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FOUNDING FIGURES AND

COMMENTATORS IN ARABIC

MATHEMATICS

In this unique insight into the history and philosophy of mathematics and science in classical
Islamic civilisation, the eminent scholar Roshdi Rashed illuminates the various historical,
textual and epistemic threads that underpinned the history of Arabic mathematical and
scientific knowledge up to the seventeenth century. The first of five wide-ranging and
comprehensive volumes, this book provides a detailed exploration of Arabic mathematics
and sciences in the ninth and tenth centuries.

Extensive and detailed analyses and annotations support a number of key Arabic texts,
which are translated here into English for the first time. In this volume Rashed focuses
on the traditions of celebrated polymaths from the ninth- and tenth century ‘School of
Baghdad’ – such as the Banū Mūsā, Thābit ibn Qurra, Ibrāhı̄m ibn Sinān, Abū Ja‘far
al-Khāzin, Abū Sahl Wayjan ibn Rustām al-Qūhı̄ – and eleventh-century Andalusian
mathematicians such as Abū al-Qāsim ibn al-Samh. and al-Mu’taman ibn Hūd. The
Archimedean–Apollonian traditions of these polymaths are thematically explored to illus-
trate the historical and epistemological development of ‘infinitesimal mathematics’ as it
became more clearly articulated in the eleventh-century influential legacy of al-Hasan ibn
al-Haytham (‘Alhazen’).

Contributing to a more informed and balanced understanding of the internal currents of
the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation
and assimilation in the European context, this fundamental text will appeal to historians of
ideas, epistemologists and mathematicians at the most advanced levels of research.

Roshdi Rashed is one of the most eminent authorities on Arabic mathematics and the
exact sciences. A historian and philosopher of mathematics and science and a highly
celebrated epistemologist, he is currently Emeritus Research Director (distinguished class)
at the Centre National de la Recherche Scientifique (CNRS) in Paris, and is the Director
of the Centre for History of Medieval Science and Philosophy at the University of Paris
(Denis Diderot, Paris VII).

Nader El-Bizri is a Reader at the University of Lincoln, and a Chercheur Associé at the
Centre National de la Recherche Scientifique in Paris (CNRS, UMR 7219). He has lectured
on ‘Arabic Sciences and Philosophy’ at the University of Cambridge since 1999. He held
a Visiting Professorship at the University of Lincoln (2007–2010), and since 2002 he has
been a senior Research Associate affiliated with The Institute of Ismaili Studies, London.
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EDITOR’S FOREWORD

The ninth and tenth centuries (third and fourth centuries of the hijrî
calendar) constituted the foundational classical epoch of the history of
scientific ideas in Islamic civilization. While the developments in this period
encompassed most fields of rational knowledge that have been handed down
to us in the medium of the Arabic language, the writing of a restorative and
reasoned history of the science and mathematics, particularly of this era,
remains a task requiring great attention and thoughtfulness from historians and
epistemologists, given its significance in explicating the development of later
scientific and mathematical traditions within Islamic civilization, and the
elucidation of their epistemic and conceptual prolongations up to the
seventeenth century in Europe, by-passing the Italian Renaissance.

It is with the aim of redressing this state of affairs that the present
groundbreaking volume is dedicated. This task of reinstating the writing of the
history of mathematics and science in classical Islamic civilization, with
appropriate faithfulness, is undertaken within the covers of this volume by the
celebrated mathematician, historian and philosopher of mathematics,
Professor Roshdi Rashed (Emeritus Research Director [distinguished class],
Centre National de la Recherche Scientifique, Paris; Honorary Professor at the
University of Tokyo). This voluminous book belongs to a constellation of
several of Rashed’s texts in which he has endeavoured to rewrite in
painstaking detail the history of science and mathematics within the span of
the ninth- and tenth-century founding epoch. This research venture aims also
to illuminate the various historical, textual and epistemic threads that
underpinned the later unfolding of the history of mathematical and scientific
knowledge up to the early-modern period in the seventeenth century. Rashed
seeks to reliably re-establish the particulars of the historical interpretation of
diverse imperative chapters in which the mathematicians of classical Islamic
civilization were most innovative and inventive in terms of receiving,
transmitting, adapting, developing and renewing the contributions of Hellenic
mathematics, at levels that remained unsurpassed until the seventeenth century
with the works of figures of the calibre of Descartes, Fermat and Leibniz.
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In this regard, Rashed focuses in this present volume on the mathematical
and scientific traditions of the polymaths of the ninth- and tenth-century
school of Baghdad, such as the famed Banº Mºsæ (the illustrious three sons of
Mºsæ ibn Shækir) and the celebrated Thæbit ibn Qurra and his reputed
grandson Ibræhîm ibn Sinæn, in addition to remarkable mathematicians such as
Abº Ja‘far al-Khæzin and Abº Sahl Wayjan ibn Rustam al-Qºhî, in addition to
the eleventh century mathematicians of Andalusia of the standing of Abº al-
Qæsim ibn al-SamÌ and al-Mu’taman ibn Hºd. These prominent scholars
belonged to outstanding cross-generational research groups that conducted
their work in operational contexts that interlaced the uninterrupted currents of
closely interconnected legacies, spanning over more than two centuries and
yielding pioneering and progressive investigations in mathematics and the
exact sciences, as principally modulated within the Arabic extensions of the
Archimedean–Apollonian heritage. The classical traditions in mathematics
and science of these polymaths are explored thematically by Rashed in this
volume through key treatises in geometry, with special emphasis on detailed
and complex demonstrations, constructions and proofs in the domain of
conics, and by illustrating the historical and epistemological development of
‘infinitesimal mathematics’ as it became clearly articulated in the magnificent
scientific and mathematical legacy of the polymath, geometer, optician and
astronomer, al-Îasan ibn al-Haytham (known in the Latinate rendering of his
name as ‘Alhazen’; d. ca. after 1041 CE, Cairo).

In order to grasp the extent and significance of Ibn al-Haytham’s original
contributions to the innovative field of infinitesimal mathematics, and his
accomplishments within the unfolding of the Apollonian tradition, and 13
centuries after Archimedes, it was obviously necessary to address the history
of mathematics and the exact sciences in the ninth and tenth centuries,
comprising traditions and practices that underpinned and inspired Ibn al-
Haytham’s revolutionary research. It is precisely this task that Rashed has
undertaken in writing this book. This line of inquiry belongs to Rashed’s
broader academic and intellectual project of examining the foundations of
infinitesimal mathematics in historical and epistemological terms. This series
of investigations is not focused on the contributions of isolated individuals and
their treatises; rather it accounts for these textual and mathematical legacies
within the continual and progressive traditions to which they essentially
belonged.

The careful selections of texts in this present volume were ultimately
guided by these historical and epistemic dimensions, in terms of revealing



EDITOR’S FOREWORD xv

their internal chains of interconnections, and the disclosure of the deeper
layers of their continuities and channels of transmission. Emphasis is placed
particularly on studies in the variegated domains of geometry, with a focus on
the investigation of conic sections, their construction, their measurement, and
the demonstrations and proofs that pertain to their properties. The selected
treatises that are gathered in this present volume comprise investigations on
the conic sections, with the associated measurements of volumes and surface
areas, and with detailed studies of parabolas and of paraboloid solids, in
addition to related analyses of the properties of ellipses, circles, curved
surfaces and portions of curved solids, including the multifarious
characteristics of the sphere and the cylinder. All these inquiries are
considered in the broader context of elucidating the foundational elements that
resulted from the emergence of the domain of infinitesimal mathematics, as it
was set against the background of significant investigations in arithmetic and
algebra, and in the fields of their applications to each other and to geometry,
all leading to the development of new chapters and diversified branches in
mathematical research.

These studies constitute valuable historical material that is vital to any
endeavour that aims at achieving a more informed and balanced understanding
of the internal currents of the history of mathematics and the exact sciences
within the Islamic history of ideas, and of its adaptive interpretation and
assimilation in the European context within mediaeval and Renaissance
scientific and mathematical disciplines. These traditions underpinned
seventeenth-century positive knowledge by way of the interlinked grand
dynamic chain in the unfurling of the classical Greek–Arabic–Latin–Hebrew–
Italian lineage. Furthermore, the minutiae of mathematical details are closely
explored by Rashed in this regard, in view of authentically restoring numerous
traditions in infinitesimal geometry, in the research on conics and spherical
geometry, in addition to the investigation of geometric transformations and the
associated novel methods of analysis and synthesis.

The noteworthy assemblage of prominent classical treatises in this
volume, which are rendered here into the English language, has been
painstakingly established through original Arabic critical editions of extant
manuscripts of these works, supported by mathematical, epistemic and textual
commentaries and analyses, and guided by thoughtful and reflective
historiography, while including also some highly informative and supportive
studies of biographical–bibliographical sources. This volume offers annotated
English translations of the French renderings of these texts, based also on the
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primary sources in the Arabic critical editions of the manuscripts, which are
also presented here in English translation for the first time. This body of work
will render great service to historians, philosophers and epistemologists who
are interested in the history of mathematics, and to researchers at various
advanced stages in these fields of inquiry, in addition to modern
mathematicians who will appreciate the elegance of Rashed’s interpretations
of fundamental historical data through modern formal mathematical notation
and by way of intricate geometric figures, models and constructs.

It has been a task of the highest order to oversee and edit the annotated
English translation of Rashed’s texts, and to achieve a proper balance between
the demands of the English language and its stylistic intricacies on the one
hand, while maintaining fidelity to the mathematical content, reliably
conveying the sense of the original French renditions, and, more essentially,
transmitting the intended meanings of the Arabic sources with accuracy. This
present volume is the first in a sequence of five lengthy volumes that were
originally published in annotated French translations with Arabic critical
editions of the primary sources. The original volumes of this colossal series
were published by Al-Furqæn Islamic Heritage Foundation in Wimbledon,
London, and all entitled in their main headings as: Les mathématiques
infinitésimales du IXe au XIe siècle. This unique undertaking was assumed by
Rashed at the time in association with Al-Furqæn under the praiseworthy
Directorship of the late Professor Y. K. Ibish. It is no exaggeration to affirm
that this collection of Arabic critical editions and annotated French
translations, with historical and mathematical commentaries, has an epistemic
significance that makes them akin in their value as scientific references to the
publication by Cambridge University Press of Isaac Newton’s multi-volume
Mathematical Papers. The present book is based on an adapted, revised and
updated version of the first volume that was published in 1996, in the Al-
Furqæn series, under the title Les mathématiques infinitésimales du IXe au XIe

siècle: Fondateurs et commentateurs. Volume 1: Banº Mºsæ, Ibn Qurra, Ibn
Sinæn, al-Khæzin, al-Qºhî, Ibn al-SamÌ, Ibn Hºd. The present volume
constitutes the first in a larger project that has been undertaken by Routledge
(Taylor & Francis Group), in association with the Centre for Arab Unity
Studies in Beirut (Markaz diræsæt al-waÌda al-‘arabiyya), of publishing the
annotated English translations of the remaining four volumes of the
Mathématiques infinitésimales. This task is now well under way, and this set
of publications will constitute a welcome addition to a whole cluster of
Rashed’s vast œuvre that have been translated into the English language. Of
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these we note the Encyclopedia of the History of Arabic Science (editor and
co-author) (London/New York, Routledge, 1996), Omar Khayyam. The
Mathematician (Persian Heritage Series no. 40, New York, Bibliotheca
Persica Press, 2000) and the immense Geometry and Dioptrics in Classical
Islam (Al-Furqæn Islamic Heritage Foundation, Wimbledon, London, 2005).
Another outstanding example is Al-Khwærizmî: The Beginnings of Algebra
(Saqi Books, London, 2009), a book whose publication I had the privilege of
coordinating, as well as revising the annotated English translation of that part
which contained the original and first Arabic critical edition of al-
Khwærizmî’s Book of Algebra (Kitæb al-jabr wa-al-muqæbala). This growing
corpus of English translations of Rashed’s works will prove to be an excellent
source for future endeavours to rewrite manifold chapters of the history of
mathematics and the exact sciences in classical Islam, and the subsequent
unfurling of several of its rudiments up to the seventeenth century within the
European mediaeval, Renaissance, and early-modern milieus.

It is my delightful duty in this context to gratefully thank Professor Roshdi
Rashed for entrusting me with the momentous responsibility of overseeing and
editing the annotated English translations of his precious works, with what
such endeavours require in terms of meeting exacting demands, attributes, and
criteria in the pursuit of academic excellence. This monumental project could
not have been realized without the genuine generosity of the Centre for Arab
Unity Studies in Beirut (Markaz diræsæt al-waÌda al-‘arabiyya) in its
munificent sponsoring of the annotated English translations herein and those
that are works in progress. Very special thanks are therefore due to the
Centre’s eminent Director and renowned scholar, Dr Khair El-Din Haseeb,
and to the members of the Centre’s prestigious Board of Trustees, for their
continual endorsement and magnanimous patronage of these long-term
initiatives. I express also my deep thankfulness to Mr Joe Whiting, to Ms
Emily Davies and to Ms Suzanne Richardson, the editors at Routledge for
their enthusiastic adoption of this publication project, and for accompanying
us in the long journey of accomplishing it with success. The same also applies
to the willingness of Professor Ian R. Netton to include this publication in the
distinguished Routledge book series that he edits: Culture and Civilization in
the Middle East. With profound gratitude, I owe thanks to the translators who
contributed to the composition of this volume. I am obliged to Mr Roger
Wareham, who undertook the arduous task of rendering the bulk of the draft
translations, with contributions made alongside his efforts by Mr Chris Allen
and Mr Michael Barany. They may all be assured of my sentiments of
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gratitude. I am also personally indebted to Mrs Aline Auger, at the Centre
National de la Recherche Scientifique in Paris, for preparing this volume for
printing. Recognition is also owed to the memory of the late Professor
Mohammad Arkoun for his wise counsel in the initial stages of launching this
project. I must furthermore acknowledge with gratitude the unremitting
commitment of Professor Judith V. Field in continuing to translate Rashed’s
works into English. Finally, I ought to thank again Professor Roshdi Rashed,
with profound appreciation, for encouraging me with thoughtfulness and care
in accomplishing the challenging tasks of coordinating and editing the
publication of his translated works, and for his patience and diligence in
benevolently responding to my queries in view of refining the production of
this present volume. It remains to be stated that I enjoyed the dispensing of the
expectations behind this stimulating responsibility, despite its trying character,
and I affirm that shortcomings in performing the privileges of rendering and
presenting this work into the English language, and its niceties, are ultimately
mine.

Nader El-Bizri (Editor)

London, 22nd December 2010



PREFACE

Scientific historians are in agreement that the tracing of scientific
traditions constitutes a fundamental component of their work. At first
glance, this task would appear to be an easy one. These traditions often
appear to be obvious and immediately recognizable from the names of the
authors and the titles of the manuscripts themselves. However, as soon as
the task is begun, these clues are quickly seen to be no more than a
deceptive illusion of simplicity. Is it not characteristic of every
documentary tradition that it lives, diversifies and reinvents itself with
every author and with every question that it raises? There are many other
obstacles to be found upon this road, and every historian sooner or later
comes up against the thorny question of ‘style’. It is certainly this scientific
style that, through the variety of forms and transformations that model a
tradition, distinguishes it from all others and defines its identity. The
difficulty always lies in isolating this identifying note, which can
everywhere be sensed, but which inevitably eludes one’s grasp. But seize it
one must, as it is this elusive note alone that allows us to place an
individual work in perspective, and to elucidate its significance. It is
therefore this phenomenological process that gives the tradition its true
organizational purpose. It reveals the relationships between the works that
weave it together, and it protects the historian from falling into the traps set
by their own preconceptions, from getting themselves tied up in the search
for precursors and from becoming seduced by the illusion of the new.

Essential to the history of science as a whole, this task appears to us to
provide a particularly appropriate response to the pressing questions
currently facing the history of mathematics and the classical sciences in
Islam. The reasons for such urgency have their roots in the fragility of
historical research in this field and in the weaknesses of its history. Isolated
by language, and often trailing in the wake of other oriental studies,
research into the history of classical Islamic mathematics and science is
subjected to quality criteria that are still obscure and changing. To this must
be added a further obstacle holding back progress in research into these
traditions: the question of how to recognize them, buried under a mountain
of facts, when so many of the principal players are notable by their
absence? How, for example, can we begin to trace the algebraic tradition
when we know little more of al-Samaw’al and Sharaf al-Dîn al-™ºsî than
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their names? How can we follow the history of number theory when the
works of al-Khæzin, al-Færisî and others have been lost? The history of
optics cannot be fully known without Ibn Sahl, and we have no clear idea
of the Marægha School in relation to astronomy. While it is possible to
identify a tradition, even under these conditions, it is quite another question
to define its limits, to isolate its unifying elements and to understand the
reasons for a succession of changes to a given text. To achieve that, we
need the help of a detailed and attentive epistemological study, albeit one
that remains, as it has to, discrete. Only through such an analysis can we
hope to understand how an epistemic structure mutates and evolves over
time.

This approach, which has already guided our work on the history of
algebra, number theory, Diophantine analysis and optics, and which
remains our preferred approach in this volume, has enabled us to explore a
number of promising avenues, and even to follow a few through to their
conclusion where their choice appears to be well merited. In our research
into the history of classical Islamic mathematics and science, we have
never deviated from the one fundamental postulate: that it is impossible to
fully understand individual works without anchoring them firmly in the
traditions that gave them birth. We have also remained faithful to the
necessity of breaking with the historical reduction approach all too
common in this field. One cannot succeed by wandering through the garden
at random, gathering the odd flower here and there.

In this book, it has been our aim to retrace the tradition of research into
‘infinitesimal mathematics’, on this occasion with the intention of
exploring the main stem, if not all of the lateral branches. This ambition
was based partly on the nature of this field of study, but also on the work of
those who have preceded us. We have had recourse to a  limited number of
manuscripts, most of which have survived, dating from the second half of
the ninth century – most notably the works of the Banº Mºsæ brothers – up
to the first half of the eleventh century, at which point the writings of Ibn
al-Haytham bring the tradition to an abrupt halt. This topic has also proved
attractive to a number of scientific historians whose work, preliminary and
provisional though it is, has proved to be extremely useful. Particular cases
in point are the translations into German by H. Suter.

So, what exactly does this expression ‘infinitesimal mathematics’
cover? The question is not merely a rhetorical one. This phrase is not a
translation of any Arabic term in use during the classical period and,
without further explanation, its meaning may easily be confused with that
of ‘infinitesimal calculus’. It is but a small step from one to the other, and
this step that can all too quickly be taken without noticing the abyss that
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lies below. In order to address this question, we must first break it down
into two parts. The first, and more general one, is the absence of any
original name for this branch of mathematics. Can we include such an
unnamed body of work within the history of a discipline? Such is the
epistemological and historical problem that we have uncovered: that of the
status and independence of the knowledge obtained. In inventing a name,
we are implying, in this case at least, that a new requirement to distinguish
this knowledge from all other knowledge has arisen. However, in our
favour it must be accepted that the absence of a name does not necessarily
denote the non-existence of the object. No-one today could deny the
existence of formal research in combinatorial analysis before that term was
invented, or the contributions to elementary algebraic geometry before such
an expression become widespread, or the studies in Diophantine analysis
carried out before the name of this Alexandrian mathematician was
adopted. Our problem is more specific in this case. It is to understand the
nature of this ‘infinitesimal mathematics’, its organization, coherence and
unity, together with the links between the various branches making up the
whole. In brief, we need to understand the extent of the cleft that separates
it from ‘infinitesimal calculus’. We believe that we are now in a position to
improve our understanding of its origins, and to use this understanding in
order to derive its true beginnings.

The first objective of this book is to retrace this tradition of
‘infinitesimal mathematics’, in order to then be in a position to examine
this breach between the history and prehistory of infinitesimal calculus. We
begin by tracing, translating and commenting on all the surviving
manuscripts relating to the measurement of the areas and volumes of
curved solids – lunes, circles, parabolas, ellipses, spheres, cylinders and
paraboloids – together with the determination of their limiting values,
isepiphanics or isoperimeters. Our reason for confining ourselves to these
manuscripts alone is that they all share a common consistency and a
progressive unity, due to rather than despite their successive corrections
and additions. Each of the mathematicians who laid their own individual
brick in this wall, without exception, built on the work of their predecessors
in order to derive their improved proofs and new extensions. Is this not the
mark of a living tradition? The reason for excluding other works from this
corpus mathematicorum despite their relationships and similarities to these
treatises on infinitesimal mathematics is not a circumstantial one. While
these works on astronomy, statics and numerical analysis include certain
infinitesimal considerations, they do not form part of the organic structure
of this tradition. Wherever I have made reference to one of these works, it
is either to provide clarification to the reader or to illustrate the basis for a
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history of editions. Their appearance in the footnotes and appendices is not
to imply that they constitute no more than addenda to the history of
infinitesimal mathematics. Rather, it is to indicate that here they
complement it, without in any way detracting from the fact that they merit
a similar volume to this in their own right.

The first volume of this book is dedicated to the beginnings of research
into infinitesimal mathematics, up to the point at which it may be
considered to be almost complete; in other words, to the founders of this
branch of mathematics. It therefore traces, translates and comments on
texts written between the second half of the ninth century and the end of
the tenth century, including those of the Banº Mºsæ brothers, Thæbit ibn
Qurra, al-Khæzin, Ibræhîm ibn Sinæn, al-Qºhî  and Ibn al-SamÌ. It is
regretted that the works of al-Mæhænî, Ibn Sahl and doubtless many others
have been lost, either temporarily or for good. We have, however, thought
it appropriate to include a chapter on Ibn Hºd, a successor to Ibn al-
Haytham and a commentator on both his work and that of Ibn Sinæn.

In the second volume, which appeared in its original French version in
1993, we traced, translated and commented on the works of Ibn al-
Haytham, the mathematician who finalized this tradition and who marks its
end-point.

Ibn al-Haytham was the last to carry out innovative research in this
field. Eleven centuries after Archimedes, and in a totally different
mathematical and cultural context, the history of analytical mathematics
was to repeat itself. Two attempts to break through in this field were each
brought to an abrupt halt after having enjoyed periods of great success.
This phenomenon, of intense interest to mathematical historians and a rich
source of material for the epistemologist, will be the subject of a final
volume once we have covered all the necessary preliminary stages and
reverses essential to a restoration of the Archimedean tradition.

In order to understand the research of Ibn al-Haytham in the field of
infinitesimal mathematics and to identify his innovations within the
Archimedean tradition, we have found it necessary in preparing this final
volume to trace, translate and analyse his separate contribution to the
Apollonian tradition. The research carried out by Ibn al-Haytham in the
field of infinitesimal mathematics can then take its place within the larger
body of his work. The third volume will therefore be largely dedicated to
his studies on the conics and their applications. Taken together with our
previous publications (Les Connus, L’analyse et la synthèse) these two
volumes will, for the first time, bring together the entire mathematical
works of Ibn al-Haytham with the exception of his commentaries on
Euclid.
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Some of the texts edited, translated and commented on in this volume
were thought to have been lost, but have been rediscovered during our
work. Others have been the subject of confusion and misunderstanding, and
this we have sought to clarify. Most of them have never before been edited
or translated. Those few texts that have been traced have never, with one
exception, appeared in a critical edition. A strict translation of all these
works is given in this volume.

We have discussed the method used to edit the texts many times in
many of our works. The original French translations adhered strictly to
these principles. These translations are literal, as faithful to the letter of the
original as to its meaning, without ever violating the sensibilities of the
reader. We have deliberately set out to be selective in our choice of
citations, and these are in no way exhaustive. We trust that our readers will
be generous enough to attribute any omissions to our selectivity rather than
to our ignorance. Finally, we hope that the experts in this field will find
something of use in our work, and that they will pardon any errors that we
have made. For our part, we are satisfied that we have done our best.

I would like to thank Christian Houzel for taking on the onerous task of
proof-reading the original French version of this work in line with the
conventions of the series in which it first appeared, a task that he completed
with all the scientific knowledge and erudition for which he is well known.
I would also like to thank Philippe Abgrall, Maroun Aouad, Hélène
Bellosta, Pascal Crozet and Régis Morelon for proof-reading the final
drafts. My thanks are also due to Aline Auger, Ingénieur d’Études at the
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NOTE

< > These brackets are introduced in order to isolate an addition to the
Arabic text that is necessary for understanding the English text.

In the mathematical commentaries, we have used the following
abbreviations:

per.: perimeter
p.: polygon
port.: portion
sg.: segment
tp.: trapezium
tr.: triangle.



CHAPTER I

BBBBAAAANNNNªªªª    MMMMªªªªSSSSÆÆÆÆ    AND THE CALCULATION OF THE VOLUME OF
THE SPHERE AND THE CYLINDER

1.1. INTRODUCTION

1.1.1. The BBBBaaaannnnºººº    MMMMººººssssææææ:::: dignitaries and learned

The three brothers MuÌammad, AÌmad and al-Îasan, sons of Mºsæ ibn
Shækir, are usually referred to collectively by their patronymic alone. Early
biobibliographers simply entitled their articles Banº Mºsæ (the sons of
Moses),1 and their modern counterparts have invariably followed suit
– where they have not just copied their work wholesale.2 Aspects of this
tradition continued in the Latin texts, with Gerard of Cremona referring to
them in this way: ‘Filii Sekir, i.e. Maumeti, Hameti, Hasen’.3 It should be
understood that referring to the lives of the Banº Mºsæ in this manner has
not prevented biographers from acknowledging their existence as indepen-
dent individuals from one another, nor the occasional mention of one of
them without mentioning the other two. They have also managed to high-
light a number of individual differences between the brothers, which are of
great importance to us, including MuÌammad’s interest in astronomy and

1 Al-Nadîm, Kitæb al-Fihrist, ed. R. Tajaddud, Tehran, 1971, pp. 330–1; al-Qif†î,
Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, pp. 315–16 and 441–3; Ibn Abî
UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. A. Müller, 3 vols, Cairo/Königsberg,
1882–84, vol. I, pp. 187, 9–12; 207, 22–208, 17; ed. N. Ri≈æ, Beirut, 1965, pp. 260,
11–13; 286, 19–287, 15. Ibn Abî UÒaybi‘a speaks, however, of the sons of Shækir.

2 C. Brockelmann, Geschichte der arabischen Literatur, 2nd ed., I, Leiden,
1943, p. 216; H. Suter, Die Mathematiker und Astronomen der Araber und ihre
Werke, Leipzig, 1900, pp. 20–1; F. Sezgin, Geschichte des arabischen Schrifttums, V,
Leiden, 1974, pp. 246–52; M. Steinschneider, ‘Die Söhne des Musa ben Schakir’,
Bibliotheca Mathematica 1, 1887, pp. 44–8, 71–6; J. al-Dabbagh, ‘Banº Mºsæ’,
Dictionary of Scientific Biography, vol. I, New York, 1970, pp. 443–6. The Arabic
introduction by Ahmad Y. al-Hasan to the Kitæb al-Ìiyal edition of the Banº Mºsæ,
Aleppo, 1981, pp. 18–30.

3 M. Clagett, Archimedes in the Middle Ages, vol. I, Madison, 1964, p. 238.
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mathematics, AÌmad’s talents in the field of mechanics, and al-Îasan’s
genius in geometry.4 They have even attributed at times writings composed
under the forenames of all three Banº Mºsæ to a single brother.5

Biobibliographers and historians are unanimous in affirming the
importance of the scientific works of the Banº Mºsæ and acknowledging
their contribution to the scientific movement of the period.6 In the political
arena, they also seem to agree that the eldest, MuÌammad, was the most
important, with the other two playing significantly paler roles.

While it is important for us to recognize these aspects, they are not
included herein for their anecdotal value, but rather as an indication that the
three brothers clearly worked together as a team. Yet, within this
collaborative effort, their collective works did not exclude individual
compositions. A closer look at their works shows that the three brothers did
not simply constitute what would today be described as a research team;
rather their working relationship was much closer to being constitutive of
the solid core of a school. Moreover, their collective efforts were not
restricted purely to scientific research; rather, they were active in the politics
of scientific activity, and in politics per se. Their team also appears to have
been in competition with other scientific groups, apparently including the
more loosely constituted team of al-Kindî. All of these aspects, which
became obvious to us when studying various accounts and testimonies
regarding the Banº Mºsæ, al-Kindî, and their period in general, lead us to
raise a new question: What does such teamwork structure represent in the
ninth century?

4 In the case of al-Îasan for example, his own brothers tell of his erudition in
geometry – vide infra, p. 8. The biobibliographers tell a story that, while of doubtful
authenticity, does serve to illustrate the contemporary reputation of al-Îasan in the field of
geometry. Having read no further than the first six books of Euclid’s Elements, he was
able by himself to work out the contents of the remaining seven books. The caliph al-
Ma’mºn would have personally criticized him should he have failed in reading such a
fundamentally important book in full, regardless of his need to do so (al-Qif†î, Ta’rîkh al-
Ìukamæ’, p. 443). For further particulars, regarding the importance of the contributions
of MuÌammad to astronomy, see G. Saliba, ‘Early Arabic critique of Ptolemaic
cosmology’, Journal for the History of Astronomy 25, 1994, pp. 115–41.

5 Al-Nadîm, for example, attributes the composition of Kitæb al-Ìiyal (Book of
Ingenious Devices) to AÌmad alone. He attributes the book on The Elongated Circular
Figure to al-Îasan, an attribution confirmed by Thæbit ibn Qurra at the start of his treatise
On the Sections of the Cylinder and its Lateral Surface. He also attributes several
treatises to MuÌammad alone.

6 For example, al-Nadîm, al-Fihrist, pp. 304 and 331; Ibn Abî UÒaybi‘a, ‘Uyºn al-
anbæ’, ed. Müller, I, pp. 187, 9–12; 205, 29–31; 215, 29–31; ed. Ri≈æ, pp. 260, 11–13;
283, 9–11; 295, 9–11.
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The instinctive mutual understanding, or complicity, between brothers
cannot be the only answer. The story of Johann and Jacob Bernoulli,
centuries later, affords a prime counter-example. This team could not have
worked together without the school that they led, and of which they formed
the heart. The three brothers also worked closely with some of the greatest
translators of the time, including Îunayn ibn IsÌæq and Hilæl ibn Hilæl al-
ÎimÒî.7 They were also able to recruit collaborators of the class of Thæbit
ibn Qurra.8 Their school divided its efforts between innovative research and
the translation of older work passed down from the Greeks: two activities
that were complementary and interdependent, as we have shown on more
than one occasion.9 Finally, the Banº Mºsæ were also interested in the
institutionalization of science. Hence, we find them associated with the
famous House of Wisdom in Baghdad, making astronomical calculations,
and working on the problems of hydraulics. The engagement of the Banº
Mºsæ with the scientific and cultural activities of their time was only equalled
by their participation in politics (at least in the case of MuÌammad) and in
administrative roles (as was the case with both MuÌammad and AÌmad).
There are many indications of their links to the circles of power and learning
in Baghdad, the centre of an immense empire at the peak of its glory in the
first half of the ninth century. An entire book could be written on the
intrigues and dealings that took place there; and such a line of investigation
would be well merited, since the story of the Banº Mºsæ did not constitute
an isolated exclusive case.

This portrayal, although painted in broad strokes, is still sufficient to give
some understanding of the background to their work. It clarifies the writings
of the early biobibliographers, and forms an initial attempt at a critical

7 Al-Nadîm wrote about Hilæl ibn Hilæl al-ÎimÒî that ‘he translated the first four
books of the Conics of Apollonius in the presence of AÌmad ibn Mºsæ’ (al-Fihrist,
p. 326):

ÆwBL(« ‰ö¼ wÐ√ sÐ ‰ö¼ ¨vÝu� sÐ bLŠ√ Íb¹ 5Ð W�Ë_«  ôUI*« lÐ—_« rłdðË

This fact is confirmed by the translation manuscripts. The sentence by al-Nadîm is
effectively copied from the introduction to the translation of the Conics, in which can be
found: ‘the one who was in charge of the translation of the first four books of the Conics
of Apollonius in the presence of AÌmad ibn Mºsæ, Hilæl ibn Hilæl al-ÎimÒî’. See
R. Rashed, Apollonius: Les Coniques, tome 1.1: Livre I, Berlin, New York, 2008,
p. 507, 12–14.

8 See the next chapter.
9 R. Rashed, ‘Problems of the transmission of Greek scientific thought in Arabic:

examples from mathematics and optics’, History of Science 27, 1989, pp. 199–209;
reprinted in Optique et mathématiques: Recherches sur l’histoire de la pensée
scientifique en arabe, Variorum CS388, Aldershot, 1992, I.
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examination of the descriptions that have come down to us. We can now
begin to understand how a single book (in particular the one discussed here)
can include both geometrical problems and new mechanical constructions.
We can also see how research begun by one of the three brothers, al-Îasan
for example, could be continued by another, namely AÌmad. We can also
begin to understand the fictionalized nature of their biography, which we do
not take to be certain, but which is widely accepted today, effectively
without proper examination.

What would be more favourable for a novelist than the story of these
three wise men developing their ideas against a background of headlong
scientific advance and political tumult? Victims of biobibliographers with
unrestrained imaginations, the Banº Mºsæ became the heroes of fantasy
fiction. We have noted this tendency on more than one occasion in the
works of the ancient biobibliographer al-Qif†î,10 our main source of
information relating to the Banº Mºsæ. He was fond of embellishing his
stories in order to draw in his readers and entertain them. Al-Qif†î tells that
the father of the Banº Mºsæ,11 that is to say Mºsæ ibn Shækir, had nothing
to do with ‘the sciences and the letters’ during his youth, but that he lived as
a bandit, robbing travellers on the roads of Khuræsæn. As we shall see, the
choice of this region was by no means a random one, given the conclusion
to his story. Al-Qif†î is sparing neither in the details of the deviousness of
this character nor in the tricks that he got up to in order to cheat those
around him. He is even able to describe the face of Mºsæ ibn Shækir, his
horse and other attributes in detail; three and a half centuries after the events
took place!12 All this wealth of detail throws considerable doubt on the
account of al-Qif†î, or at the very least on his sources.

The reason for the choice of Khuræsæn as the location becomes evident
later in the story, when the bandit teams up with another robber who
eventually becomes the caliph al-Ma’mºn. The region of Khuræsæn was
bequeathed to al-Ma’mºn by Hærºn al-Rashîd, and al-Ma’mºn lived there
for a while before deposing his brother al-Amîn and becoming the seventh
of the Abbasid caliphs. The story told by al-Qif†î continues and ends in
storybook fashion: the bandit repents, and becomes the companion of the
future ruler, and then dies at just the right time (the exact date being

10 See Les mathématiques infinitésimales du IXe au XIe siècle, vol. II: Ibn al-
Haytham, London, 1993, pp. 5–8; R. Rashed and B. Vahabzadeh, Al-Khayyæm
mathématicien, Paris, 1999; English version (without the Arabic texts): Omar Khayyam.
The Mathematician, Persian Heritage Series no. 40, New York, 2000.

11 Al-Qif†î, Ta’rîkh al-Ìukamæ’, pp. 441–3.
12 Ibid. This story is often retold by both early and modern historians. One example

is Ibn al-‘Ibrî, Tærîkh mukhtaÒar al-duwal, ed. O.P. A. ∑æliÌænî, 1st ed., Beirut, 1890;
reprinted 1958, pp. 152–3.
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conveniently left vague) to confide his three children to the care of the
caliph. This opportune demise sets the three brothers firmly on the path to
royalty. At first, they were protected by their new guardian, the caliph in
person, then they were left in the care of IsÌæq ibn Ibræhîm al-MuÒ‘abî, who
was for a time the governor of Baghdad. He becomes their tutor, and
arranges for them to enter the House of Wisdom, under the aegis of the
famous astronomer YaÌyæ ibn Abî ManÒºr (died in 217/832).

This then is the narrative as told by al-Qif†î. This account will be
relegated by Ibn al-‘Ibrî (also known as Bar Hebraeus), and it has since
been relentlessly repeated over and over by everyone else, right up to the
present day. At the present time, we know of no source, independent of al-
Qif†î himself, that can confirm his story as a whole or, indeed, in any part.
On the contrary, al-Qif†î often contradicts himself. For example, elsewhere
in his book he paints a portrait of Mºsæ ibn Shækir that is barely compatible
with the preceding one; this time describing him as a member of the most
advanced group of mathematicians and astronomers!13

In the absence of other sources, we can only dismiss the story told by
al-Qif†î, especially as it appears to have been a late addition, tacked to the
end of his book.14 However, without it the history of the Banº Mºsæ fades
and diminishes. Very little remains as the basis for a biography, and what
little is left lies dispersed among the annals and other bibliographies. In the
Annals of al-™abarî,15 MuÌammad and AÌmad appear in the course of
events as members of the entourage of a number of successive caliphs. The
two brothers appear in turn as wealthy individuals, as counsellors to the
caliphs, and as managers of major civil engineering projects. In the year
245/859, MuÌammad and AÌmad appear on the list of rich citizens required
to provide the caliph al-Mutawakkil16 with the funds needed to build his new
city of al-Ja‘fariyya.17 This list consists of around twenty names, including a
number of famous ministers such as Ibn Farrºkhænshæh and Ibn Mukhlad.

13 This is what al-Qif†î wrote without drawing attention to the flagrant contradiction
with his earlier assertion: ‘Advanced in geometry, he [Mºsæ ibn Shækir] and his sons
– MuÌammad ibn Mºsæ, his brother AÌmad and their brother al-Îasan – were all
advanced in the field of mathematics, the configuration of orbs and the movements of the
stars. This Mºsæ ibn Shækir was famous among the astronomers of al-Ma’mºn and his
sons were among those with the greatest insight into geometry and the science of
ingenious procedures’, Ta’rîkh al-Ìukamæ’, p. 315. This portrait and the dates given
contradict the other story in every respect.

14 Actually, the penultimate article.
15 Tærîkh al-rusul wa-al-mulºk, ed. MuÌammad Abº al-Fa≈l Ibræhîm, Cairo, 1967,

vol. 9, p. 413.
16 Ibid., p. 215.
17 Ibid., p. 216.
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Three years later, in 248/862, MuÌammad ibn Mºsæ was also present among
those who listened to the caliph al-MuntaÒir18 telling of his dream. In
251/865-6, this same MuÌammad is ordered by the commander of the army
of caliph al-Musta‘în to undertake an intelligence mission to assess the
strength of the enemy forces.19 In the same year, MuÌammad ibn Mºsæ was
part of the delegation sent to negotiate the abdication of the caliph.20

The context and form of these reports by al-™abarî indicate that they
are authentic, and they have also been confirmed by other historians. Both
al-Mas‘ºdî21 and Ibn Khurdædhbih22 describe the relationships between the
Banº Mºsæ and the caliph al-Wæthiq (842–847), and Ibn Abî UÒaybi‘a
repeats the often-told story in which the Banº Mºsæ take advantage of their
position at the court of the caliph al-Mutawakkil in order to plot and intrigue
against their colleague al-Kindî.23 All agreed on one point: the two brothers
MuÌammad and AÌmad were present at the court of the Abbasid caliphs
during at least the period from the epoch of al-Mutawakkil (847) to at least
that of al-Musta‘în (866); namely, before the death of MuÌammad, which,
according to al-Nadîm, took place in 873. AÌmad ibn Mºsæ himself
confirms their privileged status, telling how he was posted to Damascus as
administrator of the diwæn responsible for the postal service.24

The eminence of this rank supports the assertion by al-Nadîm that the
Banº Mºsæ themselves financed missions to search for Greek manuscripts in
what remained of the Byzantine empire,25 and that they recruited a group of
translators who were each very well paid. Ibn Abî UÒaybi‘a supports the
work of al-Nadîm, citing a number of translators, including IsÌæq ibn
Îunayn, Îubaysh, and Thæbit ibn Qurra, who received a regular salary
from the Banº Mºsæ.

18 Ibid., p. 253.
19 Ibid., p. 292.
20 Ibid., p. 344.
21 Al-Tanbîh wa-al-ishræf, ed. M. J. de Goeje, Bibliotheca Geographorum

Arabicorum VIII, Leiden, 1894, p. 116.
22 Al-Masælik wa-al-mawælik, ed. M. J. de Goeje, Bibliotheca Geographorum

Arabicorum VI, Leiden, 1889; reproduced by al-Muthanna publishers in Baghdad,
undated, p. 106.

23 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, ed. Müller, pp. 207, 22–208, 17; ed. Ri≈æ,
pp. 286, 9–287, 15.

24 In the treatise by the Banº Mºsæ entitled Muqaddamæt Kitæb al-Makhrº†æt
(Lemmas of the Book of Conics), ed. R. Rashed in Les Coniques, tome 1.1: Livre I ,
p. 505, 16-17:

25 See al-Nadîm, al-Fihrist, pp. 330–1.

أ مث هي مأل ت ن دح خلا ىموس ب هربل اتل وا ماشلا ىلإ صوش د . اي
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Other reliable sources depict the Banº Mºsæ making astronomical
observations and working on civil engineering projects. Ibn Khallikæn26

gives a precise report of work they carried out at the personal request of al-
Ma’mºn to verify the length of the circumference of the Earth.27 The
astronomical historian C. Nallino28 has concluded from the statements of Ibn
Khallikæn, and based on the age of the three brothers and existing
knowledge regarding this important scientific event, that the Banº Mºsæ
could only have acted as assistants to the astronomers of the time, and not
as the principal investigators in charge of this experiment. In relation to their
civil engineering works, al-™abarî describes a canal dug under their direction
and Ibn Abî UÒaybi‘a echoes what is noted regarding this project of
hydraulics.29

These then were the Banº Mºsæ: three wealthy brothers, moving in the
corridors of power and surrounded by a team of advanced researchers,
working not only in the mathematical sciences, but also in the applied
mathematics of their time, particularly hydraulics and mechanics; major
contributors to the scientific community of which they were a part; and
founders of a school that also counted Thæbit ibn Qurra among its
members. We shall now consider their mathematical legacy.

1.1.2. The mathematical works of the BBBBaaaannnnºººº    MMMMººººssssææææ

The early biobibliographers, and al-Nadîm and al-Qif†î in particular,
provide two lists of the works of the Banº Mºsæ in the fields of mechanics,
astronomy, music, meteorology and mathematics. These lists are not
exhaustive, and do not provide a definitive record of their written works. In
geometry, the branch of mathematics that interests us here, AÌmad himself
mentions works missing from the lists of the two biobibliographers, and
other later mathematicians proceeded likewise. We know of five
mathematical texts attributed to the Banº Mºsæ, of which only two are
known to exist at the present time.

