights

of the right cylinders associated with two paraboloids, and if S = S′, then
v
v

h
h′

=
′
.

Corollary 3. — If S ≠ S′ and h = h′, then v
v

S
S′

=
′
.

Corollary 4. — If S ≠ S′ and h ≠ h′, then v
v

S
S

h
h′

=
′
⋅

′
.

Corollary 5. — The sum of the volumes of small solids which cross a
paraboloid (to step n of subdivision and for any high value of n we wish) is

equal to S
h
n

⋅



 , that is: for a sufficiently high value of n, we have

Jn – In = S · h
n

, where Jn are circumscribed solids and In are solids inscribed

up to step n of subdivision.
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Corollary 6. — In = 1
2

 V – S
h
n






, but v = 1

2
V, therefore v – In = 1

2
S h

n
;

and consequently, a paraboloid divides into two halves the sum of those
small cylindrical solids which cross it.

2.2.2.3. The volume of the second species of paraboloid

Ibn al-Haytham then determines the volume of a portion of a paraboloid
generated by the rotation of a parabola around an ordinate.

Let ABC be a semiparabola, BC its diameter, AC its ordinate, v the
volume of a paraboloid generated by the rotation of ABC around AC; V

the volume of the circumscribed cylinder, then v = 8
15

V.

He considers three cases here, depending on whether angle ACB is
greater than, smaller than or equal to a right angle.

First case: Assume that ACBˆ  = 
π
2

.

Assume first that v > 8
15

V; that is to say v – 8
15

V = ε.

Let H be the midpoint of AC, HS || BC; HS cuts the parabola at M. Let
QMO || AC; and let us denote by [U] the volume generated by the rotation
of the surface (U); from this

[EM] = [MB]  and  [AM] = [MC],

hence

 [EM] + [MC] = 1
2

V.

G

D

J

E

R

S

W

B
POV

K

H

I

C J

λ

Q

X

UA

T

L

M

N

Fig. 2.1.6a

Let K be the midpoint of AH, I be the midpoint of HC; then in a similar
manner
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[QL] + [LH] = 1
2

[AM]

and

[SN] + [NO] = 1
2

[BM];

hence

[SN] + [NO] + [QL] + [LH] = 1
2

{[AM] + [BM]} = 1
4

V.

In this way Ibn al-Haytham first takes a subdivision of AC, in n = 2m

equal parts, and successively subtracts

1
2

V ,  
1
2

1
2

V





and so on. He shows that if points of subdivision are increased sufficiently,
then inevitably a remainder which is less than ε is reached.

Assume that we have in fact reached that step, that is

[BN] + [NM] + [ML] + [LA] < ε,

or using previous notations
Vn < ε ;

let vn be the volume of Vn, inside the paraboloid; it follows

vn < ε ;

just as

v = 8
15

V + ε ,

therefore

v – vn > 8
15

V.

But v – vn is equal to the solid whose base is the disc of radius PC and
whose vertex is the disc of radius KL. Moreover, because of the properties
of the parabola, then

AC

LV

BC

BV

2

2
= ,  

LV

MO

BV

BO

2

2
= ,  

MO

NP

BO

BP

2

2
= ;
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but
MO = 2 NP,  LV = 3 NP,  AC = 4 NP.

If we set NP = 1, then the ratios of NP, MO, LV, AC are equal to the
ratios of n first natural integers, and the ratios of BC, BV, BO, BP are equal
to the ratios of squares of first natural integers; it follows that the ratios of
EA, RL, SM and WN are also equal to the ratios of the squares of first
natural integers, as BP = WN, BO = SM, BV = RL, BC = EA. But

WI = SH = RK = AE

and
WN

SM

RL

EA

n

n
= … = = −( )1

2
3
4

12

2

2

2

2

2, , .

But from Lemma 5, it follows

n k n n n k
k

n

k

n
2 2

1

1 2
4 2 2

0

1 28
15

−( ) ≤ ⋅ ≤ −( )
=

−

=

−

∑ ∑ ,

which for the corresponding segments gives

NI MH LK WI SH RK AE2 2 2 2 2 2 28
15

+ + ≤ + + +{ }

and

NI MH LK AE WI SH RK AE2 2 2 2 2 2 2 28
15

+ + + ≥ + + +{ }.

Areas of discs with respective radii the previous segments are marked
by Si, that is

Sk = π (n2 – k2)2;

in particular
S0 = π n4,

therefore

S nS Sk
k

n

k
k

n

=

−

=

−

∑ ∑≤ ≤
1

1

0
0

18
15

.

Cylinders of base Sk and of height h = AC

n
 are now marked Wk; we get

W Vk
k

n

=

−

∑ ≤
1

1 8
15

.



VOLUMES OF PARABOLOIDS AND SPHERES 163

However, by construction:

W v vk
k

n

n
=

−

∑ = −
1

1

;

therefore

v – vn < 8
15

V,

which is absurd. Therefore

(1) v ≤ 8
15

V.

Assume now that v < 8
15

V, that is 8
15

V – v = ε, and consider the same

subdivision as used at the step where the total of surfaces which surround
the parabola is smaller than ε. Let un be the volume of Vn, outside the

paraboloid, therefore un < ε, so v + un < 8
15

V.

But solid v + un is nothing more than a solid whose base is the disc of
radius BC and whose vertex is the disc of radius AU. But we have shown
that

S nSk
k

n

=

−

∑ ≥
0

1

0

8
15

 ;

therefore

W Vk
k

n

=

−

∑ ≥
0

1 8
15

,

which is absurd, since

W v u Vk
k

n

n
=

−

∑ = + <
0

1 8
15

.

It follows that

(2) v ≥ 8
15

V;

and from (1) and (2) we get

v = 8
15

V.
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Second and third cases: Assume that ACBˆ  < 
π
2

 and that ACBˆ  > 
π
2

.

Using the two relevant cases, Ibn al-Haytham shows in the same way as
before, that for a portion of a paraboloid of revolution:

v = 8
15

V.

He also shows that

Vn = 1
2n V,

with Vn the sum of small cylinders surrounding the parabola. Here

1
2n V = [BI].

2.2.2.4. Study of surrounding solids

Ibn al-Haytham goes on to investigate the behaviour of surrounding
solids, when points of subdivision are increased indefinitely. He raises the
problem of the variation of the ratio of two parts which make up
infinitesimal solids, that is, parts which are inside and outside the paraboloid.
In the case of the first type of paraboloid, these parts had the same volume,
but it is not the case here.

c

i
h

b n

m

k a

Fig. 2.1.6b

Let ab be the square of the number corresponding to segment AE,
(ab = 22m if AC was divided into 2m parts)

an =
ab

2
,  nk = 

1
30

ab;

hence

bk = 
8

15
ab.

Let hc = √ab, hi = 1
30

and point m such that hi

nm

ab

ch
= ; hence
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ab · nm = 1
30

ch,   ab · kn = 1
30

ab2,   ab · km = 1
30

ab2 – 1
30

 √ab.

But from relation (12) in Lemma 5, then

n k n n n n
k

n
2 2

1

1 2
4 48

15
1

1
30

1
30

−( ) = −( ) + −
=

−

∑ ,

which is written here for the segments

LK MH NI RK SH WI ab ab2 2 2 2 2 2 28
15

1
30

1
30

+ + = + +( ) + −

 = + +( ) + ⋅8
15

2 2 2RK SH WI ab km  ;

but

ab bk ab⋅ = 8
15

2,

therefore

(1) LK MH NI ab bm RK SH WI BC2 2 2 2 2 2 28
15

+ + + ⋅ = + + +( ) .

Let J be a point on BC (Fig. 2.1.6a) such that

(2) BC

CJ

ab

bm

ab

ab bm

2

2

2

= =
⋅

,

hence
CJ2 = ab · bm.

Let La be such that JLa || CI ; from (1) we have

(3) CJ NI MH LK RK SH WI BC2 2 2 2 2 2 2 28
15

+ + + = + + +( ).

Let discs S, S1, …, Sn–1 have respective radii CJ, NI, …, LK, and disc S0

have radius BC, then

S S nSk
k

n

+ =
=

−

∑
1

1

0

8
15

.
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Corresponding cylinders of height AK = AC

n
 are marked W, W1, …,

Wn-1, W0; from this it follows

W W nW Vi
k

n

+ = =
=

−

∑
1

1

0

8
15

8
15

.

But we have shown that

v = 8
15

V,

therefore

v W Wi
k

n

= +
=

−

∑
1

1

 
;

hence

W v W vi
k

n

n= − =
=

−

∑
1

1

,

with vn the sum of parts of small surrounding solids inside the paraboloid.
We have also shown that Vn = πr2h, with Vn the sum of small

surrounding solids, r = BC, h = AC

n
 = IC. It follows that

 un = Vn  – W = u,

un being the sum of parts of small surrounding solids outside the paraboloid;
un is therefore equal to the cylinder generated by the rotation of the surface
(BLa). However

u

v

u

W

BC JC

JC

am

bm
n

n

= = − =
2 2

2 ,

since
BC

JC

ab

bm

2

2 = , by (2).

Volumes corresponding to the mth subdivision (n = 2
m

) of u and W are
expressed as u(m) and W(m). We show that

u m

W m

u m

W m

+( )
+( )

> ( )
( )

1
1

.

In fact at step (m + 1), AE corresponds to (2n)2 and ab corresponds to
n2, therefore

AE

AE

ab

ab

ab

ch
> = ;
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but
hi

nm

ab

ch
= ,

therefore
1

30
1

30
/ /′ ′



 > 



n m nm ;

n′m′ is the correspondent of nm at step (m + 1), hence

n′m′ < nm
and

n′b′ > nb.

At each step of subdivision, it should be noted that AC is equal to the
root of the latus rectum multiplied by AE  which corresponds to

ab
ab

ch

hi

nm
= = .

Passing from subdivision into n =2m parts of AC to subdivision into 2n =

2m+1 parts, √ab becomes √a′b′ = 2√ab and nm becomes n′m′ = nm

2
;

furthermore nb becomes n′b′ = 4 nb. Thus

′ ′
′ ′

=m n

n b

mn

nb

1
8

;

as
mb

ab

mn nb

nb

mn

nb

mn

nb
= + = + ≥

2
1
2

1
2

and
′ ′
′ ′

= ′ ′ + ′ ′
′ ′

= ′ ′
′ ′

+ = +m b

a b

m n n b

n b

m n

n b

mn

nb2
1
2

1
2

1
16

1
2

.

So
mb

ab

m b

a b
> ′ ′

′ ′
,

from which
′ ′
′ ′

>a m

m b

am

mb
,

that is
u m

W m

u m

W m

+( )
+( )

> ( )
( )

1
1

.
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Ibn al-Haytham has shown here that as points of subdivision increase, so
does the ratio.

2.2.3. Calculation of the volume of a sphere

Reminding us that several of his predecessors had already determined
the volume of a sphere, Ibn al-Haytham proposes to take up this proof
again, to make it shorter and clearer. He does this, using the method he had
already applied in the determination of a paraboloid. He starts with
arithmetical lemmas to establish the inequalities necessary for determining
the volume of a sphere.

Arithmetical lemmas
Ibn al-Haytham starts by restating two lemmas he had already

established in his Treatise on the Measurement of the Paraboloid. He
justifies this by saying that he wants this treatise on the volume of the sphere
to be complete in itself. We will briefly go over these lemmas one by one.

Lemma 1:

k
n n

k

n

= +
=

∑
2

1 2 2
.

The proof of this lemma differs from the one given in the previous
treatise. This is how it is presented: for any integer n and for any integer
k < n, we have

1 + n = k + (n – k + 1),

2 1 1
1 11

k k n k n n
k

n

k

n

k

n

= + − +( ) = +( )
= ==

∑ ∑∑ ,

hence

S k
n

nn
k

n

= = +( )
=

∑
1 2

1 .

Lemma 2:

k
n

n n
k

n
2

1 3
1
3

1
2

= +



 +



=

∑ .

The proof of this lemma by Ibn al-Haytham is identical to the one given
in the previous treatise. In fact, we have
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   (n + 1) Sn = Sn + n Sn = Sn + n2 + n Sn-1

= (Sn + Sn-1 + … + S1) + (n2 + (n – 1)2 + … + 12);

but from the previous lemma, we get

n S k k kn
k

n

k

n

k

n

+( ) = + =
= = =

∑ ∑ ∑1
1
2

1
2

2

1

2

1 1

,

hence

n S kn
k

n

+



 =

=
∑1

2
3
2

2

1

;

therefore

S k n
n n n

n n
n n n

n
k

n
( )2 2

1

2 3 22
3

1
2 2 2 3

1
3

1
2 3 2 6

= = +



 +





= +



 +



 = + +

=
∑ .

Ibn al-Haytham goes on to show the inequalities.

Lemma 3:

(1) n n
k

n
n

k

n3 2
2

1

2
2

3 2 3
2
3

+ < ≤ +
=

∑ .

These inequalities can be proven immediately by using Lemma 2 and

the fact that n n

6 6

2

≤  because n ≥ 1.

Let u1, u2, …, un be an arithmetical progression with ratio u1, and with
first term 0, this also gives

(2) 1
2

1
3

1
3

2
3

2 2 2

1

2 2u nu u nu un n k
k

n

n n+ < < +
=

∑ .

In fact, we have  uk = ku1 (1 ≤ k ≤ n), hence

u

u

k

n
k

n

2

2

2

2= ;

therefore
1 1

2
2

1
2

2

1u
u

n
k

n
k

k

n

k

n

= =
∑ ∑= ,

hence the result, if Lemma 3 is applied.
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In finalizing the arithmetic lemmas and the previous inequalities, Ibn al-
Haytham proves the principal theorem of this treatise.

Theorem. — The volume of a sphere is two thirds the volume of a
circumscribed cylinder whose base is the largest disc of the sphere and
whose height is equal to the diameter of the sphere.

Let AEBG be a rectangle, which, by its rotation around AE, forms a
cylinder whose base is the largest disc of the sphere and whose height is the
radius of the sphere. Using exactly the same rotation, the portion ABE
forms a hemisphere, whereas the portion ABC generates a whole sphere.
The previous proposition is therefore equivalent to the proposition that: the
volume of a hemisphere generated by rotation of the portion ABE is equal
to two thirds the volume of a cylinder whose base is the largest disc of the
sphere and whose height is the radius of the sphere.

HG S F A

D
E

C

B

Q

L

O M

I

P

J

X
K

J

U

N

J

Fig. 2.1.7.

Let v be the volume of a hemisphere, V the volume of the associated
cylinder and [U] the volume of the solid U. Ibn al-Haytham proves that

v = 2
3

V.

First assume that

v > 2
3

V,

that is

   v = 2
3

V + ε   ( ε > 0).
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Cut AE into two halves at I, then cut both AI and IE in half again at M
and at P respectively and so on; it follows

[EK] + [KG] = 1
2

 [AB] = 1
2

V,

[NI] + [NS]   = 1
2

 [AK],

[UJ] + [UL]  = 1
2

 [BK];

hence

 [NI] + [NS] + [UJ] + [UL] = 1
2

 [AK] + 1
2

 [BK] = 1
2

1
2

V



 .

After the first subdivision, the remainder is thus 1
2

V; after the second

subdivision, the remainder is 1
2

1
2

V



  and finally after the nth subdivision, the

remainder is 1
2n V < ε, from Lemma X.1 of Euclid’s Elements (or Ibn al-

Haytham’s theorem), generalized by Ibn al-Haytham [see Treatise on the
Division of Two Different Magnitudes Mentioned in the First Proposition
of the 10th Book of Euclid]. Vn is the remainder and vn part of Vn which is
inside the sphere. It follows

vn < Vn < ε,

hence
vn < ε.

However

v = 2
3

V + ε,

therefore

 v – vn > 2
3

V;

but
In = v – vn
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is the volume of the sum of cylinders of same height. Next, Ibn al-Haytham
studies In.

Segments EP, EI, EM, EA are terms of an arithmetical progression with
a ratio equal to the first term. From Lemma 3, therefore

(3)   1
2

2EA +  1
3

2 2 2 2 2 2 2 2EB PQ IL MO EP EI EM EA+ + +( ) < + + +

< 1
3

2
3

2 2 2 2 2EB PQ IL MO EA+ + +( ) + .

But
EP2 + PU2 = EU2 = R2  and   PQ = R;

hence
  EP2 + PU2 = PQ2,

    EI2 + IK2 = IL2,

EM2 + MN2 = MO2,

             EA2 = EB2.

Therefore

(EP2 + EI2 + EM2 + EA2) + (PU2 + IK2 + MN2) = PQ2 + IL2 + MO2 + EB2,

hence

(4) PU2 + IK2 + MN2 = PQ2 + IL2 + MO2 + EB2 – (EP2 + EI2 + EM2 + EA2).

If we take (3) into account, we have

 PU2 + IK2 + MN2 < 
2
3

1
2

2 2 2 2 2EB PQ IL MO EA+ + +( ) − ,

a fortiori

PU2 + IK2 + MN2 < 
2
3

2 2 2 2EB PQ IL MO+ + +( ) ,

but
In = π (PU2 + IK2 + MN2) EP;
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hence

 In < 2
3

π (EB2 + PQ2 + IL2 + MO2) EP.

Therefore

In < 2
3

V,

which is impossible and consequently

v ≤ 2
3

V.

Assume now that

v < 
2
3

V,

that is

v + ε = 
2
3

V  (ε > 0).

Let un be a part of Vn outside the sphere and assume that the figure
represents the step where subdivisions determine un < ε. It follows

v + un < 2
3

V.

Cn is marked as Cn = v + un; Cn is therefore the volume of the sum of
cylinders of same height. According to (3) and (4), we have

PU2 + IK2 + MN2 > 2
3

2
3

2 2 2 2 2EB PQ IL MO EA+ + +( ) −

and

PU2 + IK2 + MN2 + EA2 > 2
3

1
3

2 2 2 2 2EB PQ IL MO EA+ + +( ) + ;

a fortiori, we have

PU2  + IK2 + MN2 + EA2 > 2
3

2 2 2 2EB PQ IL MO+ + +( ) .

But
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Cn = π (EB2 + PU2 + IK2 + MN2) · EP;

hence

 Cn > 2
3

V,

which is impossible. Therefore

v = 2
3

V

and the proposition is proved.
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In the Name of God, the Forgiving, the Merciful
Glory to God in the Highest

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Measurement of the Paraboloid

<Introduction>

For every discourse and for every writing, there is a reason that
prompted the speaker or writer to say or write that which he said or wrote.
We have made a careful study of the book by Abº al-Îasan Thæbit ibn
Qurra1 On the Measurement of the Paraboloid, and we have concluded
that he followed a course without any plan, forcing him to take a path
through his explanation that was both long and laboriously difficult.

We then obtained a copy of a treatise by Abº Sahl Wayjan ibn Rustum
al-Qºhî On the Measurement of the Paraboloid. We found it to be
uncluttered and concise, but we noted that the author states that his reason
for writing the treatise arose from his study of the book by Abº al-Îasan
Thæbit ibn Qurra on the measurement of this solid, the difficulties he found
there, and his rejection of the method proposed. However, we find that the
treatise by Abº Sahl, albeit less cluttered and easier to follow, includes a
proof of only one of the two species of paraboloid.

There are two species of paraboloid, as we shall discover later. One of
these is accessible and easy, the other is difficult and arduous. We find that
Abº Sahl has limited his treatise to the measurement of <paraboloids
belonging to> the accessible species, and that he makes no mention of the
second species.

Having found the characteristics on which we have just commented in
both these treatises, we therefore felt compelled to write this treatise. We
intend in this treatise to provide a full discussion of the measurement of the
two species of this solid, and to treat exhaustively all the concepts related to
their measurement. However, in all that we shall mention and explain, we
shall confine ourselves to the shortest possible paths by which the subject

1 See Volume I, Chapter II.
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may be approached, together with the most concise methods for
determining the proofs, while still dealing fully with the concepts involved.

Let us now begin this study. May God help and support the
accomplishment of that which pleases Him.

Given any plane figure, in the plane of which we draw a given straight
line, fixed so that its position does not vary, and if the plane figure is rotated
about the line until it returns to its original position, then that rotation will
generate a compact body.

Given any portion of a parabola, in the plane of which we draw a given
straight line, fixed so that its position does not vary, and if the portion of a
parabola is rotated about the line until it returns to its original position, then
that rotation will generate a compact body. The body generated in this way
is known as a paraboloid.

Any given straight line in the plane of a parabola is either parallel to the
diameter of the portion in whose plane it lies, or is the diameter itself, or it
meets the diameter, either in their original positions, or in their extensions. If
it is parallel to the diameter, then it is also a diameter. If it meets the
diameter, then it meets the section at two points, and if it meets the section
at two points, then it is an ordinate to one of the diameters of the section, as
has been shown by the eminent Apollonius in his work on the Conics.

All the possible given straight lines in the plane of one of the portions of
a parabola belong to one of two species; the diameters and the ordinates. If
this is the case, then all the paraboloids generated by the movement of the
parabola around one of the given straight lines in its plane may also be
divided into two species; the solids generated by the movement of the
section around its diameters, and the solids generated by the movement of
the section around its ordinates. We now seek to measure <paraboloids in>
each of these two species, and we begin by introducing a number of
lemmas.

One of the two species, that is those <paraboloids> generated by the
movement of the section around its diameters, does not require any of these
lemmas. We have already mentioned in the introduction to this treatise that
this species is simple and easy to deal with. But the second species, that is
those <solids> generated by the movement of the section around its
ordinates, and which is the more difficult of the two, requires these
arithmetic lemmas.

Here is one of the lemmas: If we take any quantity of numbers
beginning with one and increasing from one by one, and if we take half of
the greatest of these and half of unity, which is the first of these, and if we
add them and multiply their sum by the last number – which is the greatest
of the numbers – then we obtain the sum of all the numbers.
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If we take one third of the greatest of the successive numbers and one
third of unity, and if we add them together and then multiply their sum by
the last number, which is the greatest of the numbers, and if we then add
one half of unity to the greatest number and then multiply the result by the
result of the first multiplication, then the result of this multiplication is the
sum of the squares of the numbers.

If we take one quarter of the greatest of the successive numbers, and if
we add one quarter of unity and then multiply by the greatest number, and
if we add one to the greatest number and then multiply the result by the
greatest number, and if we finally multiply this product by the product from
the first multiplication, then the result is the sum of the cubes of the
successive numbers.

If we take one fifth of the greatest of the successive numbers, and if we
add one fifth of unity to it, and if we multiply this sum by the greatest
number, and if we then add one half of unity to the greatest number and
then multiply the result by that obtained from the first multiplication, saving
this product, and if we then add one to the greatest number and then
multiply the result by the greatest number, and if we subtract one third of
unity from the product, and if we finally multiply the remainder by what we
saved earlier, then the result of all these is the sum of the square-squares of
the successive numbers.

We shall begin by proving all these lemmas.

<Lemmas>

<1> Let the numbers AB, CD, EG and HI be successive numbers. Let
AB be equal to one, and let the others increase from one by one.

I say that, if we take one half of HI, and if we add one half of unity
and multiply the sum by the number HI, then the result is the sum of the
numbers AB, CD, EG and HI.

 Proof: We associate another <sequence of> successive numbers with
these numbers, beginning with one and increasing from one by one.
Arrange these in the reverse order to that in which the original numbers are
arranged, and let them be KH, LE, NC and MA. Let KH be unity and let the
other numbers increase from one by one. As HI exceeds EG by one unity,
and as KH is equal to one, then KI exceeds EG by two. LE is equal to two.
Therefore, LG is equal to KI. As HI exceeds CD by two, KI must exceed
CD by three. But NC is equal to three. ND is therefore equal to KI.
Similarly, we can also show that MB is equal to KI. All the numbers MB,
ND, LG and KI are therefore equal. And the successive numbers beginning
with one and increasing from one by one are equal in number to the
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number of unities contained in the last number. Therefore, the multiplicity of
the numbers AB, CD, EG and HI is equal to the number of unities
contained in HI. And the multiplicity of the numbers AB, CD, EG and HI is
equal to the multiplicity of the numbers MB, ND, LG and KI. The
multiplicity of the numbers MB, ND, LG and KI, which are equal, is
therefore equal to the number of unities contained in HI. If the number KI is
multiplied by the unities in HI, the result of the multiplication is the sum of
the numbers MB, ND, LG and KI. The numbers AB, CD, EG and HI are
successive, beginning with one and increasing from one by one. The
numbers KH, LE, NC and MA are also successive, beginning with one and
increasing from one by one, and the multiplicity of these numbers is equal to
that of the previous numbers. They are therefore equal to them. The sum of
all <these numbers> is therefore twice the sum of the numbers AB, CD, EG
and HI. The sum of these numbers is therefore one half of the sum of the
numbers MB, ND, LG and KI, and <the product of> KI and the unities in
HI is equal to the sum of these numbers. The product of one half of KI and
HI is therefore the sum of the numbers AB, CD, EG and HI. But IK is equal
to the number HI – which is the last of the successive numbers – plus KH,
which is one. One half of KI is therefore equal to one half of HI plus one
half of unity.

The same can be shown for all the successive numbers beginning with
one, regardless of their multiplicity.
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Fig. II.1.1

Therefore, if we take one half of the greatest of the successive numbers
beginning with one and increasing from one by one, and if add one half of
unity to it, and if we multiply this by the greatest of the numbers, then the
result of this multiplication will be the sum of <all> the successive numbers
beginning with one. That is what we wanted to prove.

This proof clearly shows that the sum of the successive numbers is one
half of the square of the greatest number, plus one half of the number itself.
The product of this latter number by its half is equal to one half of its
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square, and its product with one half of one is equal to one half of the
number itself.

<22> Similarly, let AB, BC, CD and DE be successive numbers in the
position shown in the figure. By that, I mean the figure in the second
proposition. Let BG, CH, DI and EK also be successive numbers beginning
with one. AB is therefore equal to BG, BC is equal to CH, CD is equal to
DI, and DE is equal to EK. Add one to each of the numbers BG, CH, DI
and EK, and let these be the unities PG, NH, MI and LK. The product of
AB and BP is therefore equal to the product of AB and BG plus the product
of AB and GP. The product of AB and BG is equal to the square of BG,
and the product of AB and GP is equal to AB itself, as GP is equal to one.
And the product of AC and CN is equal to the product of AC and CH plus
the product of AC and HN. As for the product of AC and HN, it is equal to
AC itself, as HN is equal to one. The product of AC and CH is equal to the
product of BC and CH plus the product of AB and CH. And the product of
BC and CH is equal to the square of CH, as BC is equal to CH. Hence, the
product of AC and CN is equal to AC itself plus the square of CH, plus the
product of AB and CH. But the product of AB and CH is equal to the
product of AB and BP, as BP is equal to CH. BP is equal to BC, as BP
exceeds BG, which is equal to BA, by one unity; BC exceeds AB by one
unity, and BC is equal to CH. BP is therefore equal to CH.

We have already shown that the product of AB and BP is equal to the
square of BG plus AB itself. The product of AC and CN is therefore equal to
the square of BG plus the square of CH plus AB itself plus AC itself.

Similarly, the product of AD and DM is equal to the product of AD and
DI, plus the product3 of AD and IM. The product of AD and IM is equal to
AD itself, as IM is equal to one. And the product of AD and DI is equal to
the product of CD and DI, plus the product of AC and DI. But the product
of CD and DI is equal to the square of DI, and the product of AC and DI is
equal to the product of AC and CN, as DI is equal to CN. CN exceeds CH
– which is equal to CB – by one unity. Therefore, CN is equal to CD. But
CD is equal to DI; therefore, NC is equal to DI. Therefore, the product of
AD and DM is equal to AD itself plus the square of DI, plus the product of
AC and CN. But we have already shown that the product of AC and CN is
equal to the square of HC plus the square of BG plus AC itself plus AB
itself. The product of AD and DM is therefore equal to the square of DI plus
the square of CH plus the square of BG plus AD itself plus AC itself plus AB
itself.

2 See the statement for the previous lemma.
3 We have sometimes inserted ‘product’ for the purposes of translation.
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Using a similar method, we can also show that the product of AE and
EL is equal to AE itself, plus the square of EK, plus the product of AD and
DM. But we have already shown that the product of AD and DM is equal to
the square of DI plus the square of CH plus the square of BG plus AD itself
plus AC itself plus AB itself. The product of AE and AL is therefore equal to
the square of EK plus the square of DI plus the square of CH plus the
square of BG plus AE itself plus AD itself plus AC itself plus AB itself. But
AE itself is equal to the sum of the successive numbers beginning with one
and increasing from one by one, the last of which is DE, which is equal to
EK. AE is therefore equal to one half of the square of KE, plus one half of
KE, as we have shown in the corollary4 to the first proposition. Similarly,
AD is equal to one half of the square of DI, plus one half of DI, AC is equal
to one half of the square of CH, plus one half of CH, and AB is equal to one
half of the square of BG, plus one half of BG. The product of AE and EL is
therefore equal to the sum of the squares of EK, DI, CH, BG, plus the
halves of their squares, plus the halves of the numbers themselves. But the
sum of the halves of the numbers EK, DI, CH and BG is equal to one half
of AE, as AE is the sum of these numbers. The product of AE and EL is
therefore equal to the squares of the successive numbers, the last of which is
KE, plus the halves of their squares, plus one half of AE.
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Fig. II.1.2

We divide LK into two halves at the point S. The product of AE and EL
is then equal to the product of AE and ES plus the product of AE and SL.
The product of AE and SL is equal to one half of AE, as SL is equal to one
half of one. But the product of AE and EL is equal to the squares of the
successive numbers, plus the halves of their squares, plus one half of AE. It
follows that the product of AE and ES is equal to the squares of the
successive numbers, the last of which is KE, plus the halves of their squares.

4‘aqîb, corollarium, povrisma.
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The product of two thirds of AE and ES is therefore equal to the sum of the
squares of the successive numbers, the last of which is KE. But we have
already shown in the first proposition that the product of one half of LE
– which is the last number plus unity – and KE is equal to the whole of AE.
The product of two thirds of one half of LE – which is one third of LE –
and KE, is therefore equal to two thirds of AE. If we take one third of LE,
which is one third of KE – the greatest of the numbers – plus one third of
unity, and if we multiply that by KE – which is the greatest of the
numbers – and if we then multiply the product by ES – which is the
greatest of the numbers plus one half of unity – then the result of this
multiplication is equal to the sum of the squares of EK, DI, CH and BG,
which are the successive numbers beginning with one and increasing from
one by one. That is what we wanted to prove.

It follows clearly from this proof that the sum of the squares of the
successive numbers is equal to one third of the cube of the greatest of them,
plus one half of its square, plus one sixth of the number itself. The product
of one third of LE and EK is equal to one third of the square of EK, plus
one third of EK. If this is then multiplied by ES, the product of one third of
the square of EK and ES is then equal to one third of the cube of EK, plus
one sixth of the square of EK, as KS is equal to one half of one. And the
product of one third of EK and ES is equal to one third of the square of EK,
plus one sixth of EK itself. The product of one third of LE and EK, then the
product of that result and SE, is therefore equal to one third of the cube of
EK, plus one half of its square, plus one sixth of EK itself.

– 3 – Similarly, let the numbers AB, BC, CD and DE be successive
square numbers. Let AB be unity – that is, the square of unity – BC the
square of two, CD the square of three, and DE the square of four. Let the
numbers BG, CH, DI and EK be the successive numbers themselves. Hence,
BG is equal to one, CH to two, DI to three, and EK to four. The product of
DE and EK is therefore equal to the cube of EK, and the product of CD and
DI is equal to the cube of DI. The same applies to the rest. Now we add one
to each of the successive numbers, as shown in the figure. The product of
AE and EL is therefore equal to the product of AE and EK, plus the
product of AE and KL. The product of AE and KL is equal to AE itself, as
KL is equal to one. The product of AE and EK is equal to the product of
DE and EK, plus the product of AD and EK. The product of DE and EK is
the cube of EK, as DE is the square of EK. And the product of AD and EK
is equal to the product of AD and DM, as DM is equal to EK, as we have
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shown earlier. The product of AE and EL is therefore equal to AE itself,
plus the cube of EK, plus the product of AD and DM.

By following a similar proof, it can be shown that the product of AD
and DM is equal to AD itself, plus the cube of DI, plus the product of AC
and CN. The product of AC and CN is equal to AC itself, plus the cube of
CH, plus the product of AB and BP, and the product of AB and BP is equal
to AB itself, plus the cube of BG. The product of AE and EL is therefore
equal to the cube of EK plus the cube of DI plus the cube of CH plus the
cube of BG plus AE itself plus AD itself plus AC itself plus AB itself. But AE
is the sum of the successive squares; AE is therefore equal to one third of
the cube of EK, plus one half of its square, plus one sixth of EK itself, as we
have shown earlier. Similarly, AD is equal to one third of the cube of DI,
plus one half of its square, plus one sixth of DI itself, and AC is equal to one
third of the cube of CH, plus one half of its square, plus one sixth of CH
itself. Similarly, AB is equal to one third of the cube of BG, plus one half of
its square, plus one sixth of BG itself, as the unity possesses such a property.
The product of AE and EL is therefore equal to the sum of the cubes of the
successive numbers, the last of which is EK, one third of their cubes,5 the
halves of their squares, and the sixths of the numbers themselves.

The product of AE and EL is equal to the product of AE and ES, plus
the product of AE and SL. But the product of AE and SL is equal to one
half of AE, as SL is equal to one half of unity. And one half of AE is equal
to the <sum of the> halves of the squares of all the successive numbers, the
last of which is EK. There remains the product of AE and ES equal to the
cubes of all these numbers, plus the thirds of their cubes, plus the sixths of
the numbers themselves. But AE results from taking the product of one
third of LE and EK, which is then multiplied by ES.6 The product of three
quarters of one third of LE – that is one quarter of LE – and EK, which is
then multiplied by ES, is therefore equal to three quarters of AE. If three
quarters of AE is multiplied by ES, the result is the sum of the cubes of the
successive numbers, plus the eighths of the numbers themselves, as if the
whole of AE is multiplied by ES, the result is the sum of the cubes of these
numbers, plus the thirds of their cubes, plus the sixths of the numbers
themselves. Therefore, if we take one quarter of LE – which is equal to one
quarter of EK plus one quarter of unity – and if that is multiplied by EK,
and if that product is then multiplied by ES, and if the result is finally
multiplied again by ES, then the result is the sum of the cubes of the
numbers EK, DI, CH and BG, plus one eighth of the sum of these numbers.
But the product of one quarter of LE and EK, multiplied by ES, and then

5 One third of the sum of their cubes.
6 See Proposition 2.
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multiplied again by ES, is equal to the product of one quarter of LE and EK,
multiplied by the square of ES. If there are three numbers, then the product
of the first and the second, multiplied by the third, is equal to the product of
the third and the second, multiplied by the first. The result of the
multiplication of one quarter of LE by EK is a certain number, ES is a
second number, and ES is also a third number. Therefore, one quarter of LE
is multiplied by EK, and if that product is then multiplied by the square of
ES, then the result is the sum of the cubes of the numbers EK, DI, CH and
BG, plus one eighth of the sum of these numbers. But we have shown7 that
the product of one half of LE and EK is equal to the sum of these numbers.
The product of one quarter of LE and EK is therefore equal to one half of
the sum of these numbers. And the product of this half and one quarter of
unity is equal to one eighth of the sum of these numbers. Therefore, if the
product of one quarter of LE and EK, which is equal to one half of the sum
of these numbers, is multiplied by the square of ES, then the result is the
sum of the cubes of the successive numbers plus one eighth of their sum. If
one quarter of unity is subtracted from the square of ES, and if the
remainder is multiplied by the product of one quarter of LE and EK, that is
one half of the sum of the numbers, then the result is the sum of the cubes
of the successive numbers, and no more. But the square of ES is equal to
the product of LE and EK, plus the square of KS, as may be shown by
multiplying each of these numbers by the others. But the square of KS is
equal to one quarter of unity, as KS is equal to one half of unity. If one
quarter of unity is subtracted from the square of ES, then the remainder is
the product of LE and EK. Therefore, if one quarter of LE is multiplied by
EK, and if that product is then multiplied by the product of LE and EK,
then the result is the sum of the cubes of the numbers EK, DI, CH and BG.

If we take one quarter of the greatest of a group of successive numbers
beginning with one and increasing from one by one, regardless of their
number, and if we add one quarter of unity, and if the result is multiplied by
the greatest number, and if that product is multiplied by the product of the
greatest number and the number that is one greater than it, we obtain from
all these the sum of the cubes of the successive numbers beginning with one.
That is what we wanted to prove.

It follows clearly from this proof that the sum of the cubes of the
successive numbers is equal to one quarter of the square-square of the
greatest of them, plus one half of its cube, plus one quarter of its square.

The product of one quarter of LE and EK is equal to one quarter of the
square of EK, plus one quarter of EK itself, as one quarter of LE is equal to

7 See Proposition 1.
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one quarter of EK plus one quarter of unity. And the product of one quarter
of EK and EK is equal to one quarter of the square of EK. The product of
one quarter of unity and EK is equal to one quarter of EK itself. But the
product of LE and EK is equal to the square of EK plus EK itself. The
product of the square of EK and one quarter of the square of EK is equal to
one quarter of the square-square of EK. The product of EK itself and one
quarter of the square of EK is equal to one quarter of the cube of EK. The
product of the square of EK and one quarter of EK itself is equal to one
quarter of the cube of EK. And the product of EK itself and one quarter of
EK is equal to one quarter of the square of EK. It follows that the result of
multiplying one quarter of the square of EK plus one quarter of EK itself by
the product of LE and EK is equal to one quarter of the square-square of
EK, plus one half of the cube of EK, plus one quarter of the square of EK.
The sum of the cubes of the successive numbers is therefore equal to one
quarter of the square-square of the greatest of them, plus one half of its
cube, plus one quarter of its square.

<4> Similarly, let the numbers AB, BC, CD and DE be successive cubic
numbers, and let BG, CH, DI and EK be the successive numbers
themselves. The product of DE and EK is then equal to the square-square of
EK, the product of CD and DI is equal to the square-square of DI, the
product of BC and CH is equal to the square-square of CH, and the product
of AB, which is unity, and BG, which is also unity, is equal to the square-
square of unity. We add to unity all these numbers beginning with one, as
shown in the figure. The product of AE and EL is therefore equal to the
product of AE and EK, plus the product of AE and KL. The product of AE
and KL is equal to AE itself8 and the product of AE and EK is equal to the
product of DE and EK, plus the product of AD and EK. But the product of
DE and EK is the square-square of EK, as DE is the cube of EK, and the
product of AD and EK is equal to the product of AD and DM, as DM is
equal to EK. The product of AE and EL is therefore equal to AE itself, plus
the square-square of EK, plus the product of AD and DM. Therefore, the
product of AD and DM is equal to AD itself plus the square-square of DI,
plus the product of AC and CN. And similarly for the rest, given that this
may be proved as shown previously. The product of AE and EL is therefore
equal to the square-squares of EK, DI, CH and BG, plus the numbers AE,
AD, AC and AB themselves. But we have shown9 that AE is equal to one
quarter of the square-square of EK, plus one half of the cube EK, plus one
quarter of the square of EK, as AE is the sum of the cubes of the successive

8 As KL = 1.
9 Proposition 3.
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numbers, the greatest of which is EK. Similarly, AD is equal to one quarter
of the square-square of DI, plus one half of its cube, plus one quarter of its
square. And similarly, AC is equal to one quarter of the square-square of
CH, plus one half of its cube, plus one quarter of its square. AB, which is
unity, is equal to one quarter of the square-square of BG, plus one half of its
cube, plus one quarter of its square. The product of AE and EL is therefore
equal to the <sum of the> square-squares of all the successive numbers, the
greatest of which is EK, plus the quarters of their square-squares, plus the
halves of their cubes, plus the quarters of their squares. Therefore, if four
fifths of AE is multiplied by EL, the result is the square-squares of the
successive numbers, plus two fifths of their cubes, plus one fifth of their
squares. The product of four fifths of AE and SL, which is one half of one, is
equal to two fifths of AE, which is equal to the sum of the cubes of these
successive numbers. The product of four fifths of AE and ES remains equal
to the <sum of the> square-squares of the successive numbers plus one fifth
of their squares. But AE is the result of multiplying one quarter of LE by
EK, which product is then multiplied by the product of LE and EK.10

Therefore, if four fifths of one quarter of LE – which is equal to one fifth of
LE – is multiplied by EK, and that product is then multiplied by the product
of LE and EK, the result is equal to four fifths of AE. If this is multiplied by
ES, the result is the sum of the square-squares of the successive numbers,
plus one fifth of their squares. Therefore, if one fifth of LE is multiplied by
EK, and that product is then multiplied by the product of LE and EK, and if
that result is then multiplied by ES, the final result is equal to the square-
squares of the successive numbers, plus one fifth of their squares. If the
product of the numbers is commuted,11 it remains the same. Therefore, if
one fifth of LE is multiplied by EK, and that product is then multiplied by
ES, and if that result is then multiplied by the product of LE and EK, the
final result is equal to the square-squares of the successive numbers, plus one
fifth of their squares.

But12 the product of one third of LE and EK, subsequently multiplied
by ES, is the sum of the squares of the successive numbers, the greatest of
which is EK. And the product of one fifth of LE and EK, subsequently
multiplied by ES, is therefore equal to three fifths of the squares of the
successive numbers, as one fifth is equal to three fifths of one third. The
product of three fifths of the squares of the successive numbers, the last of
which is EK, and the product of LE and EK is therefore equal to the <sum
of the> square-squares of the successive numbers plus one fifth of their

10 See Proposition 3.
11 Lit.: moving them forwards and then backwards.
12 Proposition 2.
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squares. But the product of one third of one and three fifths of the squares
of the successive numbers is equal to one fifth of their squares. Therefore, if
one third of one is subtracted from the product of LE and EK, and if the
remainder is multiplied by three fifths of the squares of these successive
numbers, then the result will be equal to the square-squares of these
numbers alone. The product of one fifth of LE and EK, subsequently
multiplied by ES, and then multiplied again by the product of LE and EK,
from which one third of unity has been subtracted, is therefore the sum of
the square-squares of these numbers.

If we take one fifth of the greatest of the successive numbers beginning
with one and increasing from one by one, plus one fifth of unity, and if the
result is multiplied by the greatest number, and if we then multiply this
product by the greatest number plus one half of unity, and if we retain that
result, and if we then add one to the greatest number and multiply that
result by the greatest number, and if we subtract only one third of unity
from that product, and if we multiply the remainder by the result we
retained earlier, then the final result of all that is the sum of the square-
squares of the successive numbers. That is what we wanted to prove.

<5> Similarly, let the numbers AB, CD, EG, HI and KL be the squares
of successive numbers. Let each of <the numbers> MB, ND, PG and OI be
equal to KL.

I say that the sum of the squares of AM, CN, EP and HO is less than
one third plus one fifth of the sum of the squares of MB, ND, PG, OI and
KL, and greater than one third plus one fifth of the sum of the squares of
MB, ND, PG and OI, and that the sum of the squares of AM, CN, EP, HO
and KL is greater than one third plus one fifth of <the sum of> the
squares of MB, ND, PG, OI and KL.

Proof: Let SB be equal to twice MB, SD equal to twice ND, SG equal
to twice PG, and SI equal to twice OI. The product of SH and HI, plus the
square of HO, is therefore equal to the square of OI, and the product of SE
and EG, plus the square of EP, is therefore equal to the square of PG. The
same applies to the subsequent numbers. If the product of SH and HI is
subtracted from the square of OI, the remainder is equal to the square of
HO, and the same applies to the subsequent numbers. But, if the square of
HI is subtracted from the product of SI and IH, the remainder is equal to
the product of SH and HI. Similarly, if the square of GE is subtracted from
the product of SG and GE, the remainder is equal to the product of SE and
EG. If the square of DC is subtracted from the product of SD and DC, the
remainder is equal to the product of SC and CD. And, if the square of BA is
subtracted from the product of SB and AB, the remainder is equal to the
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product of SA and AB. But the product of SI and IH, plus the product of
SG and GE, plus the product of SD and DC, plus the product of SB and
BA, is equal to the product of SI and the sum of IH, GE, DC and BA, which
is the sum of the squares of the successive numbers. The square of IH, the
square of GE, the square of DC, and the square of BA are the square-
squares of the successive numbers. If twice OI, that is twice KL, is multiplied
by the sum of the squares of the successive numbers, the last of which is the
square number HI, and if the square-squares of the successive numbers, the
last of which is HI, is subtracted from the result obtained, then the
remainder is equal to the sum of the product of SH and HI, the product of
SE and EG, the product of SC and CD, and the product of SA and AB. And
if this remainder is subtracted from the sum of the squares of OI, PG, ND
and MB, which are equal, the remainder is equal to the sum of the squares
of HO, EP, CN and AM.

Let UQ be the side of the square KL, and let UJ be unity. JQ is
therefore the side of the square HI. Divide UJ into two halves at the point
V. As JQ is the side of the square HI, JQ is therefore the last of the
successive numbers whose squares are AB, CD, EG and HI. JU is equal to
unity. The product of one third of UQ and QJ, then the product of that
result and QV, is equal to the sum of AB, CD, EG and HI, which are the
successive squares.13 Therefore, if one third of UQ is multiplied by QJ, and
if the result is then multiplied by QV, and that result is then multiplied by
twice KL, the final result is the product of twice KL and the sum of AB, CD,
EG and HI. But the product of one third of UQ and QJ, then the product of
that result and QV, then the product of that result and twice KL, is equal to
the product of UQ and QJ, then the product of that result and QV, then the
product of that result and one third of twice KL, which is equal to two thirds
of KL. The product of UQ and QJ, then the product of that result and QV,
and the product of that result and two thirds of KL, is therefore equal to the
product of twice KL and the sum of AB, CD, EG and HI, which are the
successive squares. We have already shown14 that the product of one fifth of
UQ and QV, multiplied by QJ, and again multiplied by the product of UQ
and QJ from which is subtracted one third of unity, is equal to <the sum of>
the square-squares of the successive numbers. It is therefore equal to the
sum of the squares of AB, CD, EG and HI, which are the squares of the
successive numbers. Let LY be the product of UQ and QJ, and let YZ be
one third of unity. The product of one fifth of UQ and QV, then the product
of that result and QJ, then the product of that result and LZ, is equal to the
sum of the squares of AB, CD, EG and HI. If the product of each of the

13 Proposition 2.
14 Proposition 4.
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numbers and the others is commuted,15 it remains the same. The product of
UQ and QV, then the product of that result and QJ, then the product of that
result and LZ, is therefore equal to the sum of the squares of AB, CD, EG
and HI. If UQ is multiplied by QV, then that result is multiplied by QJ, and
that result is multiplied by one fifth of LZ, and if the product of UQ and QV,
then the product of that result and QJ, then the product of that result and
two thirds of KL is subtracted from the first result, then the remainder is
equal to the product of SH and HI, plus the product of SE and EG, plus the
product of SC and CD, plus the product of SA and AB. But if we subtract
the product of UQ and QV, then that result is multiplied by QJ, and that
result is multiplied by one fifth of LZ, from the product of UQ and QV, then
the product of that result and QJ, then the product of that result and two
thirds of KL, then the remainder is equal to the product of UQ and QV, then
the product of that result and QJ, then the product of that result and one
fifth plus one sixth plus one tenth of LZ, then the product of that result and
two thirds of KZ.

Let LT be equal to the product of UQ and QV. There remains TK equal
to one half of UQ, as KL is equal to the square of UQ. Therefore, KL is
equal to the product of UQ and QV, plus <the product of> UQ and UV.
The product of UQ and UV is equal to one half of UQ, as UV is equal to
one half of one. Therefore, TY is also equal to TK, as YK is equal to UQ, and
TK is the product of UQ and UJ, which is one. The product of UQ and QV,
then the product of that result and QJ, then the product of that result and
one fifth plus one sixth plus one tenth of LZ, plus two thirds of KZ, is equal
to the product of LT and one fifth plus one sixth plus one tenth of LZ, plus
two thirds of KZ, then the product of that result and QJ. But, as LT is equal
to the product of UQ and QV, and two thirds of KZ is equal to one fifth plus
one sixth plus one tenth of KZ, plus one fifth of KZ as well, the product of
LT and one fifth plus one sixth plus one tenth of LZ, plus one fifth plus one
sixth plus one tenth of KZ – this sum being equal to one fifth plus one sixth
plus one tenth of LK – plus <the product of LT> and one fifth of KZ, then
the product of that result and QJ, is equal to the product of SH and HI, plus
the product of SE and EG, plus the product of SC and CD, plus the product
of SA and AB. But the product of LT and one fifth plus one sixth plus one
tenth of LK is equal to the product of LK and one fifth plus one sixth plus
one tenth of LT, and the product of LT and one fifth of KZ is equal to the
product of LT and two fifths of KT plus two fifths of one sixth of unity, as
KT is one half of KY, and one sixth is equal to one half of YZ. The product
of KL and one fifth plus one sixth plus one tenth of LT, plus the product of
LT and two fifths of KT plus two fifths of one sixth of unity, that is two

15 Lit.: moving them forwards and then backwards.
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thirds of one tenth of unity, then the product of that result and QJ, is equal
to the sum of the products of SH and HI, SE and EG, SC and CD, and SA
and AB. But, as the numbers AB, CD, EG, HI and KL are the squares of the
successive numbers, and UQ is the side of KL, UQ is the last of the
successive numbers whose precedents are the squares. The number of
unities in UQ is therefore equal to the number of these numbers, and the
number of these successive numbers is equal to the number of their squares.
The number of AB, CD, EG, HI and KL is therefore the number of unities
in UQ, and UJ is equal to one. QJ contains the same number of unities as
the number of AB, CD, EG and HI. The number of these numbers is equal
to the number of MB, ND, PG and OI, which are equal and equal to KL.
Therefore, if the square of KL is multiplied by the unities in QJ, the result is
equal to the sum of the squares of the numbers OI, PG, ND and MB. But
we have shown that, if KL is multiplied by one fifth plus one sixth plus one
tenth of LT, and if this product is added to the product of LT and two fifths
of KT plus two thirds of one tenth of unity, and if the result obtained is
multiplied by QJ, then the final result is the sum of the products of SH and
HI, SE and EG, SC and CD, and SA and AB. Therefore, if we subtract the
product of KL and one fifth plus one sixth plus one tenth of LT, plus the
product of LT and two tenths of KT, plus two thirds of one tenth of unity,
from the square of KL, and if the remainder is multiplied by QJ, then the
result is that which remains of <the sum of> the squares of OI, PG, ND and
MB, which is <the sum of> the squares of MA, NC, PE and OH.16 But, if
we take the square of KL and subtract the product of KL and one fifth plus
one sixth plus one tenth of LT, plus the product of LT and two fifths of KT,
plus two thirds of one tenth of unity, then the remainder is the product of
KL and one third plus one fifth of LT, plus the product of KL and the whole
of KT, from which is subtracted the product of LT and two fifths of KT plus
two thirds of one tenth of unity. But the whole of KT is equal to one third
plus one fifth of KT plus one fifth plus one sixth plus one tenth of KT. That
which remains of the square of KL is therefore the product of KL and one
third plus one fifth of KL plus one fifth plus one sixth plus one tenth of KT,
from which is subtracted the product of LT and two fifths of KT plus two
thirds of one tenth of unity. Therefore, if KL is multiplied by one third plus
one fifth of KL plus one fifth plus one sixth plus one tenth of KT, from
which is subtracted the product of LT and two fifths of KT plus two thirds
of one tenth of unity, and if the remainder is multiplied by QJ, then the
result is the sum of the squares of MA, NC, PE and OH.

16 In other words, the result is:
OI2 + PG2 + ND2 + MB2 – [(SH · HI) + (SE · EG) + (SC · CD) + (SA · AB)] =
MA2 + NC2 + PE2 + OH2.
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We set the ratio of LK to KT equal to the ratio of TK to KO′.17 The
ratio of KL to LT is therefore equal to the ratio of KT to TO′. The product
of LT and TK is therefore equal to the product of KL and TO′, and the
product of LT and two fifths of KT is equal to the product of KL and two
fifths of O′T. But, as the ratio of LK to KT is equal to the ratio of TK to KO′,
the product of LK and KO′ is equal to the square of KT. KT is one half of
UQ, as has been shown earlier, and its square is therefore one quarter of the
square of UQ. But KL is the square of UQ, and the square of KT is
therefore one quarter of KL. The product of KL and KO′ is then equal to
one quarter of KL, and KO′ is therefore equal to one quarter of unity.

We set O′Z equal to one sixth of unity.18 The product of LT and two
thirds of one tenth of unity is therefore equal to the product of LT and two
fifths of O′Z. We set the ratio of O′Z to ZW equal to the ratio of TK to
KO′,19 which is equal to the ratio of LK to KT. The ratio of KL to LT is
therefore equal to the ratio of ZO′ to O′W. The product of LT and O′Z is
therefore equal to the product of KL and WO′, and the product of LT and
two fifths of O′Z is equal to the product of KL and two fifths of WO′. The
product of LT and two fifths of KT, multiplied by two thirds of one tenth of
unity, is therefore equal to the product of KL and two fifths of WT.

We set TI′  equal to six sevenths of TW.20 The ratio of WT to TI′ is then
equal to the ratio of one fifth plus one sixth plus one tenth, that is 14 over
30, to two fifths, that is 12 over 30. The product of KL and two fifths of WT
is therefore equal to the product of KL and one fifth plus one sixth plus one
tenth of TI′. The product of LT and two fifths of KT, multiplied by two
thirds of one tenth of unity, is therefore equal to the product of KL and one
fifth plus one sixth plus one tenth of TI′. If the product of KL and one fifth
plus one sixth plus one tenth of TI′ is subtracted from the product of KL
and one fifth plus one sixth plus one tenth of KT, the remainder is equal to
the product of KL and one fifth plus one sixth plus one tenth of KI′. If the
product of KL and one fifth plus one sixth plus one tenth of LT, plus the
product of LT and two fifths of KT multiplied by two thirds of a tenth of
unity, is subtracted from the square of KL, the remainder is equal to the
product of KL and one third plus one fifth of KL, multiplied by one fifth plus
one sixth plus one tenth of KI′. If this is then multiplied by QJ, the result is
the sum of the squares of MA, NC, PE and OH. But the product of KL and

17 The point O′ is chosen such that this equality holds.
18 The letter Z used here designates a point that is different from the point Z referred

to earlier.
19 The point W is chosen so as to satisfy this ratio.
20 The point I′ is chosen such that the equality TI′ = 6

7
TW holds.
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one third plus one fifth of KL is equal to one third plus one fifth of the
square of KL. If this is then multiplied by QJ, the result is equal to one third
plus one fifth of the sum of the squares of OI, PG, ND and MB, as the
number of unities in QJ is equal to the number of these numbers. The
squares of MA, NC, PE and OH are equal to one third plus one fifth of the
squares of MB, ND, PG and OI, plus the product of KL and one fifth plus
one sixth plus one tenth of KI′, multiplied by QJ. But the product of KL and
one fifth plus one sixth plus one tenth of KI′, multiplied by QJ, is equal to
the product of one fifth plus one sixth plus one tenth of KI′ and QJ,
multiplied by KL. But one fifth plus one sixth plus one tenth of KI′ is equal
to one fifth plus one sixth plus one tenth of I′W plus one fifth plus one sixth
plus one tenth of WZ, plus one fifth plus one sixth plus one tenth of ZK. I′W
is therefore equal to one seventh of WT, as TI′ is equal to six sevenths of
WT. And one fifth plus one sixth plus one tenth of one seventh is equal to
one seventh of one fifth plus one sixth plus one tenth, that is fourteen parts
out of thirty parts. The seventh is therefore equal to two <parts> out of
thirty, that is two thirds of one tenth. One fifth plus one sixth plus one tenth
of I′W is therefore equal to two thirds of one tenth of TW. We take two
thirds of one tenth of KW and we add them to this result. Of the one fifth
plus one sixth plus one tenth of KW, there remains two fifths <of KW>.
Therefore, two thirds of one tenth of TW, plus two thirds of one tenth of
KW, equals two thirds of one tenth of KT. Therefore, one fifth plus one sixth
plus one tenth of KI′ is equal to two thirds of one tenth of KT plus two fifths
of KW. But two thirds of one tenth of KT is equal to one third of one tenth
of UQ, as KT is one half of UQ. If one third of one tenth of UQ is multiplied
by QJ, the result is one third of one tenth of LY, as the product of UQ and
QJ is LY. The product of one fifth plus one sixth plus one tenth of KI′ and
QJ is therefore equal to one third of one tenth of LY, plus the product of
two fifths of KW and QJ. But KZ is equal to one half of one sixth of unity,
as KO′ is equal to one quarter of unity and O′Z is equal to one sixth of
unity. Two fifths of KZ is therefore equal to one third of one tenth of unity.
Therefore, if this is multiplied by QJ, the result is equal to one third of one
tenth of QJ, which is equal to KY less one unity, as KY is equal to UQ.
Therefore, if one third of one tenth of QJ is added to one third of one tenth
of LY, the result is one third of one tenth of KL less one third of one tenth
of unity. The product of one fifth plus one sixth plus one tenth of KI′ and
QJ is therefore equal to one third of one tenth of KL, less one third of one
tenth of unity plus the product of two fifths of ZW and QJ. But, if one third
of one tenth of KL less one third of one tenth of unity is multiplied by KL,
the result is equal to one third of one tenth of the square of KL less one
third of one tenth of KL, as the product of one third of one tenth of unity
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and KL is equal to one third of one tenth of KL. The product of KL and one
fifth plus one sixth plus one tenth of KI′, multiplied by QJ, is therefore equal
to one third of one tenth of the square of KL, less one third of one tenth of
KL, plus the product of KL and two fifths of ZW, multiplied by QJ. But we
have assumed the ratio of O′Z to ZW as being equal to the ratio of TK to
KO′, which is equal to the ratio of LK to KT. The ratio of KL to KT is
therefore equal to the ratio of O′Z to ZW. The product of LK and ZW is
therefore equal to the product of KT and O′Z. But the product of KT and
O′Z is equal to one sixth of KT, as O′Z is equal to one sixth of unity. The
product of KL and ZW is therefore equal to one sixth of KT. The product of
KL and two fifths of ZW is therefore equal to two fifths of one sixth of KT,
which is equal to two thirds of one tenth of KT, which is equal to one third
of one tenth of UQ, as KT is equal to one half of UQ. Therefore, if one third
of one tenth of UQ is multiplied by QJ, the result is one third of one tenth of
LY, as the product of UQ and QJ is LY. The product of KL and two fifths of
ZW, multiplied by QJ, is equal to one third of one tenth of LY. The product
of KL and one fifth plus one sixth plus one tenth of KI′, multiplied by QJ, is
equal to one third of one tenth of the square of KL, plus one third of one
tenth of LY, less one third of one tenth of KL. But one third of one tenth of
KL is equal to one third of one tenth of LY, plus one third of one tenth of
KY. If that which is added is taken away from that which is subtracted, there
remains one third of one tenth of KL and one third of one tenth of KY,
which is equal to UQ. The product of KL and one fifth plus one sixth plus
one tenth of KI′, multiplied by QJ, is therefore equal to one third of one
tenth of the square of KL, less one third of one tenth of UQ, which is the
side of KL. UQ is equal to a whole number of unities, as it is the last of the
successive numbers. But KL is the square of UQ, and therefore KL is
greater than UQ. One third of one tenth of UQ is therefore less than one
third of one tenth of the square of KL. It is also less than one third of one
tenth of KL itself, as KL is also equal to a whole number of unities. KL is
therefore a multiple of UQ.

But we have already shown that the sum of the squares of MA, NC, PE
and OH is equal to one third plus one fifth of the sum of the squares of MB,
ND, PG and OI, plus the product of KL and one fifth plus one sixth plus
one tenth of KI′, then multiplied by QJ. The sum of the squares of MA, NC,
PE and OH is therefore equal to one third plus one fifth of the sum of the
squares of MB, ND, PG and OI, plus one third of one tenth of the square of
KL, less one third of one tenth of the side of KL. But one third of one tenth
of the square of KL, less one third of one tenth of its side, is less than one
third plus one fifth of the square of KL, by one half of the square of KL plus
one third of one tenth of its side, as if one third of a tenth is subtracted from
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one third plus one fifth, the remainder is one half. The squares of MA, NC,
PE and OH are less than one third plus one fifth of the sum of the squares
of MB, ND, PG, OI and KL, by one half of the square of KL plus one third
of one tenth of its side. Therefore, if the squares of MA, NC, PE and OH are
added to one half of the square of KL plus one third of one tenth of the side
of KL, the result is equal to one third plus one fifth of the squares of BM,
ND, PG, OI and KL. And if the squares of MA, NC, PE and OH are added
to the whole square of KL, the result is greater than one third plus one fifth
of the squares of MB, ND, PG, OI and KL, less one third of one tenth of the
side of KL.
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But one half of the square of KL is greater than one third of one tenth
of UQ. The sum of the squares of MA, NC, PE, OH and KL is therefore
greater than one third plus one fifth of the sum of the squares of MB, ND,
PG, OI and KL.

From all we have mentioned, we have therefore shown that the sum of
the squares of MA, NC, PE and OH is less than one third plus one fifth of
the squares of MB, ND, PG, OI and KL and greater than one third plus one
fifth of the squares of MB, ND, PG and OI; and that the squares of MA, NC,
PE, OH and KL are greater than one third plus one fifth of the squares of
MB, ND, PG, OI and KL. That is what we wanted to prove.

From this proof it can clearly be seen that, given any number of equal
straight lines, and given a set of successive square numbers beginning with
one and equal in number to these straight lines, and if a magnitude is
subtracted from the first straight line such that the ratio of the entire straight
line to this magnitude is equal to the ratio of the greatest square to unity, in
this case the ratio of MB to BA, and if a magnitude is subtracted from the
next straight line such that the ratio of the straight line to this magnitude is

* For the figure relating to the line LK, see Note 18.
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equal to the ratio of the greatest square to the square following unity, in this
case the ratio of ND to DC, and if a magnitude is subtracted from the next
straight line such that the ratio of the straight line to this magnitude is equal
to the ratio of the greatest square to the third square, in this case the ratio of
PG to GE, and if this process is continued for all the equal straight lines until
there only remains the indivisible unity straight line corresponding to the
greatest square, then the sum of the squares of the straight lines remaining
from the divided lines once the straight lines corresponding to the squares
had been subtracted, is less than one third plus one fifth of the sum of the
squares of the initial straight lines21 including the square of the indivisible
straight line. And the sum of the squares of the straight lines remaining from
the initial straight lines, including the square of the indivisible straight line, is
greater than one third plus one fifth of the sum of the squares of the initial
straight lines, including the square of the indivisible straight line.

If the ratio of the initial straight lines to their parts is equal to the ratio of
the numbers MB, ND, PG and OI to the numbers BA, DC, GE and HI,
then the ratio of the initial straight lines to their remainders is equal to the
ratio of the numbers BM, DN, GP and IO to the numbers MA, NC, PE and
OH. The ratio of the squares of the remaining parts of these straight lines to
the squares of these lines themselves is equal to the ratio of the squares of
the numbers corresponding to the numbers MA, NC, PE and OH to the
squares of the numbers corresponding to the numbers MB, ND, PG, OI and
KL. If successive parts are subtracted from a set of equal straight lines, and if
there remains an indivisible straight line, and if this indivisible straight line,
together with the parts that have been subtracted from the initial straight
lines, are in the ratio of the successive square numbers beginning with one,
then the sum of the squares of the remainders of the initial straight lines is
less than one third plus one fifth of the sum of the squares of the initial
straight lines, including the square of the indivisible straight line, and the sum
of the squares of the remainder, including the square of the straight line that
was not divided, is greater than one third plus one fifth of the sum of the
squares of the initial straight lines, including the straight line that was not
divided. That is what we wanted to prove.

<The paraboloid: first species>

Now that these lemmas have been proved, let us move on to the
measurement of the paraboloid.

21 Lit.: the divided straight lines.
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Let AB be a portion of a parabola, and let AC be its diameter, A its
vertex, and the straight line BC its ordinate, extended as far as its two
extremities.22 Let the angle ACB be a right angle in the first figure, an acute
angle in the second, and an obtuse angle in the third. Let us fix the diameter
AC in its position and unchanging. Now, let us rotate the section ABC about
the diameter AC until it returns to its original position, such that it generates
the solid ABD.

I say that the solid ABD is equal to one half of the right cylinder, the
half diameter of the base of which is the perpendicular dropped from the
point B onto the diameter AC, and whose height is the diameter AC.

We drop a perpendicular from the point B onto the diameter AC. In the
first figure, this is the straight line BC, which is an ordinate as the angle ACB
is a right angle by hypothesis. In the two other figures, let the perpendicular
be BK. From the point B, we draw a straight line BH parallel to AC in the
plane of the section ABC. We make BH equal to CA, and we join AH. This
will be parallel to the straight line BC. In the second and third figures, we
produce the perpendicular HL from the point H. We imagine the surface
ACBH in the first figure being rotated about the straight line AC until it
returns to its original position. Moving it in this way generates a right
cylinder, and the two lines BC and HA generate two parallel circles, which
are the two bases of the cylinder. The straight line AC is the axis of the
cylinder. In the second figure, we imagine the surface HLCB being rotated
about the straight line LC. The surface HLKB then generates a right
cylinder, and the two triangles BKC and HAL generate two right cones. In
the third figure, we imagine the surface HAKB being rotated about the
straight line AK. The surface HLKB then generates a right cylinder, and the
two triangles BKC and HAL generate two right cones. In all three figures,
let the right cylinder be BHID.

I say that the solid ABD in each of the three figures is equal to one
half of the cylinder BHID.

Proof: If this solid is not equal to one half of the cylinder, then it must
be either greater than or less than one half of the cylinder.