26 Wafayæt al-a‘yæn, ed. IÌsæn ‘Abbæs, vol. 5, Beirut, 1977, pp. 161–2.
27 Al-Bîrºnî, al-Athær al-bæqiya ‘an al-qurºn al-khæliya, ed. C.E. Sachau under the

title: Chronologie Orientalischer Völker, Leipzig, 1923, p. 151; also al-Bîrºnî, ‘Kitæb
taÌdîd nihæyat al-amækin’, edited by P. Bulgakov and revised by Imæm Ibræhîm AÌmad
in Majallat Ma‘had al-Makh†º†æt, May-November 1962, p. 85.

28 C. Nallino, Arabian Astronomy, its History during the Medieval Times,
[Conferences at the Egyptian University], Rome, 1911, pp. 284–6.

29 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’, ed. Müller, pp. 207, 27–208, 17; ed. Ri≈æ,
pp. 286, 23–287, 15.
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1° The first work is entitled The Elongated Circular Figure (al-Shakl
al-mudawwar al-musta†îl). It is attributed by al-Nadîm and al-Qif†î to al-
Îasan ibn Mºsæ, and this is confirmed by the late tenth century
mathematician al-Sijzî. Not only does he quote the title, when he writes that
the Banº Mºsæ composed a book ‘on the properties of the ellipse, which
they called the elongated circle (al-dæ’ira al-musta†îla)’, he also summarizes
the procedure used by them to trace a continuous ellipse making use of the
bifocal property.30

In their short treatise on the Lemmas of the Book of Conics,
MuÌammad and AÌmad ibn Mºsæ mentioned that their brother al-Îasan
had written a treatise on the generation of elliptical sections and the
determination of their areas:

Drawing on his powerful understanding of geometry, and on his superiority
over all others in this field, al-Îasan ibn Mºsæ was able to study cylindrical
sections; namely, those plane figures formed when a cylinder is intersected
by a plane that is not parallel to its base, in such a way that the outline of
the section forms a continuous enclosing curve. He found out its science
and the science of the fundamental proprieties relative to the diameters, the
axes, and the chords, and he has found out the science of its area.31

According to al-Sijzî, the treatise on The Elongated Circular Figure
also dealt with the generation of elliptical sections. All indicates that these
constitute one and the same treatise, but that is our only certainty;
everything else remains conjecture: The treatise seems to have been written
before the author had gained an in-depth understanding of the Conics of
Apollonius; perhaps he had read the book by Serenus of Antinoupolis On
the Section of a Cylinder.32 The treatise must have been a substantial work,

30 This is what al-Sijzî wrote in The Description of Conic Sections (ed. R. Rashed
in Œuvre mathématique d’al-Sijzî. Volume I: Géométrie des coniques et théorie des
nombres au Xe siècle, Les Cahiers du Mideo, 3, Louvain-Paris, 2004, p. 247, 5–7):

which may be rendered as ‘Another strange pathway resulting from its [i.e. the ellipse]
properties. The Banº Mºsæ ibn Shækir constructed, from this property, and composed a
book on the properties of the ellipse that they called: the elongated circle’; this was the
bifocal property.

31 Banº Mºsæ, Muqaddamæt Kitæb al-Makhrº†æt, ed. R. Rashed in Les Coniques,
tome 1.1: Livre I, p. 505.

32 We take up this question later in the analysis of the treatise by Ibn al-SamÌ, vide
infra, Chapter VI.

خر يقروط س بغري آ خم لوع • هصاوخ نم جرت هلع وبنى ةاصخلا هذه ىلع م و وبن اي ن سم  في بآاكت ماش ب

وو سقهانلا غمقلا اصوخ ة.ليطتلمسا ةرئادلا هسم
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forming the basis, along with a deep understanding of the Conics this time,
of the magisterial development of this study by Thæbit ibn Qurra.33

The treatise has not survived, but we believe that a part of the text may
have influenced the writings of Ibn al-SamÌ, part of whose work does still
exist in a Hebrew version.34 The importance of this treatise in the history in
the theory of conics and of infinitesimal mathematics in Arabic, along with
the allusions made by AÌmad ibn Mºsæ, in addition to the information
supplied by al-Sijzî, and our own conjectures, all can only encourage us to
address this question for its own sake.

2° The second text is that mentioned earlier by al-Nadîm and al-Qif†î,
namely The Lemmas of the Book of Conics; and several manuscript copies
of this text have survived. Nine of the lemmas are established: ‘which are
required in order to facilitate the comprehension of the Conics of
Apollonius’.35

3° In the introduction to their preceding opusculum, MuÌammad and
AÌmad ibn Mºsæ retrace the history of their studies of the Conics,
mentioning a commentary written by AÌmad on seven books of the oeuvre
of Apollonius. This sibylline allusion is the only information we have on this
commentary.36

4° A book entitled On a Geometric Proposition Proved by Galen, of
which no copies are currently known to exist.

5° The treatise that we establish in the next section.
Finally, another short text on the trisection of angles carries the names

of the brothers, but there appear to be a number of serious problems in this
attribution.37

All these titles share a common factor that, like a faint watermark, seems
to run through all the research begun through the Arabic language by the
Banº Mºsæ; namely, their simultaneous interest in the geometry of conics

33 The treatise by Ibn Qurra On the Sections of the Cylinder and its Lateral
Surface is discussed later.

34 See the analysis of the text by Ibn al-SamÌ later.
35 R. Rashed, Les Coniques, tome 1.1: Livre I, p. 509, 1:

36 Ibid., p. 507, 1-2, contains the following: ‘He prepared himself to depart from
Syria and go to Iraq; once in Iraq, he saw again the commentary (tafsîr) of the seven
books which reached us at present’.

37 Cf. mss Oxford, Bodleian Library, Marsh 207, fol. 131v and Marsh 720, fol.
260v.

ه قي ايهلإ جاتحي .باكتلا فهم لت

أ ي ه ران وت هص ف را ىلإ ماشلا نمب ا ع ق،ل اف ا م ا ل را ىلإ رص ع ي ىلإ داع اقل ف ة رت ي ق ما ب س لاثلما ل يلا تا تعوق ت

• اينلإ
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and the measurement of areas and volumes delimited by curves; as a
combination of the two traditions of Apollonius and Archimedes.

1 .1 .3 .  Treatise on the measurement of plane and spherical figures:
a Latin translation and a rewritten version by aaaallll----™™™™ººººssssîîîî

The fate of this treatise has been a strange one. Two fragments of the
original Arabic text have been found (see Table II). But it survives through
an edited rewritten version composed by NaÒîr al-Dîn al-™ºsî in the
thirteenth century. Luckily, Gerard of Cremona’s Latin translation of the
original Arabic text has survived, and this has been transcribed and
translated into several languages.38

These are the bare facts. It appears to all intents and purposes that the
™ºsî version simply replaced the original. One can even imagine a scenario
that describes how this would have happened – taking into account that this
shifts away from the truth: while this important original text remained
available to students, as can be seen by comparison with the works of later
writers on these topics, the treatise was chosen by al-™ºsî to be included
with a number of other mathematical works in the edited collection known
as the mutawassi†æt (namely, ‘the abridged astronomies’, to which were
added some books in mathematics). Originally intended to be used as
textbooks for teaching purposes, these collections were very successful;
judging by the number of manuscript copies that have survived. This work
by al-™ºsî ensured that the thoughts of the Banº Mºsæ reached a wide
audience. However, this success was to the detriment of the original work.
The popularity of the ™ºsî version was such that no-one bothered to copy
the original Banº Mºsæ treatise; and, despite our best efforts, no trace of it
has ever been found!

The examination of the Latin translation reveals the omission of a long
passage from it, which was quoted by al-™ºsî from the original, in which the
Banº Mºsæ describe the mechanical device that they designed to determine
two segments lying between two given segments such that the four
segments form a proportional sequence. This missing passage also discusses
the trisection of angles.39 There is no doubt as to the authenticity of this

38 M. Curtze, ‘Verba Filiorum Moysi, Filli Sekir, id est Maumeti, Hameti et Hasen.
Der Liber trium fratrum de Geometria, nach der Lesart des Codex Basileenis F. II. 33 mit
Einleitung und Commentar’, Nova Acta der Ksl. Leop.-Carol. Deutschen Akademie der
Naturförscher, vol. 49, Halle, 1885, pp. 109–67; H. Suter, ‘Über die Geometrie der
Söhne des Mûsâ ben Shâkir’, Bibliotheca Mathematica 3, 1902, pp. 259–72; Clagett,
Archimedes in the Middle Ages, I, pp. 223–367. See also W. Knorr, Textual Studies
in Ancient and Medieval Geometry, Boston, Basel, Berlin, 1989, pp. 267–75.

39 Cf. further in Banº Mºsæ’s text, Proposition 18.
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passage. Perhaps Gerard was simply defeated by its real linguistic and
technical difficulty. In attempting to understand the contribution of the Banº
Mºsæ, it is necessary to refer to the translation by Gerard of Cremona.
However, in order to fully achieve our objective, it is also essential to read
the ™ºsî version. One further merit of the Latin translation is that it clarifies
the meaning that al-™ºsî gave to the word taÌrîr (in the sense of re-editing,
re-writing or re-composing), thereby providing us with a measure of the
distance separating his text from that of the Banº Mºsæ. In return, the ™ºsî
version also throws light on the Latin translation, or at least its lexical
characteristics. The historian attempting to track down the original thoughts
of the Banº Mºsæ in this field is therefore faced with the double problem of
having nothing to go on but an indirect translation and a text re-written
three centuries after the original. Having clearly indicated the dangerous
rocks waiting to wreck the efforts of the historian under these
circumstances, we can now begin to try to understand, provisionally at least,
what al-™ºsî has to tell us about what he meant by this taÌrîr (re-editing, re-
writing).

The first clue we have relates to the writing style employed by the Banº
Mºsæ and their contemporaries. They were writing for the mathematicians
of their time, and for students of mathematics and astronomy. All these
readers would have been familiar with a range of other books, including
Euclid’s Elements and Data. The Banº Mºsæ were therefore able to use
propositions from these books without repeating them explicitly; since these
were assumed to be common knowledge. No criticism of the authors is
implied in stating this fact. This has been common practice from the earliest
period right through to the present day. Even al-™ºsî, who understood
Euclid better than anyone, and easily recognized the tacit references made
by the Banº Mºsæ, never considered it necessary to expand them. He saw
no omission that needed rectifying. To interpret this practice as an attempt
to hide their sources is to misunderstand the mathematical traditions of the
time. It is hardly necessary to point out that they often used propositions
that they themselves had proved without explicitly citing them.

The second drawback relates to the edited version composed by al-™ºsî,
who was also writing for advanced students of mathematics. These
apprentices would have been familiar with the works of Euclid, and would
have been quite capable of filling in the gaps in any of the basic proofs.
When al-™ºsî omitted these steps, he was not carelessly failing to include
them. He was taking a deliberate decision that they were not necessary.

We already know that one characteristic of the version edited by al-™ºsî
is its economy. Throughout the Banº Mºsæ text, he ruthlessly cuts out
everything that is not strictly necessary to mathematical exposition. Whether
or not we agree with his editorial decisions, this economy with words
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remains for al-™ºsî one of the principles of an elegant text, giving it an
implicit didactic value.

Let us now consider what al-™ºsî meant by his taÌrîr (re-editing, re-
writing). Although of considerable importance, this question has never, to
our knowledge, been addressed. We only consider it here in the case of the
Banº Mºsæ treatise, and we shall begin by identifying a few general traits,
before moving on to a precise analysis of a full example. By ‘re-editing’, al-
™ºsî intends to provide us with a condensed text, from which all the
arguments that he considered unnecessary have been excised. His main
technique was to eliminate all repetition and redundancy, and to reformulate
the sentences, introducing pronouns to reinforce the longer expressions. A
number of specific instances may be noted in this regard:

1. Al-™ºsî has cut large portions from the sections in which the Banº
Mºsæ explain their reasons for writing the text. This is especially true in the
introduction, where they also describe the methods they adopted in prepa-
ring the work. He also makes significant cuts in the conclusion in which the
various results obtained are summarized. There is no need to point out how
interesting these sections would have been for the historian.

2. Al-™ºsî also cut out any sections that he considered to be repetitious.
At the beginning of Proposition 16, the Banº Mºsæ explain how the deter-
mination of two magnitudes lying between two others in such a way that all
four progress in proportion can be used also to solve the problem of extrac-
ting cubic roots. This technique is later summarized at the end of the book,40

and this summary does not appear in the version edited by al-™ºsî.
3. In the mathematical sections, al-™ºsî removed all except the essential

text. The expressions used to describe the proposition and the proof, such as
mithæl (example), aqºlu inna (I say), burhæn (proof), in amkana dhælika (if
this were possible), hædhihi Òºratuhu (this is its figure) and wa-dhælika mæ
aradnæ an nubayyin (this is what we wanted to show), all have been elimi-
nated, either in whole or in part.

However, throughout his entire edited version of the text, al-™ºsî makes
no alterations to the sense of the strictly mathematical sections of the work,
usually quoting these in full. He takes great care to distinguish his own notes
and comments from those of the Banº Mºsæ by preceding each of them
with the remark: ‘I say’. Comparing his edition with the Latin translation
shows that he made no changes to the structure of the lines of reasoning, or
to those of explanation. It can therefore rightly be said that he captured the
quintessence of the Banº Mºsæ text.

The situation is therefore less serious than we had feared, and we have
to admit that, to all intents and purposes, we have the original Banº Mºsæ

40 Cf. Proposition XIX in the Latin translation, p. 348.
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text. If some still need convincing, let us consider the example of Proposition
14, and let us attempt to ‘reconstitute’ its occurrence in the Arabic text that
was translated into Latin. This conjectural reconstitution will, no doubt, differ
from the original in the choice of some terms and syntactical expressions.
However, it is our contention that these differences will not be significant.
Such an exercise will, in any event, enable an assessment to be made of the
differences between the edited al-™ºsî version and the original text. For the
purposes of the comparison, it should be noted that the geometrical letters
†a’, zayn, wæw and jîm have been rendered as G, U, Z and T by Gerard of
Cremona and as C, F, G and I respectively by us (see Table I).

One possible objection to the above argument is that no-one, least of all
us, can claim a precise knowledge of the accuracy of the Latin translation. It
is true that this can never be known unless and until the actual text written
by the Banº Mºsæ themselves, or one or more fragments of it, comes to
light. Our search for such fragments has led to our discovery of two
propositions that, on analysis, seem to confirm the results already obtained.41

Apart from one or two transcription errors, it can be seen that Gerard of
Cremona produced a literal translation of the Arabic text, and that al-™ºsî
edited the text in the way that we have described. Before giving a further
table of comparisons to demonstrate these assertions, it should be
remembered that the rediscovered citations appear in an anonymous
commentary on Euclid’s Elements,42 in which the author cites, among
others, Thæbit ibn Qurra, al-Nayrîzî, al-An†ækî, Ibn al-Haytham, Ibn Hºd,
al-Dimashqî and al-Færæbî. This same author cites the Banº Mºsæ when
discussing the trisection of angles. He writes: ‘the angle may be divided into
three parts following what the Banº Mºsæ have indicated. A lemma ought to
precede this’.43 In this way, he cites Proposition 12 of the Banº Mºsæ
treatise, before going on to quote Proposition 18 (see Table II).

This comparison reassures us that the Latin translation is faithful to the
original text written by the Banº Mºsæ. Two different propositions, and
sufficiently widely separated from each other, demonstrate that Gerard of
Cremona made a literal translation of the Arabic text. They also confirm our
description of the nature of the editing process employed by al-™ºsî, by way
of an analysis that we carried out before discovering these citations.

41 It should be noted that the citation of these fragments demonstrates at least that the
Banº Mºsæ treatise was still in circulation at the end of the thirteenth century.

42 Ms. Hyderabad, Osmania University 992.
43 Ibid., fol. 50r:

متق وقد ةلابث زاويةلا س م .ركاش وبن هرذك ما ىلع مساأق ث د ق كذل وي دم ل .مق ة
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A first-rate mathematician himself, al-™ºsî also found time to rewrite a
number of fundamental treatises. The manner in which he approached this
task is now clear: he did not hesitate to excise portions of the original text
and he makes no attempt to convey the author’s style. However, he does
not alter the mathematical ideas or the structure of the treatise. He preserves
the original reasoning, and adds nothing to the book that was not there in
the original. Editing a text in this way is not easy, and only a mathematician
of the stature of al-™ºsî could have accomplished the task so well, albeit, not
uniformly performed. The most mathematically and technically complex of
the propositions are the hardest to deal with, and it is for this reason that the
propositions of this kind in al-™ºsî’s text are those that remain truest to the
Banº Mºsæ original. This can easily be seen by comparing al-™ºsî’s text
with the Latin translation. This is particularly the case with Propositions 17
and 18, in which the mathematics is accompanied by a description of the
technical instruments used. It is precisely at this point that three pages are
missing from the surviving copies of the Latin text, but, luckily, this section
appears in full in the edited al-™ºsî version.

This section also contains the most disconcerting assertions. We can
begin by revealing that, contrary to the statements of some commentators,
the method proposed by the Banº Mºsæ is different to that cited by
Eutocius and attributed to Plato. It should also be noted that nothing in this
section throws any doubt on its authenticity, or on its attribution to the Banº
Mºsæ. Al-™ºsî himself, who always took great pains to distinguish between
his own work and that of the Banº Mºsæ, leaves us in no doubt on this
point. Moreover, the history of the Arabic text also confirms the attribution
of this section to the Banº Mºsæ. Finally, both the Arabic text and the Latin
translation provide a clear response to this question. This is easy to
understand if we consider that the text in question appears at the end of
Proposition 17 in the Banº Mºsæ text. In Proposition 18 of the same text,
the Banº Mºsæ refer explicitly to the mechanical procedure described in this
fragment. The enunciation of Proposition 18 may be translated from the
Arabic as: ‘Using this ingenious procedure, we may divide any angle into
three equal parts’, while a corresponding translation from the Latin version
reads: ‘Et nobis quidem possibile est cum hoc ingenium sit inventum ut
dividamus quemcunque angulum volumus in tres divisiones equales’ (p. 344,
1–3). However, a reader of the Latin text alone would not have access to
the ‘ingenious procedure’ that the Banº Mºsæ referred to, hence
demonstrating that it could not have been inserted by al-™ºsî. The Banº
Mºsæ wrote later in the text, based on al-™ºsî’s version: ‘Now, move GH
using the ingenious procedure described ...’ (infra, p. 109), which Gerard
translated as: ‘Et quoniam possibile est nobis per ingenium quod narravimus
in eis que premissa sunt et per ea que sunt ei similia ut moveamus lineam
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ZH …’ (pp. 346–8, 33–35), ‘And since by means of the device which we
have described in connection with the propositions previously proved and
by means of things which are similar to it it is possible for us to move line
GH ...’ (Clagett’s translation, pp. 347–9).

It is therefore patently obvious that this ingenious procedure was
described earlier by the Banº Mºsæ, in a passage not translated by Gerard of
Cremona.

There is no escaping it – anyone wishing to study this contribution from
the Banº Mºsæ is obliged to tackle the problem on two fronts: the edited al-
™ºsî version and the Latin translation. Each serves to illuminate the other.
The Latin translation clarifies the ™ºsî edition, while the ™ºsî edition defines
the boundaries for the Latin translation. In some respects, the edited al-™ºsî
version provides a more faithful rendering of the quintessence of the text,
despite his interventions, but one cannot deny that the Latin translation
provides more of the detail, declarations and repetitions – all integral parts of
the original text, and cut out by al-™ºsî. Both versions have contributed to
the preservation of the Banº Mºsæ text, and have assured its historical
position as the principal reference to Archimedean teaching for many
centuries.
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TABLE I

I
TRANSLATION BY GERARD

(Clagett, pp. 328–31)

II
RECONSTITUTION OF THE ARABIC TEXT OF

I (PROPOSITION 14)

(1) Embadum superficiei omnis medie-
tatis spere est duplum embadi superfi-
ciei maioris circuli qui cadit in ea.

The surface area of every hemisphere is double the area of the greatest circle which falls
in it.

(2) Verbi gratia, sit medietas spere
BCAD, et maior circulus qui cadit in ea
sit circulus ABC, et punctum D sit polus
huis circuli.
For example, let there be the hemisphere BCAD and circle ABC the greatest circle
falling in it, and let point D be the pole of this circle.

(3) Dico ergo quod embadum superficiei
medietatis spere ABCD est duplum em-
badi superficiei circuli ABC, quod sic
probatur.

I say, therefore, that the surface area of hemisphere ABCD is equal to double the area of
circle ABC.

(4) Si non fuerit duplum embadi circuli
ABC equale superficiei medietatis spere
ABCD, tunc sit duplum eius aut minus
superficie medietatis spere ABCD aut
maius ea.
Proof: If double the area of circle ABC is not equal to the area of hemisphere ABCD,
then it is less than the area of hemisphere ABCD or greater than it.

(5) Sit ergo in primis duplum embadi
circuli ABC minus embado superficiei
medietatis spere ABCD, si fuerit illud
possibile. Et sit duplum embadi circuli
ABC equale superficiei medietatis spere
minoris medietate spere ABCD, que sit
medietas spere EHIK.

First, let double the area of circle ABC be less than the area of hemisphere ABCD, if that
is possible. And let double the area of circle ABC be equal to the area of a hemisphere
smaller than hemisphere ABCD, namely, hemisphere EHIK.

ح نإف ةرك فصن لك سا و هسطح ةم لب )أ (ب  فعض ه

ح ا يلا ةميلعظا ةردائلا سطح ةم غ ت ه تئ  . افي

ك ذ لاشم نلف ؛ل ك  ةرودائ ،ةرك فصن د ج ب آ ي

ع ةميظع ج ب ا ه تق ي ه بقط د ةطونق اف ذ  ■ ةردائلا ه

ن لوفأق ح ؛ إ سا  ةرك فصن (طيسب رأو سطح ةم

ح فعض د ج ب ا ا س ح ةم ط  ج ب ا ةردائ س

هاوا_ره .أن ذ . .

م نإف ن ل ك ح فعض ي ا ح ةم ط  ج ب ١ ةردائ س

سا ،م ح و ا م ح ةل ه د ج ب ا ةرك فصن سط ماإ وف

ن ماوإ انهم لأق يخون أن ن أ و ك هم رأكث ي  - ان

نلف ك و ي ح فعض آلأ ا ح ةم  لأق ج ب ا ةردائ سط

ح نم سا ن ، د ج ب ا ةرك فصن سطح ةم نمأ إ  ك

كذ نلو ؛ل ك ح فعض ي ا ح ةم ط  ج ب ١ ةردائ س

و ا ح اتس ا م ح ةل  ةرك فصن نمب لأق ةرك فصن سط

ن ، د ج ب ١ ك ي .ك_ ط ح ه ةرك فصن و
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III
AAAALLLL----™™™™ªªªªSSSSïïïï’’’’SSSS    EEEEDDDDIIIITTTTIIIIOOOONNNN COMMENTS

The surface area of a hemisphere is double the
area of the greatest circle which is its base.

It can be seen that the meaning is conser-
ved and that the expression used by al-™ºsî
is a little shorter.

Therefore, let the hemisphere be ABCD, the
greatest circle ABC falling in it and which is
its base, and let D be its pole.

The only difference is that in text (III) the
greatest circle is the base of the hemis-
phere, which is only implied in (I and II).

This phrase has been removed by al-™ºsî.

If double the area of circle ABC is not equal to
the area of the hemisphere,

The Latin translator then only retains one
of the two terms embadum and superfi-
cies. Al-™ºsî takes off the second part,
continuing directly with the alternative.

first, let it be less than it, and let it be equal to
the area of a hemisphere that is smaller than
the hemisphere ABCD, namely the hemi-
sphere EHIK.

The two texts are identical except for the
fact that al-™ºsî has used pronouns in place
of the subjects, and has removed the
phrase ‘if that is possible’, which is
implied in the exposition. It is these stylis-
tic differences that distinguish the ‘edition’
from this section of the text.

ح ط يلمسا ةركلا فصن س د ئلا سطح فعض رت  ةردا

ىلا ةميلعظا هاق هى ت ت د . اع

نلف ك ةميظع ج ب ١ ةرودائ ،ةرك فصن د ج ب ا ي

هاق وهي افيه تقع .ابهطق ود اعدت

ن لم نإف ك ح فعض ي ط وي(مساب ج ب ا ةردائ س

ح ط م ،ةركلا فصن ل

نلف ك ه،م رنصأ ألأو ي نلو ن ك ،عام ي ح و ط  فصن ل

ةرك فصن ووه ، د ج ب ا ةرك فصن نمب رنصأ ةرك
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I
TRANSLATION BY GERARD

II
RECONSTITUTION OF THE ARABIC TEXT

(6) Cum ergo fiet in medietate spere
ABCD corpus compositum ex portioni-
bus piramidum columnarum, cuius basis
sit superficies circuli ABC et cuius
caput sit punctum D, et ponetur ut cor-
pus non tangat medietatem spere EHIK,

When, therefore, there is described in hemisphere ABCD a body composed of segments
of cones, the base of which body is the surface of circle ABC and its vertex is point D,
and it is posited that the body does not touch hemisphere EHIK,

(7) tunc oportebit ex eis que premisimus
ut embadum superficiei corporis ABCD
sit minus duplo embadi superficiei cir-
culi ABC. Sed embadum superficiei
corporis ABCD est maius embado su-
perficiei medietatis spere EHIK, quo-
niam continet ipsam. Ergo embadum
superficiei medietatis spere EHIK est
multo minus duplo embadi superficiei
circuli ABC. Et iam fuit ei equalis. Hoc
vero contrarium est et impossibile.
then from what we have proved before it will follow that the surface area of body ABCD
is less than double the area of circle ABC. But the surface area of body ABCD is greater
than the surface area of hemisphere EHIK, since the one contains the other. Therefore,
the surface area of hemisphere EHIK is much less than double the area of circle ABC.
But it was posited as equal to it. This indeed is a contradiction and is impossible.

(8) Et iterum sit duplum embadi superfi-
ciei circuli ABC maius embado superfi-
ciei medietatis spere ABCD, si fuerit
possibile illud. Et sit equale superficiei
medietatis spere maioris medietate
spere ABCD, que sit medietas spere
FGLM.

Now again let double the area of circle ABC be greater than the surface area of hemi-
sphere ABCD, if that is possible. Let it be equal to the area of a hemisphere greater than
hemisphere ABCD, namely, hemisphere FGLM.

(9) Cum ergo fiet in medietate spere
FGLM corpus compositum ex portioni-
bus piramidum columpnarum, cuius ba-
sis sit superficies circuli FGLM et cuius
caput sit punctum D, et non sit corpus
tangens medietatem spere ABCD,

اإف لع ذ م د ج ب ا ةرك فصن في م س ج  عطق نم م

طأل ا تاوطرخم نم ر ي،ما ،ضعب ىلع اضهعب بكم

هاق ت د د ى ا ة قاب ع ق هسأ ١٩ م , ،ممام لا ثحب د ةطن

؛ م مس ب

اف م ك اآنت ابين م ح نوت ا س ح ةم س سط ع  مم

ح فعض نم لأق د ج ب ا ا ح ةم ط  ةردائ س

نلو ■ -ج ب ا ح ك ا ح ةص ط م س س ج  د ج ب ا م

ا ضرأكث س ح ،،تةم  أنل £■ ط ح ه ةرك فصن سط

طحي أوللا لب ي حن .رآخا ا ح ةم ط  ةرك فصن س

ر ت ط ح ه ا فعض نم أركثي أق ح >ةس  ةرئ1د سط

د ج. ب ا ن وق ف هذا مغله، كا . لا خل ن ك ي

نل مث ك ح فعض ي ا ح ةس ط  رأكف ج ب ا ةردائ س

ح نم ا ح ةم ط ن ،د ج ب ١ ةرك فصن س نمأب إ  ك

كذ نلو ؛ل ك و ي سا ح ايم سا ح ةل  ظمأع ةرك فصن سط

نلو ،د ج ب ا ةرك فصن نم ك ةرك فصن ي

اإف ل ذ م ةرك فصن قي ص د ن سم و ج  نم عطق نم م

طألا تاوطرخم ا ر نس هعب بكم ض،عب ىلع اض

هاق ت د ة هسورأ ج ب ؛ةردائ ع ط ق ثحب د ن سمما لا ي

.د ج ب ا ةرك فصن
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III
 AAAALLLL----™™™™ªªªªSSSSïïïï’’’’SSSS    EEEEDDDDIIIITTTTIIIIOOOONNNN

COMMENTS

If, as we have described, we inscribe
within the hemisphere ABCD a solid whose
base is the circle ABC and whose vertex is
the point D , such that it does not touch
hemisphere EHIK

Identical. Al-™ºsî has simply replaced
‘composed of segments of cones’ with ‘as
we have described’ in order to avoid a
repetition. This appears to be one of the
motives for him writing his ‘edition’.

Then its surface area will be less than
double the area of the circle ABC  and
greater than the surface area of the hemis-
phere EHIK. Twice the area of the circle
ABC, which is equal to the surface area of
the hemisphere EHIK is much greater than
it. This is contradictory.

Now, let double the area of the circle ABC
be greater than the surface area of the
hemisphere ABCD, and let it be equal to the
surface area of the hemisphere FGLM.

In this way, al-™ºsî has combined two
steps in the proof into a single step.

As before, al-™ºsî has omitted the descrip-
tion of the solid, simply reminding us that
it has already been described, thereby
removing an unnecessary repetition from
this section of the text.

اإف لع ذ م د ج ب ا ةرك فصن قي م س ج اك — م  م

هاق — افنوص ت د ثحب د ةطنق هسورأ ج ب ا ةردائ ع  ي

، ةرك فصن س ي لا

ح ناك ط ح فعض نم رنصأ هس ط ج ب ا ةردائ س

موأع ن ظ ح م ط فعفض . ةرك فصن س

ح ط وا ج ب ١ ةردائ س ا م ح يل سمل  ةرك فصن ل

ك ء خ آ هم إكقي مأعظ ه .كخ ١ هذ ؛ن

نل مث ك ح فعض ي  سطح نم ظمأع ج ب ا ةردائ سط

نلو ،د ج ب ا ةرك فصن ك ا ي س ،م ح و ط س فصن ل

لون ه عم ي ا ف م س ج اك ” م نصو م سام رغي " اف
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I
TRANSLATION BY GERARD

II
RECONSTITUTION OF THE ARABIC TEXT

When, therefore, there is inscribed in hemisphere FGLM a body composed of segments
of cones, the base of which body is circle FGLM and its vertex is point D and the body
does not touch hemisphere ABCD,
(10) tunc oportebit ex eo quod premi-
simus ut sit embadum superficiei cor-
poris FGLM maius duplo embadi circuli
ABC.
then it will follow from what we have proved before that the surface area of body
FGLM is greater than double the area of circle ABC.
(11)  Verum embadum superficiei me-
dietatis spere FGLM est maius embado
superficiei corporis FGLM.

But the surface area of hemisphere FGLM is greater than the surface area of body
FGLM..
(12)  Ergo embadum medietatis spere
FGLM est maius duplo embadi superfi-
ciei circuli ABC. Sed iam fuit ei equale.
Hoc vero est contrarium et impossibile.

Therefore, the surface area of hemisphere FGLM is greater than double the area of
circle ABC. But it was posited as equal to it. This indeed is a contradiction and is
impossible.

(13)

Therefore, the surface area of the hemisphere
ABCD is not smaller than double the area of
circle ABC; but we have proved before that is
not greater than it; it is then equal to it. This
is what we wanted to prove.

(14) Iam ergo ostensum est quod em-
badum superficiei omnis spere est quad-
ruplum embadi superficiei maioris cir-
culi cadentis in ea. Et illud est quod
declarare voluimus. Et hec est forma
eius.

Therefore, it has now been demonstrated that the surface area of any sphere is quadruple
the area of the greatest circle falling in it. And this is what we wished to show. And this
is its form.

ك ي ح نوف ا ح ةم ط مب س س ج م م د ن  نمب رأكث و

ح فعض ا ح ةم .مر لما ،ج ب ا ةردائ سط

حو سا م ةرك فصن سطح ةم د ن  ةمساحب نمب مأعظ و

م م سطح د ن  .به طايمح نهوكل و

حف سا م ةرك فصن سطح ةم د ن  نع ار'كثي رأكث و

حة ضعف سا ن وقد ج، ب ا دائرة سطح م ه؛ كا  مثل

خ ذا .لافله ن ك  ؛

ح سيلف ا ح ةس  نم لبأق د ج ب ا ةرك فصن سط

حب فعض ح ةمسا د ج، ب ا ةردائ سط ق ن اكن و  ابي

ه ه ربأكث تل اأن ى ٠ امن ه ن ف ذ كوذ ؛ اهلثم إ  ما ل

أ د ر ن• أن أ ني

كوهن ل ح نإف ةرك لك أن ؛نإتب ا سا  ةعأرب اهسطح ةم

ع ةردائ ظمأع سطح ةمساحب لاغمأ ه تق ي  ما وهذا ،اف

.ابين اأردن هذه ه رته.صو و
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Let us inscribe within this a solid – as we
have already described – such that it does
not touch the hemisphere ABCD.

The area of the solid is greater than double
the area of A B C , according to what
precedes.

The only difference between this and (III)
is the presence of the word ‘area’ and the
naming of the solid.

and the area of the hemisphere FGLM is
greater than the surface area of the solid as
it surrounds it.

The final phrase, ‘as it surrounds it’, is
missing in the Latin version, and al-™ºsî
has not named the solid.

The area of the hemisphere FGLM  is
therefore much greater than double the area
of ABC . Now, it is equal to it; this is
contradictory.

The assertion is therefore proved. This is
what we required.

The phrase by al-™ºsî: ‘The assertion is
therefore proved. This is what we requi-
red’, has no counterpart in the Latin trans-
lation. However, given their known style
of writing, it is extremely unlikely that the
Banº Mºsæ would have forgotten to in-
clude such a conclusion. It is more likely –
and the remainder of their treatise supports
this – that the conclusion is missing, either
omitted by Gerard or not present in the
manuscript that he was translating.

It has been shown from this assertion that
the surface area of a sphere is four times the
area of the greatest circle that can be found
within it.

ما سطح نوفيك س ج  ج ب ١ ةردائ فعض نم ظمأع ل

.صلما

م ةرك فصن سطحو د ن ما سطح نمب ظمأع و س ج  ل

به أطيمح كونهل

م ةرك فصن سطحف د ن  نمب أركثي ظمأع و

ف.لخ هذا ه؛لثمب ناوك ؛اج ب ١ ةردائ سطح

نإف ت؛اث مكلحا ذ كوذ ب هاأردن ما ل

ح لاثمأ ةعأرب ةركلا سطح أن نهمب ناب وقد لمأعف ط

ع ةردائ .افيه تق
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TABLE II

I
GERARD’S TRANSLATION

(Clagett, pp. 310–15)

II
ARABIC TEXT OF PROPOSITION 12

Cum fuerit circulus cuius diameter sit pro-
tracta, et protrahitur ex centro ipsius linea
stans super diametrum orthogonaliter et
perveniens ad lineam continentem et seca-
tur una duarum medietatum circuli in duo
media, tunc cum dividitur una harum dua-
rum quartarum in divisiones equales quot-
cunque sint, deinde protrahitur corda sec-
tionis cuius una extremitas est punctum
super quod secant se linea erecta super
diametrum et linea continens et producitur
linea diametri in partem in quam concur-
runt donec concurrunt et protrahuntur in
circulo corde equidistantes linee diametri
ex omnibus punctis divisionum per quas
divisa est quarta circuli, tunc linea recta
que est inter punctum super quod est
concursus duarum linearum protractarum et
inter centrum circuli est equalis medietati
diametri et cordis que protracte sunt in
circulo equidistantibus diametro coniunc-
tis.

When there is a circle whose diameter is drawn and there is drawn from its center a line per-
pendicular to the diameter and terminating at the circumference so that one of the two halves
of the circle is bisected, and then when one of the two quadrants is divided into any number
of equal parts and the chord of the segment, one of whose extremitites is the point of inter-
section of the line erected on the diameter and the circumference, is produced while the dia-
meter is produced in the direction of their intersection until the two lines intersect, and there
are drawn in the circle from the points at which the quadrant arc of the circle is divided
chords parallel to the diameter, then the straight line between the point where the two exten-
ded lines meet and the center of the circle is equal to the sum of the radius plus the chords
drawn in the circle parallel to the diameter.

ذا تاك إ خ ةردائ ن ر نمب جروأ هم ز ق ئطخ اك  ىلع موي

ى ةمئاق زاوية ىلع طرقلا ه حا طخ ىلإ وينت  صلويف طيل

هإف ض،صبن ةردائلا فصن ذا ن مق إ ن دحا س ذي را ه  ةعبل

ةساتم مسابأق ،اك مك وي ت خ مث ن يلا سمشلا روت جرأ  ذ

هطر دحأ ي لتف ةطنق ف ص رق فصن ا  عم مئاقلا ةرئادلا ط

خ ،طيلمحا طخلا ي طرقلا جروأ ةلجا ف يال ه يلي ت ق  نات

ه ي خ ،اف و راأوت ةردائلا في جروأ  نم طرقلا طخل ازيةم

م اأقلا طنق يعج يلا مس ه سمف ت  نإف ،ةردائال رع اب

يلمسا طخلا ق يلا مت ن ذ يلا ةطنقلا بي يلا ت ق هلع ت  ناخطلا اي

اخلا ج ئ نر ر وب زم رق فصن لثم ةردائلا ك  ةردائلا ط

يلا راأوتلوا خ ت ي ترجأ ةلموا ةردائلا ف زي رقلل ا  ط

.عةوممجب
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It can be seen that al-™ºsî, in line with his
common practice, has omitted the protasis
from his edition, beginning directly at the
ekthesis.

Gerard of Cremona translated the Arabic
text literally, and the sole difference is probably
due to a copying error occurring at some point
in the manuscript tradition. This concerns the
phrase ‘Cuius diameter sit protracta’, which is
a translation of the Arabic wa-ukhrija qu†ruhæ.
This is most probably a saut du même au
même, and the original was more likely to
have been
ÆÆÆU¼e�d� s� Ãdš√Ë U¼dD� Ãdš√Ë …dz«œ X½U� «–≈

Critical apparatus for Text II:

هرط 5 “ ى دحا ؛دحأ 3 ي ر ؛ف صلتف I تمفط  لضاتف ؛ا

خ أ و ? خر- وا ؛ ت.رجج
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I
GERARD’S TRANSLATION

II
ARABIC TEXT OF PROPOSITION 12

Verbi gratia, sit circulus ABC, cuius dia-
meter sit linea AC  et cuius centrum sit
punctum D. Et protrahatur ex eo linea DB
erecta super lineam AC orthogonaliter et
dividat arcum ABC in duo media. Et divi-
dam quartam circuli super quam sunt A, B
in divisiones equales quot voluero et
ponam eas divisiones AG, GL, LB. Et pro-
traham cordam BL et faciam ipsam pene-
trare. Et elongabo iterum lineam AC, que
est diameter, secundum rectitudinem
donec concurrant super punctum E. Et pro-
traham ex duobus punctis G, L duas cordas
GI, LH equidistantes diametro AC. Dico
ergo quod linea DE est equalis medietati
diametri et duabus cordis GI, LH coniunc-
tis, cuius hec est demonstratio.
For example, let there be a circle ABC whose diameter is line AC and whose center is point
D. And from the center let line DB be drawn perpendicular to AC, thus bisecting arc ABC.
And I shall divide the quadrant AB into as many equal parts as I wish, and I shall assume
these parts to be AG, GL, LB. And I shall draw chord BL and make it continue. And I shall
also extend line AC, the diameter, rectilinearly until they meet at point E. And I shall draw
from the two points G and L the two chords GI et LH parallel to diameter AC. I say, there-
fore, that line DE is equal to the sum of the radius plus the two chords GI and LH.
Protraham lineam IA et protraham lineam
HG et faciam ipsam penetrare secundum
rectitudinem donec occurrat linee EC super
F. Et similiter faciam, si quarta circuli su-
per quam sunt A, B fuerit divisa in divi-
siones plures istis divisionibus. Linee ergo
IG, HL sunt equidistantes, quoniam taliter
sunt protracte. Et linee IA, HF, BE sunt
equidistantes propterea quod due divi-
siones IH, HB sunt equales duabus divi-
sionibus AG, GL. Ergo quadratum IAFG
est equidistantium laterum. Ergo linea IG
est equalis AF. Et iterum quadratum HFEL
est equidistantium laterum. Ergo linea HL
est equalis FE . Ergo tota linea ED  est
equalis duabus lineis IG, HL et linee erec-
te que est medietas diametri coniunctis.

Proof: I shall draw line IA and I shall draw line HG, continuing the latter rectilinearly until it
meets line EC at F. I shall proceed in a similar way if the quadrant AB is divided into more
parts than these. Hence lines IG and HL are parallel, since they are so drawn. And lines IA,
HF and BE are parallel, since IH is equal to AG and HB is equal to GL. Therefore, the
quadrilateral IAFG  is a parallelogram. Therefore, line IG is equal to AF. And also
quadrilateral HFEL is a parallelogram. Therefore, line HL is equal to FE. Therefore, the
whole line ED is equal to the sum of IG and HL plus the radius.