Let us first assume that the paraboloid is greater than one half of the
cylinder BHID. Let it exceed this half by the solid G. In the first figure, we
divide the diameter AC into two halves at the point M. Draw the ordinate
ME, and we extend it until it meets the straight line HB. Let this meeting
point be the point U. We draw a straight line parallel to the straight line AC
through the point E; let it be SEO′. As AM is equal to MC, SE will be equal
to EO′, the surface HE will be equal to the surface EB, and the surface AE
will be equal to the surface EC. If the surface AHBC is rotated about the

22 This doubtless refers to the extremities of the entire portion.
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straight line AC, generating the cylinder HBDI, then the surface SC will
generate a cylinder, the surface HO′ will generate a cylindrical body23

circumscribed around the cylinder generated by the surface SC, and the
straight line MU will generate a circle which cuts the cylinder generated by
the surface SC into two halves, and which also cuts the cylindrical body
generated by the surface HO′ into two halves. The body generated by the
rotation of the surface HE added to the cylinder generated by the rotation
of the surface EC is equal to one half of the large cylinder generated by the
rotation of the surface HC.

Similarly, we now divide the straight line AM into two halves at the
point L. We draw an ordinate LE through the point L and we extend it until
it meets the straight line HB. We draw a straight line TY parallel to the
diameter AM through the point E on the straight line EL. <The sum of> the
two bodies generated by the rotation of the two surfaces SE and ME is
equal to one half of the cylinder generated by the rotation of the surface
SM.

Similarly, we now divide the straight line MC into two halves at the
point K. We draw an ordinate KE through the point K and we extend this
until it meets the straight line BH. We draw a straight line FEV parallel to
the straight line MC through the point E on the straight line EK. The body
generated by the rotation of the two surfaces UE and EO′ is equal to one
half of the cylindrical body generated by the rotation of the surface UO′, as
the surface UE is equal to one half of the surface FB, and the surface EO′ is
equal to one half of the surface FO′. The sum of the four solids generated
by the rotation of the surfaces UE, EO′, SE and EM is therefore equal to
one half of the two solids generated by the rotation of the two surfaces BE
and EA. And these are the two bodies that remain from the cylinder once
the two bodies generated by the rotation of the two surfaces HE and EC
have been removed.

Similarly, we divide each of the straight lines AL, LM, MK and KC into
two halves at the points O, P, N and J. We draw the ordinates OE, PE, NE
and JE through these points and we extend them until they meet the
straight line HB. We draw straight lines parallel to the diameter through the
points E. In this way, the remaining surfaces have been divided in half, and
in half again. The solids generated by the rotation of these half-surfaces are
equal to one half of what remains of the cylinder following the first two
divisions. If this is done, the greatest cylinder is reduced by half, then the
remainder reduced by half, and then the remainder reduced by half again. If
this is done, that which remains of the greatest cylinder is a magnitude less

23 Lit.: circular body. We shall continue to translate this expression in this way from
now on.
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than the magnitude G as, if a magnitude is reduced by half, and then the
remainder is reduced by half if we do that twice, then that <quantity>
removed from the magnitude is greater than half of it. If this remainder is
also reduced by half, and that remainder also reduced by half twice, then the
<quantity> removed is greater than half of it. And if a magnitude is reduced
by half, and the remainder reduced by half, and if we continue to proceed in
this way, then the <quantity> removed from the magnitude is greater than
half of it, and the <quantity> removed from the remainder is greater than
half of it, as in each division, the parts removed are greater than half. But
the cylinder is greater than the magnitude G. Therefore, if the cylinder is
reduced by half, and the remainder reduced by half, as shown in the figure,
and if we continue to proceed in this way, then there necessarily remains a
magnitude less than the magnitude G. Let us continue the division until this
point is reached. But that which remains of the cylinder when it has been
divided in this way, are the cylindrical bodies through the middles of which
the surface of the paraboloid passes, and the points E are at <the vertices
of> their angles. The cylindrical bodies whose angles lie at the points E,
when added together, are less than the magnitude G. The portions of these
cylindrical bodies that lie within the paraboloid are therefore very much less
than the magnitude G.

If it is so, that which remains of the paraboloid, once those parts of the
cylindrical bodies lying within it have been removed, is greater than one half
of the cylinder BHID, as this paraboloid exceeded one half of this cylinder
by the magnitude G. But that which remains of the paraboloid, once those
parts of the cylinder lying within it have been removed, is the solid24 that
divides the circles generated by the rotation of the ordinates. Its base is the
circle whose half diameter is WC, its vertex is the circle whose half-diameter
is OE, and its circular angles are limited by the circles generated by the
rotation of the point E. This solid* is therefore greater than one half of the
cylinder BHID.

But the section AB is a parabola. The ratio of CA to AM is therefore
equal to the ratio of the square of BC to the square of EM. CA is twice AM.
Therefore the square of BC is twice the square of EM. But BC is equal to
UM, and the square of UM is therefore equal to twice the square of ME.
Similarly, the ratio of the square of BC to the square of EJ is equal to the

24 The original Arabic term is manshºr, the generally accepted translation of which
is ‘prism’. This word, which has the same root as the verb nashara (to saw), as does the
Greek word prìsma and the verb privzw (to saw), cannot however be translated as the
English word ‘prism’ with the risk of confusion. We have therefore chosen to use the
more general term, ‘solid’. This term will be followed by an asterisk in the remainder of
the text.
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ratio of CA to AJ. Therefore, by separation, the ratio of the difference
between the square of BC and the square of EJ to the square of EJ is equal
to the ratio of CJ to JA. The ratio of the square of EO to the square of EJ is
equal to the ratio of OA to AJ. But OA is equal to CJ, and the ratio of the
square of EO to the square of EJ is therefore equal to the ratio of the
difference between the square of BC and the square of EJ to the square of
EJ. The difference between the square of BC and the square of EJ is
therefore equal to the square of EO. The square of EJ plus the square of EO
is therefore equal to the square of BC. Consequently, their sum is equal to
twice the square of EM. Similarly, the ratio of the square of BC to the
square of EK is equal to the ratio of CA to AK. By separation, the ratio of
the difference between the square of BC and the square of EK to the square
of EK is equal to the ratio of CK to KA. But the ratio of the square of EL to
the square of EK is equal to the ratio of AL, which is equal to CK, to AK.
The difference between the square of BC and the square of EK is therefore
equal to the square of EL. The square of EK plus the square of EL is
therefore equal to the square of EM. The same process may be applied for
the squares of EN and EP.

The sum of the squares of the straight lines EJ, EK, EN, EP, EL and
EO is therefore a multiple of the square of EM, the multiple being equal to
the number of these straight lines. For each pair of these squares, <the sum>
is equal to twice the square of EM. But the square of EM is equal to one
half of the square of BC. The sum of the squares of these straight lines is
therefore equal to one half of the sum of the squares of the straight lines
passing through the points O, L, P, N, K and J which cut the surface HC,
and each of which is equal to the straight line BC. But the square of EM is
also equal to one half of the square of UM. The sum of the squares of the
straight lines EO, EL, EP, EM, EN, EK and EJ is therefore equal to one half
of the squares of the straight lines equal to the straight line BC and passing
through the points O, L, P, M, N, K and J. The same applies to their doubles
which cut the surface BI, that is, the sum of the squares of the straight lines
which cut the section – and which are each twice the straight lines EO, EL,
EP, EM, EN, EK and EJ – is equal to one half of the sum of the squares of
the straight lines which cut the parallelogram BI and which pass through the
points O, L, P, M, N, K and J, each of which is equal to the straight line BD.
The same applies to the circles whose diameters pass through these points.
Using one of the equal parts of the diameter AC as the common height, that
is, the straight line AO, gives a set of cylinders whose bases are the circles
that cut the paraboloid, and whose diameters are the ordinates, and whose
height is the straight line AO. The sum of these cylinders is therefore equal
to one half of the cylinders whose bases are the circles which cut the large
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cylinder, and whose height is the straight line AO. The cylinders whose
height is the straight line AO are the same as the cylinders whose heights are
the straight lines OL, LP, PE, EN, NK, KJ and JC, as these are the equal
straight lines. The sum of the cylinders whose heights are these straight lines,
and whose bases are the circles that cut the paraboloid, is equal to the solid*
whose base is the circle whose half-diameter is the straight line WC and
whose vertex is the circle whose half-diameter is EO. But the cylinders
whose heights are the straight lines OL, LP, PM, MN, NK, KJ and JC, and
whose bases are the circles that cut the large cylinder, are equal to the
cylinder whose base is the circle whose half-diameter is BC, and whose
height is the straight line OC. The solid* inscribed within the paraboloid is
therefore equal to one half of the cylinder whose height is the straight line
OC and whose base is the base of the large cylinder. It is therefore less than
one half of the large cylinder BHID. But we have shown that this solid* is
greater than one half of this cylinder, which is impossible.

This impossibility arises from the hypothesis that the paraboloid is
greater than one half of the cylinder. The paraboloid is therefore not greater
than one half of the cylinder.

I say that neither is it less than one half of the cylinder.
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If this were possible, let it be less than one half of the cylinder, in other
words, let it be equal to one half of the cylinder less a solid of magnitude G.
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We take away one half of the cylinder, then we remove half from the
reminder, and so on in the same way as before, until there remains just the
sum of the cylindrical bodies through the middles of which the surface of
the paraboloid passes, and which is less than the solid G. That part of these
cylindrical bodies which lies outside the paraboloid must therefore be very
much less than the magnitude G. But the paraboloid plus the magnitude G is
equal to one half of the cylinder BHID. The paraboloid plus that part of the
cylindrical bodies that lies outside the paraboloid is less than one half of the
cylinder. But the paraboloid plus that part of the cylindrical bodies that lies
outside the paraboloid is equal to the solid* whose base is the base of the
cylinder, and whose vertex is the circle whose half-diameter is QA. The
solid* whose base is the base of the cylinder and whose vertex is the circle
whose half-diameter is QA is therefore less than one half of the cylinder.
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We have shown that the solid* inscribed within the paraboloid is equal
to one half of the cylinder whose height is CO and whose base is the circle
whose half-diameter is BC. But the solid* inscribed within the paraboloid is
equal to the solid* circumscribed around the paraboloid whose base is the
circle whose half-diameter is the straight line EJ and whose vertex is the
circle whose half-diameter is QA, as EJ is equal to WC, QA is equal to EO,
and the height AJ is equal to the height CO. But the cylinder whose height
is CO is equal to the cylinder whose height is AJ. The solid* circumscribed
around the paraboloid whose base is the circle whose half-diameter is EJ is
therefore equal to one half of the cylinder whose height is AJ. If this solid* is
added to one half of the cylinder whose base is the circle whose half-
diameter is BC and whose height is JC, then the sum is equal to one half of
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the cylinder BHID. Therefore, if this solid* circumscribed around the
paraboloid whose base is the circle whose half-diameter is EJ is added to the
whole cylinder whose height is JC and whose base is the circle whose half-
diameter is BC, then the sum is greater than one half of the cylinder BHID.
But if the solid* circumscribed around the paraboloid whose base is the
circle whose half-diameter is EJ and whose height is AJ is added to the
cylinder whose base is the circle whose half-diameter is BC and whose
height is the straight line CJ, then the solid* so obtained will be the solid
circumscribed around the paraboloid whose base is the base of the large
cylinder, that is the cylinder BHID, and whose vertex is the circle whose
half-diameter is QA. The solid* is therefore greater than one half of the
cylinder BHID. But we have shown that this solid* is less than one half of
this cylinder, which is impossible.

The paraboloid is therefore not less than one half of the cylinder, nor
greater than one half of the cylinder. It is therefore equal to one half of this
cylinder.

The paraboloid in the second figure has a conical base and the
circumscribed cylinder is also conical. The cone generated by the triangle
BCK is equal to the cone generated by the triangle HLA. If the cone whose
vertex is at the point C is subtracted from the conical cylinder, and if the
cone whose vertex is at the point A is added, then the result is a right
cylinder equal to the conical cylinder. If we assume that the paraboloid is
greater than one half of the cylinder, and if the conical cylinder is divided in
the same way as shown in the first figure, then the cylinder is reduced by
half, and then the remainder is reduced by half, and then that remainder also
reduced by half, then the result25 is the solid* inscribed within the
paraboloid that is greater than one half of the cylinder, as has already been
shown in the first figure. This solid* is conical. As in the first figure, it can be
shown that this solid* is less than one half of the conical cylinder. Thus, if
perpendiculars are drawn onto the diameter from the vertices of the
ordinates, the ratio of these perpendiculars, each to the others, is equal to the
ratio of the ordinates, each to the others. And the ratio of the ordinates in
this figure, each to the others, is equal to the ratio of the ordinates in the first
figure, each to the others. The ratios of the perpendiculars from the vertices
of the ordinates to the diameter in this figure, each to the others, are equal
to the ratios of the ordinates in the first figure, each to the others. If these
perpendiculars are extended until they reach the straight line BH, then the
ratios of <those parts of> the perpendiculars that lie within the section to
<the external parts of> these perpendiculars, terminating at the straight line
BH, are equal to the ratios of the ordinates to their <external parts>,

25 Lit.: there remains.
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terminating at the straight line BH. In the second figure, the ratios of the
ordinates to the <external> parts terminating on the straight line BH are
equal to the ratios of the ordinates in the first figure to the <external> parts
terminating on the straight line BH. The ratios of the <parts of the>
perpendiculars which lie within the section in the second figure to the
<external> parts terminating on the straight line BH are therefore equal to
the ratios of the ordinates in the first figure to the external portions
terminating on the straight line BH. The ratios of the circles, each to the
others, whose half-diameters are the <parts of the> perpendiculars that lie
within the section in the second figure are therefore equal to the ratios of the
circles, each to the others, whose half-diameters are the ordinates in the first
figure. The ratios of the right cylindrical bodies in the second figure to the
right cylinder in the same figure are therefore equal to the ratios of the
cylindrical bodies in the first figure to their cylinder. And the ratio of the
right solid* inscribed within the second figure to the right cylinder is equal
to the ratio of the solid* in the first figure to the cylinder in the same figure.
But the solid* in the first figure is less than one half of the <right> cylinder.
The right solid* in the second figure is therefore less than one half of the
right cylinder. The right cylinder is equal to the conical cylinder, and the
right solid* is equal to the conical solid, as each of the right cylindrical
bodies is equal to its homologue in the conical cylindrical bodies. This may
be shown in the same way as for the right and conical cylinders. It therefore
necessarily follows that the conical solid* is less than one half of the conical
cylinder.

Similarly, if we assume that the paraboloid is less than one half of the
cylinder, then the circumscribed solid* is less than one half of the conical
cylinder. As before, it can be shown that the solid* circumscribed around
the paraboloid is greater than one half of the conical cylinder. Using the
same proof as was used in the case of the first figure, it necessarily follows
that the paraboloid in the second figure is equal to one half of the conical
cylinder. But the conical cylinder is equal to the right cylinder. The
paraboloid in the second figure is therefore equal to one half of the right
cylinder.

We continue with the same proof in the third figure. The two cones and
the perpendiculars in the third figure are in the same situation as the two
cones and the perpendiculars in the second figure.

The paraboloid generated by the rotation of the section ABC around the
diameter AC is therefore, in all three figures, equal to one half of the
cylinder whose base is the circle whose half-diameter is the perpendicular
dropped from the point B onto the diameter AC, and whose height is equal
to the diameter AC. That is what we wanted to prove.
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<Corollaries to the first species>

For any parabola whose diameter encloses different angles with its
ordinates, the paraboloid generated by the acute angle part is equal to the
paraboloid generated by the obtuse angle part.

Thus, their two right cylinders are equal, as the axis of each of the two
cylinders is equal to the diameter of the section, and the half-diameter of the
base of each of the two cylinders is equal to the perpendicular dropped from
the extremity of the ordinate onto the diameter. But the two perpendiculars
drawn from the two extremities of the ordinate to the diameter are equal, as
the diameter divides the ordinate into two halves. The two right cylinders
are therefore equal, and each of the two paraboloids26 is equal to one half of
its cylinder. The two paraboloids generated by the two parts of the section
are therefore equal.

The same applies to the parabola whose diameter is an axis. Let this axis
be equal to the diameter of another section, <which cuts the ordinate> at
two different angles, and let the ordinate <at the extremity> of the axis, and
which is the base of the section, be equal to each of the perpendiculars
drawn from the two extremities of the two ordinates in the section with two
different angles. The paraboloid generated by the rotation of this section
about its axis is therefore equal to each of the two paraboloids generated by
the rotation of each of the two sections of the parabola, with two different
angles, around its diameter.

It can be shown, from that which we have already described, that if the
bases of their two cylinders are equal, then the ratio of one paraboloid to
another paraboloid is equal to the ratio of the height of one to the height of
the other, as the ratio of one paraboloid to another paraboloid is equal to the
ratio of the cylinder of one to the cylinder of the other.

If the bases of their cylinders are different and their heights equal, then
the ratio of one to the other is equal to the ratio of the bases.

If both the heights and the bases are different, the ratio of one to the
other is then compounded of both the ratio of the heights and the ratio of
the bases. For all paraboloids of this species, the heights are the diameters of
the sections from which the paraboloids were generated.

It can clearly be seen from the previous proof that the sum of the
cylindrical bodies through the middles of which the surface of the paraboloid

26 Lit.: solids. In a context such as this, we have chosen to translate the term as
‘paraboloids’.
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passes is equal to the cylinder whose base is the base of the large cylinder
and whose height is the straight line CJ.

We have thus shown that the sum of the two cylindrical bodies
generated by the rotation of the two surfaces SEM and BUE is equal to one
half of the large cylinder. The cylinder generated by the rotation of the
surface BM is equal to one half of the large cylinder. The sum of the two
cylindrical bodies is therefore equal to the cylinder generated by the rotation
of the surface BM. The two cylindrical bodies generated by the rotation of
the two surfaces TEL and EYE are equal to one half of the cylindrical body
generated by the rotation of the surface SEM. The two cylindrical bodies
generated by the rotation of the two surfaces EFE and BVE are equal to
one half of the cylindrical body generated by the rotation of the surface
UO′. The four cylindrical bodies generated by the rotation of the surfaces
TEL, EYE, EFE and BVE are equal to one half of one half of the large
cylinder. But the cylinder generated by the rotation of the surface BK is
equal to one half of one half of the large cylinder. Therefore the four
cylindrical bodies that we have thus defined are equal to the cylinder
generated by the rotation of the surface BK.

Similarly, we can also show that each of the four cylindrical bodies that
we have defined is divided into half and into half again by the two
cylindrical bodies lying within it, and through the middles of which the
surface of the paraboloid passes. The sum of all the small cylindrical bodies
through the middles of which the paraboloid passes is therefore equal to one
half of the four cylindrical bodies that we have defined. The cylinder
generated by the rotation of the surface BJ is equal to one half of the
cylinder generated by the rotation of the surface BK, which we have shown
to be equal to the four cylindrical bodies. The final small cylindrical bodies
through the middles of which the surface of the paraboloid passes are
therefore equal to the cylinder whose base is the base of the large cylinder,
and whose height is the straight line CJ.

Similarly, it can be shown that if the cylinder is divided indefinitely into
cylindrical bodies that are smaller than these cylindrical bodies, then their
sum is equal to the small cylinder whose base is the base of the large
cylinder, and whose height is a single part of the diameter. That is what we
wanted to prove.

We have also shown that the solid* inscribed within the paraboloid
whose base is the circle whose half-diameter is WC, and whose vertex is the
circle whose half-diameter is EO, is equal to one half of the cylinder whose
base is the base of the large cylinder and whose height is the straight line
CO, which is equal to the straight line JA. We have shown that the
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paraboloid is equal to one half of the large cylinder. The amount by which
the paraboloid exceeds the solid* that is inscribed within it is therefore equal
to one half of the cylinder whose base is the base of the large cylinder and
whose height is the straight line CJ. But the amount by which the
paraboloid exceeds the solid* that is inscribed within it is that part of the
small cylindrical bodies through the middles of which the surface of the
paraboloid passes that lies within the paraboloid. That part of these
cylindrical bodies that lies within the paraboloid is equal to one half of the
cylinder whose base is the base of the large cylinder and whose height is the
straight line CJ.

But we have shown that the sum of these cylindrical bodies is equal to
the cylinder whose base is the base of the large cylinder and whose height is
the straight line CJ. The surface of the paraboloid therefore divides all the
small cylindrical bodies through the middles of which it passes into half. That
is what we wanted to prove.

This conclusion27 follows necessarily for the paraboloids whose base is
the circle whose half-diameter is the straight line EJ, for the paraboloids
whose half diameter is EK, and for all other paraboloids.

We have therefore shown that the surface of the paraboloid divides each
of the small cylindrical bodies into two halves.28

That which we have just proved is the measurement of one of the two
species of paraboloids, those generated by the rotation of the section around
its diameter.

<The paraboloid: second species>

Let us now turn to the second species; the paraboloids generated by the
rotation of the section around its ordinate.

Let ABC be a parabola, BC its diameter, and AC its ordinate. Let the
angle ACB be a right angle. From the point B, let us draw a straight line
parallel to the straight line AC, namely BE. We draw the straight line AE
parallel to the straight line CB. We fix the straight line AC so that its position
does not change. We rotate the rectangle ACBE around the straight line AC.
The rotation of the surface AB generates a circular cylinder, the half-
diameter of whose base is the straight line BC, namely BG. The section BAC
generates a paraboloid whose base is the circle whose half-diameter is the
straight line BC, which is BAD.

27 Lit.: notion.
28 Lit.: into two halves, and then into two halves.
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I say that the paraboloid BAD is equal to one third plus one fifth of
the cylinder ED.

Proof: If it is not equal to one third plus one fifth of the cylinder, then it
must be either greater than one third plus one fifth of the cylinder or less
than one third plus one fifth of the cylinder.

Let it be first greater than one third plus one fifth of the cylinder, and let
the amount by which it exceeds one third plus one fifth of the cylinder be
the solid J. We divide AC into two halves at the point H, and we draw the
straight line HMS parallel to the straight line BC. Through the point M, we
draw the straight line QMO, parallel to the two straight lines BE and AC. As
the straight line QM is equal to the straight line MO – AH being equal to
HC – the surface EM is equal to the surface MB, and the surface AM is
equal to the surface MC. If the surface BA is rotated about the straight line
AC until it returns to its original position, then the two cylindrical bodies
generated by the rotation of the two surfaces AM and MC will be equal, and
the two cylindrical bodies generated by the rotation of the two surfaces EM
and MB will also be equal. The sum of the two cylindrical bodies generated
by the rotation of the two surfaces ME and MC will therefore be equal to
one half of the cylinder BG.

We also divide the straight line AH into two halves at the point K. From
the point K, we draw a straight line parallel to the two straight lines HS and
AE, namely the straight line KLR. Through the point L, we draw the
straight line parallel to the two straight lines AC and EB, namely the straight
line ULTV. We also divide the straight line HC into two halves at the point I.
From the point I, we draw a straight line parallel to the two straight lines
CB and HS, namely the straight line INW. Through the point N, we draw
the straight line XNP, parallel to the two straight lines TV and RS. As
before, it can be shown that the two cylindrical bodies generated by the
rotation of the two surfaces QL and LH are equal to one half of the
cylindrical body generated by the rotation of the surface AM. Similarly, it
can be shown that the two cylindrical bodies generated by the rotation of
the two surfaces SN and NO are equal to one half of the cylindrical body
generated by the rotation of the surface SO. The sum of the four cylindrical
bodies generated by the rotation of the surfaces SN, NO, QL and LH is
therefore equal to one half of the two cylindrical bodies generated by the
rotation of the two surfaces BM and MA. But, if the two cylindrical bodies
generated by the rotation of the two surfaces EM and MC – which are
equal to one half of the cylinder – are subtracted from the entire cylinder
BG, then the remainder is the two cylindrical bodies generated by the
rotation of the two surfaces BM and MA. And if the four cylindrical bodies
generated by the rotation of the surfaces QL, LH, SN and NO are subtracted
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from the two cylindrical bodies generated by the rotation of the two
surfaces BM and MA, and which are equal to one half of these latter two
cylindrical bodies, then the remainder is the cylindrical bodies generated by
the rotation of the surfaces BN, NM, ML and LA. If each of the parts of the
straight line AC is divided into two halves, and if straight lines are drawn
from the points29 of division parallel to the straight line BC, and if straight
lines are drawn through the points30 of intersection of these straight lines
and the section AB31 of the straight lines parallel to the straight line AC,
then the cylindrical bodies resulting from the rotation of the surfaces will,
two by two, generate half of the cylindrical body in which they are located,
as we have shown earlier.

If there are two different magnitudes, and if one32 is halved, and the
remainder is also halved, and if we continue to proceed in this way, then the
remainder must necessarily be a magnitude that is less than the smaller
magnitude <of the two magnitudes>, as we have shown in the previous
proposition. If the cylinder BG is divided in this manner, the remainder must
eventually be less than the magnitude J. Let the division be continued to this
limit, and let the remainder of the cylinder BG be equal to the cylindrical
bodies generated by the rotation of the surfaces BN, NM, ML and LA. These
cylindrical bodies are therefore less than the magnitude J. But that portion
of these cylindrical bodies that lies within the paraboloid is less than these
cylindrical bodies. That part of these cylindrical bodies that lies within the
paraboloid is therefore very much less than the solid J. So if the paraboloid
BAD exceeds the solid J by one third plus one fifth of the cylinder BG, and
that part of the small cylindrical bodies that lies within the paraboloid is less
than the solid J, then the remainder of the paraboloid once those parts that
lie within it have been removed is greater than one third plus one fifth of the
cylinder. But the remainder of the paraboloid once those parts of the small
cylindrical bodies that lie within it have been removed is the solid* whose
base is the circle whose half-diameter is PC and whose vertex is the circle
whose half-diameter is LK. This solid* is therefore greater than one third
plus one fifth of the cylinder BG.

As the section ABC is a parabola with diameter BC and ordinate AC,
the square of the straight line AC is equal to the product of BC and the latus
rectum. And as the straight lines LV, MO and NP are parallel to the straight
line AC, these straight lines are also ordinates. The square of LV is therefore
equal to the product of BV and the latus rectum, the square of MO is equal

29 Lit.: positions (mawæ≈i‘).
30 Lit.: positions.
31 Lit.: which lie between these straight lines and the section AB.
32 i.e. the greater of the two.
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to the product of BO and the latus rectum, and the square of NP is equal to
the product of BP and the latus rectum. The ratio of the square of AC to
the square of LV is therefore equal to the ratio of CB to BV, the ratio of the
square of LV to the square of MO is equal to the ratio of VB to BO, and the
ratio of the square of MO to the square of NP is equal to the ratio of OB to
BP. The ratio of the straight lines BC, BV, BO and BP, each to the others, is
therefore equal to the ratio of the squares of the straight lines AC, LV, MO
and NP, each to the others. As the straight line NP is equal to the straight
line CI, the straight line MO is equal to the straight line CH, and the straight
line HC is equal to twice the straight line CI, then MO is equal to twice NP.
And, as the parts AK, KH, HI and IC are equal, KC is equal to three times
CI, and the straight line LV is therefore equal to three times NP. Similarly,
AC is equal to four times CI, and therefore AC is equal to four times NP.
Therefore, depending on the magnitude needed to make the straight line NP
equal to one, MO is two, LV is three, and AC is four. The ratios of the
straight lines NP, MO, LV, AC, each to the others, are therefore equal to the
ratios of the successive numbers beginning with one and increasing from
one by one, each to the others. Similarly, if these straight lines were greater
in number than they are, they would all be in the ratios of the successive
numbers. It is for this reason that the ratios of the squares of the straight
lines NP, MO, LV and AC, each to the others, are equal to the ratios of the
squares of the successive numbers, each to the others. But the ratios of the
squares of the straight lines NP, MO, LV and AC, each to the others, are
equal to the ratios of the straight lines BP, BO, BV and BC, each to the
others. The ratios of the straight lines BP, BO, BV and BC, each to the
others, are therefore equal to the ratios of the successive numbers beginning
with one and increasing from one by one, each to the others. But the
straight line BP is equal to WN, BO is equal to SM, BV is equal to RL, and
BC is equal to EA. The straight lines WN, SM, RL and EA are therefore in
the ratios of the successive square numbers beginning with one, each to the
others, and the straight lines WI, SH, RK and EA are equal.

We have shown in the lemmas that we have introduced that, given a set
of equal straight lines from which straight lines are separated, and if there
remains one which is indivisible,33 and if the ratios of these separated
straight lines to the straight line that has not been divided are successively
the ratios of the successive square numbers beginning with one, then the
sum of the squares of the parts of these straight lines that remain is less than
one third plus one fifth of the sum of the squares of all the straight lines that
were equal to one another, and equal to the greatest straight line, and the
sum of the squares of the remaining parts, plus the square of the straight line

33 See Lemma 5.
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that was not divided, is greater than one third plus one fifth of the sum of
the squares of all the straight lines that are equal to one another. The squares
of the straight lines NI, MH and LK are therefore less than one third plus
one fifth of the squares of the straight lines WI, SH, RK and AE, and the
squares of the straight lines NI, MH, LK and AE are greater than one third
plus one fifth of the squares of the straight lines WI, SH, RK and AE.
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The ratios of the squares of the straight lines, each to the others, are
thus equal to the ratios of the circles whose half-diameters are these straight
lines, each to the others. The circles whose half-diameters are the straight
lines NI, MH and LK are less than one third plus one fifth of the circles
whose half-diameters are WI, SH, RK and AE. And the circles whose half-
diameters are the straight lines NI, MH, LK and EA are greater than one
third plus one fifth of the circles whose half-diameters are the straight lines
WI, SH, RK and EA. We make the straight line AK as the common height.
The small cylinders whose bases are the circles whose half-diameters are the
straight lines NI, MH and LK, and whose height is equal to the straight line
AK, are less than one third plus one fifth of the cylinders whose bases are
the circles whose half-diameters are the straight lines WI, SH, RK and EA,
and whose height is equal to the straight line AK. And the cylinders whose
bases are the circles whose half-diameters are the straight lines NI, MH and
LK, and whose height is equal to the straight line AK, form a solid* whose
base is the circle whose half-diameter is the straight line CP, equal to the
straight line NI, and whose vertex is the circle whose half-diameter is the
straight line LK. Each of the heights KH, HI and IC is in fact equal to the
straight line AK. The cylinders whose bases are the circles whose half-
diameters are the straight lines WI, SH, RK and EA, and whose height is
equal to the straight line AK are equal to the cylinder whose base is the
circle whose half-diameter is the straight line EA and whose height is the
straight line AC, that is the cylinder BG. The solid* whose base is the circle



212 CHAPTER II: IBN AL-HAYTHAM

whose half-diameter is the straight line PC and whose vertex is the circle
whose half-diameter is LK is therefore less than one third plus one fifth of
the cylinder BG.

This solid* is the solid* inscribed within the paraboloid, and we have
already shown that it is greater than one third plus one fifth of the cylinder
BG. Therefore, this is absurd. Therefore, the paraboloid is not greater than
one third plus one fifth of the cylinder.

And I also say that neither is it less than one third plus one fifth of the
cylinder.

If this were possible, then let this solid be less than one third plus one
fifth of the cylinder, and let it be less than one third plus one fifth of the
cylinder by the solid magnitude J. We subtract the cylindrical bodies from
the cylinder, as we did before. The remainder is the cylindrical bodies
generated by the rotation of the surfaces BN, NM, ML and LA, which are
less than the solid J. The parts of these cylindrical bodies that lie outside the
paraboloid, and which surround it, are very much less than the solid J.

The paraboloid plus these parts is therefore less than one third plus one
fifth of the cylinder. But the paraboloid plus these parts forms the solid*
whose base is the circle whose half-diameter is the straight line BC and
whose vertex is the circle whose half-diameter is the straight line AU. This
solid* is therefore less than one third plus one fifth of the cylinder BG.

But we have shown that the circles whose half-diameters are the straight
lines NI, MH, LK and EA are greater than one third plus one fifth of the
circles whose half-diameters are the straight lines WI, SH, RK and EA. We
set AK the common height. We take BC in place of EA, as they are equal.
The small cylinders whose bases are the circles whose half-diameters are the
straight lines BC, NI, MH and LK, and whose height is equal to the straight
line AK, are therefore greater than one third plus one fifth of the cylinders
whose bases are the circles whose half-diameters are the straight lines BC,
WI, SH and RK, and whose height is equal to the straight line AK. But the
cylinders whose bases are the circles whose half-diameters are the straight
lines BC, NI, MH and LK, and whose height is equal to the straight line AK,
are the cylinders generated by the rotation of the surfaces BI, NH, MK and
LA. The sum of the cylinders generated by the rotation of these surfaces is
equal to the solid* whose base is the circle whose half-diameter is BC, and
whose vertex is the circle whose half-diameter is UA. But the cylinders
whose bases are the circles whose half-diameters are the straight lines BC,
WI, SH and RK, and whose height is equal to the straight line AK, are the
cylinders generated by the rotation of the surfaces BI, WH, SK and RA. The
sum of these cylinders is the cylinder generated by the rotation of the
surface BA – the sum of the surfaces that we have mentioned is equal to the
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surface BA – and this cylinder is the cylinder BG. The solid* whose base is
the circle whose half-diameter is the straight line BC and whose vertex is the
circle whose half-diameter is UA is therefore greater than one third plus one
fifth of the cylinder BG.

But we have shown that this solid* is less than one third plus one fifth
of the cylinder BG, which is absurd and cannot be. Therefore, the
paraboloid BAD is not less than one third plus one fifth of the cylinder BG.

But we have also shown that it is not greater than one third plus one
fifth of this cylinder. The paraboloid BAD is therefore equal to one third plus
one fifth of the cylinder BG. That is what we wanted to prove.

If now the angle ACB is either acute or obtuse, then we proceed for this
section in the same way as in the second and third figures of the previous
proposition. We can then show, as in this proposition, that the paraboloid is
equal to one third plus one fifth of the right cylinder whose base is the circle
whose half diameter is the perpendicular dropped from the extremity of the
diameter onto the ordinate, and whose height is equal to the ordinate. That
is what we wanted to prove.

<Corollaries to the second species>

As in the previous proposition, it can be shown that the sum of the
small cylindrical bodies through the middles of which the surface of the
paraboloid passes is equal to the cylindrical body generated by the rotation
of the surface BI.

The ratio of the small cylindrical bodies to the cylinder is equal to one
half of one half of one half.34 The same applies to the cylindrical body
generated by the rotation of the surface BI. Each time that the cylindrical
bodies through the middles of which the surface of the solid passes, are
divided, the cylindrical body generated by the rotation of the surface BI is
divided into two halves. The cylindrical bodies through the middles of which
the surface of the paraboloid passes are therefore equal to the cylindrical
body generated by the rotation of the surface BI.

34 Lit.: is equal to the ratio of the half and of the half of the half. The meaning is
1/2n.
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<The small cylindrical bodies>

We set AB the square number corresponding to the straight line EA, as
the straight lines WN, SM, RL and EA are in the ratios of the successive
square numbers beginning with one. We divide AB into two halves at the
point N, and we set NK equal to one third of one tenth of AB. Then, BK is
equal to one third plus one fifth of AB. Let CH be the side of the number
AB, which is a square. We set HI be one third of one tenth of unity, and we
set the ratio of HI to NM equal to the ratio of AB to CH. The product of AB
and NM is equal to the product of CH and HI. But the product of CH and
HI is equal to one third of one tenth of CH, as HI is one third of one tenth
of unity. The product of AB and MN is therefore equal to one third of one
tenth of CH, and the product of AB and KN is equal to one third of one
tenth of the square of AB. The product of AB and KM is therefore equal to
one third of one tenth of the square of AB, less one third of one tenth of the
side of AB. We have shown in the arithmetical lemmas35 that we have
introduced that the sum of the squares of the numbers corresponding to the
straight lines LK, MH and NI exceeds one third plus one fifth of the squares
of the numbers corresponding to the straight lines RK, SH and WI by one
third of one tenth of the square of the number corresponding to the straight
line AE, less one third of one tenth of the side of this number. The squares
of the numbers corresponding to the straight lines LK, MH and NI therefore
exceed one third plus one fifth of the squares of the numbers corresponding
to the straight lines RK, SH and WI by the product of AB and KM. But the
product of AB and BK is equal to one third plus one fifth of the square of
AB. The squares of the numbers corresponding to the straight lines LK, MH
and NI, plus the product of AB and BM, are equal to one third plus one fifth
of the squares of the numbers corresponding to the straight lines RK, SH,
WI and BC.

We set the ratio of the square of BC to the square of CJ equal to the
ratio of AB to BM. But the ratio of AB to BM is equal to the ratio of the
square of AB to the product of AB and BM. The ratio of the square of BC
to the square of CJ is therefore equal to the ratio of the square of AB to the
product of AB and BM. Therefore, the square of CJ is equal to the product
of AB and BM. We draw the straight line JLa parallel to the straight line IC.
As the product of AB and BM, plus the squares of the numbers
corresponding to the straight lines LK, MH and NI, is equal to one third plus
one fifth of the squares of the numbers corresponding to the straight lines
RK, SH, WI and BC, the squares of the straight lines LK, MH, NI and JC
are therefore equal to one third plus one fifth of the squares of the straight

35 See Lemma 5.
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lines RK, SH, WI and BC. But the circles whose half-diameters are these
straight lines are also in this ratio, and the cylindrical bodies whose bases are
these circles, and whose heights are the straight lines AK, KH, HI and IC,
are also in this ratio. The solid* inscribed within the paraboloid – whose
vertex is the circle whose half-diameter is LK and whose base is the circle
whose half-diameter is PC – plus the cylindrical body generated by the
rotation of the surface JI are therefore equal to one third plus one fifth of
the cylindrical bodies whose bases are the circles whose half-diameters are
the straight lines RK, SH, WI and BC, and whose heights are the straight
lines AK, KH, HI and IC. But these cylindrical bodies are the cylinder BG.
The solid* inscribed within the paraboloid plus the cylindrical body
generated by the rotation of the surface JI is therefore equal to one third
plus one fifth of the cylinder BG. But the paraboloid is equal to one third
plus one fifth of the cylinder BG. The solid* inscribed within the paraboloid
plus the cylindrical body generated by the rotation of the surface JI is
therefore equal to the paraboloid. The cylindrical body generated by the
rotation of the surface JI is therefore equal to those parts of the small
cylindrical bodies through the middles of which the surface of the paraboloid
passes that lie within the paraboloid.

But we have shown that the sum of all the small cylindrical bodies is
equal to the cylindrical body generated by the rotation of the surface BI.
Those parts of the small cylindrical bodies through the middles of which the
surface of the paraboloid passes, and which lie outside it and surround it, are
therefore equal to the cylindrical body generated by the rotation of the
surface BLa. But the ratio of the external parts of these cylindrical bodies to
their internal parts is equal to the ratio of the cylindrical body generated by
the rotation of the surface BLa to the cylindrical body generated by the
rotation of the surface JI. The ratio of these two cylindrical bodies, each to
the other, is equal to the ratio of their bases, each to the other. But the ratio
of their bases, each to the other, is equal to the ratio of the difference
between the square of BC and the square of CJ to the square of CJ, and the
ratio of the difference between the square of BC and the square of CJ to the
square of CJ is equal to the ratio of AM to MB, as the ratio of the square of
BC to the square of CJ is equal to the ratio of AB to BM. The ratio of the
parts of the small cylindrical bodies that lie outside the paraboloid to those
parts that lie inside the paraboloid is therefore equal to the ratio of the
number AM to the number MB.

This ratio follows necessarily for each of the cylindrical bodies, as we
have shown in the previous proposition. And from this ratio it necessarily
follows that, the smaller the small cylindrical body, the greater the amount
by which the ratio of its external part to its internal part exceeds the ratio of
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the external part to the internal part of the next largest cylindrical body. As
the small cylindrical bodies become smaller, the straight lines that are
homologous to the straight lines LK, MH, NI and CB become larger.
Therefore, the straight lines that are homologous to the straight lines WN,
SM, RL and EA also become larger. The square number corresponding to
the straight line AE is therefore greater than the number AB. Its ratio to its
side is therefore greater than the ratio of AB to CH, as the further one of the
successive square numbers is from unity, the greater is the ratio between the
number and its side. The ratio of one third of one tenth of unity, which is
equal to HI, to the number corresponding to the number NM is therefore
greater than the ratio of HI to NM. The number corresponding to the
number NM is therefore less than NM, and one half of the square number
corresponding to the number NB is greater than NB. The ratio of MN to NB
is therefore greater than the ratio of the number corresponding to NM to
the number corresponding to NB, in the case of the greatest square number
corresponding to the number AB. By composition, the ratio of MB to BA is
greater than the ratio of the number corresponding to NM to the number
corresponding to NB. But the ratio of MB to BA is equal to the ratio of one
half of this number to the whole of the number. The ratio of MB to BA is
therefore greater than the ratio of the number corresponding to the number
MB, in the case of the greatest square number, to this greater square
number. By inversion, the ratio of this number, which is the greatest square
number, to the part of it that corresponds to the number BM is greater than
the ratio of AB to BM. By separation, the ratio of the number
corresponding to the number AM to the number corresponding to the
number MB is therefore greater than the ratio of AM to MB. The ratio of
the external parts of the smaller cylindrical bodies to their internal parts is
therefore greater than the ratio of the external parts of the cylindrical bodies
that are greater than them to their internal parts. That is what we wanted to
prove.

It also necessarily follows that, for any parabola in this species which has
two different enclosed angles between the ordinate and the diameter, the
paraboloid generated by the part with the acute angle is equal to the
paraboloid generated by the part with the obtuse angle, as their two
cylinders are equal. The two heights of the two cylinders are equal to the
two ordinates, the two ordinates are equal, and the half-diameter of the base
of each of the two cylinders is the perpendicular dropped from the
extremity of the diameter onto the ordinate, and which is the same
perpendicular. The two paraboloids resulting from these two parts are
therefore equal.
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Similarly, the paraboloid obtained from the section whose diameter is
equal to the perpendicular dropped from the extremity of the diameter onto
the ordinate, and whose ordinate is equal to the ordinate of the section with
two unequal angles, is equal to each of the two paraboloids generated by
these two sections with two unequal angles.

The ratios of the paraboloids in this species, each to the others, are the
same as those shown for the first species.

<Proof by reductio ad absurdum>

But it may be that the proof by reductio ad absurdum, if it looks like
the proof of these two propositions, raises difficulties for many people.
Perhaps some of them, who do not take the examination far enough, may
believe that, if it is assumed that the paraboloid is equal to a part of the
cylinder that is not one third plus one fifth, in this species, or one half, in the
first species, then a proof identical to that which we have put forward for the
two propositions would also be successful. This being the case, we must
therefore show the reason (‘illa) that underlies the success of the proof, and
which produced what is sought, together with the reason why a paraboloid
generated by the rotation of the parabola about its ordinate is equal to one
third plus one fifth <of the cylinder>, while the paraboloid generated by the
rotation of the parabola about its diameter is equal to one half <of the
cylinder>.

We say that the reason that enables us to show that the paraboloid
generated by the rotation of the section about its ordinate is equal to one
third plus one fifth <of the cylinder> is that any solid* inscribed within the
paraboloid – in accordance with the property that we have explained in the
proof – is less than one third plus one fifth of the cylinder, and that any
solid* circumscribed around the paraboloid, in accordance with the property
that we have also explained in the proof, is greater than one third plus one
fifth of the cylinder. We can also show that, for any other assumed part
which is not one third plus one fifth, there must exist several solids*
inscribed within the paraboloid in accordance with the previous property,
together with several solids circumscribed around it, such that those
inscribed and those circumscribed are together either greater than this part
or less than this part, and there exists no part such that any solid* inscribed
within the paraboloid is less than it, and such that any solid* circumscribed
around the paraboloid is greater than it, with the single exception of one
third plus one fifth <of the cylinder>. It is this notion that has produced the
proof. In the discussion above, and in that which follows, the word ‘part’
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(juz’) is intended to mean ‘portion’ (ba‘≈).36 It now remains for us to show
the truth of that which we have just mentioned by means of a proof.

Let us assume any part less than one third plus one fifth of the cylinder.
I then say that there exist many solids* inscribed within the paraboloid, each
of which is greater than this part. The difference between the assumed part,
which is less than one third plus one fifth of the cylinder, and one third plus
one fifth of the cylinder, is any magnitude. Therefore, if the cylinder is
divided into cylindrical bodies – in two halves – and its half into two halves,
and if we continue to proceed in this way, then it necessarily follows that the
remainder of the cylinder will become a magnitude less than this difference.
But the remainder of the cylinder following this division is the set of small
cylindrical bodies through the middles of which the surface of the paraboloid
passes, and the sum of these cylindrical bodies is equal to the cylindrical
body that is homologous to the cylindrical body generated by the rotation of
the surface BI. The cylindrical body that is homologous to the cylindrical
body generated by the rotation of the surface BI is therefore less than this
difference. The cylindrical bodies generated by the rotation of the surface
that is homologous to the surface JI are very much less than37 this
difference. The assumed part plus the cylindrical body generated by the
rotation of the surface that is homologous to the surface JI is less than one
third plus one fifth <of the cylinder>. We have shown that the solid*
inscribed within the paraboloid plus the cylindrical body generated by the
rotation of the surface that is homologous to the surface JI is one third plus
one fifth of the cylinder. Therefore, the solid* plus the cylindrical body
generated by the rotation of the surface that is homologous to the surface JI
is greater than this part plus the same cylindrical body. Hence, the solid*
inscribed within the paraboloid is greater than this part. If the small
cylindrical bodies are then also divided into two halves, again and again,
each of the remainders of the cylinder will be less than the preceding
remainder. Each of the solids* inscribed within the paraboloid will be very
much greater than this part. It is clear from this explanation that, for all
magnitudes assumed to be less than one third plus one fifth <of the
cylinder>, there exist may solids* inscribed within the paraboloid, each of
which is greater than that part.

In the same way, let us now assume any part greater than one third plus
one fifth <of the cylinder>. Then there will be a difference between it and
one third plus one fifth <of the cylinder>. Therefore, if the cylinder is
divided – into cylindrical bodies – in two halves, and its half into two halves,
and if we continue to proceed in this way, then a remainder will be obtained

36 i.e. portion of the magnitude.
37 Have a sum that is very much less.
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that is less than this difference. The remainder of the cylinder is the small
cylindrical bodies through the middles of which the surface of the paraboloid
passes, and <the sum of> these cylindrical bodies is equal to the cylindrical
body that is homologous to the cylindrical body generated by the rotation of
the surface BI. Therefore the cylindrical body generated by the rotation of
the surface that is homologous to the surface BI is less than this difference.
One third plus one fifth of the cylinder plus the cylindrical body generated
by the rotation of the surface that is homologous to the surface BI is less
than this part. One third plus one fifth <of the cylinder> plus the cylindrical
body generated by the rotation of the surface that is homologous to the
surface BLa is very much less than this part. But one third plus one fifth,
plus the cylindrical body generated by the rotation of the surface that is
homologous to the surface BLa, is the solid* circumscribed around the
paraboloid, as the solid* circumscribed around the paraboloid exceeds one
third plus one fifth <of the cylinder> by the cylindrical body generated by
the rotation of the surface that is homologous to the surface BLa. The solid*
circumscribed around the cylinder is therefore less than this assumed part,
which is greater than one third plus one fifth. If the small cylindrical bodies
are also divided into halves, each of the solids* generated and circumscribed
around the paraboloid will be very much less than this part.

For any part less than one third plus one fifth of the cylinder, there exist
many solids* inscribed within the paraboloid, each of which is greater than
this part. Each of the solids* circumscribed around the paraboloid and
associated with these <inscribed> solids* is also greater than this part, as it is
greater than the solid* inscribed within the paraboloid.

For any part greater than one third plus one fifth of the cylinder, there
exist many solids* circumscribed around the paraboloid, each of which is
less than this part. Each of the solids* inscribed within the paraboloid and
associated with these <circumscribed> solids* is also less than this part, as it
is less than the solid* circumscribed around the paraboloid.

And for any assumed part other than one third plus one fifth <of the
cylinder>, there exist many solids* inscribed within the paraboloid and
many solids* circumscribed around the paraboloid, such that those inscribed
and circumscribed are both greater than this part and less than this part.

We have previously shown that any solid* inscribed with the paraboloid
is less than one third plus one fifth of the cylinder, and that any solid*
circumscribed around the paraboloid is greater than one third plus one fifth
of the cylinder. It clearly follows from this explanation that no part of the
cylinder – that is, no magnitude that is a portion of the cylinder – other than
one third plus one fifth of the cylinder, can be less than any solid* inscribed
within the paraboloid or greater than any solid* circumscribed around the
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paraboloid. But the paraboloid is a portion of the cylinder, and any solid*
inscribed <within this paraboloid> is less than it, and any solid*
circumscribed around it is greater than it. Therefore, if the paraboloid is a
portion of the cylinder, and if any solid* inscribed <within this paraboloid>
is less than it, and if any solid* circumscribed around it is greater than it, and
if no other portion of the cylinder other than one third plus one fifth is such
that any solid* inscribed within the paraboloid is less than it, and such that
any solid* circumscribed around the paraboloid is greater than it, then it
necessarily follows that the paraboloid is one third plus one fifth <of the
cylinder>.

This then is the reason why it is necessary that the paraboloid generated
by the rotation of the parabola about its ordinate is equal to one third plus
one fifth of the cylinder, and why it is not possible for this solid to be other
than one third plus one fifth <of the cylinder>. This reason is that any solid*
inscribed within the paraboloid is less than one third plus one fifth of the
cylinder, and any solid* circumscribed around the paraboloid is greater than
one third plus one fifth of the cylinder.

Using the same method in relation to the first species, it can be shown
that the reason why it is necessary that the paraboloid generated by the
rotation of the parabola about its axis is one half of the cylinder, and why
any solid* inscribed within this paraboloid is less than one half of the
cylinder, and why any solid* circumscribed around the paraboloid is greater
than one half of the cylinder. It is this reason that has given rise to the proof.
The method for proving this is the same method that has been described in
relation to the second species. We have described the proof for the second
species as this proof is more difficult and less obvious. It was this difficulty
and obscurity that made it necessary for us to explain it, reveal the reason,
and compare the first and second species.

If a notion may be established by a proof by reductio ad absurdum – by
removing from the magnitude its half and a half from its half – or more than
its half – until an impossibility occurs, then the reason38 which produced the
proof is similar to the reason that we have described in this proposition.

We have established the measurement of two species of paraboloids, we
have revealed the reasons behind these proofs, and we have treated
exhaustively <the measurement> of paraboloids. Let us now conclude our
treatise.

The book is completed. Praise be to God, Lord of worlds. May the
blessing and salvation of God be upon the prophet MuÌammad and all his
People.

38 Lit.: its cause.
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TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Measurement of the Sphere

One may arrive at many geometric notions after having followed
different routes, and one may successfully prove them using many different
methods. Mathematicians have always acted <such that> one may express
himself about a notion already considered by another or may achieve a
result already achieved by his predecessors, provided that he has found a
route that has been taken by none other than himself, and which has not
been followed by any of his predecessors. Many mathematicians have
spoken on the measurement of the sphere and have proved the magnitude1

of this measurement. Each of those who have spoken on this subject have
followed a path different from those taken by the others.

When their sayings on this notion became available to us and we knew
of their proofs, we devoted some thought to the measurement of the sphere.
We asked ourselves whether it was possible to achieve the same result using
a different method from that adopted by the author. When we examined the
question carefully, a method for measuring the sphere was made known to
us that is shorter and more concise than any of the methods used by our
predecessors, while the proof is clearer and the formulation more obvious
than before. This justifies our speaking of the measurement of the sphere
despite the fact that many mathematicians2 have already spoken of it.

<Arithmetical lemmas>

<1> In order to do this, let us introduce a simple arithmetical lemma,
which will make it easy to understand our objective. This lemma is the
following: if we take the successive numbers beginning with one and

1 This is the volume of the sphere and ‘magnitude’ is a literal translation of
‘quantity’.

2 Lit.: people of this art. He certainly refers to Archimedes and the Banº Mºsæ.
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increasing from one by one, if we then take one third of the greatest
number and one third of the unit and add them together, if we multiply the
result by the greatest number, then we add the greatest number to half of
one and we multiply the result by the product previously obtained. The
result is the sum of the squares of these numbers.

We have proved this lemma by means of a certain proof in our book
On the Measurement of the Paraboloid. We repeat the proof here so that
this treatise shall require no other.

Let the numbers AB, BC, CD and DE be successive numbers beginning
with one and increasing from one by one.

I say that if one third of DE plus one third of the unit is multiplied by
the number DE, and if DE is then added to one half of the unit, and if this
is multiplied by the result of the first multiplication, then the result is the
sum of the squares of AB, BC, CD and DE.

Proof: Let BG be equal to BA, CH equal to CB, ID equal to DC, and
KE equal to ED. Let each of <the numbers> GP, HN, IM and KL be equal
to one.

We say first of all that one half of the square of DE plus one half of DE
is the sum of the numbers AB, BC, CD and DE, which is AE.
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Fig. II.2.1

This is because CB is one greater than BA, and CD is one less than DE.
Therefore, AB plus DE is equal to CB plus CD. Similarly, if the number of
numbers is greater than these, then the sum of the two extreme numbers is
equal to the sum of the two numbers which follow them, and the sum of
those two numbers is equal to the sum of those which follow them, and so
on. Therefore, if the number of numbers is odd, then their mean term is one
half of the sum3 of the two extremes, as it is one half of the sum of the two

3 We have sometimes inserted ‘sum’ for the purposes of translation.
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numbers which surround it,4 and this is because it is one greater than the
number which precedes it and one less than the number which follows it. It
is therefore half of the sum of the two numbers which surround it. It follows
that the sum of the numbers AB, BC, CD and DE, which is the number AE,
is the multiple of the sum of the two numbers AB and DE. This multiple is
one half of the number of numbers AB, BC, CD and DE. But the number of
numbers is the number of units contained in the final number, as the first of
the numbers is one and they increase from one by one. The number AE is
therefore a multiple of the sum of the two numbers AB and DE, and this
multiple is one half of the number of units in DE. If the number AB plus DE
is multiplied by one half of units in DE, then the result of the multiplication
is the whole of the number AE. The product of one half of DE and DE is
half of the square of DE, and the product of one half of DE and AB is one
half of DE, as AB is the unit. The product of one half of DE and the number
AB plus DE is therefore equal to one half of the square of DE plus one half
of DE. The number AE is therefore equal to one half of the square of DE
plus one half of DE.

Similarly, the product of AE and EL is equal to the product of AE and
KL plus the product of AE and EK. But the product of AE and KL is AE, as
KL is the unit, and the product of AE and EK is equal to the product of DE
and EK plus the product of AD and EK. But the product of DE and EK is
equal to the square of EK, as DE is equal to EK, and the product of AD and
EK is equal to the product of AD and DM, as DM is equal to EK. This is
because EK is one greater than DI and MD is one greater then DI. MD is
therefore equal to EK. The product of AE and EL is therefore equal to AE
itself plus the square of EK, plus the product of AD and DM. But the
product of AD and DM is equal to the product of AD and IM plus the
product of AD and DI. The product of AD and IM is equal to AD itself, as
IM is the unit. The product of AD and DI is equal to the product of CD and
DI plus the product of AC and DI. The product of CD and DI is the square
of DI, as CD is equal to DI. The product of AC and DI is equal to the
product of AC and CN, as CN is equal to DI. The product of AE and EL is
therefore equal to AE itself, plus AD itself, plus the square of EK, plus the
square of DI, plus the product of AC and CN. But the product of AC and
CN is equal to AC itself, plus the square of CH, plus the product of AB and
BC, as this can be proved in the same way as it was for the numbers EL
and DM. The product of AB and BP is equal to AB itself, plus the square of
BG, as BG is equal to BA and GP is the unit.

The product of AE and EL is equal to AE itself, plus AD itself, plus AC
itself, plus AB itself, plus the square of EK, plus the square of DI, plus the

4 Lit.: which are to one side of it and the other.



224 CHAPTER II: IBN AL-HAYTHAM

square of CH, plus the square of BG. But AE itself is one half of the square
of DE plus one half of DE. Similarly, AD is one half of the square of CD
plus one half of CD; similarly, AC is one half of the square of BC plus one
half of BC, and AB, which is the unit, is one half of the square of AB plus
one half of AB. The numbers AB, BC, CD and DE, which are the successive
numbers, are equal to the numbers BG, CH, DI and EK. The product of AE
and EL is therefore equal to the sum of the squares of BG, CH, DI and EK,
plus the halves of their squares, plus the halves of themselves.

Divide LK into two halves at the point S. The product of AE and EL is
then equal to the product of AE and ES plus the product of AE and SL. The
product of AE and SL is equal to one half of AE as SL is one half of the
unit. But the product of AE and EL was the sum of the squares of the
successive numbers, plus the halves of their squares, plus the halves of
themselves. The product of AE and ES is therefore the sum of the squares
of the successive numbers, the last of which is EK, plus the halves of their
squares only. The product of two thirds of AE and ES is therefore equal to
the sum of the squares of BG, CH, DI and EK only. But we have already
shown that the product of one half of DE and the sum of AB and DE is the
whole of AE, that DE is equal to EK, and that AB is equal to KL. The
product of one half of EK and EL is therefore equal to AE. The product of
two thirds of one half of EK – i.e. one third of EK – and EL is therefore
equal to two thirds of AE. The product of two thirds of AE and ES is the
sum of the squares of BG, CH, DI and EK. If one third of EK is then
multiplied by EL, since this was obtained from SE, the result is equal to the
sum of the squares of BG, CH, DI and EK. But the product of one third of
EK and EL is equal to the product of one third of EL and EK. EL is equal
to EK plus one. If one third of EK plus one third of the unit is multiplied by
EK, since this was obtained from ES – which is equal to EK plus one half of
the unit – then the result is the sum of the squares of BG, CH, DI and EK,
which are the successive numbers beginning with one and increasing from
one by one, the last of which is EK. That is what we wanted to prove.

<2> Similarly, the product of one third of EK and EK is equal to one
third of the square of EK, and the product of one third of the unit and EK is
equal to one third of EK. The product of one third of EK plus one third of
the unit and EK is therefore equal to one third of the square of EK plus one
third of EK. If one third of the square of EK plus one third of EK is
multiplied by ES, then the result will be the sum of the squares of BG, CH,
DI and EK.

The product of one third of the square of EK and ES is the product of
one third of the square of EK and EK and KS. The product of one third of
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the square of EK and EK is equal to one third of the sum of the equal
squares, each one of which is equal to the square of EK and whose number
is equal to the number of units in EK, as the product of one third of the
square of EK and EK is equal to a certain number of times one third of the
square of EK, this number being the number of units in EK and each time
being one third of the square of EK. The product of one third of EK and EK
is equal to one third of the square of EK. The product of one third of the
square of EK plus one third of EK and EK is therefore equal to one third of
the sum of the equal squares, each of which is equal to the square of EK,
and whose number is the number of units in EK, to which is added one
third of the square of EK. But the product of one third of the square of EK
and KS is equal to one sixth of the square of EK, as KS is equal to one half
of a unit. The product of one third of EK and KS is equal to one sixth of
EK. The product of one third of the square of EK plus one third of EK and
ES is therefore equal to one third of the sum of the equal squares, each of
which is equal to the square of EK, and whose number is equal to the
number of units in EK, to which is added one third of the square of EK plus
one sixth of the square of EK plus one sixth of EK. But one third of the
square of EK plus one sixth of the square of EK is equal to one half of the
square of EK. A sixth of EK is less than one sixth of the square of EK, as
for any number greater than one, one sixth of that number is less than one
sixth of its square as, if the number itself is greater than one, then it will be
less than its square. Half of the square of EK plus one sixth of EK is less
than two thirds of the square of EK. The product of one third of the square
of EK plus one third of EK and ES therefore exceeds one third of the sum
of the equal squares, each of which is equal to the square of EK, and whose
number is equal to the number of units in EK, by less than two thirds of the
square of EK and by more than one half of the square of EK. But the
product of one third of the square of EK plus one third of EK and ES is
equal to the sum of the squares of the numbers BG, CH, DI and EK. The
number of units in EK is the number of numbers BG, CH, DI and EK. The
sum of the squares of the numbers BG, CH, DI and EK therefore exceeds
one third of the sum of the equal squares, each of which is equal to the
square of EK, and whose number is equal to the number of numbers BG,
CH, DI and EK, by less than two thirds of the square of EK and by more
than one half of the square of EK.

<Corollary>

Similarly, let BG, CH, DI and EK be straight lines increasing by an
equal amount, each increase being equal to the straight line BG. These
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straight lines will be successive multiples of the straight line BG, in the same
way as the succession of numbers, each of which is one greater than its
predecessor. The ratios of these straight lines, each to the other, are equal to
the ratios of the successive numbers beginning with one and each being one
greater than its predecessor, each to the other. The ratios of the squares of
these straight lines, each to the other, will be equal to the ratios of the
squares of the successive numbers each to the other. As each straight line is
divided into equal parts, its square is therefore a multiple of the square of
one of its parts, the number of which is equal to the number of multiples of
the square of one, i.e. one, contained by the square of the homonymous
number of the parts of this straight line. The ratio of the sum of the squares
of the straight lines BG, CH, DI and EK to the square of EK is equal to the
ratio of the sum of the squares of the successive numbers beginning with
one and increasing from one to one, and the number of numbers being
equal to the number of straight lines, to the square of the greatest of the
numbers, equivalent to the straight line EK. But the sum of the squares of
the successive numbers beginning with one and increasing from one to one
exceeds one third of the sum of the equal squares, each being equal to the
square of the greatest number and whose number is equal to the number of
successive numbers, by less than two thirds of the square of the greatest
number and by more than one half of its square. The squares of the straight
lines BG, CH, DI and EK exceed one third of the sum of the equal squares,
each of which is equal to the square of EK and whose number is equal to
the number of straight lines BG, CH, DI and EK, by less than two thirds of
the square of EK, and by more than one half of its square.

<Theorem>

Having proved that, we now say: Any sphere is equal to two thirds of
the circular cylinder whose base is the greatest circle to be found in the
sphere, and whose height is equal to the diameter of the sphere.

Example: Let the sphere be ABCD, and let its centre be E.
I say that it is two thirds of the cylinder whose base is the greatest

circle to be found in the sphere and whose height is the diameter of the
sphere.

Let there be a plane cutting the sphere and passing through its centre,
i.e. the point E. This plane generates a circle which is one of the great circles
found within the sphere. Let this be the circle ABCD. We draw two
diameters in this circle that cross at right angles. Let these two diameters be
AEC and BED. From the point B, we draw a straight line parallel to the
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straight line EA, and let this straight line be BG. From the point A, we draw
a straight line parallel to the straight line EB, and let this straight line be AG.
The surface AEBG therefore has parallel sides and right angles.

If we fix the straight line AE and we rotate the surface AEBG about the
straight line AE until it returns to its original position, then the surface
AEBG generates a circular cylinder whose base is the circle whose half-
diameter is the straight line EB, which is also the half-diameter of the sphere,
and whose height is the straight line EA, which is also the half-diameter of
the sphere. The circle whose half-diameter is the half-diameter of the sphere
is the greatest circle that can be found within the sphere. The cylinder
generated by the rotation of the surface BA about the straight line EA has a
base which is the greatest circle to be found within the sphere, and a height
equal to the half-diameter of the sphere. Let this cylinder be BH. If the
surface BA rotates about the straight line EA, then the sector ABE will also
rotate about the straight line EA. If the sector ABE rotates about the straight
line EA, its rotation will generate a hemisphere whose base is the circle
whose half-diameter is the straight line BE, as one half of the circle ABCD –
in which lies ABC, and whose diameter is AC – if it rotates about the
diameter AC until it returns to its <original> position, generates the sphere
ABCD as it rotates. The rotation of the straight line EB generates a circle
which divides the sphere into two halves. If then the surface BA rotates
about the straight line EA, its rotation will generate a cylinder whose base is
the greatest circle to be found within the sphere ABCD, and whose height is
the straight line EA, which is the half-diameter of the sphere ABCD, and the
rotation of the section ABE will generate the hemisphere ABCD.

We say that one half of the sphere generated by the rotation of the
sector ABE is equal to two thirds of the cylinder generated by the rotation
of the surface BA, which is the cylinder BH.

Proof: It is impossible for this to be otherwise. If it were possible, let the
hemisphere be not equal to two thirds of the cylinder BH. If the hemisphere
is not equal to two thirds of the cylinder BH, then it must be either greater
than two thirds of the cylinder or less than two thirds of the cylinder.

First, let the hemisphere be greater than two thirds of the cylinder, and
let the amount by which the hemisphere exceeds two thirds of the cylinder
be a magnitude T.

We divide AE into two halves at the point I and we draw a straight line
through the point I parallel to the straight line EB; let it be IK. IK is
therefore perpendicular to the straight line AE. We extend IK as far as L. IL
will then be equal to the straight line EB. We draw a straight line through
the point K parallel to the two straight lines EA and BG; let it be SKJ. Then,
SK is equal to KJ, as AI is equal to IE. The surface KE is then equal to the
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surface KA, and the surface KB is equal to the surface KG. If the surface BA
rotates about the straight line EA, then the two surfaces EK and KA
generate two equal cylinders, and the two surfaces KB and KG generate two
equal cylindrical bodies surrounding the two equal cylinders. The sum of the
cylinder generated by the rotation of the surface KE and the cylindrical
body generated by the rotation of the surface KG is equal to one half of the
cylinder BH. Similarly, if we divide AI into two halves at the point M and
we draw a straight line through the point M parallel to the straight line EB –
let it be MN – then MN is perpendicular to the straight line AE. We extend
MN as far as O. Then, MO is equal to the straight line EB. We draw a
straight line through the point N parallel to the two straight lines KS and LG;
let it be FNJ. Then FN is equal to NJ, the surface NI is equal to the surface
NA, and the surface NK is equal to the surface NS. If the surface BA then
rotates about the straight line EA, the surface KA rotates, the two surfaces
NI and NA generate two equal cylinders, and the two surfaces NK and NS
generate two equal cylindrical bodies. The sum of the cylinder generated by
the rotation of the surface NI and the cylindrical body generated by the
rotation of the surface NS is equal to one half of the cylinder generated by
the rotation of the surface KA.