؛الثم رق ،ج ب ا ةردائ ه ر ج ا اهط م هو ز  ، د ةطنق اك

د ئ خ و هم جرأ  ىلع ج ا طخ ىلع مويق ب د طخ ن

ا ت ي و م ،تما|متإتي زا س ق ي س و و ن ج ب ا ل ث م ن م .ب ث

ه ع منق ئلا ر يلا ةردا هلع ذ سابأق ب ا ي امت مع ةس مك وي

لون ■ ب ل ل ز ز ا وهي ،اشئن  ج ا يطخ ونخرج ،ب ل ص

خ ، ه ةطنق ىلع اتقيلي تىح ب ل يطنق نم جرون  ل ر ت

 ه د طخ إن ؛لوفأق .ج ا طرق ناازيوي ح ل ط ز يروت

.عةمجموب ح ل ط ز يرووت طرقلا فصن لثم

هاهرب خ اأن ؛ن جن خ ،ا ط طخ ر جون ذ ز ح طخ ر ف ن  ه ون

قسا ىلع مت ىح ةا ىلي ت  و. ةطنق ىلع ج ه طخ j ق

كوكذ ن رندب ل تاك إ ل ن ك جؤ طوفخط .رأكث مساأقا  د

ذ اأنهل ازيةوتم ل ح ز ط كك خ ل جأ ي تر وآ ف  ،حفل

ةوتم ب —ه ح و ط ا ططووخ ي ن لأ نم ا  يمق أن ج

مقل ناويتمساب ح ب ح ط ، ا يس ل ز  ز و ١ ط بعمرف ن

ن و. ا لثم ز ط طوخ علاأضلا ازيوتم ر اوأيق  عم

ط ، علاأضلا ازيوتم ل ه و ح خ ، و طخ لفم ل ح ف  ه

حف م ر د ه طخ ج سا رقلا فصنلو ل ح ز ط يطخل م  ط

.عةمجمو
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COMMENTS

Let ABC be a circle of diameter AC with its
centre at D. The perpendicular DB is drawn to
the diameter at the point D. Let us divide the
quarter AB into any number of equal parts,
which are AG, GL and LB. Let us draw the
chord BL and extend it. We also extend the
diameter CA until they meet at E and we draw
the two chords GI and LH from the points G
and L  such that these are parallel to the
diameter CA. I say that the straight line DE is
equal to the sum of one half of the diameter CA
and the two chords GI and LH.

After having ignored the word mithæluhu
(example), al-™ºsî here recasts the Banº Mºsæ
text in a language that is more compact and
often more elegant.

The Latin translation does not depart from
the original. The minor variation in the phrase
‘Et protraham … punctum E’ is doubtless due
to the translation.

We draw IA and HG and extend HG until it
meets CE at F. We proceed in a similar way if
more parts have been used. The straight lines
CE, IG and HL are parallel, and the straight
lines IA, HF and BE are parallel as the two
arcs IH and HB are equal to the two arcs AG
and GL . The surface IAFG  is therefore a
parallelogram and IG is equal to AF. In the
same way, HL is equal to FE, and therefore
DE  is equal to the sum of DA, IG and HL.
That is what we required.

Al-™ºsî ignores the word burhæn (demonstra-
tion), and condenses the Banº Mºsæ text,
changing some of the terms, for example: wa-
mithlu dhælika, li-anna, sa†Ì in place of wa-
kadhælika, min ajli an, murabba‘. These are in
fact synonyms. More importantly, when the
line of reasoning (for ED), is followed exactly,
it also follows the reasoning employed by the
Banº Mºsæ. The Latin translation is completely
faithful, with the exception of a minor variation
‘si quarta circuli …’, which could be an
explanation inserted by Gerard or by the
copyist of the manuscript that he translated, as
it is implied by the text.

Critical apparatus for Text II:

نل ك رو ج ا اهمطرت ةردائ ج ب ا ي هم ز دو ، د اك  ممات ق

وع هم ب د دم رقلا ىلع ن منلو ،ط س  ممعابأت ب ا رع م

ةساتم تاك مك وي خلو ،ب ل ل ز ز ا وهي ■، ن روت جرن

ذو ل ب ف ن ذ ،ه ت ف ن ن يلي أن ىلإ ا ج طرق و ق ، ىلع ات  ه

خ يحلنق من جرون و ح ل ط ز يروت ل ز ت طرقل ازيثنم

ق .ا ج أ رق فصن وياي ه د طخ إن ؛لوف  ا ج ط

.يثجم ح ل ط ز يرووت

ج خر ذ ز ح ا ط فن ف ن ىلي أن ىلإ ز ح ون  و، ىلع ه ج ق

كذ لويق تاك إن رندب ل خ . رأكث ممساأتلا ن  ططوف

ة ل ح ز ط ه ج زي وا ط ،مت طو خ  ه ب و ح ا ط و

سا ب ح ح ط يوسق أنل ا ازيةوتم ول ناويتم  ز ا يسق

حف ،ل ز ط  .و ١ لثم ز طو علاأضلا ازيوتم ز و ا حل س

ك ذ لثموب  ل ح ز ط ا د لمث ه د ف ، ه و لثمب ل ح ل

م كوذ ؛ عايج .هاأردن ماب ل

درن ؛رندب 3 ذ ه ب ي كك كذل ؛ل د ي؛مث ق ” ل  أرتق ق

؛ ي ه وفي ف ذ حالا ه ن ةل و ك وا ي ص بل  ة — يوسف ا

مقل j اب ؛ح ب د ؛يسقل ؛يس بلصووا ،يسقل أرتق ق ا

ل اط ؛ز و ا ط مر يوسقل نويك  8 ” زاي واو فلا دا

.ملا اه واو اه ؛ل ه و ح
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I
GERARD’S TRANSLATION

II
ARABIC TEXT OF PROPOSITION 12

Si ergo nos protraxerimus in hac figura
lineam ex centro et secuerit unam corda-
rum divisionum quarte circuli in duo me-
dia, sicut lineam DM, tunc secatur linea
LB super duo media super punctum M in
duo media. Tunc iam scietur ex eo quod
narravimus in hac figura quod multiplica-
tio medietatis corde BL in duas cordas
equidistantes diametro et in medietatem
diametri coniunctas est minor multiplica-
tione medietatis diametri in se et maior
multiplicatione linee DM in se, propterea
quod triangulus DMB est similis triangulo
EDB et est similis triangulo EMD. Ergo
proportio linee MB ad BD est sicut pro-
portio DB ad BE.
   Et propter illud erit multiplicatio linee
DB, que est medietas diametri, in se
equalis multiplicationi linee M B  in
lineam BE. Verum linea BE est longior
duabus cordis GI, LH et medietate dia-
metri coniunctis, propterea quod iste
coniuncte sunt DE, et linea BE  est lon-
gior DE. Ergo multiplicatio linee MB in
duas cordas GI, LH et in medietatem
diametri coniunctas est minor multiplica-
tione medietatis diametri in se. Et quo-
niam triangulus DMB est similis trian-
gulo EMD, erit proportio BM ad MD sicut
proportio MD  ad ME . Et similiter erit
multiplicatio linee B M  in lineam M E
equalis multiplicationi linee MD  in se.
Sed linea ME est minor duabus cordis GI,
LH et medietate diametri coniunctis,
propterea quod iste omnes sunt equales
linee DE, et linea DE  est longior EM.
Ergo multiplicatio MB in duas cordas GI,
LH et in medietatem diametri coniunctas
est maior multiplicatione DM in se.
Hence in this figure we draw a line, e.g., line DM, from the center thus bisecting one of the
chords of the quadrant, LB being the line bisected at point M. Then it will already be known,
from what we have recounted concerning this figure, that the multiplication of one half of the
chord BL by the sum of the two chords parallel to the diameter plus the radius is less than the
square of the radius and is greater than the product of DM with itself, because of the fact that
the three triangles DMB, EDB, and EMD are similar. Therefore the ratio of MB to BD is
equal to the ratio of DB to BE.

خ نحن وإن كال هذا في انرجأ زلمرا نمب طاخ لش  عطوق ك

، ةردائلا رع راأوت نمب أروت ن ش ت ن ط لثم ب  عطيق م د خ

د ،ضصبن م ةطنق ىلع ل ب ق نصو ام علمن ف  أن اف

فعتض لب ل ب روت فصن ي ل ازيةلموا راأوتا رقل ط

مه ة^ردائلا رقط فصذون فعتض نم لأق وعهج فصن ي

طر ق عظم بمثله ال ف من وأ ي ع ض ل من ؛يقلمه م د ت ج ن أ أ

ه ب م د ثلثمب شب  د م ه ثلثمب هجيشو ب د ه ثلثمب ي

ةسون . ب ىلإ ب د بةسكن د ب ىلإ ب م طخ ب  ه

كذلف فعتض نويك ل يلا ب د طخ ي رقلا فصن وه ذ  ط

فعتف لثم هملب خ ب م خط ي نلو .ه ب طب  طخ ك

ط ب ه. رقلا انصون ح ل ط ز يروت نم لوأ  ط

فعفتش .عةمجمو  ب ود ط ور ح ل طوبخط ب م طخ ي

yم ج عةم ن (و فعتض نم أق  أنلو .هلثمم طرقلا فصن ي

ه ب م د ثلثم ب ش ة نويك ،ه م د ثلقم ي ب  م ب ش

. م ىلإ د م ةسجكن د م ىلإ كذلو ه فعتض نويك ل  ي

خ م ب خط فعتض لثم ه م طب  أنول .هلبف د م طخ ي

رقلا فصون ح ل ط ز يروت نمب رنصأ ه م طخ  ط

لأ نمب عة،مجموب  طوخ ه د طخ لثم آعيجم هذه أن ج

ط ه د فعفتض ،ه م طخ نمب j لوأ  ط ز يرتوب ب م ي

وم طرقلا فصون ح ل م ةج فعتض نم ظمأع ع م د ي

.لمقمم ه
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If we draw DM perpendicular to the chord BL,
then half of the product of BL and DE is less
than the square of the half-diameter and greater
than the square of DM, as the two triangles
DBM  and BED  are similar, given that the
angles DMB and EDB are right angles and the
angle B is common to both. The ratio of BM to
MD  is therefore equal to the ratio of BD to
DE.

This time, al-™ºsî summarizes the Banº Mºsæ
text without changing any of the reasoning. In
place of ‘wa-in … al-shakl’, he writes simply
‘wa-in akhrajnæ�…’; and similarly, instead of
‘kha††an … EBD’, he writes ‘‘amºdan …
BED’.

In the latter phrase, he uses a ratio that is
different from that used by the Banº Mºsæ.

The Latin version is a literal translation of
the Arabic, with the exception of a few small
variations. ‘in hac figura’ (fî hædhæ al-shakl)
does not appear in the Arabic, and the dual ‘in
duas cordas’ is a plural in the Arabic. Al-™ºsî
also adds a justification for the triangles being
similar that appears in neither the Arabic nor
the Latin. He then summarizes the Banº Mºsæ
text, which he must doubtless have found
excessively long. Gerard follows the Arabic
text word for word except for a few small
variations. The phrase ‘propterea … longior
DE’, which must be a translation of ‘min ajli
anna hædhihi jamî‘an mithlu DE wa-kha†† BE
a†wal min DE’, does not appear in the Arabic.
It is difficult to judge whether this is an
omission or whether it is a superfluous
addition inserted either by the translator or by
one of the copyists. In the second variation, in
place of ‘the straight lines LH, GI and DB’ in
Arabic, the Latin version is more explicit,
repeating ‘duas cordas … diametri’.

Finally, Gerard writes ‘Et similiter …’,
which must be a translation of kadhælika, and
which is a copyist error. The text should read
wa-lidhælika.

جأخ وإن وع م د انر  سطح ناك ،ل ب روت ىلع دمم

روأكث طرقلا فصن بعرم نم رنصأ ه د في ل ب فصن

، مبمرب نم م كوذ د ىلثمب أنل ل  د ه ب م ب د ث

هاتشم نل ناب وزاوية اتنيمئاد ب د ه ب م د زاويتي كو

ةرمشت ب ةسفن ،ك ة د م ىلإ م ب ب ب ن  ىلإ د ب ك

- د ه

ي “ ل ب فصن أعني — م ب ف ا ه د ف  د ب ل ومس

د م ي ف د ب و . د م ي  نمب ظموأع د ب بعمر نمب رغصأ ف

نإف . د م حبمر رقلا فصن في ل ب فصن ذ  يروت وفي ط

م ل ح ز ط لموأعف طرقلا فحن مرحب نم رنصأ عايج

• م د بعرم نم
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I
GERARD’S TRANSLATION

II
ARABIC TEXT OF PROPOSITION 12

Hence, the product of DB with itself is equal to the product of MB and BE, DB being the
radius. Now line BE is greater than the sum of GI and LH plus BD, since the sum of GI and
LH plus BD is equal to DE, and BE is greater than DE. Hence, the product of line MB and
the sum of GI and LH and BD is less than the product of DB with itself. And since triangle
DMB is similar to triangle EMD, the ratio of BM to MD is equal to the ratio of MD to ME.
And similarly the product of BM and ME is equal to the product of MD with itself. But line
ME is less than the sum of GI and LH plus BD, since the sum of GI and LH plus BD is
equal to DE, and DE is greater than EM. Therefore, the product of MB and the sum of GI,
LH and BD is greater than the product of DM with itself.

Iam ergo ostensum est quod in omni cir-
culo in quo protrahitur ipsius diametrus
deinde dividitur una duarum medietatum
ipsius in duo media, postea dividitur una
duarum quartarum in divisiones equales
quotcunque fuerint et protrahuntur ex
punctis divisionum omnium corde in cir-
culo equidistantes diametro, tunc multipli-
catio medietatis corde unius sectionum
quarte circuli in medietatem diametri et in
omnes cordas que protracte sunt in circulo
equidistantes diametro coniunctim est
minor multiplicatione medietatis diametri
in se et maior multiplicatione linee que
egreditur ex centro et pervenit ad unam
cordarum divisionum quarte circuli et
dividit eam in duo media in se. Et illud est
quod declarare voluimus.

Therefore it has now been demonstrated that in every circle where the diameter is drawn
and one of the two halves of the circle is bisected and one of the two quadrants <thus
formed> is then divided into any number of equal parts and from the <dividing> points of
the parts are drawn chords in the circle parallel to the diameter, then the multiplication of one
half of the chord of one of the segments of the quadrant by the sum of the radius plus all the
chords drawn in the circle parallel to the diameter is less than the square of the radius and
greater than the square of the line going out from the center which meets and bisects the
chord of one of the parts of the quadrant. And this is what we wished to show.

د ق فعتض . . . أن ناتبسا ف م روت فصن ي  مساأق نم س

رقلا فصبن ةردائلا رع حوب ط م وا راأوتلا ج ةل ي ن  علرقلل ا

فعتض نمب لأق طلا فصن ي موأع هلتش رق فعتض نم ظ  ي

يلا طخلا زلمرا نم جرخ ذ ي ك ه ت ن راأوت ض روت ىلإ وي

اأق ميقو ةردائلا رع مس كوذ ؛هليق نحفصبن هس ا ل  م

.ابي اأردن ه ن
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Therefore <the product of> BM, i.e. half of
BL, and DE is equal to <the product of> BD
and MD. But <the product of> BD and MD is
less than the square of BD and greater than the
square of MD. Consequently, <the product
of> half of BL and the sum of the half-diameter
and the two chords IG and HL is less than the
square of the half-diameter and greater than the
square of DM.

Therefore, for any circle in which is drawn a
diameter, if one half of it is divided into two
halves, and one of the two quarters is divide
into any number of equal parts, and if chords
are drawn from the points of this division that
are parallel to the diameter, then the product of
half the chord from one of these parts and the
half-diameter, plus its product with the sum of
the chords is less than the square of the half-
diameter and greater than the square of the
perpendicular drawn from the centre of one of
the chords from these parts. That is what was
required.

Al-™ºsî here rephrases the conclusion of the
Banº Mºsæ in his own words, but without
omitting any portion of it. It should be noted
that throughout, he replaces the term ta≈‘îf
with the term sa†Ì, which has a slightly more
geometric connotation. The citation is missing
a phrase here that is included by al-™ºsî and
translated by Gerard, and which may have
been

This phrase has most probably been omitted
by the anonymous author who supplied the
citation.

ذا ةردائ لك خ إ رق جرأ موق اهط  حأ س

شصبن موق ،ف را دحأ س  مك مسابأق شعبل

. . .حلرقلل زيةموا راتوأ مساأقلا طنق نم

خ ةردائ لفك ه طرق جري ي هصن فصوين اف مويق اف  س

را دحأ اشا ثعحبل ةسامت مس تاك مك وي خ ،ن  نمب جروي

ساأثلا طنق و ةردائلا في راأوت مم رقلل ازيةم  نماث ،مل

كت دحأ روت فصن سطح مأتلا ل ا  وفي طرقلا فصن في م

ح م ر نم رنصأ راأوتلا ج رقال فصن بعم نمب ظموأع ط

ر د وا عم م ع زلمرا من رجاخلا دل وا ك راأوت دحأ ىلع 'لحال

اآقلا لمكت مأ ى•" كذو ،مم  - بلمطلوا وه ل
د ج ' م
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GERARD’S TRANSLATION

(Clagett, pp. 344–9)

II
ARABIC TEXT OF PROPOSITION 18

Sit itaque angulus ABC  in primis minor
recto. Et accipiam ex duabus lineis BA, BC
duas quantitates equales, que sint quanti-
tates BD, BE. Et revolvam super centrum B
et cum mensura longitudinis BD circulum
DEL. Et extendam lineam DB usque ad L.
Et protraham lineam BG  erectam super
lineam LD orthogonaliter. Et lineabo line-
am EG et extendam ipsam usque ad H. Et
non ponam linee GH finem determinatum.

And so let angle angle ABC at first be less than a right angle. And I shall take from its two
lines BA and BG two equal quantities BD and BE. And I shall describe circle DEL on center
B with a radius BD. And I shall extend line DB up to L and erect line BG perpendicularly on
line LD. Further, I shall draw line EG, extending it to H, but without assuming GH to have
any fixed length.

Et accipiam de linea GH equale medietati
diametri circuli, quod sit linea GO. Quando
ergo ymaginamus quod linea GEH movetur
ad partem puncti L et punctum G adherens
est margini circuli in motu suo et linea GH
non cessat transire super punctum E circuli
DEL et ymaginamus quod punctum G non
cessat moveri donec fiat punctum O super
lineam BG, oportet tunc ut sit arcus qui est
inter locum ad quem pervenit punctum G et
inter punctum L  tertia arcus DE; cuius
demonstratio est:

And I shall cut from line GH a line equal to the radius of the circle, namely, line GO.
Therefore, when we imagine that line GEH is moved in the direction of point L and that point
G <continually> adheres to the circumference in the course of its motion, and that line GH
continues to pass through point E of circle DEL, and we imagine that point G continues to be
moved until point O falls on line BG, then it is necessary for the arc between the point at
which G arrives and point L to be one third of arc DE.

ن ك ت ة فل وي زا ضة ال ذ ج؛ ب ا زاوية المفرو خ أ ن  من و

ن خطيها ن بمقداري ويي م،ا ك ،د ب ه ب وهما مت ن وذل بأ

ذ خ ت طة ن ر بمركرا ب نق دي ا ون م ه د ع ب رة ب . دائ ه د ل

ج خر ط ون ى ب د خ ل ن ■ ل إ ك ت د أولا ول ق ة بمن أ م ئ ا ف * ■ 

م ز ب ونخرح و ق ط على ي ئ على ل د خ ويت ي، زا  قا؛ثمتت

ذ ز ه خطت ونخطت ف ن ت ى ٥ و ل ولا ،ح إل ع ج ة له ن ي ا  غ

محدودة.

خذ أ ط من ون ل ح ز خ طر نصف مث رة ق دائ  وهو ،ال

ا • ع ز ذ إ ا ف من ه و ن ت ط أ ط على يتحرك ع ز خ حي  الدائرة م

ة إلى ي ح ا طه ل ن م ك'ن و مة ز ؤ ط لازب ي ح رة ل ئ دا ل  في ا

ها ط حركت خ ك يزال لا ح ه ز و ر ح طة على يت ن ه نق م ( 

رة ئ ا ، دك ه د دا ن م ه و ة وت ط ق ك تزال لا ز ن ر ح ت ى ت  حت

صير طة ت ى ع نق ط عل ذ ،ز ب خ ئ ن ي ن أن جبو ء ح و ك  ي

س و ي الق ي الموضع بين الذ ذ ل ت ا ه ت ن ه ا ي ل طة إ  وبيت ز نق

طة ث هو ل نق س ثل و ■ ه د ق
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Let the angle be ABC and let it be first less than
a right angle. On the straight lines BA and BC,
we take two equal magnitudes BD and BE.
With its centre at B and at their distance, we
draw the circle DEL and we extend DB as far
as L. We draw BG perpendicular to LD, we
join EG, and we extend it to H without an end.

The texts by al-™ºsî and Gerard are so similar
that one has the impression that the beginning
of the citation has simply been copied
verbatim. The very first words in both the
Latin version and the ™ºsî edition state that we
begin by considering an acute angle. This
expression appears later in the citation. In
addition, the first two refer to the sides of the
angle ‘Et accipiam … equales’, while the cited
text simply reads ‘its two lines’. However,
these differences make it no less certain that
both are taken from the same text.

And from GH, we separate out GO equal to the
half-diameter of the circle. If we imagine that
GH moves in the direction of the point L while
the point G remains on the circumference in the
course of its motion, and that the straight line
GEH continues to pass through the point E on
the circle DEL in the course of its motion, and
if we imagine that the point G continues to
move until the point O arrives at the straight
line BG, then the arc between the final position
of the point G and the point L must be one third
of the arc DE. The angle intercepted by this arc
is one third of the angle DBE.

Apart from a few negligible variations, al-™ºsî
here follows the Banº Mºsæ text, which
Gerard translates literally. He only omits one
phrase after ‘ad partem puncti L’ in order to
say ‘on the circumference of the circle’ (‘alæ
muÌî† al-dæ’ira).

It should be noted that al-™ºsî wrote: ‘wa-al-
zæwiya … thulth zæwiya DBE’, which is
missing in both the citation and the Latin
version.

Critical apparatus for Text II:

نلف ك ةلا ت وي نلو ،ج ب ا زا ك و ت .مئاق نم لأق لاأ  ة

ذ خ أ ن يم ج ب ا ب خطي نم و ر ا د  ه ب د ب ق

ئسساتم منو .وي س زمرب ىلع ر هعوبب ب ك اد  ةردائ م

خ ،ل ه د ن م ٠ ل ىلإ ب د جرو ي ق ن وع ز ب و ىلع د؛م

ل ،د ل م ى وتحرجه ز ه ون • غاية إلى لا ح إل

لونف اإف .ةردائلا طرث فصن لثم ع ز ح ذ نم ص  ذ

ن انمهوت حن ىلإ كحريت ح ز أ ةا  ةمزلا ز ةطونق ل ةطنق ي

طبلل ر قي مح هح ر في ح م ز ثعوخ اكت هح ت  ري يزال لا ك

ل، د ةردائ نم ه ةطنق ىلع ل لا ز ةطنق انمهووت هد  تزا

ىح ركحتت رصت ت ط ىلع ع ةعلتق ي بو ،ز ب خ زح ج ذ نئ  ي

ن ك أ يلا سوقلا نوت وا ص ت يلا ضعل ت ذ ه ت ن ه ا ي  إ

ويةلوأ ■ ه د سوق ثلث هى ل ةطنق وبتي ز ةطنق ىلا زا  ت

ه اهرتوت ذ . ب د زاوية ثلث سوقلا ه ه

ري ؛ركحيت 2 ح 3 — كح 4 — زاي اب طخل ؛ةردائلا طيل

؛ ح د ل I زاي ن زا ل ؛ركحتت ت ؛ز ب طخ 6 — كحريت نزا

يلأ 7 — ةردائلا طيمحب ملا؛ذ ن ي ع ذ ؛ تي.إز
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Quod ego ponam locum ad quem pervenit
punctum G  apud cursum puncti O  super
lineam BG apud punctum I. Et protraham
lineam IE  secantem lineam B G  super
punctum S.  Ergo linea IS  est equalis
medietati diametri circuli, propterea quod
est equalis linee GO. Et protraham ex B
lineam equidistantem linee IS, que sit
linea MBK. Et protraham lineam ex I ad
M. Ergo linea MI et linea IS sunt equidis-
tantes duabus lineis MB, BS et equales
eis. Ergo linea MI est equidistans linee BS
et equalis ei. Sed linea BS  est perpen-
dicularis super diametrum LD. Ergo corda
arcus IM erigitur ex diametro LD  super
duos angulos rectos. Ergo dividit diametrus
LD  cordam MI  in duo media et dividit
propter illud arcum MI in duo media super
punctum L. Verum arcus ML est equalis
arcui D K . Ergo arcus D K  est equalis
medietati arcus MI . Sed arcus MI  est
equalis arcui EK, propterea quod linea IE
equidistat linee MK . Ergo arcus DK  est
tertia arcus DE. Et similiter angulus DBK
est tertia anguli ABC.

Proof: For I posit point I as the place at which point G arrives as point O meets line BG. And
I shall draw line IE cutting line BG at point S. Therefore, line IS is equal to the radius of the
circle since it is equal to line GO. And I shall draw through B a line parallel to line IS,
namely, line MBK. And I shall draw a line from I to M. Therefore, lines MI and IS are
<respectively> parallel and equal to the two lines BS and MB. Therefore, line MI is parallel
and equal to line BS. But line BS is perpendicular to the diameter LD. Therefore, the chord
of arc IM forms two right angles with diameter LD. Therefore, diameter LD bisects chord
MI and <therefore> it also bisects arc MI at point L. But arc ML is equal to arc DK.
Therefore, arc DK is equal of half the arc MI. But arc MI is equal to arc EK, since line IE is
parallel to line MK. Therefore, arc DK is one third of arc DE. Therefore angle DBK is one
third of angle ABC.

ت الذي الوفمع لجعل أنا برهان ه ت ن ه ا ي ل  ز نقطة إ

ع ه ط وئخرج ،ط تقطة عند ط ط يق ى تمر ز ب خ  عل

ط ،س نقطة خ و س حل ف ا  بمن الدائرة قطر لنصف س

و أنه أجل سا ز، خطآ ب بمن ونخرج . ع ز لخط م  موا

م م ط لخط  قخطا ؛م إلى ط بمن خطآ ونخرج ، ك- م و

و س ط ط م ساو ص ب ب م يطخل ناازيم  ناويم

ما ه ود ص ب وخط • ل س فوتر ، د ل قطر على عم  قو

م ط م و ق . زاويمن على د ل قطر على ي ه ت م ئ ا د ق ق  ف

سم ر د ل قطن ق سم ،بنصفين ط م وت ك وق ذل س ل  قو

س ولكن .ل نقطة على ض،—بنص ط م و ة ط م ق ي و ا  م

وب ه ط أن زجأ نم غدك- سوق 'أاح مك_، طخ ،زم

س ظش ؛_،•"* د ؤقوس و د ب كء ز؛ودة نك وكسن . ه د ق

. د ب ه زاوية ثلث
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Proof: Let the position at which <the point> G
arrives be the point I. We draw IE cutting BG
at S. The straight line IS is then equal to the
half diameter of the circle as it is equal to GO.
From the centre, we draw a diameter parallel to
IE, and let this be MBK. We draw MI. Then,
IS is equal and parallel to MB, MI is parallel
and equal to BS, and BS is perpendicular to
LD. Therefore, MI is perpendicular to LD. It
is for this reason that it is divided into two
equal parts by the diameter. <The arc> ML is
equal to <the arc> LI, <the arc> DK is equal to
<the arc> ML, and <the arc> MI is equal to
<the arc> KE . Therefore, <the arc> DK  is
equal to half of <the arc> KE, and is equal to
one third of <the arc> DE. The angle KBD is
therefore one third of the angle ABC. That is
what we required.

In the first part of this section, it can be seen
that al-™ºsî follows the Banº Mºsæ text very
closely. The first sentence is identical to that
of the Banº Mºsæ with the exception of two
insignificant alterations: liyakun in place of
annæ naj‘al and li-kawnihi in place of min
ajli. Al-™ºsî then completes the section
keeping very close to the Banº Mºsæ text.
Gerard’s translation remains literal through-
out. However, it does contain one phrase
which does not appear in the Arabic text:
‘apud cursam puncti O super lineam BG’ – ‘as
point O meets the line BG’ (‘indamæ taÒîru
nuq†a O ‘alæ kha†† BG).

The second phrase that is missing in the
Arabic text is ‘Ergo linea MI est equidistans
linee BS et equalis ei’ (fa-kha†† MI muwæzin
wa-musæwin li-kha†† BS), which is clearly an
addition inserted by Gerard himself or
appearing in the manuscript he used. Finally,
the Latin version also includes the phrase
‘Verum … MI’ (wa-lækin qaw ML musæwiya
li-qaws DK, fa-qaw DK musæwiya li-qaws
MI), which is evidently a saut du même au
même in the manuscript cited by the anony-
mous author, committed either by the author
himself or by the copyist of his manuscript.

Critical apparatus for Text II:

هاهرب نل ■ ن ك وا ي يلا ضعل ت ذ ه ت ن هلإ ا  ، ط ةطنق ز ي

خ ،م ىلع ز ب عطيق ه ط جرونخ سا ص ط طف  ومم

ا نهوكل ةردائلا رقط فصنل س ،م خ . ع ز و ن  نم جرو

ط كزر،ن خ .مف م~ب ووه ه ط ازيوي؟ ؛رق  ،ط م جرون

ر س ط ف ا س وو م ساووازمو ط وم ،ب م ل ازءم  وم

وع ص وب ،س ب ل وع ط م ف ، د ل ىلع دم  ىلع دم

كذلو ، د ل ك ل رقالب اثمنم نوي  لثم ل م نويكو ،ط

دم كت ود ط د و ف ه £ د ر ط وم د م ق ك دم د  ث

ت فصن آ كموؤ ث ز ، د كث ق  كث د ب أئ وز،وية ه

كوذ ؛ج ب ا زاوية .هاأردن ما ل

•!ز ل ن ث ع
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1.1.4. Title and date of the BBBBaaaannnnºººº    MMMMººººssssææææ    ttttrrrreeeeaaaattttiiiisssseeee

Let us now consider the title of the treatise. This time, the Latin version
provides no help, as it is entitled simply Verba filiorum Moysi filii Sekir ….
The edition of al-™ºsî indicates that the title may have been Kitæb fî
ma‘rifat misæÌat al-ashkæl al-basî†a wa-al-kuriyya, i.e. ‘Book on the
knowledge of the measurement of plane and spherical figures’. However,
the early biobibliographers gave a slightly different title. In the tenth century,
al-Nadîm used the title ‘Book on the measurement of spheres, the trisection
of the angle and the way in which two magnitudes can be set between two
other magnitudes such that the four progress in the same ratio’. Later, al-
Qif†î, after having quoted the list of writings by the Banº Mºsæ established
by al-Nadîm, gives the title carelessly as ‘Book on the measurement of the
sphere and the trisection of the angle’. In fact, the title given by al-Nadîm is
a true reflection of the content of the Banº Mºsæ book in the correct order,
as they themselves describe it in the conclusion removed by al-™ºsî but
retained in the Latin version, while the title given by al-™ºsî seems to derive
from the first two lines of the book, also retained in the Latin version. At the
very beginning of their book, the Banº Mºsæ speak of ‘[…] scientie
mensure figurarum superficialium et magnitudinis corporum’, i.e. ‘[…]
knowledge of the measure of plane figures and the volume of bodies’. In
this case, the bodies referred to are essentially spherical. We need more
information before we can explain the differences between these two titles,
each of which seems equally valid.

We are hardly in a better position when it comes to the date of the
treatise. MuÌammad ibn Mºsæ, the eldest of the brothers, died in 873. His
younger brother al-Îasan died before him. All we know for sure is that the
treatise was written after the translation of the Spherics of Menelaus, and
The Measurement of the Circle and The Sphere and the Cylinder of
Archimedes. But we know that the Spherics was translated before 862, as
the translator Qus†æ ibn Lºqæ dedicated his translation to Prince AÌmad,
who became the Caliph AÌmad in that year. We have already shown that an
initial translation of The Measurement of the Circle was in existence prior to
856.44 No other data is available to reduce this interval further with any
certainty.

With regard to the text under discussion here, al-™ºsî’s edition of the
Banº Mºsæ treatise, we know from the colophons on an entire family of
manuscripts that it was written either in 653/1255 or in 658/1260,
depending on whether one reads ‡−Mš or `Mš \ an expression in jummal

44 R. Rashed, ‘Al-Kindî’s Commentary on Archimedes’ The Measurement of the
Circle’, Arabic Sciences and Philosophy 3.1, 1993, pp. 7–53.
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used to designate the years.45 This indicates that al-™ºsî wrote the text
either 14 or 19 years before his death. This edition exists in a number of
surviving manuscripts. This is not surprising, as the work took part of the
‘Intermediate Books’ (al-mutawassi†æt), intended, as we have shown, for a
much wider public than just the most eminent mathematicians. The
popularity of these ‘Intermediate Books’ ensured their survival, a fate not
always shared by works of advanced research. A large number of these
manuscripts have survived, and every major library, and even some minor
ones, possesses one of more copies of these ‘Intermediate Books’. They also
exist in many private collections. Under present conditions, it is a vain hope
even to identify the location of all these manuscripts, and only the
unreasonably ambitious would attempt to bring them all together in one
place. Of the several dozen manuscripts of these texts that have passed
through my hands, I have only been able to obtain copies of 25, for a
number of reasons that it is inappropriate to list here. While not
inconsiderable, this number represents a small fraction of these manuscripts
in existence throughout the world. However, with these 25 manuscripts,
dispersed across three continents, it should be possible to establish a faithful
version of the text. I do not, therefore, run much of a risk in asserting that
access to additional manuscripts would not reveal anything new that would
bring any real improvement to the edition, unless of course someone were
to discover the original written in the hand of al-™ºsî, or even better, the
original Banº Mºsæ text. The reason that I have reproduced all the
variations in these manuscripts in the Critical Apparatus is so that others
may go further and increase the number of copies. While to some it may
seem that all this effort is a total waste of time, it may one day make it
possible, given sufficient resources and perseverance, to identify the
locations of all the existing manuscripts and to make a collated set of copies
that will reveal the history of the manuscript tradition. However, this is not a
project for now, or even for the immediate future.

While we can be sure that the text given here is accurate, its history
remains a subject for conjecture. We have attempted simply to list the 25
manuscripts but, given the nature of this book, we shall not include the
numerous tables that were necessary to identify them.

Here is the list of these manuscripts:

1 - [A] Istanbul, ‘Atif 1712/14, fols 97v–104v.
2 - [B] Berlin, Staatsbibliothek, or. quart. 1867/13, fols 156v–164v.

45 We have a set of five letters that could mean one of two possible dates: Monday
27th July 1260 or Monday 20th September 1255. The latter date seems to us to be the
more likely of the two, taking into account the complete set of manuscripts.
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3 - [C] Istanbul, Carullah 1502, fols 42v–47v.46

4 - [D] Istanbul, Topkapi Sarayi, Ahmet III 3453/13, fols 148r–152v.47

5 - [E] Istanbul, Topkapi Sarayi, Ahmet III 3456/15, fols 61v–64v.48

6 - [F] Vienna, Nationalbibliothek, Mixt 1209/13, fols 163v–173r.
7 - [G] London, India Office 824/3 (No. 1043), fols 36r –39r, 50r–52v.49

8 - [H] Tehran, Sepahsalar 2913, fols 86v–89v.
9 - [I] Tehran, Milli Malik 3179, fols 256v–261v, 264r–267v.
10 - [J] Paris, Bibliothèque Nationale 2467, fols 58v–68r.50

11 - [K] Istanbul, Köprülü 930/14, fols 214v–227r (or 215v–228r according to a
second numbering scheme).51

12 - [L] Istanbul, Carullah 1475/3, fols 1v–14v (folios not numbered).
13 - [M] Meshhed, Astæn Quds 5598, fols 18–33.52

14 - [N] New York, Columbia University, Plimpton Or 306/13, fols 116r–122v.53

15 - [O] Oxford, Bodleian Library, Marsh 709/8, fols 78r–89v.54

46 This is a collection transcribed from the copy belonging to the famous astronomer
Qu†b al-Dîn al-Shîræzî, according to the copyist Ibn MaÌmºd ibn MuÌammad
MuÌammad al-Kunyænî. The text is written in naskhî. The page size is 25.5 ×  17.9 cm.
Each page contains 25 lines of text occupying an area of 17.2 ×  11.2 cm.

47 Manuscript copied by ‘Abd al-Kæfî ‘Abd al-Majîd ‘Abd Allæh al-Tabrîzî in 677 in
Baghdad. FatÌ Allæh al-Tabrîzî  had possession of this manuscript in 848. It is written in
naskhî (page: 17.1 ×  13.2 cm, text: 13.9 ×  9.6 cm). The numeration of the folios is
recent.

48 One of the texts in this collection was copied on the 12 Rabî‘ al-awwal 651 (see
fol. 81v). It is written in nasta‘lîq (page: 25.5 ×  11.3 cm, text: 19.4 ×  8.9 cm). The
numeration is early.

49 This manuscript only contains the proof of Proposition 7 by al-Khæzin (fols 36r–
37r), followed by Proposition 7 of the Banº Mºsæ (fols 37r–39r), and Proposition 16
(fols 50r–52v). There are a large number of interlinear comments by AÌmad ibn
Sulaymæn, who is none other than the grandson of the copyist MuÌammad Ri≈æ ibn
Ghulæn MuÌammad ibn AÌmad ibn Sulaymæn. This collection is dated to Dhº al-Îijja
1134 H. See Otto Loth, A Catalogue of the Arabic Manuscripts in the Library of the
India Office, London, 1877, pp. 297–9.

50 See M. Le Baron de Slane, Catalogue des manuscrits arabes de la Bibliothèque
Nationale, Paris, 1883–1895.

51 See Catalogue of Manuscripts in the Köprülü Library, prepared by Dr Ramazan
⁄e¤en, Cevat Izgi, Cemil Akpinar and presented by Dr Ekmeleddin Ihsanofilu, Research
Centre for Islamic History, Art and Culture, 3 vols, Istanbul, 1986, vol. I, pp. 463–7.
Note that this manuscript belonged to the mathematician and astronomer Taqî al-Dîn al-
Ma‘rºf.

52 See AÌmad G. Ma‘ænî, Fihrist Kutub Kha††î  Kitæbkhæna  Astæn Quds, Meshhed,
1350/1972, vol. VIII, no 403, pp. 366–7.

53 The writing is in naskhî  (page: 20 ×  15 cm, 27 lines per page).
54 See Joanne Uri, Bibliothecae Bodleianae Codicum Manuscriptorum Orienta-

lium, Oxonii, 1787, p. 208.
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16 - [P] Istanbul, Köprülü 931/14, fols 129r–136v.55

17 - [Q] Cairo, Dær al-Kutub, Riyæ≈a 41, fols 26v–33v.56

18 - [R] Tehran, Majlis Shºræ 209/3, fols 33–54.57

19 - [S] Istanbul, Süleymaniye, Esad Effendi 2034, fols 4v–15v.58

20 - [T] Tehran, Majlis Shºræ 3919, fols 272–298.
21 - [U] Tehran, Danishka 2432/13, fols 123–137 (144v–151v according to a

second numbering scheme).59

22 - [V] Istanbul, Süleymaniye, Aya Sofya 2760, fols 177r–183v.
23 - [W] Istanbul, Haci Selimaga 743, fols 71v–81v.
24 - [X] Istanbul, Be¤iraga 440/14, fols 162v–171v.60

25 - [Y] Krakow, Biblioteka Jagiellonska, fols 183v–194v.61

26 - [Z] Manchester, John Rylands University Library 350.

A study of the variations in these manuscripts, taken two by two, and
their copying accidents – omissions, additions, errors, etc. – has enabled the
following stemma to be determined:

NW
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A
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UX

P

D E

H V
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S
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I

677/1278

725/1325

894/1489

845/1441

914/1508

1134/1722
G

651/1253

1134/1722
Q

Z
1196/1782

55 See Catalogue of Manuscripts in the Köprülü Library, vol. I, pp. 467–72.
56 For a description of this manuscript, see Géométrie et dioptrique, p. CXXXVI.

The manuscript is incomplete and ends at the start of Proposition 16.
57 See Catalogue of the Arabic and Persian Manuscripts in the Madjless

Library, by  Y. E. Tessami, Publications of the Library, Tehran, 1933, vol. II, pp. 117–
18. Some of this treatise is missing between Propositions 6 and 7.

58 The text is in a different hand to the rest of the collection, and the paper is also
different. It is therefore an addition. The name of the mathematician Ibn Ibræhîm al-Îalabî
appears on the first page. It is written in naskhî  (page: 22.2 ×  12.7 cm, text: 14.3 ×  6.2
cm).

59 See Catalogue of the Manuscripts, University of Tehran, IX, pp. 1100–1.
60 The copy dates from early Dhº al-Qa‘da 1134 H. The writing is in naskhî, and

very carefully done (page: 28.2 × 15.7 cm).
61 This manuscript corresponds to ms. Berlin, Staatsbibliothek, no 5938 (= Or. fol.

258), which disappeared from the library when the contents were being evacuated during
the Second World War. We owe this information to Dr Hars Kurio, to whom we extend
our grateful thanks. For a description of this manuscript, see W. Ahlwardt, Handschrif-
ten der Königlichen Bibliothek zu Berlin XVII, Berlin, 1893, p. 313.
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1.2. MATHEMATICAL COMMENTARY

1.2.1. Organization and structure of the BBBBaaaannnnºººº    MMMMººººssssææææ    book

While the Banº Mºsæ book on the measurement of plane and spherical
figures is firmly rooted in the Archimedean tradition, it does not follow the
model of The Sphere and the Cylinder or any other treatise by Archimedes.
While the fundamental ideas are essentially the same as those of Archimedes,
the Banº Mºsæ followed a simpler and more direct path in arriving at them.
It is only in this sense that their book can be described as Archimedean.
Both the structure of the book and the methods followed by the Banº Mºsæ
are different from any that can be found in works by Archimedes on the
same topic. This constellation of ideas, combined with these differences in
structure, in composition and the methods of proof, highlight the unique
position of this early research in Archimedean mathematics in Arabic.

We will first consider the structure of the book. The work consists of 18
propositions organized into a number of groups. The first three are lemmas
in plane geometry and the next three are concerned with the measurements
of circles and the calculation of π. The seventh proposition provides a new
proof of Hero of Alexandria’s formula for the area of a triangle, and the
eighth deals with the uniqueness of a sphere passing through four non-
coplanar points. The three following propositions relate to the lateral area of
a cone of revolution and a truncated cone. The twelfth proposition is a
lemma in plane geometry, and this is followed by three propositions
concerning the surface area and volume of a sphere. The final three
propositions are devoted to the determination of two means and the
trisection of an angle. The logical connections between these propositions
can be represented by the diagram on the facing page.

This clearly shows how the Banº Mºsæ addressed four main themes in
their book: namely, the measurement of the circle; Hero of Alexandria’s
formula for the area of a triangle; the surface area and volume of a sphere;
and the two means and the trisection of an angle. At first glance, the
inclusion of the seventh and the final three propositions may appear
surprising, especially as they mark a radical departure from the main theme
of the book, defined in its title as a compendium dedicated to interesting or
difficult measurements of plane and spherical figures. In spite of this, there
can be no doubt as to the authenticity of these propositions, or in relation to
their inclusion as an integral part of this book. Firstly, their presence is
attested not only in the Arabic manuscript tradition, but also in that of the
Latin translation produced by Gerard of Cremona in the twelfth century. As
further confirmation, this Latin translation contains a historically important
final section in which the Banº Mºsæ summarize the main results obtained.
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Needless to say, this final summary includes references to all these
propositions. Moreover, at the very end of this final section of the Latin
translation, the Banº Mºsæ make the following particularly important
declaration:

Everything that we describe in this book is our own work, with the
exception of knowing the circumference from the diameter, which is the
work of Archimedes, and the position of two magnitudes in between two
others such that all <four> are in continued proportion, which is the work of
Menelaus as stated earlier (infra, p. 109).
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We shall examine after the full meaning of the appreciation of the Banº
Mºsæ of their own contribution in this regard, but for the moment it is
sufficient to note that it confirms the presence of Proposition 6 and the final
group of propositions. The presence of Hero of Alexandria’s formula is
confirmed by the manuscript traditions and by the Banº Mºsæ themselves
through the Latin translation, in addition also to an appendix commonly
associated with the book in the Arabic tradition. This contains another proof
of the same formula attributed to al-Khæzin in the middle of the tenth
century.

It can therefore be seen that the Banº Mºsæ book is not based on any
Archimedean treatise; rather, it stands alone as a collection of works in the
four areas previously mentioned. However, the question remains as to the
path undertaken by the Banº Mºsæ in reaching these conclusions.

Did they follow the pathway laid down by Archimedes, or did they, as
they claimed, follow another? The answer to this question will provide us
with an immediate insight into the place of the Banº Mºsæ in the Archime-
dean tradition. However, finding the answer will require us to seek further, if
briefly, into the work of the Banº Mºsæ. We will begin with the lemmas of
plane geometry and the first group of propositions.

1.2.2. The area of the circle

Lemma 1. — If a polygon of perimeter p is circumscribed by a circle of
radius r, then its area is given by

S = 1
2

 p · r.

Let a1, a2, …, an be the lengths of the n sides of the polygon. Its area is
then the sum of the areas of the n triangles of height r:

S =   
1
2i=1

n

∑  ai .  r =  
1
2

 r .  p.

If a solid polyhedron of area S is circumscribed by a sphere of radius r,
then its volume is given by

V = 
1
3

 S · r.

If the solid has n faces with respective areas of s1, s2, …, sn, then its
volume is the sum of the volumes of the n pyramids of height equal to r:
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V =   

1
3i=1

n
Â  si .  r =  

1
3

 r .  S.

Comment – The formula for obtaining the volume of a pyramid, regardless
of the shape of the base, is assumed to be known. This formula can be found
in the Elements XII.

Lemma 2. — If a polygon of perimeter p is inscribed by a circle of radius
r, then its area is given by

S < 1
2

 p · r < the area of the circle.

Let a1, …, an be the lengths of the n sides of the polygon and let hi be
the length of the perpendicular dropped from the centre of the circle onto
the side of length ai , and let si  be the area of the corresponding sector. We
then have

1
2

 ai hi < 1
2

 ai r < si

from which

  

1
2

  ai hi
i=1

n
Â  <  

1
2

 r  ai
i=1

n
Â  <   si

i=1

n
Â

and thence the result.

Similarly, if a solid polyhedron of n faces, with a total surface area of S,
is inscribed within a sphere of radius r, then

volume of the solid < 1
3

 S · r < volume of the sphere.

The Banº Mºsæ then go on to prove the following proposition.

Proposition 3. — Consider a circle of circumference p and a line segment
of length l. Then

1. If l < p, then it is possible to inscribe a polygon of perimeter pn
within the circle such that

 l < pn < p.

2. If l > p, then it is possible to circumscribe a polygon of perimeter qn
outside the circle such that

p < qn < l.
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The proofs of statements 1 and 2 are based on the existence of a circle
of circumference l and a regular polygon. The Banº Mºsæ admit the
existence of this circle. For the polygon, they make use of Proposition
XII.16 of Euclid’s Elements:

Given two circles about the same centre, to inscribe in the greater circle an
equilateral polygon with an even number of sides which does not touch the
lesser circle.1

It may be noted that, for a regular n-sided polygon to comply with the
criteria for the problem, it is a necessary and sufficient condition that its
apothem an satisfies the following:

r1 < an < r2 ⇔ r1 < r2 cos π
n

 < r2 ⇔ p

p
1

2

 < cos π
n

 < 1

a

r

r π
1

2

n

n

Fig. 1.2.1

where r1 and r2 are the radii of the two concentric circles, and p1 and p2 are
their circumferences (the existence of the integer n depends on the
continuity of the cosine function).

The proof given by the Banº Mºsæ is as follows: Consider two
concentric circles ABC and DEG.

1) l < p: Let p be the circumference of ABC and l the circumference of
DEG.
2) l > p: Let l be the circumference of ABC and p the circumference of
DEG.

In both cases, ABC is therefore the larger of the two circles, and any
regular or irregular polygon inscribed within circle ABC with the sides not
touching circle DEG will have a perimeter lying between l and p.

1 The Thirteen Books of Euclid’s Elements, translated with introduction and
commentary by Th. L. Heath, New York, Dover, vol. 3, p. 423.
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Fig. 1.2.2

However, in order to prove exactly the second statement, when l > p, it
is necessary to consider a polygon circumscribed around the circle EDG of
perimeter p whose sides do not cut circle ABC. This can be proved from
Proposition XII.16 of the Elements together with a homothety.

In Proposition 3, the Banº Mºsæ begin with a circle C1 of circumference
p  and effectively admit the existence of a circle C2 with the given
circumference l. They then go on to consider two cases:

a) l < p: C2 and C1 are concentric, with C2 lying inside C1. They then
wish to inscribe a polygon Pn of perimeter pn inside C1 such that

l < pn < p,

the polygon Pn defined in the Elements XII.16 – Pn inscribed within C1 and
not touching C2 – is a solution to the problem.

b) l > p: C1 lying within C2. Using Elements XII.16, it is possible to
inscribe a polygon Pn within C2 and not touching C1 such that

p < pn < l.

If one wishes to circumscribe a polygon ′Pn  of perimeter ′pn  around C1

such that p < ′pn  < l, this can be done by deducing ′Pn  from Pn by means of
a homothety. Thus, if OH = a1, the apothem of Pn, then

r1 < OH < r2.

In the homothety O
r

a
,  1

1






, the image of Pn is ′Pn  such that

p < ′pn  < pn < l;
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′Pn  is the solution to the problem. It circumscribes C1 and does not touch
C2 (see Fig. 1.2.3.). The proof begins with Elements XII.16, and is
completed by the application of homothety.
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Fig. 1.2.3

In the next proposition, the Banº Mºsæ prove that the area of a circle is
the product of half its diameter multiplied by half its circumference using an
apagogic method.

Proposition 4. — For any circle of radius r and circumference p, the area
is given by

S = 1
2

 p · r.

If S < 1
2

 p · r, then S = 1
2

 l · r, where l < p, and it is possible to inscribe

a polygon of perimeter p′ within the circle such that l < p′ < p (using

Proposition 3). From Lemma 2, the area S1 of this polygon is such that

S1 < 1
2

 p′ · r < S.

However, l < p′ implies that 1
2

 l · r < 1
2

 p′ · r, i.e. 1
2

 p′ · r > S, which is

clearly absurd.

If S > 1
2

 p · r, then S = 1
2

 l · r where l > p. It is possible to circumscribe

the circle with a polygon of perimeter p″ such that p < p″ < l. We then have
1
2

 r · l > 1
2

 r · p″ ;
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this is also absurd, as 1
2

 r · p″ is the area of the polygon and this area is

greater than that of the circle given by

S = 1
2

 l · r.

Note that, unlike Archimedes, who gives the area of a circle by
comparing it with the area of another figure, a right triangle with the two
sides enclosing the right angle equal in length to half the diameter and the
circumference respectively, the Banº Mºsæ give the area as the product of
two quantities. In their proof of the proposition, they compare p with two
lengths, p ′ < p  and p″ > p , in order to show that each results in a

contradiction; and this contrasts with Archimedes’ use of two areas. Finally,
their approach differs also from that of Archimedes in the way in which the
exhaustion method is applied. The Banº Mºsæ avoid the greatest problem
with this method,2 what we would call the ‘taking to the limit’, by making
use of Proposition XII.16 in the Elements, which is proved using the limit

(  lim
n→∞

 cos 
π
n

= 1).

At the end of this proposition, the Banº Mºsæ give an expression for the
area of a sector of a circle, without giving a corresponding proof. This could
be done using a method similar to that used to prove Proposition 4 itself, by
inscribing a polygonal sector within the sector of the circle, or simply by
noting that the length p′ of an arc of a circle is proportional to the angle α
subtended at the centre and that the area S′ of a sector of a circle is also
proportional to this angle. Therefore, if S  and p  are the area and
circumference respectively of the circle, and S′ and p′ are the area of the
sector and the length of the corresponding arc, then

S

S

P

P′
=

′
= 360

α
    (if α  is measured in degrees);

as S = 1
2

 p · r, then S′ = 1
2

 p′ · r.

Proposition 5. — The ratio of the diameter to the circumference is the
same for all circles.

The Banº Mºsæ based their proof on Proposition XII.2 of the Elements:
The ratio of the areas of two circles is equal to the ratio of the squares of

2 See the article by J. al-Dabbagh, ‘Banº Mºsæ’, D.S.B, vol. 1, pp. 443–6.
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their radii. A proof by reductio ad absurdum is not necessary as the

brothers have already shown in their previous proposition that S = 1
2

 p · r.

However, in this proposition the Banº Mºsæ have used just such a proof.

In Proposition 6, they continue by calculating this ratio using the
method developed by Archimedes, which they acknowledge. Ultimately,
Archimedes’ method enables the upper and lower bounds of this ratio to be
obtained to any desired degree of approximation.

This group of six propositions is followed by two unrelated propositions,
and before the book moves on to another important group of propositions
relating to the sphere. The first of these two propositions concerns the
formula proposed by Hero of Alexandria.

1.2.3. The area of the triangle and Hero’s formula

Proposition 7. — If p is the perimeter of a triangle with sides a, b, and c,
then the area of the triangle satisfies the following:

S  =  
p
2

 
p
2

 –  a  
p
2

 –  b  
p
2

 –  c2 















.

The  Banº Mºsæ did not attribute this to Hero, or to any other
mathematician. Later mathematicians, including al-Bîrºnî, attributed the
formula to Archimedes.3 The Banº Mºsæ derived the formula using a
different proof from that of Hero. This proof was copied by a large number
of later authors, including Fibonacci and Luca Pacioli.4 However, this proof
did not find favour with others, including al-Khæzin (who gave an
alternative proof that is often included as an appendix to the Banº Mºsæ
book), or later al-Shannî.5

Proposition 8. — If a point G is equidistant from four non-coplanar
points on a given sphere, then G is the centre of that sphere.

This proposition effectively demonstrates the uniqueness of a sphere
passing through four non-coplanar points. In order to prove this proposition,
the Banº Mºsæ turned once again to the Elements and the first two

3 Al-Bîrºnî, Istikhræj al-awtær fî al-dæ’ira, ed. AÌmad Sa‘îd al-Dimerdash, Cairo,
n.d., p. 104.

4 M. Clagett, Archimedes in the Middle Ages, vol. 1, Appendix IV, pp. 635–40.
5 This demonstration has been reported by al-Bîrºnî, Istikhræj al-awtær fî al-dæ’ira.
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propositions in the Spherics of Theodosius in the translation made by Qus†æ
ibn Lºqæ.6 It should be noted that their proof does not make the assumption
that G lies within the sphere. The proof may be summarized as follows:

Let B, C, D and E be the four non-coplanar points. The plane (B, C, E)
cuts the sphere, forming a circle whose axis passes through the centre of the
sphere and point G, as GB = GC = GE.

A

B

G

D

E

H

C

Fig. 1.2.4

Similarly, the axis of circle ECD also passes through the centre of the
sphere and point G. These two axes are different, having only a single point
in common at the centre of the sphere. Point G must therefore lie at the
centre of the sphere.

1.2.4. The surface area of a sphere and its volume

The following group of seven propositions form the core of the Banº
Mºsæ book. Their aim is to enable the determination of the surface area and
the volume of a sphere. We have already highlighted a number of diffe-
rences between the methods adopted by Archimedes and the Banº Mºsæ
when discussing the measurement of circles. The question now is to deter-
mine whether the path taken by the Banº Mºsæ was chosen deliberately, or
simply by chance. In other words, are we going to discover the same
deviations from the Archimedean method in the case of the sphere? To

6 See the edition by al-™ºsî of the translation by Qus†æ ibn Lºqæ of the Kitæb al-ukar
of Theodosius, printed by Osmania Oriental Publications Bureau, Hyderabad,
1358/1939.



48 CHAPTER I: BANª MªSÆ

answer that question, we need to look at this group of seven propositions in
more detail.

Proposition 9. — The lateral area S of a cone of revolution is given by

S = 1
2

 p · l, where p is the circumference of the base circle and l is the

length of the generator.
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Let the cone be (A, BCD), with A being the vertex, BCD the base, AE
the axis, and AB = l the generator.

1° If S > 1
2

 p · l, then S = 1
2

 p′ · l, with p′ > p.

The circle BCD may be circumscribed with a polygon of perimeter p1,
where p′ > p1 > p. This has been proved to be possible in Proposition 3.
This may then be considered the base of a pyramid with its vertex at A that
circumscribes the cone. However, EB ⊥ HI and AE ⊥ (HIK); therefore AB ⊥
HI. Similarly, AC ⊥ IK and AD ⊥ HK. The lateral area of the pyramid is
therefore given by

1
2

 p1 · l < 1
2

 p′ · l.

However, S = 1
2

p′ · l, which is impossible.
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2° S < 1
2

 p · l. The Banº Mºsæ therefore admit the existence of a

cone of revolution with a vertex A, axis AE and lateral area S′ = 1
2

 p · l > S.

Let ML be its base circle; then AM > AB and EM > EB.
A regular polygon may be inscribed within the circle ML, which does

not touch the circle ABC. If the circumference of this circle is p1, then
p1 > p. A regular pyramid on this polygon base will have a lateral area of

S1 = 1
2

 p1 · AN,

where N is the midpoint of one side of the polygon. However,

AN > AB,

from which

S1 > 1
2

 p · l.

Therefore
S1 > S′ .

This is also impossible as the cone with lateral area S′ encloses the pyramid
with lateral area S1.

The result can be derived from 1° and 2°.
In both cases, the Banº Mºsæ extend Postulate 2 of Archimedes’ The

Sphere and the Cylinder relating to convex curves to include, by analogy,
convex surfaces.

The Banº Mºsæ then introduce a technical lemma:

Lemma 10. — The intersection of the lateral surface of a cone of
revolution and a plane parallel to the base is a circle centred on the axis
of the cone.

It should be noted that the two parallel planes correspond in the

homothety A
AH

AE
,



 . The figure IGH is therefore homothetic to the circle

centred on E. It is therefore a circle centred on H. However, the reasoning
proposed by the Banº Mºsæ does not include such a transformation.
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Proposition 11. — The lateral area of a truncated cone of revolution with
parallel bases is given by

S = 1
2

 (p1 + p2) l,

where p1 and p2 are the circumferences of the two bases respectively, and l
is the length of the generator.
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Fig. 1.2.7
We have

area (A, GIF) = S1 = 1
2

 AF · p1 and area (A, BCD) = S2 = 1
2

 AB · p2.

The area of the truncated cone is therefore
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S = 1
2

 (AF · p1 – AB · p2) = 1
2

 (p1 – p2) AB + 1
2

 BF · p1.

However,
AB

p

AF

p

BF

p p2 1 1 2

= =
−

;

therefore
AB (p1 – p2) = BF · p2.

From this, we can deduce that

S = 1
2

 BF (p1 + p2).

But we know that BF is the generator of the truncated cone, BF = l, hence
the result.

The Banº Mºsæ go on to determine the lateral area of a solid of
revolution formed by a truncated cone and a full cone sharing the same
base, and with generators of the same length l:

S = 1
2

 l (p1 + p2) + 1
2

 l p2 = 1
2

  l p1 + l p2

where p1 and p2 are the circumferences of the bases.
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p
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The Banº Mºsæ then generalize the previous result for a solid of
revolution formed by any number of truncated cones and a complete cone,
all with generators of the same length:

S =  
1
2

l    pk -1 +  pk( )
k =2

n

∑  +  
1
2

 l pn =  
1
2

l  p1 +  2  pk
k =2

n

∑





 =  π  l  r1 +  2  rk
k =2

n

∑




.
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Next, the Banº Mºsæ introduce another plane geometry lemma.

Lemma 12. — Let a circle of centre D have a diameter that is
perpendicular to AC, and let DB be such that DB ⊥ AC. If we then assume
that

BL LG GA= =

and
HL || AC, GI || AC, DM ⊥ BL, BL ∩ AC = {E},

EFA

B M L

C

I

H

D

G

Fig. 1.2.9

then
1° DE = DA + IG + HL

2° DA2 > 1
2

 BL (DA + IG + HL) > DM2.

From symmetry, it can be seen that the arcs LG and HI are equal to the
BL and BH. Therefore the two arcs GL et BH are equal and BL || GH.

Similarly, AG IH= , from which it follows that GH || AI. If HG cuts DE
at F, then HL = FE and IG = AF, which proves 1°.

The triangles BMD and BDE are similar. Therefore BM

MD

BD

DE
= , and

hence BM · DE = MD · BD. However MD < BD, and therefore MD2 <

MD · BD < BD2, from which MD2 < 1
2

 BL · DE < DA2, which proves 2°.

The result for the three equal arcs AG, GL, and LB can be extended to
any number of equal arcs. We can then rewrite this lemma for the general
case, bringing out the underlying trigonometric concepts.

If a quarter circle A1B is divided into n equal arcs by the points A2,
A3, …, An, then
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1°
  
A1B1 +  2  Ak Bk

k=2

n
∑ =  B1E

2° B1M2 <  
1
2

 BAn B1A1 +  2  BkAk
k=2

n
∑









 <  B1B2.

B

B

B

B

B

n n

n-1n-1

2

1

A

A

A

A

M

E

2

1
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We then have

 BA
nn = π

2
, BA

nn− = ⋅1 2
2
π , …, BA n

n2 1
2

= −( ) π ,

from which

AnBn = R sin π
2n

, An-1Bn-1 = R sin 2 · π
2n

 , …, A2B2 = R sin (n – 1) π
2n

.

If B1M ⊥ BAn, then

BB M
n

B EBˆ ˆ
1 14

= =π ,

from which

 B1E = R cot π
4n

.

If we allow R = 1, then 1° may be rewritten as

(1) 2
1

1

  sin   
2

 =  cot 
4

 –  1k
n nk

n

⋅
=

−

∑ π π ,

which can also be written as follows (by adding 2 to each side):

(2) 2
1

  sin   
2

 =  cot 
4

 +  1k
n nk

n

⋅
=

∑ π π ,

which may be verified by multiplying both sides by sin π
4n

.
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In 2°, we have

B1M = R cos π
4n

    and   1
2

 BAn = BM = R sin π
4n

.

If we allow R = 1, then 2° may be rewritten as

(3) cos2 π
4n

 < sin π
4n

 · cot π
4n

 < 1,

i.e.

cos2 π
4n

 < cos π
4n

  < 1.

This relationship may be verified for all values of n, as for all α ∈ ]0, π
2

[,

we have cos2 α < cos α < 1. we may therefore make n arbitrarily large,
enabling the use of an apagogic method. In modern terms, this is equivalent

to evaluating the integral sin xdx
0

π
2∫ . It should be noted, however, that the

Banº Mºsæ proceeded in an altogether different way.
These are exactly the same as the sums and inequalities used to

determine the surface area and volume of a sphere.

Proposition 13. — In Proposition 13, the Banº Mºsæ consider a semicircle
ABD with centre M  and radius R2, within which is inscribed a regular
polygonal line with an even number of sides. A second semicircle is
inscribed within this line. Rotating this figure produces a hemisphere, a solid
of revolution consisting of a cone and several truncated cones, and a second
hemisphere inscribed within this solid of revolution and concentric with the
first hemisphere. They go on to prove that

  2 π  R1
2 <  S <  2 π  R2

2 ;

where R1 and R2 are the radii of the inscribed and circumscribed circles
respectively, and S is the lateral area of the solid.

It should be noted that this solid satisfies the conditions laid down in
Proposition 11, and that the assumptions relating to the plane figure in the
plane ABD are the same as those in Proposition 12. Therefore

(1) 1
2

 BE (MB + HE + GF) < MB2;

and, from Proposition 11,
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(2) S = π EB (MB + HE + GF).
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Combining (1) and (2), we have

S < 2 π MB2 =  2 π  R2
2.

If S, O and P are the midpoints of the chords BE, EF and FD, then

MS = MO = MP = MU = R1,

the radius of the inscribed sphere.
From Lemma 12, we have

(3) MS2 < 1
2

 BE (MB + HE + GF).

Combining (2) and (3), we have

S > 2 π MS2 =  2 π  R1
2 

and hence we obtain the result.

In other terms: consider a semicircle C(M, R2), a regular polygonal line
with 2n sides inscribed within C, and a semicircle C′′′′(M, R1) inscribed within
the polygonal line. From these, the Banº Mºsæ construct:

• a hemisphere Σ(M, R2);
• a solid Γ formed from cones and truncated cones inscribed within Σ

and satisfying the conditions of Proposition 11;
• a hemisphere Σ′ (M, R1) inscribed within this solid.

They then show that, if S is the lateral area of solid Γ, then

2 π R1
2 <  S <  2 π R2

2
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using Propositions 11 and 12 and making no reference to Proposition XII.16
in the Elements.

The Banº Mºsæ are now in a position to apply the apagogic method
twice: firstly in Proposition 14, in order to obtain the lateral surface area of a
hemisphere, ‘twice that of its great circle’; and, secondly in order to
determine the volume of a sphere as ‘the product of its half-diameter and
one third of the area of the lateral surface’. The proof given by the Banº
Mºsæ is as follows:

Proposition 14. — The surface area S of a hemisphere is twice that of its
great circle.

M

D

K

H

G

A FL EC I

B

Fig. 1.2.12

Let s be the area of circle ABC, and let S be the area of the hemisphere
ABCD = Σ.

a) S > 2s. If 2s = S1, then S1 < S. The Banº Mºsæ admit the existence of
a hemisphere EHIK = Σ1 inside and concentric with Σ. The area of this
hemisphere is S1.

The Banº Mºsæ then proceed in a similar way to Proposition 13 by
considering a solid Γ inscribed within Σ. This solid comprises cones and
truncated cones, and its surface does not touch Σ1. Such a solid is derived
from a regular polygonal line that is inscribed within the great semicircle of
the hemisphere Σ  and does not touch the great semicircle C1 of the
hemisphere Σ1, basing their argument on Proposition XII.16 of the Elements
and not on XII.17 as some have claimed.

b) S < 2s. If 2s = S2, then S2 > S. The Banº Mºsæ consider a sphere Σ2

with area S2 outside Σ, together with a solid Γ′ that is inscribed within Σ2

and does not touch the sphere Σ. This solid is derived from Proposition
XII.16 of the Elements in the same way as in the first case.
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Using the inequalities established in Proposition 13 leads to an
impossible result in both cases, a) and b). Therefore, for a hemisphere,
S = 2s = 2 π R2.

Proposition 15. — The volume of a sphere Σ of radius R and surface area
S is given by

V = 1
3

 R · S = 4
3

 π R3.

Let ABCD be the given sphere Σ. There are two possibilities:
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• If 1
3

 R · S < V, then the Banº Mºsæ admit the existence of a concentric

sphere FGLM = Σ1 with surface area S1 such that

 1
3

 R · S1 = V, where S1 > S.

The Banº Mºsæ are therefore considering a sphere Σ1 concentric with Σ and
with a surface area of S1 > S. Therefore, Σ lies inside Σ1. They then consider
a polyhedron that is circumscribed around Σ and does not touch Σ1 and
apply Lemma 1. If S2 and V2 are the area and volume of this solid
respectively, then, from Lemma 1,

V2 = 1
3

 R · S2.

We know that S2 < S1, therefore V2 < V. This is absurd, as the solid with
volume V2 surrounds the sphere with volume V.
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• If 1
3

 R · S > V, the Banº Mºsæ consider a concentric sphere EHIK =

Σ′1, smaller than ABCD and with surface area S′1 such that

V = 1
3

 R · S′1.

They then consider a polyhedron  that is inscribed within Σ and does not
touch Σ′1, and apply Lemma 2. If its area is S′2 and its volume is V′2, then
V′2 < V and, from Lemma 2,

V′2 < 1
3

 R · S′2 < V.

However, we know that S′2 > S′1; hence 1
3

 R  · S ′2  > 1
3

 R  · S ′1 , i . e .

1
3

 R · S′2 > V. This is also absurd.

The two cases together prove the result.
In neither the first nor the second case do the Banº Mºsæ question the

existence of the polyhedron that they introduce.

Comment — The only volumes of solids discussed in this text are those in
Lemmas 1 and 2; namely, the volume of a polyhedron of surface area S
circumscribed around a sphere of radius R1,

V = 1
3

 S · R1,

and the volume of a polyhedron of surface area S inscribed within a sphere
of radius R2,

V < 1
3

 S · R2 < the volume of the sphere.

It is these results that the Banº Mºsæ used in proving Proposition 15, which
leads one to suppose that the solids they are considering are polyhedra.
There remains the question of which polyhedra may be chosen while still
complying with the conditions of the two cases defined in Proposition 15.

Other commentators have shown that the problem may be resolved by
using the solid Pn defined in Proposition XII.17 of the Elements, a solid
inscribed within a sphere. However, a sphere cannot be inscribed within
such a solid and Lemma 1 of the Banº Mºsæ therefore cannot be used.
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In the second case in Proposition 15, the polyhedron Pn inscribed within
the sphere Σ of radius R must lie outside the sphere Σ′1 of radius R′1. The
value of n must therefore be chosen such that the shortest distance h from
the centre of the two spheres to each face of Pn is such that h > R1. The

volume Vn of Pn is then such that Vn > 1
3

 Sn · R1, from Lemma 2.

It should be noted at this point that al-Khæzin discusses these distances
in Proposition 19 (as noted later).

In the first case, the two spheres under consideration are Σ of radius R

and Σ1 of radius R1 > R. Instead of considering a polyhedron circumscribed

around Σ and lying within Σ1, we should rather consider a polyhedron Γn

inscribed within Σ1 such that the shortest distance h from the centre to each

of its faces satisfies h > R. Its volume is therefore such that Vn > 1
3

 S n · R

(from Lemma 2). It is then possible to reach the desired conclusion.
Finally, we should note that the original text includes the phrases ‘let us

circumscribe, as we have described, a solid around the sphere ABCD …’
and ‘let us inscribe, as we have described, a solid within the sphere
ABCD …’ In neither case do they specify the exact nature of the solid. One
possibility is to consider solids formed from cones and truncated cones as
was done for the area of a sphere in Proposition 14. However, the Banº
Mºsæ do not discuss the volumes of such solids anywhere in this book. They
were doubtless aware that, in Propositions 26 and 31 of The Sphere and the
Cylinder, Archimedes had shown that, if a solid of this type with a surface

area of S circumscribes a sphere of radius R1, then V = 1
3

 S · R1, and that in

Proposition 27, if the solid is inscribed within a sphere of radius R2, then

V < 1
3

 S · R2.

The reasoning described by the Banº Mºsæ could then be applied to this
type of solid. It is possibly for this reason that they felt it unnecessary to
discuss the nature of the solid in detail.

In this group of propositions relating to the lateral area and volume of a
sphere, we can find the same differences between the approaches of
Archimedes and the Banº Mºsæ that we saw in relation to the measurement
of a circle. The first relates to the exhaustion method used. They begin by
establishing the double inequality

cos2  
π
4n

 <  sin 
π
4n

  1 +  2  sin  
k π
4n

 
k=1

n-1
∑







 <  1.



60 CHAPTER I: BANª MªSÆ

Then, as we have explained, they go on to apply propositions from Book
XII of the Elements, which enable them to avoid the requirement to
evaluate the sine series already referred to ‘to the limit’. Here, once again,
they apply an apagogic method to the lateral areas rather than the volumes
when determining the volume of a sphere. Finally, the volume of the sphere
is not given in terms of another volume as in Archimedes – ‘a cone with a
base equivalent to the great circle of one of the spheres and a height equal
to the radius of the sphere’ – but as the product of two variables. These
differences show that the Banº Mºsæ were intent on exploring a different
path to that of Archimedes in their search for the area of a circle, the surface
area of a sphere and the volume of a sphere, while they were content to
adopt Archimedes’ method for approximating π.

We have seen that the Banº Mºsæ found space in their book to address
some of the classic problems of Hellenistic mathematics, especially the two
famous problems found in Eutocius’ commentary on The Sphere and the
Cylinder: the two means and the trisection of angles.

1.2.5. The two-means problem and its mechanical construction

Proposition 16. — In seeking to determine two magnitudes X and Y lying
between two given magnitudes M  and N , the Banº Mºsæ begin by
describing the solution derived by ‘one of the ancients whose name was
Menelaus; he set forth it in one of his books on geometry’. They also
highlight the usefulness of this method in the calculation of cubic roots. The
book by Menelaus that best fits this description is On the Elements of
Geometry, translated by Thæbit ibn Qurra (fî uÒºl al-handasa) and quoted
by al-Nadîm.7 There are no known copies of this book currently in
existence. It is also the case that the solution attributed by the Banº Mºsæ to
Menelaus is actually that which, according to Eutocius,8 was attributed by
Eudemus to Archytas. The task then, given two lengths M and N, is to find
two lengths X and Y such that

M

X

X

Y

Y

N
= =  .

7 Al-Nadîm, al-Fihrist, p. 327. Under the name of Menelaus is found a ‘work on
the elements of geometry, made by Thæbit ibn Qurra, in three books’ (Kitæb uÒºl al-
handasa, ‘amalahu Thæbit ibn Qurra, thalæth maqælæt).

8 Archimidis Opera Omnia, iterum edidit I.L. Heiberg, vol. 3 corrigenda adiecit
E.S. Stamatis, Teubner, 1972, pp. 84–8.
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If M = 1, and N is the volume of a cube, then X is the length of one of the
edges of the cube.

Suppose that M > N and construct a circle of diameter AB = M, a chord
AC = N and a tangent at B that cuts the straight line AC at G.
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Then consider a half cylinder of revolution standing on the semicircle
ACB with its generators perpendicular to the plane ABC. A semicircle of
diameter AB is drawn on the plane perpendicular to ABC passing through
AB, and this is rotated about the axis Az (Az ⊥ ABC) to a position defined
by the semicircle AHE at which position the straight line AE cuts the arc
ACB at I and the semicircle AHE cuts the cylinder at H. IH is a generator of
the cylinder. During the rotation, I describes the arc ACB and H describes a
curve C on the surface of the cylinder.

The triangle ABG  is now rotated about the line AB . The point C
describes a semicircle COD and, at each position, the straight line AG cuts
COD at a point L and cuts the cylinder at a point H′. During the rotation, H′
describes a curve C′′′′ on the surface of the cylinder.

The semicircle AHE and the triangle ABG are fixed in such a position
that H = H′. In this case H ∈ C ∩ C′′′′.

The intersection of planes COD and AHI is LK. We know that LK ⊥ CD
and LK2 = KC · KD as CLD is a right-angled triangle. However, KC · KD =
KA · KI (power of the point K), and hence LK2 = KA · KI. The triangle ALI
therefore has a right angle at L. The triangles AHE, AIH and ALI are all
right-angled and similar; hence

AE

AH

AH

AI

AI

AL
= = .

However, AE = AB = M and AL = AC = N. We then have

X = AH and Y = AI.
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In other words, the solution attributed to Menelaus is obtained from the
intersection of a right cylinder: x2 + y2 = ax, a right cone: b2 (x2 + y2 + z2) =

a2x2, and a torus: x2 + y2 + z2 = a  x2 +  y2  (where a = M and b = N).
If H (x0, y0, z0) is the point of intersection, then

X x y z   = + +0
2

0
2

0
2 and Y x y  =  0

2
0
2+ .

The Banº Mºsæ point out, with good reason, the difficulty of constructing
this solution and propose a mechanical method for this purpose. It has been
claimed that this mechanical system was similar to one described by
Eutocius under the name of Plato. It was nothing of the kind. We have
already noted that this subtle and difficult-to-describe mechanism was
omitted by Gerard of Cremona, and that it does not appear in the Latin
translation.

The procedure is as follows:

Proposition 17. — Let A and B be the two given lengths and X and Y the
two lengths to be found such that

A

X

X

Y

Y

B
= = .

Let DC and DE be two straight perpendicular lines such that DC = A
and DE = B. The line perpendicular to CE and passing through E cuts DC
at F, and the line parallel to EF extended through C cuts ED at M. Let U
be a point on the extension to MC such that MU = FE.

We now define a movement of the line segment FE and a further
movement of the line segment MU with the length of each line segment
remaining constant:
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F slides along the straight line DC towards D.
FE rotates about the point E.
Simultaneously, MU remains parallel to FE,
M slides along the straight line ED, moving away from D,
and MU rotates about C.
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The movement is halted as soon as the straight line perpendicular to FE
at E  cuts the straight line MU  at point U . Let F1E1 and M 1U1 be the
positions of the two line segments at this stage. The figure F1E1U1M1 is a
rectangle. The triangles CM1F1 and M1F1E are both right-angled triangles;
therefore

M D DC DF1
2

1    = ⋅   and  DF DM DE1
2

1    = ⋅ ,

from which
DC

DM1

= DM1

DF1

= DF1

DE
.

However, DC = A and DE = B; therefore DM1 and DF1 are the two line
segments X and Y that were sought.

There still remains the question of an easy method of finding the two
line segments DM1 and DF1. The Banº Mºsæ introduced the point H
defined by CH = EF (H lies on the extension of CM). FECH is then a
rectangle, and H moves along the straight line DE to point M1 as F moves
to F1. It is therefore possible to imagine a mechanism that moves an
arrangement of metal rods forming the figure EFHC.
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The three rods EF, CH and MU have equal lengths l defined from the
data as

l = A

B
A2 + B2 .

The length of rod EC is A2 + B2 , and the rod FH can have any arbitrary
length provided it is at least equal to that of EC. The rod EC is the only one
to be fixed.

The two rods EF and FH are held rigidly at right angles, and the point
F is fitted with a pin, the tip of which moves along the straight line FD. Pins
are placed at the two fixed points E and C, and the head of each pin carries
a ring that is free to rotate, and through which passes one of the moveable
rods. Rod EF passes through the ring at E, and HC passes through C. The
rod MU is thinner than the others and is free to slide in a groove along the
top of rod HC, passing through the ring on pin C. A ringed pin is attached
to rod MU at M. The rod HC passes through the ring and the tip of the pin
moves along the straight line DK. Rod FH is free to slide through a ring
attached to rod HC at H.

A flat base could than be placed under the plane of the moveable
rectangle HFEC with pins E and C securely attached to this base and two
slides provided for the moveable pins F and M. The slide FD, for example,
could consist of two parallel guides placed either side of the straight line FD,
with a similar arrangement provided for MK.

The system of articulated rods could then be fitted to the base, with the
rods FE and HC passing through the rings on pins E and C respectively,
and pins F and M placed in the appropriate slides.

Comments.
1) The diagram in Fig. 1.2.16 shows an intermediate position of the

moveable rectangle, i.e. E′F′H′C′. The thin rod sliding along the top of HC
does not appear to be necessary.

2) The movement is halted when the point H′ arrives at point M′, H′ =
M′ = M1. At this stage, C′  = U1.
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3) As the two sides of the right angle CDE are known (CD = A, and
DE = B), Problem 17 becomes the determination of F on the extension to
CD and M on the extension to ED such that triangle ECM has a right angle
at C and triangle MFE has a right angle at F.
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The problem was discussed by Plato,9 but the mechanical apparatus
attributed to Plato and that described here by the Banº Mºsæ are different.

9 Archimidis Opera Omnia, pp. 56–9.
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1.2.6a. The trisection of angles and Pascal’s Limaçon

Proposition 18. — In this proposition, the Banº Mºsæ return to the
problem of the trisection of angles, but only to present their own solution
and a mechanical device to trace the trisecting curve. This curve is the
conchoid of a circle, the same curve that Roberval10 called Pascal’s
Limaçon. The solution is obtained by finding the intersection of this spiral
curve with a half-line.

In the original text, the Banº Mºsæ address the problem as follows:
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Let ABC be an acute angle, and let a circle of centre B cut BA and BC
at points D and E respectively. Let BG ⊥ BD. Let GH be a half-line joining
G, E and O on GH such that GO = BD. Imagine that the straight line GH
moves as follows: the line continues to pass through E while G describes a
circle in the direction of L.

If I is the position reached by point G when point O reaches the straight
line BG , then IS = IB = BE . If the diameter is now moved such that
KM || EI, we have SI || MB and SI = MB, from which IM || SB or IM ⊥ BL

10 Roberval, ‘Observations sur la composition du mouvement et sur les moyens de
trouver les touchantes des lignes courbes’, in Mémoires de l’Académie Royale des
Sciences, ed. 1730, vol. 6, pp. 1–79, a course by Roberval edited by his pupil François
du Verdus. See also P. Dedron and J. Itard, Mathématiques et mathématiciens, Paris,
1959, pp. 400–1, in which the text by Roberval is cited. According to P. Tannery,
E. Pascal designed this curve as a conchoid of a circle in 1636–1637; see Mémoires
scientifiques, vol. 13, pp. 337–8. See also M. Clagett, Archimedes in the Middle
Ages, vol. 1, Appendix VI entitled ‘Jordanus and Campanus on the trisection of an
angle’, pp. 666–70.
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and BL is the bisector of angle IBM. Therefore the arcs IL LM DK= = ,
and IM KE= ; therefore KE KD= 2 . The straight line BK is therefore the
line being sought.

 DBK DBEˆ ˆ= 1
3

.

If ABCˆ  is obtuse, then we draw the bisector and take the third of its
half. Two thirds of this half gives a third of the obtuse angle.

Comment 1. — As the point G describes the arc GL, the associated point O
(GO = R) describes an arc of a conchoid and S is the intersection of this
with the straight line GB.

In other words, the point S lies on both the spiral and on the straight line
BG. The equation of BG in polar coordinates relative to a pole at point E
may be written as follows:

ρ α
θ α

= a cos 
cos (  –  )

, where a = BE and α = DBCˆ .

The equation of the spiral may be written as

ρ = a (2 cos θ – 1).

The coordinates of point S are (ρ, θ); hence

cos 
cos (  –  )

α
θ α

θ= −2 1cos .

Now, θ α= 2
3

 is a solution of this equation. Therefore angle BES equals 2
3

α, angle BS′E equals 1
3

 α , and angle DBK equals 1
3

 α.

The angle ABC has therefore been trisected using the intersection of an
arc of the conchoid of circle (GO = GO′  = R) with the half-line BG.

The Banº Mºsæ then go on to describe a mechanical device to trace
Pascal’s Limaçon. Their device consists of a circular groove in which is
placed a ringed pin at point E. A rod is passed through the ring and a pin is
attached to one end at G. This pin is free to move in the circular groove. A
second pin is fixed at a point O on this rod, where GO = R. This pin is used
to trace the arc of the conchoid. The intersection of this arc with the
perpendicular BG gives the point S that was sought.



68 CHAPTER I: BANª MªSÆ

If the user wishes to trace the entire conchoid, an additional rod is
required that extends beyond G by a length equal to GO = R.

This part of the conchoid may also be used to trisect the angle DBE. If
IS is extended to point S′  on the conchoids, then IS = IS′ = IB = R, and
hence SBS′ is a right angle at point B. Point S′  is the intersection of the
conchoids with the straight line BD.

Comment 2. – In Proposition 8 of the book of lemmas,11 attributed to
Archimedes, the author draws a chord AB from a point A on a circle of
centre D, which is then extended to a point C such that BC = AD = R. The
straight line CD cuts the circle at E and F, and we have AE BF= 3 , thus
completing the discussion of the trisection of angles.

D

A B
C

F

GE

Fig. 1.2.20

This proposition, which could have been originated by Archimedes, is
also associated with a conchoid: as point B describes an arc on the given
circle, point C describes an arc of the external conchoid of this circle.

Could the Banº Mºsæ have been inspired by an Arabic translation of
this text? Given our present state of knowledge, we cannot answer this
question with any degree of certainty. There is a difference between the two
discussions in that the Banº Mºsæ use an arc of the internal conchoid of the
circle, while the text attributed to Archimedes implies the use of an arc of
the external conchoid of the circle.

Comment 3. — While the origins of the solution to this problem proposed
by the Banº Mºsæ remain obscure, its path can clearly be traced in later
works. Their solution was copied in the Liber de triangulis.12 It should also
be noted that, according to Roberval, Etienne Pascal designed his Limaçon

11 Archimidis Opera Omnia, Liber assumptorum, vol. 3, p. 518; Archimède,
transl. Mugler, vol. 3, pp. 148–149.

12 M. Clagett, Archimedes in the Middle Ages, vol. 5, Philadelphia, 1984,
pp. 146–7; 297 sqq. and especially 324–5.
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in the same way – as a conchoid of a circle, and that he also applied it to the
trisection of angles.

1.2.6b. Approximating cubic roots

The Banº Mºsæ end their treatise with a discussion of an approximation
of the cubic root of an integer N in which they give an expression equivalent
to

  
N3  =  

1

60k   N .  603k3 ,

from which an approximation of the cubic root of N can be determined
within an accuracy of the order of k.