Similarly, if we divide the straight line IE into two halves at the point P,
and we draw a straight line through the point P parallel to the straight line
EB – let it be PU – then PU is perpendicular to AE. We extend PU as far
as Q. Then, PQ is equal to the straight line EB. We draw a straight line
through the point U parallel to the two straight lines EI and BL; let it be
XUJ. Then, XU is equal to UJ, the surface UK is equal to the surface UJ,
and the surface UB is equal to the surface UL. If the surface BA rotates
about the straight line EA, the surface BK rotates and, in its rotation,
generates *a cylindrical body.5 The rotation of the two surfaces UK and UJ
generates two equal cylindrical bodies, and the rotation of the two surfaces
UB and UL generates two equal cylindrical bodies. The cylindrical body
generated by the rotation of the surface UJ plus the cylindrical body
generated by the rotation of the surface UL are therefore equal to one half
of the cylindrical body generated by the rotation of the surface KB. The
cylinder generated by the rotation of the surface NI plus the cylindrical body

5 Lit.: cylindrical-circular (mudawwara mustadîra).
It is clear that the copyist of MS [C] made his copy from a copy whose folios were

not in order, or from a copy transcribed from another copy whose folios were not in
order. The order of the paragraphs in [C] is as follows: *cylindrical body ... half-: fol.
117v–118r (Mathématiques infinitésimales, vol. II, pp. 310–14); +diameter ... is also:
fol. 116v–117v (ibid., pp. 314–18); #less than ... less than: fol. 118r (ibid., p. 318);
which shows that the order of the folios has been altered.
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generated by the rotation of the surface NS plus the two cylindrical bodies
generated by the rotation of the two surfaces UJ and UL are equal to one
half of the cylinder generated by the rotation of the surface KA plus one half
of the cylindrical body generated by the rotation of the surface KB. But we
have shown that the cylinder generated by the rotation of the surface KE
plus the cylindrical body generated by the rotation of the surface KG are
equal to one half of the cylinder BH.

If this is so, we have taken half away from the cylinder BH, and we
have take half away from the remainder. If we divide each of the straight
lines AM, MI, IP and PE into two halves, and if we draw straight lines
through the dividing points parallel to the straight line EB, and if we draw
straight lines through the dividing points on the arc AB parallel to the
straight line AE, then each of the surfaces BU, UK, KN and NA will be
divided into four parts such that the sum of two opposing surfaces is equal
to one half of the surface from which it is taken, and such that the
cylindrical bodies generated by the rotation of these surfaces are half of the
cylindrical bodies generated by the rotation of the surfaces BU, UK, KN and
NA. And if we continue to proceed in this way, we will have taken half
away from the cylinder BH, and half away from the remainder.

If we have two different magnitudes and half is taken away from the
larger of these, and half from the remainder, and so on, there must
eventually remain a magnitude that is smaller than the smaller of the two
magnitudes, as if one half is taken from the magnitude, and then half from
the remainder, twice, then the amount taken from the magnitude will be
greater than one half of it. If one half is then taken from the magnitude and
one half from the remainder several times, then the sum of the two
quantities removed is greater than the half.6 If we have two different
magnitudes and half is taken away from the larger of these, and half from
the remainder, and if we continue to proceed in this way, then there must
necessarily remain a magnitude that is less than the smaller of the two
magnitudes. The cylinder BH and the magnitude T are two different
magnitudes, the greatest of which is the cylinder BH. If one half is then
removed from the cylinder BH, and one half is taken from the remainder,
and one half is taken from the remainder, and so on as we have described,
and if we continue to proceed in this way, then there must necessarily
remain a magnitude that is less than the magnitude T.

But, if one half is removed from the cylinder BH, and one half is taken
from the remainder, and one half is taken from the remainder, in the way
that we have described, then that which remains of the cylinder is <the sum
of> the cylindrical bodies generated by the surfaces BU, UK, KN and NA,

6 He means by this the half of the magnitude whose two quantities are removed.
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and their homologues, through the middles of which the surface of the
sphere passes.

Let the parts resulting from the division of the cylinder in the way that
we have described, and which are less than the magnitude T, be the
cylindrical bodies generated by the rotation of the surfaces BU, UK, KN and
NA. The portion of these cylindrical bodies that lies within the hemisphere is
very much less than magnitude T. But the hemisphere exceeds two thirds of
the cylinder BH by a magnitude T. That portion of the hemisphere that
remains once the parts of the cylindrical bodies that lie within it have been
removed is greater than two thirds of the cylinder BH. But, that portion of
the hemisphere that remains once the parts of the cylindrical bodies that lie
within it have been removed is the solid7 which lies within the hemisphere
whose base is the circle with the half-diameter BE, and whose vertex is the
circle whose half-*diameter+ is NM. This solid is greater than two thirds of
the cylinder BH.

Similarly, the straight lines AM, MI, IP and PE are equal. Each of the
straight lines EP, EI, EM and EA therefore exceeds its successor by a
straight line equal to EP. The ratios of the straight lines EP, EI, EM and
EA, each to the others, are therefore equal to the ratios of the successive
numbers beginning with one and increasing from one by one. The sum of
the squares of the straight lines EP, EI, EM and EA exceeds one third of
the sum of the equal squares, each of which is equal to the square EA and
whose number is equal to the number of the straight lines EP, EI, EM and
EA by less than two thirds of the square of EA, as we have shown in the
lemma. The number of straight lines EP, EI, EM and EA is equal to the
number of <points> of separation P, I, M and A. The number of <points>
of separation P, I, M and A is equal to the number of <points> of separation
E, P, I and M, taking E in place of A. The number of <points> of separation
E, P, I and M is the number of straight lines EB, PQ, IL and MO. The
straight lines EB, PQ, IL and MO are equal, each of them is equal to the
straight line EB, and EB is equal to the straight line EA. The squares of the
straight lines EP, EI, EM and EA therefore exceed one third of the squares
of the straight lines EB, PQ, IL and MO by less than two thirds of the
square of EA. But the square of EP plus the product of CP and PA is equal
to the square of EA, and the product of CP and PA is equal to the square of
PU. The square of EP plus the square of PU is therefore equal to the square
of EA, which is equal to the square of PQ. Similarly, the square of EI plus
the square of IK is equal to the square of EA, which is equal to the square of
IL, and the square of EM plus the square of MN is equal to the square of
EA, which is equal to the square of MO. But the square of EA is equal to

7 See On the Measurement of the Paraboloid, note 24, p. 199.
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the square of EB. The sum of the squares of EP, EI, EM and EA, and the
squares of PU, IK and MN is therefore equal to the sum of the squares of
EB, PQ, IL and MO. But the squares of EP, EI, EM and EA exceed one
third of the squares of EB, PQ, IL and MO by less than two thirds of the
square of EA. It remains that the sum of the squares of PU, IK and MN is
less than two thirds of the sum of the squares of EB, PQ, IL and MO by
less than two thirds of the square of EA.8

The circles9 whose half-diameters are the straight lines PU, IK and MN
are less than two thirds of the circles whose half-diameters are the straight
lines EB, PQ, IL and MO. But the ratio of the circles to the circles is equal
to the ratio of the cylinders of which these circles are the bases, each to the
others, providing that the heights of the cylinders are equal. The sum of the
cylinders whose bases are the circles whose half-diameters are the straight
lines PU, IK and MN, and whose heights are the straight lines EP, PI and
IM is therefore less than two thirds of the sum of the cylinders whose bases
are the circles whose half-diameters are the straight lines EB, PQ, IL and
MO, and whose heights are the straight lines EP, PI, IM and MA, which are
equal. But the sum of the cylinders whose bases are the circles whose half-
diameters are the straight lines PU, IK and MN, and whose heights are the
straight lines EP, PI and IM is the solid whose base is the circle whose half-
diameter is BE, and whose vertex is the circle whose half-diameter is MN,
which lies within the hemisphere. But the sum of the cylinders whose bases
are the circles whose half-diameters are the straight lines EB, PQ, IL and
MO, and whose heights are the straight lines EP, PI, IM and MA, is the
cylinder BH.

The solid that lies within the hemisphere is therefore less than two thirds
of the cylinder BH.

But we have just shown that this solid is greater than two thirds of the
cylinder BH. This is impossible.

This impossibility follows from our hypothesis that the hemisphere is
greater than two thirds of the cylinder BH. Therefore, the hemisphere is not
greater than two thirds of the cylinder BH.

I say that neither is the hemisphere + less# than two thirds of the
cylinder BH.

If this were possible, let it be less# than two thirds of the cylinder, and
let the difference between the hemisphere and two thirds of the cylinder be

8 By inadvertence, Ibn al-Haytham proceeds by upper bounding of this subtractive
sum EP2 + EI2 + EM2 + EA2 instead of lower bounding of it, and obtains the upper
bounding of PU2 + IK2 + MN2. This inadvertence is corrected in the Mathematical
commentary, p. 172.

9 This is the sum of the circles.
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the magnitude T. The magnitude T will therefore be less than the cylinder
BH.

If one half is taken away from the cylinder BH, and one half is taken
from the remainder, and one half is taken from the remainder, as we have
described earlier, then there must eventually remain a magnitude that is less
than the magnitude T. But that which remains of the cylinder after it has
been divided up, as we have described, is <the sum of> the cylindrical
bodies generated by the rotation of the surfaces BU, UK, KN and NA and
their homologues, through the middles of which the surface of the sphere
passes. Let the division continue until one arrives at a magnitude less than
the magnitude T, and let this be the cylindrical bodies generated by the
rotation of the surfaces BU, UK, KN and NA. The sum of the parts of the
cylindrical bodies that lie outside the hemisphere is therefore very much less
than the magnitude T. But the hemisphere plus the magnitude T is equal to
two thirds of the cylinder BH. The hemisphere plus those parts of the
cylindrical bodies that lie outside it is therefore very much less than two
thirds of the cylinder BH. But the hemisphere plus those parts of the
cylindrical bodies that lie outside it is equal to the solid whose base is the
circle whose half-diameter is the straight line EB, and whose vertex is the
circle whose half-diameter is the straight line AF, and which surrounds the
hemisphere. This solid is therefore less than two thirds of the cylinder BH.

But we have already shown that the sum of the squares of the straight
lines PU, IK and MN is less than two thirds of the sum of the squares of the
straight lines EB, PQ, IL and MO by less than two thirds of the square of
EA. If we add the entire square of EB, which is equal to the square of EA,
to the squares of the straight lines PU, IK and MN, then the sum of the
squares of the straight lines EB, PU, IK and MN is greater than two thirds
of the squares of the straight lines EB, PQ, IL and MO. The sum of the
circles whose half-diameters are the straight lines EB, PU, IK and MN is
therefore greater than two thirds of the sum of the circles whose half-
diameters are the straight lines EB, PQ, IL and MO, and the sum of the
cylinders whose bases are the circles whose half-diameters are the straight
lines EB, PU, IK and MN, and whose heights are the straight lines EP, PI,
IM and MA, which are equal, is greater than two thirds of the sum of the
cylinders whose bases are the circles whose half-diameters are the straight
lines EB, PQ, IL and MO, and whose heights are the straight lines EP, PI,
IM and MA. But the cylinders whose bases are the circles whose half-
diameters are the straight lines EB, PU, IK and MN, and whose heights are
the straight lines EP, PI, IM and MA, are equal to the solid whose base is
the circle whose half-diameter is the straight line EB, and whose vertex is
the circle whose half-diameter is AF, which is the solid that surrounds the
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hemisphere. And the cylinders whose bases are the circles whose half-
diameters are the straight lines EB, PQ, IL and MO, and whose heights are
the straight lines EP, PI, IM and MA, are equal to the cylinder BH. The
solid that surrounds the hemisphere is therefore greater than two thirds of
the cylinder BH.

But we have already shown that this solid is less than two thirds of the
cylinder BH. This is impossible.

This impossibility follows from our hypothesis that the hemisphere is
less than two thirds of the cylinder BH. Therefore, the hemisphere is not less
than two thirds of the cylinder BH. But we have shown that it is not greater
than two thirds of the cylinder BH. Therefore, if the hemisphere is not
greater than two thirds of the cylinder BH, neither is it less than this two
thirds, then it must be equal to two thirds of the cylinder BH. The whole
sphere is twice the hemisphere, and the cylinder whose base is the circle
whose half-diameter is the straight line EB, and therefore whose height is
the straight line AC, which is the diameter of the sphere and twice the
straight line AE, is equal to twice the cylinder BH. The sphere ABCD is
therefore equal to two thirds of the cylinder whose base is the greatest circle
that can be found on the sphere, and whose height is equal to the diameter
of the sphere. That is what we wanted to prove.
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The treatise On the Measurement of the Sphere is complete.





In the Name of God, the Forgiving, the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Division of Two Different Magnitudes as Mentioned in the
First Proposition of the Tenth Book of Euclid’s Elements

Many mathematicians believe that the first proposition in the tenth book
of Euclid’s Elements is a particular case and can only be true in the manner
mentioned by Euclid, i.e. that if there are two magnitudes, and more than
one half is taken away from the greater of these, and more than one half is
then taken from the remainder, and if we continue to proceed in this way,
then there will remain a magnitude that is less than the smaller of the two
original magnitudes.1

The reality is, however, different from that which these people believe. If
Euclid limited his discussion to this particular notion, that the <magnitude>
taken away is greater than one half, then it is because that was the result
that he used in his work, and he confined himsef to this notion because that
was what he needed.

For some geometrical notions that we had determined, we were faced
with the need to take one half away from the greater of the two different
magnitudes, then one half from the remainder, and half again from the
remainder, and so on until the division resulted in a magnitude that was less
than the smaller of the two original magnitudes. In this way, we were able to
determine the notion that we needed. We then proceeded to examine this

1 Ibn al-Haytham quotes almost verbatim the text of the Arabic translation of the
Elements said to be by IsÌæq-Thæbit (ms. Tehran, Malik 3433, folios not numbered):

Note that the Arab translator has translated the Greek kai; tou~~to ajei; givgnhtai as
wa-fa‘ala thælika dæ’iman which quite literally means ‘and this has always been done’.
The expression ajeiv has been translated by dæ’iman, a Koranic expression which indicates
the permanence of an action or of a thing through time, as well as the indefinite repetition
of an action. In the Koran there is allædhîna hum ‘alæ Òalætihim dæ’imºn. The choice of
translation is therefore precise, for, as in Greek, the Arabic expression can be written in a
variety of ways, all of which use the expression ‘always’, or an equivalent in other
languages – ‘if we always act in the same way’, ‘if we continue to proceed in this way’…
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notion attentively, and we have meditated upon it. We then found that it was
universal, and that it was one of the properties of proportions, i.e. that if the
ratio of the <magnitude> taken away to the larger of the two magnitudes is
set to be any ratio whatsoever, and if all the <magnitudes> taken away are
in the same ratio, then the division necessarily reaches a magnitude that is
less than the smaller of the two original magnitudes. We have therefore
decided to reveal this notion and make it evident, so that all who have need
of it may make use of it, and to show the error of the belief mentioned
earlier that this is a particular notion. We have taken this up, and we have
arrived at a proof which shows the universality of this notion, which is
moreover extremely brief and concise. It is as follows:

If there are two different magnitudes, and if, from the greater of these
two magnitudes, a magnitude is taken away whose ratio to the larger of the
two original magnitudes is equal to any given ratio, such that this ratio will
be a ratio of the least to the greatest, and if from the remainder, a magnitude
is taken away whose ratio to the remainder is the same ratio, and if from the
remainder, a magnitude is taken away whose ratio to the remainder is the
same ratio, and if we continue to proceed in this way, then the division will
eventually result in a magnitude that is less than the smaller of the two
original magnitudes.

Example: Let the two magnitudes be AB and CD, let AB be greater
than CD and let the ratio of EG to GH be known.

I say that if we separate from the magnitude AB a magnitude whose
ratio to this magnitude is equal to the ratio of EG to GH, and if we
separate from what remains a magnitude whose ratio to the remaining is
this ratio, the division will lead to what remains of AB a magnitude less
than the magnitude CD.

Proof: We set the ratio of IC to CD equal to the ratio of GE to EH;
then we multiply the magnitude IC until it reaches to a magnitude greater
than the magnitude AB. Let KL, LM and MN, these multiples,2 and let KN
be greater than AB; we set the ratio of FI to ID equal to the ratio of IC to
CD, we set the ratio of QF to FD equal to the ratio of FI to ID and we
continue to proceed in this way until the magnitudes in proportion, added to
the magnitude CD, become in an equal number to the number of the
multiples3 which are in KN. Let these magnitudes added to the magnitude
CD – whose number is equal to the number of multiples4 which are in KN –
be the magnitudes QF, FI and IC.

2 i.e. the magnitudes whose sum is the multiple of KN.
3 Ibid.
4 Ibid.
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Since the ratio of FI to ID is equal to the ratio of IC to CD, if then we
permute, the ratio of FI to IC is equal to the ratio of ID to DC. But ID is
greater than DC. The magnitude FI is therefore greater than the magnitude
IC. Likewise, we show that QF is greater than FI. The number of the
magnitudes QF, FI, IC is therefore equal to the number of the magnitudes
KL, LM, MN, and the magnitudes KL, LM, MN are equal, each of them
being equal to the magnitude IC; and the magnitudes QF, FI, IC are
different, as the smallest of them is IC. Therefore, the whole QC is greater
than the whole KN; the magnitude QD is thus much greater than the
magnitude KN. But KN is greater than AB; then the magnitude QD is
greater than AB, and the magnitude AB is less than the magnitude QD. But
the division of AB is following the ratios of the parts of the magnitude QD;
let the division be in S, O, U. The ratio of AS to SB is therefore equal to the
ratio of QF to FD; but the ratio of QF to FD is equal to the ratio of GE to
EH, then the ratio of AS to SB is equal to the ratio of GE to EH. Similarly,
the ratio of SO to OB is equal to the ratio of FI to ID, which is equal to the
ratio of GE to EH; and likewise the ratio of OU to UB is equal to the ratio
of IC to CD, which is equal to the ratio of GE to EH. The ratio of SA to SB
is therefore equal to the ratio of EG to GH, the ratio of OS to OB is equal to
the ratio of EG to GH, the ratio of UO to UB is equal to the ratio of EG to
GH, the ratio of AB to BS is therefore equal to the ratio of QD to DF, the
ratio of SB to BO is equal to the ratio of FD to DI, and the ratio of OB to
BU is equal to the ratio of ID to DC.
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Since the magnitudes AB, SB, OB, UB are following the ratios of the
magnitudes QD, FD, ID, CD, they will be in a ratio of equality: the ratio of
AB to BU is equal to the ratio of QD to CD. If we permute, the ratio of AB
to QD is equal to the ratio of UB to CD. But we have shown that AB is
smaller than QD; the magnitude BU is therefore smaller than the magnitude
CD, which is the smallest one.
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We have then separated from the magnitude AB a magnitude whose
ratio to AB is equal to the ratio of EG to GH, from what remains a
magnitude whose ratio to this remainder is the same ratio, and from the
remainder a magnitude whose ratio to this remainder is the same ratio. The
ratio has led to a magnitude smaller than the magnitude CD, the smallest,
namely, the magnitude UB. This is what we wanted to prove.

The treatise is complete. Glory be to God, and may Grace be with Him.
Blessed be our Lord MuÌammad and His people, and may peace be upon
them.

Reading and comparison have both arrived at this term.



CHAPTER III

THE PROBLEMS OF ISOPERIMETRIC AND ISEPIPHANIC
FIGURES AND THE STUDY OF THE SOLID ANGLE

3.1. INTRODUCTION

The third area of infinitesimal mathematics studied by Ibn al-Haytham
concerns isoperimetric and isepiphanic figures: he shows that, out of all the
plane figures with a given perimeter, the disc always has the largest area;
and, similarly, as far as space is concerned, that out of all the solids with a
given surface area, the sphere has the greatest volume. This age-old problem
– evident in the writings of Greek astronomers and mathematicians
translated into Arabic – had attracted scholars relatively early; al-Kindî was
interested in it as early as the middle of the ninth century;1 a century later,
al-Khæzin among others took it up again. And, although he stands alone,
Ibn al-Haytham is very much a part of this Graeco-Arabic tradition.
However, the only reason he returned to this problem was in order to
completely remodel the way in which it was studied, as can be seen
immediately from the introduction to the treatise. He says without any
ambiguity that he is not satisfied with the positing of this problem. He
writes:

Mathematicians have made mention of this notion and have made use of it.
However, they have provided no formal proof of this notion, nor has any
convincing argument of its truth come down to us from them.2

Did Ibn al-Haytham ignore here the works of his predecessors? We shall
discuss this matter later. For the time being, we will only note the promise
that Ibn al-Haytham made in terms of presenting a ‘universal proof’ to
establish its extremal properties. While this commitment is fulfilled by him in
the case of the disc, it remains however unaccomplished in the difficult case
of figures in space. Nonetheless, such a shortcoming is far from being purely

1 We know from al-Fihrist of al-Nadîm that al-Kindî wrote a book: The sphere is
the biggest of the solid figures and the circle the biggest of the plane figures (ed.
R. Tajaddud, Tehran, 1971, p. 316).

2 Cf. later.
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negative in character, since, reversely, it constituted a genuine inventiveness
in another sector of mathematics. Having offered a sketchy account of Ibn
al-Haytham’s undertaking in this regard, we shall engage in their detailed
mathematical analysis and commentary.

Following on from the isoperimetric problem, he comes to the
isepiphanic problem and tries to demonstrate the fifth proposition as follows:

1) of two regular polyhedra with similar faces and same total area, the
one with the greater number of faces has the greater volume.

2) of two regular polyhedra with similar faces, inscribed in the same
sphere, the one with the greater number of faces has the greater area and
the greater volume.

To prove this proposition, Ibn al-Haytham establishes five lemmas
(Lemmas 6–10). And these actually deal with inequalities of ratios of solid
angles and ratios of areas. This, as far as we are aware, is the first important
and extensive application of the solid angle and, therefore, the first
substantial study of some of its properties. The method used by Ibn al-
Haytham is just as important as the inequalities themselves: he applies a
combination of conical projection and infinitesimal determinations in his
work on sections of a pyramid. He did encounter some problems proving
these difficult lemmas, however this did not affect the final outcome, and in
fact, he was able to establish this fifth proposition for all cases, but his
method applies only for the tetrahedron, the octahedron and the
icosahedron, since the number of faces of a regular polyhedron with square
or pentagonal faces is fixed at six or twelve. The first part of Ibn al-
Haytham’s proposition maintains that if a regular tetrahedron, octahedron
or icosahedron each have the same area, then their volumes increase in the
following order: tetra, octa, icosahedron. The second part of the proposition
goes on to say that if a regular tetrahedron, octahedron or icosahedron are
inscribed in a same sphere, their volumes also increase in this order.

It is therefore impossible to approach the question of the sphere by
using an infinite series of polyhedra inscribed therein.

It must be admitted that such an inadvertence on the part of Ibn al-
Haytham (who knew Euclid’s Elements better than anyone) is rather
disconcerting. How could he not have noticed that his polyhedra were the
same as Euclid’s? Or that they are finite in number? However, this should in
no way overshadow the richness and depth of this treatise, especially Ibn al-
Haytham’s work on the solid angle and infinitesimal mathematics.

As for the text itself, which is cited by ancient biobibliographers, we can
testify to its undoubted authenticity. If more proof were needed, this treatise
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is also cited by Ibn al-Haytham in two other works – On Place and The
Resolution of Doubts on the Almagest.3

But the list of Ibn al-Haytham’s writings drawn up by Ibn Abî UÒaybi‘a
contains a treatise entitled The Greatest Line Lying in a Segment of Circle
(Fî a‘Âam al-khu†º† allatî taqa‘ fî qi†‘at al-dæ’ira). We know nothing, even
indirectly, of the content of this treatise, which also studies an extremal
property. From the title, and in the context of the mathematics of the time,
it is possible that the subject might have been a comparison between various
convex curves in the segment of a circle, considering the length of each
curve as the upper bounding of inscribed polygons; and to bring as such the
comparison between curves to bear on that of polygons. This conjecture, if
true, allows us to dwell on Ibn al-Haytham’s intentions. Perhaps he wanted
to expand on Archimedes’ famous postulate as introduced in The Sphere
and Cylinder:

Of other lines in a plane and having the same extremities, [any two] such are
unequal whenever both are concave in the same direction and one of them
is either wholly included between the other and the straight line which has
the same extremities with it, or is partly included by, and is partly common
with, the other; and that [line] which is included is the lesser [of the two].4

Former bibliographers make no mention of any other title which might
have dealt with the isoperimetric problem or connected problems or even
those general topics which would later become part of the calculation of
variations. Ibn al-Haytham himself makes no reference to any other
contribution in the works which have come down to us; therefore, at this
time, we are only able to analyse the treatise on isoperimetrics: this we
intend to do, and in some detail.

It only remains for us to note with regret the absence of any writings on
the centre of gravity and the qaras†ºn (research on infinitesimal mechanics).

3 Cf. Introduction, p. 36.
4 Archimedes, The Sphere and the Cylinder, in The Works of Archimedes, ed.

T. L. Heath, New York, 1953, p. 4. This text had been translated into Arabic and so
available to Ibn al-Haytham (Istanbul, Süleymaniye, FætiÌ  3414, fol. 7v):
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3.2. MATHEMATICAL COMMENTARY

Proposition 1. — If a circle and a regular polygon have the same
perimeter, the area of the circle is greater than that of the polygon.

Let (Γ) be a circle, r its radius, 2p1 its perimeter and A1 its area and let
there be a regular polygon with n sides, with perimeter 2p2 and area A2.

If 2p1 = 2p2 = 2p, then A1 > A2.

Proof: The bisectors of the angles of a regular polygon are concurrent at
a point I. Triangles with vertex I and with one side of a polygon as a base
are isosceles and equal, with h as common height. The circle with centre I
and radius h is tangent to all the sides of the polygon. Let this circle be (Γ′)
and its perimeter 2p′. Let EG be a side of the polygon, let IK ⊥ GE and let
L and M be the intersections of straight lines IE and IG with (Γ′)

h EG⋅
2

 = area (IEG) = s,

h ML⋅
2

 = area sect. (IMKL) = s′,

(according to Archimedes’ Measurement of a Circle).
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Then s > s′, hence EG > ML ; it can be deduced n · EG > n · ML , that
is 2p2 > 2p′, or 2p > 2p′. It follows r > h and p · r > p · h. However the area
of the circle is A1 = p · r and the area of the polygon is A2 = p · IK = p · h;
from this A1 > A2.

Proposition 2. — Of two regular polygons with the same perimeter, the
one with the greater number of sides has the greater area.
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Let P1 and P2 be two regular polygons with same perimeter 2p. Let n1

be the number of sides of P1 and let A1 be its area, n2 the number of sides
of P2 and A2 its area. If n1 < n2, then A1 < A2.

Let DE be a side of P1 and LM a side of P2.
So 2p = n1 · DE = n2 · LM, hence DE > LM since n2 > n1. If P and U

are respectively the midpoints of DE and of LM, then

PE > UM  and  PE

UM

n

n
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with N and F as centres of polygons P1 and P2 respectively, therefore

PNE
n n

ˆ = =2
2 1 1

π π
, similarly UFM

n
ˆ = π

2

;

from which we deduce
PNE

UFM

n

n

ˆ

ˆ = 2

1

,

hence

PNE UFMˆ ˆ>   and  
PNE

UFM

PE

UM

ˆ

ˆ = .

Let S be a point on DE such that PNS UFMˆ ˆ= , then PNE

PNS

PE

UM

ˆ

ˆ = .

Circle (N, NS) cuts NP at J and NE at R. Therefore
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 ENP

SNP

RNJ

SNJ

EP

MU

ˆ

ˆ
( )
( )

= =area sect.
area sect.

,

area tr.(SNE) > area sect.(SNR)  and  area tr.(SNP) < area sect.(SNJ),

hence
tr.
tr

sect.
sect.

tr.
tr.

sect.
sect.

SNE

SNP

SNR

SNJ

PNE

SNP

RNJ

SNJ
( )
( )

> ( )
( )

⇒ ( )
( )

> ( )
( ).

.

However
tr.
tr

PNE

SNP

PE

PS
( )
( )

=
.

,

hence
PE

PS

PE

MU
>   and  PS < MU.

Right-angled triangles PNS and UFM are similar, as PNS UFMˆ ˆ= ; and
as PS  < MU , then NP  < FU ; however A1 = p · NP  and A2 = p · FU ,
therefore A2 > A1.

Proposition 3. — Of two regular polygons inscribed in the same circle,
the one with the greater number of sides has the greater perimeter and the
greater area.

Lemma. — Let AB and  BC be two arcs such that AB > BC and

AB + BC ≤ 2

3
 circle, therefore AB

BC
AB
BC

> .
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If AB > BC  and AB + BC  ≤ 2

3
 circle, then BC < 1

3
 circle and

AC ≥ 1

3
 circle, hence BC <  AC a n d  BAC ABCˆ ˆ< . This allows the

construction of CBD BACˆ ˆ= , with D on segment AC.
ABC and BDC are two similar triangles, hence

(1) AC

BC
= BC

CD
= AB

BD
;

as AC > BC and AB > BC, we can deduce BC > CD and BD > CD.
We construct DCE CBE BACˆ ˆ ˆ= =  inside ACBˆ .
CDE and BDC are two similar triangles, hence

(2) CB

CE
= CD

DE
= BD

DC
.

Circle (C, CB) cuts CE at H and CA at K; we draw a straight line HG
parallel to BD from point H; BH cuts AC at I.

HGC and EDC are two similar triangles, hence

(3) HG

ED
= GC

DC
= HC

EC
= CB

EC
.

(2) and (3) give CD

DE
= HG

ED
, hence HG = CD.

HG and BD are parallel, hence BI

IH
= BD

HG
, from which we can deduce

BI

IH
= BD

CD
.

From (1), BD

DC
= AB

BC
, hence BI

IH
= AB

BC
.

Then area sect.(CBH) > area tr.(CBH) and area sect.(CHK) < area
tr.(CHI), hence

sect.
sect.

tr.
tr.

CBH

CHK

CBH

CHI
( )
( )

> ( )
( )

.

We can deduce
BH

HK

BH

HI
>   and  BCH

HCI

BH

HI

ˆ

ˆ > ,

hence
BCH HCI

HCI

BH HI

HI

ˆ ˆ

ˆ
+ > +

.
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And from this
BCA

BAC

AB

BC

ˆ

ˆ > ,

therefore
AB

BC

AB

BC
> .

Comment: In the study of regular polygons inscribed in a circle, the greatest
possible arc corresponds to the side of an equilateral triangle, which justifies

the hypothesis introduced here by Ibn al-Haytham – AB + BC  ≤ 2

3
circle; it

is also used in construction of point D in the argument.
Let us note that if the radian measures of arcs AB and BC  are 2α and

2β, the result established is simply α
β

α
β

> sin
sin

, for π
2

 > α > β.

Proof of the theorem: An equilateral triangle is a regular convex polygon
with the smallest number of sides.

For any regular polygon with more than three sides, the arc subtended
on the circle circumscribed by one of the sides is less than one third of the
circle.

Let ABCD be a square with perimeter C1 and area A1 and BEGHI be a

pentagon with perimeter C2 and area A2. AB + BE  < 2

3
 circle, therefore

AB

BE

AB

BE
> , hence

(1)
AB

BI

AB

BI
>  from the lemma.

If C is the perimeter of a circumscribed circle, then

AB

C

AB

C
=

1

  and  BI

C

BI

C
=

2

,

hence by division
AB

BI

AB

BI

C

C
= ⋅ 2

1

,

hence
AB

BI

C

C

AB

BI
⋅ >2

1

,

which implies C2 > C1.
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Then A1 = 1
2

C1 · OM and A2 = 1
2

C2 · ON, with OM < ON (AB > BE

⇒ OM < ON), hence A2 > A1.

Let us note that the argument is independent of the nature of the
regular polygon.

Proposition 4. — If a sphere and a regular polyhedron inscribed in a
sphere have the same area, then the volume of the sphere is greater than
that of the polyhedron.

Lemmas:
1) Let a sphere have radius R, volume Vs and area As and a right

cylinder of radius R  and height 2R  and volume Vc, then Vs = 2

3
 Vc

(Archimedes). Let s be the area of a great circle of the sphere equal to the
base of the cylinder.

Vc = s · height = s · 2R, therefore Vs = 2

3
 s  · 2R  = 1

1
3

+



  s · R , but

1
1
3

+



  s = 1

3
 As, hence

(1) Vs = 1

3
 As · R = 4

3
 π R3.

2) Let a regular polyhedron be inscribed in a sphere. With each face of
the polyhedron is associated a regular pyramid whose vertex is centre B of
the sphere. In this way we define a solid angle of vertex B, a spherical
surface area and a section of the sphere.

Let A be the area of a sphere, s be the area of the spherical surface, v be
the volume of the spherical section, V be the volume of the sphere, α be the

solid angle, π
2

 be the solid right angle. Then

B D

G

E

Fig. 3.4
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(2) v

V
= s

A
= α

4π
.

Let us note that each of these ratios is equal to 1
n

, if n is the number of

faces of the polyhedron.
The sum of solid angles in the centre of the sphere is in fact eight solid

right angles, since the three sets of perpendicular lines through one point
determine eight equal solid angles; each one of them is a solid right angle.

From (2) and (1), we can deduce v = 1

3
s · R.

Proof of Proposition 4: This proof does not include the nature of the
polyhedron.

Let (Π) be the plane of one of the faces; let G, D and E be three vertices
of this face; let B be the centre of the circumscribed sphere, then BG = BD
= BE. If BC ⊥ (Π), then CG = CD = CE, and the face is inscribed in circle
(C, CD). For all the faces in equal polygons, the circles defined in this way
are equal and B is equidistant from the planes of all the faces. Therefore
sphere (B, BC) is inscribed in the polyhedron.

B

E
D

G

C

Π

Fig. 3.5

Let P  be a pyramid with apex B  and base the face GDE  of the
polyhedron. Let v1 be its volume, s1 the area of its base, V1 the volume of
the polyhedron and S1 its total area, then V1 = nv1 and S1 = ns1, if n is the
number of faces of the polyhedron. Pyramid P determines a spherical
section in sphere (B, BC). Let v2 be its volume, s2 the area of corresponding
spherical surface, S2 the area of the sphere and V2 its volume, then S2 = ns2

and V2 = nv2 and v2 < v1. We have v1 = 1

3
 s1 · BC and, from the lemma,
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v2 = 1

3
 s2 · BC; as v1 > v2, then s1 > s2, hence S1 > S2. However S1 is also

the area of sphere A, then

S1 (area of A) > S2 (area of (B, BC)),

therefore the radius of sphere A is greater than BC.

Volume of polyhedron B:    V1 = 1

3
 S1 · BC

Volume of sphere A:           V  = 1

3
 S1 · R.

R > BC ⇒ V > V1.

Proposition 5:
5a. — Of two regular polyhedra with similar faces and with the same

total area, the one with the greater number of faces has the greater
volume.

5b. — Of two regular polyhedra with similar faces, inscribed in the
same sphere, the one with the greater number of faces has the greater area
and the greater volume.

Preliminary. — Let A be the centre of a sphere, and consider pyramids
P1 (A, BCDE) and P2 (A, HFG). P1 with a solid angle α1 intercepts a
spherical surface s1 and delimits a section of the sphere of volume v1; and
similarly α2, s2 and v2 in P2. Then

α1

α2

= s1

s2

= v1

v2

.
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Fig. 3.6
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At n times pyramid P1 is associated with a portion of the sphere whose
volume is nv1, the intercepted spherical surface ns1 and the solid angle nα1,
and similarly for P2.

If nv1 > nv2, then nα1 > nα2 and ns1 > ns2.
If nv1 < nv2, then nα1 < nα2 and ns1 < ns2.
If nv1 = nv2, then nα1 = nα2 and ns1 = ns2.

If nα1 > nα2, then ns1 > ns2 and nv1 > nv2.
If nα1 < nα2, then ns1 < ns2 and nv1 < nv2.
If nα1 = nα2, then ns1 = ns2 and nv1 = nv2.

Let us note that the explanations given here by Ibn al-Haytham do not
constitute a proof of the stated property:

α1

α2

= s1

s2

= v1

v2

.

In Lemma 2 of Proposition 4, he considers a regular polyhedron
inscribed in a sphere, a polyhedron decomposable of n regular pyramids; for

each pyramid, then v

V
= s

A
= α

4π
 (see later).

If, in this Preliminary, P1 and P2 come from two regular polyhedra with
n1 and n2 faces respectively, then

v1

V
= s1

A
= α1

4π
= 1

n1

  and  v2

V
= s2

A
= α2

4π
= 1

n2

,

hence
v1

v2

= s1

s2

= α1

α2

.

But Ibn al-Haytham does not give details of the nature of pyramids P1
and P2.

Lemma 6. — Let ABCD be a pyramid such that ABCˆ  ≥ π
2

 and ABDˆ  ≥
π
2

; if E is a point on BD such that AECˆ  ≥ π
2

 or ACEˆ  ≥ π
2

, then

area 
area 

solid angle  
solid angle  

( )
( )

( , )
( , )

DBC

EBC

A BDC

A EBC
> .
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B
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A

C

Fig. 3.7

Let Σ be a sphere with centre A and radius AB, which cuts AC at H, AD
at I, AE at L, such that AB = AH = AI = AL. Therefore arc BH is in plane
(BAC), arc BLI in plane (BAD), arc HI in plane (ACD) and arc HGL in
plane (ACE). Straight line BL is in plane (BAD) and cuts AD at K (since
angle ABL is acute and angle BAD is acute). Arc LGH is on Σ, therefore K
is outside Σ, and AK > AI. The conical surface with vertex B defined by arc
LGH cuts plane (ADC) following an arc KFH, 266s this plane at F outside
sphere Σ; arc KFH, except for point H, is outside sphere Σ. Therefore the
section of sphere AILGH is inside solid AKFHGL, and is limited by planes
and part of the conical surface, since part GF of the generating line is
outside Σ and the section of sphere ALHB is greater than solid ALHB, itself
limited by planes and another part of the conical surface, since portion BG
of the generating line of the cone is inside Σ.

sect.  <  sol. (  

sect. (  >  sol. (              
   

sect. 
sect. 

 <  
sol. (
sol. (

( , ) , )

, ) , )
( , )
( , )

, )
, )

A ILH A KFHGL

A LHB A HGLB
A ILH

A LHB

A KFHGL

A LGHB





⇒ .
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R

L

S

F

G
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H
F
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A
A

C

Fig. 3.8
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By composition,

(*) sect.  (A, IHB)

sect.  (A, LHB)
< sol.  (B, AKFH)

sol.  (B, AHGL)
.

In this way, Ibn al-Haytham introduces a proposition into the proof of
Lemma 6, stated as

(**) area tr. 
area sect. 

area tr. 
area sect. 

( )
( )

( )
( )

AEC

ALGH

ADC

AKFH
≤ .

In other words, how does the conical projection of centre B of plane
(AEC) onto plane (ADC) increase some ratios of star areas in relation to A?

Ibn al-Haytham’s proof of this proposition relies on the apagogic
method to compare areas of triangles with apex A.

Let us take up the steps of this proof. We assume that

(1) area 
area sect. 

area  
area sect. 

( )
( )

( )
( )

AEC

ALGH

ADC

AKFH
> ;

area La (4th proportional) exists such that

(2) area area  
area sect. 

( ) ( )
( )

AEC

L

ADC

AKFHa

= .

Fig. 3.9

Hypothesis (1) can therefore be written as La > area sect. (ALGH), and
therefore polygon LSQH circumscribed about the arc of circle LGH exists
such that
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(3) area (ALSQH) < La.

Ibn al-Haytham puts forward a case with a polygon having three sides
LS, SQ, QH tangent to the arc of the circle at points L, G and H respecti-
vely. Polygon LSQH is projected onto plane ADC as polygon KRPH with
sides KR, RP and PH tangent to the projection KFH (conical arc) of the arc
of circle LGH at points K, F and H respectively.

Let us note that Ibn al-Haytham is perfectly aware of the fact that coni-
cal projection maintains the points of contact; this reminds us of the
properties of a plane tangent to a cone proved by Ibn Sahl.5

The statement is thus reduced to the inequality

(4) area  
area sect. 

area 
area sect. 

( )
( )

( )
( )

ADC

AKRPH

AEC

ALSQH
> .

In fact, the second ratio of (4) is, according to (3), greater than

area area  
area sect. 

( ) ( )
( )

AEC

L

ADC

AKFHa

= (2),

from which we deduce that

area (AKRPH) < area sect. (AKFH),

which is absurd since the polygon is circumscribed about the arc of the
curve.

Ibn al-Haytham then confirms that inequality (4) results from the
following inequalities:

(5) area  
area  

area 
area 

( )
( )

( )
( )

AEN

ALS

ADV

AKR
< ;

area  
area  

area 
area 

( )
( )

( )
( )

ANU

ASQ

AVO

ARP
< ;

area  
area  

area 
area 

( )
( )

( )
( )

AUC

AQH

AOC

APH
< .

5 R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005, pp. 46–
54.



254 CHAPTER III

To demonstrate the inequalities in (5), Ibn al-Haytham constructs
triangles AZW, AWJ and AJC in plane ADC such that

(5′) area  
area  

area 
area 

( )
( )

( )
( )

AZW

AKR

AEN

ALS
= ;

 area  
area  

area 
area 

( )
( )

( )
( )

AWJ

APR

ANU

ASQ
= ;

area  
area  

area 
area 

( )
( )

( )
( )

AJC

APH

AUC

AQH
= .

A
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Let us assume first that angle AEC is a right angle; LS is parallel to EC,
hence

AE

AL

AN

AS
k= = .

In plane ABD, we draw a straight line parallel to BK from E; it cuts AD
at Z, so

AE

AL

AZ

AK
k= = .

In plane ABV, we draw a straight line parallel to BS from N; it cuts AV
at W, so
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AN

AS

AW

AR
k= = .

Therefore WA

AR

AZ

AK
= , and it follows that WZ is parallel to RK. We can

deduce

(a) area  
area  

area 
area 

( )
( )

( )
( )

AWZ

ARK

ANE

ASL
=  = k2.

The line drawn from N parallel to SQ cuts AU at O′ between Q and U,
since angle ANU is obtuse and angle ASQ is acute. The line drawn from O′
parallel to PQ cuts AO at M, and therefore

AM

AP

AO

AQ

AN

AS

AW

AR
= ′ = = .

A

R

W

V

S
Q

P

N

M

J

O

U

O ′

Fig. 3.11

From this we deduce that MW is parallel to PR and that

(6) area  
area  

area 
area 

( )
( )

( )
( )

AMW

APR

ANO

ASQ
= ′

.

The line drawn from U parallel to QP, cuts AO at J between M and O,

since UJ is parallel to MO′. Then AU

AO

AJ

AM′
= . But

 
area 
area 

( )
( )

ANU

ANO′
= AU

AO′
  and  

area  
area  

( )
( )

AWJ

AWM

AJ

AM
= ,

hence
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(7) area  
area  

( )
( )

AWJ

AWM
= area 

area 
( )
( )

ANU

ANO′
.

From (6) and (7), we get

(b) area  
area  

( )
( )
AWJ

APR
= area 

area 
( )
( )
ANU

ASQ
.

Perpendicular O′ I′ to AC is drawn from O′; then O′ I′ is parallel to QH

and point I′ is between H and C; we deduce

MA

AP

O A

AQ

I A

AH
= ′ = ′

,

hence I′M || PH and it follows

area 
area 

area 
area 

( )
( )

( )
( )

AMI

APH

AO I

AQH

′ = ′ ′
.

′

A

P
H

Q

M

J

O

O

C

I

′

U

Fig. 3.12

Moreover

area (AJI′)
area (AMI′) = 

AJ
A M

 = 
AU
AO′ = 

area (AUI′)
area (AO′I′) ;

therefore

(8)
area (AJI′)
area (APH) = 

area (AUI′)
area (AQH)

 .

but
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area (AUC)
area (AUI′)  = 

AC
AI′ = 

area (AJC)
area (AJI′),

hence

(9)
area (AJC)
area (AJI′) = 

area (AUC)
area (AUI′) .

Multiplying member by member in (8) and (9) gives

(c)
area (AJC)
area (APH) = 

area (AUC)
area (AQH)

 .

Since (a), (b), (c) constitute the equalities in (5′) it is possible to construct
triangles AZW, AWJ and AJC with the required properties.

Later Ibn al-Haytham assumes angle AEC to be obtuse and proceeds as
follows.

It is possible to construct AEvˆ = π
2

, with v on AN and with νµ drawn

parallel to BSR from point v, so νµ || NW. Therefore

A N
Aν  = 

AW
Aµ ,

hence
area (AZW)
area (AZµ)  = 

area (AEN)
area (AEν)  .

Moreover

Aµ
AR = 

Aν
AS = 

AE
AL = 

AZ
AK   (since Eν || LS and EZ || LK);

from this we deduce Zµ || KR, therefore

area (AZE)
 area (AKL) = 

area (AZµ)
area (AKR)

 = 
area (AEν)
area (ALS)

 ,

and from the previous relation, we have

area (AZW)
area (AKR)  = 

area (AEN)
area (ALS)

 ;
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A
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Fig. 3.13

however area (ADV) > area (AZW), hence

area (ADV)
area (AKR) > 

area (AEN)
area (ALS)

 .

We draw a line parallel to SQ from point v. We continue as in the first

case. The method is the same if the hypothesis is ACEˆ  ≥ π
2

.

Unfortunately, Ibn al-Haytham’s statement that (4) follows from (5) is
not true for all cases.

Let us examine the relation between the two types of inequalities, and
let us suppose that

λ1 = 
area (AEN)
area (ALS) , λ′1 = 

area (ADV)
area (AKR)

; λ2 = 
area (ANU)
area (ASQ)

, λ′2 = 
area (AVO)
area (ARP)

;

λ3 = 
area (AUC)
area (AQH)

,  λ′3 = 
area (AOC)
area (APH)

,

so that (5) may be written as: λ1 < λ′1, λ2 < λ′2, λ3 < λ′3.

Therefore

area (AEC) = area (AEN) + area (ANU) + area (AUC)
= λ1 area (ALS) + λ2 area (ASQ) + λ3 area (AQH);

similarly
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area (ADC) = λ′1 area (AKR) + λ′2 area (ARP) + λ′3 area (APH).

A

K

R
P

H

COVD

A

L
G

S Q

H
F

E N

U C

Fig. 3.14

Suppose

µ1 = 
area (ALS)

area (ALSQH),  µ2 = 
area (ASQ)

area (ALSQH)
,  µ3 = 

area (AQH)
area (ALSQH)

,

µ′1 = 
area (AKR)

area (AKRPH)
,  µ′2 = 

area (ARP)
area (AKRPH)

, µ′3 = 
area (APH)

area (AKRPH)
.

So that the two members of (4) may be written respectively

λ1 µ1 + λ2 µ2 + λ3 µ3   and   λ′1 µ′1 + λ′2 µ′2 + λ′3 µ′3.

From (5) we have

(10) λ′1 µ′1 + λ′2 µ′2 + λ′3 µ′3 > λ1 µ′1 + λ2 µ′2 + λ3 µ′3
     = (λ1 – λ2) µ′1 + (λ2 – λ3) (µ′1 + µ′2 ) + λ3

where the last equality comes from  µ′1 + µ′2 + µ′3 = 1. Since we have

λ1 µ1 + λ2 µ2 + λ3 µ3 = (λ1 – λ2) µ1 + (λ2 – λ3) (µ1 + µ2 ) + λ3,

it is sufficient in order to prove (4) to establish that

(α) λ1 > λ2 > λ3

(β) µ1 < µ′1, µ1 + µ2 < µ′1 + µ′2   or  µ3 > µ′3.
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Inequalities (β) are true for all cases, whereas for inequalities (α) this is

only true when angle ACEˆ  is a right angle or obtuse.
Let us first establish (β), that is

area (ALS)
area (AKR) < 

area (ALSQH)
area (AKRPH)

 < 
area (AQH)
area (APH)

.

This aims to show that the ratio of the area of a triangle with apex A, in
plane AEC, to the area of its conical projection with apex B in plane ADC
increases by E towards C. Let us consider two adjacent triangles AMM1 and
AM1M2 in plane AEC and their projections AM′M′1, AM′1M′2 in plane ADC.

A

C

M

2

1

M
M

M

M
M

M

M

M
1

1

2

2

′
′

′

B

E

m

Fig. 3.15

Describing volumes of pyramids ABMM1 and ABM′M′1, using two
different methods, we can see that

′ ′ ′ ′ ′δ
δ

area (
  area (

 =  
area (
area (

AM M

AMM

BM M

BMM
1

1

1

1

)
)

)
)

,

where δ and δ′ designate the distances from B to planes AEC and ADC
respectively. We thus have

(11) area (
area (

 =  
 area (
 area (

AMM

AM M

BMM

BM M
1

1

1

1

)
)

)
)′ ′

′
′ ′

δ
δ

and similarly
area (
area (

 =   
area (
area (

1AM M

AM M

BM M

BM M
1 2

1 2

2

1 2

)
)

)
)′ ′

′
′ ′

δ
δ

.

It is therefore necessary to show that

area (
area (

 <  
area (
area (

BMM

BM M

BM M

BM M
1

1

1 2

1 2

)
)

)
)′ ′ ′ ′
.
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The value of the first member is BM BM

BM BM

  
  
⋅

′ ⋅ ′
1

1

, and the second BM BM

BM BM
1 2

1 2

  
  
⋅

′ ⋅ ′
,

so we obtain the inequality BM

BM

BM

BM′ ′
 <  2

2

.

To evaluate ρ = 
B M
BM′ , we write BM BM= ′ρ  and we denote u  as the

unit vector perpendicular to plane ADC, oriented so that BA u⋅ = ′δ . Then

BM u BM u⋅ = ′ ⋅ = ′ρ ρδ ;

or, by introducing orthogonal projection m from M onto AC:

ρδ δ δ ϕ′ = ⋅ + ⋅ = ′ + ⋅ = ′ − ⋅Bm u mM u mM u mM sin

lettering the angle of planes AEC and ADC 0
2

< <



ϕ π  as ϕ . Therefore

(12) ρ = 1 – 
mM
δ′

 sin ϕ.

Similarly

ρ2: 
BM2

 BM′2
 = 1 – 

m2M2

δ′
 sin ϕ ,

and ρ < ρ2 can also be written as mM > m2M2. Inequalities (β) mean that M
is further away from AC than M2.

In the case which interests us, the distances from L, S and Q to AC do
decrease, which establishes inequalities (β).

Let us prove inequalities in (α) from the hypothesis where angle ACEˆ  is
a right angle or an obtuse angle

(α)
area (AEN)
area (ALS)  > 

area (ANU)
area (ASQ)

 > 
area (AUC)
area (AQH)

.

Let us take again the adjacent triangles AMM1 and AM1M2, both with
apex A; let us produce their sides from A to the meeting points N, N1, N2 on
the straight line EC, namely AN, AN1, AN2, with the aim of establishing

area (ANN1)
area (AMM1) > 

area (AN1N2)
area (AM1M2)

.
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We draw line µµ2 through M1 parallel to EC, which meets AM and AM2

at µ and µ2 respectively. Then

area (ANN1)
area (AMM1) = 

area (ANN1)
area (AµM1)

 · 
area (AµM1)
area (AMM1)

 = 
AN1

AM1







2

 · 
area (AµM1)
area (AMM1),

and similarly
area (AN1N2)
area (AM1M2) = 

AN1

AM1







2

. 
area (AM1µ2)
area (AM1M2).

The aim is therefore to show that

area (AµM1)
area (AMM1) > 

area (AM1µ2)
area (AM1M2)

.

As angles AN 1N and  AN2N  are obtuse in our hypothesis, then
AM AM Mˆ ˆ

1 1µ >  and  A M AM Mˆ ˆµ2 1 2 1>  if angles AM 1M and AM2M 1 are
acute, then µ is between M and N, and µ2 between A and M2; so

area (AµM1)
area (AMM1) > 1 > 

area (AM1µ2)
area (AM1M2)

.

In this case, angles ASL, AQS are acute and angles ALS, AHQ are right
angles.
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G Q
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We have thus established Ibn al-Haytham’s property (inequality (4)) in
the case where angle ACE is a right angle or an obtuse angle.

But what is the real meaning of Ibn al-Haytham’s method and what
ideas did he have at the back of his mind? In order to answer these
questions, it will be necessary to go back over his proof using a different
formal language, that of integral calculus.

If AMM1 is an infinitesimal triangle in plane AEC with area 1
2

 r2dθ

(r = AM, dθ = MAMˆ
1), its ratio to projected triangle AM′M′1 in plane ADC,

from (11), is
′

′ ′
′

′






δ
δ

δ
δ

 
area (
area (

 =   
BMM

BM M

BM

BM
1

1

2)
)

(to infinitesimals of the nearest higher order) and

BM

BM

mM r

′
= −

′
= −

′
1 1

δ
ϕ

δ
ϕ θsin sin sin

from (12), and with θ = CAMˆ  between 0 and 
π
2





 .

The element of projected area AM′M′1 is therefore

δ
2δ′

 
r2 dθ

(1 – r/δ′ sin ϕ sin θ)2
 .

Let us now consider, in plane AEC, star areas with apex A, defined by
the respective integrals
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I 0 ≤ θ ≤ θ1, (0 < θ1 < π
2

 ), 0 ≤ r ≤ R(θ)

II 0 ≤ θ ≤ θ1, 0 ≤ r ≤ λ(θ) R(θ)

where the ratio λ of radius vectors remains greater than 1, so that area II

contains area I. Let us also consider the projections I′ and II′ of I and II in

plane ADC. The aim would be to establish that 
II
I  < 

II′
I′

, that is

( )
sin sin

sin sin

13
1

1

2 2

0

1

2

0

1

2 2

20

1

2

20

1

              
λ θ

θ

λ θ
λ
δ

ϕ θ

θ

δ
ϕ θ

θ

θ

θ

θ

R d

R d

R d

R

R d

R

∫
∫

∫

∫
<

−
′







−
′







.

Fig. 3.18

In the corresponding Ibn al-Haytham’s inequalities in (5), we have on
the elementary areas

λ θ
θ

λ

λ θ
λ
δ

ϕ θ

θ

δ
ϕ θ

λ δ
ϕ θ

λ
δ

ϕ θ

2 2

2
2

2 2

2

2

2

2

2

1

1

1

1

R d

R d

R d

R

R d

R

R

R
= <

−
′







−
′







=
−

′
−

′

















sin sin

sin sin

sin sin

sin sin

since λ
δ

ϕ θ
δ

ϕ θR R

′
>

′
sin sin sin sin .

The second member of (13) becomes the minor by replacing its
numerator with
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λ θ

δ
ϕ θ

θ
2 2

20

1

1

R d

R−
′







∫
sin sin

;

this integral corresponds to Ibn al-Haytham’s area AZVWJ.

Let us put

f R dθ ω ωθ( ) = ∫ 2

0
( ) , g

R d

R
θ ω ω

ω
δ

ϕ ω

θ( ) =
−

′






∫
2

20

1

( )
( )

sin sin
  and  h(θ) = λ(θ)2.

The aim is to show

(13′) 1 1

1
0

1

1
0

1

f
h df

g
h dg

θ
θ θ

θ
θ θθ θ

( ) ( ) ( ) < ( ) ( ) ( )∫ ∫ ,

using integration by parts (a stage which corresponds to transformation (10)
of the above proof), this inequality becomes

h
f

f dh h
g

g dhθ
θ

θ θ θ
θ

θ θθ θ
1

1
0

1
1

1
0

11 1( ) − ( ) ( ) ( ) < ( ) − ( ) ( ) ( )∫ ∫ ,

or
1 1

1
0

1

1
0

1

f
f dh

g
g dh

θ
θ θ

θ
θ θθ θ

( ) ( ) ( ) > ( ) ( ) ( )∫ ∫ .

Let γ = g

f
; the second member is written

1

1 1
0

1

γ θ θ
γ θ θ θθ

( ) ( ) ( ) ( ) ( )∫f
f dh ,

and we have to show that

0

1

1
0

11θ θθ θ
γ θ

γ θ θ θ∫ ∫( ) ( ) > ( ) ( ) ( ) ( )f dh f dh .

This inequality is guaranteed if we assume

(α) h is the increasing function of θ (not a constant)

(β) γ is the increasing function of θ ( not a constant).
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However

γ θ
ω ω

ω ω
ω

δ
ϕ ω

θ
θ( ) =

−
′







∫
∫

1

1
2

0

2

20R d

R d

R( )

( )
( )

sin sin

is increasing if the same holds for 1

1
2

−
′







R( )
sin sin

θ
δ

ϕ θ
, that is to say if

R(θ) sin (θ) is increasing.

We have thus proved the inequality (13) using the hypothesis that λ(θ)

and R(θ) sin θ (distance from the floating point on the boundary of area I to

AC) are both increasing functions of θ. In Ibn al-Haytham’s case, R is

constant and equal to AB and λ(θ) = AN

R
 is increasing when angle ACE is a

right angle or an obtuse angle. In this case, areas II = AEC and II′ = ADC

are elementary (triangles) whereas area I equals 1
2

 R2θ1.

The inequality (13) can therefore be simplified as

 
area area( ) ( )

sin sin

AEC

R

ADC

R
d

R

1
2 2

1

2
1

2
20

1θ δ
δ

θ

δ
ϕ θ

θ
<

′ −
′







∫
,

or

(14) 1

11
20

1

θ
θ

δ
ϕ θ

δ
δ

θ d

R

ADC

AEC

BDC

BEC

BD

BE−
′







< ′ = =∫
sin sin

( )
( )

( )
( )

area
area

area
area

.

This is guaranteed if BK

BL R

BD

BE




 =

′






≤
2

  
1

1 –   sin  sin 
  

δ
ϕ θ1

2 ,

that is, if

(15) BL

BK

BE

BD




 ≥

2

,

an inequality which only involves the points of triangle ABD. This reduction
obviously escaped Ibn al-Haytham.
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Taking orthogonal axes from point B, with BA as the y axis, (0, a) as
coordinates of A and (m, n) those of D, with angle ABD either a right angle
or obtuse, then m < 0, n ≤ 0 (assuming a > 0 and D to the left of AB)

A

a

B

n

E

D

xm

K L

y

Fig. 3.19

The coordinates (x, y) of E are linked by y
n

m
x= , and equations of AD

and AE are respectively Y a
n a

m
X− = −

  and Y a
y a

x
X− = − . The abscissa of L

equals ax

AE
, therefore its ordinate is a

y a

x

ax

AE

a

AE
AE y a+ − = + −( ) . The

equation of BL is therefore written as Y AE y a
X

x
= + −( )  and the abscissa of K

is given as

AE y a
X

x
a

n a

m
X+ −( ) = + −

,

that is to say X
ax

AE a
x

m

=
− −



1

 .

So

(15′) BL

BK

a

AE

x

m
= − −



1 1

and condition (14) becomes
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1
2

1 1
2

2

2

− −



 + −



 ≥a

AE

x

m

a

AE

x

m

x

m
,

by simplifying by 1 − x

m
 (which is strictly positive since E is between B and

D), we have

1
2

1 0
2

2− + −



 ≥a

AE

a

AE

x

m
,

that is to say

x y a a
x

m
a x y a2 2 2

2
2 2 2

1 4+ −( ) + −











≥ + −( )( )

or again

(16) x y
a x

m
ay

a x

m
2 2

2 2 4

2
4

0+ − −





− ≥ .

This inequality means that point E is not inside a quartic curve Γ tangent

at B to AB (a and m being fixed). If we suppose a

m
= α , x

m
= ξ , y

m
= η , the

equation of Γ becomes

(17) (ξ2 + η2 – α2ξ – 2αη)2 – 4α4ξ = 0

where there only remains the parameter α (negative).

For α = –4, it is Pascal’s limaçon of polar equation ρ = 8 (cos θ + √2)
with double point (4, –4); for other values of α, the genus of Γ is 1.

A

B

E

D

0

Fig. 3.20
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If triangle ABD is given, then condition (14) is verified when E belongs
to segment E0D, and where E0 denotes the distinct point of intersection of
BD with Γ, if in fact this point exists. One can easily see that E0 still exists if

0
3

3
> ≥ −a

m
; but if a

m
< − 3

3
, then angle ABD  has to be bigger than a

minimum value arc tan
4 1
1 3

2

2

α α
α

− −
−

. If E is on E0D , then inequality (**)

stated by Ibn al-Haytham is proven, whatever the other elements of the
pyramid ABCD; but if E is on BE0, further discussion is necessary using
values of θ1 = CAEˆ .

The first member of (14) can be calculated in an elementary way. Then

R
δ′

 sin ϕ sin θ1 = − = = −



 =1 1

BL

BK

KL

BK

a

AE

x

m
 β,

(cf. (15′)); therefore 
R
δ′

 sin ϕ = β
θsin 1

 and the expression under examination is

written as

I
d t dt

t t

t=
−







=
+( )

− +( )∫ ∫
1

1

1 2 1

2 11

1

20

1

1

2

2 20

1

θ
θ

β θ
θ

θ ν
θ

sin
sin

,

by saying tan θ
2

= t, tan θ1

2
 = t1, ν = β

θsin 1

.

If ν < 1, let it be a2 1
2

−





x

m
 < [(x2 + (y – a)2 ] sin2 θ1.

(18)  ξ2 (sin2 θ1 – α2) + η2 sin2 θ1 + 2α2ξ – 2αη sin2 θ1 – α2 cos2 θ1 > 0,

that is, if point (ξ,η) is outside a conic C, then we put ν = sin θ0 0
20< <



θ π ,

or sin θ0 sin θ1 = β, and we use the change of variable t = u cos θ0 + sin θ0.
From this we obtain

(19)    I
t= −











2
1

11
3

0

1 0

0
0

1

1
2

1
2

1

θ θ
θ

θ
θ θ

θ
β

θ β
θ
β 

arc tan
  

 
+ +

 
   –  

–
 

 –  
 

cos
sin

cos
sin

sin
cos

.
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If on the contrary ν > 1, that is if (ξ, η) is inside C , then we put
1

0v
= =sinθ θ

β
sin 1  and from this we obtain

(20) I =



















tan
 log

sin –
2

– sin 

+
2

– sin 
2

+
sin 

– sin  
cos 
1 –  

 –  1
3

0

1

0
1 1

0
1 1

1

1
2 2

1

1θ
θ

θ θ θ

θ θ θ
θ

θ
β

β θ
θ
β

2

sin
.

If in the last case, v = 1, that is if (ξ, η) is on C, then we get

(21) I = 1
3 2 1 +  

2
1 –  sin 

 +  cos  
3 –  2 sin 
(1 –  sin 1

1
1

1θ
θ θ

θ )







.

Let us calculate (19) and (20) numerically with a few examples to show
that Ibn al-Haytham’s inequality (**) does not always hold true.

Example 1. — Let a  = 4, m  = –1, n  = − 1
2

, therefore BD = 5
2

 =

1.11803399… and AD = 85
2

 = 4.60977223. If BE

BD
 = x

m
 = 1

10
, then

x = – 1
10

, y = − 1
20

; BE = 5
20

 = 0.11803399, AE = 6565
20

 = 4.05123438 and

β = 72
6565

 = 0.888618051. It is possible to take θ 1 = 5
12
π  to give

sin θ 1 = 0.965925826 > β , so that in the case where v  < 1, then

sin θ0 = 0.919965102, hence θ0 = 66°55′15″,53. The calculation of (19)

gives the value 14.1533141 > BD

BE
 = 10 for I. It is possible to construct a

pyramid taking angle AEC = π
2

, which gives

AC = AE

sin  
π
12

 =  
6565 (2 +  3)

10
 = 15.6527677

and

 EC = AE tan 5
12

2 3
20

6565
π = +





 = 15.1194125.

Then, by choosing BC between EC – BE = 15.00137851 and EC + BE
= 15.23744649, for example BC = 15.1, therefore we get



ISOPERIMETRIC AND ISEPIPHANIC FIGURES 271

cos ABCˆ  = AB BC AC

AB BC

2 2 2

2
+ −

⋅
 = – 0.1076087378,

       ABCˆ  = 96°10′38″,96

A

E

C

L

H

A

D

B

H

C

A

B

B

C

D
E

Fig. 3.21

and

DC BD BC BD BC DBC BD BC
BD

BE
BC BE EC2 2 2 2 2 2 2 22= + − ⋅ = + − + −( )cos ˆ

 = −





+ ⋅ = −



 −



 +ED BD

BC

BE

EC BD

BE

x

m
BD BC

m

x
EC

m

x

2 2
2 2 21

 = 235.001355452;

hence DC = 15.3297539.
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For this pyramid area

area

ABC

ALH

( )
( )  = 2.92464268 whilst area

area

ADC

AKH

( )
( )  =

 2.06640131, which is contrary to Ibn al-Haytham’s inequality (**) above.

Example 2. — Let a  = 4, m  = –1, n  = – 1
5

. Therefore BD  = 26
5

 =

1.0198039 and AD = 466
5

 = 4.317406629.

If BE

BD
 = x

m
 = 1

10
, then x = – 1

10
, y = – 1

50
, BE = 26

50
 = 0.10198039,

AE = 40426
50

 = 4.02124359 and β = 180
40426

 ≅ 0.895245443.

We may take θ1 = π
3

, which gives sin θ1 = 3
2

 = 0.866025404 < β, to

be in the case where v > 1; we have sin θ0 = sinθ
β

1  = 0.967360863, hence

θ0 = 75°19′15″,72. The calculation of (20) gives the value for I as

10.9012463 > BD

BE
 = 10. We may construct a pyramid by taking angle AEC

= 7
12
π , which gives

AC AE= =
sin

sin

7
12

12

π

π  15.00748538

and

EC AE=
sin

sin

π

π
3

12

 = 13.45534329.