1.3. Translated text

 BBBBaaaannnnºººº    MMMMººººssssææææ

On the Knowledge of the Measurement of Plane and Spherical Figures



In the Name of God, the Merciful, the Compassionate

THE BOOK OF THE BANª MªSÆ,
MUÎAMMAD, AL-ÎASAN AND AÎMAD

On the knowledge of the measurement of plane and spherical figures

In eighteen propositions

Introduction to the book

The length is the first of all the magnitudes1 that define2 figures,3 and it
is what extends along a straight line in both directions simultaneously,4 and
from that which is extended only length can be obtained. If a surface5 is
extended in a direction other than the length, then this extension is the
breadth.6 The breadth is not, as many believe, the line which surrounds the
surface in a direction other than the length. If this were the case, then the

1 ‘The first of all the magnitudes’ is a translation of the Arabic awwal al-aqdær,
translated by Gerard as prima quantitatum (‘quantities’ in Clagett’s translation, p. 238,
34). We prefer the term ‘magnitude’ in order to distinguish between ‘iÂam (dimension)
and kammiya (quantity).

2 We have translated yaÌuddu as ‘define’. Gerard translated it as terminare
(‘delimit’ in Clagett’s translation), which also means ‘to define’.

3 Al-ashkæl; Gerard translated it as corporis (‘body’ in Clagett’s translation), giving
it a more concrete sense than that expressed here.

4 Reading the corresponding Arabic text, one could conjecture that a saut du même
au même has occurred. This should then read:

ÆÆÆ ÊuJ¹ ô t½S� æUÎFOLł 5²N'« w� W�UI²Ý« vKŽ b²�« U�Ëº UÎFOLł 5²N'« w� W�UI²Ý« vKŽ b²�« U� u¼Ë ÆÆÆ

and we then have: ‘… extends along a straight line in both directions simultaneously, and
from that which is extended along a straight line in both directions simultaneously, only
length can be obtained …’. This could also easily be simply an abridgement, albeit an
ambiguous one, in which the pronoun in fa-innahu refers to mæ. Gerard has translated
this text as Et longitudo est prima quantitatum que terminant illud. Et est illud quod
extenditur secundum rectitudinem in duas partes simul. Nam non fit ex eo nisi
longitudo tantum (pp. 240–2, 34–36).

5 Al-sa†Ì. Here, Gerard translates †ºl as longitudo (p. 240, 36).
6 Gerard also includes the phrase Et tunc provenit superficies (pp. 242, 38–39)

which is missing in al-™ºsî’s text. It should be noted that this phrase does not appear in
the remainder of either the Latin or the Arabic text.



74 CHAPTER I:  BANª MªSÆ

surface would not have a length and breadth alone7 and the breadth would
also be a length, as for them the breadth is a line and a line is a length.8

Euclid was correct in this regard when he stated: A line is only length,
and a surface is that which has only length and breadth. As for depth, this is
an extension9 in a direction other than those of the length and the breadth.
However, those who believe that the breadth is a line also believe that the
depth is a line. They are as wrong in one as in the other.10 *These three

7 See the French edition, Supplementary note p. 1029.
8 It is clear that al-™ºsî has severely edited the introduction, removing anything that

appeared to him to be non-mathematical, including all the historic and theoretical sections
in which the Banº Mºsæ explained the reasons that led them to write this treatise. The
removed text runs to some thirty lines in the Clagett edition of the translation by Gerard of
Cremona (pp. 238–40, 4–34). This is Clagett’s translation of the Latin text: ‘Because we
have seen that there is fitting need for the knowledge of the measure of surface figures
and of the volume of bodies, and we have seen that there are some things, a knowledge
of which is necessary for this field of learning but which – as it appears to us – no one up
to our time understands, and that there are some things we have pursued because certain
of the ancients who lived in the past had sought understanding of them and yet
knowledge has not come down to us, nor does any one of those we have examined
understand, and that there are some things which some of the early savants understood
and wrote about in their books but knowledge of which, although coming down to us, is
not common in our time – for all these reasons it has seemed to us that we ought to
compose a book in which we demonstrate the necessary part of this knowledge that has
become evident to us. And if we consider some of those things which the ancients posed
and the knowledge of which has become public among men of our time but which we
need for the proof of something we pose in our book, we shall merely call it to mind and
it will not be necessary for us in our book to describe it [in detail], since knowledge of it
is common; for this reason we seek only a brief statement. On the other hand, if we
consider something which the ancients posed and which is not well remembered nor
excellently known but the explanation of which we need in our book, then we shall put it
in our book; relating it to its author. It will be evident from what we shall recount
concerning the composition of our book that one who wishes to read and understand it
must be well instructed in the books of geometry in common usage among men of our
time. The common property of every surface is the possession of length and breadth
alone, while the property of a corporeal figure is the possession of length, breadth, and
height. Length, breadth, and height are quantities which delimit the magnitude of every
body.’

9 Imtidæd. In the Latin text, we have extensio superficiei, which indicates that he
was translating the Arabic imtidæd al-sa†Ì. The final part of the phrase is scilicet
extensio eius in altum (p. 242, 47–48), which could be translation of a‘anî imtidædan fî
al-irtifæ‘.

10 In the Latin translation, this is followed by Iam ergo ostensum est quid sit
longitudo et quid latitudo et quid altitudo (p. 242, 51–53), which is likely to be a
translation of the Arabic: fa-qad tabayyana idhæn mæ al-†ºl wa-mæ al-‘ar≈ wa-mæ al-
samk, which indicates that this section has been summarized by al-™ºsî.
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magnitudes define the dimension of every body and the extension of every
surface. The procedure for estimating their quantities is based on the unit
plane and the unit solid*.11

The unit plane used to measure a surface is a surface whose length is
one, whose breadth is one and whose angles are right angles. The unit solid,
used to measure a solid, is a solid whose length is one, whose breadth is one,
and whose depth is one, and wherein each of the surfaces is at right angles
to the others. The magnitude used to measure surfaces and solid bodies
requires that its parts be brought together, one against the other, in such a
way as to leave no void, without filling the surface or body. It also requires
there to be an obvious distinction between that which has been measured
completely and that which has not been measured. There is no more
effective method of obtaining this distinction than <to ensure that> the unit
rule used to make the measurements is the same, regardless of whether it is
marked with units taken singularly or repeated,12 so that the effort required
to distinguish that which has been measured from that which has not should
be the same in all cases. This exists in no other figure than the quadrilateral
as, if a quadrilateral is doubled, only its quantity is changed, and its
squareness remains.13 However, of all the quadrilateral figures <with equal
perimeters>, that with angles that are right angles is the largest.14 *It is for
this reason that we propose this as a measure, and no other*.15

11 *…*: As this section of text is longer in the Latin translation, this seems to be the
translation by al-™ºsî. This section therefore contains an idea that is missing in the
Arabic, that a fourth magnitude is not required in order to define a body. Et declaratur
iterum quod non est aliquid corporum indigens quantitate alia quarta qua eius
magnitudo terminetur (pp. 242–3, 54–56).

12 ‘Taken singularly or repeated’ (fî afrædihi wa-fî ta≈æ‘îfihi), given in Latin as in
singularitate sua in sua duplatione (pp. 244–6, 76–77).

13 There is an entire paragraph in Latin (p. 246, 79–88) that does not appear in
Arabic.

14 Lit.: has the greatest perimeter.
15 *…*: The Latin text contains a number of lines (p. 246, 91–95) to describe the

same idea: Iam ergo manifestum est propter quam causam ponitur quadratum
orthogonium ex superficiebus et corporibus esse quantitas qua comparantur
superficies et corpora. Et ita verificatur sermo in eo cuius narrationem voluimus in
hoc nostro libro. Incipiamus ergo nunc narrare illud quod volumus.
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The propositions16

– 1 – For any polygon17 circumscribed around a circle, the product of
the half-diameter of this circle and half the sum of the sides of this polygon
is its area.

A

D

G

E

C H
B

Fig. I.1

Let18 the figure ABC be circumscribed around the circle DHG whose
centre is at E and whose half-diameter is EH.19 Let us join EA, EB and
EC.20 It is clear that EH is the height of the triangle EBC and that the
product of EH and half BC is the area of the triangle EBC. The same rule
may be applied to the two triangles AEB and AEC.21 The <product of the>

16�Al-ashkæl: missing in the Latin text.
17 A regular polygon is implied here, as throughout the text. We shall not indicate

any further occurrences.
18 As is usual in a mathematical exposition, the line in the Latin text begins: Verbi

gratia, a translation of the Arabic mithæl dhælika. Al-™ºsî omitted this expression
throughout the text. We shall not indicate any further occurrences.

19 The Latin version continues with this expression: Dico ergo quod multiplicatio
linee EH in medietatem omnium laterum figure ABG est embadum superficiei ABG.
Cuius hec est demonstratio (p. 248, 7–9), which is a translation of the Arabic:

This type of expression has been omitted by al-™ºsî in his edition. We shall not indicate
any further occurrences.

20 ‘Let us join EA, EB and EC’. The corresponding Latin text is Protraham duas
lineas BED, GEZ (p. 248, 10).

21 The preceding phrase appears to be a summary of a longer one, translated by
Gerard as: Et per huiusmodi proprietatem sciemus quod multiplicatio medietatis
diametri circuli ZDH  in medietatem linee AB  aut in medietatem linee AG  est
embadum duorum triangulorum GEA, AEB. Et illud est quod declarare voluimus
(p. 248, 12–15).

ن أ لوفأق ح إ . ب ا لشك ةمساحب هو ج ب ١ ضغم علاأض جمح فصن في ح ه طخ سط د كذ ناهرب م ن ؛ل . . . أ
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half-diameter of the circle by half the sum of the sides is therefore the area
of the triangle ABC.

We know in a similar manner that for any solid circumscribed around a
sphere, the product of the half-diameter of the sphere and one third of the
area of the surface of the circumscribed solid is equal to the volume of the
solid, and that this volume is always greater than the volume of the sphere.22

*I say that this can be shown by imagining the solid divided into
pyramids whose vertices are the centre of the sphere, and whose bases are
the bases of the solid, and which are arranged such that a half-diameter of
the sphere is perpendicular to the base23 of each of them. The volume of
the solid is therefore equal to the volume of these pyramids*.24

– 2 – For any polygon inscribed within a circle, the product of the half-
diameter of this circle and half the sum of the sides of this polygon is less
than the area of the circle.

Let a triangle be inscribed within the circle ABC, and let E be the
centre. We join EB and EC; let ED be perpendicular to BC. We produce it
to G and we join BG and CG. The product of EG and half of BC is equal to
the area of the two triangles EBC and GBC; *this area is less than the area
of the sector EBGC and greater than the area of the triangle EBC*.25 *We
shall show that the same applies to the remainder of the figure, and we shall
show that the area of the circle is much greater than the area of the triangle
ABC.*26

22 The Latin translation gives corporis (p. 248, 21). The section ends with the
expression used in this case: Et illud est quod declarare voluimus (ibid.), which is a
translation of the Arabic wa-dhælika mæ aradnæ an nubayyin, omitted by al-™ºsî. We
shall not indicate any further occurrences.

23 Lit.: their bases.
24 Understood to mean: to the sum of the volumes of the pyramids.
*…*: This is a long commentary by al-™ºsî, clearly indicated by the introductory ‘I

say …’.
25 *…*: This expression is missing in the Latin text. It should also be noted that the

Latin text uses letters for the geometric figures that are different from those used in the
Arabic text.

26 *…*: In the Latin text: Et per modum similem huic scitur quod multiplicatio
medietatis diametri circuli ABG  in medietatem laterum AG, BG, AB est minor
embado circuli ABG. Iam ergo declaratum est quod multiplicatio medietatis diametri
circuli ABG <in medietatem omnium laterum figure> est minor embado circuli ABG.
Iam ergo ostensum est quod multiplicatio medietatis diametri circuli in medietatem

ك بمثل من ونعلم ح أن ذل ف قي ح ه ط حة هو ب ا ض سا ث م ة هو ز ا نصف في ح ه سطح وأن ب ه ا مثل ح  سا

ث ٠ ز ه ب مثل
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Fig. I.2

We know in a similar manner that the solid inscribed within a sphere is
such that the product of the half-diameter of the sphere and one third of the
surface area of the solid is less than the volume of the sphere.

– 3 – Consider a segment of a straight line and a circle. If the segment is
less than the circumference of the circle, then it is possible to inscribe within
the circle a polygon, the sum of whose sides is greater than this segment. If
the segment is longer than the circumference of the circle, then it is possible
to circumscribe a polygon around the circle, the sum of whose sides is less
than the segment.

Let the circle be ABC and the segment HF, which is firstly shorter than
the circumference of <the circle> ABC. Let the circumference of circle
DGE be equal to the segment HF. If a polygon is inscribed within the circle
ABC without touching the circumference of EDG,27 then the sum of its
sides is greater than the circumference of EDG, i.e. the segment HF.28

omnium laterum figure est minor embado circuli (p. 250, 12–19), which is a fairly
close translation of the Arabic:

It is very likely that al-™ºsî considered this to be too long and summarized it in a single
phrase, leaving the explanation to the reader.

27 See Euclid, Elements, XII.16.
28 The Latin version reads: Sed linea EDZ  est equalis linee HU . Iam ergo

ostensum est quod possibile est ut faciamus in circulo ABG figuram lateratam et
angulosam et latera eius agregata sint longius linea HU. Et illud est quod declarare
voluimus (p. 254, 19–23), which is doubtless a translation of the Arabic:

ه مل ن ن،تي وب ح آ ط طر نصف س رة ق ئ ح نصف في ج ب ا دا م لاع ج ض ل ب ا ج ب ج ا أ ق ص أ

ح أن مت ط رة قطر نصف س ئ م فمح في ج ب ا دا يلا الضلع; علاأض عج طحت ذ ر؛ به ي دائ ال

ة ن ح سا رة م ئ . ب ا دا د ج ق  ف

ل ق ن أ ة م ح ا . م رة ئ دا ل ا
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Fig. I.3

Now, let the circle be EDG  and a segment HF  be longer than its
circumference, and let the circumference of ABC be equal to the segment
HF. If a polygon is inscribed within the circle ABC without touching the
circumference of EDG, then the sum of its sides will be less than the
circumference of ABC, i.e. the segment HF. If a similar polygon to that
mentioned is then circumscribed around and touching29 the circle EDG,
then the sum of its sides will be much less than the segment HF. This is
what we required.30

*I say that this is founded upon the existence of a circle whose
circumference is equal to any given segment. This has not been proved
anywhere else*.31

– 4 – For any circle, the product of the half-diameter and half the
circumference is its area.

Let the circle be ABC, its centre E and EC the half-diameter. If the
product of EC and half the circumference of ABC is not equal to the area of
the circle, then the product of EC and a straight line either longer than half
the circumference of ABC or shorter than it is equal to its area.

29 See commentary.
30 The Latin text continues: Et hec est forma figure (p. 254, 36), which is a

translation of the Arabic: wa-hædhihi Òºra al-shakl, omitted by al-™ºsî.
31 *…*: Commentary by al-™ºsî.

نل ن خط ك ل سا ل د ،و ح لخط وم ق ن ف ه تبي ن ن أ ك ن ي ح ويكون مضلع ج ب ١ ةردائ في عملي أ  لطوأ عهلاأض جم

كوذ و؛ ح طخ ن اأردن ماب ل ■ ذ-تي أ
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Fig. I.4

Firstly, let the product of EC and a straight line shorter than half the
circumference of ABC be equal to the area of the circle. Let this straight line
be the straight line HF. Twice HF is therefore less than the circumference of
ABC. It is possible to inscribe a polygon within the circle ABC such that the
sum of its sides is greater than twice HF and half of that is longer than
HF.32 <The product> of the half-diameter EC and half the sum of the sides
of this polygon is less than the area of the circle.33 The product of EC and
HF  is therefore much less than the area of the circle. But it is equal,
therefore this is contradictory.

Now, let the product of EC and a straight line longer than half the
circumference of ABC be equal to the area of the circle.34 Let this straight
line be HF. Twice HF is therefore longer than the circumference of the
circle. It is possible to circumscribe a polygon around the circle ABC such
that the sum of its sides is less than twice HF and half of that is less than
HF. The product of the half-diameter EC and half the sum of the sides of
this polygon is greater than the area of the circle. The product of EC and
HF is therefore much greater than the area. But it is equal; therefore this is
contradictory. The product of EC and half the circumference of ABC must
therefore be equal to the area of the circle ABC. This is what we required.

32 From Proposition 3.
33 From Proposition 2.
34 i.e. the circumference. The Latin text continues: Ergo multiplicatio linee EG in

lineam HU est embadum circuli ABG (p. 258, 12–13), which is a translation of the
Arabic:

،مسا و ح طخ في ج ه طخ سطح نوفيك ج ب ا ةردائل و
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It becomes clear from this that the product of the half-diameter and half
of any given arc is equal to the area of the sector enclosed by this arc and
the two half-diameters passing through its two extremities.

– 5 – For any circle, the ratio of the diameter to the circumference is the
same.

Let the two circles ABC and DEG be different, and let BC be the
diameter of ABC and DE the diameter of DEG.

If this is not as we have stated,35 then let the ratio of BC  to the
circumference of ABC be equal to the ratio of DE to HF, with HF being
either longer than the circumference of DEG or shorter than it.

C
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Fig. I.5

We firstly assume that it is shorter. We divide HF into two halves at I.
Let the perpendicular HK to HF be equal to half of DE. We now complete
the surface KI.36 The surface KI is therefore less than the area of the circle
EDG. However, the ratio of KH to HI is equal to the ratio of half of BC to
half the circumference of ABC, and the product of KH and HI is the area of
KI, and the product of half of BC and half of the circumference of ABC is

35 In Gerard’s translation, after the expression ‘I say that …’, omitted as usual by
al-™ºsî together with the word ‘Proof’, he continues: Si non fuerit proportio amborum
una, tunc … (p. 260, 9), which is probably a translation of the Arabic: fa-in lam takun al-
nisbatayn wæÌida, fa-…

36 The Latin text then continues: Et quoniam linea HK est equalis medietati linee
EZ , et linea HT  est brevior medietate linee DZE , erit quadratum KT  minus
superficie circuli DEZ (p. 262, 15–17). It can be seen that al-™ºsî has almost certainly
omitted the intermediate step: ‘As the straight line HK is equal to half the line DE, and the
straight line HI is less than half the line DGE, then the area KI is less than the area of the
circle DEG’, which is a translation of the Arabic:

منصأ ط حم نر ا ةس  S ا ك- ح ظ ه طخافصنلرم منصأ ط ح ئطوخ د ز طخ فصن نر ك مل ح نوي ط س
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the area of the circle ABC. The ratio of the surface KI to the circle ABC is
therefore equal to the square of the ratio of KH, that is half of DE, to half of
BC, which is the square of the ratio of DE to BC. Now, Euclid has shown
that the square of the ratio of DE to BC is equal to the ratio of the circle
DEG to the circle ABC.37 Therefore, the ratio of the surface KI to the circle
ABC is equal to the ratio of the circle DEG to this circle, and the surface KI
is therefore equal to the circle D E G . Now, it was less, so this is
contradictory. The straight line HF is therefore not less than the
circumference of DEG.

 Using a similar procedure, we can show that it is also not longer. It
therefore follows that the ratio of DE to the circumference of DEG is equal
to the ratio of BC to the circumference of ABC, and that this holds for any
other pair of circles. This is what we required.

– 6  – Let us now calculate38 the ratio of the diameter to the
circumference by means of the method postulated by Archimedes. No other
method discovered by any other person has come down to us, up to the
present day. While this method does not lead to a knowledge of the
magnitude of one relative to the other that is exactly the true magnitude, it
does allow the magnitude of one relative to the other to be determined to
the degree of approximation desired by the one who seeks it.39
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Fig. I.6

37 Euclid, Elements, XII.2.
38 Lit.: Let us show. The translation by Gerard of Cremona uses the verb ostendere.
39 The Latin translation includes a section in which the Banº Mºsæ return to the same

idea, but expressed differently (see p. 262, 15–25).
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In order to show this,40 let a circle be AIB, its diameter AB and the
centre C. We draw a straight line CD from C which includes with CB a third

40 This, in similar terms, is the procedure followed in the first part: Let BD be a

tangent to the circle at B. Beginning with the angle at the centre BCDˆ = ×1

3 2

π , and taking

successively the half, quarter, eighth and sixteenth, we have BCHˆ = × = ×1

48 2

4

192 2

π π .

Therefore, BH is half the side of the regular polygon with 96 sides circumscribed around

the circle. BH = 1
2

 C96 . In the triangle CBD, we have DB = 1
2

CD and CB2 = 3
4

CD2 . Now,

as E is the foot of the bisector, we can write

(1) ED

EB
= CD

CB
⇔ EB + ED

EB
= CB + CD

CB
⇔ CB + CD

DB
= CB

EB
.

If we let CD = 306 and BD = 153, then CB = 265.0037736 > 265, which is a good
approximation, as can be seen. This leads to

CB + CD > 571 and, from (1), 
  

CB

EB
 >  

571
153

.

The Banº Mºsæ go on to link the segments and the numbers: If EB = 153 u (where u
is the unit, of which EB  = 153), then CB  > 571 and CB2 + EB 2 = CE 2, hence

CE > 591 + 1
8

.   Similarly, in triangle CEB, we have

(2) CE + CB

EB
= CB

FB
⇒ CB

FB
>

1162 + 1
8

153
;

if FB = 153 u (where u is the unit, of which FB = 153), then CB > 1 162 + 1

8
 and

CF > 1 172 + 1

8
. Similarly, in triangle CFB, we have

(3) CF + CB

FB
= CB

GB
⇒ CB

GB
>

2334 + 1
4

153
,

and, if GB = 153, we have CB > 2 334 + 1

4
 and CG > 2 339 + 1

4
. Similarly, in triangle

CGB, we have

CG CB

GB

CB

HB

CB

HB

+ = ⇒ >
+4673

1

2
153

.

Now, CB is the half-diameter and HB is half of one of the sides of C96 . Therefore, if P96

is the perimeter of the polygon with 96 sides, then

P96

d
< 96 ×153

4673 + 1
2

< 3 + 1
7

.
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of a right angle, and we draw a perpendicular BD from B on to CB. The arc
intercepted by the angle BCD is a half-sixth of the circle AIB and the
straight line BD is half the side of a hexagon circumscribed around the circle
AIB. We now divide the angle BCD into two halves by means of a straight
line CE, we divide the angle BCE into two halves by a straight line CF,
divide the angle BCF into two halves by the straight line CG and we divide
the angle BCG into two halves by the straight line CH. It is clear that the arc
intercepted by the angle BCH  is one part of 192 <parts> around the
circumference of AIB and that the straight line BH is half the side <of a
polygon> with ninety-six sides circumscribed around the circle AIB. Let us
assume in order to facilitate the procedure, as we have shown, that CD is
306, and its square will be 93,636. BD is 153 as the angle BCD is one third
of the angle CBD, which is a right angle, and the square of  BD is 23,409,
and the square of CB is 70,227. The straight line CB is therefore longer than
265. However, the ratio of BC and CD, which together make up BD, is
equal to the ratio of CB to BE as CE bisects the angle BCD. But BC and
CD together are greater than 571 and BD is equal to 153. Therefore, the
ratio of CB to BE is greater than the ratio of 571 to 153. Therefore, as the
magnitude of BE is 153, CB is greater than 571, its square is greater than
326,041, the square of BE is 23,409, and the square of CE is greater than
349,450. The straight line CE is therefore longer than 591 and one eighth.

Similarly, we can show that the ratio of CB to BF is greater than the
ratio of 1,162 and one eighth to 153. If BF is 153, then CB is greater than
1162 and one eighth, its square is greater than 1,350,534,41 the square of
BF is 23,409 and the square of CF is greater than 1,373,943.42 Therefore,
the straight line CF is longer than 1,172 and one eighth.

Similarly, we can show that the ratio of CB to BG is greater than the
ratio of 2,334 and a quarter to 153. If BG is 153, then CB is greater than
2,334 and a quarter, its square is greater than 5,448,723, the square of BG is
23,409 and the square of CG is greater than 5,472,132. The straight line CG
is therefore longer than 2,339 plus one quarter.

Similarly, we can show that the ratio of CB to BH is greater than the
ratio of 4,673 and a half to 153. If the straight line BH is 153, then CB will
be greater than 4,673 plus a half. This is the magnitude of <the ratio of> the
side <of the polygon> of ninety-six sides to the diameter. The magnitude of
<the ratio of> the diameter to the sum of the sides <of the polygon> with
ninety-six sides circumscribed around the circle is greater than the
magnitude of <the ratio of> 4,673 plus a half to 14,688. <The ratio of the
magnitude of the sum of the sides of the polygon with ninety-six sides

41 Gerard’s translation includes ‘et quarta’.
42 Idem.
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circumscribed round the circle to the diameter is therefore less than the
magnitude of the ratio of 14,688 to 4,673 plus a half>, which is less than
three plus one seventh part of unity.43

We then draw44 the one-sixth chord in the circle AIB, that is IB, and
extend AI. Let us divide the angle IAB into two halves by a straight line AJ

43 The Arabic text translated here appears to be incomplete. However, as both the
manuscripts agree, we have left it unaltered. We believe that the missing phrase that we
have inserted in English must have been:

±¥∂∏∏ —b� s� Òq�√ dDI�« bMŽ …dz«b�UÐ jO×¹ UÎFK{ 5F�ðË W²Ý Í– Ÿö{√ lOLł —bI�º ±¥∂∏∏ bMŽ ÆÆÆ

ÆÆÆ u¼Ë ¨ænB½Ë ¥∂∑≥ bMŽ 

Gerard’s translation includes: Et hec quidem est proportio lateris figure habentis
nonaginta sex latera continentis circulum ad diametrum. Ergo proportio diametri ad
omnia latera figure habentis nonaginta sex latera continentis circulum est maior
proportione quattuor millium et sexcentorum et septuaginta trium et medietatis ad
quattuordecim millia et sexcenta et octoginta octo. Iam ergo ostensum est quod
proportio omnium laterum figure habentis nonaginta sex latera ad diametrum est
minor tribus et septima unius (pp. 270–2, 87–94).

We arrive at

4673 + 1
2

14688
= 0,318525326 < 0.

44 Let us take up the proof of the second part: Let I be a point on the circle such that

BAIˆ = ×1

3 2

π . By successively dividing this angle in half, then a quarter, eighth and

sixteenth, we also have the points J, K, L, M on the circle, and the chord BM is the side
of the inscribed polygon with 96 sides. The bisector AJ cuts IB at O, and we have

OB

OI
= AB

AI
⇔ OB + OI

OI
= AB + AI

AI
⇔ AI + AB

IB
= AI

OI
= AJ

JB
,

as AIO and AJB are similar. We set AB  = 1560, BI = 780; from this we deduce
AI < 1351, which is also a good approximation. We then have:

(1) IA + AB

IB
= AJ

JB
⇒ AJ

JB
< 2911

780
.

If we now set JB = 780 u (where u is the unit of which JB is 780), then AJ < 2911,

AB2 = AJ2 + JB2 < 9 082 321 and AB < 3 013 + 3

4
.

Similarly, in the triangle AJB, the bisector is AK, and we have

(2) JA + AB

JB
= AK

KB
⇒ AK

KB
<

5924 + 3
4

780
= 1823

240

(simplified by multiplying both sides by 4
13

). This gives KB = 240; hence

AK < 1823, AB2 = AK 2 + KB2 < 3380929  and AB < 1838 + 9
11

.
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and we join JB. We divide the angle JAB into two halves by a straight line
AK and we join KB. We divide the angle KAB into two halves by a straight
line AL and we join LB. We divide the angle LAB into two halves by a
straight line AM  and we join MB . MB  will then be the side <of the
polygon> with ninety-six sides inscribed within the circle. We now assume in
order to facilitate the procedure that AB is equal to 1,560. Then the chord
BI will be 780, the square of AB will be 2,433,600, the square of BI will be
608,400 and the square of IA will be 1,825,200. Therefore, straight line IA is
less than 1,351. However, the ratio of IA and AB together to IB is equal to
the ratio of AI to IO, which is also the ratio of AJ to JB. But the two
straight lines IA and AB together are less than 2,911 and IB is 780. If
therefore JB is 780, then AJ is less than 2,911, the square of AJ is less than
8,473,921 and the square of JB is 608,400 and the square of AB is less than
9,082,321. Therefore, the straight line AB is less than 3,013 and three
quarters of unity.

Similarly, in the triangle AKB, the bisector is AL, and we have

(3) KA + AB

KB
= AL

LB
fi AL

LB
<

3661+ 9
11

240
= 1007

66

(simplified by multiplying both sides by 11
40

). This gives LB  = 66, and therefore

AL  < 1007, AL2 + LB2 = AB2 < 1018405 and AB < 1009 + 1
6

.

Similarly, in the triangle LAB, the bisector is AM, and we have

(4) LA + AB

LB
= AM

MB
fi AM

MB
<

2016 + 1
6

66
.

This gives MB = 66, and therefore AM < 2016 + 1
6

, AM2 + MB2 = AB2 < 4069284, and

hence AB < 2017 + 1
4

. But MB is a side of ¢C96, and therefore ¢P96 = 66 ¥  96 = 6336 and AB

is the diameter of the circle; hence
¢ >

+
> +P

d
96 6336

2017
1

4

3
10

71
.

If P is the circumference of the circle, we therefore have

¢ < <P P P96 96;
hence

¢ < <P

d

P

d

P

d
96 96 ,

and hence

3 + 10
71

< P

d
< 3 + 1

7
.
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Similarly, we can show that the ratio of AK to KB is less than the ratio
of 5,924 and three quarters of unity to 780. If, therefore, the straight line KB
is 780, then AK  will be less than 5,924 and three quarters of unity.
However, the magnitude of the ratio of 5,924 and three quarters of unity to
780 is equal to the magnitude of the ratio of  1,823 to 240. If, therefore, KB
is 240, then AK will be less than 1,823 and the square of AK is less than
3,323,329 and the square of KB is 57,600. Therefore, the square of AB is
less than 3,380,929, and the straight line AB is less than 1,838 and nine of
eleven <parts> of unity.

Similarly, we can show that the ratio of AL to LB is less than the ratio
of 3,661 and nine elevenths to 240, and the magnitude of the ratio of 3,661
and nine elevenths to 240 is equal to the magnitude of the ratio of 1,007 to
66. If LB is 66, then AL is less than 1,007, the square of AL is less than
1,014,049, the square of LB is 4,356 and the square of AB is less than 1,018
405. Therefore, the straight line AB is less than 1,009 and one sixth of unity.

Similarly, we can show that the ratio of AM to MB is less than the ratio
of 2,016 and one sixth of unity to 66. If, therefore, MB is 66, then AM is
less than 2,016 and a sixth, the square of AM is less than 4,064,928, the
square of MB is 4,356 and the square of AB is less than 4,069,284. The
straight line AB is therefore less than 2,017 plus one quarter of unity.
However, the straight line MB has a magnitude of 66 and the straight line
MB is the side <of the polygon> with ninety-six sides inscribed within the
circle. The ratio of the diameter to <the sum of> the sides <of the polygon>
with ninety-six sides inscribed within the circle is less than the ratio of 2,017
plus one quarter of unity to 6,336.

It has therefore been shown that the ratio of the sum of the sides <of the
polygon> with ninety-six sides inscribed within the circle to the diameter is
greater than the ratio of three plus ten parts of seventy-one parts to unity.
The circumference of the circle is greater than the sum of the sides of the
polygon with ninety-six sides inscribed within the circle and less than the
sum of the sides <of the polygon> with ninety-six sides circumscribed
around the circle. From that which we have described, it has therefore been
proved that the ratio of the circumference of a circle to its diameter is
greater than the ratio of three, plus ten parts of seventy-one <parts>, to
unity, and less than the ratio of three, plus one seventh, to unity. This is
what we required.
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It is possible, using this method, to achieve any required degree of
accuracy in this procedure.

– 7 – For any triangle, multiplying half the sum of the sides by the
amount by which this exceeds each of the sides, multiplying by the excess
over one of the sides, then by the second, and then by the third, the result
will be equal to the product of the area by itself.45

Let the triangle be ABC. We draw the largest circle that can be inscribed
within it, and let that circle be DGF, and let its centre be at E. We draw ED,
EF and EG to the points of contact, and we extend AE. It is clear that AD
and AF are equal. This also applies to BD and BG, and CF and CG.46 It is

45 See Supplementary note (The formula of Hero).
46 These inequalities are proved in the Latin translation. Al-™ºsî seems to consider it

too simple to be left there (p. 280, 22–29). Although his version contains the same ideas
and proof as the Latin, al-™ºsî expresses them in a far more condensed form. Here is a
brief résumé:

Let P be the perimeter of the triangle ABC with sides a, b, and c. It is required to
prove that the area S of this triangle satisfies

S2 = p

2
p

2
− a





p

2
− b





p

2
− c



 .

Let E be the centre of a circle of radius r inscribed within the triangle, and let D, F and G
be the points of contact between the circle and the sides of the triangle, AB, AC and BC
respectively. Let H be a point on AB, and let K be a point on AC, such that BH = CG and

CK = BG. Then, AH = AK = a + b + c

2
= P

2
. The bisector AE is an axis of symmetry of the

triangle HAK. The perpendicular to AH at H and that to AK at K therefore meet AE at a
single point I, and IH = IK.

If BL = BH = CG, then CL = GB = CK, and BI CI BH CK BL CL2 2 2 2 2 2− = − = − .
Therefore, IL ⊥  BC and IL = IH = IK, HBI IBLˆ ˆ= , as the right-angled triangles HBI
and IBL are congruent.

In addition, HIL DBGˆ ˆ=  and therefore EBD BIHˆ ˆ= , and the right-angled triangles
BDE and BHI are similar. From this, we deduce

DE

DB
= HB

HI
⇒ DE

GB
= GC

HI
⇒ DE × HI = GB × GC .

Also, DE

HI
= DE2

DE × HI
= DE2

GB × GC
, but DE

HI
= AD

AH
, hence DE AH GB GC AD2 2× = × × ,

DE AH GB GC AD AH2 2× = × × × . However, from Proposition 1, DE × AH = 1
2

pr = S

(as AH = 1
2

 p). Also,

GB = CK = 1
2

 p – b, GC = BH = 1
2

 p – c

and

AD = 1
2

p – (BH + BD) = 1
2

 p – a;

hence
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manifest that one of the two straight lines AD and AF is the difference
between the half-sum of the sides and BC, and one of the two straight lines
BD and BG is the difference between the half-sum and AC, and that one of
the two straight lines CF and CG is the difference between the half-sum and
AB. We then extend AE as far as I, and AB as far as will make BH equal to
CG, and AC as far as will make CK equal to BG. Each <of the segments>
AH and AK will be equal to the half-sum of the sides.

A

D E

B

H

F

C

K

I

G M
L

Fig. I.7

We then raise two perpendiculars HI and KI from the points H and K.
They will necessarily meet at a single point on AI, such as the point I for
example, such that IH and IK are equal. If we so wish, we could draw the
perpendicular HI, join IK and show that it is also perpendicular due to the
equality of the two sides AK and AH and given that AI is common and that
the angles HAI and KAI are equal. We join BI and IC, we separate BL equal
to BH from BC, and join IL. This is perpendicular to BC as the difference
between the squares of the two straight lines BI and IC is equal to the
difference between the squares of the two straight lines BH and CK, and BH
is equal to BL and CK is equal to CL. Therefore, the difference between the

S2 = 1
2

p
1
2

p − a





1
2

p − b





1
2

p − c



 .

The other method proposed by the Banº Mºsæ is based on
ED

DB
= BH

HI
⇒ ED

HI
= ED

DB
× DB

HI
= ED2

DB × BH
= ED2

BG × CG
 ;

but ED

HI
= AD

AH
, and therefore AD

AH
= ED2

BC × CG
.

The remainder of the proof is the same. See also the Supplementary note.
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squares of the two straight lines BI and IC is equal to the difference between
the squares of the two straight lines BL and LC. It is for this reason that IL
is perpendicular to BC. But it is equal to IH, given that BH is equal to BL,
BI is common, and the two angles H and L are right angles. Therefore, the
two angles LBI and HBI are equal. We join EB. The two angles GBE and
DBE are then equal. However, given that the angle LBH plus the angle LIH
are equal to two right angles, the angle GBD is equal to the angle LIH and
the half of one is equal to the half of the other. Therefore, the angle EBD in
the triangle BDE is equal to the angle BIH in the triangle BHI. But the
angles BDE and BHI are both right angles. Therefore, the two triangles
BDE and BHI are similar, and the ratio of ED to DB is equal to the ratio of
BH to HI. However, DB is equal to GB, and BH is equal to GC, the ratio of
ED to GB is equal to the ratio of GC to HI, and the product of ED and HI
is equal to the product of BG and GC. Similarly, the ratio of the square of
ED to the product of ED and HI, that is the product of BG and GC, is equal
to the ratio of ED to HI, that is the ratio of AD to AH. The ratio of the
square of ED to the product of BG and GC is therefore equal to the ratio of
AD to AH. Therefore, the product of the square of ED and AH is equal to
the product of BG and GC and AD. If we multiply them by AH, then the
square of ED multiplied by the square of AH will be equal to the product of
BG and GC and AD and AH. However, given that ED multiplied by AH is
equal to the area of the triangle,47 the square of ED multiplied by the square
of AH will be equal to the square of the area of the triangle. It follows that
the square of the area of the triangle is equal to the product of BG and GC
and AD and AH, that is to the <product> of the three differences and the
half-sum of the sides. This is what we required.

Similarly, by another method, if after having established that the ratio of
ED to DB is equal to the ratio of BH to HI, we place the second, at a mean
between the first and the fourth, then the ratio of the first to the fourth will
be compounded of the ratio of the first to the second and of the ratio of the
second to the fourth, that is the ratio of the first to the third. The ratio of ED
to IH is therefore compounded of the ratio of ED to DB and of the ratio of
ED to BH. However, DB is equal to BG and BH is equal to GC. Therefore,
the ratio of ED to HI, that is the ratio of AD to AH, is compounded of the
ratio of ED to BG and of the ratio of ED to GC. Therefore, the product of
AD and BG and GC is equal to the product of the square of ED and AH,
and the proof is completed as before.

47 This is the triangle ABC.
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– 8 – If four equal straight lines are produced from any point within a
sphere to the surface of the sphere at points which do not lie on the same
plane, then that point is the centre of the sphere.

A

B

G

D

E

H

C

Fig. I.8

Let the sphere be ABCDE, the internal point G and the straight lines
joining the point to the surface of the sphere GB, GC, GD and GE, which
are equal and which are not on the same plane.48 Actually, three of these
points will be on the same plane, as proved in the book by Euclid. We
describe a circle BCE through the points B, C and E, and a circle ECD
through the points E, C and D. We draw the perpendicular GH from G to
the plane of the circle BCE, passing through the centre of the circle BCE as,
if we join the straight lines BH, CH and EH, they are equal as the straight
lines GB, GC and GE are equal, given that GH is common and that all the
angles at H are right angles. As the circle BCE is on the surface of the
sphere ABCDE and the perpendicular HG has been drawn through its
centre, this must pass through the centre of the sphere as has been shown in
the second proposition of the book of Spherics by Theodosius.49 We can
similarly show that the perpendicular from the centre of the circle ECD also
passes through the centre of the sphere. However, these two perpendiculars

48 As they are coplanar, the four points B, C, D, E will also be coplanar, which is
contrary to the hypothesis. Three of the straight lines may be coplanar, e.g. GB, GC and
GD, if G is in the plane BCD. However, in this case, the fourth GE will intersect the
plane.

49 See Theodosius, Propositions 1 and 2 in the Arabic version of the Spherics
translated by Qus†æ ibn Lºqæ, Kitæb al-ukar, edited by NaÒîr al-Dîn al-™ºsî, published by
Osmania Oriental Publications Bureau, Hyderabad, 1358 H., pp. 3 and 4. This reference
to Theodosius is omitted from Gerard’s Latin translation. Could it have been added by al-
™ºsî?
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only meet at G; therefore G is the centre of the sphere. This is what we
required.

– 9 – For any circular right cone, the product of the straight line joining
its vertex to any given point on the circumference of the base and half the
circumference of the base is equal to <the area of> the lateral surface.50

Let the cone be ABCD, with its vertex at A; let the circular base be
BCD with its centre at E, and the axis AE, which is perpendicular to the
plane of the base in order for the cone to be a right cone. We join AB. The
product of AB and half the circumference of BCD is the area of the lateral
surface of the cone.51

A

G

F

D

E C

I

B

H

A

L

E

B

M

N

K

Fig. I.9

If it is not so, first let it be <the product of> AB and a straight line
longer than half the circumference, and let this straight line be FG. We
circumscribe a polygon around the circumference of BCD such that the sum
of its sides is less than twice FG. Let this polygon be HIK and let it touch
the circle at points B, C and D.52 We draw the straight lines AH, AI and AK

50 Lit.: The circular surface (sa†Ìahu al-mustadîr). The Latin version is: Cum linea
que protrahitur ex puncto capitis omnis piramidis columpne ad centrum basis eius
est perpendicularis super basim ipsius, tunc linee que protrahuntur ex puncto capitis
eius ad circulum continentem superficiem basis eius secundum rectitudinem sunt
equales… (p. 292, 1–6).

Even accounting for the effects of the translation, it is clear that al-™ºsî has not
thought it necessary to retain such a long phrase simply to remind us that the straight lines
are equal. This would be assumed to be known to anyone with an interest in mathematics
at the time.

51 Lit.: The circular surface surrounding the cone.
52 ‘let it touch the circle at points B, C, and D’: omitted from the Latin text.
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and join AC and AD. Then the straight lines AB, AC and AD, which are
equal, will be perpendicular to the sides HI , IK  and K H  as AE  is
perpendicular to the plane of the circle BCD and the straight lines joining its
centre and the points of contact are perpendicular to the sides.53 It is for this
reason that the product of AB and half the sum of the sides is equal to the
area of the polygon circumscribed around the circular cone and it is greater
than the area of the circular cone.54 However, half the sum of the sides is
less than the straight line FG, and the product of AB and FG is the area of
the circular cone. Therefore, the area of the circular cone is greater than the
area of that which circumscribes it; this is contradictory. 55

Now, let FG  be shorter than half the circumference, and let <the
product of> AB and FG be the area of the circular cone, and let <the
product of> AB and half the circumference of BCD, which is greater, be
equal to the area of the circular cone whose base is the circle ML and whose
vertex is at A. We inscribe a regular polygon within the circle ML such that
the sides do not touch the circle BCD. We produce straight lines from its
angles to A. The lateral surface of the solid thus formed is less than the
surface area of the circular cone whose base is ML, given that the cone
contains it. However, the product of a straight line drawn from A to the
mid-point of one of the sides of the figure that does not touch the circle
BCD and half the sum of the sides is equal to the lateral surface of this
solid.56 Hence, the straight line drawn from A to the mid-point of this side is

53 This rather general phrase appears in the Latin version as: Tunc linee que
protrahuntur ex punctis B, G, D ad centrum eriguntur super lineas HT, TK, KH
orthogonaliter, quoniam sunt contingentes circulum (p. 294, 36–38), which is a
translation of the Arabic:

i.e.: ‘The straight lines joining the points B, G and D to the centre are perpendicular to the
straight lines HI, IK and KH as these are tangents to the circle’.

It can be seen that al-™ºsî has read the same text, but from a more general point of
view.

54 The following phrase appears in the Latin version: quoniam ipsum continet illud
(p. 294, 43), which must have been a translation of li-anna aÌadahumæ yuÌî†u bi-al-
ækhar, omitted by al-™ºsî, as it is obvious from the figure.

55 The Latin version repeats the conclusion: Hoc est contrarium; ergo non est
possibile ut multiplicatio linee AB in lineam que sit longior medietate circuli BGD
sit embadum piramidis ABGD (p. 296, 46–48). It should be noted that, as usual, the
Arabic letter jim is transcribed by Gerard as G and here as C.

56 A further illustration of the editing technique employed by al-™ºsî can be seen
from the Latin translation: corporis cuius basis est figura habens latera facta in circulo
ML et cuius caput est punctum A… (p. 296, 58–60), which must be a translation of the
Arabic:

^١ طوحلخثل-اف ^ ^ ju، ا د ز ب طنق زر_وا ةمأع ك . ةر.ائللا سق،ا اأ،نهل ح S ك_ ط ط م ططوخ عفى د
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longer than the straight line AB, and half the sum of the sides of the figure is
greater than half the circumference of the circle BCD. Therefore, the lateral
area of the circular cone with the base ML is less than the lateral area of the
solid which is inscribed in it. This is contradictory.

Consequently, the product of AB and half the circumference of the
circle BCD is equal to the lateral area of the cone ABCD. This is what we
required.

– 10 – If any circular right cone whose base is a circle is cut by a plane
parallel to the base, then the intersection is a circle with the axis passing
through its centre.
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Fig. I.10

Let there be a cone, whose vertex is A and whose base is BCD with
centre E. Let the intersecting plane be FIG and let the axis AE pass through
point H on the intersecting plane. We mark two points B and C on BCD
such that the arc BC is shorter than a semicircle. We draw EB, EC, BA, CA
and BC. Then the triangle ABE passes through the intersection FH on the
intersecting plane, triangle AEC through the intersection GH, and triangle
ABC through the intersection FG. These form the triangle FHG whose sides
are parallel to the sides of triangle BEC , each side parallel to the
corresponding side in the other. The triangles are therefore similar. The ratio

i.e.: ‘the solid whose base is the regular polygon inscribed within the circle ML and
whose vertex is at the point A’. This agrees perfectly with the style employed by the
mathematicians of the time.

م س ج ل ي ا ذ ه ال عدت ل قا ك ش ل و ا لاع ذ ض وية والزوايا ا  سا مت ي ال رة به تحيط الذ \I 2UZورأ، ل م دائ
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of BE to EC will be equal to the ratio of FH to HG; yet BE and EC are
equal, it is for this reason that FH and HG are equal, as is any straight line
drawn from H to the circumference FGI. Therefore FGI is a circle with
center H. This is what we required.57

– 11 – If, for any segment of a right circular cone between two parallel
circles, two parallel diameters are drawn across the circles and their
extremities joined by two opposite straight lines, then the product of one of
these straight lines and half the sum of the circumferences of the two circles
is equal to the lateral surface of the segment of the circular <cone>.
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Let the segment of the cone be BCDFIG with the base FIG and the
other segment closer to the vertex of the cone being BCD. Let EH be the
segment of the axis between the two segments, and perpendicular to the
two circles. Draw the two parallel diameters BD and FG and join them by
BF and DG.58

We say that:5 9  The product of B F  and half the sum of the
circumferences of the two circles BCD and FIG is the area of the surface
enclosing the segment of the cone.

57 Al-™ºsî arrives at the conclusion more rapidly than the Banº Mºsæ. Compare with
the Latin text, p. 300, 22–27.

58 The Latin text continues: que sunt equales, propterea quod linea EH iam secuit
unamquamque duarum linearum BD, UZ in duo media, et est orthogonaliter erecta
super unamquamque earum (p. 304, 22–24), which is a translation of the Arabic:

59 Note that al-™ºsî retains this expression on this occasion.

ىلي ح ه طخ نلا ناويساتم مافه وع ووه ز و د ب يطخ ق هلع دم اي م
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Let us complete the cone up to its vertex at A, and let us produce HE as
far as A.60 Similarly for FB and GD. We know that the product of AF and
half the circumference of FIG is the lateral area of the entire cone, and that
the product of AB and half the circumference of BCD is the lateral area of
the cone ABCD. The amount by which the first exceeds the second is the
area of the surface enclosing the segment, which is the product of BF and
half the circumference of FIG, plus the product of AB and the difference
between half the circumference of FIG and half the circumference of
BCD.61 However, the product of AB and the difference between half the
circumference of FIG and half the circumference of BCD is equal to the
product of BF and half the circumference of BCD as the ratio of AB to BF
is equal to the ratio of half <the circumference of> the circle BCD to the
difference between half <the circumference of> the circle FIG and half <the
circumference of> the circle BCD. This is what we required.

From this, we know that if the two straight lines FB and BA are equal
– regardless of whether their junction is in a straight line or not – then the
product of one of them and half <the circumference of> the circle FIG and
the <circumference of> the circle BCD is the area of the lateral surface of
the solid whose vertex is at A and whose base is the circle FIG.

And from this, we also know that if we have a number of segments of
cylindrical cones stacked on upon the other such that the upper base of the
lower segment is also the base of the segment above it, and that the vertex
of the uppermost segment is a point, and that all the bases are parallel, and
that all the straight lines drawn in all the segments from their bases to the
base above them are equal straight lines, then the product of any one of
these straight lines and half the circumference of the base of the lower
segment and the sum of the circumferences of all the bases above it is the
lateral area of the solid composed of all the segments, regardless of whether
or not the surfaces of these segments are joined in a straight line.62

60 In the Latin text, the Banº Mºsæ justify this operation in the following terms:
Propter illud quod ostendimus quod linea que egreditur ex puncto A ad punctum H
transit per punctum E, ergo linea AH egreditur ex capite piramidis ad centrum basis
eius et cadit perpendicularis super basim (p. 304, 30–33), which is a translation of the
Arabic:

61 Al-™ºsî seems to have skipped a number of steps in the calculation, which have
been retained in the Latin version.

62 i.e. The generators may or may not be in a straight line.

ن اآنل ط ه ةطبنق ري ح ةطنق ىلإ آ ةطنق نم رجاخلا طخلا أن نبي خ خ ح ا ف جي س نمب ر وخال رأ ر ىلإ طر هاق كزم ت د  ع

.اقلا ىلع ودممع ة د ع
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– 12 – Let63 ABC be a circle of diameter AC with its centre at D; DB is
drawn from D perpendicular to the diameter.64 Let us divide the quarter-
circle AB into any number of equal parts, say AG, GL and LB. Let us draw
the chord BL and extend it, also extending the diameter CA until they meet
at E, and let us draw chords GI and LH from points G and L parallel to the
diameter CA.

I say that the straight line DE is equal to the sum of the half-diameter
CA and the two chords  GI and LH.

We draw IA and HG and extend HG until it meets CE at F. We proceed
in a similar manner if there are more parts. The straight lines CE, IG and
HL are parallel, and the straight lines IA, HF and BE are parallel, as the two
arcs IH and HB  are equal to the two arcs AG  and GL. Therefore, the
surface IAFG is a parallelogram and IG is equal to AF. Similarly, HL is
equal to FE, and therefore DE is equal to the sum of DA, IG and HL. This
is what we required.
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63 Here, al-™ºsî has omitted the statement, which is retained in the Latin version:
Cum fuerit circulus cuius diameter sit protracta, et protrahitur ex centro ipsius linea
stans super diametrum orthogonaliter et perveniens ad lineam continentem et
secatur una duarum medietatum circuli in duo media, tunc cum dividitur una harum
duarum quartarum in divisiones equales quotcunque sint, deinde protrahitur corda
sectionis cuius una extremitas est punctum super quod secant se linea erecta super
diametrum et linea continens et producitur linea diametri in partem in quam
concurrunt donec concurrunt et protrahuntur in circulo corde equidistantes linee
diametri ex omnibus punctis divisionum per quas divisa est quarta circuli, tunc linea
recta que est inter punctum super quod est concursus duarum linearum protractarum
et inter centrum circuli est equalis medietati diametri et cordis que protracte sunt in
circulo equidistantibus diametro coniunctis (p. 310, 1–20). As usual, he also omits
mithæl dhælika (Verbi gratia).

64 The Latin version continues: et dividat arcum ABG in duo media (p. 310, 23–
24), which is a translation of the Arabic fa-huwa yunaÒÒifu qaws ABC (‘thus dividing the
arc ABC into two halves’), which is obvious. This is yet another example of al-™ºsî’s
editing style.



98 CHAPTER I:  BANª MªSÆ

If we draw DM perpendicular to the chord BL, the product of half of
BL and DE is less than the square of the half-diameter and larger than the
square of DM . This is because the two triangles DBM  and BED  are
similar,65 given that the angles DMB and EDB are right angles and angle B
is common. The ratio of BM to MD is therefore equal to the ratio of BD to
DE. Therefore, <the product of> BM, that is half of BL, and DE is equal to
<the product of> BD and MD. However, <the product of> BD and MD is
less than the square of B D  and greater than the square of M D .
Consequently, <the product of> half of BL and the sum of the half-diameter
plus the two chords IG and HL is less than the square of the half-diameter
and greater than the square of  DM.

Therefore, for any circle in which a diameter is drawn, if the semicircle
is divided into two halves and each of the two quarters is divided into any
number of equal parts, and if chords parallel to the diameter are drawn from
each of the dividing points, then the product of half of the chord from one
of these parts and the half-diameter plus its product with the sum of the
chords is smaller than the square of the half-diameter and greater than the
square of the perpendicular drawn from the centre to one of the chords of
these parts. This is what was sought.

– 13 – If a solid is inscribed within a hemisphere, and if this solid is
composed of any number of segments of circular cones, such that the upper
base of each segment forms the base of the segment above it, and if the base
of the lowest segment is the base of the hemisphere, and if the vertex of the
uppermost segment of the cone is at the point formed by the pole66 of the
hemisphere, and if the bases are parallel, and if the straight lines drawn from
the bases of the segments to their upper parts are equal, and if a hemisphere
is then inscribed within this solid, of which the base is a circle in the plane of
the base of the first hemisphere, then the lateral surface of the solid is less
than twice <the area> of the base of the first hemisphere and greater than
twice <the area> of the base of the second hemisphere.

Let the hemisphere be ABCD whose base is the great circle ABC and
whose pole is D.67 Let a solid be inscribed within this hemisphere consisting

65 In the remainder of this section al-™ºsî version differs slightly from the Latin text
(see pp. 312–14, 50–65).

66 ‘and if the vertex … pole’. In Latin, this is given as: et fuerit portio superior
piramidis piramis capitis, et punctum capitis eius est polus… (p. 316, 9–10). ‘The
upper portion of the vertex of the cone will be a cone, and the point at the vertex will be a
pole…’.

67 The Latin text is: Et signabo in medietate spere in primis corpus compositum
ex portionibus quot voluero piramidum columpnarum secundum modum quem
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of three segments as we have described it. The first of these segments
extends from the circle ABC as far as the circle EIH, the second extends
from this circle as far as the circle FLG, and the third extends from this
circle as far as the point D.

We say that the sum of the areas of these circular surfaces surrounding
this solid is less than twice the area of the circle ABC.
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Let us draw half a great circle on the hemisphere ABCD  passing
through the pole, and let this be ADB. Let us draw the diameter of the
sphere, AB, and divide this into two halves at M. Let us draw HE and GF.
These will be parallel to AB as they are the intersections of the great circle
ADB and the three circles, and they are the two diameters of circles EHI
and FGL. We raised the straight lines BE, EF and FD from the bases. These
are equal as stated in the hypothesis, and the product of half of any one of
them and half AB and the sum of EH and FG is less than the square of half
of AB, as was proved above.68 Similarly, the product of any one of them
and half the circumference of the circle ABC  and the sum of the
circumferences of the circles HEI and GFL is equal to the area of the
surface surrounding the solid, as was proved above.69 However, the product
of any one of them and half of AB and the sum of EH and FG, and that
which, when multiplied by the diameter, gives the circumference, is equal to
the product of any one of these and half the circumference of the circle
ABC and the sum of the circumferences of the circles HEI and GFL, that is,
equal to the area of the surface surrounding the solid, which is less than
twice the result obtained from the product of the square of half of AB and
that which, when multiplied by the diameter, gives the circumference. But

narravimus (p. 318, 24–26), which must have been a translation of an original text along
the lines of:

ÆUMH�Ë Íc�« tłu�« vKŽ X½U� r� …d¹b²��  UÞËd�� lD� s� V�d� r�−� …dJ�« nB½ w� ÎôË√ lIOK�

68 See Proposition 12.
69 See Proposition 11.
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the product of the square of half of AB and that which, when multiplied by
the diameter, gives the circumference, is equal to the surface area of the
circle, as the product of half of AB and that which, when multiplied by the
diameter, gives the circumference, is half the circumference, and hence its
further multiplication by half of AB gives the surface area of the circle. The
area of the surface surrounding the solid is therefore less than twice the
surface area of the circle ABC.70

Now, we draw an inscribed hemisphere within the solid ABCD .
However, given that the surface of its base is a circle lying within the surface
of the circle ABC, it will be smaller than it. We divide each of the straight
lines BE, EF and FD in half at points S, O and P, and we join MS, MO and
MP, which are equal as they are perpendiculars dropped from the centre
onto equal chords. We then draw the circle KUJ within the surface of the
circle ABC from the centre M and at a distance of MS, and a straight line
MU in the plane of this circle, which is not in the plane of the circle ADB.
As the four equal straight lines MS, MO, MP and MU, which are not in the
same plane, all connect point M to the surface of the inner sphere, then M
will be its centre, MS its half-diameter, and the circle KUJ will be its base.
However, the square of MS is less than the product of half of BE and half of
AB and the sum of EH and FG. Therefore, the <product of the> square of
MS and the magnitude which, when multiplied by the diameter, gives the
circumference, that is the area of the surface of the circle KUJ, is less than
the product of half of BE and half of AB and the sum of EH and FG and
the magnitude which, when multiplied by the diameter, gives the
circumference, that is half of the area of the surface surrounding half of the
inner sphere. Therefore, the area of the entire surface71 surrounding the
solid is greater than twice the area of the surface of the circle KUJ. This is
what we required.72

70 This text has been considerably abridged by al-™ºsî, as can be seen from the Latin
version.

71 This refers to the lateral surface.
72 Here al-™ºsî follows his usual practice of leaving the reader to conclude the

argument. The Latin text reads: Iam ergo ostensum est quod embadum superficiei
corporis ABGD est minus duplo embadi basis medietatis spere que continet corpus
et maius duplo embadi basis medietatis spere quam continet corpus ABGD. Et illud
est quod declarare voluimus Et hec est forma eius (p. 328, 150–154), which is a
translation of an Arabic expression of the type:

د ق ن مت ف مم سطح أ س ةاق سطح فعض نم لأق د ج ب ا ج د  فصن ع

ةاق د كصنو ع يل؛ ةركلا ف طحي ذ ه ي سم ب ج كوذ ؛ د ج ب ا م أردن ما ل

يلا ةركلا طحي ذ مب ي س ج ل ح فعض نم ظموأع ا  سط

ن ه .نبي، أ هذ هصو و .رت
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– 14 – The lateral surface of a hemisphere is twice the surface area of
the great circle forming its base.

Therefore let ABCD be a hemisphere, with its great circle ABC within it
forming its base, and D its pole. If twice the surface area of the circle ABC is
not equal to the surface of the hemisphere, let it first be smaller, and let it be
equal to the surface of a hemisphere that is smaller than the hemisphere
ABCD. Let this hemisphere be EHIK. If, as we have described, a solid is
inscribed within the hemisphere ABCD with the base of this solid being the
circle ABC  and its vertex being at point D , without it touching the
hemisphere EHIK, then its surface area will be less than twice the surface
area of the circle ABC and greater than the surface area of the hemisphere
EHIK. Twice the surface area of the circle ABC, which is equal to the
surface area of the hemisphere EHIK, is much greater than this, which is
contradictory.
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Now, let the surface area of the circle ABC be greater than the surface
area of the hemisphere ABCD, and let it be equal to the surface area of the
hemisphere FGLM. We inscribe a solid within this – as we have described –
without it touching the hemisphere ABCD. The surface of the solid will be
greater than twice the surface area of the circle ABC, as shown above, and
the surface area of the hemisphere FGLM is greater than the surface area of
the solid as it surrounds it. *The surface area of the hemisphere FGLM is
therefore much greater than twice73 the surface area of the circle ABC, or it
is equal to it, which is contradictory*.74 The assertion is therefore proved.
This is what we required.

It has been shown using this assertion that the surface area of a sphere is
four times that of the largest circle that can be found within it.

73 Omitted in the Arabic text, but present in the Latin version as duplo.
74 *…*: We believe this section to be a citation by al-™ºsî.
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– 15 – For any sphere, the product of its half-diameter and one third of
its lateral surface area is equal to its volume.75

G

H
A

E B F

D

I

S

L

C
K

M

Fig. I.15

Let the sphere be ABCD and let its half-diameter be SB. If <the product
of> SB and one third of the surface area of the sphere ABCD is not equal to
its volume, then let us assume firstly that it is less than the volume and that
<the product of> SB and one third of the surface area of a sphere that is
larger than the sphere ABCD is equal to the volume of the sphere ABCD,
for example the sphere F G L M . Let their centre be the same. We
circumscribe, as we have described, a solid about the sphere ABCD without
allowing it to touch the sphere FGLM. It necessarily follows from that
proved earlier,76 that <the product of> SB and one third of the surface area
of the solid is equal to the volume of the solid and that it is greater than the
sphere ABCD. From this, it necessarily follows that one third of the surface
area of the solid is greater than one third of the surface area of the sphere
FGLM surrounding it. This is contradictory.

Now, let <the product of> SB and one third of the surface area of the
sphere ABCD be greater than its volume, and let <the product of> SB and
one third of the surface area of a sphere that is smaller than the sphere
ABCD, such as the sphere EHIK, be equal to the volume of the sphere
ABCD. We inscribe, as we have described, a solid within the sphere ABCD
without allowing it to touch the sphere EHIK. It is necessary, from that
proved earlier,77 that <the product of> SB and one third of the surface area
of the solid is less than the volume of the sphere ABCD. Therefore, one

75 Lit.: its greatness (‘iÂam). We shall translate it as such in the remainder of the text.
76 From Proposition 1.
77 From Proposition 2.
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third of the surface area of EHIK is greater than one third of the surface
area of the solid which surrounds it, which is impossible.78

The assertion is therefore proved. This is what we required.

– 16 – Find two magnitudes lying between two given magnitudes such
that all four are in continued proportion.

A knowledge of how to do this is useful to a student of geometry as it is
needed in order to calculate the side of a cube. In fact, if we know two
magnitudes between unity and the cube related by the same ratio, the
second magnitude after unity will be the side of the cube.79 This procedure
is due to one of the ancients whose name was Menelaus; he set forth it in
one of his books on geometry and we shall now describe it.

Let the two magnitudes be two straight lines M and N, and let M be
greater than N. We now draw a circle ABC, and set its diameter, which is
AB, equal to M. We then draw a chord AC equal to the magnitude N within
this circle, and draw from B a perpendicular to AB. We produce AC until it
meets it at G and raise from the arc ACB a right circular half-cylinder; I
mean that its sides are perpendicular to the plane of the circle ACB. We
describe a semicircle on the straight line AB80 such that its plane is
perpendicular to the plane of ABC; this semicircle is the arc AHE. We fix
the point A of the arc AHE in its position as a centre of rotation, and rotate
the arc AHE around the centre A such that, during its rotation, its plane
remains erected on the plane of ABC at right angles, so that the arc AHE
cuts the surface of the right half-cylinder according to the arc ACB.81 We
then fix the straight line AB as an axis of rotation, and rotate the triangle
AGB around the axis AB until the straight line AG meets the intersection82

of the surface of the half-cylinder, and so that the point C on the straight line
AG describes during the rotation the semicircle COD erected on the plane of
ABC at right angles. We mark the point H where the straight line AG meets
the intersection83 of the surface of the half-cylinder.

78 See commentary.
79 The Latin translation is a little obscure, and it appears that Gerard has not

translated the Arabic text: Et hac eadem operatione extrahatur latus cubi, quod est
quoniam quando illud quod est in cubo de unitatibus et partibus est notum et
ponuntur inter numerum cubi et inter unum duo numeri continui secundum
proportionem <unam>, tunc ille qui sequitur unum ex duobus numeris mediis est
latus cubi (p. 334, 6–10).

80 The segment AB is taken to be the diameter.
81 The straight line AE cuts the arc ACB at I, and this point describes the arc ACB.
82 This refers to the curve described by the point of intersection of the circle AHE

and the cylinder.
83 See previous note.
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We now fix the arc AHE on its trajectory at the point H and draw the
two straight lines AH and AE.84 We mark the point L where the straight line
AH meets the arc COD. *Now, we draw a perpendicular from the point H
to the plane of the circle ABC, that is the straight line HI*.85 We draw LK
perpendicular to the plane of the circle ABC as this is the intersection of the
plane of the triangle AHE and the semicircle COD, both of which are
perpendicular to the plane ABC. We draw the straight line LI and show86

that it is perpendicular to AL, as the product of CK and KD is equal to the
square of LK.87 But the product of CK and KD is equal to the product of IK
and KA.88 Therefore, the product of IK and KA is equal to the square of LK,
and the angle ILA is therefore a right angle. Now, we have shown that the
angle AHE is a right angle as it is inscribed89 within the semicircle AHE, that
the angle AIH is a right angle – as HI is perpendicular to the plane of the
circle ABC and the straight line IA is in the plane of the circle ABC – and
that the angle ALI is a right angle from that was proved earlier. Therefore,
the triangles AHE, AIH and ALI90 each have a right angle and one common
acute angle; so they are similar. The ratio of EA to AH is thus equal to the
ratio of AH to AI and is equal to the ratio of AI to AL. But the straight line
AE is equal to the magnitude M and the straight line AL is equal to the
magnitude N. The two magnitudes AH and AI therefore lie between them
and they are in continued proportion. This is what we required.

84 HE in the Arabic text, AE in the Latin version.
85 *…*: Omitted from the Latin text.
86 In Arabic: wa-nubayyin. However, the Latin translation is manifestum est (‘it is

clear’). It is possible that the Banº Mºsæ text included wa-tabayyan or istibæna, a word
in very common use at the time.

87 Euclid, Elements, VI.8 (right-angled triangle CLD).
88 Euclid, Elements, III.35 (power of the point K).
89 This word is used to translated murakkaba (fixed on).
90 The triangle AKL is added in the Latin version.
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– 17 – As the methods91 used by Menelaus, even if they are true,92 are
either not constructible, or too difficult, we have sought for an easier
method.

Let the two magnitudes be A and B. We draw CD equal to A and raise
a perpendicular DE equal to B. We join EC and extend CD and ED with no
limit. From E, we draw a line perpendicular to EC and extend it until it
meets CD at F. We draw a straight line from C that is parallel to that just
drawn until it meets ED at M. This line is then MC. We then produce it until
MU is equal to EF. We now imagine the straight line FE moving away
from point F  towards point D , such that, during this movement, the
extremity of the line at F remains attached on the line FD, and that the
straight line, during this movement, continues to pass through point E on
the straight line CE so that, if the straight line FE moves as we have
described, with the extremity on the straight line FD, then the straight line
FE, under these conditions, extends between the point at its extremity and
the point E on the straight line EC. We now draw the straight line EDK on
the extended <section> and we imagine that the straight line MU moves
away from the point M  towards the point K, such that the extremity of the
line at <point> M remains attached, during its movement, to the straight line
MK, and that the straight line MU, during its movement, continues to pass
through the point C on the straight line EC, as we have described in relation
to the movement of the straight line FE. We imagine that the two straight
lines FE and MU remain parallel during their movement. We imagine, at the
extremity of the straight line FE, at the point E, a straight line perpendicular
to the straight line FE, and fixed relative to that line during its movement,
and we do not assign any defined end to this straight line so that this straight
line always cuts the straight line MU when the two straight lines FE and
MU are moving. Therefore, if the two straight lines FE and MU move, if
they remain parallel during their movement, and if their extremities remain
on the two straight lines FD and MK, as we have described, then it is
necessary that the straight line perpendicular to the straight line FE that
moves with it and that cuts the straight line MU, should end at the point U.
Therefore, if the straight line perpendicular to FE ends at <the point> U, we
fix the two straight lines FE and MU in this position and we draw the two
straight lines EU and FM. We then know that the straight line EU is held
perpendicular to each of the straight lines FE and MU, as it is the straight
line that we placed perpendicular to the straight line FE and which moves
with it until it ends at the point U.

91 Lit.: things (al-ashyæ’).
92 sit demonstratio certa erecta in mente … (p. 340, 2–3).
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I say that the two straight lines DM and DF  lie between the two
magnitudes CD and DE: the ratio of CD to DM is equal to the ratio of
DM to DF and is equal to the ratio of DF to DE.

Proof: The two straight lines FE and MU are parallel and equal, and the
two angles FEU and MUE are right angles. Therefore, the straight line FM
is equal to the straight line EU and each of the angles EFM and UMF is a
right angle. But MD is perpendicular to the straight line FC, and the straight
line FD is perpendicular to the straight line EM. Therefore, the ratio of the
straight line CD to DM is equal to the ratio of DM to DF and is equal to the
ratio of DF to DE. But the straight line CD is equal to A and the straight
line DE is equal to B. Therefore, the two straight lines DM and DF lie
between A  and B  and are in continued proportion. This is what we
required.93

In order to make easier in practice the existence of this, let us replace
the straight line EF perpendicular to EC with a rule, and let us also replace
EC by another rule which is linked to the rule EF at the point E by a pin
fixed in its position with the rule EF free to pivot around it. We produce the
straight line CM perpendicular to EC as far as the point H and make CH
equal to EF. We replace the straight line CH by a rule linked to the rule EC

93 The passage beginning hereafter (‘In order to …’) until the end of this proposition
is omitted from the Latin version. There can be no doubt as to authenticity of this text, or
to its attribution to al-™ºsî. The Banº Mºsæ also refer to this mechanical procedure later in
the text. The Latin translation includes: Et quoniam possibile est nobis per ingenium
quod narravimus in eis que permissa … (pp. 346–8, 33–34).
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at the point C by a pin fixed in its position with the rule HC free to pivot
around it. Rule EC is fixed and does not move. In this configuration, the two
rules EF and CH pivot around the two pins E and C. Let us now place a
rule between the two points F and H and link this to the rule FE by a pin at
the point F, and to the rule CH by a pin at the point H, such that these two
pins are free to move and not fixed, and such that the three rules – that is,
the rules EF, FH and HC – pivot about the rule EC fixed to the pins E and
C. Let us place a thin rod on the back of the rule EF and let this rod slide
along the back of the rule in a groove. Let us arrange for the middle of the
rod to lie on the straight line FE and let us make its length equal to the
length of the rule EF. At the extremity of this rod at the point F, we place a
pin whose centre is at the point F, and we construct two planes on each side
of FD such that their intersections with the plane EH are parallel to the
straight line FD94 and we position the two planes such that they touch the
pin which is on the rod so that, if the three sides of the rectangle95 EH are
moved around the side of EC that is fixed, this pin remains between the two
planes, the centre of this pin remains in contact with the straight line FD,
and the extremity of the rod is extended from point E  following the
extension of the straight line joining the centre of the pin to the point E. We
place another rod on the back of the rule CH which slides on the back of
the rule. We position the start of this rod at the point M and its far extremity
at the point U such that the length of the rod is equal to the length of the
rod mounted on the rule EF. We place a pin at the extremity of this rod at
<the point> M, and we arrange it by the procedure that we have already
described so that, if we rotate the three sides of the rectangle96 EH around
the fixed side EC, then the centre of this pin moves along the straight line
MK and the extremity of this rod approaches the point K. Let us then attach
another rod to the rod mounted on the back of the rule EF at the extremity
which is at the point E, and let this additional rod make a right angle with
the first and move with it, and let us arrange for this rod to end at the rod
mounted on the ruler CH, cutting it such that, if we rotate the three sides of
the rectangle97 EH around the side EC which remains fixed, then the
extremity of this intermediate rod between the other two rods must cut the
rod mounted on the rule CH.

By virtue of the proof shown earlier concerning the lines in this
proposition, we know that, if the rules and the rods that slide upon them are
fixed in the position at which the intermediate rod lies at the extremity of

94 See commentary.
95 Lit.: square.
96 Lit.: square.
97 Lit.: square.
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the rod mounted on the rule CH, then we have achieved that which we
wished to construct.

– 18 – Using this ingenious procedure, we may divide any angle into
three equal parts.

Let the angle be ABC and let us initially assume that it is less than a
right angle. We take two equal magnitudes BD and BE on the straight lines
BA and BC. We describe the circle DEL at their distance with its centre at B
and we produce DB as far as L. Then we raise a perpendicular BG on LD,
join EG  and produce it as far as H  with no extremity. From GH , we
separate GO equal to the half-diameter of the circle. If we now imagine that
GH moves in the direction of the point L, and that the point G remains on
the circumference during its movement, such that the straight line GEH
continues as it moves to pass through the point E on the circle DEL, and if
we imagine that the point G continues to move until the point O arrives on
the straight line BG, then the arc between the position at which the point G
arrives and the point L must be one third of the arc DE. The angle which
intercepts this arc is one third of the angle DBE.

Proof: Let the final position of <the point> G be the point I. Let us
draw IE, which cuts BG at S. The straight line IS is therefore equal to the
half-diameter of the circle, given that this is equal to GO. Let us draw a
diameter through the centre parallel to IE, that is MBK. Draw MI. Then, IS
is equal and parallel to MB , MI is parallel and equal to BS, and BS is
perpendicular to LD. Therefore, MI is perpendicular to LD. It is for this
reason that it is divided into two equal parts by the diameter, and hence
<the arc> ML is equal to <the arc> LI, <the arc> DK is equal to <the arc>
ML and <the arc> MI is equal to < the arc > KE. Therefore, <the arc> DK
is equal to half of <the arc> KE and equal to one third of <the arc> DE.
The angle KBD is therefore one third of the angle ABC. This is what we
required.
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Now, move GH using the ingenious procedure described, with the
condition that G moves on the circumference without leaving it, and that the
straight line GH, during its movement, continues to pass through the point
E, until  the point O falls on the straight line BG, and we have achieved that
which we sought.

If the angle is obtuse, we divide it into two equal parts, find the third of
each half, and then two of these thirds are one third of the obtuse <angle>.

We must describe after that the approximation to the side of a cube so
that it becomes rational98 in case of need. We will now do this using an
<approximation> method which is superior to all other approximation
methods, that is to say that if we wish to make the error between the
approximation and the truth less that one minute or one second, then we
would be able to do so. The procedure is to break the cube down into parts:
thirds, sixths, ninths, and so on.99 We then look for a cube equal to this
number if there is one. If not, we look for the cube closest to it and, when
found, we note its side. If the parts are thirds, then it is minutes, and if they
are sixths, it is seconds. The problems are treated in a similar manner.

Everything that we describe in this book is our own work, with the
exception of knowing the circumference from the diameter, which is the
work of Archimedes, and the position of two magnitudes in between two
others such that all <four> are in continued proportion, which is the work of
Menelaus as stated earlier.

The book is finished.

98 Lit.: so that one can say it.
99 Lit.: and other than that.
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There is another proof of the seventh proposition in the book by the
Banº Mºsæ that is a general method for the area of triangles. I believe that it
is the work of al-Khæzin. It is the following:

For any triangle, if one multiplies half the sum of the sides by the
amount by which this exceeds the first, then by the amount by which this
exceeds the second, and then by the amount by which this exceeds the
third, and then takes the square root, then one will have the area of the
triangle.
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Proof: Let the triangle be ABC, within which we inscribe a circle DEG
whose centre is at H. Let us join the centre to the points of contact by the
straight lines HD, HE and HG. These will be perpendicular to the sides and
equal, and CE and CD will be equal, as will BG and BE, and AD and AG.
Let us join CB and draw BI equal to AD. The straight line CI is therefore
equal to half <the sum of> the sides, and IB is therefore the excess over the
side BC, BE the excess over the side AC, and EC the excess over the side
AB. The assertion is <to show> that the product of IC and IB, and BE and
EC, is equal to the square of the area of the triangle, which is the product of
EH and IC. Let us draw BL from B perpendicular to CB, and HK from H
perpendicular to CH, and let us extend them until they meet at L. Now, let
us join CL. But, given that the two angles CHL and CBL are right angles,
the quadrilateral CHBL is inscribed within a circle, whose diameter is CL. It
is for this reason that <the sum of> the two opposite angles CHB and CLB
is equal to two right angles. But the sum of the angle CHB and the angle
AHD  is equal to two right angles as they are half of the six angles
surrounding the point H and which are four right angles. It is for this reason
that the angle AHD  is equal to the angle CLB and the two angles CBL and
HDA are two right angles. The triangle CBL is therefore similar to the
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triangle HDA, and therefore the ratio of CB to AD, that is BI, is equal to the
ratio of BL to DH, that is EH, and is also equal to the ratio of BK to KE. If
we compound, the ratio of CI to IB is equal to the ratio of BE to EK. If we
make CI the common height for the first two and EC the common height
for the last two, then the ratio of the square of CI to CI multiplied by IB is
equal to the ratio of BE multiplied by EC to EK multiplied by EC, that is
the square of EH. But the product of the square of CI, the first, and the
square of EH, the fourth, is equal to the product of CI and IB and BE and
EC. But the ratio of the square of CI to the product of CI and EH is equal
to the ratio of the product of CI and EH to the square of EH, and hence the
product of CI and EH is the proportional mean between the two squares of
CI and EH. It is for this reason that the product of the square of CI and the
square of EH, which is equal to the product of CI and IB, and BE and EC
will be equal to the square of the product of CI and EH, which is the area.
This is what we required.



CHAPTER II

TTTTHHHHÆÆÆÆBBBBIIIITTTT    IBN QURRA AND HIS WORKS IN
INFINITESIMAL MATHEMATICS

2.1. INTRODUCTION

2.1.1. Thhhhææææbbbbiiiitttt    iiiibbbbnnnn    QQQQuuuurrrrrrrraaaa::::    ffffrrrroooommmm    ÎÎÎÎaaaarrrrrrrræææænnnn to Baghdad

The little that we know about Thæbit ibn Qurra derives mainly from the
biobibliographical details provided on him by al-Nadîm, al-Qif†î and Ibn
Abî UÒaybi‘a.1 These accounts are by no means all of equal importance. The

1 Al-Nadîm, Kitæb al-Fihrist, ed. R. Tajaddud, Teheran, 1971, p. 331. Al-Nadîm
cites only four titles that relate to Thæbit’s mathematical writings: the Treatise on
Numbers (Risæla fî al-a‘dæd; probably his treatise on amicable numbers), the Treatise on
the Defining of Geometrical Problems (Risæla fî istikhræj al-masæ’il al-handasiyya), the
Treatise on the Sector-Figure (Kitæb fî al-shakl al-qa††æ‘) and, finally, the Treatise on
the Proof Attributed to Socrates (Risæla fî al-Ìujja al-mansºba ilæ Suqræ†). Al-Nadîm
writes that Thæbit ‘was born in the year two hundred and twenty-one and died in the year
two hundred and eighty-eight; his age was seventy-seven solar [sic] years’. He also
refers to the privileged relationship Thæbit enjoyed with the Caliph al-Mu‘ta≈id.

Al-Qif†î, Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, pp. 115–22. This is
what he says about the life of Thæbit ibn Qurra: ‘A Sabian from the people of Îarræn, he
moved to the city of Baghdad and made it his own. With him, it was philosophy that
came first. He lived in the reign of al-Mu‘ta≈id. We are indebted to him for numerous
books on different branches of knowledge such as logic, arithmetic, geometry, astrology
and astronomy. We owe to him an amazing book: the Introduction to the Book of
Euclid (Kitæb mudkhil ilæ K. Uqlîdis), and a book: the Introduction to Logic (Kitæb al-
Mudkhal ilæ al-man†iq). He translated the book on al-Arithmæ†îqî and summarized the
book on The Art of Healing (Kitæb Îîlat al-bur’). In his knowledge he ranks among the
most outstanding. He was born in the year two hundred and twenty-one at Îarræn, where
he worked as a money-changer. MuÌammad ibn Mºsæ ibn Shækir brought him back
when he returned from the country of the Byzantines, for he had found him eloquent. He
is said to have gone to live with MuÌammad ibn Mºsæ and to have pursued his studies in
his house. He thus had some influence over his career. MuÌammad ibn Mºsæ put him in
touch with al-Mu‘ta≈id, and introduced him to the astronomers’ circle. He it was [Thæbit]
who introduced Sabian management to Iraq. In this way their social position was
determined, their status raised, and they attained distinction. Thæbit ibn Qurra achieved so
prestigious a rank and so eminent a position at the court of al-Mu‘ta≈id that he would even
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one that we owe to al-Nadîm, invaluable by reason of its date – the end of
the tenth century – is, however, very thin. But that of al-Qif†î, thanks to a
happy accident, provides everything that posterity knows about Thæbit.
Good luck placed in al-Qif†î’s path papers deriving from Thæbit’s family
that related more to his work than to his life. Al-Qif†î’s book was the source
drawn on by subsequent biobibliographers, for example Ibn Abî UÒaybi‘a.
Even Ibn al-‘Ibrî (alias Bar Hebraeus),2 who apparently had at his disposal

                                    
sit down in his presence at any time he wished, speak with him at length and joke with
him, and come to see him even when his ministers or his intimates were not there.’
(pp. 115–16).

Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’ ed. A. Müller, 3 vols,
Cairo/Königsberg, 1882–84, vol. I, pp. 215, 26–220, 29; ed. N. Ri≈æ, Beirut, 1965,
pp. 295, 6–300, 23.

2 Ibn al-‘Ibrî, Tærîkh mukhtaÒar al-duwal, ed. O. P. A. ∑æliÌænî, 1st ed., Beirut,
1890; repr. 1958, p. 153.

Thæbit ibn Qurra’s biography is reproduced in various publications, without anything
new being added. The following are a representative selection:

Ibn Kathîr, al-Bidæya wa-al-nihæya, ed. Bºlæq, 14 vols, Beirut, 1966, vol. XI,
p. 85; the account is borrowed from Ibn Khallikæn.

Ibn Khallikæn, Wafayæt al-a‘yæn, ed. IÌsæn ‘Abbæs, 8 vols, Beirut, 1978, vol. I ,
pp. 313–15.

Ibn al-Athîr, al-Kæmil fî al-tærîkh, ed. C. J. Tornberg, 12 vols, Leiden, 1851–71,
vol. VII (1865), p. 510; repr. 13 vols, Beirut, 1965–67.

Al-Mas‘ºdî, Murºj al-dhahab (Les Prairies d’or), ed. C. Barbier de Meynard and
M. Pavet de Courteille, revised and corrected by Charles Pellat, Publications de
l’Université Libanaise, Section des études historiques XI, Beirut, 1966, vol. II, § 835,
1328, 1382.

Ibn al-Jawzî, al-MuntaÂam fî tærîkh al-mulºk wa-al-umam, 10 vols, Hyderabad,
1357–58/1938–40, vol. VI, p. 29.

Ibn Juljul, ™abaqæt al-a†ibbæ’ wa-al-Ìukamæ’, ed. F. Sayyid, Publications de
l’Institut Français d’Archéologie Orientale du Caire. Textes et traductions d’auteurs
Orientaux, 10, Cairo, 1955, p. 75.

Al-Nuwayrî, Nihæyat al-arab fî funºn al-adab, 31 vols, Cairo, 1923–93, vol. II,
p. 359.

Ibn al-‘Imæd, Shadharæt al-dhahab fî akhbær man dhahab, ed. Bºlæq, 8 vols, Cairo,
1350–51 H., (in the year 288), vol. II, p. 196–8. Repeats Ibn Khallikæn.

Al-∑afadî, al-Wæfî bi-al-Wafayæt, 24 vols published (1931–1993); vol. X,
Wiesbaden, 1980, ed. Ali Amara and Jacqueline Sublet, pp. 466-467.

Al-Dhahabî, Tærîkh al-Islæm (years 281–290), ed. ‘Umar ‘Abd al-Salam Tadmºrî,
Beirut, 1989–1993, pp. 137–8. Borrowed from Ibn Abî UÒaybi‘a.

Al-Sijistænî, The Muntakhab ∑iwæn al-Ìikmah, Arabic Text, Introduction and Indices
ed. D. M. Dunlop, The Hague, Paris, New York, 1979, pp. 122–5.

M. Steinschneider, ‘Thabit (“Thebit”) ben Korra. Bibliographische Notiz’, Zeit-
schrift für Mathematik u. Physik, XVIII, 4, 1873, pp. 331–8.
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Syriac sources that are of no great importance as far as Thæbit goes, adds
nothing substantial to al-Qif†î’s account. Should we then content ourselves
with that? The paucity of the documentary evidence seems to me to impose
the obligation to consult all of it, if only to compare the various versions.