Then choosing BC between EC – BE = 13.3533629 and EC + BE =
13.55732368, for example BC = 13.4; therefore we get

cos ABCˆ  = –0.276722178, ABCˆ  = 106°37′52″,14,
DC2 =195.35863136,

hence
DC = 13.9770752076.
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For this pyramid area

area

AEC

ALH

( )
( )  = 3.11925113383, whereas area

area

ADC

AKH

( )
( )  =

2.86137112032, which is again contrary to Ibn al-Haytham’s inequality (**).

C

D

C

C

C

A

H

K

E

A

A

A

D

D

K

B

B

B

E
E

H

L

H

Fig. 3.22

So in the case where ACEˆ  is a right angle or an obtuse angle, we have

area tr. (AEC)
area sect. (AHGL) ≤ 

area tr. (ADC)
area sect. (AHFK)

,

but we have seen that, in the case where AECˆ  is a right angle or an obtuse
angle, this property is only true when E is sufficiently far away from B.

At the end of this (incomplete) proof, Ibn al-Haytham returns to Lemma
6

area (DBC)
area (EBC)  > 

solid angle (A, BCD)
solid angle (A, EBC)

,

that is
pyr. (ABCD)
pyr. (ABCE)

 > 
sect. sph. (A, BCD)
sect. sph. (A , BCE)

,

as the second member is increased by
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curv. pyr. (BAHFK)
 circ. pyr. (BAHGL)

    (see (*));

it is sufficient to show that

pyr. (BACD)
pyr. (BAEC)  ≥ 

curv. pyr. (BAHFK)
 circ. pyr. (BAHGL)

 .

However, the inequality (**) means that

pyr. (BAEC)
circ. pyr. (BAHGL)

 ≤ 
pyr. (BACD)

curv. pyr. (BAHFK)
 .

We now examine the validity of Lemma 6, which is at the heart of Ibn
al-Haytham’s treatise, by using a direct analytical method. We choose
orthogonal axes from origin A, with point B on Ax and point D in plane
Axy, and we assume their orientation to be such that coordinates of B and D
are positive.

C

B

E

D

ML

H

A

Fig. 3.23

Let λ and µ be lines of longitude from points L and M, where straight
lines AE and AD respectively meet the sphere with centre A and radius
a = AB.

The coordinates of points B, L, M, E and D are:

B: (a, 0, 0); L: (a cos λ, a sin λ, 0); M: (a cos µ, a sin µ, 0);
E: (e cos λ, e sin λ, 0); D: (d cos µ, d sin µ, 0)

with e = AE and d = AD. By writing that points B, E, and D are aligned, we
find that
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e = a (1 – 
1
ρ

) 
sin µ

sin (µ – λ)
    and   d = a (ρ – 1) 

sin λ
sin (µ – λ)

where ρ = 
BD
BE > 1.

The condition where angle ABD is a right angle or an obtuse angle is

written as d cos µ ≥ a, which can be expressed as µ < π
2

 and

(22) ρ ≥ 
tan µ
tan λ

(with 0 < λ < µ).

If θ and ϕ designate the co-latitude and the longitude of point H where
AC pierces the sphere, the Cartesian coordinates of H and C are written

H: (a sin θ cos ϕ, a sin θ sin ϕ, a cos θ);
C = (c sin θ cos ϕ, c sin θ sin ϕ, c cos θ).

Angle ABC being superior or equal to a right angle, we have

(23) c sin θ cos ϕ ≥ a

which requires that ϕ < π
2

 and c ≥ 
a

sin θ cos ϕ
 .

One of the angles AEC or ACE is a right angle or an obtuse angle:

(24) AECˆ  ≥ π
2

 ⇔ e ≤ c sin θ cos (λ – ϕ)

(24′) ACEˆ  ≥ π
2

 ⇔ c ≤ e sin θ cos (λ – ϕ).

These conditions demand thatλ – ϕ < π
2

; (24) requires that c be large

enough, but (24′) is not compatible with (23), except if

  
a

sin θ cos ϕ
 ≤ e sin θ cos (λ – ϕ)  or  cos (2ϕ – λ) ≥ 

2a
e sin2 θ

 – cos λ.



276 CHAPTER III

The expression  
2a

e sin2 θ
 – cos λ is a decreasing function of ρ which

tends to the limit 
2

2

sin

sin sin
cos

µ λ
µ θ

λ−( ) −   for an infinite value of ρ.

We may choose ρ and ϕ in accordance with (23) and (24′) if

2
12

sin

sin sin
cos

µ λ
µ θ

λ−( ) − ≤   or  tan cos tanµ θ λ λ2 2

2
2

2
−



 ≤tan .

The figure can therefore be constructed with ACEˆ  ≥ π
2

 in one or the

other of the following two cases:

(i)         tan cos tan
λ θ λ
2 2

0≥ = ,  that is λ ≥ λ0;

(ii)       λ < λ0  and  tan µ ≤ 
2

2
2

 tan 

  –  tan  
2

 =  tan   
1 +  cos 

1 –  
cos 
cos 

 =  tan 
2

0

0
0

λ

θ λ λ λ
λ
λ

µ
cos

that is λ < µ ≤ µ0.

Solid angles (A, BCE) and (A, BCD) are measured by the areas of
spherical triangles BHL and BHM, by expressing the area of an infinitesimal
spherical triangle HNN ′ with N  and N ′ between B  and M , and with
respective longitudes v and v + d v.

Fig. 3.24

This area a2 dσ  = a2 ( ˆ ˆ ˆH N N+ + ′ − π ) is calculated using S. Lhuillier’s
formula
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1
4 4 2 2 2 2

d
d p

a

p NN

a

p HN

a

p HN

a
σ σ≈ = − ′ − − ′

tan tan tan tan tan

where we have set

 p HN HN NN HN
a

d= + ′ + ′( ) ≅ +1
2 2

ν .

We get

p NN HN
a

d− ′ ≅ −
2

ν ; p HN HN HN NN
a

d
HN

a
d− = ′ − + ′( ) ≅ +







1
2 2

ν

and

p HN HN HN NN
a

d
HN

a
d− ′ ≅ − ′ + ′( ) = − +







1
2 2

ν

so

tan tan tan tan tan
p

a

p NN

a

p HN

a

p HN

a

HN

a
d d

HN

a2 2 2 2 2
1

16 2
2 2

2
− ′ − − ′ ≈ ⋅ −















ν .

However cos 
πHN
a

 = sin θ cos (ν – ϕ) gives

d
HN

a HN

a

d=
−( )sin sin

sin

θ ν ϕ ν ;

and it follows that

d d
HN

a

d

HN

a

ν ν θ ν ϕ θ ν ϕ2

2 2

2

2 2 2 21−






= − −( ) − −( )( )
sin

sin cos sin sin

    = d

HN

a

ν θ2 2

2

cos

sin

.

Finally

(25) d

HM

a
HM

a

d
dσ ν θ ν θ
θ ν ϕ

=

















=
+ −( )

tan

sin
cos

cos
sin cos

2
1

.
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The solid angles under consideration are integrals of this differential
element between 0 and λ and between 0 and µ respectively. The inequality
of Ibn al-Haytham’s Lemma 6 is therefore written as

(26) d dν
θ ν ϕ

ρ ν
θ ν ϕ

µ λ

1 10 0+ −( ) <
+ −( )∫ ∫sin cos sin cos

.

Because of inequality (22), relation (26) is true if

1
10tan sin cosλ

ν
θ ν ϕ

λ d

+ −( )∫

is a decreasing function of λ. The derivative of this expression is written as

− +
+ −( ) +

+ −( )∫
1

1
1 1

1

2

2 0

tan
tan sin cos tan sin cos

λ
λ

ν
θ ν ϕ λ θ λ ϕ

λ d

and is negative if

(27) sin
sin cos sin cos

2
2

1
1 10

λ
θ λ ϕ

ν
θ ν ϕ

λ

+ −( ) ≤
+ −( )∫

d .

The two members of (27) are null for λ = 0, therefore the inequality is
proven as long as

cos
sin cos

sin
sin cos sin cos

2
1

2
2

1
1

1
1

λ
θ λ ϕ

λ
λ θ λ ϕ θ λ ϕ+ −( ) +

+ −( )






≤
+ −( )

d

d
,

that is
d

d λ log 
1

1 + sin θ  cos (λ  –ϕ )  
 ≤  2 tan λ = 

d
d λ log 

1
cos2 λ,

which again means that 
cos2 λ

1 + sin θ  cos (λ  – ϕ) is a decreasing function of λ.

The derivative of this last expression is written

– 
cos λ

2 (1 + sin θ  cos (λ  – ϕ ))2 (3 sin θ sin ϕ + sin (2λ – ϕ) sin θ + 4 sin λ);

it is negative if sin 2 λ cos ϕ + 2 (1 + sin2 λ) sin ϕ ≥ –4 
sin λ
sin θ

 .
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With λ, θ as givens, this shows that the point (cos ϕ, sin ϕ) of the unit
circle is above the straight line of equation

x sin λ cos λ + y (1 + sin2 λ) = –2 
sin λ
sin θ

;

for λ  = 0, this straight line becomes the axis of x : y  = 0, and the
corresponding condition is ϕ ≥ 0.

Therefore for ϕ ≥ 0, the inequality (27) is satisfied for whatever value of

λ, between 0 and π
2

, and from this, the inequality (26) on solid angles can

be deduced.
In summary, Lemma 6, independent of the sub-lemma, is true if it is

assumed that the longitude ϕ of C is positive, that is with points C and D on
the same side of the perpendicular plane at ABD passing through AB; this
condition escaped Ibn al-Haytham.

But, if angle ϕ is negative, the conclusion of Lemma 6 is not always
valid; the difference between the two members of (27) begins decreasing
from 0 to a minimum negative value, then increases and becomes positive
from a value λ0 (θ, ϕ) of λ which is given by

(28) arc tan arc tanτ λ ϕ τ ϕ λ θ
θ λ ϕ

tan tan
sin cos

sin cos
0 0

02 2
2
4 1

−



 + 



 =

+ −( )

− < < < < = −











π ϕ θ π τ π θ
2

0
2 4 2

; tan  .

00

2

λ
λ

π
λ 1

Fig. 3.25
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In fact, the value of this difference for λ = π
2

 is

dν
θ ν ϕ

π

1
0

0
2

+ −( ) ≥∫ sin cos
.

If λ0 ≤ λ ≤ µ, the inequality of Lemma 6 is still true; but if λ < λ0, as
indicated in the example, then it is not necessarily true.

Example: Let ϕ = –87°, τ = 
1
10, and let θ = 78°34′43″,72; then λ0 =

88°32′7″,42. By taking λ = 1° and µ = 21°, we have 
tan µ
tan λ

 = 21.99155584

and we may choose ρ = 22. If a = 4 = AB, then

AD = d = 4 · 21 · 
sin 1°
sin 20° = 4.286303511,

AE = e = 4 · 
21
22 · 

sin 21°
sin 20° = 4.000682462.

Then go on to choose AC = c > 
4

 sin θ cos ϕ
 = 

4 · 101
99 cos 87° = 77.9733165

and AC = c ≥ 
e

 sin θ cos (λ – ϕ)
 = 116.9502347.

For example for c = 117, solid angles have the following respective
values:

2
54

10
43 30
10

arc arctan
tan

tan
tan° − ° ′



  = 4°51′54″,58

and

2
44

10
43 30
10

arc arctan
tan

tan
tan° − ° ′



  = 11′23″,46;

their ratio is 25.62634243 > ρ = 22 = 
area (BCD)
area (BCE)  and Lemma 6 is not

satisfied.

In the case BD = 1.536074643, BE = 0.069821575,
EC = 116.9315223, BC = 116.8630976, DC = 118.3688195,
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ABDˆ  = 90°03′36″,07 ABCˆ  = 90°58′53″,82

AECˆ  = 90°00′03″  ADCˆ  = 70°23′26″,07

θ1 = CAEˆ  = 88°02′22″,63 or 1.536581233 radians, and

ν = sin θ0 = 0.954941529 or θ0 = 1.26946271 radians in the integral 

form which gives the curvilinear area AKH. We find

 dθ
ν θ

θ

1
102 76696420

1

−( )
=∫ sin

.

for this integral, hence

area (ADC)
area (AKH) = 6.259142771  and   

area (AEC)
area (ALH)

 = 19.02787015

approximately three times greater, contrary to the sub-lemma.

Comment: The validity of the sub-lemma relies solely on the positions of
points A , B , D , E  and angle θ1 = CAEˆ . Whatever the values of these
parameters, and, by implication, whether this sub-lemma is valid or not, it is
possible to complete the pyramid by choosing point C in such a way that
angle AEC is superior or equal to a right angle, angle ϕ is positive, and the
Lemma 6 inequality is therefore satisfied, even if the sub-lemma is not.

In fact, assume as givens AB = a, negative coordinates x, y of E along
axes from origin B and angle θ1, then AE = e = x2 + (y − a)2 . For AC  = c
and BC = b as givens, coordinates of C along axes from origin A are

a 2  + c2  – b 2

2a ,  
e  cos θ1

 | x  |
 + 

a  – y
x

 
a 2 + c2 – b 2

2a
,

hence

tan
cosϕ θ=

+ −
− +





1 2 1
2 2 2x

aec

a c b
a y ;

angle ϕ is positive if a2 + c2 – b2 ≤  
2 aec cos θ1

a  –  y
, that is

b2 ≥ a2 + c2 –  
2 aec  cos θ1

 a  –  y
.

The following inequalities must also be stated:
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(i) c ≥ 
e

cos θ1
 AECˆ ≥





π
2

(ii) b ≤ BE + EC

(iii) c2 ≥ a2 + b2 ABCˆ ≥





π
2

.

Inequalities (ii) and (iii) define a non-empty interval for b if

a2 + c2 –  
2 aec cos θ1

a  –  y
  ≤  c2 – a2

and
     ≤ BE2 + EC2 + 2BE · EC

   = 2x2 + 2y2 – 2ay + a2 + c2 – 2 ec cos θ1 + 2 (x2 + y2 )(e2 + c2 − 2eccosθ1) .

The first inequality is written a ≤ ec 
cos θ1
a  –  y

  or c  ≥ a  
a  –  y

e  cos θ1
  and it is

satisfied, because e a
a y

e
≥ − .

The second inequality becomes

0 ≤ x2 + y2 – ay + 
ecy cos θ1

a – y
 + (x2 + y2 )(e2 + c2 − 2eccosθ1) ,

which is true if it is assumed that

(iv) ec  | y  |  cos θ 1
a  –  y

 ≤ x2 + y2 – ay.

Inequalities (i) and (ii) determine a non-empty interval for c if

e2 | y | ≤ (x2 + y2 – ay) (a – y)

or
(x2 + y2 – ay)(a – y) + y (x2 + y2 – 2ay + a2) = ax2 ≥ 0

which condition always remains satisfied.

So in the above example 1, it is sufficient to take BC = 15.13 instead of
15.1 in order for angle ϕ to become positive (ϕ = 22°27′23″,17); Lemma 6
is therefore true, and the sub-lemma is false.
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In example 2, we have ϕ = –46°29′38″,6 and θ = 48°15′03″,31, which

gives λ0 = 19°30′21″,92 greater than λ and µ. Solid angles are 37′46″,92

and 6°10′18″,94 respectively and their ratio is 9.801378082 < ρ = 10;

Lemma 6 is therefore satisfied – this comes from the fact that ρ  =

10 > 
tan µ
tan λ

 = 9.571428571.

If we take ρ = 9.6 with the same values of λ, µ, ϕ and θ, then Lemma 6
is no longer true.

Ibn al-Haytham’s hypotheses have been examined to confirm the
inequality in Lemma 6 and they have been shown to be insufficient. Ibn al-
Haytham deduced the following lemmas from Lemma 6, and so it is to be
expected that these lemmas are not true either. Albeit, this is not the case at
all – these lemmas are all true. Let us look at them one by one.

Lemma 7. — Let ABCD be a pyramid such that AB is perpendicular to

plane BCD and angle BCD ≥ π
2

. If E ∈ [CD], then

 
area (DBC)
area (EBC)  > 

solid angle (A, BDC)
solid angle (A, EBC)

.
A

B

G

G

C

E

D
D

D

A

B

G

E

′

′
′

″

C

Fig. 3.26

In plane ABE, let us draw a perpendicular from E to AE. This cuts AB

at G. Since angle BCE ≥ π
2

, then BE > BC, and since AB ⊥ plane (BCD),
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then AE  > AC . If BC  is produced up to E ′ such that BE ′ = BE , then

AE G AEGˆ ˆ′ = = π
2

, hence ACGˆ  is an obtuse angle.

Let us show how ACDˆ  ≥ π
2

:

• if BCDˆ  = π
2

, then CB ⊥ CD; on the other hand, CD is orthogonal to

AB , therefore CD  ⊥  plane (ABC), and it follows that CD  ⊥  AC , that

is ACDˆ  = π
2

.

• if BCDˆ  > π
2

, then CD′ can be drawn inside angle BCD such that

D ′C�⊥  BC, therefore CD ′ ⊥  plane (ACB) and AC ⊥  CD′, therefore

ACDˆ ′ �= π
2

 and D′ ∈ ]BD[.

CG′ ⊥ AC, G′ ∈ ]BG[ can be drawn in plane ACG. Therefore plane

CD′G′ is perpendicular to AC, cutting plane ABD along the straight line

G′D′ which meets AD between A and D at D″, then ACDˆ ′′= π
2

, therefore

ACDˆ  > π
2

. So, pyramid AGCD does satisfy the conditions of Lemma 6, in

the case where angle AEG is a right angle, which we have shown to be
doubtful.

Ibn al-Haytham continues the argument as follows:

area (GCD)
area (GCE)  > 

solid angle (A, GCD)
solid angle (A, GCE)

;

but
area (GCD)
area (GCE) = 

CD
CE

 = 
area (DBC)
area (EBC)

and
solid angle (A, GDC) = solid angle (A, BCD)

solid angle (A, GCE) = solid angle (A, BCE),

hence the result

 area (DBC)
area (EBC)

 > 
solid angle (A, BCD)
solid angle (A, BCE)

.
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However, by relying on analytical methods once again, it is possible to
show that this lemma is true: using orthogonal axes from origin A with C on
Ax and D  in plane Axy, and assuming the orientation to be such that
coordinates of C and D are positive. If coordinates of points of the figure are
written as

C: (c, 0, 0); E: (e cos λ, e sin λ, 0);
D: (d cos µ, d sin µ, 0)   (with 0 < λ < µ < π).

We have 
CD
CE = ρ > 1 with C, E, D in alignment, which gives

e c= −




 −( )1

1

ρ
µ

µ λ
sin

sin
  and  d c= −( )

−( )ρ λ
µ λ

1
sin

sin
.

Points B and H have as coordinates

H: (c sin θ cos ϕ, c sin θ sin ϕ, c cos θ)
B: (b sin θ cos ϕ, b sin θ sin ϕ, b cos θ)

with 0 ≤ θ < π
2

· By expressing AB as perpendicular to plane BCD it can be

seen that b = AB is the projection of c = AC on AH, and b = c sin θ cos ϕ;

this condition requires that |ϕ| < π
2

· In the same way AB is the projection of

AD on AH, and b = d sin θ cos (µ – ϕ), hence

 c d ccos cos
sin

sin
cosϕ µ ϕ ρ λ

µ λ
µ ϕ= −( ) = −( )

−( ) −( )1 ;

and from this

ρ µ λ ϕ
λ µ ϕ

=
−( )
−( )

sin cos

sin cos
.

Angle BCD is now expressed as greater than or equal to a right angle,
the orthogonal projection of ACDˆ . The condition is therefore equivalent to

ACDˆ  ≥ π
2

, that is

c ≤ d cos µ = c (ρ – 1) 
sin λ cos µ
sin (µ – λ)

 = c 
cos ϕ cos µ
cos (µ – ϕ)

 .
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This requires that µ < π
2

 (then ρ > 1 and 0 < λ < µ) and that |µ – ϕ| <

π
2

; the condition can be written as  
sin µ sin ϕ
cos (µ – ϕ)

 ≤ 0, or – π
2

 < ϕ ≤ 0.

In this way Ibn al-Haytham’s lemma is not assured a priori. However,
the inequality of the lemma is explicitly written as

d

d

ν
θ ν ϕ

ν
θ ν ϕ

ρ µ λ ϕ
λ µ ϕ

µ

λ

1

1

0

0

+ −( )

+ −( )
≤ =

−( )
−( )

∫

∫

sin cos

sin cos

sin cos

sin cos
;

which signifies that
cos

sin sin cos

λ ϕ
λ

ν
θ ν ϕ

λ−( )
+ −( )∫

d

10

is a decreasing function of λ. Let us calculate its derivative

−
−( ) −

−( )



 + −( ) +

−( )
+ −( )( )∫

sin

sin

cos cos

sin sin cos

cos

sin sin cos

λ ϕ
λ

λ ϕ λ
λ

ν
θ ν ϕ

λ ϕ
λ θ λ ϕ

λ
2 0 1 1

d

=
−( )

+ −( )






−
+ −( )∫

1
1 12 0sin

cos sin

sin cos
cos

sin cosλ
λ ϕ λ
θ λ ϕ

ϕ ν
θ ν ϕ

λ d .

This derivative is negative if

cos sin

sin cos
cos

sin cos

λ ϕ λ
θ λ ϕ

θ ν
θ ν ϕ

λ−( )
+ −( ) ≤

+ −( )∫1 10

d ,

which inequality can be satisfied for λ = 0.

The inequality persists as long as the derivative of the first member is
less than the derivative of the second:

cos

sin cos

cos sin sin sin

sin cos

cos
sin cos

2

1 1 12

λ ϕ
θ λ ϕ

λ ϕ λ θ λ ϕ
θ λ ϕ

ϕ
θ λ ϕ

−( )
+ −( ) +

−( ) −( )
+ −( )( )

≤
+ −( ) ,

or
cos (2λ – ϕ) + cos2 (λ – ϕ) cos λ sin θ ≤ cos ϕ + sin θ cos (λ – ϕ) cos ϕ

0 ≤ 2sin λ sin (λ – ϕ) + sin θ cos (λ – ϕ) sin λ sin (λ – ϕ)
   = sin λ sin (λ – ϕ)(2 + sin θ cos (λ – ϕ))
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which is satisfied as soon as ϕ ≤ λ. However, here ϕ ≤ 0 < λ; the lemma is

therefore established.

Lemma 8. — Let ABCD be a pyramid such that AB is perpendicular to
plane (CBD) and that BC = BD; if EG || CD, then

area (CDB)
area (EBG) > 

solid angle (A, BCD)
solid angle (A, BEG)

.

A

C

H

G

I

D
E

B

Fig. 3.27

Since EG || CD, triangle BGE is isosceles. If I is the midpoint of EG,
then BI ⊥ EG and BI cuts DC at H, the midpoint of CD.

AB  ⊥(CBD) ⇒  (ABC) ⊥  (CBD) and (ABH) ⊥  (CBD). But BH  =

(ABH) ∩ (BCD) and the straight line GI in plane (BCD) is perpendicular to

BH, therefore it is perpendicular to plane (ABH), therefore AIGˆ  = π
2

, in the

same way AHCˆ  = π
2

.

We know therefore that AIHˆ  and AICˆ  are obtuse and that BHCˆ = π
2

,

and Lemma 6 can be applied with AICˆ  as an obtuse angle; again this is not
a straightforward case, but it is consistent, since points C and H are on the
same side of the plane which is perpendicular to ABH passing through AB
(CH is parallel to this plane)

area (BCH)
area (BCI)  > 

solid angle (A, BCH)
solid angle (A, BCI)

.
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The same Lemma 6 with angle AIGˆ  as a right angle (true in all cases,
with AIGˆ  playing the role of angle ACEˆ  in Lemma 6) gives

area (CBI)
area (IBG) > 

solid angle (A, BCI)
solid angle (A, BIG)

.

Multiplying member by member, we obtain

area (HBC)
area (IBG)  > 

solid angle (A, BCH)
solid angle (A, BIG)

.

By multiplying each term of the ratios by two, it can be deduced that

area (DBC)
area (BEG) > 

solid angle (A, BCD)
solid angle (A, BEG)

,

moreover, a direct integral calculus would prove this independently of
Lemma 6.

Lemma 9. — Let there be two regular pyramids with the same vertex A,
whose bases are similar, regular but unequal polygons, inscribed in a
sphere with centre A.

Let P1 be the pyramid with the largest base and P2 the other pyramid,
then

solid angle A  of P1
solid angle A  of P2

 > 
base of P1
base of P2

 .

C

G

MN

K

B
E

A

FL

H

D

Fig. 3.28
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Let (B, BC) be a circle circumscribed about polygon with base P1 and
AB perpendicular to the plane of this circle. Let the base polygon be split
into equal isosceles triangles by radii which terminate in its vertices, and let
BCD be one of these triangles.

The pyramid P1 is hence decomposed into pyramids that are equal to
one another, and let ABCD be one of them.

One does not limit the problem by presupposing that the plane of base
of P2 is parallel to plane BCD, and that circle (E, EG) circumscribed about
the second base is smaller than the circle (B, BC), and therefore AE > AB.

As in P1, P2 is divided into pyramids equal to each other, and let AEGH
be one of them. Assume EG || BC and EH || BD, EGH is similar to BCD,
therefore GH is parallel to CD.

If BF  ⊥ CD , F  is the midpoint of CD  and if EM  ⊥ GH , M is the

midpoint of GH and therefore EM < BF since 
BF
E M = 

BC
EG.

Straight line AF cuts the sphere at L, therefore L is the midpoint of arc
CD in plane ACD. In the same way straight line AM cuts the sphere at N,
and N is the midpoint of arc GH in plane AGH.

Straight line FM cuts straight line AB, since FB || EM and FB > EM.

Let K be the point of intersection. Therefore 
BK
KE = 

BF
E M

 = 
B C
EG

; however BC

and EG are parallel, hence GC passes through K, and in the same way
straight line DH passes through K.

Comment: K is the centre of homothety for two circles with centre B and E.
Let K be this homothety:

K: E → Β
G → C
H → D
M → F

If we draw from M the parallel to the straight line FA, it cuts straight
line AB at point O between points E and A.

Since OM || FA and GH || CD, then planes HOG and ACD are parallel
and cut plane AKC following straight lines OG and AC, then OG || AC.
Similarly, they cut plane AKD , following straight lines OH  and AD ,
therefore OH || AD, and as a result GOH CADˆ ˆ= .
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U M

H
D

G

L

B

F

O

A
EK

C

Fig. 3.29

In the homothety K, the point A has for image the point O, the sphere
(A, AC) has for image the sphere (O, OG), and the plane (ACD) has for
image the plane (OGH). Therefore intersections (A, AC) ∩ (ACD) and
(O, OG) ∩ (OGH) are homothetic circles, arcs CLD and GUH  are homo-
thetic, and the same holds for sectors (A, CLD) and (O, GUH ) :

sect. (A, CLD)
sect. (O, GUH) = 

AC2

OG2 = 
tr. (ACD)
tr. (OGH)

 = 
segm. (CLD)
segm. (GUH)

(with U the midpoint of GH ); from this we deduce

pyr. (KACD)
pyr. (KOGH) = 

circ. pyr. (KCLD)
circ. pyr. (KGUH)

since on the one hand (KACD) and (KCLD) and on the other hand (KOGH)
and (KGUH) are of the same height. But

pyr. (KACD)
pyr. (KOGH) > 

pyr. (KACD)
pyr. (KAGH)

,

therefore
circ. pyr. (KCLD)
circ. pyr. (KGUH) > 

pyr. (KACD)
pyr. (KAGH)

.

Plane AKLF contains points L, M, N, U since it is the intervening plane
between CD and GH, and its intersection with the sphere is a great circle
which passes through L, N and I (I on AK).
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L

Q

U

N

J

K I E O B A

M

F

Fig. 3.30

In the previous homothety  
AC
OG = 

AF
OM = 

FK
KM, but AC = AL and OG = OU,

hence 
AL
OU = 

AF
OM = 

AL – AF
OU – OM = 

LF
MU; however, LF || MU and 

KF
KM = 

LF
MU, and it

follows that straight line LU passes through the centre of homothety K.
Straight line KN is in plane AKLF, and cuts straight line FL at point Q. It
also cuts the plane of arc GUH whose centre is O, at a point J on straight
line OU; from which we deduce that points K, N, J, Q are aligned.

Fig. 3.31

In a circular pyramid let K be the vertex and AHNG be the base of the
sector. If the pyramid is elongated, it cuts plane ACD, following a line which
includes points C, Q and D. The pyramid also cuts the plane of sector
OHGU following a line which passes through points G, J and H. Arcs GUH
and GIH are homologous, in the homothety with centre K, to arcs CLD and
CQD respectively. Therefore
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circ. pyr. (KCLD)
circ. pyr. (KGUH) = 

circ. pyr. (KCQD)
circ. pyr. (KGJH)

 (= k3),

if k is the ratio of homothety k =
AC

OG
.

But
circ. pyr. (KCLD)
circ. pyr. (KGUH) > 

pyr. (KACD)
pyr. (KAGH)

,

hence
circ. pyr. (KCQD)
circ. pyr. (KGJH)  > 

pyr. (KACD)
pyr. (KAGH)

 .

From this we deduce

circ. pyr. (KACQD)
solid (KAGJH)  > 

pyr. (KACD)
pyr. (KAGH)

    since 
a

b

c

d

a c

b d

c

d
> ⇒ +

+
>




.

Note that our reference to the circular pyramid (KACQD) is a misuse of
the term since the arc CQD is an arc of a conic section, not an arc of a
circle; it would be more correct to call the figure a curvilinear pyramid. We
have allowed ourselves to continue to misuse this term, because it does not
risk causing confusion. The circular pyramid (KAGNH) is inside the solid
(KAGJH), so

circ. pyr. (KACQD)
cir.pyr. (KAGNH)  > 

circ. pyr. (KACQD)
solid (KAGJH)  > 

pyr. (KACD)
pyr. (KAGH)

 .

The portion of pyramid KACQD contained between planes ACQD and
AHNG is inside the portion of the sphere bounded by circular sectors ACLD
and AGNH, therefore solid (ACLDHNG) > solid (ACQDHNG).

The spherical section which is bounded by the straight line AI and the
sector AGNH is inside the circular pyramid KAGNH, therefore section
(AIGNH) < circular pyramid (KAGNH), hence

solid (ACLDHNG)
section (AIGNH)  > 

solid (ACQDHNG)
pyr. circ. (KAGNH)

by composition
a

b

c

d

a b

b

c d

d
> ⇒ + > +
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spherical sect. with solid angle (A, BCD)
spherical sect. with solid angle (A, EGH) > 

circ. pyr. (KACQD)
pyr. circ. (KAGNH)

 > 
pyr. (KACD)
pyr. (KAGH)

 ;

hence
solid angle (A, BCD)
 solid angle (A, EGH) > 

tr. (KCD)
tr. (KGH)

 ;

but
tr.  (KCD)

tr.  (KGH)
= KC

KG






2

= BC

EG






2

= tr.  (BCD)

tr.  (EGH)
,

hence
solid angle (A, BCD)
solid angle (A, EGH) > 

tr. (BCD)
tr. (EGH)

 .

If n is the number of faces of each of the two pyramids under study,
then by multiplying by n each term of the ratios of this inequality, we obtain

solid angle of P1
solid angle of P2

 > 
base of P1
 base of P 2

 .

Comment: Lemma 9 of Ibn al-Haytham’s treatise on figures with equal
perimeters, solids with equal areas and the study of the solid angle is
particularly important. The proof he proposes is long and complicated: it
involves the introduction of no fewer than seventeen distinct points, thirty-
five different straight lines, nine distinct planes, eighteen three-dimensional
figures and eight different curved lines.

Let us examine the validity of Lemma 9 by using a direct analytical
method. Lemma 9 can be written

solid angle  of 
solid angle  of 

base of 
base of 

A P

A P

P

P
1

2

1

2

>

where P1 and P2 are two pyramids with vertex A.
This same lemma can be rewritten

spherical area 
 plane area 

spherical area 
 plane area 

ICD

BCD

IGH

EGH
> ;

So we need to prove that the ratio spherical area 
plane area 

ICD

BCD
 is a decreasing

function of the distance AB, since our assumptions mean that AB < AE.
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Let the radius of the sphere be r and let us put AB = u. The radius BC is
equal to r2 − u2 , so the coordinates of C  are x r u= − ⋅2 2 cosθ ,
y r u= − ⋅2 2 sinθ , z = u where θ is half the angle CBD , let θ = CBFˆ . It

follows that the plane area BCD is equal to (r2 – u2) sin θ cos θ.

The area ICD, which is part of the surface of a sphere, is the product of
r2 by the difference between a plane angle and the sum of the angles CID =
2θ, ICD = ϕ, CDI = ϕ (a result called Albert Girard’s theorem). So the

curved area is

2r2 θ + ϕ − π
2





 = 2r2ψ

where

ψ = θ + ϕ − π
2

.

A

B
CD

I

x

y

z

2θ

φ
B

θ

CD F

Fig. 3.32

Let us calculate ϕ, the dihedral angle between the planes ACI and ACD.

The equations of these planes are respectively: xsinθ – ycosθ = 0 and

ux − z cosθ r2 − u2 = 0 , so

cosϕ = usinθ
u2 + r2 − u2( )cos2 θ

= usinθ
u2 sin2 θ + r2 cos2 θ

.

We also have

sinϕ = r cosθ
u2 sin2 θ + r2 cos2 θ

and
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sin ψ = − cos θ + ϕ( ) = sinθ sinϕ − cosθ cosϕ = (r − u)sinθ cosθ
u2 sin2 θ + r2 cos2 θ

.

The value of the spherical area ICD is thus

2r2 sin ψ .
ψ

sin ψ
= 2r2 (r − u)sinθ cosθ

u2 sin2 θ + r2 cos2 θ
.

ψ
sin ψ

and the value of the ratio spherical area 
 plane area 

ICD

BCD
 is

2r2

(r + u) u2 sin2 θ + r2 cos2 θ
.

ψ
sin ψ

.

The first factor is a decreasing function of u and the second an

increasing function ψ ∈ 0,
π
2






. Now ψ = θ + ϕ − π

2
 is an increasing function

of ϕ and sinϕ = r cosθ
u2 sin2 θ + r2 cos2 θ

 is a decreasing function of u; thus ψ
sin ψ

is a decreasing function of u, which proves the lemma.
This proof makes a direct comparison between the areas, whereas Ibn

al-Haytham’s proof compares volumes. However, our proof shows Ibn al-
Haytham’s basic idea, which is to measure a solid angle by the spherical
area of that which it subtends.

Lemma 10. — Let P1 and P2 be two regular pyramids with the same
vertex A and with n1 and n2 faces respectively, whose bases are regular
polygons B1 and B2 inscribed in a same sphere with centre A, with areas s1

and s2 respectively.

If n1 > n2 and s1 < s2, then  
solid angle A of P2

solid angle A  of P1
 > 

s2
s1

.

Let r1 and r2 be radii of circles circumscribed about B1 and B2. To show
that r1 < r2, Ibn al-Haytham uses a polygon B with n2 sides, area s1, and
radius of the circumscribed circle r. However B is similar to B2 and has an
area smaller than B2, therefore r < r2. But B and B1 have the same area and
B has less sides than B1, hence r1 < r. It follows that r1 < r2. From this it can
be deduced that h1 > h2, if h1 and h2 are the respective heights of the
pyramids.

The method continues as before. Let A be the centre of the sphere, AB
perpendicular to the plane of the larger base and BCD one of its triangles,
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AE perpendicular to the plane of the smaller base and EGH one of its
triangles, then AE > AB. It can be assumed without limiting the problem

that points A, E and B are aligned and that EG  || BC, GEHˆ  = 2π
n1







 is

smaller than CBDˆ = 2π
n2







, therefore EH is not parallel to BD.

Draw EK || BD, then GEK CBDˆ ˆ= . Let N, M and F be the respective
midpoints of chords DC, GH and GK, then BN ⊥ CD, EM ⊥ GH, EF ⊥ GK,
pyramids ABCD, AEGH and AEGK are divided into two equal pyramids by
planes ABN, AEM and AEF respectively. Triangles EGK and BCD are
similar, therefore

(1)
solid angle pyr. (A, BCD)
solid angle pyr. (A, EGK) > 

area (BCD)
area (EGK)

  (Lemma 9).

C A

B
N

D
K

H

F

M

E

O

G

Fig. 3.33

But GEK GEHˆ ˆ> , hence EGF EGMˆ ˆ< , therefore GF  cuts EM  at a
point O. However GOEˆ  is obtuse. AGK is isosceles and F is the midpoint of
GK , therefore AF  ⊥  GK , and it follows that AOGˆ  is obtuse; Ibn al-

Haytham applies Lemma 6 for the ambiguous case: angle AOG becomes
angle AEC of Lemma 6. But G M  is parallel to the plane which is
perpendicular to AEM, passing through AE, and therefore G and M are on
the same side of the plane and the lemma is valid.

(2)
area (EGM)
area (EGO)  > 

solid angle (A, EGM)
solid angle (A, EGO)

.

Angle AFG is a right angle, and from Lemma 7 we get
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(3)
area (EGF)
area (EOF)  > 

solid angle (A, EGF)
solid angle (A, EOF)

;

from (3) we have

(4)
area (EGO)
area (EGF) > 

solid angle (A, EGO)
solid angle (A, EGF)

,

and from (2) and (3), through multiplication member by member, we get

area (EGM)
area (EGF)  > 

solid angle (A, EGM)
solid angle (A, EGF)

,

hence

(5)
solid angle (A, EGF)
solid angle (A, EGM) > 

area (EGF)
area (EGM)

;

(1) can be written

(6)
solid angle (A, BCD)
solid angle (A, EGF) > 

area (BCD)
area (EGF)

, since (EGK) = 2(EGF);

from (5) and (6), through multiplication member by member, we deduce

(7)
solid angle (A, BCD)
solid angle (A, EGM) > 

area (BCD)
area (EGM)

.

Solid angle A in P2 and the base of P2 are equimultiples of solid angle
(A, BCD) and of the triangle BCD:

Angle A of P2 = n2 angle (A, BCD)
     Base of P2 = n2 triangle (BCD)

and similarly
Angle A of P1 = n1 angle (A, EGK) = 2n1 angle (A, EGM)
     Base of P2 = n1 triangle (EGK)  = 2 n1 · triangle (EGM).

From (7) we therefore deduce

solid angle A  of P2
solid angle A  of P1

 > 
base of P2

 base of P 1
.
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At the end of this long development and examination of previous
lemmas, we may wonder whether Ibn al-Haytham might not have had any
inkling about inequalities (as stated in Lemmas 7, 8, 10 and drawn from his
research on solid angles) before attempting their proof using Lemma 6, then
reducing it to a sub-lemma. His method does explain that Lemmas 7, 8, 10
are true independently of Lemma 6, as we have seen. And in support of
this, it can be argued that in subsequent work, Ibn al-Haytham uses only
Lemmas 8, 9 and 10, thus avoiding any error contained in Lemma 6.

Theorem of Proposition 5a. — Of two regular polyhedra, with similar
bases and equal surfaces, the one with the greater number of faces has the
greater volume.

Let A  be the centre of the sphere circumscribed about the first
polyhedron, AE the distance from A to the plane of one of the faces, SA the
total area of the polyhedron and VA its volume, then VA = 

1
3 SA · AE.

Let B be the centre of the sphere circumscribed about the second
polyhedron, BG the distance from B to the plane of one of the faces, then in

the same way VB = 
1
3 SB · BG.

By hypothesis, we have SA = SB, and with nA and nB the number of
faces of the polyhedra, then nB > nA.

The proof consists of comparing AE and BG.
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Let us assume a base of pyramid A divided into triangles, and let CED
be one of them. Let us proceed similarly for pyramid B and let GHI be the
triangle obtained.

AE ⊥ plane (ECD)  and  BG ⊥ plane (HGI).

Since the bases of pyramids are similar, then so are triangles ECD and
HGI.
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Hypotheses SA = SB and nB > nA mean that base A is larger than base B,
therefore triangle ECD is greater than triangle HGI; they are isosceles,
therefore EC > GH, ED > GI.

Let point K be on EC such that GH = EK and point L on ED such that
EL = GI. If it were that AE = BG, then pyramid AEKL would be equal to
pyramid BGHI and then solid angle (A, EKL) = solid angle (B, GHI).

We know that (from Lemma 2 of Proposition 4)

solid angle (A, ECD)
4π  = 

pyr. (AECD)
VA

 = 
area (ECD)

SA

and
solid angle (B, GHI)

4π  = 
pyr. (BGHI)

VB
 = 

area (GHI)
SB

 .

Since SA = SB, we deduce

(1)
area (ECD)
area (GHI)  = 

solid angle (A, ECD)
solid angle (B, GHI)

,

then
area (ECD)
area (GHI)  = 

solid angle (A, ECD)
solid angle (A, EKL)

,

which, according to Lemma 8, is absurd. Therefore AE ≠ BG.
If BG < AE, M exists on AE such that EM = BG and then

solid angle (M, EKL) = solid angle (B, GHI).
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But we would have EMK EAKˆ ˆ> , EML EALˆ ˆ> , KML KALˆ ˆ>  (angles
at the vertex of two isosceles triangles of same base KL); hence
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EMK EML KML EAK EAL KALˆ ˆ ˆ ˆ ˆ ˆ+ + > + + ,

and it follows that solid angle (M, EKL) > solid angle (A, EKL).
According to Lemma 8

area (ECD)
area (EKL)  > 

solid angle (A, ECD)
solid angle (A, EKL)

;

we would therefore have here
area (ECD)
area (EKL)  > 

solid angle (A, ECD)
solid angle (M, EKL)

,

that is
area (ECD)
area (GHI)  > 

solid angle (A, ECD)
solid angle (B, GHI)

,

which is absurd according to (1).
We have necessarily BG > AE and it follows that VB > VA.

Theorem of Proposition 5b. — If the faces of two regular polyhedra are
similar regular polygons and are inscribed in a same sphere, then the one
with the greater number of faces has the greater surface and the greater
volume.

Let P1 and P2 be two polyhedra, S1 and S2 their surfaces, V1 and V2

their volumes, n1 and n2 the number of faces. Assume n1 > n2. If A is the
centre of the sphere circumscribed about two polyhedra, then there would
be n1 regular equal pyramids with the same vertex A, associated with the
faces of P1, and n2 regular equal pyramids associated with the faces of P2.

Let α1, s1, h1 be respectively the angle at the vertex, the area of the base
and the height of regular pyramid P′1 associated with P1, and let α2, s2, h2

be the same elements of regular pyramid P′2 associated with P2.
We have n1α1 = n2α2 = 4π, as n1 > n2, then α1 < α2.
We may assume that a pyramid P′1 and a pyramid P′2 have the same

axis AH and since α1 < α2, the solid angle of P′1 is inside the solid angle of
P′2, the edges of P′1 cut the sphere beyond the plane of the base of P′2. The
planes of the two bases are parallel and cut the sphere following the circles
circumscribed about these bases. From this it can be deduced that s1 < s2

and h1 > h2. Moreover,

α1

4π
 = 

s1

S1
 = 

1
n1

  and   
α2

4π
 = 

s2

S2
 = 

1
n2

,
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hence
α2

α1
 = s2

S2
 ·

S1
s1

 = 
s2
s1

 · 
S1
S2

.

But it was established (Proposition 9) that 
α2

α1
 > s2

s1
,  therefore   s2

s1
 ·

S1
S2

 > 
s2
s1

,

hence S1 > S2.

We know that V1 = 1
3

S1h1 and V2 = 1
3

S2h2; since S1 > S2 and h1 > h2,

we have V1 > V2.
As explained in the introduction to this chapter, this theorem, although

largely proved by Ibn al-Haytham’s method, only applies in the case of
tetrahedra, octahedra or icosahedra.

Corollary. — Let two regular polyhedra be inscribed in a same sphere.
These polyhedra P1 and P2 have respectively n1 and n2 faces, and the faces
are regular polygons with n′1 and n′2 sides respectively

If n1 > n2 and n′1 > n′2, then S1 > S2 and V1 > V2.

According to Lemma 10, the distance from the centre of the sphere to
the faces of P1 is greater than the distance to the faces of P2.

The argument continues as before, using a result established in Lemma
10 – which refers to solid angles with the centre of the sphere as their
vertex.

Commentary: Since the polyhedra in question are regular, this corollary
signifies that if a regular tetrahedron, a cube and a dodecahedron are
inscribed in a same sphere, their lateral surfaces and their volumes increase
in that order.

From a remark by Hypsicles,6 Apollonius compared the ratio of areas
and the ratio of volumes of a dodecahedron and an isocahedron: these ratios
are equal since the distances from the centre to the faces of these two solids
are the same. Ibn al-Haytham also uses the comparison of distances from the
centre to the faces, but in the other cases which he examined, he used a
more general way.

6 The Thirteen Books of Euclid’s Elements, trans. and com. by T. L. Heath, 3
vols, 2nd ed., Cambridge, 1926, vol. III, p. 512.
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On the Sphere which is the Largest of all the Solid Figures
having Equal Perimeters and On the Circle which is the
Largest of all the Plane Figures having Equal Perimeters





In the Name of God, the Forgiving, the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Sphere which is the Largest of all the Solid Figures having
Equal Perimeters1 and On the Circle which is the Largest of all the

Plane Figures having Equal Perimeters

<Introduction>

One of the geometric notions on which is based the deduction that the
sky is a sphere and that the entire Universe has a circular shape, is that the
greatest of all the solid figures having equal perimeters, and the perimeter of
each of which <consists> of equal parts, and which has the greatest
volume,2 is the figure of the sphere, and that the greatest of the plane
figures having equal perimeters and the perimeter of each of which
<consists> of equal parts, and which has the greatest area, is the figure of
the circle, and that solid and plane figures having a shape close to being
circular are greater than those whose shape is far from being circular. By
‘that which has a similar perimeter’, I mean that in which the parts of its
perimeter are similar to each other. Among the solid figures, the sphere and
those rectilinear figures whose bases have equal sides are similar, and among
the plane figures, this includes the circle and the regular polygons.3 Of these
solid figures with bases, those whose shape is closest to being circular are
those with the greatest number of bases, and their bases are similar to the
bases of the other solid. The plane figures that are closest to being circular
are those with the greatest number of sides.

1 It is clear that in the case of ‘volumes’, we should read ‘surface area’. However,
as Ibn al-Haytham uses the same word for both solids and plane figures, a word which
should be translated as ‘that which encloses’, we have chosen to use the same word,
‘perimeter’, in both cases in order to retain a single word translation.

2 Lit.: measurement, which we translate in the case of a solid as ‘volume’, in the
case of a surface by ‘area’, and in the general case by ‘measurement’.

3 Lit.: figures with straight lines whose sides and angles are equal.
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Mathematicians have made mention of this notion and have made use of
it. However, they have provided no formal proof of this notion, nor has any
convincing argument of its truth come down to us from them. This state of
affairs has prompted us to make a careful examination of this matter. A
universal proof of this notion in all its forms has presented itself to us. We
have therefore written this treatise.

<The circle: The greatest of all the plane figures>

<1> Any circle whose circumference is equal to the perimeter of a
regular polygon has an area greater than that of the polygon.

Example: Let AB be the circumference of the circle and let this be equal
to the perimeter CDEGH of the regular polygon.

I say that the area of the circle AB is greater than that of the figure
CDEGH.

Proof: As the figure CDEGH is a regular polygon, there exists a circle
inscribed within this polygon that is tangential to all its sides. If each of its
angles is divided into two halves, and if the bisectors are drawn, then these
will meet at a single point within the figure, and the triangles thus formed,
whose vertices are all at this point, are all equal and similar. The
perpendiculars drawn from this point to all the sides of the figure are equal.
If this point is then taken as a centre and a circle is drawn around it with a
radius equal4 to one of these perpendiculars, then that circle will be
tangential to all the sides of the figure.
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Let the circle that is tangential to the sides of the figure be the circle
KNFO′Q, and let its centre be I. Join the two straight lines IME and ILG
and draw the perpendicular IK. The product of the perpendicular IK and
one half of EG is then equal to the area of the triangle IEG, and the product

4 Lit.: at a distance. We shall translate this expression in this way from now on.
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of IK, which is the half-diameter of the circle, and one half of the arc ML is
equal to the area of the sector IMKL, and the triangle IEG is greater than
the sector IMKL. The straight line EG is therefore greater than the arc ML.
Similarly, we can show that each side of the figure is greater than the arc
intercepted by the two straight lines drawn from the point I to the
extremities of that side. The perimeter of the figure CDEGH is therefore
greater than the circumference of the circle KNFO′Q, and the perimeter of
the figure CDEGH is equal to the circumference of the circle AB. Therefore,
the circumference of the circle AB is greater than the circumference of the
circle KNFO′Q, and therefore the half-diameter of the circle AB is greater
than the straight line KI. But the product of the half-diameter of the circle
AB and one half of its circumference is equal to its area, and the product of
the straight line IK and one half of the perimeter of the figure CDEGH,
which is equal to the circumference of the circle AB, is equal to the area of
the figure. The circle AB is therefore greater than the figure CDEGH. That
is what we wanted to prove.

<2> If two regular polygons have the same perimeter and one has more
sides than the other, then the area of the first is greater than the area of the
second.

Example: Let there be two regular polygons ABCDE and GHIKLM,
such that the sides of the figure GHIKLM are greater in number than the
sides of the figure ABCDE, and let their perimeters be equal.

I say that the area of the figure GHIKLM is greater than that of the
figure ABCDE.

Let the point N be the centre of the circle circumscribed around the
figure ABCDE, and let the point F be the centre of the circle circumscribed
around the figure GHIKLM. We draw the straight lines NA, NB, NC, ND
and NE, and the straight lines FG, FH, FI, FK, FL and FM. We draw the
perpendicular NP and the perpendicular FU.5 If we draw perpendiculars
from the point N to each of the sides of the figure ABCDE, this will
generate a set of triangles with equal bases – each being equal to the triangle
END – and whose angle at the summit6 is equal to the angle END.
Similarly, if perpendiculars are drawn from the point F to each of the sides
of the figure GHIKLM, this will generate a set of triangles with equal bases
– each being equal to the triangle MFU – and whose angle at the centre is
equal to the angle MFU, such that the number of bases of the triangles –
which are in each of the two figures – is equal to the number of angles at
the centre of each of them. The ratio of the angle ENP to the sum of the

5 NP perpendicular to DE, and FU perpendicular to LM.
6 Lit.: centre.
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angles at the centre N is therefore equal to the ratio of the straight line EP
to the entire perimeter of the figure ABCDE, as the angles are equal, the
bases of the triangles are equal, and the number of angles is equal to the
number of bases, whose sum is equal to the perimeter of the figure.
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Similarly, the ratio of the angle MFU to the sum of the angles at the
centre F is equal to the ratio of MU to the entire perimeter of the figure
GHIKLM. Inverting, the ratio of the sum of the angles at the centre F to the
angle MFU is equal to the ratio of the entire perimeter to MU. The sum of
the angles at the point N is equal to the sum of the angles at the point F, as
this sum is equal to four right angles. But the perimeter ABCDE is equal to
the perimeter GHIKLM. Therefore the ratio of the angle PNE to the sum of
the angles at the point N is equal to the ratio of the straight line EP to the
entire perimeter of the figure GHIKLM, and the ratio of the sum of the
angles at the point F to the angle MFU is equal to the ratio of the perimeter
of the figure GHIKLM to the straight line MU. Using the equality ratio, the
ratio of the angle ENP to the angle MFU is equal to the ratio of the straight
line EP to the straight line MU. However, as the figure GHIKLM has more
bases than the figure ABCDE, each of the angles at the point F, which is the
vertex of the triangles, is less than each of the angles at the point N, as if
each of these two figures were to be inscribed within a circle, each side of
the figure GHIKLM would cut off from its circle a part whose ratio to the
circle is less than the part <of the circle> cut off from its circle by a side of
the figure ABCDE. Therefore, the angle MFU is less than the angle ENP.
From the angle ENP, take away the angle PNS equal to the angle MFU.
The ratio of the angle ENP to the angle PNS is then equal to the ratio of the
straight line EP to the straight line MU. Setting N as the centre and the
straight line NS as the radius, draw the arc <of a circle> SJ. The ratio of the
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angle ENP to the angle SNP is then equal to the ratio of the sector RNJ to
the sector SNJ. But the ratio of the angle ENP to the angle SNP was equal
to the ratio of the straight line EP to the straight line MU. Therefore, the
ratio of the sector RNJ to the sector SNJ is equal to the ratio of the straight
line EP to the straight line MU. But the ratio of the straight line EP to <the
straight line> PS is greater than the ratio of the sector RNJ to the sector
SNJ, as this ratio is the ratio of the triangle ENP to the triangle SNP which
is greater than the ratio of the sector RNJ to the sector SNJ.7 Therefore, the
ratio of the straight line EP to the straight line PS is greater than the ratio of
the straight line EP to the straight line MU, and therefore the straight line
SP is less than the straight line MU. We mark off PQ equal to MU and we
draw QO parallel to the straight line NS. The angle POQ is then equal to the
angle MFU, as each of these two angles is equal to the angle SNP. But the
two angles at the points U and P are right angles. Therefore the remaining
angle in the triangle OQP is equal to the angle FMU and the side QP is
equal to the side MU. Therefore, the triangle OQP is equal to the triangle
FMU, and hence the straight line OP is equal to the perpendicular FU. But
OP is greater than the perpendicular NP. Therefore, the perpendicular FU is
greater than the perpendicular NP. The product of the perpendicular FU
and one half of the perimeter of the figure GHIKLM is the area of the figure
GHIKLM, and the product of the perpendicular NP and one half of the
perimeter of the figure ABCDE is the area of the figure ABCDE. But the
perimeters of the two figures are equal, and the perpendicular FU is greater
than the perpendicular NP. Therefore, the area of the figure GHIKLM is
greater than the area of ABCDE. That is what we wanted to prove.

This notion may also be proved in another way. If the proof leads to the
conclusion that the straight line SP is less than the straight line MU, then it
can be shown that the straight line NP is less than the straight line FU, as
the angle PNS is equal to the angle UFM and each of the two angles at the
points P and U are right <angles>. The two remaining angles are therefore
equal, and hence the triangle MFU is similar to the triangle SNP and the
straight line MU is greater than the straight line SP. The perpendicular FU
is therefore greater than the perpendicular NP. But the perimeter of the
figure GHIKLM is equal to the perimeter of the figure ABCDE. Therefore,
the area of the figure GHIKLM is greater than the area of the figure
ABCDE. That is what we wanted to prove.

From what we have shown, it is clear that, of all the figures with similar
and <equal> perimeters,8 the circle has the greatest <area> and, of all the

7 This can be proved. See the mathematical commentary.
8 i.e. regular polygons (see the mathematical commentary).
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polygons, that which is closest to being circular in shape is greater than that
which is less circular in shape.

<3> We also say that if two regular polygons are inscribed within the
same circle such that one has more sides than the other, then the area of the
figure with the greater number of sides is greater than the area of the other
figure, and its perimeter is also greater than the perimeter of the other.

<Lemma> We first introduce the following lemma. Let there be two
different arcs such that their sum is less than two thirds of a circle. Then the
ratio of the larger arc to the smaller arc is greater than the ratio of the chord
of the larger arc to the chord of the smaller arc.

Let there be two different arcs AB and BC, such that their sum which is
the arc ABC is not greater than two thirds of a circle, and let AB and BC be
their chords.

I say that the ratio of the arc AB to the arc BC is greater than the
ratio of the chord AB to the chord BC.

Proof: We join AC and we make the angle CBD equal to the angle
BAC, which is less than the angle ABC as the arc BC is less than the arc CA
– the arc BC being less than one third of the circle and the arc CA not being
less than one third of the circle. The angle BDC is equal to the angle ABC,
and the two triangles ABC and BDC are therefore similar. Therefore, the
ratio of AC to CB is equal to the ratio of BC to CD. But AC is greater than
CB. Therefore, the straight line BC is greater than the straight line CD.
Setting C as the centre, we draw an arc of a circle with CB as the radius,
cutting the straight line AC between the two points A and D at the point K.
We make the angle DCE equal to the angle CBE, which is equal to the
angle BAC, which is less than the angle BCA. The point E therefore lies
within the arc BK. We produce CE until it meets the arc at the point H. The
ratio of HC to CE is therefore equal to the ratio of BC to CE, which is equal
to the ratio of BD to DC, and equal to the ratio of CD to DE, as the two
triangles BCD and DCE are similar. We draw HG parallel to the straight line
BD. Then the ratio of CG to CD is equal to the ratio of HG to ED which is
equal to the ratio of HC to CE, which is equal to the ratio of BC to CE,
which is the ratio of CD to CE. The straight line HG is therefore equal to
the straight line DC, and BD is greater than DC as its ratio to the latter is
equal to the ratio of AB to BC. The straight line BD is therefore greater than
the straight line HG and is parallel to it. We join BH and extend it until it
meets the straight line AC at the point I. The ratio of BI to IH is therefore
equal to the ratio of BD to HG, which is the ratio of BD to DC, which is the
ratio of AB to BC. But the ratio of the sector CBH to the sector CHK is
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greater than the ratio of the triangle CBH to the triangle CHI.9 Therefore,
the ratio of the arc BH to the arc HK is greater than the ratio of the straight
line BH to the straight line HI. Therefore, the ratio of the angle BCH to the
angle HCK is greater than the ratio of the straight line BH to the straight
line HI. Composing, the ratio of the angle BCA to the angle ACH, which is
equal to the angle BAC, is greater than the ratio of the straight line BI to the
straight line IH, which is the ratio of BD to HB, which is the ratio of BD to
DC, which is the ratio of the straight line AB to the straight line BC. But the
ratio of the angle BCA to the angle BAC is the ratio of the arc AB to the arc
BC. The ratio of the arc AB to the arc BC is therefore greater than the ratio
of the chord AB to the chord BC. That is what we wanted to prove.
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<Proof of Proposition 3> Having proved this, let there now be a circle
ABC in which are inscribed two regular polygons, one of which has more
sides than the other. Let these polygons be ABCD and BEGHI.

I say that the area of the figure BEGHI is greater than the area of the
figure ABCD and that its perimeter is greater than the perimeter of the
other.

Proof: There cannot exist in a circle any regular polygon with fewer
sides than a triangle, each of whose sides subtends one third of the circle,
and after the triangle, there cannot exist any regular polygon having fewer
sides than a square, each of whose sides subtends one quarter of the circle. It
is therefore impossible for there to exist in the same circle, two regular
polygons whose respective sides subtend <arcs> on the circle that are
greater than one third or one quarter of it. Let there be two regular
polygons inscribed within a circle. Their respective sides will each subtend

9 This is not obvious. See the mathematical commentary.
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an arc10 on the circle that is less than two thirds of the circle. <The sum of>
the two arcs AB and BE is less than two thirds of the circle, and the arc AB
is greater than the arc BE. Therefore, the ratio of the arc AB to the arc BE
is greater than the ratio of the chord AB to the chord BE, and the ratio of
the arc AB to the arc BI is greater than the ratio of the chord AB to the
chord BI.11 Ptolemy has proved this ratio in the first Book of the Almagest
using a method different from that described here. We have taken up the
proof of this ratio so that the notion, introduced here for the purposes of this
lemma, should be clear without having first to read the Almagest.12 The
ratio of the arc AB to the arc BI is compounded of the ratio of the arc AB
to the circumference of the circle and the ratio of the circumference of the
circle to the arc BI. But the ratio of the arc AB to the circumference of the
circle is equal to the ratio of the side AB to the perimeter of the figure
ABCD, as the arcs and the sides are equal in number, and the ratio of the
circumference of the circle* to the arc BI is equal to the ratio of the
perimeter of the figure BEGHI to the side BI. The ratio of the arc AB to the
arc BI is therefore compounded of the ratio of the side AB to the perimeter
of the figure ABCD and the ratio of the perimeter of the figure BEGHI to
the side BI. But the ratio of the arc AB to the arc BI is greater than the ratio
of the side AB to the side BI. Therefore, the ratio compounded of the ratio
of AB to the perimeter of the figure ABCD and the ratio of the perimeter of
the figure BEGHI to the side BI is greater than the ratio of AB to BI. But
the ratio of AB to BI is compounded of the ratio of AB to the perimeter of
ABCD and the ratio of the perimeter of ABCD to BI. The ratio
compounded of the ratio of AB to the perimeter of ABCD and the ratio of
the perimeter of BEGHI to BI is therefore greater than the ratio
compounded of the ratio of AB to the perimeter of ABCD and the ratio of
the perimeter of ABCD to BI. Eliminating the ratio of AB to the perimeter
of ABCD, which is common to both, there remains the ratio of the
perimeter of BEGHI to BI greater than the ratio of the perimeter of ABCD
to BI. Therefore, the perimeter BEGHI is greater than the perimeter ABCD.

But the perpendicular drawn from the centre of the circle* to the
straight line BI is greater than the perpendicular drawn from the centre of
the straight line AB, as BI is less than AB. But the product of the
perpendicular drawn from the centre to BI and one half of the perimeter of
the figure BEGHI is the area of this figure, and the product of the
perpendicular drawn from the centre to the straight line AB and one half of

10 That is, two arcs whose sum is less.
11 From the lemma.
12 Implying: without needing to look it up in the Almagest.
* The two asterisks indicate the repeated paragraphs in the Tehran manuscript.



THE SPHERE WHICH IS THE LARGEST OF THE SOLID FIGURES 313

the perimeter of the figure ABCD is the area of that figure. Therefore, the
area of the figure BEGHI is greater than the area of the figure ABCD and
the perimeter of the figure BEGHI is greater than the perimeter of the
figure ABCD. That is what we wanted to prove.

<The sphere: The greatest of all the solid figures>

<4> I also say that for any sphere whose lateral area is equal to the
area of a regular polyhedron,13 the volume of the sphere is greater than
that of the regular polyhedron.

<Lemmas> We first introduce the following lemmas. The eminent
Archimedes has shown in his book On the Sphere and the Cylinder, that a
sphere is two thirds of the cylinder whose base is the great circle inscribed
within the sphere and whose height is the diameter of the sphere, and that
the area of the sphere is four times that of the great circle inscribed within
the sphere, and that the volume of the cylinder is the product of its height
and its base. It necessarily follows from this that the product of the diameter
of the sphere and two thirds of the great circle inscribed within the sphere is
the volume of the sphere, and that the product of the half-diameter of the
sphere and one and one third times the great circle inscribed within the
sphere is its area, but one and one third times the great circle inscribed
within the sphere is one third of the entire area of the sphere, as the area of
a sphere is four times that of the great circle inscribed within the sphere.
From all that, it is necessary that the volume of the sphere is the product of
it half-diameter and one third of its area.

Any regular polyhedron inscribed within a sphere is such that, if planes
are drawn from the centre of the sphere passing14 through the sides of one
of its bases, then these planes divide off a sector from the sphere whose ratio
to the entire sphere is equal to the ratio of the spherical surface at the base
of this sector to the entire surface of the sphere, and is also equal to the ratio
of the solid angle, that is the angle at the centre of the sphere which is
surrounded by the surfaces of a regular pyramid15 whose lines are straight
and whose base is one of the bases of the polyhedron, to the eight solid right
angles which is the sum of all the solid angles at the centre of the sphere and

13 Lit.: a solid figure whose bases are equal, whose sides are equal, and which are
similar. From now on, we shall translate this expression as ‘regular polyhedron’.

14 Lit.: planes to the sides.
15 Lit.: rectangular cone.
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which are also at the centre of any regular polyhedron, as the sphere and
the surface of the sphere are divided by these planes into equal parts.

As for the angles, if a great circle is drawn within the sphere, and if two
diameters are drawn within this circle which cross each other at right angles,
and if a perpendicular to this plane is drawn passing through its centre, and
if this is extended on both sides until it meets the surface of the sphere, and
if <perpendicular> straight lines are drawn from these two extremities onto
the extremities of the two diameters, then they form eight equal pyramids
within the sphere whose vertices are at the centre of the sphere and whose
angles at the vertices are equal. Each of these angles is called a ‘solid right
angle’, and the sum of these angles is equal to the sum of the angles16 of
any polyhedron inscribed within the sphere.

 It necessarily follows that the product of the half-diameter of the sphere
and one third of the area of the spherical surface forming the base of the
spherical sector is the volume of the spherical sector.

Having proved this, now let there be a sphere A and a regular
polyhedron B such that, regardless of the figure of the polyhedron, and
regardless of the figure of its bases, the lateral area of the polyhedron is
equal to the area of the sphere A.

 I say that the volume of the sphere is greater than that of the
polyhedron.
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Proof <of Proposition 4>: Any regular polyhedron is inscribed within
a sphere. Let the point B be the centre of the sphere in which is inscribed
the polyhedron B, and let one of the bases of the polyhedron B be the plane
DGE. We join the straight lines BG, BE and BD, which are equal. From the

16 The sum of the solid angles whose vertices are at the centre of the polyhedron.
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point B, we draw a perpendicular to the plane DGE, and let this be BC. The
point C will be at the centre of the figure DGE as the point C is the centre
of the circle circumscribing the figure DGE, and which is on the sphere
circumscribing the polyhedron B. We imagine a sphere whose half-diameter
is BC. This sphere is tangent to all the bases of the figure B as the
perpendiculars drawn from the point B onto all the bases of the figure are
equal as the figure B is inscribed within a sphere, and therefore its equal
bases are inscribed within equal circles whose planes intersect the sphere.
Therefore, the straight lines drawn from the centre of the sphere to the
centres of these circles are equal. But they are perpendicular to their plane,
and the faces of the pyramid BCEG cut off from the sphere17 a section
which is inside this pyramid. Therefore, the pyramid BCEG is greater than
the spherical sector which is internal to it and which is a part of the sphere,
as the pyramid is a part of the polyhedron. But the product of BC and one
third of the area of DEG is equal to the volume of the pyramid, and the
product of BC and one third of the spherical surface which is the base of the
spherical sector, and which lies within the regular pyramid, is the volume of
this sector as the ratio of the surface area of the sector to the entire surface
area of the sphere is equal to the ratio of the sector to the entire sphere. The
ratio of the product of the half-diameter of the sphere and one third of the
base of the spherical sector to the product of the half-diameter of the sphere
and one third of the entire surface area of the sphere is therefore equal to
the ratio of the spherical sector to the entire sphere. But the product of the
half-diameter of the sphere and one third of the entire surface area of the
sphere is the volume of the sphere. Therefore, the product of the half-
diameter of the sphere and one third of the base of the spherical sector is the
volume of the spherical sector. The product of the straight line BC and one
third of the surface DEG is therefore greater than the product of BC and
one third of the base of the spherical sector. The surface DEG is therefore
greater than the spherical surface which is the base of the <spherical>
sector. Similarly, each base of the polyhedron is greater than the spherical
surface cut off by the faces of the pyramid drawn from the centre of the
sphere to the sides of this base.

We have therefore shown that the surface enclosing the polyhedron B is
greater than the surface area of the sphere inscribed within this polyhedron
whose half-diameter is the straight line BC. But the surface enclosing the
polyhedron B is equal to the surface area of the sphere A. Therefore, the
surface area of the sphere A is greater than the surface area of the sphere
whose half-diameter is the straight line BC. Therefore, the half-diameter of
the sphere A is greater than the straight line BC. The product of the half-

17 This refers to this entire section of the inscribed sphere.
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diameter of the sphere A and one third of the area of the sphere A is equal
to the volume of the sphere A, and the product of the straight line BC and
one third of the area of the surface enclosing the polyhedron B is the
volume of the polyhedron B. But one third of the area of the sphere A is
equal to one third of the area of the surface enclosing the polyhedron B, and
the half-diameter of the sphere A is greater than the straight line BC.
Therefore, the volume of the sphere A is greater than the volume of the
polyhedron B. That is what we wanted to prove.

<Proposition 5> We also say that, given two regular polyhedra, the
bases of one of which are similar to the bases of the other and the bases of
one being more numerous than the bases of the other, this being true for
polyhedra whose bases are equilateral triangles,18 and if the surface
enclosing one is equal to the surface enclosing the other, i.e. the sum of the
bases of one is equal to the sum of the bases of the other, the volume of the
polyhedron with the most bases is greater than the volume of the other.

We also say that, given two regular polyhedra, the bases of one of
which are similar to the bases of the other and the bases of one being more
numerous than the bases of the other, and which are inscribed within the
same sphere, then the surface enclosing the polyhedron with the larger
number of bases is greater than the surface enclosing the other, and the
volume of the polyhedron with the larger number of bases is greater than
the volume of the other.

We first introduce the following lemmas.
<Lemma> Let there be two pyramids located within the <same>

sphere with their vertices at the centre of the sphere. Then the ratio of the
angle19 of one of the pyramids to the angle20 of the other pyramid is equal
to the ratio of the portion of the surface of the sphere intercepted21 by the
angle of one of the pyramids to the portion of the surface of the sphere
intercepted by the angle of the other pyramid, and is equal to the ratio of
the spherical sector whose base is one portion of the surface of the sphere to
the spherical sector whose base is the other portion.

Proof: If we take equal multiples, regardless of what they are, for each
of the two pyramids, then these multiples divide the sphere into equal
sectors whose angles are equal and whose spherical surfaces are equal.

18 i.e. the regular tetrahedron, octahedron and icosahedron.
19 Solid angle.
20 Solid angle.
21 Lit.: the portion of the sphere that subtends the angle of the pyramid. We shall

translate similar expressions in the same way from now on.
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Therefore, if the portion of the sphere separated out by the whole
multiple of one of the two pyramids was greater than the portion separated
out by the whole multiple of the other pyramid, then the angle which is the
multiple of the angle of one of the pyramids will be greater than the angle
which is the multiple of the angle of the other pyramid, and the portion of
the surface of the sphere intercepted by the larger angle will be greater than
the portion of the surface of the sphere intercepted by the smaller angle. If
the portion of the sphere separated out by the multiple of one of the
pyramids was less than the portion of the sphere separated out by the
multiple of the other pyramid, then the angle of one of the two portions will
be less than the angle of the other portion, and the spherical surface
intercepted by the smaller angle will be less than the spherical surface
intercepted by the larger angle. And if one of the two portions is equal to
the other, then one of the angles will be equal to the other, and one of the
surfaces will be equal to the other. Therefore, if the angle which is the
multiple of the angle of one of the pyramids were greater than the angle
which is the multiple of the angle of the other pyramid, then the first
spherical surface would be greater than the second spherical surface and the
first sector, which is a portion of the sphere, would be greater than the other
sector which is another portion of the sphere. And if the angle which is the
multiple <of the angle of the first pyramid> were less than the angle which
is the multiple <of the angle of the second pyramid>, then the first spherical
surface would be less than the second spherical surface and the first sector
would be less than the second sector. And if the angle which is the multiple
of the first were equal to the angle which is the multiple of the angle of the
second, then the first spherical surface would be equal to the second
spherical surface and the first sector would be equal to the second sector.
And if the multiple <of the pyramid> cannot be taken in a single sphere,
then the multiple <of the pyramid> may be taken in two or more spheres.

The proof proceeds in the same way as in the case in which the spheres
are equal. Therefore, the ratio of the angle of one of the two pyramids to the
angle of the other pyramid is equal to the ratio of the spherical surface
intercepted by the first angle to the spherical surface intercepted by the
other angle, and is equal to the ratio of the first sector to the second sector.
That is what we wanted to prove.

<Lemma 6> Let there be a pyramid with a triangular base such that
one of its sides drawn from its vertex to one of the angles of its base
encloses, with each of the two sides of the angle to which it was drawn, an
angle which is not less than a right angle, and such that if a straight line is
drawn from its vertex to one of the two sides of the base already mentioned
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and cuts this side, and if a straight line is drawn from the extremity of this
straight line to the extremity of the other side separating from the base a
triangle which is part of the base, and separating from the pyramid a
pyramid which is part of the pyramid, and if one of the two angles of the
triangle so formed – which are on the base – is not less than a right angle,
then the ratio of the base of the larger pyramid to the base of the smaller
pyramid is greater than the ratio of the angle of the larger pyramid to the
angle of the smaller pyramid.

Example: Let there be a pyramid ABCD whose vertex is at the point A
and whose base is the triangle CBD, and let the side AB enclose with each
of the sides BC and BD an angle which is not less than a right angle. A
straight line AE is drawn from the vertex and the straight line EC is joined,
forming a pyramid ABEC, and one of the two angles AEC and ACE is not
less than a right angle.
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Fig. III.5

I say that the ratio of the triangle DBC to the triangle EBC is greater
than the ratio of the angle of the pyramid ABCD, which is at the point A,
to the angle of the pyramid ABEC which is at the point A.

Proof: We set A as the centre and AB as the radius, we draw a portion
of a sphere. This will generate an arc of a circle in each of the planes of the
pyramid. Let the arc formed in the plane ABC be the arc BH, the arc
formed in the plane ABD be the arc BLI, the arc formed in the plane ACD
be the arc HI, and the arc formed in the plane ACE be the arc HGL. We
join the straight line BL and we extend it. It will meet the straight line AD as
the angle BAD is acute, and the angle ABL is acute as AB is equal to AL.
Let the point of meeting be the point K. The point K is therefore in the
plane of the triangle ACD below the point I, and any straight line drawn
from the point B to a point on the arc HGL, if extended, will meet the plane
ACD as the plane in which this straight line and the straight line AB both lie
cuts the plane ACE and forms with it a straight line which makes an acute
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angle with the straight line AB. Now, we imagine a cone whose vertex is at
B and whose base is the sector IHGL, and we imagine it being extended in
the direction of its base. It will therefore cut the plane ACD, forming with it
a curved line whose extremities lie on the two points H and K. Let this line
be HFK. This line will lie outside the spherical surface as any line drawn
from the point B to a point on the arc LGH, if extended, will lie outside the
spherical surface. It is for this reason that the spherical sector whose vertex
is at the point A and whose base is the spherical surface bounded by the arcs
HI, HL and LI lies within the surface of the circular pyramid22 AHIL, and
the circular pyramid AHLB lies within the spherical sector whose vertex is
at the point A and whose base is the spherical surface bounded by the arcs
BH, BL and LH. The ratio of the first pyramid to the second pyramid is
greater than the ratio of the first spherical sector to the second spherical
sector. Composing, the ratio of the circular pyramid AHFKB whose vertex
is at the point B and whose base is AHFK to the circular pyramid AHGLB
whose vertex is at the point B and whose base is the sector AHGL is greater
than the ratio of the spherical sector whose vertex is at the point A and
whose angle is the angle of the pyramid ABCD which is at the point A to
the spherical sector whose vertex is at the point A and whose angle is the
angle of the pyramid ABCE which is at the point A.
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I say that the ratio of the triangle AEC to the sector ALGH is not
greater than the ratio of the triangle ADC to the sector AKFH.

It could not be otherwise. If it were possible, then let the ratio of the
triangle AEC to the sector ALGH be greater than the ratio of the triangle
ADC to the sector AKFH. The ratio of the triangle ADC to the sector
AKFH would then be equal to the ratio of the triangle AEC to a surface

22 Although the word ‘circular’ does not appear in the text, we have included it in
the translation whenever the outline of the base includes at least one arc.
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greater than the sector ALGH. Let this surface be the surface La, and let the
amount by which the surface La exceeds the sector ALGH be the surface J.
It would then be possible to construct on the arc LGH a polygonal figure23

whose sides are tangents to the arc LGH, such that the surface area by
which it exceeds the sector ALGH is less than the surface J. Let this figure
be that whose sides are the lines LS, SQ and QH, and let these lines be
tangents to the arc LGH at the points L, G and H. The straight line drawn
from the point B to the point G and extended reaches the curved line HFK
at the point F. We join the straight lines BH, BL, BS and BQ to form a
pyramid whose vertex is B and whose base is the polygonal figure ALSQH.
If the faces of the pyramid BALSQH are extended, they meet the plane
ACD forming straight lines tangential to the line HFK at the points H, F and
K, as the faces of the polygonal pyramid only meet the faces of the circular
pyramid24 at the straight lines BL, BG and BH.25 The bases26 of this
pyramid, which lie in the plane ACD, only meet the line HFK at a single
point. Let these bases27 be the straight lines HP, PF, FR and RK, and let
the points of contact be the points H, F and K. The two points P and R lie
outside the circular pyramid. We join the straight line AS and we extend it
until it reaches the straight line EC at the point N. We join the straight line
AQ and extend it until it reaches the straight line EC at the point U. We join
AR and we extend it until it reaches the straight line DC at the point V. We
join AP and we extend it until it cuts the straight line DC at the point O. As
the straight line BSR cuts the straight lines AR, AS and AB, these straight
lines must lie in the same plane. We then introduce BNV, which is in the
plane of the triangle CBD, into the plane of these straight lines. The points
B, N and V therefore lie on a straight line. We join this straight line and let it
be BNV.

23 The area of the polygonal figure defined in this way depends on the choice of the
point G on the arc LH.

24 This is the circular pyramid BAHGL.
25 Remember that the straight line BA is an edge common to the two solids

BALSQH and BAHGL.
26 The sides of the base.
27 The sides of the base.
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Similarly, we can show that the line BUO is also a straight line.
First, let the angle AEC be a right angle. The straight line EC will then

be parallel to the straight line LS. From the point N, we draw a straight line
parallel to the straight line BSR. This will cut the straight line AV between
the two points R and V as it lies within the triangle BRV. Let this point be
the point W. From the point E, draw a straight line parallel to the straight
line BLK. This will cut the straight line AD between the points K and D. Let
this point be the point Z. We join WZ. As EZ is parallel to the straight line
LK, the ratio of EA to AL is equal to the ratio of ZA to AK. As EN is
parallel to the straight line LS, the ratio of EA to AL is equal to the ratio of
NA to AS. And, as NW is parallel to SR, the ratio of NA to AS is equal to the
ratio of WA to AR. The ratio of WA to AR is therefore equal to the ratio of
ZA to AK, and the straight line WZ is therefore parallel to the straight line
RK. The ratio of the triangle AWZ to the triangle ARK is therefore equal to
the ratio of the triangle ANE to the triangle ASL, as the square of the ratio
of ZA to AK is equal to the square of the ratio of EA to AL. The ratio of the
triangle AVD to the triangle ARK is therefore greater than the ratio of the
triangle ANE to the triangle ASL.

From the point N, we draw the straight line NO′ parallel to the straight
line SQ. It will cut the straight line AU between the points Q and U as the
angle ANU is obtuse and the angle ASQ is acute. Let this point be the point
O′. From the point O′, draw the straight line O′M parallel to the straight line
BQP. It will cut the straight line AO. Let this point be the point M. We join
MO′. The ratio of MA to AP is equal to the ratio of O′A to AQ, the ratio of
O′A to AQ is equal to the ratio of NA to AS, and the ratio of NA to AS is
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equal to the ratio of WA to AR. Therefore, the ratio of WA to AR is equal to
the ratio of MA to AP, and therefore the straight line MW is parallel to the
straight line PR, and the ratio of the triangle AWM to the triangle APR is
equal to the ratio of the triangle ANO′ to the triangle ASQ.
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From the point U, we draw the straight line UJ parallel to the straight
line PQ. It will cut the straight line AO between the points P and O. Let this
point be the point J. Then the point J will lie between the points M and O,
as UJ is parallel to PQ. We join JW. Then the ratio of the triangle AWJ to
the triangle AWM is equal to the ratio of JA to AM, the ratio of JA to AM is
equal to the ratio of UA to AO′, and the ratio of UA to AO′ is equal to the
ratio of the triangle ANU to the triangle ANO′. Therefore, the ratio of the
triangle AWJ to the triangle AWM is equal to the ratio of the triangle ANU
to the triangle ANO′, and the ratio of the triangle ANO′ to the triangle ASQ
is equal to the ratio of the triangle AWM to the triangle APR. Therefore, the
ratio of the triangle AWJ to the triangle APR is equal to the ratio of the
triangle ANU to the triangle ASQ. Therefore, the ratio of the triangle AVO28

to the triangle APR is greater than the ratio of the triangle ANU to the
triangle ASQ. From the point O′, we draw a perpendicular to the straight
line AC and let this be O′I′. The point I′ lies between the two points A and
C29 as the angle AEC is a right angle. The straight line O′I′ is parallel to the
straight line QH as the angle AHQ is a right angle as HQ is a tangent. We
join I′M, I′J and I′U. Then the ratio of MA to AP is equal to the ratio of O′A
to AQ. But the ratio of O′A to AQ is equal to the ratio of I′A to AH.
Therefore, the ratio of I′A to AH is equal to the ratio of MA to AP.

28 The triangle AVO is greater than AWJ as J lies between M and O, and W lies
between R and V.

29 I′ also lies between C and H.
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Therefore, the straight line I′M is parallel to the straight line HP. The ratio of
the triangle AMI′ to the triangle APH is equal to the ratio of the triangle
AO′I′ to the triangle AQH, the ratio of the triangle AJI′ to the triangle AMI′
is equal to the ratio of JA to AM, the ratio of JA to AM is equal to the ratio
of UA to AO′, and the ratio of UA to AO′ is equal to the ratio of the triangle
AUI′ to the triangle AO′I′. Therefore, the ratio of the triangle AJI′ to the
triangle APH is equal to the ratio of the triangle AUI′ to the triangle AQH.

Return to the triangle APH and join JC. The ratio of the triangle AJC to
the triangle AJI′ is then equal to the ratio of CA to AI′ and the ratio of CA
to AI′ is equal to the ratio of the triangle ACU to the triangle AUI′, and the
ratio of the triangle AUI′ to the triangle AQH is equal to the ratio of the
triangle AJI′ to the triangle APH. Therefore, the ratio of the triangle AJC to
the triangle APH is equal to the ratio of the triangle AUC to the triangle
AQH. The ratio of the triangle AOC to the triangle APH is therefore greater
than the ratio of the triangle AUC to the triangle AQH. Therefore,30 the
ratio of the entire triangle ADC to the polygon AKRPH is greater than the
ratio of the triangle AEC to the polygon ALSQH. But the ratio of the
triangle AEC to the polygon ALSQH is greater than the ratio of the triangle
ADC to the sector AHFK. Therefore, the ratio of the triangle ADC to the
polygon AKRPH is greater than the ratio of the triangle ADC to the sector
AHGL, and therefore the polygon AKRPH is less than the sector AHFK,
which is impossible. Therefore, the ratio of the triangle AEC to the sector
AHGL is not greater than the ratio of the triangle ADC to the sector AHFK.
But the ratio of the triangle AEC to the sector AHGL is equal to the ratio of
the pyramid ABEC, whose vertex is at the point B, to the pyramid AHGLB
whose vertex is at the point B. The ratio of the pyramid ABEC, whose
vertex is at the point B, to the pyramid AHGLB, whose vertex is at the
point B and whose base is the sector AHGL, is not greater than the ratio of
the pyramid ABCD, whose vertex is at the point B, to the pyramid AHFKB
whose vertex is at the point B and whose base is the sector AHFK.

The ratio of the pyramid ABCD to the pyramid AHFKB is therefore
either equal to the ratio of the pyramid ABCE to the pyramid AHGLB, or it
is greater than it. By permutation, the ratio of the pyramid ABCD to the
pyramid ABCE is therefore either equal to the ratio of the pyramid ABHFK
to the pyramid ABHGL, or it is greater than it. But the ratio of the pyramid
ABHFK to the pyramid AHGLB is greater than the ratio of the spherical
sector, whose angle is the angle of the pyramid ABCD which is at the point
A, to the spherical sector whose angle is the angle of the pyramid ABCE
which is at the point A. The ratio of the pyramid ABCD to the pyramid
ABCE is therefore greater than the ratio of the <first> spherical sector to

30 See the mathematical commentary.
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the <second> spherical sector. But the ratio of the pyramid ABCD to the
pyramid ABCE is equal to the ratio of the triangle CBD to the triangle CBE,
and the ratio of the larger spherical sector to the smaller spherical sector is
equal to the ratio of the angle of the pyramid ABCD to the angle of the
pyramid ABCE, both of which angles are at the point A. The ratio of the
triangle CBD to the triangle CBE is greater than the ratio of the angle of the
pyramid ABCD which is at the point A to the angle of the pyramid ABCE
which is at the point A.
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If the angle AEC is obtuse, we make the angle AEν a right angle and,
from the point ν, we draw the straight line νµ  parallel to the straight line
BSR. This will then be parallel to the straight line NW. The ratio of NA to Aν
is equal to the ratio of WA to Aµ. We join Zµ. The ratio of the triangle AZW
to the triangle AZµ is then equal to the ratio of the triangle AEN to the
triangle AEν, and the ratio of µA to AR is equal to the ratio of νA to AS,
and the ratio of νA to AS is equal to the ratio of EA to AL. The ratio of EA
to AL is equal to the ratio of ZA to AK. Therefore, the ratio of ZA to AK is
equal to the ratio of µA to AR, and hence the straight line Zµ is parallel to
the straight line KR, and the ratio of the triangle AZE to the triangle AKL is
equal to the ratio of the triangle AZµ to the triangle AKR, and the ratio of
the triangle AZµ to the triangle AKR is equal to the ratio of the triangle AEν
to the triangle ALS. But the ratio of the triangle AZW to the triangle AZµ
was equal to the ratio of the triangle AEN to the triangle AEν. Therefore,
the ratio of the triangle AZW to the triangle AKR is equal to the ratio of the
triangle AEN to the triangle ALS. But the triangle ADV is greater than the
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triangle AZW. Therefore, the ratio of the triangle ADV to the triangle AKR
is greater than the ratio of the triangle AEN to the triangle ALS.

From the point ν, we draw a straight line parallel to the straight line SQ
and we then follow the proof as described above. It can be shown that the
ratio of the triangle ADC to the polygon lying within it is greater than the
ratio of the triangle AEC to the polygon lying within it.

If the right angle or obtuse angle is the angle ACE, then we begin the
construction from the point C and the proof proceeds as described above, as
if the angle ACE is a right angle, then the straight line CE is parallel to the
straight line HQ, and if it is obtuse, then the parallel to HQ cuts the angle
ACE.

In all cases, if one of the two angles AEC or ACE is not less than a right
angle, then the ratio of the triangle CBD to the triangle CBE is greater than
the ratio of the angle of the pyramid ABCD, which is at the point A, to the
angle of the pyramid ABCE which is at the point A. That is what we wanted
to prove.

<Lemma 7> Let there be a pyramid whose base is a triangle, one of
whose angles is not less than a right angle, and one of whose sides drawn
from the vertex to one of the two acute angles of the triangle is
perpendicular to the plane of the base. If a straight line is drawn from the
vertex cutting the side of the base intercepted by the acute angle to which
was drawn the perpendicular, and if the extremity of this line is joined to the
foot of the perpendicular, dividing the base into two triangles and dividing
the pyramid into two pyramids, then the ratio of the larger triangle to the
smaller triangle, which is adjacent to the larger angle, is greater than the
ratio of the angle of the larger pyramid to the angle of the smaller pyramid
which is adjacent to the larger angle.

Example: Let the pyramid be ABCD, with its vertex at the point A and
with its base being the triangle BCD, such that the angle BCD is not less
than a right angle and the side AB is perpendicular to the plane of the base.
From the point A, draw the straight line AE and join EB.

I say that the ratio of the triangle DBC to the triangle EBC is greater
than the ratio of the angle of the pyramid ABCD to the angle of the
pyramid ABCE.

Proof: We draw the perpendicular AB in the direction of B and we
construct a right angle on the straight line AE and let this be AEG. The
straight line EG will meet the straight line AB as the angle EAB is acute. Let
this point be the point G. We join CG and DG. As the angle BCD is not less
than a right angle, the straight line EB will be greater than the straight line
BC, and as AB is perpendicular to the base, AE will be greater than AC. If
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BC is drawn in the direction of C, cutting off <a straight line> equal to BE,
and if its two extremities are joined to the two points A and G, it forms a
right angle equal to the angle AEG. Therefore, the angle ACG must be
obtuse as it lies within the right angle. But, as the angle BCD is not less than
a right angle and the plane ABC is perpendicular to the plane BCD, the
angle ACD cannot be less than a right angle. This is because, if the angle
BCD were a right angle, then DC would be perpendicular to the plane ABC
and the angle ACD would be a right angle, and if the angle BCD were
obtuse, the straight line CD would be beyond the perpendicular drawn from
the point C onto the plane ABC and the angle ACD would be obtuse.31
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In all cases, the angle ACD cannot therefore be less than a right angle.
But the angle ACG is obtuse, and therefore the pyramid ACDG, whose
vertex is at the point A and whose base is the triangle CGD, is such that the
side AC drawn from its vertex to the angle GCD encloses with each of the
two straight lines CB and CD an angle that is not less than a right angle, and
such that the straight line AE is drawn from its vertex to one of the two
sides of the base which enclose the angle GCD, and a straight line EG is
drawn from the extremity of this line that lies at the point E, the angle AEG
being a right angle; therefore the ratio of the triangle GCD to the triangle
GCE is greater than the ratio of the angle of the pyramid ACGD, which is at
the point A, to the angle of the pyramid AGCE which is at the point A. But
the ratio of the triangle GCD to the triangle GCE is equal to the ratio of DC
to CE, and the ratio of DC to CE is equal to the ratio of the triangle DBC to
the triangle EBC. But the angle of the pyramid AGCD, which is at the point

31 See the mathematical commentary.
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A, is the angle of the pyramid ABCD, and the angle of the pyramid AGCE,
which is at the point A, is the angle of the pyramid ABCE. The ratio of the
triangle DBC to the triangle EBC is therefore greater than the ratio of the
angle of the pyramid ABCD, which is at the point A, to the angle of the
pyramid ABCE, which is at the point A. That is what we wanted to prove.

<Lemma 8> Let there be a pyramid whose base is an isosceles triangle
and whose side, drawn from its vertex to the vertex of the isosceles triangle,
is perpendicular to the plane of the base. If a plane passing through its
vertex cuts its base along a straight line parallel to the side of the base
intercepted by the angle lying at the foot of the perpendicular, and if a
pyramid is separated from the pyramid of which it forms a part, then the
ratio of the base of the larger pyramid to the base of the smaller pyramid is
greater than the ratio of the angle of the larger pyramid to the angle of the
smaller pyramid, both of which angles are at the vertex of the pyramid.

Example: Let the pyramid be ABCD, with its vertex at the point A and
with its base being the triangle BCD. The plane AEG passes through its
vertex and cuts the triangle BCD along the straight line EG such that EG is
parallel to the straight line CD.

I say that the ratio of the triangle CBD to the triangle EBG is greater
than the ratio of the angle of the pyramid ABCD, which is at the point A,
to the angle of the pyramid ABEG which is at the point A.
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Proof: We divide EG into two halves at the point I and we join BI. This
will be perpendicular to the straight line EG. Extend BI to H, dividing the
straight line CD into two halves at the point H. Join the straight lines AI, AH
and CI. As AB is perpendicular to the plane of the triangle BCD, the plane
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ABC is perpendicular to the plane of the triangle CBD. As the plane ABH is
perpendicular to the plane of the triangle CBD and the straight line IG is
perpendicular to the straight line BH which is the intersection of the two
planes, IG is perpendicular to the plane ABH. The angle AIG is therefore a
right angle, and the angle AIH is obtuse. As ABHC is a pyramid and the
side AB is perpendicular to the two straight lines GC and BH – the straight
line AI has been drawn, IC has been joined, and the angle AIC is obtuse –
the ratio of the triangle BCH to the triangle BCI is greater than the ratio of
the angle of the pyramid ABCH to the angle of the pyramid ABCI. But as
ABCI is a pyramid whose base is the triangle BCI, and the side AB is
perpendicular to the two straight lines BC and BI, and the straight line AI
encloses a right angle with IG, then the ratio of the triangle CBI to the
triangle IBG is greater than the ratio of the angle of the pyramid ABCI to
the angle of the pyramid ABIG, as has been proved in Lemma 6. Therefore,
the ratio of the triangle HBC to the triangle IBG is greater than the ratio of
the angle of the pyramid ABCH to the angle of the pyramid ABIG. But the
triangle DBC is twice the triangle HBC, the angle of the pyramid ABCD is
twice the angle of the pyramid ABCH, the angle of the pyramid ABEG is
twice the angle of the pyramid ABIG, and the triangle EBG is twice the
triangle IBG. Therefore, the ratio of the triangle DBC to the triangle EBG is
greater than the ratio of the angle of the pyramid ABCD to the angle of the
pyramid ABEG, both of which angles lie at the point A. That is what we
wanted to prove.

<Lemma 9> Let there be two pyramids whose bases are two similar
plane figures, one of which is greater than the other, and let them be
enclosed by a sphere such that the vertices of the two pyramids are at the
centre of the sphere. Then the ratio of the angle of the larger pyramid32 to
the angle of the smaller pyramid is greater than the ratio of the base of the
larger pyramid to the base of the smaller pyramid.

Let the point A be the centre of the sphere. We imagine that the plane
of the base of the larger pyramid cuts the sphere forming a circle on the
sphere. Let the point B be the centre of this circle. We join <the straight
line> AB. This will be perpendicular to the plane of the circle, which is the
plane of the base of the pyramid as the sides of the pyramid are equal. We
imagine straight lines drawn from the point B to the angles of the base of
the pyramid. These will divide the base into equal triangles. Let one of these
triangles be the triangle BCD. Now we also imagine that the plane of the
base of the smaller pyramid cuts the sphere, also forming a circle on the
sphere. And we imagine a straight line drawn from the point A to the centre

32 The pyramid with the larger base.
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of this circle. This will be perpendicular to the plane of the circle and to the
plane of the base of the pyramid which lies within the circle. As the two
bases of the two pyramids are similar and one is larger than the other, the
circle on the sphere that encloses the larger base is greater than the circle
which encloses the smaller base. The straight line drawn from the centre of
the sphere to the centre of the smaller circle will therefore be greater than
the straight line drawn from the centre of the sphere to the centre of the
larger circle. But these two straight lines are the two perpendiculars to the
planes of the two bases. The perpendicular drawn from the point A to the
smaller base is greater than the straight line AB. Let the straight line AE be
equal to this perpendicular. Imagine a set of straight lines drawn from the
centre of this circle to the angles of the base that lies within this circle,
dividing the base into equal triangles, each similar to the others and to the
triangle BCD. We imagine a plane passing through the point E parallel to
the plane of the triangle BCD forming a circle on the sphere that is equal to
the smaller circle enclosing the base of the smaller pyramid. From the point
E, we draw two straight lines, parallel to the straight lines BC and BD
<respectively> and ending on the circumference of the circle whose centre
lies at the point E. Let these two straight lines be EG and EH. We join GH.
The triangle EGH will then be similar to the triangle BCD and equal to each
of the triangles dividing the base of the smaller pyramid. If we draw a set of
straight lines from the point E enclosing angles that are equal and equal to
the angle GEH, and if we join the extremities of these straight lines, then
they will form a figure equal and similar to the smaller pyramid within the
circle whose centre is at the point E. And if we draw straight lines from the
point A to the angles of the figure formed within the circle E, they form a
pyramid equal and similar to the smaller pyramid whose angle at the point A
is equal to the angle of this <smaller> pyramid. We join the straight lines
AC, AD, AH and AG, and we draw a perpendicular from the point B onto
the straight line CD dividing it into two halves. Let this be BF. We also
draw a perpendicular from the point E onto the straight line HG dividing it
into two halves. Let this be EM. Then, BF is greater than EM as the two
triangles BCD and EGH are similar, and the triangle BCD is greater than
the triangle EGH. We join AF and we extend it until it meets the surface of
the sphere at the point L. We imagine that the plane of the triangle ACD
cuts the sphere forming an arc of a circle on the surface of the sphere. Let
this arc be CLD. We also join the straight line AM and we extend it until it
meets the surface of the sphere at the point N. We produce the plane of the
triangle AGH, such that it forms on the surface of the sphere the arc GNH.
We join FM and we extend it. It will meet the straight line AE as the two
straight lines BF and EM are parallel and BF is greater than EM. Let the
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point at which they meet be the point K. The ratio of BK to KE is then
equal to the ratio of BF to EM, and the ratio of BF to EM is equal to the
ratio of BC to EG as the two triangles are similar. The ratio of BK to KE is
therefore equal to the ratio of BC to EG. BC and EG are parallel and they
therefore lie in the same plane, as does the straight line BEK. If we join C
and G by a straight line and we extend it, then it will reach the point K. Let
us join them; let this straight line be CGK. Similarly, if we join D and H by a
straight line, this can be extended to the point K. Let us join them; let it be
DHK. It will therefore be in the same plane as the triangle KCD, but it cuts
the two planes EGH and BCD which are parallels. The straight line GH is
therefore parallel to the straight line CD. From the point M, we draw a
straight line parallel to the straight line FA. This will meet the straight line
KA. Let the point at which they meet be the point O. The point O will then
lie between the two points A and E. We join OG and OH. They will lie in
the same plane as the triangle OGH. As GH is parallel to the straight line
CD and MO is parallel to the straight line FA, the plane of the triangle HOG
is parallel to the plane of the triangle ACD and the two planes of the
triangles AKC and AKD cut the two planes of the two triangles ACD and
OGH. Therefore, the straight line AC is parallel to the straight line OG, the
straight line AD is parallel to the straight line OH, and the angle GOH is
equal to the angle CAD. We produce the plane of the triangle OGH until it
cuts the sphere,33 forming an arc on its surface that is similar to the arc
CLD. Let this be the arc GUH. The sector OGUH is therefore similar to the
sector ACLD and the ratio of the sector ACLD to the sector OGUH is equal
to the square of the ratio of AC to OG, and the square of the ratio of AC to
OG is equal to the ratio of the triangle ACD to the triangle OGH. The ratio
of the sector ACD to the sector OGH is therefore equal to the ratio of the
triangle ACD to the triangle OGH and is also equal to the ratio of the
remaining portion CLD to the remaining portion GUH. By permutation, the
ratio of the triangle ACD to the portion CLD is equal to the ratio of the
triangle OGH to the portion GUH. The ratio of the pyramid KACD to the
circular pyramid34 KCLD is equal to the ratio of the pyramid KOGH to the
circular pyramid KGUH. By permutation, the ratio of the pyramid KACD to
the pyramid KOGH is equal to the ratio of the circular pyramid KCLD to
the circular pyramid KGUH. But the ratio of the pyramid KACD to the
pyramid KOGH is greater than the ratio of the pyramid KACD to the
pyramid KAGH. Therefore, the ratio of the circular pyramid KCLD to the

33 This is the sphere (O, OG).
34 Although the word ‘circular’ does not appear in the text, we have included it in

the translation whenever the outline of the base includes at least one arc.
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circular pyramid KGUH is greater than the ratio of the pyramid KACD to
the pyramid KAGH.
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We imagine that the plane of the triangle AKLF35 cuts the sphere
forming an arc of a circle on its surface. This arc passes through the two
points U and N as these two points are in the plane of the triangle AKLF.
Let the arc be LUNI.36 The point N will lie between the points U and I. As
the triangle ACD is similar to the triangle OGH and the triangle ACF is
similar to the triangle OGM, the ratio of AC to OG is therefore equal to the

35 The point F lies on one of the sides of the triangle AKL. Here, AKLF designates
the plane of this triangle.

36 The point I has not been defined. It is assumed to lie on AK. We may note that
Ibn al-Haytham seems to have assumed, mistakenly, that the point U lies on the arc LNI
of the sphere with centre A; in fact, in general the straight line KL meets the arc in a point
U′ that is distinct from U. Ibn al-Haytham’s reasoning is valid on condition that N lies
between U′ and I, that is if M lies between O and V, the point of intersection of AU′ and
OU. If this condition is not satisfied, the reasoning no longer holds, because N lies on the
arc LU and Q lies beyond L on AL produced, and is thus outside the sphere. However,
the lemma is true in all cases – see analytical commentary.
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ratio of AF to OM. But AC is equal to AL, and OG is equal to OU. The
ratio of AL to OU is therefore equal to the ratio of AF to OM and equal to
the ratio of the remainder FL to the remainder MU, and the ratio of FK to
KM is equal to the ratio of AF to OM. The ratio of FK to KM is therefore
equal to the ratio of FL to MU.

If we join L and U by a straight line which we extend, it will reach the
point K. Let us join them and let this straight line be LUK. But the two
points L and U lie on the arc LUI. Therefore, the straight line LUK cuts the
sphere and extends beyond it. The point N, which lies on the arc UNI
between the two points U and I, is therefore below the straight line UK.
From the point K, we draw a straight line to the point N and we extend it. It
will cut the straight line FL at a point between the two points F and L as the
points M, N and U are in the plane of the triangle FKL and the point N is in
the plane of this triangle and between the straight lines KF and KL. Let the
straight line AG cut the straight line FL at the point Q. This straight line cuts
the plane of the portion GUH at a point inside the arc GUH, i.e. at a point in
the direction of E. Let this point be the point J. Now, we imagine a circular
pyramid whose vertex is at the point K and whose base is the sector ANGH.
If extended, this circular pyramid will cut the plane of the sector ACLD, as it
passes through the points C, Q and D. It will therefore generate a curved
line on the plane of the arc CLD. Let this line be the line CQD. It also cuts
the plane of the sector OGUH, generating a curved line on the portion
GUH. Let this line be GJH. The ratio of the circular pyramid KCLD to the
circular pyramid KGUH is equal to the ratio of the circular pyramid KCQD
to the circular pyramid KGJH, as the planes of the two bases are parallel,
and the ratio of the circular pyramid KCLD to the circular pyramid KGUH
is greater than the ratio of the pyramid KACD to the pyramid KAGH. The
ratio of the circular pyramid KCQD to the circular pyramid KGJH is
therefore greater than the ratio of the pyramid KACD to the pyramid
KAGH. The ratio of the entire circular pyramid KACQD to the circular
pyramid KAGNH is greater than the ratio of the pyramid KACD to the
pyramid KAGH. But the portion of the pyramid that lies between the two
planes ACQD and AGNH is inside the spherical sector that lies between the
two circular sectors ACLD and AGNH, and the spherical sector which lies
between the point I and the sector AGNH is inside the circular pyramid
KAGNH. The ratio of the sector ACLDHGN to the sector AIHGN is greater
than the ratio of the portion of the pyramid ACQDHNG to the circular
pyramid KAHNG. Composing, the ratio of the spherical sector whose angle
is the angle of the pyramid ABCD, which is at the point A, to the spherical
sector whose angle is the angle of the pyramid AEGH, which is at the point
A, is greater than the ratio of the circular pyramid KACQD to the circular
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pyramid KAGNH, and the ratio of the circular pyramid KAGQD to the
circular pyramid KAGNH is greater than the ratio of the pyramid KACD to
the pyramid KAGH. The ratio of the spherical sector whose angle is the
angle of the pyramid ABCD, which is at the point A, to the spherical sector
whose angle is the angle of the pyramid AEGH, which is at the point A, is
therefore greater than the ratio of the pyramid AKCD to the pyramid
AKGH. But the ratio of the <first> spherical sector to the <second>
spherical sector is equal to the ratio of its angle, which is at the point A, the
centre of the sphere, to the angle of the other sector, which is at the point A.
But the ratio of the pyramid AKCD to the pyramid AKGH is equal to the
ratio of the triangle KCD to the triangle KGH, and the ratio of the triangle
KCD to the triangle KGH is equal to the square of the ratio of CK to KG.
But the square of the ratio of CK to KG is equal to the square of the ratio of
BC to EG, and the square of the ratio of BC to EG is equal to the ratio of
the triangle BCD to the triangle EGH. The ratio of the angle of the pyramid
ABCD, which is at the point A, to the angle of the pyramid AKGH, which is
at the point A, is therefore greater than the ratio of the triangle BCD to the
triangle EGH. But the ratio of the angle of the pyramid of which the
pyramid ABCD is a part, which angle is at the point A, to the angle of the
pyramid ABCD, which angle is at the point A, is equal to the ratio of the
entire base of the pyramid to the triangle BCD. But the ratio of the angle of
the pyramid AEGH to the angle of the pyramid of which the pyramid
AEGH is a part is equal to the ratio of the triangle EGH to the entire base of
the pyramid. The ratio of the angle of the larger pyramid, which is at the
point A, to the angle of the smaller pyramid, which is at the point A, is
greater than the ratio of the base of the larger pyramid to the base of the
smaller pyramid. That is what we wanted to prove.

<Lemma 10> Let there be two pyramids enclosed within a sphere such
that the base of one is smaller than the base of the other and also has more
sides than the other. Then the ratio of the angle of the pyramid which has
the larger base to the angle of the pyramid with the smaller base is greater
than the ratio of the base <of the first> to the base <of the second>.

This also applies to the cube and the dodecahedron.37

Let the point A be the centre de la sphere, and proceed for these two
pyramids in the same way that we did for the two previous pyramids, i.e.
divide the base of each into triangles. As one of the two bases is smaller than

37 Lit.: that which has twelve bases. A cube may be inscribed within a sphere and
can be divided into six pyramids with square bases and their vertices at the centre of the
sphere. A regular dodecahedron may similarly be divided into twelve pyramids whose
bases are regular pentagons.
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the other, there exists a small base with the same number of sides as the
larger, such that the two bases are similar. Then the circle which encloses
the small base with the greater number of sides, and which is equal to the
small base with fewer sides, is less than the circle which encloses the small
base with fewer sides, and the circle which encloses it is very much
smaller.38 The perpendicular drawn <from the point A> onto the small base
is therefore greater than the perpendicular drawn onto the large base.

Let the point B be the centre of the base of the pyramid with the larger
base, and let the triangle BCD be one of its triangles. We join AB, AC and
AD. Then AB will be perpendicular to the plane of the triangle BCD. We
draw AB, and we make AE equal to the perpendicular in the other pyramid.
We set the triangle EGH equal to one of the triangles in this other pyramid,
and its plane parallel to the plane of the triangle BCD. We also set EG
parallel to the straight line BC. EH will not be parallel to the straight line BD
as the angle GEH is less than the angle CBD. We make the angle GEK
equal to the angle CBD. Let the point K lie on the circumference of the
circle that encloses the base. We join AG, AH, AK, GH and GK, we divide
CD into two halves at the point N, and we join BN, which will therefore be
perpendicular to the straight line CD. We divide GH into two halves at the
point M and join EM. This will be perpendicular to the straight line GH. We
join the straight lines AN, AM and AF, we divide GK into two halves at the
point F, and we join EF, which will therefore be perpendicular to the
straight line GK. We divide the angles of the three pyramids into two halves,
i.e. the pyramid ABCD, the pyramid AEGH, and the pyramid AEGK. As
the triangle EGK is similar to the triangle BCD, the ratio of the angle of the
pyramid ABCD to the angle of the pyramid AEGK is greater than the ratio
of the triangle BCD to the triangle EGK, as was proved in the previous
proposition. The ratio of the angle of the pyramid ABCD to the angle of the
pyramid AEGF is therefore greater than the ratio of the triangle BCD to the
triangle EGF. But, as the angle GEK is greater than the angle GEH, the
angle GEF is greater than the angle GEM. Therefore, the angle EGF is less
than the angle EGM. The straight line GF therefore cuts the straight line
EM. Let this point be the point O, and let us join AO.

38 The circle that encloses the base of the second pyramid is less than that which
encloses the base of the first pyramid.
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As the straight line AG is equal to the straight line AK – both are half-
diameters of the sphere – and the straight line GF is equal to the straight
line FK, the angle AFG is a right angle and therefore the angle AOG is
obtuse. The ratio of the triangle EGM to the triangle EGO is therefore
greater than the ratio of the angle of the pyramid AEGM to the angle of the
pyramid AEGO by virtue of the proof given in the sixth lemma in this
treatise. As the angle AFG is a right angle, the ratio of the triangle EGF to
the triangle EOF is greater than the ratio of the angle of the pyramid AEGF
to the angle of the pyramid AEOF by virtue of the proof given in the
seventh lemma in this book. As the ratio of the triangle EGF to the triangle
EOF is greater than the ratio of the angle of the pyramid AEGF to the
angle of the pyramid AEOF, the ratio of the triangle EGO to the triangle
EGF is greater than the ratio of the angle of the pyramid AEGO to the
angle of the pyramid AEGF. The ratio of the triangle EGM to the triangle
EGO is greater than the ratio of the angle of the pyramid AEGM to the
angle of the pyramid AEGO. The ratio of the triangle EGO to the triangle
EGF is greater than the ratio of the angle of the pyramid AEGO to the
angle of the pyramid AEGF. Using the equality ratio, the ratio of the
triangle EGM to the triangle EGF is greater than the ratio of the angle of
the pyramid AEGM to the angle of the pyramid AEGF. By inversion, the
ratio of the angle of the pyramid AEGF to the angle of the pyramid AEGM
is greater than the ratio of the triangle EGF to the triangle EGM. Therefore,
the ratio of the angle of the pyramid ABCD to the angle of the pyramid
AEGF is greater than the ratio of the triangle BCD to the triangle EGF. But
the ratio of the angle of the pyramid AEGF to the angle of the pyramid
AEGM is greater than the ratio of the triangle EGF to the triangle EGM.
Using the equality ratio, the ratio of the angle of the pyramid ABCD to the
angle of the pyramid AEGM is greater than the ratio of the triangle BCD to
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the triangle EGM. But we can show that the ratio of the angle of the entire
pyramid with the larger base to the angle of the entire pyramid with the
smaller base is greater than the ratio of the entire base of the <first>
pyramid to the entire base of the <second> pyramid, as was proved in the
previous proposition, as the entire angle of the first pyramid is a multiple of
the angle of the pyramid ABCD and the base is a multiple of the triangle
BCD, both multiples being the same. Similarly for the other pyramid, the
ratio of the angle of the pyramid with the larger base to the angle of the
pyramid with the smaller base and which has more sides is therefore greater
than the ratio of the base <of the first> to the base <of the second>. That is
what we wanted to prove.

<Proposition 5′′′′> Now that we have introduced these lemmas, let us
return to the proof for which these lemmas were required.39

We say that, given two regular polyhedra, such that the bases of one of
which are similar to the bases of the other, and also such that the surface
enclosing one is equal to the surface enclosing the other, then the volume of
the polyhedron with the most bases is greater than the volume of the other.

Example: Let there be two regular polyhedra A and B such that the
bases of one are similar to the bases of the other, and also such that the
surface enclosing one is equal to the surface enclosing the other. Polyhedron
B has more bases than polyhedron A.

I say that the volume of the polyhedron B is greater than the volume of
the polyhedron A.

Proof: The perpendicular dropped from the centre of the sphere that
circumscribes the polyhedron B onto one of the bases of the polyhedron B
is greater than the perpendicular dropped from the centre of the sphere that
circumscribes polyhedron A.
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39 i.e. Propositions 5′ and 5″.
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Let the point A be the centre of the sphere circumscribed around the
polyhedron A and let the point B be the centre of the sphere circumscribed
around the polyhedron B, let the triangle ECD be one of the triangles into
which one of the bases of the polyhedron A is divided, and let the triangle
GHI be one of the triangles into which one of the bases of the polyhedron B
is divided. We join AE and BG to form perpendiculars to the planes of the
two triangles <respectively>, as has been shown previously. Let the
perpendicular BG be equal to the perpendicular AE or less than it, if this is
possible. But as the bases of the two polyhedra are similar, the triangle ECD
will be similar to the triangle GHI and, as the bases of the polyhedron B are
greater in number than the bases of the polyhedron A and the sum of the
bases of the one is equal to the sum of the bases of the other, the triangle
ECD will be greater than the triangle GHI. But both of them are isosceles.
Therefore, each of the two straight lines EC and ED is <respectively>
greater than each of the straight lines GH and GI. We separate the two
equal straight lines EK and EL from the two straight lines GH and GI, and
we join KL, AK and AL. If the perpendicular AE were equal to the
perpendicular BG, then the pyramid AEKL would be equal to the pyramid
BGHI, and the angle of the pyramid AEKL, which is at the point A, would
be equal to the angle of the pyramid BGHI, which is at the point B. But as
the bases of the polyhedron A are all equal and similar, the ratio of the angle
of the pyramid AECD, which is at the point A, to eight <solid> right angles
is equal to the ratio of the pyramid AECD to the entire polyhedron,40 and is
equal to the ratio of the triangle ECD to the sum of the bases of the
polyhedron, which is the surface that encloses the polyhedron. Similarly, the
ratio of the angle of the pyramid BGHI, which is at the point B, to eight
<solid> right angles is equal to the ratio of the pyramid BGHI to the entire
polyhedron, and is also equal to the ratio of the triangle GHI to the entire
surface that encloses the polyhedron. But the two surfaces that enclose the
polyhedra are equal, the ratio of the triangle ECD to the entire surface
enclosing the polyhedron A is equal to the ratio of the angle of the pyramid
AECD, which is at the point A, to eight <solid> right angles, and the ratio of
the surface enclosing the polyhedron B to the triangle GHI is equal to the
ratio of eight <solid> right angles to the angle of the pyramid BGHI which
is at the point B. Using the equality ratio, the ratio of the triangle ECD to
the triangle GHI is therefore equal to the ratio of the angle of the pyramid
AECD, which is at the point A, to the angle of the pyramid BGHI which is
at the point B. But the pyramid AEKL is equal and similar to the pyramid
BGHI, and its angle, which is at the point A, is equal to the angle which is at
the point B, and the triangle EKL is equal to the triangle GHI. The ratio of

40 See the second lemma of Proposition 4.
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the triangle ECD to the triangle EKL is therefore equal to the ratio of the
angle of the pyramid AECD, which is at the point A, to the angle of the
pyramid AEKL, which is at the point A. This is impossible, as it has been
shown in the eighth lemma in this treatise that the ratio of the triangle ECD
to the triangle EKL is greater than the ratio of the angle of the pyramid
AECD, which is at the point A, to the angle of the pyramid AEKL, which is
at the point A. Therefore, the perpendicular AE is not equal to the
perpendicular GB.

If the perpendicular BG is less than the perpendicular AE, we separate
out EM equal to BG and we join the two straight lines MK and ML. Then
the pyramid MEKL will be equal to the pyramid BGHI and its angle, which
is at the point M, will be equal to the angle which is at the point B. The ratio
of the triangle ECD to the triangle EKL is then equal to the ratio of the
angle of the pyramid AECD, which is at the point A, to the angle of the
pyramid MEKL which is at the point M. But the plane angle EMK is greater
than the angle EAK, the angle EML is greater than the angle EAL, and the
angle KML is greater than the angle KAL as the two triangles are isosceles
and the two sides AK and AL are greater <respectively> than the two sides
MK and ML, and the base of the two triangles is the same. The angle KML
is therefore greater than the angle KAL. Therefore, the <sum of the> plane
angles enclosing the solid angle of the pyramid MEKL, which is at the point
M, is greater than the <sum of the> plane angles enclosing the solid angle of
the pyramid AEKL, which is at the point A. The solid angle of the pyramid
MEKL, which is at the point M, is therefore greater than the angle of the
pyramid AEKL, which is at the point A.41 The ratio of the triangle CED to
the triangle KEL is therefore greater than the ratio of the angle of the
pyramid AECD, which is at the point A, to the angle of the pyramid AEKL,
which is at the point A. Therefore, the ratio of the angle of the pyramid
ACED, which is at the point A, to the angle of the pyramid AEKL, which is
at the point A, is greater than the ratio of the angle of the pyramid AECD,
which is at the point A, to the angle of the pyramid MEKL, which is at the
point M. These two ratios were stated to be equal, which is impossible.
Therefore, the perpendicular BG is not less than the perpendicular AE. But
we have already shown that they are not equal. Therefore, the perpendicular
BG is greater than the perpendicular AE. But the product of the
perpendicular BG and one third of the sum of the bases of the polyhedron B
is the volume of the polyhedron B, and the product of the perpendicular AE
and one third of the sum of the bases of the polyhedron A is the volume of
the polyhedron A. The hypothesis stated that the sum of the bases of the
polyhedron B was equal to the sum of the bases of the polyhedron A, and

41 See the mathematical commentary.
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the perpendicular BG is greater than the perpendicular AE. Therefore, the
volume of the polyhedron B is greater than the volume of the polyhedron
A. That is what we wanted to prove.

<Proposition 5′′′′′′′′> We also say that, given two regular polyhedra such
that the bases of one are similar to the bases of the other, and the bases of
one are greater in number than the bases of the other, and both of which
are inscribed within the same sphere, then the surface that encloses the
entire polyhedron whose bases are greater in number is greater than the
surface that encloses the other polyhedron, and the volume of the
polyhedron whose bases are greater in number is greater than the volume of
the other polyhedron.

Let there be a sphere with its centre at the point A, and two polyhedra
inscribed within it whose properties are those described above.

I say that the polyhedron with the greater number of bases has the
greater surface and the greater volume.

Proof: The bases of one of the two polyhedra are similar to the bases of
the other polyhedron. The solid angle which is at the centre of the sphere
and which intercepts the base of the polyhedron with the greater number of
bases is less than the solid angle which is at the centre of the sphere and
which intercepts the base of the polyhedron with the lesser number of bases,
as the ratio of each of these two solid angles to eight solid right angles is
equal <for each polyhedron> to the ratio of the base intercepted by this
angle to the sum of the bases42 which are continuous with this base, and
which are the surface that encloses the polyhedron. The ratio of the base of
the polyhedron with the greater number of bases to the sum of its bases is
less than the ratio of the base of the polyhedron with the lesser number of
bases to the sum of its bases. Therefore, the solid angle which intercepts the
base of the polyhedron with the greater number of bases is less than the
solid angle which intercepts the base of the polyhedron with the lesser
number of bases, and the number of plane angles that enclose one of the
solid angles is equal to the number of plane angles which enclose the other
solid angle. But the plane angles enclosing each of the two solid angles are
equal. Therefore, each of the equal plane angles that enclose the smaller solid
angle is less than each of the equal plane angles that enclose the larger solid
angle as, if the plane angles that enclose the small solid angle were equal to
the plane angles which enclose the large solid angle, then the two solid
angles would be equal, and if the plane angles that enclose the small solid
angle were greater than the plane angles that enclose the large solid angle,
then the small solid angle would be greater than the large solid angle, which

42 From Lemma 6.
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is impossible. Therefore, each of the plane angles which enclose the small
solid angle is less than each of the plane angles which enclose the large solid
angle.43 It is therefore possible for the entire small solid angle to fit within
the large solid angle. If this is the case, then the circle circumscribed around
the base intercepted by the small solid angle will be below the circle
circumscribed around the base intercepted by the large solid angle. But if a
circle lies below another circle, and if they are both in the same sphere, then
the lower circle is less than the upper circle; and if it is smaller, then the
straight line drawn from the centre of the sphere to the centre of the small
circle is greater than the straight line drawn from the centre of the sphere to
the centre of the large circle. But the straight line drawn from the centre of
the sphere to the centre of any circle of the sphere – if the circumference of
the circle lies on the surface of the sphere – is a perpendicular to the plane
of the circle and is perpendicular to the plane of any figure in the circle. The
perpendicular drawn from the centre of the sphere to the plane of the base
of the polyhedron with the greater number of bases is greater than the
perpendicular drawn from the centre of the sphere to the plane of the base
of the polyhedron with the lesser number of bases. It is also clear from this
proof that each of the bases of the polyhedron with the greater number of
bases is less than each of the bases of the polyhedron with the lesser number
of bases, as the bases of one of the two polyhedra are similar to the bases of
the other polyhedron and the circle circumscribing the base of the
polyhedron with the greater number of bases is smaller. The base that lies
within the small circle is therefore less than the base which lies within the
large circle.

A

C

G
B

E
H D

Fig. III.16

Let BC be the larger base and let DE be the smaller base. Let the
perpendicular drawn from the centre of the sphere to the base DE be the

43 This paragraph is not essential. Here, the author makes use of the reciprocal of
the theorem used in the proof of Proposition 5″. See the mathematical commentary.
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perpendicular AH. The ratio of the large solid angle to the small solid angle
is therefore compounded of the ratio of the large <solid> angle to eight
<solid> right angles and the ratio of eight <solid> right angles to the small
<solid> angle. But the ratio of the large angle to eight right angles is equal
to the ratio of the base BC to the sum of all the bases that are continuous
with each other, and which are the entire surface of the solid. As the
number of angles and the number of bases are equal, the angles are equal,
the bases are equal, and the ratio of eight right angles to the small angle is
equal to the ratio of the sum of all the bases of the solid that are continuous
with the base DE to the base DE, therefore, the ratio of the large angle to
the small angle is compounded of the ratio of the base BC to the sum of all
the bases that are continuous with it and the ratio of the sum of all the bases
that are continuous with the base DE to the base DE. But the ratio of the
large angle to the small angle is greater than the ratio of the base BC to the
base DE, as has been proved in the ninth lemma in this treatise. The ratio
compounded of the ratio of the base BC to the entire surface of the
polyhedron, of which BC is a base, and the ratio of the entire surface of the
polyhedron, of which DE is a base, to the base DE, is therefore greater than
the ratio of the base BC, to the base DE. But the ratio of the base BC to the
base DE is compounded of the ratio of the base BC to the entire surface of
the polyhedron, of which BC is a base, and the ratio of the entire surface of
this polyhedron to the base DE. The ratio compounded of the ratio of the
base BC to the entire surface of the polyhedron, of which BC is a base, and
the ratio of the entire surface of the polyhedron, of which DE is a base, to
the base DE, is greater than the ratio compounded of the ratio of the base
BC to the entire surface of the polyhedron, of which BC is a base, and the
ratio of the entire surface of this polyhedron to the base DE. We take off the
common ratio, and the ratio of the entire surface of the polyhedron, of
which DE is a base, to the base DE remains therefore greater than the ratio
of the entire surface of the solid, of which BC is a base, to the base DE. The
entire surface of the polyhedron, of which DE is a base, is greater than the
entire surface of the polyhedron, of which BC is a base. But the
perpendicular AH is greater than the perpendicular AG. Therefore, the
product of the perpendicular AH and one third of the entire surface of the
polyhedron, of which DE is a base, is greater than the product of AG and
one third of the entire surface of the polyhedron, of which BC is a base. But
the product of the perpendicular and one third of the sum of all the bases of
the regular polyhedron inscribed within the sphere is the volume of this
polyhedron. Therefore, the volume of the polyhedron whose bases are
greater in number is greater than the volume of the polyhedron whose bases
are fewer in number.
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Therefore, for two regular polyhedra inscribed within a sphere, the
bases of one being similar to the bases of the other, and the bases of one
being greater in number than the bases of the other, then the surface that
encloses the polyhedron with the greater number of bases is greater than the
surface of the polyhedron whose bases are fewer in number, and the volume
of the polyhedron with the greater number of bases is greater than the
volume of the polyhedron with the lesser number of bases. That is what we
wanted to prove.

<Corollary> If the bases of the polyhedron with the greater number of
bases have more sides that the bases of the other polyhedron, and if the
perpendicular drawn to the base of the polyhedron with the greater number
of bases is greater than the perpendicular drawn to the base of the other
polyhedron, then the surface of the polyhedron with the greater number of
bases is greater than the surface of the other polyhedron, and the volume of
the first is greater than the volume of the second.

We can show, as we have shown in the previous proposition, that the
ratio of the solid angle to the other solid angle is compounded of the ratio of
the base to the sum of the bases that are continuous with it and the ratio of
the sum of the bases that are continuous with the other base to this base.
But the ratio of the solid angle to the other solid angle is greater than the
ratio of the base to the other base, as has been proved in the tenth lemma in
this treatise.

We can show, as we have shown previously, that the surface that
encloses the polyhedron with the greater number of bases is greater than the
surface that encloses the polyhedron with the lesser number of bases, and
that the volume of the polyhedron with the greater number of bases is
greater than the volume of the other polyhedron.

From all that we have proved earlier in this treatise, it is clear that the
sphere is greater than all the solid figures with equal perimeters, that the
circle is the greatest of all the plane figures having equal perimeters, and that
of these figures, that which more closely approaches the circular in shape is
greater than that which is less circular in shape. That is what we intended to
prove in this treatise.

The treatise is complete. Thanks be unto God, the Lord of worlds, and
blessings be upon His envoy MuÌammad, the elect, and his Household.
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THE APPROXIMATION OF ROOTS

1. MATHEMATICAL COMMENTARY

Like many of his contemporaries, Ibn al-Haytham was concerned with
the extraction of square and cube roots. It is clear that he encountered the
familiar problem of approximation; but this time, in contrast to other areas
where the author deals with infinitesimal determinations, he refers neither to
what is known as Archimedes’ axiom nor to the exhaustion method: the
two concepts which go some way to unify the diverse works of research on
the infinitesimal are absent here. The approximation of roots would there-
fore seem to constitute a separate area, which would only later be included
in this research. It will be shown in my third volume that algebra is instru-
mental in introducing this work, firstly in the twelfth century with al-
Samaw’al and Sharaf al-Dîn al-™ºsî, then five centuries later, in quite a dis-
tinct branch of study, where it developed in a completely different direction.
This is what led us to take up Ibn al-Haytham’s texts herein, but in an
appendix in order to highlight the differences in their status: the two texts
which have come down to us and which have only recently been found, are
devoted to the square and the cube root respectively. If the evidence of
ancient biobibliographers is to be accepted, then these are the only texts
which Ibn al-Haytham wrote on this theme.

Let us start by defining Ibn al-Haytham’s method in a quite deliberately
different language in order to understand the ideas which underpin it.1 This
will demonstrate an algorithm which will lead eventually to Ruffini-Horner’s.
Even if Ibn al-Haytham seems to share this algorithm with his contempora-
ries, he is distinguished from them by his efforts to mathematically justify it
in the case of the square root.

Let the polynomial with integer coefficients be f(x) and the equation be

(1) f(x) = N.

1 Sharaf al-Dîn al-™ºsî, Œuvres Mathématiques. Algèbre et géométrie au XIIe

siècle, Text edited and translated by R. Rashed, 2 vols, Paris, 1986, vol. I, pp. LXXX–
LXXXIX.
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Let s be a positive root of this equation and let us assume (si) i ≥ 0 a
sequence of positive integers such that the partial sums are

s si
i

k

=
∑ ≤

0

.

We say that the si are parts of s.

It is evident that the equation

(2) f0(x) = f(x + s0) – f(s0) = N – f(s0) = N0

has for roots those of equation (1) diminished by s0.

For i > 0, let us form by recurrence the equation

(3) fi(x) = f(x + s0 + … + si) – f(s0 + … + si)

= [N – f(s0 + … + si-1)] – [f(s0 + … + si) – f(s0 + … + si-1)]
= Ni;

thus, by example for i = 1, we have

f1(x) = f(x + s0 + s1) – f(s0 + s1) = [N – f(s0)] – [f (s0 + s1) – f(s0)]
 = N0 – [f(s0 + s1) – f(s0)] = N1.

The method applied by Ibn al-Haytham, used by Kºshyær ibn al-
Labbæn2 and said to be by Ruffini-Horner, provides an algorithm which
gives the coefficients of the ith equation starting with coefficients of the
(i – l)th equation. This is the principal idea of this method.

Let us begin with the extraction of the nth root (which can already be
found in the twelfth century, if not before). Then

f(x) = xn ;

2 Kºshyær ibn al-Labbæn, Fî uÒºl Ìisæb al-hind (Principles of Hindu Reckoning)
has been translated into English and analysed by Martin Levey and Marvin Petruck,
Madison, Milwaukee, 1965. A. S. Saidan edited the Arabic text in Majallat Ma‘had al-
Makh†º†æt  al-‘Arabiyya 13, 1976, pp. 55–83.
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if we know the binomial formula given in the tenth century by al-Karajî,
there is no need to know the Horner table. The coefficients of the ith
equation will in this case therefore be

n

k
s si

n k





( )−
−

  +  ... +  0 1 , for k = 1, …, n,

(4) and

 N N
n

k
s s si i
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1
0 1 .

After this preliminary investigation, let us return to the text attributed to
Ibn al-Haytham for the square and cube root. Let

f(x) = x2 = N ;

we therefore have two cases:

First case: N is the square of an integer. Let us assume the root as

s = s0 + … + sh, with si = σi 10h-i (0 ≤ i ≤ h).

The task of the eleventh-century mathematicians was partly to deter-
mine h and the figures σi. Formula (4) can be rewritten as

2 (s0 + … + si-1), 1, Ni = Ni-1 – [ 2(s0 + … + si-1) si + si

2  ].

Thus σ0 can be determined by inequalities

 σ σ0

2 2

0

2 210 1 10h hN≤ < +( )

and σ1, …, σh by

σ i
i

i
h i

N

s s
=

+ … +( ) ⋅−
−2 100 1

.

In these expressions the Ni, for (1 ≤ i ≤ h), are calculated starting from
Ni-1, subtracting [2(s0 + … + si-1) si +  si

2  ]. For i = h, we find Nh = 0.
The author describes and proves an algorithm of the extraction of the

square root. Let us summarize this method by separating these two tasks.
Therefore in order to extract the square root or its whole part, we take the
following steps:
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1. Place number N, whose square root is to be extracted, in a table.
2. Place σ0 in decimal position 2h.

3. Subtract σ 0

2  in this position of N, which leads to N – s0

2 .
4. Multiply σ0 by 2 and move the product one decimal place to the

right.
5. Find σ1 and place under decimal place 2h – 2.

6. Multiply σ1 by 2σ0 in 2σ0 place.
7. Subtract the product of N0.
8. Subtract σ 1

2

 – in position σ1 from N0 –, which finally leads to

N1 = N0 – (2s0 + s1) s1

9. Multiply σ1 by 2 and move 2σ0 and 2σ1, placed under decimal places
2h – 1 et 2h – 2 respectively, by one decimal place.

10. Find σ2 and place it under decimal place 2h – 4.

11. Multiply σ2 by 2σ1 and 2σ0 in their respective positions.
12. Subtract the products of N1.
13. Subtract σ 2

2

 in position σ2 of N1 – which leads to

N2 = N1 – [2 (s0 + s1) s2 + s1

2 ].

14. Repeat until Nh = 0, then divide each of the numbers 2σ0, 2σ1, …, 2σh

in their positions by 2 to obtain the square root desired.

The author’s proof of his algorithm is formulated in general terms from
the Euclidean number theory. It relies heavily on the properties of the
geometric progression given in Book IX of the Elements, particularly
Proposition 8, which he specifically refers to.

Second case: N is not the square of an integer. Ibn al-Haytham uses the
same method to determine the whole part of the root. He then gives as an
approximation formula the one used by al-Khwærizmî as well as a
‘conventional approximation’ which can be rewritten respectively as

s s
N

s sh
h

h
0

02
+ … +( ) +

+ … +( )

and

s s
N

s sh
h

h
0

02 1
+ … +( ) +

+ … +( ) +
.
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This is not merely a description of algorithms as with Kºshyær, but an
attempt to give proper mathematical reasons, and to justify how these two
approximations surround the root.

To extract a cube root from an integer, the method is the same. Let

f(x) = x3 = N ;

here too, there are two cases.

First case: N is the cube of an integer. In this case s0 is determined in
such a way that s0

3  < N. Ibn al-Haytham, in the same way as his contempo-
raries, therefore takes s1 = s2 = … = sh = 1.

The coefficients of the ith equation can be rewritten as

3(s0 + i)2, 3(s0 + i), 1, Ni = Ni-1 – [3 (s0 + (i – 1))2 + 3(s0 + (i – 1)) + 1].

If Ni is the cube of an integer, then there exists a value k of i such that
Nk = 0; that is, such that (s0 + k) is the required root. Ibn al-Haytham puts
forward this algorithm:

1. Choose s0 such that s0

3  ≤ N.
2. If s0

3 = N, then the problem is solved; if not, we must carry on.
3. Formulate N1 = N – s0

3 .
4. Take s1 = s0 + 1.
5. Formulate N2 = N1 – (3 s0

2  + 3s0 + 1) = N – s1
3.