Meagre though they are, the bibliographers’ accounts in broad outline
place the man in the circle in which he moved at one of the most important
moments in the history of mathematics and science: the second half of the
ninth century in Baghdad. The town had not only become the political
centre of the world as it was then, it was also its cultural heart, and by that
token a magnet for every talent. For the young people of the day who
wanted to secure themselves a first-class education, the watchword was, ‘Go
up to Baghdad!’ The city was an established scientific centre that housed a
settled community of scholars whose links with the seat of power had long
since been forged. For the more mature, ‘going up to Baghdad’ meant
meeting their intellectual equals, making a name for themselves and
guaranteeing themselves a career.3 Somewhere in this barely sketched
landscape we shall have to try to locate one of the crucial events in the life
of Thæbit ibn Qurra, his departure from Îarræn in Upper Mesopotamia, the
town of his birth and one of the remaining centres in which elements of
Hellenism were still to be found,4 for Baghdad where he was to spend the
rest of his life.

What were the particular circumstances that led to the decision that
fixed the future course of Thæbit’s life? This is where a second event comes
in, one whose effects on his destiny and his career as a scholar were by no
means negligible: his meeting with the eldest of the three brothers Banº
Mºsæ, MuÌammad ibn Mºsæ. From al-Nadîm onwards, all the biographers
agree in linking these two facts: the departure from Îarræn and this meeting.
MuÌammad ibn Mºsæ had just completed a mission to Byzantine territory in

                                    
See also D. Chwolsohn, Die Ssabier und der Ssabismus, vol. I, St. Petersburg,

1856; repr. Armsterdam, 1965, pp. 546–67; E. Wiedemann, ‘Über Ÿæbit ben Qurra,
sein Leben und Wirken’, Aufsätze zur arabischen Wissenschafts-Geschichte, Hilde-
sheim, 1970, vol. II, p. 548–78. Thæbit ibn Qurra. Œuvres d’astronomie, text ed. and
transl. Régis Morelon, Collection Sciences et philosophies arabes. Textes et études,
Paris, 1987, p. XI–XIX.

3 To gain some idea of the number of scholars engaged in disciplines such as
literature, history, theology, etc. see al-Kha†îb al-Baghdædî, Tærîkh Baghdæd, ed.
MuÌammad Amîn al-Khænjî, 14 vols, Cairo, 1931; repr. Beirut with an additional index
volume: Fahæris Tærîkh Baghdæd li-al-Kha†îb al-Baghdædî, Beirut, 1986. See also
A. A. Duri’s article, ‘Baghdæd’, E.I.2, t. I, pp. 921–36.

4 The description given by al-Mas‘ºdî dans Murºj al-dhahab shows that the traces
of Hellenism in Îarræn towards the end of the third century of the Hegira were essentially
religious. Cf. the revised edition by Ch. Pellat, vol. II, § 1389–1398, pp. 391–6.
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search of manuscripts when he came across Thæbit, then simply a money-
changer with linguistic skills impressive enough for MuÌammad to decide to
take him back with him to Baghdad. This story is quite plausible for several
reasons. For one thing, there is the unanimity of the sources, certainly not in
itself a compelling argument; for another, there is the privileged connection
that Thæbit maintained throughout his life with the Banº Mºsæ, and
particularly the eldest brother; and finally there is the undoubted fact that he
was a gifted linguist. We have only to read his translations and his scholarly
work to be convinced that this man, whose mother tongue was Syriac, had
also mastered Arabic and Greek. There was perhaps an additional reason
that influenced his departure – he may have had to quit his native town
because of differences with his co-religionists. The only report in Arabic of
this event comes from a late biobibliographer, Ibn Khallikæn,5 who mentions
these quarrels and also that Thæbit was forced to leave Îarræn for the
neighbouring locality of Kafr Tºtha, in which his meeting with MuÌammad
ibn Mºsæ took place. Whether these reported differences actually occurred
or were dreamed up by the biobibliographers is of little significance here, for
even if they were a factor in his decision to leave, they were scarcely the
main reason for his departure for Baghdad.

As to the date of Thæbit’s meeting with MuÌammad ibn Mºsæ, we
know nothing, just as we know nothing either of the individuals or of the
circumstances that were instrumental in bringing the meeting about. But we
do know that MuÌammad died in 873, and that Thæbit was engaged before
that date in the education of his children.6 It is then a reasonable hypothesis
that Thæbit came to Baghdad relatively early and that he very likely lived
there for at least 30 years, given that we know he died in 901.

The early biobibliographers have passed on some invaluable details on
the relationship between Thæbit and MuÌammad and his brothers. We learn
that MuÌammad had accommodated Thæbit in his own house on his arrival
in Baghdad, where he took charge not only of his career but of his scientific
education too. He was also responsible for introducing him to the circle of
the Caliph’s astronomers. All the early biobibliographers agree on this point.
The celebrated astronomer al-Bîrºnî, a century and a half after Thæbit’s

5 Ibn Khallikæn, Wafayæt al-a‘yæn, vol. I, p. 313.
6 The list of Thæbit’s writings cited by al-Qif†î from Abº ‘Alî al-MuÌassin al-∑æbi’

(Thæbit’s great-grandson; cf. Yæqºt, Mu‘jam al-Udabæ’, Beirut, s.d., vol. 8, p. 152),
refers to ‘several summaries on astronomy and geometry that I have seen in his
handwriting: these he identifies in his own hand as “what Thæbit composed for the young
people”; he means the children of MuÌammad ibn Mºsæ ibn Shækir’ (Ta’rîkh al-
Ìukamæ’, p. 120). See R. Rashed and Ch. Houzel, Recherche et enseignement des
mathématiques au IXe siècle. Le Recueil de propositions géométriques de Na‘îm ibn
Mºsæ, Les Cahiers du Mideo, 2, Louvain/Paris, 2004.
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death,7 alone casts a shadow of doubt on the roles played by the various
parties and indeed their places in the hierarchical structure. According to
him, Thæbit was the corner-stone of the school of the Banº Mºsæ. But we
know in another connection that al-Bîrºnî, with his own acute sense of jus-
tice, had no love for the Banº Mºsæ, who sometimes showed scant respect
for it. In any case, there is no real contradiction here, since there is nothing
to stop us from imagining that Thæbit took over the leadership of the school
after the death of MuÌammad ibn Mºsæ, the more so in that al-Îasan ibn
Mºsæ, the brilliant geometer, was already deceased, and their brother
AÌmad ibn Mºsæ was more concerned with mechanics. On the other hand,
there is nothing in what has come down to us from Thæbit ibn Qurra
himself to suggest that he had any such role. Whenever he has occasion to
mention MuÌammad, al-Îasan, he does so with the consideration owed to
an elder. This is further exemplified in his writings by the respectful attitude
he adopts towards al-Îasan ibn Mºsæ in his research on the measure of the
lateral surface of the cylinder and on the elliptical sections, and by the terms
in which he refers to MuÌammad ibn Mºsæ on the subject of calculating the
position of the stars for the astronomical tables.

If therefore Thæbit ibn Qurra had overtaken the Banº Mºsæ in his
research in mathematics and astronomy, that in no way contradicts the fact
that it was to them that he owed his education. There is not the slightest
indication to suggest that he came by any scientific education whatever in
his native Îarræn, before he entered the school presided over by the Banº
Mºsæ.8 We know of no mathematical work of his written in his native

7 Al-Bîrºnî writes that Thæbit ibn Qurra was ‘the protégé of these people (the Banº
Mºsæ), lived among them, and was the man who steered their scientific work back to the
right course’, in al-Æthær al-bæqiya ‘an al-qurºn al-khæliya, Chronologie orientalischer
Völker, ed. C. E. Sachau, Leipzig, 1923, p. 52. It is worth noting that al-Bîrºnî, fair-
minded as he was, further on had no hesitation in paying tribute to the Banº Mºsæ for
their observation on the mean moon, declaring that, of all his predecessors, they were the
ones whose statement on the subject one should opt for (p. 151):

 ¡ULKF�« …b¼UA�Ë ¨tÐ ‚c(«Ë ¨b�d�« qLŽ w� …—UN*UÐ r¼dBŽ w� r¼œdHðË o(« „«—œ≈ w� œuN:« rN�c³�

ÆÆÆ p�– rNM�

On the other hand, in al-Istî‘æb, he finds fault with their attitude towards al-Kindî. The
story is well known and often reported.

8 It would be a matter of great interest for the history of philosophy, mathematics and
the sciences if we knew exactly how much activity there was in these fields at Îarræn in
the eighth and especially the ninth century. Such knowledge is obviously indispensable to
a better understanding of how Arabic became a vehicle for the transmission of the legacy
of Greece, and how particular disciplines came to be established in that language. In the
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language, Syriac. The two mathematical books in Syriac cited by Ibn al-
‘Ibrî are mentioned by al-Qif†î9 and repeated along with the list as a whole

                                    
absence of such information, it can often happen that people offer conclusions before
embarking on the relevant research. They extrapolate from the most remote periods and it
is none other than Thæbit ibn Qurra that they call on for their evidence and at the same time
treat as the main proof of their case. This sort of reasoning is quite clearly marred by
circularity: what they would have needed to do first was to set out what Thæbit owed to
the philosophy and science that was going on at Îarræn during his formative years. We
shall look in vain in his biography or in his writings for any shred of evidence, any
scintilla of support for the notion that he had received any such education before his
meeting with the Banº Mºsæ and his arrival in Baghdad. Thus two questions remain
open. Was there any such activity at that time in Îarræn as scientific and philosophic
teaching in any shape or form other than that hallowed by tradition in religion and the
occult sciences? Could Îarræn claim to possess genuine libraries, and not mere
repositories of old books that were now beyond the comprehension of the Sabians of the
time? This is a perfectly reasonable question in view of the situation described by Ibn
WaÌshiyya affecting a comparable community, whose members could no longer
understand their ancestors’ books, but, even so, piously and jealously guarded them (al-
FilæÌa al-naba†iyya, ms. Istanbul, Topkapi Saray, Ahmet III 1989, fol. 1r–2r; critical
edition by Toufic Fahd, vol. I, Damascus, 1993). Let us now turn to Thæbit himself,
whose praise of Îarræn and the Sabians is recorded for us by Ibn al-‘Ibrî: ‘Many
<Sabians> were constrained to forsake the true path for fear of persecution. Our fathers,
by contrast, were able to withstand what they withstood with the help of the Most High,
and achieved their salvation through their own courage. The blessed town of Îarræn was
never sullied by its Christians’ straying from the true path. We are the Sabians’ heirs, and
they are our heirs, dispersed throughout the world. Anyone who bears the burdens borne
by the Sabians with confident hope will be held to enjoy a happy destiny. Oh, please
Heaven! Who but the best of the Sabians and their kings brought civilisation to the land,
built the towns? Who constructed the harbours and canals? Who explained the occult
sciences? Who were the people to whom the divine power that made known the art of
divination and taught the future was revealed? Were they not the renowned Sabians? It
was they who elucidated all that and who wrote on the art of medicine for souls and on
their deliverance, and who published also on medicine for the body, and filled the world
with good and wise deeds that are the bulwark of virtue. Without the Sabians and their
knowledge, the world would be deserted, empty, and sunk in destitution.’ From Thæbit’s
own words – at any rate according to Ibn al-‘Ibrî – it emerges clearly that the Sabians of
his time excelled in practical skills, occult sciences and medicine. But there is no mention
either of mathematics or of mathematical sciences. All that might count as philosophy is
‘medicine for souls’. These, however, are the very areas that were given prominence by
the early historians and biobibliographers. Al-Nadîm for example tells us that astrolabes
were first manufactured at Îarræn before the craft was taken up elsewhere and became
widespread under the Abassids (al-Fihrist, p. 342). See also note 9 below. On Îarræn,
see Tamara M. Green, The City of the Moon God, Leiden, 1992, which contains a
bibliography.

9 The list of Thæbit’s writings drawn up by his great-grandson and reproduced by al-
Qif†î includes nine titles in Syriac. On the other hand, Ibn al-‘Ibrî, in a book written in
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by Ibn Abî UÒaybi‘a in Arabic. Both deal with Euclid’s fifth postulate, and
there is nothing in either to support the contention that the Syriac version
was the first to be written. On the contrary, the reverse may well be true,
especially since, at the time, it was common practice for Arabic texts to be
translated into Syriac.

All things considered, the following conclusion may, then, be put
forward: this man of outstanding intellect came to Baghdad with
MuÌammad ibn Mºsæ, joined the school of the Banº Mºsæ and lost no time
in becoming one of its active members. He followed the way opened by al-
Îasan ibn Mºsæ, particularly in his work on the measure of curved planes
and solids, and on the properties of conic sections. He collaborated with
AÌmad ibn Mºsæ, translated the last three books of Apollonius’ Conics, and,
in astronomy and also in philosophy, carried on certain aspects of the work
of MuÌammad, with whom he maintained a close and enduring relationship.
From the prestigious town of his birth, Îarræn, he seems to have taken with

                                    
Syriac, Tærîkh al-zamæn (Arabic translation by Father IsÌæq Armala, Beirut, 1980,
pp. 48–9), refers to Thæbit and attributes to him ‘about one hundred and fifty books in
Arabic’ and ‘sixteen books in Syriac, the majority of which we have read’. The two
Syriac lists have seven titles in common and thus provide us with an indirect way of
assessing Thæbit ibn Qurra’s output in that language, and how much his scientific and
philosophic education might possible owe to his native town of Îarræn.

Eleven of the sixteen titles are devoted to religion and Sabian rites; one to a history of
the ancient Syriac kings, that is to say the Chaldaeans, one to a ‘history of the famous
members of his family, and the lineage of his forefathers’, ‘the book on music’, and
finally, ‘a book on: if two straight lines are drawn following <two angles> that are equal
to less than two right angles, they meet, and another book on the same subject’. Now this
last title (comprising two books), listed in Tærîkh al-zamæn as being in Syriac, turns up
almost word for word in the list of Thæbit’s works in Arabic drawn up by al-Qif†î
(Ta’rîkh al-Ìukamæ’, p. 116), and later in that of Ibn Abî UÒaybi‘a (‘Uyºn al-anbæ’, ed.
Müller, vol. I, p. 219, 4; ed. Ri≈æ, p. 299, 3–4); furthermore, the Arabic manuscript of
this work has, happily, come down to us, confirming its title (mss Istanbul, Aya Sofya
4832, fol. 51r–52r; Carullah 1502, fol. 13r–14v; Paris, BN 2457, fol. 156v–159v). So it
turns out that the only mathematical title cited as being in Syriac also exists in Arabic.
Given that there was a corresponding Syriac version, it might then be thought that Thæbit
himself translated his Syriac text into Arabic. But nothing is less certain, nor is there any
lexical, stylistic, let alone mathematical indication that might lend weight to a conjecture
on these lines. Exactly the opposite assumption, on the other hand, that the work was
translated from Arabic into Syriac, is not only possible, but would reflect a practice that
was current at the time. Finally, the hypothesis that both versions were produced at the
same time should not be excluded. The author was, after all, completely bilingual, as he
had demonstrated when he was engaged in revising the translation of the Elements.
Sooner than allowing ourselves to be swamped by conjectures, let us stick to this one,
negative certainty: there is nothing to show that he received any scientific instruction at all
in Îarræn.
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him only his religion, his knowledge of languages and perhaps some
philosophy, while it was in Baghdad that he learned mathematics and
astronomy.

Like his fellow-townsmen, Thæbit ibn Qurra was of the Sabian
persuasion, a follower of a Hellenistic faith that needed all the hypocrisy its
exegetes could muster in order to qualify for the status of a recognized
‘religion of the Book’, which alone could guarantee its free practice in
Islamic territory. This meant not just that he was tolerated as a member of a
subordinate community, but also that he enjoyed full citizen rights, including
the right to seek and to attain the highest positions in the land. In this he was
far from unique, and many other scholars emanating from religious
minorities secured themselves most exalted posts. All the biobibliographers
recount episodes from his life at court, where the caliph heaped favours
upon him. This ‘promotion’, which is often referred to anecdotally, seems to
me to deserve very much closer attention from historians. It was neither
exceptional nor ephemeral and throws light for us on the social status to
which a scholar could lay claim in the second half of the ninth century in an
Islamic city, and at the same time exemplifies the esteem in which the light
of knowledge was held by the ruling authorities.

The career of Thæbit ibn Qurra provides a good illustration of the power
to attract talent that marked Baghdad’s prestige at this period, and an
example too of how membership of a religious minority was no bar to
achieving the highest offices of state; and there is a third reason for choosing
him as a representative case: he is a source of information on the
development of the schools and their scientific traditions. As an active
member of the school of the Banº Mºsæ, and tutor to the sons of
MuÌammad ibn Mºsæ, he was able to ensure the school’s continued
existence after the deaths of MuÌammad, AÌmad and al-Îasan. In due
course, his own descendants and pupils took over from him. Thæbit’s
children and grandchildren, including the mathematician Ibræhîm ibn Sinæn,
and pupils of his such as Na‘îm ibn Mºsæ, traces of whom we have only
recently brought to light,10 were to carry on the work for three generations
at least. We are not yet in a position to give anything like a complete
account of the ramifications in the structure and tradition of the school, but,
even as it is, through Ibn Qurra, we can glimpse their outline.

 One further aspect of Thæbit ibn Qurra’s career, when added to the
three already mentioned, will allow us to complete the picture of our
mathematician: he was also a translator. We are aware of the considerable
number of Greek treatises he translated into Arabic, including Archimedes’

10 See R. Rashed and Ch. Houzel, Recherche et enseignement des mathéma-
tiques au IXe siècle.
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Sphere and Cylinder as well as the last three books of Apollonius’ Conics
and the Arithmetical Introduction of Nicomachus of Gerasa. He also revised
many other translations, including, among others, Euclid’s Elements and
Ptolemy’s Almagest. These few titles are enough in themselves to illustrate
the wide range of topics Thæbit covered and to bring out the closeness of
the ties that link innovative research and translation, and indeed their mutual
dependency – something that I have been at pains to emphasize.11 The
example of Thæbit himself proves my point in full measure, since in his case
the two activities are combined in one and the same person.

As a gifted translator and one of the most eminent mathematicians that
ever lived, Thæbit ibn Qurra’s status as a luminary remains unchallenged;
indeed, down the centuries, no one has cast the slightest doubt on his
importance. His renown in the East as well as the Muslim West, the
translation of some of his works into Latin and others into Hebrew, are
eloquent enough testimony.12 From the point of view of the history of
mathematics, to overlook Thæbit’s contribution is quite simply to forego the
possibility of understanding the development of the subject over the
following two centuries, especially in the field that concerns us here.

Let us now return to the early biobibliographers to take up two
particular points: Ibn Qurra’s name and his dates. All of them report his
name in the same way, Thæbit ibn Qurra, and give his lineage from the sixth
generation of his ancestors. Al-Qif†î confirms the accuracy of this
information, on the basis of the family papers to which he had been able to
gain access. He had got his hands on the evidence written down by Abº
‘Alî al-MuÌassin ibn Ibræhîm ibn Hilæl al-∑æbi’, who was none other than
Thæbit’s great-grandson. Abº ‘Alî’s father, as we know,13 had in 981 copied
a manuscript in Thæbit’s own hand, and it appears to have been this branch

11 Cf. my ‘Problems of the Transmission of the Greek Scientific Thought into
Arabic: Examples from Mathematics and Optics’, History of Science, 27, 1989,
pp. 199–209; repr. in Optique et mathématiques: Recherches sur l’histoire de la
pensée scientifique en arabe, Variorum Reprints, London, 1992, p. 199–209.

12 On his impact in Latin, see for example F. J. Carmody, The Astronomical
Works of Thæbit b. Qurra, Berkeley/Los Angeles, 1960. See also A. Björnbo, ‘Thæbit’s
Werk über den Transversalensatz’, Abhandlungen zur Geschichte der Na-
turwissenschaften und der Medezin, 7, 1924; and also F. Buchner, ‘Die Schrift über
den Qarastûn von Thabit b. Qurra’, Sitzungsberichte der physikalisch-medizinischen
Sozietät in Erlangen, Bd 52-53, 1920/21, pp. 141–88.

13 Attention was drawn to this Istanbul manuscript, Köprülü 948, by H. Ritter,
according to K. Garbers, Ein Werk Ÿæbit b. Qurra’s über ebene Sonnenuhren,
Dissertation, Hamburg/Göttingen, 1936, p. 1. See also E. Bessel-Hagen, O. Spies
‘Ÿæbit b. Qurra’s Abhandlung über einen halbregelmässigen Vierzehnflächner’, in
Quellen und Studien zur Geschichte der Math. und Phys., B. 2.2, Berlin, 1932,
pp. 186–98; and Thæbit ibn Qurra. Œuvres d’astronomie, ed. Régis Morelon, p. 301.
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of the family that preserved the family papers. In his book dating from
647/1249 al-Qif†î writes:

As to the titles of his [Thæbit’s] written works, I have found pages in the
hand of Abº ‘Alî al-MuÌassin ibn Ibræhîm ibn Hilæl al-∑æbi’ that included
mention of the lineage of this Abº al-Îasan Thæbit ibn Qurra ibn Marwæn,
and likewise mention of the books he had written, in an exhaustive and
complete fashion […] which I append below, since it is a proof of that
matter.14

This invaluable piece of evidence leaves no room for doubt either about
Thæbit’s name or as to his writings. But when it comes to his date of birth,
we are a long way from the same degree of certainty. Al-Nadîm in fact
notes the year as 221/836, and then goes on to tell us that he died at the age
of 77 solar years. Now, if this date were accepted for his birth, he would
have lived for only 65 solar years, or 67 lunar years, since he died on
Thursday 26 ∑afar, in the year 288 of the Hegira, i.e. Thursday 19th
February, 901. Al-Qif†î repeats the birth date given by al-Nadîm without
noticing the discrepancy. Still today, there are historians who follow al-Qif†î
and fail to observe the contradiction this dating entails. Ibn Abî UÒaybi‘a, on
the other hand, states that he was born on Thursday 21 ∑afar 211 of the
Hegira, i.e. 1st June 826, which is indeed a Thursday.15 This date seems
reasonable, in that it fixes his lifespan at 77 lunar instead of solar years, as
al-Nadîm would have it. This is also the date given by the late
biobibliographer al-∑afadî.16

2.1.2. The works of TTTThhhhææææbbbbiiiitttt    iiiibbbbnnnn    QQQQuuuurrrrrrrraaaa    in infinitesimal mathematics

A considerable body of purely mathematical work can be attributed to
Thæbit ibn Qurra, even if we omit his research in astronomical mathematics
and statics. This work covers geometry, geometric algebra and number
theory.17 Thæbit left his mark on every field of mathematics. Our discussion
herein is limited to his works in infinitesimal mathematics. However, we
should be clear on one point. Infinitesimal mathematics can be found throu-
ghout the works of Ibn Qurra. In astronomy, he uses infinitesimal processes

14 Al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 116.
15 This date is confirmed by the Paris Observatory, thus providing irrefutable proof

that renders superfluous all attempts to base conclusions solely on the often contradictory
evidence contained in the bibliographical and historical sources.

16 Al-∑afadî, al-Wæfî bi-al-Wafayæt, vol. 10, p. 466–7.
17 For an overview, see the article ‘Thæbit ibn Qurra’, Dictionary of Scientific

Biography, vol. XIII, 1976, pp. 288–95, by B. A. Rosenfeld and A. T. Grigorian.



HIS WORKS IN INFINITESIMAL MATHEMATICS 123

to examine the problem of the ‘visibility of crescents’,18 and they also
appear when he discusses ‘how the speed of movement on the ecliptic can
appear slower, average, or faster, depending on the point of the eccentric at
which it occurs’.19 Thæbit also applies infinitesimal processes to statics in his
book al-Qaras†ºn.20 However, we know of only three works on infinitesi-
mal geometry, all of which have fortunately survived.

The early biobibliographers refer only to the following three titles: The
Measurement of the Conic Section known as the Parabola; The Measure-
ment of the Paraboloids; and On the Sections of the Cylinder and its Late-
ral Surface. These three titles are given in the list reproduced by al-Qif†î,
and in the article on Thæbit written by Ibn Abî UÒaybi‘a.

The information given by the biobibliographers agrees with what was
presented by Thæbit himself, who confirms that he only determined the
areas and volumes of these curved figures:

With regard to the plane figures, it is like that which resembles a circle
without being a circle, given that its length is greater than its width, and
which is called an ellipse, together with other conic sections and the cylin-
der. I have shown this in the books that I have composed, describing my
findings and determinations on this subject. With regard to the solid figures,
these are those formed by rotating the plane figures.21

This refers exactly to the figures discussed in the three books mentioned
earlier.

Finally, the internal references in the works of Thæbit provide further
confirmation. In his treatise on The Measurement of the Paraboloids, he
cites the text on The Measurement of the Parabola, and in another,
obviously later work, he makes reference to the third treatise as follows:
‘With regard to the lateral surface area of a cylinder, I determined this and
proved in my book on the sections of a cylinder and its lateral surface
that …’.22 No other publication in the field of infinitesimal mathematics has
been attributed by anyone to Thæbit, or has been cited by Thæbit himself.

18 R. Morelon, Œuvres d’astronomie, pp. 93–112.
19 Ibid., pp. 68–9.
20 See E. Wiedemann, ‘Die Schrift über den Qaras†ºn’, Bibliotheca Mathematica,

12, 3, 1911–12, pp. 21–39, a translation of the Arabic text of the Thæbit book. A
defective edition of this text, with a French translation, has been published by Kh.
Jaouiche (Le livre du Qaras†ºn de Ÿæbit ibn Qurra, Leiden, 1976). See also W. R.
Knorr, ‘Ancient sciences of the mediaeval tradition of mechanics’, in Supplemento agli
Annali dell’Istituto e Museo di Storia della Scienza, Fasc. 2, Firenze, 1982.

21 See my edition and French translation of this treatise, On the Measurement of
Plane and Solid Figures, in Thæbit ibn Qurra. Science and Philosophy in Ninth-
Century Baghdad, p. 208, Arabic text p. 209, 13–17.

22 Ibid., p. 199, 7–8.
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The early biobibliographers also cited two other titles by Thæbit, one of
which has given rise to the incorrect supposition that he contributed to a
book by the Banº Mºsæ. This was a treatise ‘On the Measurement of Plane
and Solid Figures’, Fî misæÌat al-ashkæl al-musa††aÌa wa-al-mujassama. It
is true that the similarity of this title to a work of the Banº Mºsæ could lead
to this conjectural conclusion. If one considers the strong ties between
Thæbit and the Banº Mºsæ, the assumption that he contributed to their work
does not require any great deductive leap. However, closer examination of
the text reveals that it does not contain proofs. The author simply gives the
formulae for determining the areas of plane, rectilinear and curvilinear
figures, together with the volumes of certain solids, including the cube and
the sphere. It therefore has nothing in common with the work of the Banº
Mºsæ and, moreover, it does not touch on the problems of infinitesimal
mathematics.

There remains the one enigmatic work by Thæbit, of which we know
nothing. Given that it is entitled ‘The Measurement of Line Segments’,
(Kitæbihi fî misæÌat qa†‘ al-khu†º†), there is very little chance that it had
anything to do with infinitesimal mathematics. We should finally note the
famous philosophical correspondence with Abº Mºsæ ‘ïsæ ibn Usayyid in
which Thæbit defends the concept of a true infinity. 23

2.1.3. History of the texts and their translations

The history of the manuscript tradition of the works of Thæbit ibn
Qurra that we are about to describe is somewhat paradoxical. In one sense it
is sparse, as only single copies survive of two of the treatises. In another
sense it is very rich, as the earliest copies are all found in valuable collections.
The Measurement of the Parabola alone survives in five copies, including
the two mentioned earlier. We will now consider each of these texts in detail.

THE MEASUREMENT OF THE PARABOLA

Five manuscript copies of this book by Thæbit ibn Qurra have survived.
1) The first manuscript, referred to here as copy A, occupies folios

26v–36v in the 4832 Aya Sofya collection in the Süleymaniye Library in
Istanbul. This collection includes a large number of works by Thæbit. It was
part of the estate left by the Sultan al-Ghæzî MaÌmºd Khæn. The history of

23 See Marwan Rashed, ‘Thæbit ibn Qurra sur l’existence de l’infini: les Réponses
aux questions posées par Ibn Usayyid’, in Thæbit ibn Qurra. Science and Philosophy
in Ninth-Century Baghdad, pp. 619–73.
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the collection is described in folio 1r: ‘It has been said that this book
belonged to Abº ‘Alî al-Îusayn ibn ‘Abd Allæh ibn Sînæ’.

Impossible to verify, this claim may well be legendary but it bears
witness to the prestige once enjoyed by this collection – and which it
continues to enjoy. For us, the important point to note is that it mentions the
name of one previous owner, a certain Ibn al-Îamæmî, who bought it on
‘the nineteenth day of Rajab in the year five hundred and sixty eight’ (of the
Hegira), i.e. 6th March 1173. The copy cannot therefore be later than the
sixth century of the Hegira, and is very possibly up to a century older. The
following line also appears in folio 1r: ‘It has been mentioned that this book
is the work of al-Shaykh al-Ra’îs … Abî ‘Alî al-Îusayn ‘Abd Allæh ibn
Sînæ. May God have Mercy upon him’. This claim is no more verifiable than
the first, but it does indicate a strong belief that the collection is very old.
The text is written with care, using naskhî calligraphy, and the paper is
smooth with a slight red tint. The paper size is (21.8/11.6), and then text
(17.9/9.1). All the sheets of paper come from the same manufacturer. The
copyist left some pages blank, and some of these were used later by other
copyists; such as folio 57, copied in the year 700 of the Hegira. The pages
have been numbered in a later hand. The text is copied in black ink, while
the figures are carefully drawn in red ink. It is bound in reinforced board,
and the spine is in brown leather that has been recently restored.

Ibn Qurra’s text is in the hand of the copyist, without any addition or
commentary. There are a few marginal notes in the same hand, all of words
or phrases omitted during the copying process.

2) The second manuscript, referred to here as copy B, forms part of
Collection 2457 in the Bibliothèque Nationale de Paris. The Measurement of
the Parabola occupies folios 122v–134v. This manuscript consists of 219
paper sheets (18/13.5).24 The section of this collection that interests us was
copied by the geometer AÌmad ibn ‘Abd al-Jalîl al-Sijzî in Shîræz in
359/969. This volume was taken to Cairo at the beginning of the nineteenth
century by a pupil of Caussin de Perceval named Reiche. Al-Sijzî corrected
the original when making his copy. On page 132v appears the word mKÐ

with a corresponding ∴ sign in the margin. This indicates one of the steps in
al-Sijzî’s revision. There are no additions or commentaries in any other
hand. The only marginal notes are words or phrases omitted during the

24 It has been described by G. Vajda, ‘Quelques notes sur les fonds de manuscrits
arabes de la Bibliothèque Nationale de Paris’, Rivista degli Studi Orientali, 25, 1950, 1
to 10; Index général des manuscrits arabes musulmans de la Bibliothèque Nationale
de Paris, Publications of the Institut de recherche et d’histoire des textes IV, Paris, 1953,
p. 481.
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copying process. The text is written in naskhî calligraphy, with drawn
geometric figures.

3) The third manuscript, referred to here as copy Q, forms part of
Collection 40 in the Dær al-Kutub in Cairo. The Measurement of the Para-
bola occupies folios 165v–181r. This 226-sheet manuscript is relatively
recent, having been made in the eighteenth century by the copyist MuÒ†afæ
∑idqî, a name that we have come across on a number of occasions.25 He
completed the copy on the 12th day of Dhº al-Qa‘da in year 1159 of the
Hegira, i.e. 26th November 1746. The text is written using naskhî calligra-
phy, and the copy contains no additions or commentaries. There is also
nothing to indicate that the copyist made any corrections to the original.
This collection includes other works by Thæbit, together with a number of
texts by Ibn Sinæn and al-Qºhî.

4) The fourth manuscript, referred to here as copy M, forms part of
Collection 5593 in the Astæn Quds library in Meshhed. This collection
consists of 156 sheets (16.5/8), and it was copied in the year 867 of the
Hegira, i.e. 1462/3. The text of The Measurement of the Parabola occupies
folios 26–42. The text is written in nasta‘lîq calligraphy and the geometric
figures have not been drawn in, although blank spaces have been left in the
text for them. There are no additions or commentaries, and no indication of
any corrections to the original.

5) The fifth manuscript, referred to here as copy D, forms part of
Collection 5648 in Damascus.

Comparing these manuscripts shows that the Damascus copy, D, was
taken from the Cairo copy, Q, and no other manuscript. In discussing the
origins of the text, we can therefore discount copy D. Conversely, the Paris
manuscript, B, belongs to a separate manuscript tradition, independent of all
the others. Manuscript B omits 19 sentences and 90 words, including 14
occurrences of the word ‘adad, 7 occurrences of the word kha††, and 2
occurrences of the word ≈arb. The omissions common to manuscripts B and
Q are a single occurrence of the word ‘adad and a single occurrence of the
word kha††, which is insignificant. This comparison of omissions is confirmed
by a comparison of mechanical errors. It can only be concluded that copy B
belongs to a different manuscript tradition from those of A and Q.

25 R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005, Chap.
I.
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Manuscript M has been copied from a precursor of A. All the terms and
expressions omitted from A are also omitted from M, with the exception of
the two words: 35/22 and 44/10, which the copyist of M could easily have
inferred from the context. On the other hand, there are a few grammatical
errors in A that do not appear in M, and some repetitions in A that are
avoided in M. Given that the copyist of M is known to have been careless, it
is not likely that M is a descendent of A. In any event, we have only cited
the variants of M where it is different from A.

The manuscripts Q and A share a common ancestor. Copy Q has the
following unique omissions: 1 sentence and 15 words, including 1
occurrence of the word kha††, 4 occurrences of the word ≈arb, and 4
occurrences of the word ‘adad. It shares the following omissions with copy
A: 10 sentences and 55 words, including 7 occurrences of the word ≈arb, 13
occurrences of the word ‘adad and 44 occurrences of the word kha††. As
we have seen, there are hardly any omissions shared with copy B. Finally,
there is one sentence (2/6) copied incorrectly in both A and Q. However, the
errors are different, suggesting that the sentence in question was unclear in
their common ancestor. The sentence in A reads as follows: fa-‘adad K
akthar min ‘adad aÒghar min AB (‘The number K is therefore larger than a
number smaller than AB’). The same sentence in copy Q reads: fa-‘adad K
akthar min C wa-aÒghar min ‘adad AB, fa-‘adad K akthar min ‘adad
aÒghar min AB. The copyist has then crossed out the final phrase, leaving:
‘The number K is larger than C and smaller than the number AB’. The
sentence in copy A has therefore been crossed out by the copyist MuÒ†afæ
∑idqî. However, we know that the latter had the mathematical knowledge to
understand what he was copying.

The results of all these comparisons enable the construction of the
following stemma:

 

X

X

M
A

Q

D

X

B
359 H.

867 H.
1159 H.

The true text of The Measurement of the Parabola can therefore be
derived from copies A, B and Q, and from M, when M differs from A. This
gives us the princeps edition of this treatise, together with its translation. It
should be noted that H. Suter has made a partial and free translation of
manuscript B of Thæbit’s text. This translation only includes certain passages
and does not attempt a literal translation of the original. While this provisio-
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nal work is little more than a freely translated abstract, it is however useful
as a means of providing mathematical historians with access to the contents
of this treatise by Thæbit.26

THE MEASUREMENT OF THE PARABOLOIDS

The only surviving manuscript of this text, copied in 358/969 is held in
Collection B in Paris, folios 95v–122r. A serious mistake was made during
the copying process, which has not been noticed until now. Al-Sijzî
repeated three folios, 110v–113r. We have called this fragment M, the first
letter of the Arabic word meaning ‘repeated’. Strange as it may seem, this
mistake effectively gives us a second copy, providing us with an insight into
some of the details of al-Sijzî’s technique as a copyist. Compared with M, B
includes one omission, one repetition and five errors. Al-Sijzî has also made
one correction to B that he failed to make to M. Compared with B, M omits
two sentences and one word. Three sentences are repeated in M. This
comparison of the two fragments is reassuring, as it shows that the
mathematician is acting as a true copyist, capable of making a few small mis-
takes. All the comments we have made regarding al-Sijzî in our discussion
of The Measurement of the Parabola remain word for word applicable to
The Measurement of the Paraboloids.

For this text also, we have provided the princeps edition. H. Suter27

produced an abstract of this treatise similar to that for the first.

ON THE SECTIONS OF THE CYLINDER AND ITS LATERAL SURFACE

As with the previous treatise, only one manuscript copy of On the Sec-
tions of the Cylinder and its Lateral Surface survives. It occupies folios
4r–26r in the 4832 Aya Sofya collection A. Everything that we have said
with reference to The Measurement of the Parabola applies equally to this
text. However, in this case, the copyist has left space for almost all the
references Thæbit makes to the Conics of Apollonius. Did he intend to add

26 H. Suter, ‘Über die Ausmessung der Parabel von Thâbit b. Ëurra al-Îarrânî’,
Sitzungsberichte der phys.– med. Soz. in Erlangen, 48, 1916, pp. 65–86. This text has
also been translated into Russian from manuscript B by J. al-Dabbagh and B. Rosenfeld.
See Thæbit B. Qurra, Matematitcheskie traktaty (in Russian), Coll. nautchnoie nasled-
stro, vol. 8, Moscow, 1984.

27 H. Suter, ‘Die Abhandlungen Thâbit b. Ëurras und Abû Sahl al-Kûhîs über die
Ausmessung der Paraboloide’, Sitzungsberichte der phys.– med. Soz. in Erlangen, 49,
1917, pp. 186–227. This text has also been translated into Russian by J. al-Dabbagh and
B. Rosenfeld; see Matematitcheskie traktaty, pp. 157–96.
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them later in a different ink? Or did they not appear in the original that he
was copying?

There also exists an edition of Thæbit’s treatise made by the mathemati-
cian Ibn Abî Jarræda in the thirteenth century, which has been erroneously
assumed to be another copy of the original treatise. The Ibn Abî Jarræda text
is a complete re-write of Thæbit’s treatise, making it useless in tracing its
history. Ibn Abî Jarræda also added a number of lemmas to the original
Thæbit text, together with one completely new proof. In his favour, it has to
be said that he took care to distinguish his own additions from the re-written
version of Thæbit’s text. However, while the re-written version doubtless
preserves the spirit of the original, it is not a faithful copy. Ibn Abî Jarræda
also gives all the references to the Conics of Apollonius. Did he find them in
his copy of the Thæbit treatise, or did he copy them from his own copy of
the Conics?

 Only one copy of the Ibn Abî Jarræda edition now exists, in folios
36v–64v of Collection 41 in the Dær al-Kutub in Cairo. It is stated in this
copy that Ibn Abî Jarræda composed the text in 691/1292. We can recognize
the hand of MuÒ†afæ ∑idqî, even though he is not named explicitly. MuÒ†afæ
∑idqî completed his copy on the 25th day of Rabî‘ al-awwal 1153, i.e. 20th
June 1740. This edition by Abî Jarræda demonstrates the continuing interest
in this field at the end of the thirteenth century. We have included the
lemmas and proofs that he added in the Supplementary notes, and we have
used his text to restore the references that Thæbit made to the Conics. This
is acknowledged on each occasion.

We provide here the annoted English translation of the princeps edition
of this text.28

28 The commentary by Ibn Abî Jarræda has been translated into Russian by J. al-
Dabbagh and B. Rosenfeld, Matematitcheskie traktaty, pp. 196–236, as though it were
the work of Thæbit. See previous note.
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2.2. MEASURING THE PARABOLA

2.2.1. Organization and structure of Ibn Qurra’s treatise

The Treatise on the Measurement of the Parabola occupies a
particularly important place in Thæbit ibn Qurra’s own work, in the history
of infinitesimal mathematics and in the historiography of the Archimedes
Arabus. Indeed, it is the mathematician’s first book dedicated to the areas
and volumes of curved surfaces and solids. In this book, Thæbit ibn Qurra
introduces essential ideas that he doesn’t hesitate to recall in his second
treatise On the Measurement of the Paraboloids. Moreover, the book had
elicited in itself a wave of research on the parabola’s measurement lasting
nearly a century after his death, involving several leading mathematicians:
al-Mæhænî, Ibræhîm ibn Sinæn and Ibn Sahl. The first tried to pare down Ibn
Qurra’s 20 preliminary propositions. The second, who didn’t want to let
anyone overtake his grandfather without being passed in turn by another
family member, proceeded to reduce the number of preliminary propositions
to two. The last, in all likelihood, wished to improve the method itself; his
book unfortunately has not reached us, but it was cited by his contemporary
al-Qºhî, and one could, like him, find traces of it in Ibn al-Haytham’s work
on the measurement of the paraboloid and the measurement of the sphere.
Ultimately, Ibn Qurra’s Treatise on the Measurement of the Parabola
allows us to appreciate the state of knowledge of the Archimedean corpus in
Arabic, and specifically to know whether the contributions of the
mathematician from Syracuse were known at all. Briefly discussed here,
these questions will be revisited in detail at several points, particularly in the
third volume. We note for now that Ibn Qurra, who manifestly ignored the
work of Archimedes as much on the parabola as on conoids and spheroids,
is seen to be constrained to cut a new path, and to forge the necessary
conceptual tools for determining the area of a portion of a parabola.
Throughout, we portray and analyse this path and the means brought into
play: globally, a tendency toward arithmetization surpassing that of which
we can observe in Archimedes, but treated somewhat less nimbly; an explicit
use of the properties of the upper bound of a convex set; and a recourse to
the famous Proposition X.1 from Euclid’s Elements, both to guarantee the
necessary approximation for the method of exhaustion and to settle the
question of existence. We shall see how Ibn Qurra, in the Treatise on the
Measurement of the Paraboloids, had thought to extend the usage of this
Euclidean proposition.

These features, clarified by a phenomenological description of the work,
in fact emerge from the very structure of the book. It is in making manifest
this latent structure that we will show these to be Ibn Qurra’s aims. We will
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have recourse to a method that has proven fruitful in other circumstances:1

we establish the graph of the logical relations of implication between the
different propositions on the basis of the proofs given by Ibn Qurra. We then
try to grasp which semantic structure superimposes itself upon this syntactic
structure in order to understand how these two structures co-determine each
other and, together, determine the book’s organization. In addition, our
method offers the advantage of being the precious auxiliary of the
philologico-historical method, localizing in the text the interpolations and
eventual omissions of propositions. It keenly draws our attention to the
isolated propositions, and incites us to a supplementary and narrow
examination of the text in its context. But a mere glimpse suffices, it seems,
to convince ourselves that, in the case of Ibn Qurra’s book, this risk is non-
existent. (See the graph of implications between propositions from Ibn
Qurra’s Measurement of the Parabola.)