6. If N2 = 0, then s1 is the required root; if not, we must carry on.
7. Take s2 = s1 + 1.
8. Formulate N3 – N2 – (3 s1

2  + 3s1 + 1) = N – s2

3 .
9. If N3 = 0, then s2 is the required root; if not, we must start again from

the beginning.

It is clear that this algorithm is based on the idea previously stated: if N
is the cube of an integer and s0 is such that s0

3  < N, then the cube root s can
be written as s0 + k, with k ∈ N*, an unknown number. If s1 = s0 + 1, then

(x + s1 )3 = N,

whose root is k – 2. This last equation can be rewritten

(x + s2 )3 – s1
3 = N – s1

3 = N1 – (3 s0

2  +3s0 + 1) = N2.
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If we carry on, we come to the equation

(x + sk)3 = N

with
sk = sk-1 + 1 = s0 + k,

whose root is 0. Therefore sk is the required root.

Second case: N is not the cube of an integer. Ibn al-Haytham uses the
same method to determine the whole part of the root. He takes in this case
the approximate value

s s
N

s s
h

h

h

0

0

2
3

+ … +( ) +
+ … +( ) .

But the manuscript of this text which comes down to us has sadly been
mutilated, and we wonder if Ibn al-Haytham gave the second approximation
in the lost part of the text, since this was known to his contemporaries – viz.

s s
N

s s s s
h

h

h h

0

0

2

03 3 1
+ … +( ) +

+ … +( ) + + … +( ) +
.

This is highly likely: firstly, for reasons of symmetry, since with the
square root, he gave the two approximations. Secondly, this last approxima-
tion was well known to his contemporaries. (It is also likely that the lost part
contained a piece on the method of Hindu reckoning.)

Whatever the case may be, we can see that by the turn of the tenth
century, the so-called ‘Ruffini-Horner method’ was known, and there had
even been attempts to justify its usage mathematically. It went on to be
more widely used by algebrists, when, again at the turn of the century, al-
Karajî’s work on binomial formulae and coefficient tables became known.
And so there were several possible candidates for this wider application,
such as al-Bîrºnî and al-Khayyæm.
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4.3.1. On the Cause of the Square Root, its Doubling
and its Displacement

4.3.2. On the Extraction of the Side of a Cube





In the Name of God, the Forgiving, the Merciful

TREATISE BY ABª ‘ALI AL-ÎASAN IBN AL-ÎASAN
IBN AL-HAYTHAM

On the Cause of the Square Root, its Doubling and its Displacement

The cause of this: Why is it that the first rank has a square root, the
second has no square root, the next has a square root, and the next has no
square root? The cause is that each rank in the Indian calculus is ten times
greater than the preceding rank, and the first rank is unity. Hence, all the
ranks are in the same ratio to their neighbours, and each is a proportional
number beginning with unity. The third rank, counting from the first or
unity, is a square. The next rank is not a square, and the one after that is a
square.1 This is clear from Proposition eight in Book nine of the works of
Euclid.

But why should we double the fixed number? We take the double so
that, if we take a number that precedes it and then multiply it by the
doubled number, then we obtain twice the product of the second number by
the first. But why do we reduce the rank of the doubled number by one
rank? This is because the rank of the first fixed number is the rank of the
side of the square above it. Therefore, the rank of the side of the square

1 For n ∈ N,
a

a

a

a

n

n

n

n

−
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1 ;

hence
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n

n
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−=
( )1

1

2

.

Therefore if an-1 is a square, then an+1 is too. But since a0 = 1 is a square, all the
odd number expressions are squares. But since a1 is not a square, the odd number
expressions are not squares. Note that the word ‘rank’ (martaba) describes the term 10n

or an10n as well as the number itself, which is (n + 1).
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which is above it2 is the intermediate rank between the other square and the
first square, which is unity. The ratio of unity to the intermediate number is
equal to the ratio of the intermediate number to the other square. Hence, the
product of the intermediate number and itself is the other square, and the
intermediate number is the side of the other square. Similarly, the number
that precedes the intermediate <number> is the side of the second square
which precedes the other square, as it is intermediate between unity and the
other squared number, as the number of ranks, the first of which is unity
and the last of which is the second square, is an odd number and is two less
than the first odd number, the <place> of whose extremity is the other
square. Its intermediate is therefore the number immediately following the
first intermediate, and therefore the ratio of unity to it is equal to the ratio of
it to the second square. It is therefore the side of the second square. In this
way, we have shown that the successive powers of ten following unity are
the sides of the successive squares following unity. If we multiply the first
fixed number below the other square by itself, and then subtract <the
product of> the other square which is above it, then its rank is the rank of
the intermediate number between the other square and unity, which is the
last of the sides of the successive squares. The same applies to the second
given number below the second square which precedes the other square. Its
rank is the rank of the side of the second square, and its rank is that of the
power of ten which comes immediately after the power of ten which is the
side of the other square. The same applies to any given number below the
successive squares. The rank of each of them is that of the power of ten –
among the first powers of ten – which come after <that of> the side of this
square.

It necessarily follows that the product of the side of the first square and
the side of the second square is the power of ten lying between the two
successive squares, as each of the successive powers of ten is ten times the
power of ten that precedes it. If the power of ten is multiplied by the power
of ten that succeeds it, then the product is ten times greater than the square
of the first power of ten. Hence, for each of the successive squares, the
power of ten that follows the square is ten times it, and the power of ten
that follows that is the intermediate power of ten between it and the next

2 For every n ∈ N , 10n is the root of the square 102n, and 10n is equidistant

between the first square 100 = 1 and ‘the other’ square which is ‘above it’ since
1

10n
= 10n

102n
.

The expression 10n–1 which precedes 10n is the root of the square 102n–2 which

precedes 102n, since 
1

10
10
101

1

2 2n

n
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square. It is for this reason that the rank between the two squares becomes
the rank of the power of ten obtained by multiplying the side of the first
square by the side of the square that follows it. Hence, the first number fixed
for the square root is always one rank lower so that, if we take a number
below the second square which precedes the last square, and if we multiply
this by the number reduced in rank, then the product will belong to the type
of rank which lies between the second square and the last square. Therefore,
if we subtract the product from that which is above the number reduced in
rank, we are subtracting it from the power of ten which lies in its rank. It is
for this reason that we reduce the rank of the doubled number by one rank.

But why do we raise the second fixed number <to a square>, and then
subtract it from that which lies above it? As for this subtraction, it is so that
the sum of the <terms> subtracted from the two squares is the square of the
sum of the two fixed numbers. For any two numbers, <the sum of> their
squares and twice the product of one and the other is the square of their
sum. As for the subtraction of the square of the second number, this lies in
the rank of the number which is above it, as two successive numbers are the
two square roots of two successive squares. Therefore, if the first number is
raised to the square, and if <this square> is subtracted from that which is
above it, if it is doubled, if it is reduced in rank by one rank, if the second
number is multiplied by the doubled number, if the <product> of that which
is above it is subtracted, if the second number is raised to the square, and if
<the square> is subtracted from that which is above it, then the sum of the
numbers subtracted is the square of the number that is the sum of two
numbers that are successive powers of ten, and such that each of the
subtracted numbers is subtracted from its own rank. If the second number is
then doubled, and if all are reduced in rank by one rank, and if one takes a
given number under the third square, and if this number is multiplied by the
two numbers that were doubled and reduced in rank and by itself, and if
each of the terms of this product is subtracted from the number which is
above it, then each of the subtracted numbers is subtracted from its own
rank. The third given number is the side of the third square. Therefore, if it
is multiplied by the second number – which is the side of the second
square – the product will belong to the type of rank that lies between the
third square and the second square, as has been shown previously.
Therefore, if it is multiplied by the first number – which is the side of the
other square – the product will belong to the type of rank of the second
square, as the rank of the first number is ten times the rank of the second
number, and the rank of the second square is ten times the rank which lies
between the second square and the third square. If the third number is then
doubled, and if all are reduced in rank by a single rank, and if the given
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number preceding it is multiplied by the three numbers and by itself, then
each of the two products will belong to the rank which is above it, as has
been shown for the three numbers, and so on until the last number arrives
in the first rank, which is unity. If one arrives at the first rank, the doubled
numbers are divided into two halves. The remainders of these numbers after
having been divided in two, with the number which is above the first rank,
is the square root of the given number, if this has disappeared in the
successive subtractions, and their ranks are the ranks of the powers of ten
obtained after the division by two, the first of which is unity.

Let the number obtained be the square root of the given number that
disappeared after the subtractions. This is so because if any given number is
multiplied by itself, and another given number preceding it is multiplied by
itself and by twice the first number, then the sum of the numbers produced
and the square of the first number is the square of the sum of the two
numbers. Similarly, if another given number prior to the second is multiplied
by itself and by twice <the sum of> the two first numbers, then <the sum
of> the products plus the first subtracted numbers is the square of the sum
of the three numbers. The same applies to all given numbers. They all have
this property. The numbers obtained after dividing by two, plus the number
which is above the first rank, are the given numbers which have been
multiplied with each other in accordance with the property that we have just
mentioned. The square <of their sum> is therefore the sum of the subtracted
numbers. If the sum of the subtracted numbers is the given number whose
square root we are trying to find, then <the sum of> the numbers obtained,
the first of which is under the first rank, is the square root of the given
number whose square root we are trying to find if this number has entirely
disappeared during the subtractions. Let their ranks be the ranks of the
powers of ten obtained after the division by two, and let the first be the rank
of unity. This is because the powers of ten obtained after the division by two
are the sides of the successive squares. But the sides of the successive
squares are the first successive powers of ten, the first of which is unity, as
has already been shown. The ranks of the powers of ten of the numbers
obtained after the division by two and the number which is below the first
rank are the ranks of the successive powers of ten beginning with unity.

The number whose square root we are trying to find is either a square
or not a square. If it is a square, then there will be no remainder after we
have taken the square root. If it is not a square, then there will be a
remainder after we have taken the square root, and that remainder cannot
have a square root. The whole number <that remains> is always less than
twice the square root obtained plus one, as, if twice the square root obtained
plus one is added to the subtracted numbers, the sum will be a square
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number, as has been shown in the preliminaries. If the given number is not a
square, then if the square root is taken from that part of it that has a whole
square root, and if the number whose square root has just been taken is
subtracted from the given number, the remainder will be less than twice the
square root thus obtained plus one. This is because if twice the square root
plus one is added to the subtracted numbers, then the sum will be a square
number. That which has this property in no way has an exact square root,
as any number which does not have an exact square root is a number that is
not a square. If this approximation is continued in order to take the square
root of the remainder, the number remaining after the root has been taken is
divided, as a whole number, by twice the square root plus one or by twice
the square root alone. The result will be a part of unity which is added to the
obtained square root, giving a whole number plus some parts of unity. If this
sum is multiplied by itself, the product will be the given number whose
square root we are trying to find, less a small amount or plus a small
amount. If you divide the remaining number by twice the square root plus
one, the quotient will be a part of twice the square root and a part of unity,3

such that the ratio of this part to unity is the ratio of the divided number to
twice the square root plus one. Hence, when this number is multiplied by
twice the square root plus one, we get back to the divided number. But the
product of the part and twice the square root is a part of twice the square
root and a part of unity, and it is greater than the square of this part. But if
the part of twice the square root plus the square of this part is added to the
square of the square root, then the result will be a square. Therefore, if the
product of the part and twice the square root plus one is added to the
square of the square root, the sum will be greater than the square of the
square root plus this part. But the amount by which it exceeds it is the
number obtained by multiplying the amount by which unity exceeds the
part by the part. It is therefore a very small amount.

If the number remaining is divided by twice the square root alone, the
quotient is a part of twice the square root alone. Hence, when this number is
multiplied by twice the square root, the result is the divided number. But if
the product of the part and twice the square root is added to the square of
the square root, then the sum will be a non-square number, and will be less
than a square number by the square of the part. If the product of the part
and twice the square root plus the square of the part is added to the square
of the square root, then the result will be a square number. Hence, if <the
sum of> the square root and the part is multiplied by itself, the product will
be a square number which exceeds the given number by the square of the
part, which is a small quantity. If this is continued for the remainder

3 That is, a part of the parts whose number is twice the square root plus one.
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<dividing> by twice the square root plus one or by twice the square root
alone, and if the whole number obtained when taking the square root is
added, then the sum is by approximation the square root of the given
number whose square root we were looking for. Which of the two methods
mentioned in the approximation is preferable, and which should be chosen?
In order to decide, we have to experiment with each of the two methods
and choose that with the lesser difference. This is what we wished to explain
in relation to the causes of the displacement of square roots and their
doubling in the Indian calculus, with the Grace of God.

We completed this copy on the 11th of the Second Jumædæ in the year
721 in al-Sul†æniyya.



In the Name of God, the Forgiving, the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Extraction of the Side of a Cube

A cubic number is obtained by multiplying a number by the product of
that number and itself. The extraction of the side of the cube is carried out
when there is a given cubic number whose side is not known, and when there
is a need to know its side, that is, the number which when multiplied by itself
and then by itself again gives the given cubic number.

Arithmeticians usually extract the side of a cube using the Indian calculus.
We are not aware that any of them has ever described a method for extracting
the side of a cube, other than the Indian calculus. But when we examined the
properties of this number, it became apparent to us that it is possible to extract
the side of this number by the transactions method <of calculation>, without
requiring the Indian <calculus>. We have therefore written this treatise. In this
treatise, we show how to extract the side of a cube by the transactions method
<of calculation>, and also how to extract it using the Indian method, as those
reading this treatise may not be familiar with the Indian way and may wish to
know of it when it is mentioned. We therefore include it with the transactions
method so that those who wish to know this number may learn how to do so
by two methods at the same time.

The method for extracting the side of a cubic number, if the cubic number
is given, is to take a number – any number – multiply it by itself, and then
multiply this product by the first number. The product is then equal to the
given number, or is not equal to it. If it is equal to it, then the first number
taken is the side of the given cube. If the product is not equal to the given
number, then it is either less than or greater than it. If it is greater, the number
taken is rejected and another smaller number is taken and this is multiplied by
itself. Then, it is multiplied by its square – its square being the product of its
multiplication by itself – until the product is less than the given number or is
equal to it. If it is equal to it, then the number taken is the side of the given
number. If it is less than the given number, the number taken is multiplied by
three and its square is multiplied by three, and these are added, and one is
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added, and this sum is added to the product of the number taken and its
square. If this sum is equal to the given number, then one is added to the first
number taken, and the sum of the first number and one is the side of the given
cube. If the number obtained is not equal to the given number, then it is less
than it and it is not greater than it if the given number is a cube. If it is less
than it, the number obtained is multiplied – adding one to the first number –
by three, and its square is also multiplied by three. The results are all added
together, increased by one, and this result is added to the first number obtained
which is less than the given number. If that which is obtained is equal to the
given number, another one is added to the number obtained from the first
number plus one. This will then be the side of the given cube. If it is not equal
to it, then it is less than it. We then apply to the second acquired number the
same process as was applied to the first acquired number, and we continue to
proceed in this way, multiplying the acquired number by three and its square
by three, adding one to the sum and adding the result to the first number.
Each time, the acquired number is increased by one, until the sum is equal to
the given cubic number. If it is equal to it, then the acquired number is the side
of the given number, and the number that we have called the ‘acquired
number’ is the number obtained from the first number taken plus the unities
successively added to it. The process may also be reduced to the following:
The first number taken is multiplied by itself, and then multiplied by its square.
This product is then subtracted from the given cubic number. If there is a
remainder from the cube, the number taken is multiplied by three, its square is
multiplied by three, and all are added together. One is added to the sum, and
the result is subtracted from the remainder obtained from the cube, then one is
added to the number taken. If there is a second remainder from the cube, the
acquired number is multiplied by three, its square is multiplied by three, and
one is added to the sum before subtracting the result from the second
remainder obtained and adding one to the acquired number. We continue to
proceed in this way until the given cubic number disappears and nothing
remains. If the cubic number disappears, then the acquired number is the side
of the cubic number. If the given number whose side is sought is a cube – and
if you follow the procedure that we have described – then the cubic number
will eventually disappear leaving no remainder.

Here is an example of the process that we have just described: Let the
given cubic number be one thousand, seven hundred and twenty-eight, and we
wish to extract its side. We take the number ten which we multiply by itself to
give one hundred. Then, we multiply ten by the square and the result is one
thousand. Comparing this with the given number – which is one thousand,
seven hundred and twenty-eight – we see that it is less than it. We then
multiply ten by three, giving thirty, and we multiply one hundred by three,
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giving three hundred. Adding them gives three hundred and thirty, and adding
one gives three hundred and thirty-one. Adding this to one thousand gives one
thousand, three hundred and thirty-one, which is still less than the given
number. We therefore add one to ten giving eleven, which is the side of the
cube one thousand, three hundred and thirty-one as, if eleven is multiplied by
itself and the product is then multiplied by eleven, then the result is one
thousand, three hundred and thirty-one. We then multiply eleven by itself,
giving one hundred and twenty-one. We multiply eleven by three, giving
thirty-three, and we multiply one hundred and twenty-one by three, giving
three hundred and sixty-three. Adding these two products and adding one
gives three hundred and ninety-seven, which we add to the first number
obtained – which was one thousand, three hundred and thirty-one – to give
one thousand, seven hundred and twenty-eight, which is equal to the given
number. Adding one to eleven gives twelve, which is the side of the given
cube – one thousand, seven hundred and twenty-eight. If we subtract one
thousand from one thousand, seven hundred and twenty-eight, and then
subtract three hundred and thirty-one from the remainder, and then subtract
three hundred and ninety-seven from the remainder, until the given number
disappears, and if we add one to the first number each time, then the process
gives the same single result.

In order to verify the validity of this procedure, we multiply the final
acquired number – which is twelve in this example – by itself to give one
hundred and forty-four, and then multiply twelve by one hundred and forty-
four, the result is one thousand, seven hundred and twenty-eight.

But not all numbers are cubic numbers, and the given numbers whose side
we are looking for are not all cubic numbers. Any non-cubic number will not
have an exact cubic side. It is, however, possible to extract the cubic side of a
number that is not a cube by approximation, in the same way that it is possible
to extract the square root of a number that is not a square by approximation.
Therefore, if we have a given number and we wish to extract its cubic side, we
begin by applying the procedure that we have just described. If the number is
a cube, it is necessary that the procedure that we have laid out results in a
number equal to the given number, such that if the given number is subtracted
from it, the number disappears without leaving a remainder. If the number is
not a cube, it is necessary that there is a remainder, such that if the acquired
number is multiplied by three, and if its square is multiplied by three, and if the
two <products> are added together and added to one, then the sum is greater
than the remainder. If the process ends in this way, we multiply the acquired
number by three, then multiply its square by three, and then divide the
remainder of the given number by the square multiplied by three. The results
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are parts of unity. If these parts are added to the acquired number, the sum
will be the cubic side of the given number by approximation.

Example: Let the given number be one thousand eight hundred and we
wish to find its cubic side. We apply the procedure described until we obtain
twelve, whose cube is one thousand, seven hundred and twenty-eight. If we
subtract this number from one thousand eight hundred, either in one operation
in the first method, or in several operations in the subtraction method, there
remains seventy-two from the one thousand eight hundred, such that, if we
multiply twelve by three, and if we multiply its square – which is one hundred
and forty-four – by three, and if we add the two <products>, and if we add
one to them, then the sum will be four hundred and sixty-nine, which is
greater than the remainder which is seventy-two. We multiply the square of
twelve – which is one hundred and forty-four – by three giving four hundred
and thirty-two, and we divide seventy-two by four hundred and thirty-two
giving seventy-two parts out of four hundred and thirty-two, which is equal to
one sixth. We then add one sixth to twelve giving twelve and one sixth, which
is approximately equal to the cubic side of one thousand eight hundred. In
order to verify this, we multiply twelve plus one sixth by twelve plus one sixth,
giving one hundred and forty-eight and one part of thirty-six parts. We then
multiply twelve plus one sixth by one hundred and forty-eight and one part of
thirty-six parts.
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[1] On the Arithmetic of Transactions

The case of the treatise On the Arithmetic of Transactions is a rather
delicate one for two reasons: firstly, the generality of the title, which
indicates an area rather than a particular work; and secondly the number of
works attributed to Ibn al-Haytham on this subject. The aim of this note is
simply to clarify the problem without claiming to solve it.

There are two books attributed to Ibn al-Haytham which deal with this
kind of calculation. The first is entitled al-Mu‘æmalæt fî al-Ìisæb (Arithmetic
Transactions). Two manuscripts of this book are known to have been in
existence at this time in Istanbul: Feyzullah 1365/22 fols 73v–164r, and Nur
Osmaniye 2978 fols 39–125. Here authorship is spelled out on the first page,
with a declaration: ‘written by al-Shaykh al-Imæm and great scholar al-
Îasan ibn al-Haytham of Baghdad – may God have mercy on him’. His
name also appears a few folios later. ‘Shaykh Abº al-Îasan ibn al-Haytham
said….’, followed by some fifteen lines of quotation from the second book.
However, it should be understood that the mere mention of his name does
not necessarily imply authorship. Although certain modern bibliographers
have been tempted to do so, attribution of works to Ibn al-Haytham on this
basis, without any other proof, will not bear even cursory examination. In
the first place there is no record in any ancient bibliography of Ibn al-
Haytham’s works under this title, nor any reference to it in any of his other
works. Secondly, this is a compilation, not a monograph on the subject. In
fact, it begins with a short tract on the use of ‘Coptic’ figures in calculation,
then quotes the fifteen lines already referred to and continues with
elementary commercial arithmetic – conversion of weights and money,
grain measures, etc. – various purchase problems and practical geometry,
etc. Neither the style of composition nor the level of mathematics is
anything like that of Ibn al-Haytham. Here is one (not the worst) example:
how is stated the area of a circle: ‘the area of a circle with diameter seven
and circumference twenty-two is calculated by multiplying the diameter by
half the circumference, that is three and a half by eleven, which is thirty-
eight and a half; that is, the area’ (ms. Feyzullah, fol. 129v). Although the
result is correct, such a style was not used by Ibn al-Haytham to expound
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mathematics, not even in cases of practical geometry, such as those in his
treatise On the Principles of Measurement.

The second treatise is entitled Discourse of al-Shaykh Abº ‘Alî al-
Îasan ibn al-Îasan ibn al-Haytham, renowned for his ‘astounding’ work
on the Arithmetic of Transactions, and is very different. It comes down to
us in two manuscripts; Istanbul, ‘Atif 1714/13, fols 116r–125r and Berlin
Oct. 2970/17 fols 117r–186r. There is doubt over the term ‘al-gharîb’ –
meaning ‘astounding’. Al-Îasan ibn al-Haytham was not in the habit of
using such expressions to describe his works (and this can be proved). On
the other hand, this word can be read as ‘al-qarîb’ which means ‘near’ or
‘easy’. Moreover, the colophon reads: Tamma al-kitæb fî Ìisæb al-
mu‘æmalæt (The Book on the Arithmetic of Transactions is completed…’)
without any mention of ‘astounding’. And it is this exact title which appears
on the two lists of al-Îasan and of MuÌammad. The book itself deals with
‘the fundamentals of this art’, that is the non-demonstrative study of the
operations of this arithmetic: proportion, multiplication, division, addition of
fractions. The way the text is presented, it could well be the work of al-
Îasan ibn al-Haytham, but without supporting evidence, it is impossible to
be certain.

[2] The Configuration of the Universe: a Book by aaaallll----ººººaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----
HHHHaaaayyyytttthhhhaaaammmm?1

‘Our statements on all the motions are only according to the viewpoints of
Ptolemy, and according to his opinion’ (Configuration of the World ed.
Langermann, ar. p. 6).

‘From what emerges from the remarks by His Excellency the Shaykh, it is
clear that he believes in the word of Ptolemy in all that he says, without
relying on a demonstration and without invoking any proof, but by pure
imitation; it is thus that the specialists of the prophetic tradition have faith in
the Prophets, may God bless them. Yet it is not in this way that
mathematicians have faith in the specialists of demonstrative sciences. And I
have observed that it is painful to him that I have contradicted Ptolemy, and
that he feels resentment because of this; his remarks make it clear that error
is foreign to Ptolemy. But there are many errors in Ptolemy, in many
passages of his books. Among others, there is what he says in the Almagest:

1 This Supplementary Note has been written after the publication of Les
Mathématiques infinitésimales, vol. V. It is the development of the initial note entitled
‘Treatise on the Configuration of the Universe, attributed to Ibn al-Haytham’. It was
published in the Revue d’histoire  des sciences, 60, no. 1, janvier–juin 2007, pp. 47–
63.
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if one examines it attentively, one discovers many contradictions in it.
Indeed, he has affirmed principles for the configurations he mentions, then
for the motions he proposed configurations in contradiction with the
principles he affirmed’ (al-ºasan ibn al-Haytham, On the Resolution of
Doubts relating to the Winding Movement – Fî Ìall shukºk Ìarakat al-
iltifæf, ms. Leningrad, B1030, fol. 19v).

Translated into Hebrew, and then into Latin from the Hebrew
translation, The Configuration of the Universe (F¬ hay’at al-‘lam) was
one of the references for medieval astronomy, as has been shown by
P. Duhem, C. Nallino, F. J. Carmody, and many others.2 The impact of this
work on Arabic astronomy was quite weak. It was used only by a few low-
ranking astronomers, such as al-Khiraq¬, as we shall see below.

Since Duhem, however, a common opinion has become entrenched,
according to which the Configuration of the Universe represents an
essential dimension of Ibn al-Haytham’s contribution. Among other reasons
for the success of this opinion, commonly widespread among historians, as
well as of the book itself during the Middle Ages, are quite certainly the
simplicity of its contents, the absence of any mathematical technicality, and
above all the combination of the planetary theory of the Almagest with a
specific cosmology. This success was all the more resounding in that the
book bears the name of the prestigious mathematician and physicist Ibn al-
Haytham. It is not rare, however, that a great success is the effect of
misunderstanding, if not of a mistake. This is precisely what I shall establish
here.

Three Arabic manuscripts3 have come down to us, which give al-ºasan
ibn al-Haytham as the author; thus, the book as it has been handed down to

2 P. Duhem, Le système du monde, vol. 2: Histoire des doctrines cosmologiques
de Platon à Copernic, Paris, 1965, pp. 119–26. Y. T. Langermann has given an edition
of the Arabic text on the basis of two manuscripts, that of London and that of Turkey
(Kastamonu), as well as an English translation. The ensemble, preceded by a 50-page
introduction, and an Arabic, Latin and Hebrew glossary, is entitled Ibn al-Haytham’s On
the Configuration of the World, New York/London, 1990.

3 This book has come down to us in three manuscripts: 1) London, India Office,
Loth 734, fols 101–116. It is thus part of collection that was written late, approximately
in the seventeenth century. 2) Kastamonu (Turkey) 2298, fols 1–43. We do not know the
date of the transcription of this manuscript. As Y. T. Langermann has observed, it is
marred by serious omissions. 3) Rabat, Bibliothèque Royale, no. 8691, fols 29r–48r.

It can be verified that these three manuscripts differ in pairs, and that some of these
differences are irreducible; all these elements show that the transmission of the text raises
serious problems, which remain to be studied. What is even more serious is that the
London manuscript includes a gloss, added at the end, which reads as follows: ‘gloss
(ta‘l¬q) we found in the hand of the Shaykh, may God prolong his life; we have therefore
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us would be the work of the eminent eleventh-century mathematician.
However, the latter’s name has undergone a transformation in two of these
three manuscripts. Thus, instead of al-ºasan ibn al-ºasan, we find Ab¬ al-
ºasan, which already shows that we are dealing with the act of a scribe. As
far as the third manuscript is concerned, which is relatively late,4 it contains
several treatises by al-ºasan ibn al-Haytham, which may have induced the
scribe to normalize the name. As we shall see, however, this attribution
raises numerous epistemic and historical problems, problems which are of
major importance, but are never tackled head-on by historians.

Some fifteen years ago, on the occasion of the first critical study of the
biobibliographical and historical sources concerning the activities and titles of
al-ºasan ibn al-Haytham, a study which was preliminary to the critical
edition of his mathematical works, we had shown that there were two
personages who had eventually been confused by the vicissitudes of history:
the mathematician al-Îasan ibn al-Haytham and the philosopher and
physician MuÌammad  ibn al-Haytham. We had also raised doubts
concerning the validity of the attribution to al-ºasan ibn al-Haytham of the
Configuration of the Universe.5 A few years later, however, the
appropriateness of our method was questioned, and it has been thought
possible to affirm that the two personages were in fact one and the same,
and the authenticity of the attribution of The Configuration of the Universe
to al-Îasan ibn al-Haytham has been clearly proclaimed.6 Several
arguments were advanced, only one of which deserves to be considered,
since all the others are either purely rhetorical, or else the result of

copied it as we have found it’ (fol. 116r; ed. Langermann, ar. p. 66). On the identity of
this Shaykh, who was still alive since the scribe wishes that his life should be prolonged,
we know nothing whatsoever. This attributed gloss, which is uncertain at best, sets forth
common ideas on celestial motions, as well as a few vague elements of an Aristotelian
cosmology. Without any precaution, people have hastened to attribute it to al-ºasan ibn
al-Haytham, at the conclusion of a comparison, as arbitrary as it is vague, with a few
general phrases by Ibn al-Haytham in The Light of the Moon. It was this gloss that
misled a scholar as great as the late M. Schramm (Ibn al-Haythams Weg zur Physik,
Wiesbaden, 1963, pp. 63ff.).

4 The London manuscript, India Office, Loth 734.
5 Vide supra, pp. 1–17. See also vol. III: Ibn al-Haytham. Théorie des coniques,

constructions géométriques et géométrie pratique, London, 2000; and particularly the
addenda, pp. 937–41, entitled ‘Al-ºasan ibn al-Haytham et MuΩammad ibn al-Haytham:
le mathématicien et le philosophe’; vol. IV: Méthodes géométriques, transformations
ponctuelles et philosophie des mathématiques, London, 2002, pp. 957–9, on al-
ºasan ibn al-Haytham and MuΩammad ibn al-Haytham: the mathematician and the
philosopher: On Place.

6 Cf. A. I. Sabra, ‘One Ibn al-Haytham or two?’, Zeitschrift für Geschichte der
arabischen - islamischen Wissenschaften, 12, 1998, pp. 1–51, particularly pp. 19–21.
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misunderstanding the mathematical contents of Ibn al-Haytham’s work: we
have, moreover, already refuted the main ones.7 This argument relies
primarily on the reproduction of the colophon of one of the three
manuscripts of the Configuration of the Universe, where the scribe
attributes it explicitly to al-ºasan ibn al-Haytham – note that the colophons
of the other two manuscripts do not provide any information.8 We will show
in what follows that this argument is also erroneous and that the objections
raised are based on a very weak argument.

If we insist on replying here to this question of authenticity, it is not only
in order to rectify a historical error, but because it concerns our conception
of the astronomy of al-ºasan ibn al-Haytham. Indeed, if it is demonstrated
that this book is not, and cannot belong, among the latter’s works, then we
must conclude that the interpretations given of his astronomy by historians
on the basis of this book are to be rejected. According to these
interpretations, Ibn al-Haytham’s astronomy is descriptive rather than
demonstrative, like the Configuration of the Universe, where the author
combines the planetary theory of the Almagest, just as it is, with a
cosmology of Aristotelian origin. In fact, this is an inaccurate image of Ibn
al-Haytham’s astronomy.9 Let us begin by recalling a few well-established
facts, taking care to distinguish them from conjectures.

The biography as well as the bibliograpecounted by several ancient
authors: the principal ones among them are al-Qiffl¬ (568/1172–646/1248),
Ibn Ab¬ U◊aybi‘a (596/1200–668/1270), and an Anonymous, whose text is
found in a manuscript of Lahore.10 The latter is the oldest one, since it was
copied in 1161 at NiÂæmiyya in Baghdad.

A second fact, which has not been noticed, has given rise to serious
confusion: al-Qiffl¬ gives only the list of writings of al-ºasan ibn al-Haytham,
and never mentions the name of ‘MuΩammad’ ibn al-Haytham. The list
given by al-Qiffl¬ is almost exclusively of his writings in the mathematical
sciences, and once a verification is made, all the works of al-ºasan that have

7 See note 4, particularly vols III and IV.
8 Indeed, the London manuscript does not contain a colophon. As far as the

Moroccan manuscript is concerned, it informs us that the copy was completed on
‘Sunday the third of Rajab one thousand two hundred ninety-one’ of the Hejira, that is in
1874. In this manuscript as in the one from Kastamonu, Ab‚ al-ºasan is written instead
of Ibn al-ºasan.

9 This debate is all the more urgent in that we have just completed the editio
princeps as well as the first translation of the main work of Ibn al-Haytham on
astronomy, spherical geometry and trigonometry (Les Mathématiques infinitésimales,
vol. V).

10 We shall call him the Anonymous of Lahore.
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come down to us – with two exceptions – also appear on this list by al-
Qiffl¬.

The Anonymous of Lahore and Ibn Abî UÒaybi‘a had the same source:
an autograph manuscript of MuÌammad ibn al-Îasan in which the latter,
after having narrated a few elements of his biography, or rather of his
philosophical biography, gives a list of his writings down to the year
417/1026. Immediately after, he gives a complementary list of his writings
down to the year 419/1028. However, there are two important differences,
which have gone unnoticed, between the Anonymous of Lahore and Ibn
Abî UÒaybi‘a. Immediately after this list, the Anonymous of Lahore
transcribes a list of the writings of al-Færæbî, after a copy by the Baghdad
judge Ibn al-Murakhkhim. It is after this list that he transcribes a list of the
writings of al-Îasan ibn al-Haytham. In other words, the Anonymous of
Lahore has not confused either al-Îasan and MuÌammad, or their lists.

The exposition by Ibn Abî UÒaybi‘a is quite different. He is not a scribe,
but a biobibliographer, like al-Qif†î, and he therefore intends to write an
article on Ibn al-Haytham in his dictionary. He begins his article with an
introduction in which he borrows, particularly from al-Qif†î, some facts
which the latter attributes to al-Îasan ibn al-Haytham. However, since he
will soon follow this introduction by the philosophical autobiography as well
as the lists of MuÌammad ibn al-Îasan, he combines the two personages
and composes a new portrait, that of an alleged ‘Abº ‘Alî MuÌammad ibn
al-Îasan ibn al-Haytham’. No author and no source before Ibn Abî
UÒaybi‘a mention such a personage, and no work by al-Îasan ibn al-
Haytham, any more than a commentator on his works, as we have shown,
mentions such a name. It is this confusion that Ibn Abî UÒaybi‘a fell into
that has misled the biobibliographers and historians.11

Whatever may be the case for the examination of the list of works by
MuÌammad ibn al-Îasan given by Ibn Abî UÒaybi‘a, it clearly emerges that
he had at his disposition the same autograph manuscript that was available
to the Anonymous of Lahore. It remains true that once he has copied these
lists, Ibn Abî UÒaybi‘a follows them with the list of the works of al-Îasan
ibn al-Haytham. He introduces this list with the words: ‘this is also a list

11 Anton Heinen edited the text of the manuscript of Lahore while eliminating the list
of al-Færæbî that separates the work by MuÌammad ibn al-Îasan and the list of al-Îasan.
He simply remarked in a note: ‘An dieser Stelle, auf derselben Seite und in derselben
Hand, folgt das Verzeichnis der Werke al-Færæbîs’ (‘Ibn al-HaiÚams Autobiographie in
einer Handschrift aus dem Jahr 556 H./1161 A.D.’, in Ulrich Haarmann und Peter
Bachmann (eds), Die islamische Welt zwischen Mittelalter und Neuzeit, Festschrift
für Hans Robert Roemer zum 65. Geburtstag, Beirute Texte und Studien, vol. 22,
Beirut, 1979, pp. 254–77, at p. 272, n. 27). Following Ibn Abî UÒaybi‘a, he has
confused the two authors.
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(fihrist) that I found of the books of Ibn al-Haytham, down to the end of the
year four hundred twenty-nine’.12 Except for some differences in the
order,13 this list resembles the one given by the Anonymous of Lahore and
by al-Qif†î. The fact that Ibn Abî UÒaybi‘a adds this list at the end, and
introduces it in these terms, shows that it existed independently of the
autograph copy of MuÌammad ibn al-Haytham, since it had been found in
the manuscript of Lahore.

A third fact is equally indisputable: the examination of these two lists,
that of MuΩammad  and that of al-ºasan, shows that the writings of
MuΩammad  deal with philosophy, and particularly medicine, or are
commentaries, didactic in intention, on ancient scientific texts, such as the
Elements, Almagest, as well as a work by Menelaus, whereas the works of
al-ºasan  deal with research problems, often cutting-edge, in the
mathematical sciences. To take only one example, that of analysis and
synthesis, which is significant because both men deal with it: whereas
MuΩammad wrote his treatise ‘by the method of examples for students’,14

al-ºasan15 tackled research problems that were still alive in the eighteenth
century, such as the reciprocal of Euclid’s theorem on perfect numbers, or
the problem of three tangent circles: that is, problems of advanced research,
far removed from any didactic intention. We can see the distance that
separates the two projects.

A fourth fact is particularly important: the commentaries on the ancients
by MuΩammad that have come down to us under his name – those on the
Almagest and on the work by Menelaus – are repetitive and didactic
paraphrases. Now, of the works by al-ºasan ibn al-Haytham that appear on
the list, the only ones – and they are rare – that could belong to the genre of
the commentary are rectificative: that is, they deal with the solution of
aporias by Euclid or Ptolemy, and foundational, in the sense that they go
back to the very foundations, like his commentary on the postulates of the
Elements.

A fifth fact, which has also gone unnoticed, is the testimony of ancient
authors who had access to the works both of MuΩammad and of al-ºasan:
thus, the philosopher Fakhr al-D¬n al-Rz¬ does distinguish the two
authors.16

12 Ibn Ab¬ U◊aybi‘a, ‘Uy‚n al-anb’ f¬ flabaqt al-aflibb’, ed. N. Ri¥, Beirut,
1965, p. 559.

13 Vide supra, pp. 8–12.
14 Ibn Ab¬ U◊aybi‘a, ‘Uy‚n al-anb’ f¬ flabaqt al-aflibb’, p. 555.
15 Les Mathématiques infinitésimales, vol. IV.
16 Les Mathématiques infinitésimales, vol. III.
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These facts, which are far from being the only ones, all lead to the same
conclusion: there were two homonymous personages, al-ºasan ibn al-ºasan
ibn al-Haytham and MuΩammad ibn al-ºasan ibn al-Haytham. The first was
the famous mathematician; as far as the second one is concerned, he was a
philosopher-doctor, familiar with the sciences, like many philosophers in the
tradition of al-Kind¬, but without being an inventive scientist himself.
Homonyms, these two personages are also contemporaries, have the same
origin (southern Iraq), and were perhaps related. Yet whereas the
mathematician emigrated to Cairo, the philosopher remained in Iraq.

Since confusions tend to be long-lived, a meticulous examination of the
authenticity of the Configuration of the Universe is essential. Once again, let
us recall a few facts.

Whereas the three ancient biobibliographers inscribe the title of the
Configuration of the Universe on the list of al-ºasan, Ibn Ab¬ U◊aybi‘a and
the Anonymous of Lahore inscribe it twice, once on the list of MuΩammad,
and once on that of al-ºasan – which might have alerted historians and
induced them to discuss the authenticity of the attribution of the
Configuration of the Universe. Yet nothing of the sort occurred. However
we interpret this double attribution, if we persist in considering that
MuΩammad and al-ºasan are one and the same person, we can only end up
with an absurdity. Indeed, in that case we would have to accept that the
same author wrote two different books, at two different times, with the
same title, and without pointing it out: a conclusion which is all the less
plausible in that it is not supported by any argument. To be sure, we could
impute the responsibility for this to the author of the source (or the sources)
of the works of al-Îasan ibn al-Haytham consulted by Ibn Ab¬ U◊aybi‘a
and the Anonymous of Lahore, or else to these authors themselves. Yet
since this title appears on the list of the works of al-ºasan established by al-
Qiffl¬, without any link to the source on which Ibn Ab¬ U◊aybi‘a and the
Anonymous of Lahore depend, there is nothing to induce us to conclude
that the last two bibliographers or their source could have committed such
an error. For the moment, we must restrict ourselves to the bibliographical
fact, prepared to discuss it later on: there are two books entitled
Configuration of the Universe, one attributed to MuΩammad and the other
to al-ºasan.

The arguments advanced in favour of the authenticity of the
Configuration of the Universe such as it has come down to us boil down to
two: 1) the title cited by the ancient biobibliographers; and 2) the colophon
of one of the manuscripts of the Configuration of the Universe.

1) The three ancient biobibliographers indeed cite the title of the
Configuration of the Universe among the works of al-ºasan. Let us recall a
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well-known fact, however: before the beginnings of printing, titles were
scarcely stable, and the variations they underwent were sometimes
considerable. Among many other examples, let us take the list of the
writings of al-ºasan established by al-Qiffl¬, the great majority of whose
titles are authenticated. Al-Qiffl¬ cites a book by al-ºasan which he entitles
The Sphere is the Greatest of the Solid Figures (al-kura awsa‘ al-ashkl
al-mujassama),17 instead of giving it its real title: On the Sphere, which is
the Greatest of all the Solid Figures having Equal Perimeters, and on the
Circle which is the Largest of all the Plane Figures having Equal
Perimeters.

It is easy to see that the title given by al-Qiffl¬ is incomplete and less
detailed. The argument from the title, especially when invoked by an ancient
biobibliographer, should be handled with infinite precaution. In the case of
the Configuration of the Universe, attributed to al-ºasan because he had
written another book whose title begins with the same expression, ‘On the
configuration of...’, viz. On the Configuration of the Movements of Each of
the Seven Planets (F¬ hay’at Ωarakt kull wΩid min al-kawkib al-
sab‘a), a title that is not cited by any ancient bibliographer, any more than
his capital work on The Completion of Conics, increased precautions are
called for.

We now come to the colophon of one of the three manuscripts that
have come down to us.

Here is the colophon:

وكتب هذا الكتاب من النسخة التي نُسخ [كذا] من نسخة الشيخ أبي القسم السميساطي بخطه 
ذكر أنه نقلها من نسخة بخط مصنف الكتاب الشيخ أبى على الحسن بن الحسن بن الهيثم وقابل 

عليها من أولها إلى آخرها في رجب من سنة ست وسبعين وأربعمائة.
This book was transcribed from the copy that was transcribed from the
copy of the Shaykh Ab‚ al-Qasam al-Sumaysfl¬ in his hand. He (al-
Sumaysfl¬) mentioned that he had transcribed it from a copy in the hand of
the author of the book, Ab‚ ‘Al¬ al-ºasan ibn al-ºasan ibn al-Haytham;
and that he (al-Sumaysfl¬) compared it with the latter from the beginning to
the end, in the <month> of Rajab of the year four hundred seventy-six
<1083>.18

17 Al-Qiffl¬, Ta’r¬kh al-Ωukam’, ed. J. Lippert, Leipzig, 1903, p. 168.
18 Ms. Kastamonu 2298, fol. 43r. The meaning of the Arabic is clear. qbala cannot

be translated by ‘was checked’. There is no need to be a great philologist in order to grasp
that the subject of this active verb is the same as that of dhakara and of naqala, that is, al-
Sumaysfl¬. However, it is this strange error in translation (which is not made by
Langermann, cf. p. 43), that compromises Sabra’s entire argumentation, pp. 19–20 and
n. 34.
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According to this colophon, the grandfather of the Kastamonu
manuscript would be the one belonging to al-Sumaysfl¬, which is supposed
to be have been copied by him in 476/1083, after the autograph of al-ºasan
ibn al-Haytham. If this information could be verified, one would have a
strong argument in favour of the authenticity of the attribution of the
Configuration of the Universe to al-ºasan ibn al-Haytham; all the more so
in that al-Sumaysfl¬ is a younger contemporary of the latter. But nothing
could be further from the truth: the colophon is more than dubious. Ab‚ al-
Qasam al-Sumaysfl¬ is not an unknown figure. He has left us a short treatise
on isoperimetric figures (mss Istanbul, Carullah 1502 and Beshir Aga 440).19

In addition, the ancient biographers and historians inform us about his dates
and some of his activities. Thus, Ibn al-‘Imd, in his Shadhart al-dhahab,
lists at the same time among personalities who died in the course of the year
453/1061, the doctor Ibn Ri¥wn, a contemporary of al-ºasan ibn al-
Haytham:

وفيها (توفي) أبو القسم السميساطي واقف الخانكاه قرب جامع بني أمية بدمشق. [...] 
على بن محمد بن يحيى السلمى الدمشقى، روى عن عبد الوهاب الكلابي وغيره، وكان 

بارعا فى الهندسة والهيئة، صاحب حشمة وثروة واسعة عاش ثمانيين سنة.
Ab‚ al-Qasam al-Sumaysfl¬ , who has bequeathed a hospice, next to the
mosque of the Omeyyads at Damascus, as a religious bequest [...], ‘Al¬  ibn
MuΩammad ibn YaΩy al-Sulam¬ of Damascus, who recited <the prophetic
word> according to ‘Abd al-Wahb al-Kilb¬ , and others; he excelled in

This colophon is followed by a gloss, clearly separated from it in the manuscript, of
which the following is a translation, as literal as possible: ‘the copy from which this copy
has been transcribed has been compared with the copy of above-mentioned origin, which
is in the hand of the Shaykh Ab‚ ‘Al¬ ibn al-Haytham. It was rectified, thanks be to God,
the Lord of worlds, and transcribed in the month of Rajab of the aforementioned year’
(ms. Kastamonu 2298, fol. 43r).

والنسخة المكتوبة منه [كذا] هذه النسخة عورض بها النسخة الأصل المذكور وهو بخط الشيخ 
أبي علي [كذا] بن الهيثم وصحح والحمد لله رب العالمين وكتب في رجب من السنة المذكورة.

Despite the mistakes in Arabic, as numerous as they are gross, which disfigure these
few lines (and which can only confirm our doubts with regard to the quality of the
information transmitted), it seems that the scribe confines himself to extracting from the
colophon the information necessary for specifying the relationship between the
manuscript he has just copied and the autograph of the author. He therefore suppresses
the mention of the name of al-Sumaysfl¬, which is useless for his purposes, and contents
himself with saying that the copy [i.e. that by al-Sumaysfl¬] on the basis of which ‘this
copy’ [i.e. what is now the ms. Kastamonu] was transcribed, that is, from which it
derives, is a copy made after the autograph of the text, then compared with it.

19 See Les Mathématiques infinitésimales, vol. I, pp. 830–2.
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geometry and in astronomy. He had a retinue of servants and a great
fortune, and he lived for eighty years.20

This information is confirmed by other classical historical and
biobibliographical sources, for instance Ibn ‘Askir, Yq‚t, al-Dhahab¬, al-
Nu‘aym¬. Thus, in his History of Damascus, Ibn ‘Askir evokes Dr al-
S‚fiyya , that is, the house of the Sufis, the one bequeathed by al-
Sumaysfl¬.21 More important is the article devoted to the town of Sumaysfl
by Yq‚t in his Dictionary of the Lands (Mu‘jam al-buldn). Thus, after
having given its geographical coordinates, he writes:

وإليها ينسب أبو القاسم علي بن محمد السميساطي السلمي المعروف بالجميش، مات بدمشق
 في شهر ربيع الآخر سنة ٤٥٣ ودفن في داره بباب الناطفانيين، وكان قد وقفها على فقراء 

المسلمين والصوفية.
Related to the latter is Ab‚ al-Qsim ‘Al¬ ibn MuΩammad al-Sumaysfl¬ al-
Sulam¬,  known as al-Jam¬sh, who died at Damascus in the month of Rab¬‘
al-khar  of the year 453. He was buried in his house at Bb al-Næ†afæ’iyyîn,
which he had bequeathed as a religious bequest to Muslims and to poor
Sufis.22

And he continues :

وكان يذكر أن مولده في رمضان سنة ٣٧٧.
He (al-Sumaysfl¬) mentioned that his birth was <in the month> of Rama¥n
of the year 377.23

Al-Dhahab¬ provides the same information, but with the difference that
he gives as a birth date the month of Rama¥n, in the year three hundred
seventy-four.24 As far as al-Nu‘aym¬25 and Ibn Taghr¬bard¬26 are
concerned, they repeat the same information.

20 Shadhart al-dhahab f¬ akhbr man dhahab, Beirut, n.d., vol. II, p. 291.
21 Ibn ‘Askir, Tr¬kh Mad¬nat Dimashq, vol. 43, ed. Sakîna al-Shîrabî,

Damascus, 1993, p. 13.
22 Mu‘jam al-buldn, Beirut, n.d., vol. III, p. 258.
23 Yq‚t writes ‘Ab‚ al-Qsim’ instead of ‘Ab‚ al-Qasam’. This confusion may be

due to the scribes, or else to Yq‚t himself; we find it in other biobibliographers, but it is
not consequential, since the first names are the same, as are the last names and the dates.

24 Al-Dhahab¬, Siyar a‘lm al-nubal’, ed. S. al-Aranu’‚fl et al., Beirut, 1984, vol.
XVIII, pp. 71–2.

25 Al-Nu‘aym¬, al-Dris f¬ ta’r¬kh al-madris, ed. Ja‘far al-ºasan¬, Damascus,
1951, vol. II, pp. 151–2. He gives al-Sumaysfl¬’s birth date as 373/983–984, which
confirms the date given by Yq‚t.

26 Ibn al-Taghr¬bard¬, al-Nuj‚m al-zhira f¬ muluk Mi◊r wa-al-Qhira, 12 vols,
Beirut, 1992, vol. V, pp. 70–2.
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Other historians inform us about certain facts concerning al-Sumaysfl¬,
such as al-Dhahab¬, and all of them agree on the date of his death: the year
453.

Thus, born in 374/984 or 377/987, al-Sumaysfl¬ lived for 79 or 76 lunar
years before dying in 453/1061, at Damascus. This confirms the global
estimate of Ibn al-‘Imd: 80 lunar years of life.

Now these dates are in flagrant contradiction with the colophon. Indeed,
if we accept, according to the colophon, the date of 476/1083 for the
transcription of the manuscript, al-Sumaysfl¬ would have carried it out at
the age of 102 or 99 lunar years. Yet this fact, in its singularity, would not
have struck historians. This is more than improbable, even impossible.

If, on the other hand, we are to believe the unanimous biographers, we
should also accept that al-Sumaysfl¬ would have transcribed the
Configuration of the Universe twenty-two years after his death. This is
unlikely.

However we envisage the date given by the colophon, we observe that
it is severely erroneous. Is this the scribe’s mistake, or the intervention of a
forger, as sometimes happens? It is impossible to decide, since we know
nothing of the scribes, their dates, and their places of activity. In any case,
nothing can be established on the basis of such a fanciful colophon.

It is thus obvious that neither the title, nor the colophon, allow us to
discuss the validity of the attribution of the Configuration of the Universe to
al-ºasan. We must therefore turn towards the book itself and its contents, in
order to compare it with al-ºasan’s other works on astronomy.

Now, as soon as we study the Configuration of the Universe as the
book has come down to us, as well as its contents, its attribution to al-ºasan
seems indefensible.

According to the dates given by Ibn Ab¬ U◊aybi‘a and the Anonymous
of Lahore, the Configuration of the Universe attributed to MuΩammad was
written before 417/1027, when the philosopher was 63 years old. Still
according to the same sources, the Configuration of the Universe attributed
to al-ºasan was written before 429/1038. If, therefore, we suppose that
MuΩammad  and al-ºasan are one and the same person, we would
necessarily have to admit that this last writing – that is, that of the
Configuration of the Universe mentioned in the list of al-ºasan – was
carried out between 1027 and 1038, that is, between the author’s sixty-third
and his seventy-fourth year. If, moreover, we recall that al-ºasan died soon
after 1040, these would be the last years of his life. Yet this hypothesis is not
only adventurous, but leads to irreducible contradictions.
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Indeed, other testimonies27 inform us that al-ºasan had written his book
entitled The Resolution of Doubts Concerning the Almagest in this same
period of time (between 1027 and 1038), that is, after 1028. In this work, he
declares without the slightest ambiguity that ‘the aporias (in the Almagest)
are much too numerous to be enumerated’. We should also note that in this
work, al-ºasan ibn al-Haytham cites his Book of Optics, which contains the
reform with which we are familiar, as well as a radical critique of the visual
ray doctrine. Now, in the Configuration of the Universe, which, according
to Ibn Ab¬ U◊aybi‘a and the Anonymous of Lahore, should have been
written in the period 1027–1038, the author adheres to this refuted doctrine
without any nuances. Here is what we read: ‘The ray emanates from our
eyes in the form of a cone whose summit is the point of the eye, and whose
base is the surface of the visible object.’28 We also know that is his Treatise
on the Light of the Moon, written relatively early, since the doctor Ibn
Ri¥wn had copied it at Cairo on Friday August 7, 1031, Ibn al-Haytham
criticized the doctrine according to which the moon is a polished body that
reflects the light of the sun. Yet this is precisely the doctrine adopted by the
author of the Configuration of the Universe. Indeed, he writes that the
moon ‘is a polished body which, if the sun is facing it, receives its light, and
this light is reflected on its surface towards the earth’.29 Thus, in Proposition
7 and those that follow of his treatise On the Light of the Moon, al-ºasan
ibn al-Haytham demonstrates that ‘the light emanating from the moon to
the earth is not by reflection’. In these conditions, we should conclude that
he is in full contradiction, which is absurd.

In addition, according to Ibn Ab¬ U◊aybi‘a and the Anonymous of
Lahore – if we stick to the hypothesis identifying him with MuΩammad – he
had written several books, all of which were critical of Ptolemy (Doubts on
Ptolemy, On the Winding Motion, Resolution of Doubts relating to the
Winding Motion),30 between 1027 and 1038. In the Configuration of the
Universe, however, the author’s starting point is perfectly transparent. He
writes: ‘Our statements on all the motions are only according to the

27 See above.
28 Ed. Langermann, ar. p. 42:

والشعاع يخرج من أبصارنا على شكل مخروط رأسهَ نقطة البصر وقاعدته سطح جرم المبصر.

29 Ed. Langermann, ar. p. 44:

وذلك أن القمر لا نور له وإنما يكتسب النور من ضوء الشمس وهو جسم صقيل إذا قابلته 
الشمس قبل نورها واستنار بضوءها وانعكس ذلك النور من سطحه إلى الأرض فأنارت به.

30 See Les Mathématiques infinitésimales, vol. V.
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viewpoints of Ptolemy, and according to his opinion’,31 that is, without any
possible dispute, according to the planetary theory set forth in the Almagest.
And in fact, the author follows Ptolemy’s work step by step: he speaks of
the prosneusis (al-muΩdht32) of the moon, whereas al-ºasan gets rid of it
in his writings; and of the equant, whereas the latter rejects it, etc. In other
words, if we stick with this position, the mathematician Ibn al-Haytham, in
the course of the same years, would have written one thing and its contrary.

Yet this is not the only absurd conclusion. Indeed, the explicit goal of the
Configuration of the Universe is to present, on the basis of Ptolemy, the
orbs of the planets in terms of simple and continuous motions of the solid
spheres. The goal is thus to wed the planetary theory of the Almagest to a
cosmology inspired by Aristotelian philosophy, yet without raising any of
the technical problems raised by such a project, and without solving any of
the difficulties in mathematical astronomy that follow from it. Yet it suffices
to skim through the works of al-ºasan, in astronomy as well as in optics or
in statics, to observe that these technical questions are always important to
him, and that, at any rate, these works are at a theoretical and technical level
that is incomparably higher than that of the Configuration of the Universe.
In all his astronomical works, without exception, al-ºasan deals with all the
required technicality, with the problem of the combination of geometrical
models with the terms of a description of celestial motions. To be sure, it
sometimes happens, as in his work on the winding motion,33 that he studied
the combination of the geometrical model with a physical description of the
motion, but always with the technicality the subject demands. He always
behaves as a mathematical astronomer, whereas the Configuration of the
Universe is rather the work of a philosopher.

To these numerous and irreducible differences between the project, the
method and the style of al-ºasan  and those of the author of the
Configuration of the Universe, we can add a few other arguments based on
reliable data, which are just as flagrant. The parameters mentioned by the

31 Ed. Langermann, ar. p. 6.

وقولنا في كل الحركات إنما هو بحسب رأي بطلميوس فيها واعتقاده.
32 Ed. Langermann, ar. p. 42.
33 Indeed, in The Winding Motion, he engages in a technical discussion to show the

error committed by Ptolemy when he supposes that portions of the sphere cause the
epicycle to move. He demonstrates that such an assumption leads either to one of the
spherical portions straying from its location, or else to the epicycle’s being subject to a
tipping motion; in other words, to two impossibilities. It is always problems of
mathematical astronomy that he raises, as for instance that of the diameters that remain in
the vicinity of the centre of the ecliptic. There is nothing in common here with the style of
the Configuration of the Universe.
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author of this treatise are those of Ptolemy, with no reference to the works
of astronomers of the ninth and tenth centuries:

1) In §144, the obliquity of the ecliptic is given as ‘close to 24 degrees’.
Ptolemy had in fact given a value of 23°51′ whereas Arab astronomers,
from the very beginning, had found this value to be equal to 23°33′ (or
23°35′, depending on the author) and the value of 23°51′ had been
discarded.34 However, this argument in isolation is not sufficient, given that
his book On the Lines of Hours, al-Îasan ibn al-Haytham uses the value of
24 degrees.

2) In §195, the apogee of the sun on the ecliptic is given as described by
Ptolemy (after Hipparchus) as 24°30′ from the summer solstice, in the
opposite direction to the signs. This value was recalculated at the beginning
of the ninth century and was found to equal 9°15′ from the same point.
Then al-Battænî, at the beginning of the tenth century, improved the
calculation and found it to be 7°43′. Furthermore, the author of the treatise
in question also recalled that Ptolemy had confirmed that this apogee was
fixed on the ecliptic, whereas ‘more recent astronomers’ had found that this
apogee was moveable in the direction of the signs, but without giving
further details. It was accepted from the beginning of the ninth century that
the apogee of the sun was inextricably linked to the movement of
precession.

3) The rate of precession, for Ptolemy, was one degree per century; this
value is referred to a further three times (§286, 350, 361), whereas it had
been accepted, at the beginning of the ninth century, after works had been
regrouped in the ‘Verified Table’ (al-zîj al-mumtaÌan), that the value of
precession was about one and a half degrees per century.

It is very clear that these precise points were not known to the author of
this treatise, despite the fact that the corresponding results had been made
known in all scientific circles of eleventh century, including one would have
thought, Ibn al-Haytham’s.

Moreover, in §381, the author of the Configuration of the Universe35

calculates the celestial motions that figure in the Almagest. He counts forty-
seven: one for diurnal motion, one for precession, eighteen for the three
upper planets, two for the sun, eight for Venus, nine for Mercury, six for the
moon, and two for the sublunary world (the heavy and the light).36 Here

34 Parameters defined in the ninth century, cf. Thabit ibn Qurra, Œuvres
d’astronomie, ed., trans. and com. by Régis Morelon, Paris, 1987, p. 8 for the obliquity
of the ecliptic and pp. 240–67 for the position of the apogee of the sun and the value of
the constant of precession, with an introduction and corresponding supplementary notes.

35 Ed. Langermann, §138, p. 25.
36 Ed. Langermann, ar. p. 65.
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again, the author recalls that he is relying on ‘his [Ptolemy’s] research and
his observations for all the celestial motions’. Now, in the Doubts on
Ptolemy (Fî al-shukºk ‘alæ Ba†lamiyºs),37 al-ºasan makes the same
calculation, but only for the motions of the seven stars; he finds thirty-six
motions. Indeed, he does not count the first two, and obviously leaves aside
the last two; and he counts one less motion for each of the stars, since he
naturally leaves out the diurnal motion for each of them, insofar as this
motion is inclusive. This difference in a simple reckoning of motions is
enough to distinguish, on the one hand, al-ºasan ibn al-Haytham, who
understood what was at issue; and on the other the author of the
Configuration of the Universe, a commentator in the tradition of Ptolemy,
like MuΩammad ibn al-Haytham. Still other facts of the same nature could
be added, some of which have not ceased to intrigue the editor of the
Configuration of the Universe.

Projects, methods, styles and scientific facts, whether in astronomy or in
optics: everything opposes the writings of al-ºasan and the Configuration
of the Universe. The historical argument – the only one set forth – that of
the colophon, is inconsistent and fallacious. To attribute the Configuration of
the Universe to al-ºasan is to maintain the confusion between the authors
and the writings; but it is also to falsify the interpretation of the latter’s
astronomy, and it is finally to accuse him of a serious scientific
schizophrenia, which has never manifested itself in any of the numerous
other domains he engaged in. To maintain, as has recently been done,
arbitrarily and without the shadow of a proof, that we are in the presence of
a work of the author’s youth, does not resist the argument of the dates
given by the ancient biobibliographers. We have recalled that after 1028, al-
ºasan was struggling with the aporias of the Almagest, and therefore far
from following Ptolemy slavishly, as is done by the author of the
Configuration of the Universe both in astronomy and in optics. The
contradiction is even more striking if, like Ibn Ab¬ U◊aybi‘a and the
Anonymous of Lahore, we place its writing between 1027 and 1038. In
addition, to show that this is a work of the author’s youth, one would have
to explain rigorously by what paths it leads to the works of maturity. But
none of those who hazard such an affirmation has ever set out in search in
of these paths, none of which, moreover, in our opinion, links the
Configuration of the Universe to the other works of al-ºasan ibn al-
Haytham.

When did this confusion of attribution take place? Everything indicates
that it is already present in the biobibliographers – in Ibn Abî UÒaybi‘a – as

37 Text edited by A. I. Sabra and N. Shehaby, Cairo, 1971, pp. 39–41.
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well as in such third-class astronomy professors as al-Khiraq¬.38 It is to be
noted, however, that no great astronomer has ever, to my knowledge, fallen
into this confusion. Thus, al-‘Ur¥¬ cites the Doubts, al-fi‚s¬ evokes the
Winding Motion, but neither one nor the other, nor any other astronomer
of their stature, associates the name of al-ºasan with the Configuration of
the Universe.

We shall thus affirm clearly, and with no risk of being proven wrong,
that the Configuration of the Universe as we have it is not a work of al-
ºasan ibn al-Haytham, but is quite probably a book by MuΩammad ibn al-
Haytham. As far as the title Configuration of the Universe, attributed to al-
ºasan, is concerned, it would be that of a book that has never come down
to us or the result – and here we enter the realm of conjecture – of a
modification of the title of his book On the Configuration of the Motions of
Each (kull, all) of the Seven Stars, which could have been written On the
Configuration of the Motions of the all ... Yet while it is true that this
conjecture must await the confirmation of future research, the attribution of
the Configuration of the Universe to al-ºasan is henceforth indefensible.

One may well be astonished that the Configuration of the Universe
could have been attributed to al-ºasan ibn al-Haytham, all the more in that
the case is far from being unique. Recently, in fact, and without the slightest
hesitation, the eminent mathematician and astronomer has been seen as the
author of a Commentary on the Almagest, which is of pure Ptolemaic
obedience, and what is more, explicitly attributed to MuΩammad ibn al-
Haytham.39 In conclusion, let us note that here as elsewhere, we have been
forced, in order to undertake a critical philological examination and carry
out a rigorous history of the textual tradition, to have recourse to the
conceptual tradition, that is, to the examination of the scientific contents of
the text. Is there any other way?

[3] Ibn SSSSiiiinnnnæææænnnn and Ibn al-Haytham on the subject of ‘shadow lines’
Other works of al-Îasan ibn al-Haytham offer additional arguments to

confirm – if confirmation were needed – that this abridged version (ikhtiÒær)
or summary (talkhîÒ) of Ibn Sinæn’s book on the Instruments for Shadows
could not, either in letter or in spirit, be by al-Îasan. These arguments
confirm the conclusions on the Commentary of the Almagest, as well as the

38 Muntah al-idrk f¬ taqs¬m al-aflk, ms. Paris, BNF Ar. 2499, fol. 2v.
39 This error is the consequence of another one, which has led A. Sabra (Dictionary

of Scientific Biography, vol. VI, pp. 206–8) to attribute to al-ºasan ibn al-Haytham a
‘summary’ by MuΩammad ibn al-Haytham of the book by Ibn Sinn on The Lines of the
Shadows (see above and Supplementary Note [3]).
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distinction between its author MuÌammad and the eminent mathematician
al-Îasan.

Firstly, according to the author himself, Ibn Sinæn’s book was about
sundials, and hence hour lines. This is what he writes in the introduction to
his book:

I have seen that the mathematicians who precede us were interested in
these instruments, but only in a particular way. In order to construct
astrolabes, a group of mathematicians wrote books, containing all their
knowledge; but where sundials are concerned, I have found no one who
was satisfied with his work on the subject. On water instruments and
observation instruments, the Ancients did write satisfactory works. I have
undertaken to write this book specifically on sundials and I have called it
The Book on Instruments for Shadows.40

It goes without saying that there is absolutely no link between this book
and the one that al-Îasan devotes to the Formation of Shadows (Maqæla fî
kayfiyyat al-aÂlæl) that is, shadows as optical phenomena.

There are two pieces of al-Îasan’s writing whose authenticity is
unquestionable, which should also be mentioned here if we are to tell
whether al-Îasan could have written an abridged version or a summary of
Ibn Sinæn’s book. It really centres on his book on Sundials (Fî al-
rukhæmæt)41 and a treatise of particular importance On the Lines of Hours
(Fî khu†º† al-sæ‘æt).42 This is his own work as opposed to Ibn Sinæn’s, and
really answers the question which is raised here. At the end of his book on
sundials, al-Îasan does promise to write a treatise on instruments of
shadows. However, the aim of this work would definitely not be to write the
‘shortened version-summary’: on the contrary, it is ‘to explore all the
notions, properties and constructions necessitated by this art’. Furthermore,
nothing tells us that the promised book was in fact ever written. Al-Îasan
does not refer to it in his other works, and bibliographical sources seem
unaware of it. In any case, his declared intention was surely not that of an
author about to repeat a resume of Ibn Sinæn’s book.

More importantly for us is his book On the Lines of Hours, where al-
Îasan ibn al-Haytham makes his own contribution as opposed to Ibn
Sinæn’s, and sheds some light on his project: he intended to pursue research
on sundials, using Ibn Sinæn as a starting point, but then taking a different

40 See our edition in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn. Logique et
géométrie au Xe siècle, Leiden, 2000, p. 339.

41 See List of Ibn al-Haytham’s Works.
42 See our edition, French translation and commentary in Les Mathématiques

infinitésimales du IXe au XIe siècle. Vol. V: Ibn al-Haytham: Astronomie, géométrie
sphérique et trigonométrie, London, 2006, Second part, Chapter I.
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direction; he did not intend to produce of some kind of shortened version of
an existing work. Here, at some length, are al-Îasan’s own words:

When we examined the book by the geometer Ibræhîm ibn Sinæn O n
Instruments for Shadows, we noticed that he criticizes the opinion of earlier
writers who suppose that the lines that define the edges of seasonal hours
on the planes of sundials are straight lines, and who believes that on each
day of the year the tip of the shadow of the gnomon, at the end of the same
seasonal hour and at the beginning of the hour that follows it, lies close to a
straight line. He stated that one straight line in the plane of a horizontal
sundial does not define the edge of the same seasonal hour except for three
of the seasonal circles – one of which is the equator, while the two others lie
on either side of the equator and at equal distances from it; and that the
straight line that lies in the plane of a horizontal sundial and defines the
edge of the same seasonal hour in the three circles we have just mentioned
is the intersection of the plane of the dial and the plane of a great circle that
passes through the tip of the gnomon and through the points that indicate
the edges of the same seasonal hour on the three circles. This statement is
true and cannot be doubted. He went on to state that this great circle does
not cut any of the remaining hour circles in a point that marks the edge of
the seasonal hour associated with the circle in question. This statement is
also a true one; however he was not able to prove it, for when he came to
give a proof of his statement, he showed correctly that one great circle cuts
the circumferences of the three circles in three points that mark the edges of
the same seasonal hour. He next wanted to prove that the great circle that
cuts off a seasonal hour on the three circles, does not cut off this same
seasonal hour on any other remaining hour circle. He then presents a proof
that does not show this idea is true. He has in fact imagined two great
circles that cut off two seasonal hours from the three circles; he went on to
draw a fourth hour circle and he showed that these two great circles cut off
two different arcs on the fourth circle, but he did not show that, of these
two different arcs, neither is a seasonal hour; thus the result <established
by> his proof is different from what is set out clearly in his statement;
moreover, the result established by the proof does not make it impossible for
one of the two different arcs to be a seasonal hour. It is as if he had stated
that none of the hour lines is straight, and proved that not all the hour lines
are straight. So what he said about this idea falls short of what he intended,
and furthermore does not show the idea is a true one.

Similarly, he has not shown what is the magnitude of the distance by
which the tips of the shadows at the seasonal hours depart from the
<straight> line given for that hour. It is possible that the tips of the shadows
depart very little from the straight line given for that hour, so that this
deviation is insensibly small. And the proof indeed depends on the fact that
a mathematical straight line is a length that has no width, whereas the line
drawn on the plane surface of the sundial is one that has a noticeable
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thickness, which could take in the deviation of the shadows, if this
deviation is insensibly small, or is less than it <sc. the thickness of the line>
by some negligibly small amount.

In the same way, all instruments constructed for <observing> the Sun
and the planets are constructed in a manner that is approximate and not
absolutely exact. The astrolabe divides its circles into three hundred and
sixty parts. If we take a height with this instrument, we obtain it only in
whole degrees; now a height is never a whole number of degrees, instead,
on most occasions one can have minutes along with the whole degrees;
now these minutes do not appear on the astrolabe; it is even possible that
the minutes are numerous, but, despite their number, they do not appear. In
the same way the lines that serve to divide the circles of the astrolabe each
have a perceptible width; this width is a part of the degree cut off by each
line, and it is a part that has a magnitude, for the parts of a circle on an
astrolabe are small, and especially so if the astrolabe is small. However we
do not take into account the width of the lines that mark the divisions on an
astrolabe.

These notions apply equally to an armillary sphere, a quadrant used to
observe the Sun and all the instruments used to observe the Sun and the
planets. It is possible that our predecessors supposed that the hour lines <on
a sundial> are straight lines, while at the same time knowing how far they
deviated <from straight lines>, given that what they are aiming to achieve
by their assumption is an approximation, and not the ultimate exactitude,
that they aimed for in the construction of the astrolabe and of observing
instruments. Since we found this idea unclear, because Ibræhîm ibn Sinæn
had not succeeded in showing it was true; and since it can be accepted by
way of approximation, we decided to go deeper into investigating the truth
of this idea, and to allow ourselves to discuss it, as well as to find out about
the boundaries between seasonal hours on the surfaces of horizontal
sundials. So we reflected on these matters and pursued our researches until
the truth was clear. It thus became apparent that our predecessors had been
right to suppose that the hour lines are straight lines, that this is by way of
an approximation, and the best approximation, and that there is no other
way of drawing the boundaries between hours on the surfaces of sundials.

From what we have proved it is clear that Ibræhîm ibn Sinæn had been
right in one respect, and mistaken in another respect, and this in fact
happened because he employed mathematical procedures without thinking
about physical ones; so he was right from the point of view of imagination,
but wrong from the point of view of sensory perception, because he chose
to prove the result he had stated as if the lines drawn on sundials were
imagined lines, that is to say having length without breadth; but the lines
drawn on sundials have breadth; thus he did not distinguish an imagined
line from one perceived by the senses: so he was completely mistaken.
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Once we had come to this idea that we have described, we composed
this treatise to provide a justification for our predecessors’ opinions on the
subject, to give an argument in support of what they had supposed to be
true, and to indicate where Ibræhîm ibn Sinæn went astray.

Before the treatise we have given lemmas that are themselves new
results, results that none of those who preceded us has mentioned – as it
seems to us – and thanks to these lemmas we can go on to derive all the
ideas that we have expressed in this treatise. So let us now begin to speak
of them, with God’s help in everything.43

Reading this introduction – as with the rest of the book – there cannot
be the least confusion between al-Îasan’s book and the summary or
abridged version by MuÌammad.

[4] Commentary in the Resolution of Doubts … by Ibn al-Haytham on
Proposition X.I of the Elements

Having written a short treatise (translated here) on Proposition X.I of
the Elements, it seems that Ibn al-Haytham returns to the same question, in
his Resolution of Doubts…; in fact, he goes right back to the original text of
the treatise, including several variants. His commentary in the Resolution of
Doubts… does include an introduction. He uses the introduction from the
short treatise, with some variations, before going on to quote the proof
already given in it. We have therefore translated the introduction, where the
reader will recognize whole phrases from the treatise. As for the proof, we
have only noted the variants as it is quoted directly from the text of the
short treatise. For the edition of the text as well as for the variants, we have
used the following manuscripts from the Resolution of Doubts…44

1. Istanbul, University 800, noted here as A; date of the copy is not
mentioned; it could be between 6th and 7th century Hijra, which is 13th to
14th century.
2. Bursa Haracci 1172, noted here as B; copied in 477/1084.
3. Tehran, Malik 3433, noted here as T; copied same year as above.

The meaning of this proposition might seem equivocal for people. The
majority of mathematicians think that it is particular, as had been commented
by Euclid, and that it is not true except in the way Euclid mentioned. The
reality, however, is different from what people think. In fact, Euclid had
limited himself to this one particular meaning – (that the <magnitude> taken
away is greater than the half) – because this is the meaning he used in his
own work; he restricted himself to this meaning because he needed it.

43 Les Mathématiques infinitésimales, vol. V, pp. 733–7.
44 See the Arabic text in Les Mathématiques infinitésimales, vol. II.
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When we examined this notion carefully and tested its validity, we
found it to be a universal idea; one of the properties of proportions, that is if
we let the ratio of the subtracted <magnitude> to the greater magnitude be
any ratio, and if we let all the subtracted <magnitudes> follow this ratio, the
division necessarily ends up with a magnitude which is less than the
smallest magnitude. When the notion became clear, we decided to explain it,
so that the previously mentioned opinion (that this notion is particular)
would become obsolete. A discussion was organized to demonstrate that,
although it is an extremely concise and brief argument, it is a universal
argument. It was written before Resolution of Doubts was conceived.
When we began the Resolution of Doubts and the explanation of the
equivocal notions in this book and when we obtained this proposition, we
have had to explain here this notion – because it formed a part of the
collection of ideas in the book which ought to be explained – and to
summarize the proof so that it accompanies this proposition. We mention
now the proof of this notion.

Ibn al-Haytham and the criticism of Ibn aaaallll----SSSSaaaarrrrîîîî:
Proposition X.1 of The Elements

Ibn al-Sarî – alias Ibn al-∑alæÌ – (Najm al-Dîn Abº al-FutºÌ AÌmad
ibn MuÌammad) comes from Hamadæn, according to Ibn Abî UÒaybi‘a45 or
from Sumaysæ†, according to al-Qif†î.46 The two biobibliographers agree
that he lived in Baghdad before leaving for Damascus, where he died at the
end of the year 584, that is 1153/1154.47

The writings of Ibn al-Sarî which we have seen allow us to unveil the
portrait of a scholar and philosopher who knew logic, part of the line of
scholar-philosophers going back to al-Kindî. This double interest, in both
mathematics and logic, might explain, if only partially, the critical style of the
author, as well as the subject of his writings. His style has identified him as
the author of the short tract On the Fourth Figure of Categorical Syllogism
which is Attributed to Galen,48 and other works in logic49 as well as in

45 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, Beirut, 1965, pp. 638–41.
46 Al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 428.
47 Ibid .
48 N. Rescher, Galen and the Syllogisms, Pittsburgh, 1966, includes editing and

translation of the Arabic text. A. Sabra, ‘A twelfth-century defence of the figure of the
syllogism’, Journal of the Warburg and Courtauld Institutes XXVIII, 1965, pp. 14–
28.

49 Mubahat Türker Küyel, ‘Ibn uÒ-SalâÌ comme exemple à la rencontre des
cultures’, Ara¤tirma, VIII, 1972 (appeared in 1973); as well as his edition and translation
into Turkish ‘Aristoteles’ in ‘Burhân Kitabi’nin ikinci makalesi‘nin sonundaki kismin
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physics50 and astronomy.51 His mathematical writings are in a critical tone,
which is common to his work. He corrects an error of al-Qºhî regarding
the determination of the ratio of the diameter of a circle to its
circumference.52 He also wrote three short tracts refuting Ibn al-Haytham’s
criticism of Euclid’s Elements.53 The text translated here is a part of this
group of writings and concerns Ibn al-Haytham’s work on Proposition X.1
of the Elements. Ibn al-Sarî knew this work. He also knew the book
entitled: On the Resolution of Doubts in Euclid’s Elements,54 where Ibn al-
Haytham takes up the essential points of his first redaction. Before looking
at the content of the text of Ibn al-Sarî, we should understand that this is
extremely valuable evidence of the knowledge available from Arabic
versions of Archimedes’ works in the first half of the twelfth century.

In this short treatise, Ibn al-Sarî levels two major criticisms at Ibn al-
Haytham:

1. According to Ibn al-Sarî, Ibn al-Haytham should have considered that
his own proposition was Universal, whereas that established by Euclid was
Particular. He should therefore have concluded that he should replace
Euclid’s proposition with his own. According to Ibn al-Sarî, Ibn al-Haytham
made two mistakes: over the Universality of his own proposition and the
Particularity of Euclid’s and over the exact meaning of a Universal
proposition.

2. In the proposition, Ibn al-Haytham assumes a constant ratio α, such

that 0 < α < 1, instead of a sequence (αi)i≥1 of variable ratios such as 1

2
 < αi

< 1, for i = 1, 2, … Ibn al-Haytham’s assumption would certainly have
stopped him from proving certain propositions in Book XII of the Elements

¤erhi ve oradaki yanli¤in düzeltilmesi hakkinda’, Ara¤tirma, VIII, 1972 (appeared in
1973).

50 M. Türker, ‘Les critiques d’Ibn al-∑alæÌ sur le De Caelo d’Aristote et sur ses
commentaires’, Ara¤tirma II, 1964, pp. 19–30 and 52–79.

51 P. Kunitzsch, Ibn aÒ-∑alæÌ. Zur Kritik der Koordinatenüberlieferung im
Sternkatalog des Almagest, Abhandlungen der Akademie der Wissenschaften in
Göttingen, Philologisch-Historische Klasse, series 3, no. 94, Göttingen, 1975.

52 Ms. Aya Sofya 4845, fols 36v–40r.
53 Jawæb li-AÌmad ibn MuÌammad ibn Sarî ‘an burhæn mas’ala mu≈æfa ilæ al-

maqæla al-sæbi‘a min kitæb Uqlîdis fî al-UÒºl, ms. Aya Sofya 4830, fols 139r–145v; Fî
bayæn mæ wahama fîhi Abº ‘Alî ibn al-Haytham fî kitæbihi fî al-shukºk ‘alæ Uqlîdis, ms.
Aya Sofya 4830, fols 146v–149v; Fî kashf li-l-shubha allatî ‘ara≈at li-jamæ‘a mimman
yansib nafsahu ilæ ‘ulºm al-ta‘ælîm ‘alæ Uqlîdis fî al-shakl al-ræbi‘ ‘ashar min maqæla
al-thæniya ‘ashar min kitæb Uqlîdis, ms. Aya Sofya 4830, fols 151v–154v.

54 Ms. Istanbul University, 800, fols 143v–145r. Cf. Supplementary Note [4].
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(actually established using Proposition X.1), and would have ruined the
Universality of his proposition.

In order to understand Ibn al-Sarî’s criticism, and its real impact, let us
recall, at the risk of repeating ourselves, Euclid’s and Ibn al-Haytham’s
propositions. Let us start with Euclid’s, which can be written as follows.

Let A and a be two magnitudes of the same kind such that A > a and

(αi) i ≥1 and a sequence of ratios equal or unequal such that 1
2

 < α i < 1 for

i = 1, 2, …
Let us consider the magnitudes

A A A A A A Ak i
i

k

1 1 2 2 1 1 2
1

1 1 1 1 1= −( ) = −( ) = −( ) −( ) … = −( )
=

∏α α α α α,   ,  , ,

then N ∈ N exists such that for every n > N, we have An < a.

Let us note that the Greek text of Proposition X.1 is followed by a
porism oJmoivwı de; deicqhvsetai, ka]n hJmivsh h/j~ ta; ajfairouvmena which
means ‘this proposition can be proved in the same way, if the subtracted
parts are halves’. However, this porism does not seem to have been known
to the mathematicians who worked any of the many Arabic translations of
Euclid.

Ibn al-Haytham’s proposition deals with the same problem, in the
hypothesis: α i = α for i = 1, 2, …, constant ratio, with 0 < α < 1; thus

 A An

n= −( )1 α  and for           α = 



 = 





1
2

1
2

A An

n

, N ∈ N exists such that for

every n > N, we have An < a.
In other words, Ibn al-Sarî’s criticism amounts to the observation that it

was insufficient to show, as Ibn al-Haytham had, that

 lim
n

n

 → ∞
−( ) =1 0α ,

but that it was necessary to prove that

 lim
n

i
i

n

 → ∞ =
−( )∏ =1 0

1
α

since the ratios could be equal or unequal.
The formulation is equivalent to the one done by Ibn Qurra55 and Ibn

al-Sarî adds nothing to it. He did not notice that the condition obtained here

55 Ibn Qurra, On the Measurement of Paraboloids, Proposition 30. See vol. I.
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is slightly more general than in al-Haytham’s, if we say that, for (0 < α < αi

< 1)

 1 1 1 1
1

−( ) < −( ) ⇒ −( )∏ < −( )
=

α α α αi i
i

n
n .

If therefore only αi are considered as satisfying 1
2

 ≤ α i < 1, the result

established by Euclid – and a fortiori the result established by Ibn Qurra

– shows Ibn al-Haytham’s result is a particular case; but, for 0 < αi < 1
2

, the

result established by Ibn al-Haytham allows the generalization of Euclid’s
results, which can then be applied for 0 < αi < 1.

Let us now turn to Ibn al-Sarî’s second criticism; Ibn al-Haytham’s
proposition does not apply to Propositions 2, 5, 10 or 11 of Book XII of
Elements. Let us consider Proposition XII.2 in order to understand Ibn al-
Sarî’s reasoning:

If C and C1 are areas of two circles with respective diameters D and D1,

then C

C1

= D2

D1
2

. Let us assume that 
  

D2

D1
2

> C

C1

,  therefore an area S, S < C1

exists such that  
D2

D1
2

= C

S
.   Say S + ε = C1.

Let Si (i = 2, 3, …, n) be the areas of polygons inscribed in circle of area
C1, having 2i sides: then successively:

S C A C S C

S S A A C S A S S A C

S S Am m m

2 1 1 1 2 1
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1 2
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1
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1
2

          ,   hence  
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…

− >− −
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,

hence

A C S A S S A Cm m m m m m

m

− − − −

−

= − = − − < < 



1 1 2 1 2

1

1

1
2

1
2

( ) .

By applying X.1, starting with these inequalities, it is possible to find n
such that An < ε. But An + Sn = C1, therefore Sn > S.

However the ratios which are used in Euclid’s method are not equal and

are always higher than 1
2

:
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S
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Ibn al-Sarî then states that Euclid’s proposition allows for a conclusion
whereas Ibn al-Haytham’s does not. This criticism is unfounded, since from
the successive inequalities used by Euclid

S C S S A S S Am m m2 1 3 2 1 1 1

1
2

1
2

1
2

> − > … − >+ −;    ;   ;  ;

from this can be deduced

A C A A A Am m1 1 2 1 1

1
2

1
2

1
2

< < … < −;     ;  ; ,

hence the recurrence relation

∀ ∈n N,  A Cn

n

< 





1
2 1.

Ibn al-Haytham has established in another formal language that

lim
n

n

C
 → ∞





 = 

1
2

;1 0  we can immediately deduce that lim
n  → ∞

  An = 0.

Although Ibn al-Sarî’s criticism is inexact, it does show a certain
perspicacity and attests to the interest shown by mathematicians and
mathematician-philosophers in Proposition X.1, which formed the basis of
the approximation method. Not only did Ibn al-Sarî not understand the
point of Ibn al-Haytham’s proposals, he also failed to understand the depth
of his methods.
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In the name of God the Clement and the Merciful

TREATISE OF AL-SHAYKH ABª AL-FUTªÎ AÎMAD IBN
MUÎAMMAD IBN AL-SARï

– May God have Mercy on him –

Explanation of AAAAbbbbºººº    ‘‘‘‘AAAAllllîîîî    ibn al-Haytham’s error regarding the
first proposition of the 10th book of Euclid’s Elements

He said: I have seen the treatise of Abº ‘Alî ibn al-Haytham, entitled the
Division of two different56 magnitudes mentioned in the 10th book of
Euclid’s Elements and I found that he evoked in his introduction the opinion
of numerous mathematicians who say that the meaning of Proposition X.1
of Euclid’s Elements is particular57 and is only true in the way mentioned
by Euclid – that is to say that if the two magnitudes are different, then one
subtracts from the larger one a magnitude greater than its half and from the
remainder a magnitude greater than its half, and so on until a magnitude less
than the smallest given magnitude remains. The reality however is different
from that which may be imagined by this group; if Euclid had limited
himself to such a particular notion (that the <magnitude> subtracted is
greater than half), it is because he used this notion in his book; he restricted
himself to this, because he had need of it. He (Ibn al-Haytham) then recalled
his own need in certain of his geometric deductions to take away half from
the greater of the two different magnitudes, then half again from the
remaining magnitude and so on continuously until the division necessarily
culminated in a magnitude less than the smallest magnitude; and how in this
way he had defined the notion he needed. He then claimed that, when he
had carefully examined this notion, he found it to be universal: that one of
the properties of proportions meant that if we let the ratio of the subtracted
<magnitude> to the greater magnitude be any ratio, and if we say let all the
subtracted <magnitudes> follow this ratio, the division necessarily
culminates in a magnitude less than the smallest magnitude. He decided to
elucidate this notion and make it known, so that it could be used and the
opinion that this notion is particular58 should become obsolete. He then pro-
ceeded to prove that this was a universal notion.

Abº ‘Alî goes on to refer both to this proposal and to the proof in his
book On the Solution of the Difficulties in the 10th Book of Euclid’s

56 Two homogeneous and unequal magnitudes.
57 ‘universal’ in the manuscript.
58 ‘universal’ in the manuscript.
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Elements. He recalls here how he had written his own treatise and he refers
to this treatise.

When I meditated upon the proposal of this man, as soon as I began to
examine it, I found that he had committed several sorts of errors. In the first
place, misunderstanding the meaning of ‘universal’ as opposed to
‘particular’. Secondly, misunderstanding the meaning of Euclid’s proposal
and propositions where he applied Proposition X.1 and his opinion that his
proposition takes the place of Euclid’s proposition. Thirdly, limiting himself
to the proposition revealed by Euclid, to Euclid’s book alone, and thinking
only of his need for this notion to the exclusion of all others.

When I saw that, I indicated the fault apparent in his proposals, so that
this would not be the cause of doubt for those who would study him, and in
order to preserve Euclid’s proposition which is uniquely particular in nature
and which proves all geometric ideas regarding surfaces of non-
homogeneous bodies. By non-homogeneous, I mean rectilinear figures,
circles and solid figures surrounded by plane surfaces and  the sphere.

This is what we have to say on the subject. As for his error in unders-
tanding the meaning of ‘universal’ as opposed to ‘particular’, this is evident,
since universal and particular are among the things which have a correspon-
dence with each other, where the first says of the second, that, in certain
cases, the attributes and conditions of the general may be found in the parti-
cular. However, the converse does not necessarily follow; that is, that all
attributes and conditions of the particular are to be found in the general. For
example: take the rectilinear figure in general for the triangle and the square;
and the number in general for the odd and the even. It is true that every
rectilinear <figure> is a figure, but the proposition does not have a recipro-
cal one, whereby every figure is rectilinear; similarly, all triangles are figures,
but all figures are not necessarily triangles; and all even <numbers> are
numbers, but not all numbers are even. If we look for a definition of the
universal and the particular, we will not find it in his proposition; in fact he
used his proposition, which he claimed was universal, by adding a condition;
that subtracted <magnitudes> all follow the same ratio. But Euclid himself
had explained, simply and without any condition, that magnitudes might be
proportional or non-proportional. By this I mean that, Euclid’s proposition,
whether the subtracted <magnitudes> are proportional or non-proportional,
will culminate in a magnitude less than the smallest magnitude. Ibn al-
Haytham’s proposals, if we add a condition, and also his assertion, are very
obvious to anyone with even the slightest idea about geometry. Abº ‘Alî’s
proposition can only be understood starting from Euclid’s proposition, if the
<magnitudes> subtracted follow the same ratio, which is much easier, but
are not proportional, which is harder, then Ibn al-Haytham’s proposition is
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not universal, when compared with this proposition, nor is there is any
reciprocity between the two – nor is the one contained in the other. In fact
in Euclid’s proposition, the subtracted <magnitudes> are greater than half
and they are absolute according to the ratio, which means that they might
be proportional or not, whereas in Abº ‘Alî’s proposition, the subtracted
<magnitudes> might be greater than half, smaller than half or equal to half,
but they are limited by the condition that they should be proportional.

As for his error in the comprehension of Euclid’s proposition and other
propositions where this proposition has been applied, this is because he
wished to substitute his proposition for Euclid’s – this is why he mentioned
it separately in his book On the Resolution of Doubts. He considered
Euclid’s proposition not useful and he substituted this proposition. But when
we want to substitute his proposition for Euclid’s, we cannot show any of
the propositions where Euclid applied this proposition. In fact the proposi-
tions where Euclid applied this proposition number only four among the
propositions in Book XII of Elements; these are the 2nd, 5th, 10th and 11th,
and it is not correct to apply Abº ‘Alî’s proposition in any of these
propositions.

Proof: The first time Euclid used this proposition as a lemma is in the
second proposition of Book XII, where he declared that for two circles the
ratio of one to the other is equal to the ratio of the squares of their diame-
ters: we prove this by stating that if this was not the case, then the ratio of
the square to the square is greater or smaller than the ratio of the surface of
the circle to the surface of the circle. First, we assume the ratio of square to
square59 is greater than the ratio of circle to circle. Then we assume a
smaller magnitude whose ratio to the circle is equal to the ratio of the square
to the square; then we assume another magnitude such that this, together
with the smaller magnitude to which it is related, have a sum equal to the
next circle in the ratio and by comparison to which the small magnitude is
smaller. If we then draw a square in this circle, which is the last in the ratio,
this square equals more than half the circle. If we also draw an octagon in
this circle, we know that the excess of this octagon beyond the square is
greater than half the excess of the circle over the square; similarly, if we
construct a figure with sixteen sides, then we show that the excess of this
figure over the octagon is greater than half the excess of the circle over the
octagon. If we continue to construct figures whose number of sides suc-
cessively increase by two60 and we establish the same proof for excesses, it
follows therefore from the last <stage> that excesses end in an excess which

59 Ms. smaller. See also Euclid, Book 12, Proposition 2, the first part of which is
summarized here.

60 The number of sides is 2n.
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is less than the smallest given magnitude; that is, the magnitude which we
assumed equal to the excess of the next circle in the ratio, over the magni-
tude for which the ratio of the previous circle in the ratio, is equal to the
ratio of the square to the square.

Even if we want to prove this assertion using the proposition which Ibn
al-Haytham considered to replace Euclid’s proposition and which he
considered should be put forward to it, we cannot, since it is necessary to
prove not only that the ratio of the square to the circle is equal to the ratio
of the excess of the octagon over the square to the excess of the circle over
the square but that it is also equal to the ratio of the excess of the16-sided
figure over the octagon to the excess of the circle over the octagon. This
continues in the same was as with the other subtracted <magnitudes>.
However, it is not necessary here for these subtracted <magnitudes> to be
proportional. Therefore Abº ‘Alî’s proposition cannot be correctly applied
in this proposition because there is no necessity for proportionality of the
excesses; it is of no use here. Leading on from this point, it is clear that the
application of his proposition would not be correct and not be useful for
other propositions in the aforementioned book either.

His error becomes apparent <when he affirms> that this proposition had
been introduced by Euclid as a lemma, because of the need he had for it in
his book and not as a fundamental proposition, and when he ignores other
books. We have in fact pointed out before the proof that this proposition is
fundamental; in fact this proposition is so fundamental as to be necessary for
the understanding of what is contained in Euclid’s and in other books both
Ancient and Modern. As for the Ancients, such as Archimedes’ book On
Measurement of a Circle, he applies it to prove this proposition and to show
that it is true and that the proof is in order. As for the Moderns, it is in fact
Ibræhîm ibn Sinæn ibn Thæbit ibn Qurra’s book that is to <establish> that
the measurement of a section of a parabola is one and a half times the
triangle whose base is the base of the section and whose height is its height.
This proposition was actually mentioned by Archimedes in the introduction
of his book On the Sphere and Cylinder and although he indicated that he
wrote a book on the subject, the book has not come down to us: this is why
we have attributed it to the Moderns. If I listed all the books, apart from
Euclid’s, where this proposition has been used, and all the works which
would not be valid without this proposition, it would be more than required
here: a short tract such as this one would not be long enough. We merely
mention this proposal in order to draw attention to its omission. Peace be
upon you.

The fifth treatise has been finished with the help of God.
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[5] List of Ibn al-Haytham’s works

The following table contains the titles of al-Îasan ibn al-Haytham’s
works taken from three ancient biobibliographies – al-Qif†î (I), Ibn Abî
UÒaybi‘a, (II) the Lahore list (III) – as well as manuscripts which have come
down to us, some of which are indicated here for the first time. Having
examined these manuscripts, we have picked out the name of the author, his
own references to other works, references to him by his successors and the
name by which they have referred to him.



No. Treatise of aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----ÎÎÎÎaaaassssaaaannnn
    ibn al-Haytham

Variants of his name

1 FFFFîîîî    ææææddddææææbbbb    aaaallll----kkkkuuuuttttttttææææbbbb
On the Culture of Government Officers

2 FFFFîîîî    aaaa‘‘‘‘ddddæææædddd    aaaallll----wwwwiiiiffffqqqq
On Magical Squares

3 FFFFîîîî    aaaa≈≈≈≈wwwwææææ’’’’    aaaallll----kkkkaaaawwwwæææækkkkiiiibbbb
On the Light of the Stars
Berlin, Oct. 2970/16, fols 173v–176v

Berlin 5668, fols 11r–14r

Istanbul, ‘Æ†if 1714/12, fols 112r–115v

Istanbul, FætiÌ 3439, fols 131v–136v

St. Petersburg 600 (= Kuibychev), fols
295v–298v

London, India Office 1270, fols 10v–12r

Oxford, Seld. A. 32, fols 128–133
Tehran, Majlis Shºræ 2998, fols 158v–163r

Ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îusayn ibn al-
Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
al-Îusayn ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îusayn ibn al-
Haytham

4 FFFFîîîî    aaaaÌÌÌÌkkkkææææmmmm    aaaallll----nnnnuuuujjjjººººmmmm
(Kitæb mæ yaræhu al-falakiyyºn —)
On the Opinions of Astronomers on
Astrology

5 FFFFîîîî    aaaallll----aaaakkkkhhhhllllææææqqqq    — On Ethics
Tehran, Majlis Shºræ 1397, fols 33–86 Abº ‘Alî al-Îasan ibn al-Îasan ibn al-

Haytham

6 FFFFîîîî    ‘‘‘‘aaaammmmaaaallll    aaaallll----bbbbiiiinnnnkkkkææææmmmm
On the Construction of the Water-Clock
Istanbul, Askari Müze 3025, 6 fols
Istanbul, ‘Æ†if 1714/ 8, fols 77r–82v

Istanbul, FætiÌ 3439, fols 138r–140r

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

7 FFFFîîîî    ‘‘‘‘aaaammmmaaaallll    mmmmuuuukkkkhhhhaaaammmmmmmmaaaassss    ffffîîîî    mmmmuuuurrrraaaabbbbbbbbaaaa‘
On the Construction of a Pentagon in a
Square
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43 48 47 quoted in:
Fî mæhiyyat al-athar alladhî fî wajh
al-qamar
Cairo, Taymºr 78, fol. 18

69

59 88 quoted by al-Bayhaqî, Tærîkh
Ìukamæ’ al-Islæm, p. 85

66 76

45 35
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No. Treatise of aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----ÎÎÎÎaaaassssaaaannnn
    ibn al-Haytham

Variants of his name

8 FFFFîîîî    ‘‘‘‘aaaammmmaaaallll    aaaallll----mmmmuuuussssaaaabbbbbbbbaaaa‘‘‘‘    ffffîîîî    aaaallll----ddddææææ’’’’iiiirrrraaaa
On the Construction of the Heptagon in the
Circle
Istanbul, Askari Müze 3025, 10 fols
Istanbul, ‘Æ†if 1714/19, fol. 200r–210r

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

9 FFFFîîîî    ‘‘‘‘aaaammmmaaaallll    aaaallll----qqqquuuu††††ºººº‘‘‘‘
On the Construction of <Conic> Sections

10 FFFFîîîî    aaaannnnnnnnaaaa    aaaallll----kkkkuuuurrrraaaa    aaaawwwwssssaaaa‘‘‘‘    aaaallll----aaaasssshhhhkkkkæææællll    aaaallll ----
mmmmuuuujjjjaaaassssssssaaaammmmaaaa    aaaallllllllaaaattttîîîî    iiiiÌÌÌÌææææ††††æææættttuuuuhhhhææææ    mmmmuuuuttttaaaa----
ssssææææwwwwiiiiyyyyaaaa    wwwwaaaa----aaaannnnnnnnaaaa    aaaallll----ddddææææ’’’’iiiirrrraaaa    aaaawwwwssssææææ‘‘‘‘    aaaallll ----
aaaasssshhhhkkkkæææællll    aaaallll----mmmmuuuussssaaaa††††††††aaaaÌÌÌÌaaaa    aaaallllllllaaaattttîîîî    iiiiÌÌÌÌææææ††††æææættttuuuuhhhhææææ
mmmmuuuuttttaaaassssææææwwwwiiiiyyyyaaaa — On the Sphere which is the
Largest of all the Solid Figures having Equal
Perimeters, and on the Circle which is the
Largest of all the Plane Figures having Equal
Perimeters
Berlin, Oct. 2970/9, fols 84r–105r

Istanbul, ‘Æ†if 1714/18, fols 178r–199v

Tehran, Majlis, Tugæbunî 110, fols 462–502
Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

11 FFFFîîîî    aaaannnnnnnnaaaa    mmmmææææ    yyyyuuuurrrrææææ    mmmmiiiinnnn    aaaallll----ssssaaaammmmææææ’’’’    hhhhuuuuwwwwaaaa
aaaakkkktttthhhhaaaarrrr    mmmmiiiinnnn    nnnniiiiÒÒÒÒffffiiiihhhhææææ — What is Seen from
the Sky is Greater than its Half
Alexandria, Baladiyya 2099, fol. 12r–13r

Oxford, Bodl., Thurst 3, fol. 104r, 116r

Oxford, Marsh 713, fol. 232r–v

—
Ibn al-Haytham
Ibn al-Haytham

12 FFFFîîîî    aaaallll----aaaasssshhhhkkkkæææællll    aaaallll----hhhhiiiillllæææælllliiiiyyyyyyyyaaaa
(MMMMaaaaqqqqæææællllaaaa    mmmmuuuussssttttaaaaqqqqÒÒÒÒæææætttt    —)
Exhaustive Treatise on the Figures of Lunes
Berlin, Oct. 2970/3, fols 24r–43v

Istanbul, ‘Æ†if 1714/17, fols 158r–177v

Istanbul, FætiÌ 3439, fols 115r–117r

St. Petersburg, B 1030, fols 50r–72v,
133v–144r

London, India Office 1270, fols 70r–78v

al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
ms. truncated
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham



LIST OF IBN AL-HAYTHAM’S WORKS 395

I II III Own references References by other
scholars

20 74 qqqquuuuooootttteeeessss:
Fî muqaddimat ≈il‘ al-musabba‘
‘Æ†if 1714/19, fol. 200v

quoted in:
Fî al-maræyæ al-muÌriqa bi-al-qu†º‘
India Office 1270, fol. 21r

28 26 25 quoted in:
Fî Ìall shukºk fî kitæb al-Majis†î
Aligarh 678, fol. 23v

Fî al-makæn
India Office 1270, fol. 26r

26 37 40 quoted in:
Fî taÒhîÌ al-‘amal al-nujºmiyya
Oxford, Seld A. 32, fol. 163v

21 21 quoted in:
Fî Ìall shukºk Uqlîdis fî al-UÒºl wa-
sharÌ ma‘ænîhi
Istanbul, University 800, fol. 3v,
13r, 167r

quotes:
Fî al-hilæliyyæt
Berlin, Oct. 2970, fol. 24v

quoted by :
al-Shîræzî, Fî Ìarakat al-
daÌraja, Gotha 158, fol. 79v
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No. Treatise of aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----ÎÎÎÎaaaassssaaaannnn
    ibn al-Haytham
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13 FFFFîîîî    aaaa‘‘‘‘ÂÂÂÂaaaammmm    aaaallll----kkkkhhhhuuuu††††ºººº††††    aaaallllllllaaaattttîîîî    ttttaaaaqqqqaaaa‘‘‘‘    ffffîîîî
qqqqiiii††††‘‘‘‘aaaatttt    aaaallll----ddddææææ’’’’iiiirrrraaaa    —    On the Greatest Line
Lying in a Segment of Circle

14 FFFFîîîî    bbbbiiiirrrrkkkkæææærrrr    aaaallll----ddddaaaawwwwææææ’’’’iiiirrrr    aaaallll----‘‘‘‘iiiiÂÂÂÂææææmmmm
On the Compasses of the Great Circles
MMMMaaaaqqqqæææællllaaaa    mmmmuuuukkkkhhhhttttaaaaÒÒÒÒaaaarrrraaaa    (short) —
MMMMaaaaqqqqæææællllaaaa    mmmmaaaasssshhhhrrrrººººÌÌÌÌaaaa (expanded) —
Aligarh 678, fols 29r, 8r–10r

Leiden Or. 133/6, fols 106–111

St. Petersburg, B 1030, fols 125v–131r

London, India Office 1270, fols 116v–118r

Rampur 3666, fols 436–442

Abº ‘Alî al-Îasan ibn al-Haytham
Abº ‘Alî ibn al-Haytham (incipit) and Abº
‘Alî al-Îasan ibn al-Îasan ibn al-Haytham
(explicit)
al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham (explicit)
Ibn al-Haytham (explicit)

15 FFFFîîîî    bbbbiiiirrrrkkkkæææærrrr    aaaallll----qqqquuuu††††ºººº‘‘‘‘ (2 maqæla)
On the Compasses for Conic Sections

16 FFFFîîîî    aaaallll----≈≈≈≈aaaawwww’’’’    — On the Light
Berlin 5668, fols 1r–10r

Berlin, Oct. 2970/15, fols 163r–173r

Istanbul, ‘Æ†if 1714/11, fols 102r–111v

London, India Office 1270, fols 12v–17v

Tehran, Majlis Shºræ 2998, fols 134–156

al-Îasan ibn al-Îusayn ibn al-Haytham
Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham

17 FFFFîîîî    ≈≈≈≈aaaawwww’’’’    aaaallll----qqqqaaaammmmaaaarrrr — On the Light of the
Moon
London, India Office 1270, fols 32v–47v Abº ‘Alî al-Îasan ibn al-Îasan ibn al-

Haytham

18 FFFFîîîî    aaaallll----hhhhæææællllaaaa    wwwwaaaa----qqqqaaaawwwwssss    qqqquuuuzzzzaaaaÌÌÌÌ
On the Halo and the Rainbow

Berlin 2970/10, fols 106r–117v

Istanbul, ‘Æ†if 1714/14, fols 126r–138r
al-Îasan ibn al-Haytham
al-Îasan ibn al-Haytham
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81

44

22
23

22
15

quoted in:
Fî al-maræyæ al-muÌriqa bi-al-
dawæ’ir
India Office 1270, fol. 24v

13 11

60 53 quotes:
Fî al-manæÂir
India Office 1270, fol. 13r

quoted by:
- FatÌ Allæh al-Shirwænî,
Tehran, Millî 799, fol. 4v

- al-Færisî, Kitæb tanqîÌ al-
manæÂir, vol. I, p. 401

57 6 5 quoted in:
Fî mæhiyyat al-athar
Cairo, Taymºr 78, fol. 9, 10

36 8 7 quoted in:
Fî Ìall shukºk al-Majis†î
Istanbul, Beyazit 2304, fol. 8v

quoted by:
- Ibn Rushd, TalkhîÒ al-æthær al-
‘ulwiya, Paris 1800 Heb., fol.
82v

- al-Færisî, Kitæb tanqîÌ al-
manæÂir, vol. II, pp. 258, 279…
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No. Treatise of aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----ÎÎÎÎaaaassssaaaannnn
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19 FFFFîîîî    ÌÌÌÌaaaallllllll    sssshhhhuuuukkkkººººkkkk    ÌÌÌÌaaaarrrraaaakkkkaaaatttt    aaaallll----iiiillllttttiiiiffffææææffff
On the Resolution of Doubts Relating to the
Winding Movement
Berlin, Oct. 2970/11, fols 118r–127r

Istanbul, ‘Æ†if 1714/15, fols 139r–148v

St. Petersburg, B1030/1, fols 1v–20v

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

20 FFFFîîîî    ÌÌÌÌaaaallllllll    sssshhhhuuuukkkkººººkkkk    ffffîîîî    kkkkiiiittttææææbbbb    aaaallll----MMMMaaaajjjjiiiissss††††îîîî
yyyyuuuusssshhhhaaaakkkkkkkkiiiikkkkuuuu    ffffîîîîhhhhææææ    bbbbaaaa‘‘‘‘≈≈≈≈    aaaahhhhllll    aaaallll----‘‘‘‘iiiillllmmmm
On the Resolution of Doubts on the Book of
the Almagest, Raised by a Scholar
Aligarh, ‘Abd Îayy 21, fols 19v (incomplete)

Istanbul, Beyazit 2304, fols 1v–20v

Istanbul, FætiÌ 3439, fols 142r–154v

Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Ibn al-Haytham
—

21
a

FFFFîîîî    ÌÌÌÌaaaallllllll    sssshhhhuuuukkkkººººkkkk    kkkkiiiittttææææbbbb    UUUUqqqqllllîîîîddddiiiissss    ffffîîîî    aaaallll----
UUUUÒÒÒÒººººllll    wwwwaaaa----sssshhhhaaaarrrrÌÌÌÌ    mmmmaaaa‘‘‘‘æææænnnnîîîîhhhhiiii    — On the
Resolution of Doubts on Euclid’s Elements
and the Explanation of its Concepts
Cairo, Dær al-Kutub, Khalîl Aghæ 1
(incomplete)
Istanbul, Univ. 800, 181 fols
Bursa, Haraççi 1172/2, fols 83r–226v

Istanbul, FætiÌ 3439, fols 66r–117r

Kasan, KGU, Arab 104, fols 1–150
Leiden, Or 516, fols 184v–208r

Peshævar 323, 112 fols
Tehran, Milli Malek 3433, 157 fols

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

b Fî Ìall shukºk al-maqæla al-ºlæ min kitæb
Uqlîdis

c Fî Ìall shakk fî al-maqæla al-thæniya ‘ashar
min kitæb Uqlîdis

d Fî Ìall shakk fî mujassamæt kitæb Uqlîdis
e Fî Ìall shakk min al-mujassam
f Fî Ìall shakk min Uqlîdis

22 FFFFîîîî    ÌÌÌÌaaaarrrraaaakkkkaaaatttt    aaaallll----iiiillllttttiiiiffffææææffff
On the Winding Movement
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scholars

53 63 60 quotes:
Fî al-shukºk ‘alæ Ba†lamiyºs
Istanbul, ‘Æ†if 1714, fol. 139v

Fî  Ìarakat al-iltifæf
Istanbul, ‘Æ†if 1714, fol. 140r, 143v

55 38 33 quotes:
Fî al-manæÂir
Aligarh, fol. 21r

Fî qaws quzaÌ
Beyazit, fol. 8v

Fî anna al-kura awsa‘
Aligarh, fol. 23v

4 quotes:
Fî sharÌ muÒædaræt kitæb Uqlîdis
Istanbul, University 800, fol. 3v,
13r…

Fî al-ashkæl al-hilæliyya
Istanbul, University 800, fol. 3v, 13r

Fî (uÒºl) al-misæÌa
Istanbul, University 800, fols 87r-v

Fî qismat al-miqdærayn al-
mukhtalifayn

quoted by:
- al-Færisî, al-Zæwiya
- Ibn al-Sarî, Aya Sofya 4830, fol.
139v, 146r, 150r, 150v, 152r (see
Supplementary Note [4])
- NaÒîr al-Dîn al-™ºsî, al-Risæla
al-shæfiyya, Ahmet III 3342, fol.
248v

- al-Qalqashandî, ∑ubÌ al-a‘shæ,
vol. I, p. 480; vol. XIV, p. 227.
- Fakhr al-Dîn al-Ræzî, al-
MulakhkhaÒ, Majlis Shºræ 827
-al-Shîræzî, Fî Ìarakat al-daÌraja,
Gotha 158, fol. 80v

56 55
quoted by al-Khayyæm, SharÌ
mæ ushkila min muÒædaræt
Uqlîdis, Paris 4946/4, fol. 40r

55 51

39 37
21
22

52 61 57 quoted in:
Fî Ìall shukºk Ìarakat al-iltifæf,
‘Æ†if 1714, fol. 140r and 143v

quoted by :
NaÒîr al-Dîn al-™ºsî, al-Tadhkira,
Leiden, Or. 905, fol. 49r, 50r

Ibn al-Shæ†ir, Nihæyat al-sºl,
Marsh 139, fol. 31v
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23 FFFFîîîî    ÌÌÌÌaaaarrrraaaakkkkaaaatttt    aaaallll----qqqqaaaammmmaaaarrrr
On the Motion of the Moon
Istanbul, FætiÌ 3439, fols 158r–159v

Oxford, Bodl., Seld. A. 32, fols 100v–107r

St. Petersburg, B 1030, fols 81v–89v

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

24 FFFFîîîî    hhhhaaaayyyy’’’’aaaatttt    aaaallll----‘‘‘‘æææællllaaaammmm
On the Configuration of the Universe
(Apocryphal, see Introduction and
Supplementary Note [2])
London, India Office 1270, fols 101r–116r

Kastamonu, Genel 2298, fols 1–43

Rabat, Îasaniyya, Malik 8691, fols 190–228

al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº al-Îasan ‘Alî ibn al-Îasan ibn al-
Haytham

25 FFFFîîîî    hhhhaaaayyyy’’’’aaaatttt    ÌÌÌÌaaaarrrraaaakkkkæææætttt    kkkkuuuullllllll    wwwwææææÌÌÌÌiiiidddd    mmmmiiiinnnn    aaaallll----
kkkkaaaawwwwæææækkkkiiiibbbb    aaaallll----ssssaaaabbbb‘‘‘‘aaaa
On the Configuration of the Movements of
Each of the Seven Planets
St. Petersburg 600 (= Kuibychev), fols 368v,
397v, 397r–401v, 402v, 402r, 403r–408v,
369r–396v, 409r–420v

Abº ‘Alî ibn al-Haytham

26 FFFFîîîî    aaaallll----hhhhiiiillllæææælllliiiiyyyyyyyyææææt
On Lunes
Aligarh, ‘Abd al-Îayy 678/55, fols 14v–16v

al-Îasan ibn al-Îasan ibn al-Haytham

27 FFFFîîîî    ÌÌÌÌiiiissssææææbbbb    aaaallll----kkkkhhhhaaaa††††aaaa’’’’aaaayyyynnnn
On the Rule of Two False Positions

28 FFFFîîîî    ÌÌÌÌiiiissssææææbbbb    aaaallll----mmmmuuuu‘‘‘‘ææææmmmmaaaallllæææætttt
(al-qawl al-ma‘rºf bi-al-gharîb —)
On the Arithmetic of Transactions
Istanbul, ‘Æ†if 1714/13, fols 116r–125r

Berlin, Oct. 2970/17, fols 177r–186r

Abº ‘Alî al-Îasan ibn al-Îasan ibn
al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

29 aaaallll----iiiikkkkhhhhttttiiiillllææææffff    ffffîîîî    iiiirrrrttttiiiiffffææææ‘‘‘‘æææætttt    aaaallll----kkkkaaaawwwwæææækkkkiiiibbbb
(Fî mæ ya‘ri≈ min —)
On the Differences in the Heights of the Stars
Istanbul, FætiÌ 3439, fols 151r–155r al-Îasan ibn al-Îasan ibn al-Haytham

30 FFFFîîîî    iiiikkkkhhhhttttiiiillllææææffff    aaaallll----mmmmaaaannnnææææÂÂÂÂiiiirrrr
On the Parallaxes
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23 82

31 1 1

6 20 18 quoted in: Fî tarbî‘ al-dæ’ira,
Aligarh 678, fol. 10v

Fî al-ashkæl al-hilæliyya, Berlin 2970,
fol. 24v

48 57 58

35 10 quoted in:
Fî al-mu‘æmalæt fî al-Ìisæb
Feyzullah 1365, fol. 76v

See Supplementary Note [1]

63 9 8

56 41 34
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31 FFFFîîîî    iiiikkkkhhhhttttiiiillllææææffff    mmmmaaaannnnÂÂÂÂaaaarrrr    aaaallll----qqqqaaaammmmaaaarrrr
On the Parallax of the Moon
London, India Office 1270, fol. 120r-v

St. Petersburg, B 1030, fols 122r-125r

Tehran, Malik 3086/3, fols 56v–59v

Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

32 FFFFîîîî    ‘‘‘‘iiiillllllllaaaatttt    aaaallll----jjjjaaaaddddhhhhrrrr    wwwwaaaa----iiii≈≈≈≈‘‘‘‘ææææffffiiiihhhhiiii    wwwwaaaa----
nnnnaaaaqqqqlllliiiihhhhiiii — On the Cause of the Square Root,
its Doubling and its Displacement
Aligarh 678, fols 17r-19r, 13v–14v Abº ‘Alî al-Îasan ibn al-Îasan ibn al-

Haytham

33 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    aaaa‘‘‘‘mmmmiiiiddddaaaatttt    aaaallll----jjjjiiiibbbbæææællll    —    On the
Determination of the Altitude of Mountains
Oxford, Seld. A.32, fol. 187r–188r al-Îasan ibn al-Îasan ibn al-Haytham

34 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    aaaarrrrbbbbaaaa‘‘‘‘aaaa    kkkkhhhhuuuu††††ºººº††††
On the Determination of Four Straight Lines

35 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    ≈≈≈≈iiiillll‘‘‘‘    aaaallll----mmmmuuuukkkkaaaa‘‘‘‘‘‘‘‘aaaabbbb
On the Extraction of the Side of a Cube
St. Petersburg 600 (= Kuibychev), fols
400v–401r

al-Îusayn ibn al-Îasan <ibn> al-Haytham

36 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    iiiirrrrttttiiiiffffææææ‘‘‘‘    aaaallll----qqqquuuu††††bbbb    ‘‘‘‘aaaallllææææ    gggghhhhææææyyyyaaaatttt
aaaallll----ttttaaaaÌÌÌÌqqqqîîîîqqqq    — On the Determination of the
Height of the Pole with the Greatest
Precision
Berlin, Oct. 2970/6, fols 60r–65r

Istanbul, ‘Æ†if 1714/4, fols 26v–30v

Istanbul, FætiÌ 3439, fols 140r–142v

Leiden Or. 14/11, fols 246–254
London, Br. Mus., Add. 3034, fols 3–13
Oxford, Bodl. Seld. A. 32, fols 121–128
New York, Smith Or. 45/3, fols 35–46

Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham

37 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    jjjjaaaammmmîîîî‘‘‘‘    aaaallll----qqqquuuu††††ºººº‘‘‘‘    bbbbiiii----††††aaaarrrrîîîîqqqq    aaaallll----
æææællllaaaa — On the Determination of all the Conic
Sections by means of an Instrument
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10

25 70

69

51 29 32 al-Khayyæm, al-Jabr, India Office
1270, fol. 55r-v

24 47 43

62 75

quoted in: al-maræyæ al-muÌriqa
bi-al-qu†º‘, India Office 1270, fol.
20v
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38 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    kkkkhhhhaaaa††††††††    nnnniiiiÒÒÒÒffff    aaaallll----nnnnaaaahhhhæææærrrr    ‘‘‘‘aaaallllææææ
gggghhhhææææyyyyaaaatttt    aaaallll----ttttaaaaÌÌÌÌqqqqîîîîqqqq    — On the Determination
of the Meridian with the Greatest Precision
Berlin, Oct. 2970/5, fols 46v–59r

Istanbul, ‘Æ†if 1714/3, fols 13v–26r
Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

39 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    kkkkhhhhaaaa††††††††    nnnniiiiÒÒÒÒffff    aaaallll----nnnnaaaahhhhæææærrrr    bbbbiiii----ÂÂÂÂiiiillllllll
wwwwææææhhhhiiiidddd    —    On the Determination of the
Meridian by means of One Shadow
Berlin, Oct. 2970/4, fols 44r–46r

Istanbul, ‘Æ†if 1714/2, fols 11r–13r

Tehran, Malik 3086/4, fols 59v–62r

Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

40 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    mmmmaaaassss’’’’aaaallllaaaa    ‘‘‘‘aaaaddddaaaaddddiiiiyyyyyyyyaaaa
On the Solution of an Arithmetical Problem
London, India Office 1270/20, fols 121r-v

Tehran, Malik 3086/5, fols 62v–66r
al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

41 FFFFîîîî    iiiissssttttiiiikkkkhhhhrrrrææææjjjj    ssssaaaammmmtttt    aaaallll----qqqqiiiibbbbllllaaaa
On the Determination of the Azimuth of the
Qibla
St. Petersburg, B 1030, fols 111r–121v

Oxford, Seld. A.32, fols 107r–115r
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

42 FFFFîîîî    jjjjaaaammmm‘‘‘‘ (or    jjjjaaaammmmîîîî‘‘‘‘)    aaaallll----aaaajjjjzzzzææææ’’’’
On the Sum (or all) of the Parts

43 FFFFîîîî    aaaallll----jjjjuuuuzzzz’’’’    aaaallllllllaaaaddddhhhhîîîî    llllææææ    yyyyaaaattttaaaajjjjaaaazzzzzzzzaaaa’’’’
On the Indivisible Part

44 FFFFîîîî    aaaallll----kkkkaaaawwwwæææækkkkiiiibbbb    aaaallll----ÌÌÌÌææææddddiiiitttthhhhaaaa    ffffîîîî    aaaallll----jjjjaaaawwwwwwww
(or FFFFîîîî    aaaallll----kkkkaaaawwwwæææækkkkiiiibbbb    aaaallll----mmmmuuuunnnnqqqqaaaa≈≈≈≈≈≈≈≈aaaa)
On the Shooting Stars
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29 31 29 quotes :
Fî al-tanbîh ‘alæ mawædi‘ al-ghala†
‘Æ†if 1714, fol. 13v

42 44 44

11 92

59 56 quotes :
Fî samt al-qibla bi-al-Ìisæb
Oxford, Seld. A 32, fol. 107r

45 32 30

32 65 62

5 4
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45 FFFFîîîî    kkkkaaaayyyyffffiiiiyyyyyyyyaaaatttt    aaaallll----aaaaÂÂÂÂllllæææællll
On the Formation of Shadows
Berlin 5668, fols 14r–27r

Isfahæn, Dænishka 17435, fol. 61r–81r

Istanbul, Askari Müze 3025, 14 fols
Istanbul, ‘Æ†if 1714/5, fols 31r–46r

Istanbul, FætiÌ 3439, fols 124r–130v

St. Petersburg 600 (= Kuibychev), fols
297v–302v

Tehran, Majlis Shºræ 2998, fols 100–130

al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham
al-Îusayn ibn al-Haytham

al-Îasan ibn al-Îusayn ibn al-Haytham

46 FFFFîîîî    kkkkaaaayyyyffffiiiiyyyyyyyyaaaatttt    aaaallll----aaaarrrrÒÒÒÒæææædddd — On the Method
of <Astronomical> Observations
Dublin, Ch. Beatty 4549, 19 fols

Alexandria, Baladiyya 3688, fols 31v–46r

Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

47 FFFFîîîî    kkkkhhhhaaaawwwwææææÒÒÒÒÒÒÒÒ    aaaallll----ddddaaaawwwwææææ’’’’iiiirrrr
On the Properties of Circles
St. Petersburg 600 (= Kuibychev), fols
421r–431r

al-Îusayn ibn al-Îusayn ibn al-Haytham

48 FFFFîîîî    kkkkhhhhaaaawwwwææææÒÒÒÒÒÒÒÒ    aaaallll----mmmmuuuutttthhhhaaaallllllllaaaatttthhhh    mmmmiiiinnnn    jjjjiiiihhhhaaaatttt
aaaallll----‘‘‘‘aaaammmmººººdddd
On the Properties of the Triangle relatively to
the Perpendicular
Patna, Khudabakhsh 2468, fols 189r–191r Ibn al-Haytham

49 FFFFîîîî    kkkkhhhhaaaawwwwææææÒÒÒÒÒÒÒÒ    aaaallll----qqqquuuu††††ºººº‘‘‘‘
On the Properties of <Conic> Sections
Fî khawæÒÒ al-qi†‘ al-mukæfi’
Fî khawæÒÒ al-qi†‘ al-zæ’id

50 FFFFîîîî    kkkkhhhhuuuu††††ºººº††††    aaaallll----ssssææææ‘‘‘‘æææætttt
On the Lines of Hours

Istanbul, Askari Müze 3025, fols 1v–19v

Istanbul, ‘Æ†if 1714/7, fols 57r–76v
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
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64 36 31 qqqquuuuooootttteeeessss:
Fî al-manæÂir
‘Æ†if 1714, fol. 32v

quoted by al-Færisî, Kitæb tanqîÌ
al-manæÂir, vol. II, p. 358

34 4 3 quoted by al-Qalqashandî, ∑ubÌ
al-a‘shæ, vol. I, p. 477

72

19 71

33
34

27

27 66 quoted in:
Fî al-kura al-muÌriqa
Berlin, Oct. 2970, fol. 75r

quoted by al-Færisî, Kitæb tanqîÌ
al-manæÂir, Leiden 201, fol. 277r
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51 FFFFîîîî    aaaallll----kkkkuuuurrrraaaa    aaaallll----mmmmuuuuÌÌÌÌrrrriiiiqqqqaaaa
On the Burning Sphere
Istanbul, ‘Æ†if 1714/10, fols 91v–100v

Berlin, Oct. 2970/8, fols 74r–83r
al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham

52 FFFFîîîî    aaaallll----kkkkuuuurrrraaaa    aaaallll----mmmmuuuuttttaaaaÌÌÌÌaaaarrrrrrrriiiikkkkaaaa    ‘‘‘‘aaaallllææææ    aaaallll----
ssssaaaa††††ÌÌÌÌ    — On the Sphere Moving on a Plane

53 FFFFîîîî    mmmmææææhhhhiiiiyyyyyyyyaaaatttt    aaaallll----aaaatttthhhhaaaarrrr    aaaallllllllaaaaddddhhhhîîîî    ffffîîîî    wwwwaaaajjjjhhhh
aaaallll----qqqqaaaammmmaaaarrrr    — On the Quiddity of the Marks
on the Face of the Lune
Alexandria, Baladiyya 2096

Cairo, Taymºr 78, 15 fols

Ibn ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

54
a
b

c

FFFFîîîî    aaaallll----mmmmaaaajjjjaaaarrrrrrrraaaa    — On the Milky Way

FFFFîîîî    mmmmææææhhhhiiiiyyyyyyyyaaaatttt    aaaallll----mmmmaaaajjjjaaaarrrrrrrraaaa

JJJJaaaawwwwææææbbbb    ‘‘‘‘aaaannnn    ssssuuuu’’’’æææællll    ssssææææ’’’’iiiillll    ‘‘‘‘aaaannnn    aaaallll----mmmmaaaajjjjaaaarrrrrrrraaaa
hhhhaaaallll    hhhhiiiiyyyyyyyyaaaa    ffffîîîî    aaaallll----hhhhaaaawwwwææææ’’’’    aaaawwww    ffffîîîî    jjjjiiiissssmmmm
aaaallll ----ssssaaaammmmææææ’’’’
Leiden, Or 184/10, fols 87r–88v

Edirne, Selimiye 713/11
Tehran, Dænishka 15, fols 37v–38r

Abº ‘Alî al-Îasan ibn al-Îasan ibn
al-Haytham
Non vidi
Non vidi

55 FFFFîîîî    aaaallll----mmmmaaaakkkkæææænnnn    — On Place
Cairo 3823, fols 1v–5v

Hyderabad, Salar Jung Mus. 2196, fol.
19v–22r

Istanbul, FætiÌ 3439, fols 136v–138r

London, India Office 1270, fols 25v–27v

Tehran, Majlis Shºræ 2998, fols 166–174

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
(Îusayn ibn al-Haytham in the explicit)
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îusayn ibn al-
Haytham

56 FFFFîîîî    aaaallll----mmmmaaaa‘‘‘‘llllººººmmmmæææætttt    — On the Known Things
Paris, BN 2458/5, fols 11v–26r

St. Petersburg 600 (= Kuibychev), fols
303r–315v

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îusayn ibn al-Îasan ibn al-Haytham
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30 77 quotes:
Fî al-manæÂir, Berlin 2970, fol. 74v,
83r

Fî khu†º† al-sæ‘æt, Berlin 2970, 75r

quoted by al-Færisî, Kitæb tanqîÌ
al-manæÂir, Leiden 201, fol. 277r

52 48

67 49 54 qqqquuuuooootttteeeessss:
Fî ≈aw’ al-qamar, Cairo, fol. 9, 10
Fî al-manæÂir, fol. 11
Fî adwæ’ al-kawækib, fol. 18

37

38

39

46

62

39

59 54c quoted by Ibn Ri≈wæn,
Kitæb Ibn Ri≈wæn fî masæ’il jarrat
baynahu wa-bayna Ibn al-
Haytham fî al-majarra wa-al-
makæn (List of his works, cited by
Ibn Abî UÒaybi‘a)

58 68 quotes:
Fî anna al-kura a‘Âam
India Office 1270, fol. 26r

quoted by:
- al-Baghdædî, Fî al-radd ‘alæ Ibn
al-Haytham fî al-makæn, Bursa,
Celebi 323, fol. 23v...
- Fakhr al-Dîn al-Ræzî, al-
MulakhkhaÒ, Majlis Shºræ 827,
fols 92-93

54 50 quoted in: Fî al-taÌlîl wa-al-tarkîb
Dublin 3652, fol. 71v

qqqquuuuooootttteeeessss: Fî (uÒºl) al-misæÌa
Paris 2458, fol. 16v

quoted by:
Ibn Hºd, al-Istikmæl, Leiden
123/1, fol. 60v-64v, Copenhagen
Or. 82, fol. 65v-67r
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57 FFFFîîîî    aaaallll----mmmmaaaannnnææææÂÂÂÂiiiirrrr — On Optics
(7 maqæla)
Istanbul, Ahmet III 1899, fols 1v–249r

Istanbul, Ahmet III 3339, fols 1v–125 r

Istanbul, Aya Sofya 2448, 678 p.

Istanbul, FætiÌ 3212, fols 1v–141r

Istanbul, FætiÌ 3215, fols 138r–331v

Istanbul, FætiÌ 3216, fols 1v-138v

Istanbul, Köprülü 952, fols 1r–135v

Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

58 FFFFîîîî    aaaallll----mmmmaaaannnnææææÂÂÂÂiiiirrrr    ‘‘‘‘aaaallllææææ    ††††aaaarrrrîîîîqqqqaaaatttt    BBBBaaaa††††llllaaaammmmiiiiyyyyººººssss
On Optics according to the Method by
Ptolemy

59 FFFFîîîî    mmmmaaaarrrræææækkkkiiiizzzz    aaaallll----aaaatttthhhhqqqqæææællll
On the Centres of Gravity

60 FFFFîîîî    aaaallll----mmmmaaaarrrrææææyyyyææææ    aaaallll----mmmmuuuuÌÌÌÌrrrriiiiqqqqaaaa    bbbbiiii----aaaallll----
ddddaaaawwwwææææ’’’’iiiirrrr
On Spherical Burning Mirrors

Aligarh, ‘Abd al-Îayy 678, fol. 44r-v

Hyderabad, S.J.M. 2196, fols 12v–19r

Istanbul, ‘Æ†if 1714/9, fols 83r–91r

London, India Office 1270, fols 21v–25r

Berlin, Oct. 2970/7, fols 66r–73v

ms. truncated
al-Îasan ibn al-Haytham
Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham

61 FFFFîîîî    aaaallll----mmmmaaaarrrrææææyyyyææææ    aaaallll----mmmmuuuuÌÌÌÌrrrriiiiqqqqaaaa    bbbbiiii----aaaallll----qqqquuuu††††ºººº‘‘‘‘
On Parabolic Burning Mirrors

Aligarh, ‘Abd al-Îayy 678, fols 28r–29r

Hyderabad, S.J.M. 2196, fols 5v–11v

Leiden, Or. 161/3, fols 43–60
London, India Office 1270, fols 18r–21r

Florence, Laurenziana Or. 152, fol. 90v–97v

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
—
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scholars

2 3
quoted in:
- Fî Ìall shukºk fî kitæb al-Majis†î,
Aligarh, ‘Abd al-Îayy 678, fol. 21r

- Fî al-kura al-muÌriqa, Berlin 2970,
fol. 74v, 83r

- Fî kayfiyyat al-aÂlæl, ‘Æ†if 1714, fol.
32v

- Fî Òurat al-kusºf, Oxford, A 32,
fol. 82r

- Fî al-≈aw’, India Office 1270, 13r

- Fî mæhiyyat al-athar, Cairo,
Taymur 78, fol. 11
- Marsh 720, fol. 195r

qqqquuuuooootttteeeessss: Fî ‘ilm al-manæÂir, Fætih
3212, fol. 4v (= no. 58 ?)

quoted by:
- Ibn Hºd, al-Istikmæl,
Copenhagen Or. 82, fol.105r-107v

- commented by Kamæl al-Dîn al-
Færisî, Kitæb tanqîÌ al-manæÂir.
- FatÌ Allæh al-Shirwænî, Teheran,
Millî 799, fols 2r, 4v, 5v…
- al-Qalqashandî, ∑ubÌ al-a‘shæ,
vol. I, p. 476
- Qæ≈î Zædeh, Fî al-hæla wa-qaws
quzah, Feyzullah 2179, fol. 89r,
90v, 98r

27 26

14 12
quoted by:
- al-Khæzinî, Kitæb mîzæn al-
Ìikma, ed. Hyderabad, p. 16
- al-Qalqashandî, ∑ubÌ al-a‘shæ,
vol. I, p. 476

50 18 16 quotes:
Istikhræj al-dawæ’ir al-‘iÂam
India Office 1270, fol. 24v

qqqquuuuooootttteeeedddd    bbbbyyyy:
al-Qalqashandî, ∑ubÌ al-a‘shæ,
vol. I, p. 476

19 17 quotes:
Fî istikhræj jamî‘ al-qu†º‘ bi-†arîq al-
æla
India Office 1270, fol. 20v

Fî ‘amal al-qu†º‘
India Office 1270, fol. 21r
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62 FFFFîîîî    mmmmaaaa‘‘‘‘rrrriiiiffffaaaatttt    iiiirrrrttttiiiiffffææææ‘‘‘‘    aaaallll----aaaasssshhhhkkkkhhhhææææÒÒÒÒ    aaaallll----
qqqqææææ’’’’iiiimmmmaaaa    wwwwaaaa----aaaa‘‘‘‘mmmmiiiiddddaaaatttt    aaaallll----jjjjiiiibbbbæææællll    wwwwaaaa----iiiirrrrttttiiiiffffææææ‘‘‘‘
aaaallll----gggghhhhuuuuyyyyººººmmmm    — On Knowing the Height of
Upright Objects, on the Altitude of
Mountains and the Height of Clouds
Leiden Or. 14/8, fols 236–237
New York, Smith Or. 45/12, fols 243v–244r

Tehran, Majlis 2773/2, fols 19–20
Tehran, Malik 3433, fols 1v–2r

Abº ‘Alî ibn al-Haytham
Abº ‘Alî ibn al-Haytham
Abº ‘Alî ibn al-Haytham
Abº ‘Alî ibn al-Haytham

63 FFFFîîîî    mmmmaaaassss’’’’aaaallllaaaa    ‘‘‘‘aaaaddddaaaaddddiiiiyyyyyyyyaaaa
On a Numerical Problem

64 FFFFîîîî    mmmmaaaassss’’’’aaaallllaaaa    ‘‘‘‘aaaaddddaaaaddddiiiiyyyyyyyyaaaa    mmmmuuuujjjjaaaassssssssaaaammmmaaaa
On a Solid Problem of Numbers
London, India Office 1270, fols 118v–119r al-Îasan ibn al-Îasan ibn al-Haytham

65 FFFFîîîî    mmmmaaaassss’’’’aaaallllaaaa    ffffîîîî    aaaallll----mmmmiiiissssææææÌÌÌÌaaaa
On a Problem of Mensuration

66 FFFFîîîî    mmmmaaaassss’’’’aaaallllaaaa    hhhhaaaannnnddddaaaassssiiiiyyyyyyyyaaaa
On a Geometrical Problem
St. Petersburg, B 1030, fols 102r–110v

Oxford, Seld. A32, fols 115v–120r
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

67 FFFFîîîî    aaaallll----mmmmaaaassssææææ’’’’iiiillll    aaaallll----ttttaaaallllææææqqqqîîîî
On Problems of Talæqî
St. Petersburg, B. 1030, fols 90r–101v al-Îasan ibn al-Îasan ibn al-Haytham

68 FFFFîîîî    mmmmiiiissssææææÌÌÌÌaaaatttt    aaaallll----ddddææææ’’’’iiiirrrraaaa
On the Measurement of the Circle

This title takes part of Fî (uÒºl) al-misæÌa
no. 96; it is not an independent treatise.

69 FFFFîîîî    mmmmiiiissssææææÌÌÌÌaaaatttt    aaaallll----kkkkuuuurrrraaaa
On the Measurement of the Sphere
Algiers, BN 1446, fols 113r–119v

Aligarh, ‘Abd al-Îayy 678, fol. 1v–4v,
13v–14r

Berlin, Oct. 2970/13, fols 145r–152r

Istanbul, ‘Æ†if 1714/20, fols 211r–218r

St. Petersburg, B. 1030, fols 73r–77r

Abº ‘Alî ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
ms. truncated
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quoted by:
Ibn AÌmad al-Îusaynî
MuÌammad al-LæÌjænî, Majlis
Shºræ 2773/1

50 45

8 78

18 58 52

40 79

83

33 16 14 quotes: Fî misæÌat al-mujassam al-
mukæfi’
Berlin 2970, fol. 145v

qqqquuuuooootttteeeedddd    iiiinnnn:
Fî (uÒºl) al-misæÌa
India Office 1270, fol. 28v
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70 FFFFîîîî    mmmmiiiissssææææÌÌÌÌaaaatttt    aaaallll----mmmmuuuujjjjaaaassssssssaaaammmm    aaaallll----mmmmuuuukkkkææææffffiiii’’’’
On the Measurement of the Paraboloid
London, India Office 1270, fols 56v–69v al-Îasan ibn al-Îasan ibn al-Haytham

71 FFFFîîîî    mmmmuuuuqqqqaaaaddddddddiiiimmmmaaaatttt    ≈≈≈≈iiiillll‘‘‘‘    aaaallll----mmmmuuuussssaaaabbbbbbbbaaaa‘‘‘‘
On the Lemma for the Side of the Heptagon
Aligarh, ‘Abd al-Îayy 678, fragment (27r-v)
London, India Office 1270, fols 122r–123v

Oxford, Marsh 720, fols 259r–260v

Oxford, Thurston 3, fols 131r -v

—
al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham

72 FFFFîîîî    nnnniiiissssaaaabbbb    aaaallll----qqqquuuussssssssîîîî    aaaallll----zzzzaaaammmmæææænnnniiiiyyyyyyyyaaaa    iiiillllææææ
iiiirrrrttttiiiiffffææææ‘‘‘‘æææættttiiiihhhhææææ    — On the Ratios of Seasonal
Hours to their Heights

73 FFFFîîîî    aaaallll----qqqqaaaarrrraaaassss††††ººººnnnn    — On the Qaras†ºn

74 FFFFîîîî    qqqqiiiissssmmmmaaaatttt    aaaallll----kkkkhhhhaaaa††††††††    aaaallllllllaaaaddddhhhhîîîî
iiiissssttttaaaa‘‘‘‘mmmmaaaallllaaaahhhhuuuu    AAAArrrrsssshhhhiiiimmmmîîîîddddiiiissss    ffffîîîî    aaaallll----mmmmaaaaqqqqæææællllaaaa
aaaallll----tttthhhhæææænnnniiiiyyyyyyyyaaaa    mmmmiiiinnnn    kkkkiiiittttææææbbbbiiiihhhhiiii    ffffîîîî    aaaallll----kkkkuuuurrrraaaa
wwwwaaaa----aaaallll----uuuussss††††uuuuwwwwæææænnnnaaaa
On the Division of the Line Used by
Archimedes in his Book on the Sphere and
the Cylinder
Istanbul, Ahmet III 3453/16, fols 179v

Istanbul, Ahmet III 3456/18, fols 81v–82r

Istanbul, ‘Æ†if 1712, fol. 147 r–v

Istanbul, Beshiraga 440/18, fol. 275r–v

Istanbul, Carullah 1502, fols 222v–223r

Istanbul, Selimaga 743, fols 135v–136v

Leiden, Or. 14/26, fols 498–499
London, India Office 1270, fols 119v

Abº al-Îasan ibn al-Îasan ibn al-Haytham
al-MiÒrî
Abº al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
Abº al-Îasan ibn al-Îasan ibn al-Haytham
Abº al-Îasan ibn al-Îasan ibn al-Haytham
Abº al-Îasan ibn al-Îasan ibn al-Haytham
Abº al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Haytham

75 FFFFîîîî    qqqqiiiissssmmmmaaaatttt    aaaallll----mmmmiiiiqqqqddddæææærrrraaaayyyynnnn    aaaallll----
mmmmuuuukkkkhhhhttttaaaalllliiiiffffaaaayyyynnnn    aaaallll----mmmmaaaaddddhhhhkkkkººººrrrraaaayyyynnnn    ffffîîîî    aaaallll----
sssshhhhaaaakkkkllll    aaaallll----aaaawwwwwwwwaaaallll    mmmmiiiinnnn    aaaallll----mmmmaaaaqqqqæææællllaaaa    aaaallll----
‘‘‘‘ææææsssshhhhiiiirrrraaaa    mmmmiiiinnnn    KKKKiiiittttææææbbbb    UUUUqqqqllllîîîîddddiiiissss    — On the
Division of Two Different Magnitudes
Mentioned in the First Proposition of Book X
of Euclid’s Elements
St. Petersburg, B 1030, fols 78r–81r al-Îasan ibn al-Îasan ibn al-Haytham
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5 17 20 quoted in: Fî misæÌat al-kura
Berlin 2970, fol. 145v

12 42 38 quoted in:
Fî ‘amal al-musabba‘ fî al-dæ’ira
‘Æ†if 1714, fol. 200v

quoted by Istambulî, Cairo

35 36

67

9 43 42

46 40 41 quoted in:
Fî Ìall shukºk kitæb Uqlîdis

Ibn al-Sarî, Aya Sofya 4845, fol.
30v

See Supplementary Note [4]
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76 FFFFîîîî    qqqqiiiissssmmmmaaaatttt    aaaallll----mmmmuuuunnnnÌÌÌÌaaaarrrriiiiffff    aaaallll----kkkkuuuullllllllîîîî
On the Division of a General Trapezium

77 FFFFîîîî    aaaallll----rrrruuuukkkkhhhhææææmmmmæææætttt    aaaallll----uuuuffffuuuuqqqqiiiiyyyyyyyyaaaa
On the Horizontal Sundials
Berlin, Oct. 2970/14, fols 153r–161r

Istanbul, ‘Æ†if 1714/6, fols 47r–55v

Tehran, Tungæbunî 110/1, fols 1–19

Ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

78 FFFFîîîî    rrrruuuu’’’’yyyyaaaa    aaaallll----kkkkaaaawwwwæææækkkkiiiibbbb
On the Visibility of the Stars
Lahore, fols 36v-42v

Tehran, Danishka 493, fols 19v–23r

Tehran, Milli 799, fols 20v–24r

al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham

79 FFFFîîîî    ssssaaaammmmtttt
On the Azimuth

80 FFFFîîîî    ssssaaaammmmtttt    aaaallll----qqqqiiiibbbbllllaaaa    bbbbiiii----aaaallll----ÌÌÌÌiiiissssææææbbbb
On <the Determination> of the Azimuth of
the Qibla by Calculation
Berlin, Oct. 2970/1, fols 4r–11v

Cairo, Dær al-kutub 3823, fols 14v–18v

Istanbul, ‘Æ†if 1714/1, fols 1v–9v

FætiÌ 3439, fols 155r–157v

Tehran, Tugæbunî 110/2, fols 19–35

Ibn al-Haytham
al-Îasan ibn al-Haytham
al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Haytham

81 FFFFîîîî    sssshhhhaaaakkkkllll    BBBBaaaannnnºººº    MMMMººººssssææææ
On the Proposition of the Banº Mºsæ
Aligarh, University no.1, fols 28–38
Istanbul, ‘Æ†if 1714/16, fols 149r–157r

Istanbul, Askari Müze 3025, 8 fols
London, India Office 1270, fols 28r-v

London, Br. Mus. Add. 14 332/2, fols 42–61

—
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

82 FFFFîîîî    sssshhhhaaaarrrrÌÌÌÌ    aaaallll----AAAArrrriiiitttthhhhmmmmææææ††††îîîîqqqqîîîî     ‘‘‘‘aaaallllææææ    ††††aaaarrrrîîîîqqqq
aaaallll----ttttaaaaÌÌÌÌqqqqîîîîqqqq — On the Commentary of the
Arithmæ†îqî by a Rigorous Method
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87

65 11 9 quotes:
Fî ælat al-aÂlæl
‘Æ†if 1714, fol. 55r

See Supplementary Note [3]

13 12 10

60 24 19

61 7 6 quoted in:
Fî istikhræj samt al-qibla (maqæla
mukhtaÒara)
Oxford, Seld. A. 32, fol. 107r

quoted by:
Ibn al-Sarræj, Dublin, Chester
Beatty 4833, fol.

49 73

84
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83 FFFFîîîî    sssshhhhaaaarrrrÌÌÌÌ    mmmmuuuuÒÒÒÒææææddddaaaarrrræææætttt    KKKKiiiittttææææbbbb    UUUUqqqqllllîîîîddddiiiissss
On the Commentary on the Postulates of
Euclid’s Book
Algiers 1446/1, fols 1v–51r

Bursa, Haraççi 1172/I, fols 1r–81v

Istanbul, Ahmet III 3454/2 (fragment)

Feyzullah 1359/2, fols 150–237r

Kasan, KGU, Arab 104, fols 151r–221r

Oxford, Bodl. Hunt 237, fols 1r–76r

Rampur 3657, fol. 1–223
Tunis, AÌmad 5482/1, fols 1v–61v

Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham (fol. 151v Ibn al-Haytham)
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham
—
al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îusayn ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

84 FFFFîîîî    sssshhhhaaaarrrrÌÌÌÌ    qqqqæææænnnnººººnnnn    UUUUqqqqllllîîîîddddiiiissss
On the Commentary of Euclid’s Qænºn

85 FFFFîîîî    aaaallll----sssshhhhuuuukkkkººººkkkk    ‘‘‘‘aaaallllææææ    BBBBaaaa††††llllææææmmmmiiiiyyyyººººssss
On the Doubts on Ptolemy
Oxford, Seld. A. 32, fols 162v–184v

Alexandria, Baladiyya 2057, fols 1-18
al-Îasan ibn al-Îasan ibn al-Haytham
Abº ‘Alî al-Îasan ibn al-Îasan ibn al-
Haytham

86 FFFFîîîî    aaaallll----ssssiiiiyyyyææææssssaaaa    (5 maqæla) — On Politics

87 FFFFîîîî    ÒÒÒÒººººrrrraaaatttt    aaaallll----kkkkuuuussssººººffff
On the Shape of the Eclipses
Istanbul, FætiÌ 3439/3, fols 117r–123v

St. Petersburg, B 1030, fols 21r–49v

London, India Office 461/2, fols 8v–34r

India Office 1270, fols 79r–86v

Oxford, Bodl., Seld. A32, fols 81v–100v

al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham

88 FFFFîîîî    ttttaaaahhhhddddhhhhîîîîbbbb    aaaallll----MMMMaaaajjjjiiiissss††††îîîî
On the Correction of the Almagest



LIST OF IBN AL-HAYTHAM’S WORKS 419

I II III Own references References by other
scholars

3 2 2 qqqquuuuooootttteeeedddd    iiiinnnn:
Fî Ìall shukºk kitæb Uqlîdis fî al-
UÒºl
Istanbul, University 800, fol. 3v, 13r

Fî taÌlîl wa-tarkîb
Dublin, 3652, fol. 71v

qqqquuuuooootttteeeedddd    bbbbyyyy:
- al-Færisî, al-Zæwiya

- al-An†ækî, Hyderabad,
Osmæniyya 992, fol. 63v, 297v

- NaÒîr al-Dîn al-™ºsî, al-Risæla
al-shæfiyya, Ahmet III, 3342, fol.
258v

- Fî al-fawæ’id wa-al-mustanba†æt
min sharÌ muÒædaræt
Uqlîdis,Teheran, Majlis Shºræ
138, fol. 204

41 85

54 64 61 quoted in:
Fî Ìall shukºk Ìarakat al-iltifæf
‘Æ†if 1714, fol. 139v

quoted by:
- al-‘Ur≈î, Kitæb al-hay’a, Oxford,
Marsh 621, fol. 156v

- Ibn Bæjja, Min kalæmihi mæ
ba‘atha bihi li-Ibn Ja‘far Yºsuf
ibn Hasdæy, Oxford, Pococke
206, fol. 118v

90

7 80 quotes:
Fî al-manæÂir
Oxford, Seld. A.32, fol. 82r

quoted by: al-Færisî, Kitæb
tanqîÌ al-manæÂir, vol. I, p. 381

1
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89 FFFFîîîî    aaaallll----ttttaaaaÌÌÌÌllllîîîîllll    wwwwaaaa----aaaallll----ttttaaaarrrrkkkkîîîîbbbb
On Analysis and Synthesis
Dublin 3652/12, fols 69v–86r

Cairo, Taymºr 323, fols 1–68
Istanbul, Reshit 1191/1, fols 1v–30v

St. Petersburg 600 (= Kuibychev), fols
316r–336r

al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
al-Îasan ibn al-Îasan ibn al-Haytham
al-Îasan ibn al-Îusayn ibn al-Haytham

90 FFFFîîîî    ttttaaaa‘‘‘‘llllîîîîqqqq    ffffîîîî    aaaallll----jjjjaaaabbbbrrrr
On the Commentary on Algebra

91 FFFFîîîî    ttttaaaammmmææææmmmm    kkkkiiiittttææææbbbb    aaaallll----mmmmaaaakkkkhhhhrrrrºººº††††æææætttt
lllliiii----AAAAppppoooolllllllloooonnnniiiiuuuussss    — On the Completion of the
Work on Conics by Apollonius
Manisa, Genel 1706, fols 1v–25r al-Îasan ibn al-Îusayn ibn al-Haytham

92 FFFFîîîî    aaaallll----ttttaaaannnnbbbbîîîîhhhh    ‘‘‘‘aaaallllææææ    mmmmaaaawwwwææææ≈≈≈≈iiii‘‘‘‘    aaaallll----gggghhhhaaaallllaaaa††††
ffffîîîî    kkkkaaaayyyyffffiiiiyyyyyyyyaaaatttt    aaaallll----rrrraaaaÒÒÒÒdddd
On Errors in the Method of Making
<Astronomical> Observations
Alexandria, Baladiyya 2099, fols 1v–12r Abº ‘Alî al-Îasan ibn al-Îasan ibn al-

Haytham

93 FFFFîîîî    ttttaaaarrrrbbbbîîîî‘‘‘‘    aaaallll----ddddææææ’’’’iiiirrrraaaa
On the Quadrature of the Circle
Aligarh 678, fols 10r–11v, 30v–30r

Berlin, fol. 258 and quart 559
Cairo, Taymºr 140, fols 136–137
Istanbul, Aya Sofya 4832, fols 39v–41r

Istanbul, Beshir Aga 440, fol. 151r

Istanbul, Carullah 1502/15, fols 124v–126r

Meshhed 5395/1, fols 1v–3r

Patna, Khudabakhsh 3692, 3 folios
Rome,Vatican 320, fols 1v–6v

Tehran, Danishkæ 1063, fols 7r–9v

Tehran, Majlis Shºræ 205/3, fols 93–101
Tehran, Majlis Shºræ 2998, ms. incomplete
Tehran, Malik 3179, fols 107v–110r

Tehran, Sepahsælær 559, fols 84v–85r

al-Îasan ibn al-Îasan ibn al-Haytham
Ibn al-Haytham
Abº al-Haytham
Ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham
Abº ‘Alî al-Îusayn ibn al-Îusayn ibn al-
Haytham
Ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham
Ibn al-Haytham
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I II III Own references References by other
scholars

47 53 49 quotes :
Fî sharÌ muÒædaræt Uqlîdis
Dublin, 3652/1, fol. 71v

Fî al-ma‘lºmæt
Paris 2458, fol. 71v

68 91

14 25 24 quoted in :
Fî istikhræj kha†† niÒf al-nahær ‘alæ
ghæyat al-taÌqîq
‘Æ†if 1714, fol. 13v

Marsh 720, fol. 194v

quoted by :
Fakhr al-Dîn al-Ræzî, al-Ma†ælib,
t. III, pp. 155–6

15 30 23 quotes :
Fî al-hilæliyyæt
Aligarh 678, fol. 10v

quoted in :

Fî Ìall shukºk Kitæb Uqlîdis
Istanbul, University 800, fol. 167 r

quoted by :
al-Shîræzî, Fî Ìarakat al-daÌraja,
Gotha 158, fol. 78v
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No. Treatise of aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    aaaallll----ÎÎÎÎaaaassssaaaannnn
    ibn al-Haytham

Variants of his name

94 FFFFîîîî    ttttaaaaÒÒÒÒÌÌÌÌîîîîÌÌÌÌ    aaaallll----aaaa‘‘‘‘mmmmæææællll    aaaallll----nnnnuuuujjjjººººmmmmiiiiyyyyyyyyaaaa
(2 maqæla) — On the Corrections of
Astrological Operations
Oxford, Bodl., Seld. A32, fols 132v–162r —

95 FFFFîîîî    tttthhhhaaaammmmaaaarrrraaaa    aaaallll----ÌÌÌÌiiiikkkkmmmmaaaa    —    On the Benefit of
Wisdom (probably apocryphal)
Istanbul, Köprülü 1604, fol. 41v Abº ‘Alî al-Îasan al-Îasan ibn al-Haytham

96 FFFFîîîî    uuuuÒÒÒÒººººllll    aaaallll----mmmmiiiissssææææÌÌÌÌaaaa
On the Principles of Measurement

London, India Office 1270, fol. 28v–32v

Istanbul, FætiÌ 3439, fols 103v–104v

St. Petersburg B 2139/2, fols 100r–139v

St. Petersburg, National Library 143, fols
13v–15v

— (ms. truncated)
Abº ‘Alî ibn al-Îasan ibn al-Îasan ibn al-
Haytham (fragment)
al-Îasan ibn al-Îasan ibn al-Haytham
— (fragment)

[no. 3] Quoted in (I) under the title: UÒºl al-kawækib, and in (III) under the title: Maqæla
fî ≈aw’ al-kawækib.

[no. 10] Quoted in (I) under the title: Fî anna al-kura awsa‘ al-ashkæl al-mujassama, and
in (III) under the title: Maqæla fî al-ukar wa-sharÌ al-mujassamæt. Cf. Introduction,
pp.�36–7.

[no. 11] Quoted in (I) under the title: Mæ yuræ min al-samæ’ ‘aÂam min niÒfihæ, and in
(III): Maqæla fî anna mæ yuræ min al-samæ’ aktharu min niÒfihæ.

[no. 12] See Introduction, pp. 32–3.

[no. 14] We may read in the explicit of ms. Leiden Or. 133: Tammat al-maqæla li-
Ba†lamiyºs al-Thænî al-Shaykh ‘Alî al-Îasan ibn al-Îasan ibn al-Haytham.

[no. 16] Quoted by FatÌ Allæh al-Shirwænî with the name: Ibn al-Haytham, ms. Tehran,
Milli 799 (folios without numbering = 4v, 5v…)

[no. 18] Quoted by al-Færisî under the title Fî al-atharayn and with the name: Abº ‘Alî al-
Îasan ibn al-Îasan ibn al-Haytham.

[no. 20] Quoted in (I) under the title: Îall shukºk al-Majis†î; in (II): Fî Ìall shukºk fî al-
maqæla al-ºlæ min kitæb…, and in (III): Maqæla fî Ìall shukºk fî al-Majis†î (III). In this
treatise, Ibn al-Haytham sets out some doubts relating to the difficulties encountered in
Ptolemy’s Almagest. He then gives his own solutions, each of which is introduced by the
word al-jawæb (the answer).
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I II III Own references References by other
scholars

28 28 quotes: Fî anna mæ yuræ min al-
samæ’ huwa akthar min niÒfihæ, fol.
163v

He quotes the first treatise, fol. 132v

16 15 13 qqqquuuuooootttteeeessss:
Fî misæÌat al-kura
India Office 1270, fol. 28v

qqqquuuuooootttteeeedddd    iiiinnnn:
Fî Ìall shukºk kitæb Uqlîdis fî al-
UÒºl, Istanbul, University 800, fol.
87r-v

Fî al-ma‘lºmæt, Paris 2458, fol. 16v

F. Sezgin ascribes to Ibn al-Haytham an anonymous text, which is extant in the
manuscripts Thurston 3, fols 100r-101r and Marsh 720, fols 194r–198r, and identifies it
with a work entitled al-Masæ’il <wa-al-ajwiba> (Problems and solutions). In fact, the
author quotes two treatises by Ibn al-Haytham, namely the Optics and On Errors in the
Method of Making <Astronomical> Observations. However, a close examination shows
that the anonymous author has borrowed some ‘answers’, sometimes in verbis, from Ibn
al-Haytham’s treatise On the Resolution of Doubts on the Book of the Almagest.

[no. 21] This title a is confirmed by the successors and the critics of Ibn al-Haytham as
well as the extant manuscripts. It is quoted in (I) under the title al-shukºk ‘alæ <Uqlîdis>.
The title b is given by al-Khayyæm who does not mention that it is an independent title or
a title of a fragment of a. We have no means to know if the titles c and d mentioned only
by Ibn Abî UÒaybi‘a’s predecessor and the author of the Lahore list (Fî Ìall shakk fî al-
mujassamæt ghayr al-ºlæ and Fî Ìall shakk fî al-mujassamæt), as well as the titles of e
and f mentioned only by al-Qif†î designate different chapters of a, or independent
treatises. Moreover, we do not know is some of the titles designate more or less the same
text.

The treatise 21a is quoted by Ibn al-Sarî in Jawæb li-AÌmad ibn MuÌammad ibn
Sarî ‘an burhæn mas’ala mu≈æfa ilæ al-maqæla al-sæbi‘a min kitæb Uqlîdis fî al-UÒºl,
under the name: Abº ‘Alî ibn al-Haytham (ms. Aya Sofya 4830, fols 139v–140r, 142v,
143v, 144v), Abº ‘Alî (fols 140v, 143v, 145r) or Ibn al-Haytham (143v–145r); in Fî
bayæn mæ wahama fîhi Abº ‘Alî ibn al-Haytham fî kitæbihi fî al-shukºk ‘alæ Uqlîdis,
under the name: Abº ‘Alî ibn al-Haytham (fols 146r–v, 147v, 148r, 149v–151v), Abº
‘Alî (fols 146v, 148v); in Fî î≈æÌ ghalæ† Abî ‘Alî ibn al-Haytham fî al-shakl al-awwal min
al-maqæla al-‘æshira min kitæb Uqlîdis fî al-UÒºl, under the name: Abº ‘Alî ibn al-
Haytham (fol. 149r), Abº ‘Alî (fols 150r–151r) or Ibn al-Haytham (fols 150v, 151r); and
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in Fî kashf li-al-shubha allatî ‘ara≈at li-jamæ‘a mimman yansib nafsahu ilæ ‘ulºm al-
ta‘ælîm ‘alæ Uqlîdis fî al-shakl al-ræbi‘ ‘ashar min maqæla al-thæniya ‘ashar min kitæb
Uqlîdis, under the name: Abº ‘Alî ibn al-Haytham (fol. 152r-v), Abº ‘Alî (fols 150r–151r)
or Ibn al-Haytham (153v).

The treatise 21a is also quoted by al-Færisî under the name: Ibn al-Haytham; and by
NaÒîr al-Dîn al-™ºsî under the name: Abº ‘Alî ibn al-Haytham (fol. 258r) and Ibn al-
Haytham (fol. 248v).

[no. 22] Quoted in (II) under the title: Maqæla fî Ìarakat al-iltifæf; and in (III): Maqæla fî
ajræm al-iltifæf. NaÒîr al-Dîn al-™ºsî and Ibn al-Shæ†ir refer to this treatise with no precise
indication of the title and with the name: Ibn al-Haytham.

[no. 26] See Introduction, pp. 29–30.

[no. 28] Quoted in (II) under the title: Fî Ìisæb al-mu‘æmalæt. The treatise Fî al-
mu‘æmalæt fî al-Ìisæb refers to this treatise under the name Abº al-Îasan ibn al-Haytham
(fol. 76v), with no precise indication of the title. See Supplementary Note [1].

[no. 29] Quoted in (I) under the title: Irtifæ‘æt al-kawækib, and in (III): Maqæla fî irtifæ‘æt
al-kawækib.

[no. 30] Quoted in (II) under the title: Mas’ala fî ikhtilæf al-naÂar.

[no. 32] See Introduction, p. 37.

[no. 33] Contrary to what has frequently been stated, this treatise is different from Fî
ma‘rifat irtifæ‘ al-ashkhæÒ al-qæ’ima wa-a‘midat al jibæl wa-irtifæ‘ al-ghuyºm [no. 62].

[no. 34] Quoted in (II) under the title: Maqæla fî istikhræj arba‘a khu†º† bayna kha††ayn,
and in (III): Maqæla fî wujºd arba‘a khu†º† bayna kha††ayn. Al-Khayyæm refers to this
treatise with no precise indication of the title, and with the name Abº ‘Alî ibn al-Haytham
(fol. 55r), Ibn al-Haytham (fol. 55v).

[no. 35] See Introduction, p. 37.

[no. 36] Quoted in (I) under the title: Irtifæ‘ al-qu†r (I).

[no. 38] Quoted in (I) under the title: Kha†† niÒf al-nahar, and in (III): Maqæla fî istikhræj
niÒf al-nahar.

[no. 41] Quoted in (II, III) under the title: Maqæla mukhtaÒara fî samt al-qibla. This title
may be confirmed from the introduction of Ibn al-Haytham’s treatise. He writes: ‘We
have already composed a treatise on the determination of the azimuth of the Qibla in all
northerly and southerly localities on the earth, by an arithmetical method and geometrical
proofs. We were able after that to determine the azimuth of the Qibla for all northerly
localities of the planet, by a brief method which does not require any arithmetics. We
have then composed this treatise’ (Oxford, Seld. A. 32, fol. 107r).

[no. 44] Quoted in (III) under the title: Maqæla fî al-kawækib al-munqa≈≈a.
It seems that the two titles, quoted by Ibn Abî UÒaybi‘a and in the list of Lahore,
designate the same treatise. The order of the titles on the two lists (Number 4 and Number
5 respectively) confirms this hypothesis. The word al-munqa≈≈a has already been used
by Îunayn ibn IsÌæq in his translation of Ps.-Olympiodorus’ commentary on the
Meteorologica. We find the expression ‘fî al-kawækib al-munqa≈≈a (shooting stars)’
(Commentaires sur Aristote perdus en grec et autres épîtres, published and annotated
by A. Badawi, Beirut, 1986, p. 95), which is the phenomenon designated by Aristotle as
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{§o««∑µ…|» a«…Äƒ|» (Meteorologica, I, 4, 341 b). We still need to know why this
same treatise is quoted under two different titles. We suggest that one of the two lists
quotes the title of the treatise, whereas the other quotes the sentence which immediately
follows the title.

[no. 45] Quoted in (III) under the title: Fî al-aÂlæl.

[no. 48] Quoted in (I, II) under the title: Fî a‘midat al-muthallathæt; this corresponds to
the explicit: Tammat al-maqæla fî a‘midat al-muthallath.

[no. 50] See Supplementary Note [3]: Ibn Sinæn and Ibn al-Haytham on the subject of
‘lines of hours’.

[no. 53 ] Quoted in (I, II, III) under the title: Maqæla fî al-athar alladhî fî al-qamar.

[no. 54] The treatise 54c is quoted in (I) under the title: Fî jawæb man khælafa fî al-
majarra, in (II) Maqæla fî al-radd ‘alæ man khælafahu fî ma’iya al-majarra, and in (III)
Maqæla fî al-radd ‘alæ man khælafahu fî al-majarra. This treatise has probably been
composed in response to Ibn Ri≈wæn, as indicated in the title of a book written by Ibn
Ri≈wæn, mentioned by Ibn Abî UÒaybi‘a.

[no. 56] In his book, al-Istikmæl, al-Mu’taman ibn Hºd borrows some propositions from
Ibn al-Haytham, without referring explicitly to his treatise on the Knowns. We may
compare, for example, Proposition 13 (ms. Leiden 123, fol. 60v–61r) and Proposition 14
of the second chapter of the Knowns (pp. 244–5 of our edition in ‘La philosophie des
mathématiques d’Ibn al-Haytham. II: Les connus’, MIDEO, 21, 1993, pp. 87–275). He
has been inspired by some other propositions in Ibn al-Haytham’s treatise on the
Knowns. Cf. Jan P. Hogendijk, ‘The geometrical parts of the Istikmæl of Yºsuf al-
Mu’taman ibn Hºd (11th century). An analytical table of contents’, Archives
internationales d’histoire des sciences, 41, 127, 1991, pp. 207–81, especially
pp. 249–53.

[no. 57] Quoted by al-Qalqashandî under the title: al-mabsº†a. Quoted by al-Shirwænî
under the name: Abº ‘Alî al-Îasan ibn al-Îusayn ibn al-Haytham (fol. 2r), Ibn al-
Haytham (fols 4v, 5v…).

[no. 58] Quoted in (III) under the title: Maqæla fî al-manæÂir. However, considering the
similarity of the order of titles on the two lists, it is likely that this title designates the same
treatise.

[no. 59] Quoted by al-Khæzinî under the name: Ibn al-Haytham al-MiÒrî.

[no. 60] al-Qif†î quotes only: Fî al-maræyæ al-muÌriqa, and does not distinguish this
treatise from no. 61. Similarly, al-Qalqashandî quotes Fî al-maræyæ al-muÌriqa, without
doing any distinction between the two treatises, and under the name: Ibn al-Haytham

[no. 62] cf. treatise no. 33.

[no. 64] Quoted in (I) under the title: al-adad wa-al-mujassam.

[no. 65] Quoted in (II) under the title: Qawl fî jawæb mas’ala fî al-misæha, and in (III):
Maqæla fî mas’ala misæÌiyya. This treatise is perhaps the one he evokes in UÒºl al-
misæÌa.

[no. 69] See Introduction, p. 34–5.



426 LIST OF IBN AL-HAYTHAM’S WORKS

[no. 70] See Introduction, pp. 33–4. Some bibliographers have mentioned that there is
another manuscript of this treatise at Zanjæn (Iran). We have examined the catalogue of the
Zanjænî collection without success.

[no. 71] Quoted in (II) under the title: Qawl fî istikhræj muqaddimat ≈il‘ al-musabba‘.

[no. 72] irtifæ‘ihæ in (II).

[no. 75] Quoted in (I) under the title: Fî qismat al-miqdærayn, dans (III): Qawl fî qismat
al-miqdærayn al-mukhtalifayn. See Introduction, pp. 35–6 and Supplementary Note [4].

[no. 77] Quoted in (II, III) under the title: Maqæla fî al-rukhæma al-ufuqiyya.

[no. 78] This treatise is reproduced by FatÌ Allæh al-Shirwænî in his book (ms. Tehran,
Milli 799, fol. 20v and Danishka 493, fols 19v–23r).

[no. 80] Quoted in (III) under the title: Maqæla fî samt al-qibla.

[no. 82] ‘alæ †arîq al-ta‘lîq (II). We also find Fî sharÌ al-rumºnîqî (?) ‘alæ †arîq al-ta‘lîq
(86 in Ibn Abî UÒaybi‘a’s list).

[no. 83] Quoted by al-An†ækî under the name: Abº ibn al-Haytham (fol. 297v), but with
no precise indication of the title.

[no. 84] Quoted in (II) under the title: Maqæla fî sharÌ al-qanºn ‘alæ †arîq al-ta‘lîq.

[no. 85] Quoted by al-‘Ur≈î under the name Abº ‘Alî ibn al-Haytham (fol. 156v) and Ibn
al-Haytham (fol. 196r), with no precise indication of the title.
Quoted by Ibn Bæjja under the name: Ibn al-Haytham, cf. Jamal al-Dîn al-‘Alawî, al-
Matn al-Rushdî, Rabat, 1986.

[no. 89] See al-Samaw’al, al-Bæhir, p. 148: Qæla Abº ‘Alî ibn al-Haytham nurîd an
nubayyn kayfa na‘mal muthallathan qæ’im al-zæwiya…. The statement of this problem is
equivalent to problem 8 of Ibn al-Haytham’s Analysis and Synthesis (cf. MIDEO, 20,
p. 104). Al-Samaw’al himself wrote a treatise on analysis and synthesis, which is lost.
This treatise by al-Samaw’al might have been a source of information about the destiny of
al-Îasan ibn al-Haytham’s treatise.

[no. 90] Quoted in (II) under the title: Ta‘lîq ‘allaqahu IsÌæq ibn Yºnus al-Muta†abbib
bi-MiÒr ‘an Ibn al-Haytham fî Kitæb Diyºfan†us fî masæ’il al-jabr (5 maqæla).

[no. 92] Quoted in (I) under the title: al-Tanbih ‘alæ mæ fî al-raÒd min al-ghala†; and in
(III): Maqæla fî al-mawæ≈i‘ al-ghala† fî al-raÒd.

[no. 93] Ibn al-Haytham informs that he will write an independent treatise in which he
would prove how to find a square equal to a circle (p. 103). See also Introduction
pp. 30–1 and p. 103, n. 6.

[no. 95] This treatise explicitly attributed to al-Îasan ibn al-Haytham deals with the
classification of sciences. However, it contradicts in many occurrences what is written in
The Analysis and Synthesis and The Knowns, two treatises which do not raise any
problem of authenticity. Moreover, when the author of the classification of sciences
mentions the optics, he discusses only reflection, what is in a way contradictory with al-
Îasan ibn al-Haytham’s own works. Finally, al-Îasan ibn al-Haytham did not use
metaphorical titles, such as thamara (fruit), for his writings.
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[no. 96] Quoted in (I) under the title: Fî uÒºl al-misæÌa wa-dhikrihæ bi-al-baræhîn.

Let us mention before concluding the apocryphal titles attributed to al-
Îasan ibn al-Haytham – those of MuÌammad which became al-Îasan’s
own writings, because of the confusion of the names. We have proved in the
Introduction, the Supplementary Notes and the previous List of Works that
the titles are evidently apocryphal. However, the list of al-Îasan ibn al-
Haytham’s books will not be completed before the final examination of the
titles inscribed in the previous list. Some of them raise difficult questions
insofar as we ignore their true content, whereas their titles indicate strange
themes in Ibn al-Haytham’s own research – such as (1), (5), (86).

1. Treatises of doubtful authenticity:
Fî thamara al-Ìikma (see comment, no. 95).
Fî ‘uqºd al-abniya — On Architecture. Mentioned by later authors: al-

Qalqashandî, ∑ubÌ al-a‘shæ, vol. I, p. 476 and Tashkupri-Zadeh, MiftæÌ al-sa‘æda, vol. I,
p. 375. This treatise is not extant. However, al-Bayhaqî had suggested that al-Îasan ibn
al-Haytham wrote a book on ‘ingenious procedures’. Nothing confirms that the ancient
biographer and the later authors were speaking about the same book. We have not either
any assurance that the later authors were not confusing al-Îasan and MuÌammad, as far
as the latter wrote, according to Ibn Abî UÒaybi‘a: Maqæla fî ijæræt al-Ìufºr wa-al-abniya
bi-jamî‘ al-ashkæl al-handasiyya.

2. Treatises by MuÌammad attributed to al-Îasan:
Fî sharÌ al-Majistî, ms. Ahmet III 3329/2, fols 38v–158r.
Maqæla Manælaºs fî ta‘arruf aqdær al-jawæhir al-mukhtalifa, ms. Lahore.

3. Treatises probably by MuÌammad, attributed to al-Îasan:
Fî hay’at al-‘ælam (see List, no. 25 and Supplementary Note [2]).
Fî wujºd kha††ayn yaqrabæni wa-læ yaltaqiyæni, ms. Cairo 4528, fols 15v–20r.

4. Apocryphal treatises:
TuÌfat al-†ullæb bi-‘amal al-as†urlæb (Abº al-Îasan ‘Alî ibn al-Îusayn ibn al-
Haytham), ms. Istanbul, Köprülü 1177, fols 15r–23r.
SharÌ qaÒîda Ibn al-Haytham fî tarÌîl al-shams fî al-manæzil, attributed by Abº
‘Abd Allæh MuÌammad ibn AÌmad ibn Hishæm al-Lakhmî (ms. Cairo, Dær al-
Kutub, Miqæt 1051: Amma qæ’il hædhihi al-qaÒîda fa-al-Shaykh Abº ‘Alî al-
Îasan ibn al-Îasan ibn al-Haytham …).
Fî taw†i’at muqaddamæt li-‘amal al-qu†º‘ ‘alæ sa†Ì mæ bi-†arîq Òinæ‘î, Florence,
Laurenziana Or. 152, fols 97v–100r.
Fî al-mu‘æmalæt fî al-Ìisæb, ms. Istanbul, Nur Osmaniye, fols 39–125, Istanbul,
Feyzullah 1365, fols 73v–164r. See Supplementary Note [1].
De Crepusculis.
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421

al-Færæbî: 14, 14 n. 43, 24, 366, 366 n.
11

al-Færisî, Kamæl al-Dîn: 16, 16 n. 51,
397, 399, 407, 409, 419, 422 [no.
18], 424 [no. 21]

Fæs: 7 n. 18
al-Fæsî (see Yºsuf al-Fæsî)
Feistel, H. O.: 31 n. 80
Fontaine, R.: 26 n. 73
Fºthi†os: 24 n. 69

Galen: 12-14, 23
Gillispie, C.: 2 n. 1
Girard, A.: 294
Glasner, R.: 26 n. 73
Goulet, M.-O.: 24 n. 69
Graf, G.: 14 n. 41

Haarmann, U.: 11 n. 31, 366 n. 11
al-Îækim: 2, 4–9
Hamadæn: 382
al-Îasanî, J.: 371 n. 25
Heath, T. L.: 45 n. 11, 241 n. 4, 301

n. 6
Heinen, A.: 11 n. 31, 15 n. 47, 21 n.

64, 22 n. 67, 366 n. 11
Hermosilla, M. J.: 3 n. 3
Hipparchus: 375
Hippocrates of Chios: xiv, 32, 40, 42,

45
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Hogendijk, J. P.: 425 [no. 56]
House of Science: 9 n. 27
al-Îusaynî, ‘I.: 8 n. 23
Hypsicles: 23, 301

Ibn Abî UÒaybi‘a: 1 n. 1, 3–5, 7 n. 18, 9
n. 25, 10–15, 17–22, 24, 28, 30–32,
36, 37, 106 n. 7, 241, 365–368, 373,
376, 382, 382 n. 45, 391–427

Ibn ‘Asækir: 371
Ibn Bæjja: 419, 426 [no. 85]
Ibn Bashkuwæl: 8 n. 23
Ibn Bu†læn: 9 n. 25, 10 n. 30, 106 n. 7
Ibn Duqmæq: 6 n. 15
Ibn Fætik, Abº al-Wafæ’ al-

Mubashshir: 10 n. 29, 12 n. 32
Ibn al-Haytham, al-Îasan ibn al-Îasan:

xiii and passim
Ibn al-Haytham, MuÌammad ibn al-

Îasan: 11–26, 28, 364–381, 427
Ibn Hºd: 409, 425 [no. 56]
Ibn al-‘Ibrî: 5, 5 n. 14, 7 n. 18
Ibn IsÌæq, Îunayn: 424 [no. 44]
Ibn al-Maristæniyya: 7 n. 18
Ibn al-Murakhkhim: 14 n. 43, 16 n. 51,

366
Ibn Ri≈wæn, ‘Alî: 9, 9 n. 25, 48, 49,

106, 370, 409, 425 [no. 54]
Ibn Rushd: 397
Ibn Sahl, Abº Sa‘d al-‘Alæ’: xiii, 14 n.

43, 16, 24, 26 n. 74, 143, 253
Ibn al-∑alæÌ (see Ibn al-Sarî)
Ibn al-SamÌ: 10 n. 30, 13, 25
Ibn al-Sarî: 36, 382–390, 399, 415, 423

[no. 21]
Ibn al-Sarræj: 417
Ibn al-Shæ†ir: 399, 424 [no. 22]
Ibn Sinæn, Ibræhîm: xiii, 22, 22 n. 68,

23, 377–379, 492, 494, 390, 425
[no. 50]

Ibn Taghrî Birdî, Abº al-MaÌæsin: 4 n.
10, 371 n. 26

Ibn al-™ayyib, Abº al-Faraj: 10 n. 30,
13, 14, 25

Ibn Yºnus, IsÌæq: 10 n. 29
Iraq: 8, 15, 24, 368
IsÌæq ibn Îunayn: 235 n. 1
al-Isræ’îlî (see Yºsuf al-Fæsî)
Istambulî: 415

Jerusalem: 5 n. 13

al-Karajî: 345, 348
Kepler, J.: xiv

al-Khayyæm, ‘Umar: 16, 16 n. 51, 348,
399, 423 [no. 21], 424 [no. 34]

al-Khæzin, Abº Ja‘far: xiii, 239
al-Khæzinî: 8 n. 22, 29, 29 n. 77, 411,

425 [no. 59]
al-Khiraqî: 18 n. 56, 363, 377
Khuræsæn: 3, 5
al-Khwærizmî: 346
al-Kilæbî, ‘Abd al-Wahæb: 371
al-Kindî, Ya‘qºb ibn IsÌæq: 24, 143,

239, 382
Kuibychev (ms.): 3, 15 n. 45, 17
Kunitzsch, P.: 384 n. 51
Kurd ‘Alî, M.: 3 n. 3
Kºshyær ibn al-Labbæn: 344, 347

al-LæÌjænî, MuÌammad: 413
Lahore (List of): 3, 11, 14, 14 n. 43, 17,

19 n. 59, 21, 24, 24 n. 71, 28–30,
32, 35–37, 365–368, 373, 376, 391–
427

al-Lakhmî, Ibn Hisham: 427
Langermann, T. Y.: 18 n. 55, 362, 363

n. 2–3, 364 n. 3, 369 n. 18, 373 n.
28–29, 374 n. 31–32

Leicht, R.: 26 n. 73
Levey, M.: 344 n. 2
Lhuillier, S.: 276
Lippert, J.: 3 n. 4, 5 n. 13, 7 n. 18, 369

n. 17

al-Ma‘arrî, Abº al-‘Alæ’: 10 n. 30
Madec, G.: 24 n. 69
Maimonides: 7 n. 18, 29 n. 76
al-Ma’mºn ibn Dhî al-Nºn: 8 n. 23
al-Maqrîzî: 4 n. 10, 6 n. 15, 9 n. 27
Menelaus: 20, 23, 25, 367
Meyerhof, M.: 9 n. 25, 106 n. 7
Mihyær al-Daylamî: 10 n. 30
Morelon, R.: 375 n. 34
Müller, A.: 3 n. 6, 5 n. 13
Munk, M.: 7 n. 18
al-Murta≈æ, al-Sharîf: 10 n. 30

Nabî Khæn: 11 n. 31, 21 n. 62
al-Nadîm: 239 n. 1
Nallino, C.: 5 n. 13, 363
al-Nayrîzî: 22, 23
NaÂîf, M.: 2 n. 1, 16 n. 52
Nebbia, G.: 1 n. 1
al-NiÂæmiyya (school): 14 n. 43, 15

n.�47, 365
al-Nu‘aymî: 371, 371 n. 25

O’Brien, D.: 24 n. 69
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Olympiodorus (Ps.-): 424 [no. 44]

Petruck, M.: 344 n. 2
Ptolemy: 5, 7, 18–22, 362, 367, 373–

377, 422 [no. 20]
Pythagoras (theorem): 45

Qæ≈î Zædeh: 411
al-Qalansî: 4 n. 10
al-Qalqashandî: 9 n. 26, 399, 407, 411,

425 [nos 57, 60], 427
Qif†: 5 n. 13
al-Qif†î: 3–13, 17, 28–30, 35–37, 106

n. 7, 365–369, 382, 382 n. 46, 391–
426

al-Qºhî, Abº Sahl: xiii, 29, 143, 144,
177, 383

Rashed, R.: 14 n. 43, 15 n. 48, 16 n.
52, 19 n. 60–61, 22 n. 68, 24 n. 69–
70, 29 n. 76, 34 n. 84, n. 86–87, 40
n. 1–2, 88 n. 22, 146 n. 1, 253 n. 5,
343 n. 1

Rescher, N.: 382 n. 48
Ri≈æ, N.: 367 n. 12
Rosenthal, F.: 13 n. 36
Rozenfeld, B. A.: 4 n. 7
Ruffini-Horner: 343–345, 348

Sabra, A. I.: 2 n. 1, 19 n. 59, 23 n. 68,
26 n. 74, 364 n. 6, 369 n. 18, 376 n.
37, 377 n. 39, 382 n. 48

∑æ‘id al-Andalºsî: 3, 4, 8
Saidan, A. S.: 344 n. 2
∑æliÌænî, O. P. A.: 5 n. 14
Samarkand: 33
al-Samaw’al: 16, 16 n. 51, 343, 426

[no. 89]
Schacht, J.: 9 n. 25, 106 n. 7
Schramm, M.: 2 n. 1, 16 n. 49, 364 n. 3
Scriba, C. J.: 41 n. 5, 42 n. 7–8

Sezgin, F.: 1 n. 1, 423 [no. 20]
al-Shahrazºrî: 5, 5 n. 12
Shehaby, N.: 376 n. 37
al-Shîrabî, S.: 371 n. 21
al-Shîræzî: 395, 399, 421
al-Shirwænî: 397, 411, 422 [no. 16],

425 [no. 57], 426 [no. 78]
al-Sijzî: 29
Stern, S. M.: 13 n. 38
al-Sul†æniyya: 356
Sumaysæ†: 106 n. 7, 371
al-Sumaysæ†î: 48, 49, 106, 106 n. 7,

369–372
Suter, H.: 1 n. 1, 3 n. 4, 12 n. 35, 31,

32, 32 n. 81, 34, 34 n. 85
Syria: 4, 5, 12 n. 35

Tajaddud, R.: 239 n. 1
Tashkupri-ZadEh: 9 n. 26, 427
Terziofilu, N.: 16 n. 49
Thæbit ibn Qurra: xiii, 23, 143, 144,

177, 235 n. 1, 375 n. 34, 384, 384 n.
55, 385

Türker, M.: 382 n. 49, 383 n. 50
al-™ºsî, NaÒîr al-Dîn: 48, 49, 377, 399,

419, 424 [nos 21, 22]
al-™ºsî, Sharaf al-Dîn: 343, 343 n. 1

al-‘Ur≈î: 16 n. 51, 377, 419, 426 [no.
85]

Veltri, G.: 26 n. 73

Wiedemann, E.: 2 n. 1

Yæqºt: 371, 371 n. 23
Yºsuf al-Fæsî al-Isræ’îlî: 7, 7 n. 18–19,

10

Zimmermann, F. W.: 13 n. 38

SUBJECT INDEX

Abscissa: 156, 267
Algebra: 343
Algorithm: 343–347
Analysis and synthesis: 19, 20, 367
Angle
– acute: 56, 151, 251, 255, 262
– dihedral: 294

– obtuse: 49, 54, 58, 68, 71, 151,
255, 257, 260–263, 266, 267, 273,
275, 284, 287, 296

– plane: 294
– right: 49, 77 n. 18, 151, 160, 247,

248, 254, 260–263, 266, 267, 273,
275, 281, 284, 285, 288, 296
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– solid: xiii, 239, 240, 246–250, 276,
278–280, 283, 284, 287, 288, 295,
297, 298–300

Apogee of the sun: 375, 375 n. 34
Approximation: 29, 37, 343, 346–348,

380
– ‘conventional’: 346
Arc: 32, 39, 42, 43, 47, 49, 61–68, 77,

83, 84, 88, 90, 246, 252, 253, 269,
279, 291, 292

– homothetic: 290
Archimedean:
– mathematics: 24
– research: xiii
– tradition: 143
Area(s)
– of a circle: 39, 45, 62, 242, 361, 385
– curved: 294
– curvilinear: 39, 41, 281
– of a disc: 154, 158, 162, 239
– elementary: 264, 266
– of a lune: 32, 40, 42, 49
– plane: 293, 294
– of a polygon: 241, 242, 385
– of a sector: 49, 53, 62, 244, 245,

252, 253
– of a sphere: 247–249
– of a spherical surface: 247, 293–295
– star: 252, 263
– of a triangle: 32, 49, 244, 245, 252–

263; spherical: 276
Arithmetic: 361
– lemmas: 143, 144, 168, 170, 221
– operations: 362
– research: 149
Astrolabe: 380
Astronomy: xiii, 1, 18, 20, 24, 365,

374, 383
Asymptotes: 25–26 n. 73
Axis: 27 n. 74, 154, 156, 281
– oblique: 158
– orthogonal: 267, 274, 285
– right-angled: 158
Axiom of Archimedes: 343

Binomial formula: 345, 348
Bisector: 242
Bounding, upper: 231 n. 8, 241

Centre of gravity: 241
Chord: 43, 88, 89, 296
Circle
– complete: 32, 68, 70, 71, 75, 88
– homothetic: 290
– seasonal: 379

Circularity: 48
Co-latitude: 275
Concavity: 241
Cone: 156, 251, 253, 373
Configuration of the universe: 18, 362
Conic: 269, 270
Constant of precession: 375 n. 34
Constructability: 40
Construction
– of conic sections: 26 n. 74
– geometrical: 24
– of a parabola by points: 27 n. 74
– of a point: 61, 62, 246
– of a rectangle: 27 n. 74
– of a square: 47, 103 n. 6
Coordinates (Cartesian): 275
Cosmology (Aristotelian): 363, 364 n.

3, 365, 374
Cube: 301, 347, 348
Curve: 241, 253
– convex: 241
– quartic: 268
Cylinder: 151–159, 162, 164, 166,

166, 170, 172, 173, 247
– conical: 156–158
– right: 156, 157, 159, 247

Decimal (position): 346
Demonstration
– by finite complete induction (archaic):

143, 144, 148
– by reductio ad absurdum: 217, 220
– by regression: 147, 148
Derivative: 278, 286
Disc: 154, 158, 161, 163, 165, 170,

239
Distance of the sun and the planets: 18–

19 n. 58
Dodecahedron: 301, 333 n. 37

Ecliptic (obliquity): 374 n. 33, 375, 375
n. 34

Equality of areas: 32
Équidistant: 248, 352 n. 2
Equimultiples: 297
Existence (mathematical): 40, 48, 62,

68–71
Extraction of roots: 29, 37, 343, 345–

347

Figure(s)
– curved: 103 n. 6
– plane: 36
– rectilinear: 103 n. 6
– in space: 239
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Function
– decreasing: 52, 276–278, 286, 293,

295
– increasing: 265, 295

Generating line: 251
Geometry: 13, 29
– practical: 361, 362

Halo: 16
Hemisphere: 170
Hexagon: 75, 89
Homothety: 289–292
Hour, seasonal: 379
House of Science: 4 n. 10, 9 n. 27

Icosahedron: 240, 301, 316 n. 18
Infinitesimal
– determinations: xiv, 144, 240, 343
– geometry: 29
– mathematics: xiii, xiv, 25, 28, 39,

42, 143, 239, 240
– research: 29, 143, 241, 343
– solids: 164
– triangle: 263, 276
Instruments
– geometrical: 24
– mathematical: 20
– of observation: 378, 380
– for shadows: 377, 378
– water: 378
Integers: 144, 148, 150, 151, 162,

168, 201, 344–348
Integral: xiv, 263, 264, 278, 281
Isepiphanic(s): xiv, 24, 28, 239, 240
Isoperimetric(s): xiv, 28, 239–241

Known (notion): 40, 101, 102

Latus rectum: 27 n. 74, 167
Limaçon (of Pascal): 268
Longitude: 274–276, 279
Lozenge: 90
Lunar illusion: 23, 24
Lune(s): xiv, 32, 39–45, 49–90

Mean proportional: 62
Mechanics: 4, 9, 241
Method(s)
– apagogic: 252
– apodictic: 49
– exhaustion: 143, 343
– of integral sums: 143
– of Ruffini-Horner: 343–345, 348

Movement(s)/motion(s)
– celestial: 4, 364 n. 3, 374
– diurnal: 375, 376
– of precession: 375
– of the seven stars: 376
– simple and continuous: 18

Number
– infinite: 29
– perfect (theorem): 367
– rational: 62

Objects immersed in water: 23
Octahedron: 240, 301, 316 n. 18
Optics: xiii, 1, 18–20, 24
Orbs of planets: 18, 374
Ordinate: 144, 159–160, 267

Parabola: 27 n. 74, 144, 152, 153,
156, 159–161, 163, 164

Paraboloid: 143, 144, 151–161, 163,
164, 166–168

– of revolution: 144, 151, 164
Pentagon: 246, 333 n. 37
Pentagonal: 240
Philosophy of mathematics: 40, 49
Physics: xiii, 383
Planets, upper: 375
Points of subdivision: 156, 159, 161,

164, 168
Polar equation: 268
Polygon: 241, 248, 253, 288, 289,

295, 385
– regular: 242–244, 288, 295, 300,

301
Polyhedron: 240, 248, 298, 300, 301
– regular: 240, 247–250, 298, 300,

301, 313 n. 13
Power (of n natural integers): 143, 144,

148, 151
Precession: 375, 375 n. 34
Progression
– arithmetical: 169, 172
– geometric: 346
Projection: xiii, xiv, 27 n. 74, 57, 252,

260, 263, 285
– conical: 240, 252, 253, 260
– orthogonal: 58, 261, 285
Proof: see demonstration
Proportion: 362, 382
Properties
– extremal: 239, 241
– of lunes: 88
– of the parabola: 153, 161
– of a plane tangent: 253
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Ptolemaic models: xiii, 5, 24
Pyramid: 240, 248–250, 260, 269,

270, 272, 273, 281, 283, 284, 287–
289, 291, 293, 296, 298–300, 333
n. 37

– circular: 291–293
– curvilinear: 292
– regular: 247–251, 288, 295, 300

Qaras†ºn: 241
Quadrant: 85, 86, 380
Quadrature
– of circle: 39, 41, 46–49
– of lunes: 28, 39
Quadrilateral: 81 n. 20, 86, 87

Radian: 51, 246, 281
Radius vectors: 264
Rainbow: 15 n. 47, 16
Rectangle: 27 n. 74, 170
Refraction: 24
Regression: see demonstration
Relation(s)
– linear: 158
– of recurrence: 386
Root
– cube: 29, 343, 345, 347
– square: 29, 343, 345–348
Rotation: 170
– of the parabola: 144, 160
– of planets: 18 n. 56
– of the surface: 152, 160, 166

Section
– conic: 26 n. 74, 292
– spherical: 247–249, 251
Sector (circular): 43, 44, 50, 52, 53,

55, 61, 66, 67, 75, 82, 291, 292
Semicircle: 42, 43, 46, 49, 64, 75, 83,

84, 87
Sequence of positive integers: 344
Shadows: 22, 23, 377–380
Solid(s): 152, 153, 156–159, 170, 199

n. 24, 239, 251, 292, 301
– conical: 158
– curved: 28, 143
– cylindrical: 160
– infinitesimal: 164
– surrounding: 164, 166
Space: 239
Sphere(s): 34, 36, 143, 168, 170, 171,

173, 239, 240, 247–251, 274, 275,
288–290, 294, 295, 298, 300, 301,
333 n. 37

– armillary: 380
– solid: 18, 374
Subdivision: 153, 156, 159, 161, 163,

166–168, 171, 173
Sundials: 377–380
Surface
– conical: 251
– of lunes: 74
– plane: 49
– spherical: 247–249

Tangent: 63, 83, 84, 242, 253, 268
– circles (three): 367
Tetrahedron: 240, 301, 316 n. 18
Theorem
– of Albert Girard: 294
– of Ibn al-Haytham: 153, 170
– of Pythagoras: 45
Theory
– of conics: 24
– of demonstration: 19
– of numbers: 24, 346
– planetary: 363, 365, 374
Transformation (geometrical): xiii
– affine: 158
Translation of vector: 88
Triangle
– equilateral: 75, 89, 246
– infinitesimal: 263, 276
– isosceles: 79 n. 19, 84, 135 n. 12,

242, 287, 289, 296, 299
– right-angled: 32, 57, 135 n. 12, 244
– similar: 53, 63, 66, 77, 82, 244, 245,

296
Trisection of the angle: 61

Variations: 241
Vector: 88, 261
Volume
– of a cylinder: 152, 154–157, 160,

170, 172
– of a paraboloid: 143, 144, 151, 152,

155, 160, 161, 163; of revolution:
151, 158

– of a polyhedron: 248, 249
– of a pyramid: 260
– of solids: 153, 157–159, 159;

curved: 143
– of a sphere: 143, 168, 170, 247–249

Zîjs: 22
al-Zîj al-mumtaÌan: 375
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aaaallll----AAAAhhhhwwwwææææzzzzîîîî
Commentary on the Tenth Book of the

Elements: 30

AAAAnnnnoooonnnnyyyymmmmoooouuuussss
Lemmas for the Construction of Conic

Sections by the Mechanical
Method: 26–27 n. 74, 427

On the Asymptotes: 25, 25–26 n. 73,
28, 427

Apollonius
Conics: 15, 16 n. 49, 20, 29 n. 76, 178

Archimedes
On the Measurement of a Circle: 242,

390
On the Sphere and the Cylinder: 241,

313, 390
On Spirals: 146

Aristotle
De Animalibus: 20
Meteorology: 20, 425 [no. 44]
Physics: 20

AAAAuuuuttttoooollllyyyyccccoooossss    ooooffff    PPPPiiiittttaaaannnniiiiaaaa    eeeetttt    aaaallll....
The Intermediate Books ( a l -

Mutawassi†æt): 7, 7 n. 19, 30

aaaallll----BBBBaaaagggghhhhddddææææddddîîîî
Fî al-radd ‘alæ Ibn al-Haytham fî al-

makæn: 409

aaaallll----BBBBaaaayyyyhhhhaaaaqqqqîîîî
Tatimmat Òiwæn al-Ìikma: 3, 393, 427

aaaallll----DDDDhhhhaaaahhhhaaaabbbbîîîî
Siyar a‘læm al-nubalæ’: 371, 371 n. 24

Diophantus
Art of Algebra: 10 n. 29

Euclid
On the Division of Figures (Fî al-

qisma): 135, 135 n. 13
Elements: 20, 23, 30, 143, 240, 367,

387

II.14: 102
III.13: 84 n. 21
IX. 8: 346
X.1: 153, 171, 235, 381–388
XII: 384, 385, 389
XII.2: 46, 63, 100, 385, 389 n. 59
XII.5: 385, 389
XII.10: 385, 389
XII.11: 385, 389

Optics: 20

FFFFaaaakkkkhhhhrrrr    aaaallll----DDDDîîîînnnn    aaaallll----RRRRææææzzzzîîîî
al-Ma†ælib: 421
al-MulakhkhaÒ: 399, 409

aaaallll----FFFFæææærrrriiiissssîîîî
Kitæb TanqîÌ al-manæÂir li-dhawî al-

abÒær wa-al-baÒæ’ir: 16 n. 51, 397,
407, 409, 419

al-Zæwiya: 399, 419

GGGGaaaalllleeeennnn
Libris Propriis: 13, 13 n. 36

IIIIbbbbnnnn    AAAAbbbbîîîî    UUUUÒÒÒÒaaaayyyybbbbiiii‘‘‘‘aaaa
‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ: 3

n. 6, 9 n. 25, 10–15, 21 n. 64, 106 n.
7, 367 n. 12, n. 14

IIIIbbbbnnnn    ‘‘‘‘AAAAssssæææækkkkiiiirrrr
Tærîkh Madînat Dimashq: 371, 371 n.

21

IIIIbbbbnnnn    BBBBææææjjjjjjjjaaaa
Min kalæmihi mæ ba‘atha bihi li-Ibn

Ja‘far Yºsuf ibn Hasdæy: 419

IIIIbbbbnnnn    BBBBaaaasssshhhhkkkkuuuuwwwwæææællll
Kitæb al-∑ila: 8 n. 23

IIIIbbbbnnnn    DDDDuuuuqqqqmmmmææææqqqq
Kitæb al-IntiÒær li-wæsi†at ‘aqd al-

amÒær: 6 n. 15

IIIIbbbbnnnn    aaaallll----HHHHaaaayyyytttthhhhaaaammmm,,,,    aaaallll----ÎÎÎÎaaaassssaaaannnn
On Analysis and Synthesis [no. 89]:

19, 40
On Architecture: 9 n. 26, 427
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On the Arithmetic of Transactions
[no. 28]: 18, 361, 362

On Burning Mirrors [nos. 60, 61]: 30
On the Cause of the Square Root [no.

32]: 28–30, 37, 351
On Centres of Gravity [no. 59]: 28, 29
Commentary on Euclid’s Premises

[no. 83]: 20
On the Compasses of Great Circles

[no. 14]: 10 n. 29, 30
On the Completion of Conics [no. 91]:

369
On the Configuration of the Move-

ments of Each of the Seven
Planets [no. 25]: 18, 369

On the Configuration of the Universe
[no. 24]: 17, 18, 362–377, 427

On the Division of Two Different
Magnitudes… [no. 75]: 28, 35, 143,
171, 235

Doubts on Ptolemy [no. 85]: 5 n. 11,
18, 20, 373, 376, 377

On Ethics [no. 5]: 5, 5 n. 11, 24
Exhaustive Treatise on the Figures of

Lunes [no. 12]: 28–33, 39–42, 44,
49, 107

On the Extraction of the Side of the
Cube [no. 35]: 28, 30, 32, 33, 37,
367

On the Formation of Shadows [no. 45]:
22 n. 68, 378

On the Greatest Line Lying in a Seg-
ment of Circle… [no. 13]: 28, 241

On the Halo and the Rainbow [no. 18]:
15 n. 47, 16, 17

On the Horizontal Sundials [no. 77]:
492

On the Indivisible Part [no. 43]: 28
On the Knowns [no. 56]: 19, 40, 88,

101
On Light [no. 16]: 15 n. 47, 20
On the Light of the Moon [no. 17]: 9 n.

25, 364 n. 3, 373
On the Lines of Hours [no. 50]: 362,

375, 378, 379
On the Lunes [no. 26]: 28–30, 32, 39–

46, 49, 93, 99, 107
On the Measurement of the Parabo-

loid [no. 70]: 28, 33, 34, 143, 168,
177, 222

On the Measurement of the Sphere
[no. 69]: 28, 30, 33–35, 143, 221

Observations on Art of Algebra [no.
90]: 10 n. 29

On Optics [no. 57]: 8, 16, 18, 19 n. 59,
20

On Optics According to the Method of
Ptolemy [no. 58]: 19 n. 59

On Parabolic Burning Mirrors [no.
61]: 26 n. 74

On Place [no. 55]: 36, 241
On the Principles of Measurement [no.

96]: 34, 362
On the Qaras†ºn [no. 73]: 28, 29
On the Quadrature of the Circle [no.

93]: 28–32, 39–42, 46, 62–64, 99
On the Regular Heptagon [no. 71]: 30
On the Resolution of Doubts on

Euclid’s Book [no. 21]: 20, 23, 30–
32, 35, 381–383, 387, 389

The Resolution of Doubts on the First
Book of the Almagest [no. 20]: 30,
36, 241, 373

On the Resolution of Doubts relating
to the Winding Movement [no. 19]:
363, 373

On the Sphere which is the Largest of
all the Solid Figures… [no. 10]: 24,
28, 36–37, 305, 369

On the Sum (or all) of the Parts [no.
42]: 28
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