Ibn Qurra’s book, as he presents it, is composed of two lemmas, twenty
preliminary propositions, and one theorem, which divide up, as one can see
from the graph, into three groups. The first consists of two lemmas and
twelve propositions, which all pertain to integers and sequences of integers.
The second group is of four propositions dedicated to segments and
sequences of segments. The third group is composed of four propositions,
and the theorem, pertaining to the parabola. We already clearly see the
importance of arithmetical propositions in Ibn Qurra’s book. We further
observe that the graph consists of three levels: the first, on the arithmetical
propositions, is the foundation for the second, devoted to segments; now the
latter also depends on the introduction of the Axiom of Archimedes in order
to proceed with the necessary bounds. The third level, on the parabola, rests
on its two predecessors, but also on the propositions from Apollonius’s
Conics, and on Proposition X.1 from Euclid’s Elements, or rather on the
properties therein recounted: those of the parabola as a conic section and of
the method of approximation.

One already glimpses at least the shadow of the semantic structure that
superimposes itself on this syntactic structure. It will appear clearly if one
reads the graph another way. Here, it is split into two levels, where one
concerns equalities and the other inequalities. In the first, Ibn Qurra
establishes the propositions that bear upon equalities between sequences of
integers in order to pass to equalities between ratios of sequences of integers,
as well as ratios of sequences of segments, and to take us directly back to
Proposition 18. Thanks to the Axiom of Archimedes, he turns the preceding

1 R. Rashed, ‘La mathématisation des doctrines informes dans la science sociale’, in
G. Canguilhem (ed.), La mathématisation des doctrines informes, Paris, 1972,
pp. 73–105.
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equalities between ratios into inequalities, as one notes in Proposition 15, in
order to return directly to Proposition 20. Now these are precisely the
Propositions – 18 and 20 – that, with Proposition 19 introduced ad hoc,
allow the final proof of the theorem. The structure of the significations
brings out the syntactic structure; the one always assures the realization, but
also the scope, of the other: the arithmetical propositions are there in order
to prepare the partitions of the diameter of the portion of the parabola, just
as the inequalities on the sequences of segments prepare for the introduction
of the properties of the upper bound; which is to say that the polygons
created in the wake of these partitions have for an upper bound the area of
the portion of the parabola.

This description might seem somewhat less succinct; the given analysis
of the propositions from this book will finish the clarification. We must,
however, begin by recalling the explicit definitions, denoted D, along with
the propositions used in the course of the proof, and which have been
considered as axioms – here denoted A – and lemmas – here denoted L –
proven by contradiction.

D1 consecutive integers
D2 consecutive odd numbers
D3 consecutive even numbers
D4 consecutive squares

A0 The difference between two consecutive integers is one.
A1 The difference between two consecutive even numbers is two.
A2 The difference between two consecutive odd numbers is two.
A3 Between two consecutive even numbers is an odd number.
A4 The product of an integer and two is an even number.
A5 Every odd number increased by one gives an even number.

L1 Two consecutive squares are the squares of two consecutive
integers (lemma proven in the first proposition).

L6 Two consecutive odd squares are the squares of two
consecutive odd numbers (lemma proven in Proposition 6).
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2.2.2. Mathematical commentary

2.2.2.1. Arithmetical propositions

Proposition 1.
∀  n ∈ N*, n2 – (n – 1)2 = 2n – 1.

Thæbit proved this proposition with the help of Lemma 1: Two integer
squares a and b, with a > b, are consecutive if and only if they are the
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squares of two consecutive integers. To first establish the lemma, it is
necessary and sufficient to show that √a – √b = 1.

Suppose that √a – √b ≠ 1. It follows that √a – √b > 1, for √a and √b
are two integers (the definition used by Thæbit: the difference between two
consecutive integers is 1). Let

√a – √b = 1 + c,     with c an integer.

Hence
√b < √b + 1 < √a

and
b < (√b + 1)2 < a,

which is absurd, since b and a are two consecutive integer squares.
The proof of the proposition is then immediate. By the lemma, we get

a = 1 + b + 2√b.

Hence
a – b = 2√b + 1;

but since √b is an integer, 2√b is even, from which the result follows.

Proposition 2.
∀  n ∈ N*, (n + 1)2 – n2 > n2 – (n – 1)2

  (n + 1)2 – n2 = n2 – (n – 1)2 + 2.

The proof follows from Proposition 1.

Proposition 3. — Let (un)n≥1 be a sequence of consecutive squares such
that u1 = 1 and (vn)n≥1 a sequence of consecutive odd numbers such that
v1 = 3. Then

∀  n ∈ N*,  (un+1 – un) = vn.

Unlike with the first proposition, Thæbit wanted to show not only that
the difference between two consecutive integer squares is an odd number,
but further that the odd numbers so obtained for the pairs of consecutive
squares were consecutive. The proof was done by an archaic induction:

The proposition is true for n = 1, that is,

u2 – u1 = v1 = 3.

Suppose that the proposition is true up to p:
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up – up-1 = vp-1.

Then by Proposition 2, we have

up+1 – up = up – up-1 + 2,

and thus
up+1 – up = vp-1 + 2 = vp

by the ‘implicit’ definition of consecutive odd numbers.

Proposition 3′′′′. — Let (un)n≥1 be a sequence of integers such that u1 = 1
and (vn)n≥1 the sequence of consecutive odd integers such that v1 = 3. If
un+1 – un = vn, then (un)n≥1 is the sequence of consecutive squares such that
u1 = 1.

This is the converse of the preceding proposition and the proof can be
done with the help of the same ideas as in the previous proof:

u2 – u1 = u2 – 1 = v1 = 3.
Hence

u2 = v1 + 1 = 22.

Suppose that the proposition holds for n; in other words,

un = n2;
so

un+1 – un = vn = 2n + 1.

Thus
un+1 = un + (2n + 1) = n2 + 2n + 1 = (n + 1)2.

Proposition 4. — Let (uk)1≤k≤n be a sequence of consecutive odd numbers
such that u1 = 1. Then

uk
k=1

n

∑  =  
un +  1

2






2

.

( ) .2 1
2 1 1

2
1

2
2

0

k
n

n
k
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 (  +  )+ ( )





=





=
∑

The proof is by finite descent.



136 CHAPTER II

Let the sequence (vk)1≤k≤n be such that vk = uk + 1
2

 for (1 ≤ k ≤ n). We

have
uk+1 – uk = 2 for 1 ≤ k ≤ n – 1,

and hence
1
2  (uk+1 + 1) – 1

2  (uk + 1) = vk+1 – vk = 1  for 1 ≤ k ≤ n – 1.

Thus (vk)1≤k≤n is a sequence of consecutive integers starting at 1. By Lemma

1, vk
2( )

1≤k≤n
is a sequence of consecutive squares starting at 1; and we obtain

by Proposition 3
w v vk k k =   –  +1

2 2  for 1 ≤ k ≤ n – 1,

a sequence of consecutive odd numbers starting at 3, i.e. the sequence (uk)
for 2 ≤ k ≤ n. Hence

  =      –  
=

-

u w v vk
k

n

k
k

n

n
=
∑ ∑ =

2 1

1
2

1
2,

and hence

 uk
k=1

n
∑  =   vn

2

as v1 = u1.

The schema for the finite descent used by Thæbit is the following:

1. w1 =  v2
2 −  v1

2   (Proposition 3);

2. suppose that   wk
k=1

n-1
∑ = vn

2 −  v1
2,

3. so  
 

  wk
k=1

n
∑ = vn

2 −  v1
2( ) +  vn+1

2  −  vn
2( ),

by Proposition 3. Hence

  wk
k=1

n
∑ =  vn+1

2  −  v1
2 .

Proposition 5. — Let (vk)1≤k≤n be the sequence of consecutive even
numbers starting at 2 and (uk)1≤k≤n, the sequence of consecutive odd
numbers starting at 1. Then

  
 vk

2

k=1

n
∑  =   uk

2

k=1

n
∑  +  

vn
2

2
 +  n .
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The result follows immediately from Proposition 4.

Proposition 6. — Let 
  
vk

2( )
1≤k≤n

 be the sequence of consecutive squares

starting at 1 and 
  
uk

2( )
1≤k≤n

 the sequence of consecutive odd squares starting

at 1. Then

  
2  vk

2
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Thæbit first proves by reductio ad absurdum Lemma 6, stated as:
The consecutive odd squares starting at 1 are the squares of

consecutive odd numbers starting at 1.

Let us come to the proof of the proposition. By Lemma 1, (vk)1≤k≤n is
the sequence of consecutive integers such that v1 = 1. Let

wk = 2 vk,    1 ≤ k ≤ n.

Then (wk)1≤k≤n is the sequence of consecutive even numbers with w1 = 2;
hence

 
 wk

2

k=1

n
∑  =  4  vk

2

k=1

n
∑ .

By Lemma 6, (uk)1≤k≤n is the sequence of consecutive odd numbers starting
at 1. By Proposition 5, we have

  
 wk

2

k=1

n
∑  =   uk

2

k=1

n
∑  +  

wn
2

2
 +  n;
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Proposition 7. — Let (uk)1≤k≤n be a sequence of consecutive odd numbers
starting at 1; we thus have
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 uk
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n
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We get
sk – sk-1 = uk for 2 ≤ k ≤ n;

therefore (sk – sk-1) is the sequence of consecutive odd numbers starting at 3.

By Proposition 3′, the sequence (sk)1≤k≤n is the sequence of consecutive
squares starting at 1, and by Proposition 6, we have

2  sk
k=1

n
∑  =  

1
2

  uk
2

k=1

n
∑  +  sn +  

n

2
;

hence

sn +  2  sk
k =1

n-1

∑  =  
1
2

  uk
2

k =1

n

∑  +  
n

2
.

Proposition 8. — Let (uk)1≤k≤n be the sequence of consecutive odd numbers
starting at 1; we thus have
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n
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Thæbit ibn Qurra proves this proposition by incomplete induction. We
follow this proof step by step.

Let (uk)1≤k≤n be the sequence of the n prime consecutive odd numbers
starting at 1; the sequence (uk – 1) for 2 ≤ k ≤ n is the sequence of the
(n – 1) prime consecutive even numbers starting at 2 and the sequence
(uk – 1 – 2) for 3 ≤ k ≤ n is the sequence of the (n – 2) prime consecutive
even numbers starting at 2. Continuing in this manner, we have

uk – 1 – 2(k – 2), … , un – 1 – 2(k – 2),

the sequence of the (n – k + 1) prime consecutive even numbers starting at
2; and ultimately
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un – 1 – 2(n – 2) = 2.

Hence

(1)   un = 2n – 1.

Moreover,

1 · u1 + … + 1 · up + … + 1 · un-1 + 1 · un = 
 
1 .   uk

k=1

n
∑ ,

2 · u1 + … + 2 · up + … + 2 · un-1 = 2 .   uk
k=1

n−1
∑ ,

…

2 · u1 + … + 2 · up = 2 .   uk
k=1

p
∑ ,

…
2 · u1 = 2 · u1.

By summing each column, we obtain

[1 + 2(n – 1)] u1 + … + [1 + 2(n – p)] up + … + 1 · un  

= 1 .   uk
k=1

n
∑  +  2 .  

p = 1

n-1
∑   uk

k=1

p
∑ .

Hence by (1) and Proposition 7

  
 uk

k=1

n
∑  .  un-k+1 =  

1
2

  uk
2

k=1

n
∑  +  

n

2
.

Proposition 9. — Let (uk)1≤k≤n be the sequence of the n prime consecutive
odd numbers starting at 1 and (vk)1≤k≤n the sequence of the n prime
consecutive even numbers starting at 2. Then

wk = vn – uk  for 1 ≤ k ≤ n

is the decreasing sequence of the n prime consecutive odd numbers starting
at w1 = vn – 1 = un  and terminating at 1.

Thæbit ibn Qurra proves this proposition by finite descent. We have
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vk – uk = 1 for 1 ≤ k ≤ n.

Moreover,
un + wn = vn

and
un-1 + wn-1 = vn ;

hence
un – un-1 = wn-1 – wn = 2.

Likewise, we may show, for each p,  2 ≤ p ≤ n – 1, that

wn-p-1 – wn-p = 2.

The sequence (wk)1≤k≤n is thus the decreasing sequence of the n prime
consecutive odd numbers starting at w1 = vn – 1 = un and terminating at 1.

Proposition 10. — Let (uk)1≤k≤n be the sequence of the n prime consecutive
odd numbers starting at 1 and (vk)1≤k≤n the sequence of the n prime
consecutive even numbers starting at 2; then
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Let

(1) wk = vn – uk for 1 ≤ k ≤ n.

By Proposition 9, we have

(2) wk = un-k+1 for 1 ≤ k ≤ n.

So by Proposition 8 and (2), we have

 uk
k=1

n
∑  wk  =  

1
2

  uk
2

k=1

n
∑  +  

n

2
;

hence
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k=1

n
∑  wk  +   wk
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2
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n
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2
,
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and hence

  
 uk  +  wk( )

k=1

n
∑  wk   =  

3
2

  uk
2
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n
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n

2
.

Hence by (1)
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The result is obtained on multiplying by 2
3

.

Note that the result can be rewritten as
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Proposition 11. — Let (vk)0≤k≤n  be the sequence of the n prime consecutive
even numbers with v0 = 0 and v1 = 2, and let (wk)1≤k≤n  be the sequence
defined by

wk =
v vk k− +1

2
 for 1 ≤ k ≤ n.

Then (wk)1≤k≤n  is the sequence of the n prime consecutive odd numbers
starting at 1.

We have
 w1 = 1  and  vk – vk-1 = 2    for 1 ≤ k ≤ n;

thus

vk  – v vk k− +1

2
 = 1   for 1 ≤ k ≤ n,

and hence
vk – wk = 1     for 1 ≤ k ≤ n.
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As (vk)1≤k≤n  is the sequence of consecutive even numbers starting at 2,
(wk)1≤k≤n  is the sequence of consecutive odd numbers starting at 1.

2.2.2.2. Sequence of segments and bounding

Proposition 12. — Let (uk)1≤k≤n  be the sequence of n consecutive odd
numbers starting at 1 and (ak)1≤k≤n  an increasing sequence of n segments
satisfying

a
a

u
u

k 1

k

k 1

k

− −= for  2 ≤ k ≤ n.

Let (vk)1≤k≤n  be the sequence of n consecutive even numbers starting at
2 and (bk)1≤k≤n   an increasing sequence of n segments satisfying

b
b

v
v

k 1

k

k 1

k

− −= for 2 ≤ k ≤ n.

If  a1 = b1

2
,  then  

  
 ak
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n
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2
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n
3

 a1 .  
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2
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 bn .   ak
k=1

n
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Let

ck = b bk k− +1

2
,     wk = v vk k− +1

2
 for 1 ≤ k ≤ n

and
v0 = b0 = 0.

We have
a

b
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v
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and for 2 ≤ k ≤ n

(1) a
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u
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− −=1 1 ,
b
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k
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k
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Hence

(2)

  

ak
ck

 =  
ak

1
2

bk−1 +  bk( )
 =  

uk
1
2

vk−1 +  vk( )
 =  

uk
wk

  for 1 ≤ k ≤ n.

But (wk) is the sequence of the n prime consecutive odd numbers starting at
1, by Proposition 11; thus
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uk = wk for  1 ≤ k ≤ n.

Hence
ak = ck for  1 ≤ k ≤ n,

(2′)  ak
2 =  akck for  1 ≤ k ≤ n.

Likewise,
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2
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2  =  
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2
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un .  vn
 =  

an
2

an .  bn
;

hence

(5)
 

ak
2

k=1

n
∑

an .  bn
 =  

uk
2

k=1

n
∑

un .  vn
.

But

 (6)

 

un .  vn

uk
k=1

n
∑







 vn

 =  
an . bn

ak
k=1

n
∑







 bn

.

Thus, by (5) and (6), we get

 (7)

 

 uk
2

k=1

n
∑

 uk
k=1

n
∑







 vn

  =   
 ak

2

k=1

n
∑

 ak
k=1

n
∑







 bn

.

But by (3)
1

2

1

1
2

2

1

u

a

ak
k

n

k
k

n

= =
∑ ∑

 =  ;



144 CHAPTER II

hence by (7) and the property of equal ratios

 uk
2 +  

n

3k=1

n
∑











 uk
k=1

n
∑







 vn

 =  

 ak
2 +  

n

3
 a1

2

k=1

n
∑







 ak
k=1

n
∑







 bn

.

Thus by (2′)

  

 uk
2 +  

n

3k=1

n
∑











 uk
k=1

n
∑







 vn

 =  

ak  .  
bk -1 +  bk

2
+  

n

3
 .  a1 .  

b1

2k=1

n
∑







 ak
k=1

n
∑







 bn

.

But by Proposition 10, we have

  
uk

2 +  
n

3k=1

n
∑







 =  
2
3

 uk
k=1

n
∑







 vn;

hence the result.

Comment. — Proposition 12 reduces to Proposition 10 by the choice of a
unit segment a1. In fact, if we let

ak = uk · a1

and with the hypothesis  a1 =
b1

2
, which otherwise is not fundamental, as we

will see in the next proposition, we have

 ak
k=1

n
∑  

bk -1 +  bk

2
 +  

n

3
 a1 .  

b1

2
 =  uka1

k=1

n
∑  .  

vka1 +  vk -1a1

2
 +  

n

3
 a1

2

    =  a1
2 uk

2 +  
n

3k=1

n
∑







    =  a1
2 .  

2
3

 uk
k=1

n
∑







 vn  (by Proposition 10)

    =  
2
3

 ak
k=1

n
∑







 bn.

Proposition 13. — Let (uk)1≤k≤n be the sequence of n consecutive odd
numbers starting at 1, (ak)1≤k≤n  an increasing sequence of n segments
satisfying
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a
a

u
u

k 1

k

k 1

k

− −= for 2 ≤ k ≤ n,

(vk)1≤k≤n the sequence of n consecutive even numbers starting at 2 and
(bk)1≤k≤n an increasing sequence of n segments satisfying

b
b

v
v

k 1

k

k 1

k

− −=  for 2 ≤ k ≤ n.

If  a1 ≠ b
2

1 ,  then

 a   
b  +  b

2
 +  

n
3

 a   
b
2

 =  
2
3

 b    ak
k=1

n
k-1 k

1
1

n k
k=1

n

∑ ∑⋅ ⋅ ⋅ .

Let the sequence (ck)1≤k≤n  be defined as follows:

c1 = 2a1  and  c

c

b

b
k

k

k

k

− −=1 1  for 2 ≤ k ≤ n;

we obtain by permutation

(1) b

c

b

c
k

k

k

k

−

−

=1

1

for 2 ≤ k ≤ n.

Hence

(2)

  

bk−1
2

ck−1
2

  =   

bk
2
ck
2

for 2 ≤ k ≤ n.

Moreover,

(3)

  

ak  
bk -1 +  bk

2






ak  
ck -1 +  ck

2






 =  

bk -1 +  bk
2

ck -1 +  ck
2

for 1 ≤ k ≤ n,

with b0 = c0 = 0.

But by (2) and (3), we have
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ak 
k=1

n
∑

bk -1 +  bk

2






ak 
ck−1 +  ck

2




  

k=1

n
∑

  =   
 

k=1

n
∑

bk -1 +  bk

2

 
ck−1 +  ck

2
 

k=1

n
∑

 =  

bk

2
ck

2

 =  
bn

cn
    for 1 ≤ k ≤ n,

  =   

bn  ak
k=1

n
∑







cn  ak
k=1

n
∑







.

Hence

(4) 

  

 ak
k=1

n
∑  

bk -1 +  bk( )
2

bn  ak
k=1

n
∑







 =  
 ak

k=1

n
∑  

ck -1 +  ck( )
2

cn  ak
k=1

n
∑







,

with  1 ≤ k ≤ n  and b0 = c0 = 0.
Moreover, we have

a
b

b a

a

a

b

b
n k

k

n

k
k

n
n

1
1

1

1

1

1

2 2 

=

 

=

 

   
  =   

 
  

⋅

⋅
⋅

∑ ∑
.

But by (1)
b

b

c

cn n

1 1= .

Hence

a
b

b a

a

a

c

c
n k

k

n

k
k

n
n

1
1

1

1

1

1

2 2 

=

 

=

 

   
  =   

 
  

⋅

⋅
⋅

∑ ∑
,

and hence

(5)

 

n

3
 .  a1 .  

b1
2

bn .   ak
k=1

n
∑

  =   

n

3
 .  a1 .  

c1
2

cn .   ak
k=1

n
∑

 .

From (4) and (5), we deduce
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(6) 

  

n

3
 .  a1 .  

b1
2

bn .   ak
k=1

n
∑

  +  
 ak  

bk -1 +  bk( )
2k=1

n
∑

bn .   ak
k=1

n
∑

=   

n

3
 .  a1 .  

c1
2

cn .   ak
k=1

n
∑

 +  
 ak  

ck -1 +  ck( )
2k=1

n
∑

cn .   ak
k=1

n
∑

,

with 1 ≤ k ≤ n  and b0 = c0 = 0.

Now, a1 = c1

2
; so, by Proposition 12, the second member of (6) is equal

to 2
3

; therefore the first member of (6) is equal to 2
3

; hence the result.

Comments.

1) In Proposition 12, the ratio between a1 and b1 is equal to 1
2

, whereas

in Proposition 13 the ratio is unspecified.

a1 ≠ b1

2
 means that the two sequences (ak) and (bk) are not given with

respect to the same unit of length, but each has a different unit length.
Thæbit ibn Qurra’s idea is to introduce a sequence (ck) that on the one hand
is given as a function of the same unit length as the sequence (ak) and on the
other hand has the ratios between its terms the same as the ratios between
terms of the sequence (bk). It is in this manner that he avoids the difficulty

arising with the hypothesis a1 ≠ b1

2
.

Moreover, had one reduced the given sequences to their respective units
of measure, this would have allowed one to avoid Proposition 12 and to
reduce Propositions 10 and 13 to a single proposition, for in this case one
would only have invoked the lone numerical sequences. Otherwise, in
expressing these sequences with respect to their respective units of measure,
one relies only on the relations between the even and odd sequences
underlying the proof of Proposition 10.

2) Had Ibn Qurra explicitly expressed the choice of unit length, he
would have been able to directly deduce Proposition 13 from Propositions

10 and 11. In fact, since ak = uka1,  bk = vk

2
 b1,

  
 ak

k=1

n
∑  

bk -1 +  bk

2
 +  

n

3
 a1 .  

b1

2
 =  uka1

k=1

n
∑  .  

1

2
 

vk -1
2

 .  b1 +  
vk

2
 .  b1






 +  

n

3
 a1  .  

b1

2

       
 
=  a1 .  

b1
2

  uk  .  
vk -1 +  vk

2
 +  

n

3k=1

n
∑













148 CHAPTER II

 
=  a1 .  

b1
2

  uk
2   +  

n

3k=1

n
∑









 by Proposition 11

 
=  a1 .  

b1
2

 
2
3

 vn .   uk
k=1

n
∑









 by Proposition 10

      =  
  

2
3

 bn .   ak
k=1

n
∑ .

Finally, Proposition 12 appears as a technical lemma in order to obtain
the general result of Proposition 13.

Proposition 14. — Let a and b be two segments such that a
b

 is known;

then there exists n ∈ N* such that the sequence (uk)1≤k≤n of n consecutive
odd numbers starting at 1 and the sequence (vk)1≤k≤n of n consecutive even
numbers starting at 2 satisfy

  

n

vn .   uk
k=1

n
∑

  <   
a
b

.

By the axiom of Archimedes, there exists n ∈ N such that

    n a > b with n ≥ 1.

So let (vk)1≤k≤n be the sequence of consecutive even numbers starting with 2;
we thus have

vn = 2 n.

Let
  uk = vk – 1 for 1 ≤ k ≤ n.

The sequence (uk)1≤k≤n is the sequence of n consecutive odd numbers starting
at 1.

By Proposition 4, we get

(1)
 

vn
2







2
 =   uk

k=1

n
∑ ;

thus
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vn
2

vn
2







2   =   

vn
2

 uk
k=1

n
∑

.

But as
vn

2
 .   uk

k=1

n
∑   ≥   uk

k=1

n
∑ ,

since vn = 2n by hypothesis and n ≥ 1, we have

 

vn
2

vn
2

 .   uk
k=1

n
∑

  ≤   

vn
2

 uk
k=1

n
∑

.

But by (1), we have
vn
2

 uk
k=1

n
∑

  =   
1
vn
2

;

and moreover

 1
vn
2

 =  
1
n

;

hence

  

vn
2

vn
2    

.   uk
k=1

n
∑

  ≤   
1
n

.

But
v

v u

n

n k
k

n
2

1
    

 
⋅

=
∑

 < 

v

v
u

n

n
k

k

n
2

2 1   
  

 
⋅

=
∑

 and  1
n

a

b
< ;

hence

 

n

vn .   uk
k=1

n
∑

  <   
a

b
.
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Proposition 15. — Let AB, H be two given segments,2 and a and b two

segments such that a
b

 is given. For any given n,

1) there exists a partition (Ak)0≤k≤n with A0 = A, An = B and such that

A A
A A

u
u

k k 1

k 1 k 2

k 1

k 2

+

+ +

+

+

=  for 0 ≤ k ≤ n – 2,

with (uk)1≤k≤n the sequence of consecutive odd numbers starting at 1;

2) there exists a sequence of segments (Hj)1≤j≤n  with Hn = H and such
that

H

H

v

v
j

j 1

j

j 1+ +

=  for 1 ≤ j ≤ n – 1,

with (vj)1≤j≤n the sequence of consecutive even numbers starting at 2.

If n satisfies the condition

n

vn .   uk
k=1

n
∑

  <   
a
b

,

then

  

n A0 A1 . 
H1
2

AB .  H
  <   

a
b

.

By Proposition 14, we know that there exists n ∈ N* satisfying the
condition

(1)

  

n

vn   up
p=1

n
∑













  <   
a

b
.

Let (Ak)0≤k≤n be a sequence of points from the segment AB (with A0 = A,
An = B) such that

(2)

 

Ak Ak+1
Ak  An

  =   
uk+1

 up
p=k+1

n
∑

for 0 ≤ k ≤ n – 2.

Modifying Thæbit ibn Qurra’s language, we may write

2 In the MSS, the segments are denoted CD and E.
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 (3) A A

u

A A

u

A A

u

A A

u
k k

k

n n

n

0 1

1

1 2

2

1

1

1= = … = = … =+

+

− .

We have thus constructed a partition of AB following the ratios of
consecutive odd numbers.

Let (Hj)1≤j≤n be a sequence of segments (with Hn = H) such that

(4) H

v

H

v

H

v

H

v
k

k

n

n

1

1

2

2

= = = ;

this is possible if we take H1 = H

n
n . By (3), we deduce

 (5) A A

u

A B

u

A A

u

AB

u

n

n

k k
k

n

p
p

n

p
p

n
0 1

1

1
1

0

1

1 1

 
 =  

  

 
 =  

 

-
+

=

-

= =

=
∑

∑ ∑
;

hence

 (6)

  

u1

 up
p=1

n
∑

  =   
A A1
AB

.

But by (5), we have

 (7)  

  

 up
p=1

n
∑













2

un  up
p=1

n
∑

  =   
AB2

AB .  An-1 B
.

Hence [squaring both sides of (6) and multiplying the respective sides of (6)
and (7)]

 (8)

  

u1
2 .  n

un  up
p=1

n
∑

  =   
A A1( )2  .  n

AB .  An-1 B
.

1st case. — Suppose

(9) AA

H

u

v
1

1

1

1

= .

Then
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(10)
  

u1 .  
v1
2

u1
2   =   

A A1 .  
H1
2

A A1
2

and

(11) n

un   up
p=1

n
∑













  =   
n A A1 .  

H1
2

AB .  An-1 B
.

But
u

u

A B

AA
n n

1

1

1

= − by (3),

u

v

AA

H
1

1

1

1

= by hypothesis,

v

v

H

Hn

1 1= by (4).

Whence, multiplying the respective sides of the last three equalities, we have

(12) u

v

A B

H
n

n

n= −1 .

And multiplying the respective sides of (11) and (12), we obtain

n

vn   up
p=1

n
∑













  =   
n .  A A1 .  

H1
2

AB .  H
.

Thus by (1), we have

  

n .  A A1 .  
H1
2

AB .  H
  <   

a

b
,

which completes the proof for this case.

2nd case. — Suppose   AA

H

u

v
1

1

1

1

≠ .

Let G1, G2, …, Gn  be n segments satisfying
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(13) AA

G

u

v
1

1

1

1

=

and

(14) G

v

G

v

G

v
k

k

n

n

1

1

= = = … =... .

By the 1st case, we have

 (15)
 

n .  A A1 .  
G1
2

AB .  Gn
  <   

a

b
.

Meanwhile,

A A
G

A A
H

G

H

  

   
  =   

 1
1

1
1

1

1

2

2

2

2

⋅

⋅
.

But by (4) and (14), we have

G

H

G

H
n1

1

= ;

hence

  

A A1 .  
G1
2

A A1 .  
H1
2

  =   
Gn
H

.

But
G

H

AB G

AB H
n n= ⋅

⋅
.

Hence

A A
G

A A
H

AB G

AB H
n

  

   
  =   

  
  

 1
1

1
1

2

2

⋅

⋅

⋅
⋅

;

hence

A A
G

AB G

A A
H

AB Hn

  

  
  =   

   

  

 1
1

1
1

2 2
⋅

⋅

⋅

⋅
;

hence
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n A A
G

AB G

n A A
H

AB Hn

    

  
  =   

     

  

 ⋅ ⋅

⋅

⋅ ⋅

⋅

1
1

1
1

2 2 .

But by (15), we have

n A A
G

AB G

a

bn

    

  
  <   

 ⋅ ⋅

⋅

1
1

2 .

Hence finally

  

n .  A A1 .  
H1
2

AB .  H
  <   

a

b
.

Comment. — The proof relies on the partition of a given segment into a
sequence of segments proportional to the numbers of a given sequence, as
well as on the generalization of Proposition 14 (namely, the one that
introduces the approximation) with regard to a sequence of segments, and
consequently the generalization of the bounding of a sequence of ratios of
segments.

In order to partition the segment AB into a sequence of n segments
proportional to the numbers uk of a sequence of n numbers, Thæbit ibn
Qurra proceeds once again by finite descent: we construct A1 such that

 AA1

A1B
 =  

u1

 uk
k=2

n
∑

and we are thus lead to partition A1B into a sequence of n – 1 segments
proportional to the (uk)2≤k≤n.

2.2.2.3. Calculation of the area of a portion of a parabola

Proposition 16. — Let ABC be a portion of a parabola of diameter BD.
Let  E1 G1 F1, …, En-1 Gn-1 Fn-1 be the ordinates of the diameter BD
intersecting it at G1, G2, …, Gn-1.

If BG1, G1 G2, …, Gn-1 D are such that

(1) G G
G G

2k 1
2k 3

k k 1

k 1 k 2

+

+ +

= +
+

for 0 ≤ k ≤ n – 2,

with B = G0, D = Gn, then the ordinates  E1 F1, … , En-1 Fn-1, AC are such
that
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(2) E F
E F

2k
2k 2

k k

k 1 k 1+ +

=
+

for 1 ≤ k ≤ n – 1,

with En = A, Fn = C.

A

B

C

D

E
F

G

E

E
F

F

G

G

F

G =

=

1

k

k+1

n

1
1

k

k

k+1

k+1

n

Fig. 2.2.1

Let

s1 = 1, … , sk =  (  –  )
=

2 1
1

p
p

k

∑ ,

so
2k – 1  =  sk  –  sk-1 for 2 ≤ k ≤ n.

The sequence (sk – sk-1)2≤k≤n is thus a sequence of consecutive odd numbers

starting at 3 and, by proposition 3′, (sk)1≤k≤n is a sequence of consecutive
squares starting at 1.

Moreover, we have by hypothesis (1)

 1
3

1

1 2

= BG

G G
.

Hence
1

1 3
1

2+
= BG

BG
;

so
s

s

BG

BG
1

2

1

2

= .

But by Proposition 20 of book I of Apollonius’s Conics

B G1
B G2

  =   
G1 F1

2

G2 F2
2 ,

hence
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s1
s2

  =   
G1 F1

2

G2 F2
2 .

We likewise show that

 

sk−1
sk

  =   
Gk−1 Fk−1

2

Gk  Fk
2     for 3 ≤ k ≤ n;

hence
G F

s

G F

s

G F

s

G F

s

G F

s

G F

s
k k

k

k k

k

n n

n

n n

n

1 1
2

1

2 2
2

2

1 1
2

1

2
1 1

2

1

2 
 =  

 
 =  =  

 
 =  

 
 =  - -

-

 - -

-

 … = … = .

But since s1, … sn are consecutive squares starting at 1, then s1

1

2 ,  … sn

1

2  are
consecutive integers starting at 1. Thus

G1F1, … ,Gn Fn

are proportional to successive integers starting at 1. Since

Ek Fk = 2 Gk Fk for 1 ≤ k ≤ n,

then E1 F1, … , En Fn are proportional to the consecutive even numbers
starting at 2.

Comment. — Let us note that Thæbit takes as the ordinate the entire chord,
that is to say double of the classical ordinate. Ultimately, if the abscissae
studied are proportional to consecutive squares, then the ordinates to which
they are associated are proportional to consecutive integers, and for Thæbit
their doubles are proportional to the consecutive even numbers. Thus to a
subdivision of the diameter BD into n segments proportional to consecutive
odd numbers there corresponds a subdivision of DA into n equal parts, and
vice-versa. Thæbit will use the converse in proposition 18.

Proposition 17. — Let P be a portion of a parabola of diameter BD. If
BG1, G1 G2, …, Gn-1 D  is a subdivision of BD such that

(1) G G
G G

2k 1
2k 3

k k 1

k 1 k 2

+

+ +

= +
+

for 0 ≤ k ≤ n – 2

(with B = G0, D = Gn), and if E1 G1 F1, …, En-1 Gn-1 Fn-1, ADC are the
corresponding ordinates and BR the perpendicular dropped from B onto
AC and F its point of intersection with E1 F1, then if we designate by Sn the
area of the polygon AEn-1 … E1BF1 … Fn-1C,  we have
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2
3

 AC · BR – Sn   =  n

3
 BF · G1 F1.

A

B

C
D

E

E

EF

F

F
G

G

G
1

1
1

kk
k

k+1 k+1k+1

 

G

F

F

E

E

E

F

k

kk

k+1

G

k+1 k+1

1
11

G

F

A

B

C D R

Hk

Fig. 2.2.2       Fig. 2.2.3

1st case. — The diameter BD is the axis of symmetry of the parabola
(BD = BR; G1 = F).

By (1) and Proposition 16, we have

E F

k

E F

k
k k k k

2 2 2
1 1=
+

+ + for 1 ≤ k ≤ n – 1

(with En = A, Fn = C).

By Proposition 13, we have

(2)     
  +   

 +      
 

 =     +
=

-
+ +G G

E F E F n
G G

E F
AC BDk k

k

n
k k k k

1
0

1
1 1

0 1
1 1

2 3 2
2
3

∑ ⋅ ⋅ ⋅

(with E0 = F0 = B). But

G G
E F E F

k k
k k k k   
  +   

+
+ +

1
1 1

2
⋅

is the area of the trapezoid with vertices Ek+1 Ek Fk Fk+1, for which the
height is Gk Gk+1; hence

Sn  + 
n

3
 G0 G1 · 

E F1 1

2
  =  

2
3

  AC · BD;

hence the result, since G0 G1 = BF;  G1 F1 = E F1 1

2
.
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2nd case. — The diameter BD is not the axis of symmetry of the
parabola; we have BD ≠ BR.

From the point Gk we drop the perpendicular Gk Hk onto the ordinate
Ek+1 Fk+1   (0 ≤ k ≤ n – 1; H0 = F).

The triangles Gk Gk+1 Hk (0 ≤ k ≤ n – 1),  and BDR are similar. Hence

(3) G H

G G

G H

G G

BR

BD
k k

k k

0 0

0 1 1

= =
+

(0 ≤ k ≤ n – 1),

and hence

(4)

  

  Gk  Hk  .  
1
2

 Ek  Fk  +  Ek+1 Fk+1( )
k=0

n−1
∑

  Gk  Gk+1 
k=0

n−1
∑ .  

1
2

 Ek  Fk  +  Ek+1 Fk+1( ) 
 = BR AC

BD AC

⋅
⋅

.

Yet

(5) BR AC

BD AC

n
G H

E F

n
G G

E F
  
  

 =  
   

    
 

⋅
⋅

⋅

⋅
3 2

3 2

0 0
1 1

0 1
1 1

.

We may observe that the numerator of the left side of (4) is the area Sn of
the polygon AEn-1 … E1BF1 … Fn-1C.

From (4) and (5), we obtain

BR AC

BD AC

S
n

G H
E F

G G E F E F
n

G G
E F

n

k k
k

n

k k k k

  
  

 =  
 +     

    +   +     
 

+

⋅
⋅

⋅

⋅ ( ) ⋅+
=

−

+∑
3 2

1
2 3 2

0 0
1 1

1
0

1

1 1 0 1
1 1

.

But by Proposition 13, the denominator of the right side is equal to
2
3

BD · AC; hence

 
 +     

   
 =  

  
  

 
S

n
G H

E F

BD AC

BR AC

BD AC

n 3 2
2
3

0 0
1 1⋅

⋅

⋅
⋅

.

Hence the result follows.

Comments.
1) To explain the construction of a polygon of 2n + 1 vertices inscribed

in a portion of a parabola, for whatever value of n, Thæbit ibn Qurra uses
Proposition 16 in order to apply Proposition 13 in the proof.

2) Thæbit ibn Qurra gives the expression for the difference between two
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thirds of the area of the parallelogram associated with the parabola and the
area Sn of the inscribed polygon.

3) The second case is treated directly, without using the first, which is
nothing but a particular case with BR = BD, whence Hk = Gk+1.

4) Let us note that the product BR · AC is the area S of the
parallelogram of base AC associated with the portion of the parabola.  It is
defined by the tangent at B and the parallels of the diameter described by A
and C. The product BF · F1G1 is the area of the triangle BE1F1.

Proposition 18. — Let ABC be a portion of a parabola, BD its diameter
and S its area. For all ε > 0, there exists a subdivision  (Gk) of diameter
BD, 0 ≤ k ≤ 2n-1, with G0 = B, G2n-1 = D, satisfying

G G
G G

2k 1
2k 3

k k 1

k 1 k 2

+

+ +

= +
+

such that the area Sn of the polygon Pn associated with that subdivision
satisfies

S – Sn < ε.

B
B

B
B

B
E

E

F

F

A

C

D

1

1
1

1

1

k

k

k

k

k
G

G

B

E

A

′
′

Fig. 2.2.4

Let there be a subdivision of AC into 2n equal parts, by the points Bk

and B′k pairwise symmetric with respect to the midpoint D of AC,

0 ≤ k ≤ 2n-1, B0 = D, B2n-1 = A, B′2n-1 = C; for each of these points we

produce the parallel to the diameter BD, thus determining the 2n + 1
vertices of the polygon Pn, A … Ek…E1BF1…Fk…C;  let Sn be its area. We

want to find n so that S – Sn < ε.
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Construct P1, which is the triangle ABC; let S1 be its area. We have

 S1 >  1
2

 S;

hence

S – S1 <  1
2

 S.

a) If 1
2

 S < ε, then S – S1 < ε, P1 solves the problem.

b) If 1
2

 S > ε, we double the subdivision, and we construct P2 of area

S2. Using the following lemma, if E is the vertex associated with a chord AB

of a parabola, then tr. (AEB) > 1
2

 portion (AEB), we show that

S2 – S1 > 1
2

 (S – S1).

But
S – S2 = (S – S1) – (S2 – S1);

hence

S – S2 < 1
2

 (S – S1) < 1
22   S.

a) If  1
22  S < ε,  P2 solves the problem.

b) If  1
22 S > ε,  we iteratively construct the polygon P3; we thus have

successively

S – S3 < 1
2

 (S – S2) < 1
23 S,

S – S4 < 1
2

 (S – S3) < 1
24  S,

…

S – Sn < 1
2

 (S – Sn-1) < 1
2n  S,

and from Proposition 1 of Book X of Euclid’s Elements, for given ε, there

exists n such that  1
2n  S < ε; hence S – Sn < ε.

The corresponding polygon Pn is the desired polygon.
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It remains to show that the polygon Pn thus determined for given ε
corresponds to a partition of the diameter BD into segments proportional to
consecutive odd numbers starting at one.

On the segment DA the points B1 … Bk … B2n-1 give a partition of DA
into segments DB1 … DBk … DA  proportional to the consecutive integers

from 1 to 2n-1, the segments B1B′1, … BkB′k … AC are then proportional to
consecutive even numbers. The points Ek and Fk having equal ordinates

DBk and DB′k, EkFk is parallel to AC, by II.5 of Apollonius’s Conics, and

intersecting BD at Gk, for 0 ≤ k ≤ 2n-1; we thus obtain on BD the points B,
G1, … Gk …G2n-1. And, by the converse of 16, the segments BG1, G1G2 …
G Gn n2 1 21 1− −−

 are proportional to consecutive odd numbers starting at 1; we
thus have

G G

G G

k

k
k k

k k

+

+ +

= +
+

1

1 2

2 1
2 3

(0 ≤ k ≤ 2n–1 – 2).

Proposition 19. — Let ABC be a portion of the parabola and S the area
of the parallelogram with base AC associated with the parabola. Then for
all ε > 0, there exists a polygon Pn of area Sn, inscribed in the portion of
the parabola and such that

2
3

 S – Sn < ε.

Let ABC be the portion of the parabola of diameter BD and base AC.
Let any ε > 0 be given.

A

B

C
D

E

E

EF

F

F
G

G

G
1

1
1

kk
k

k+1 k+1k+1
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E

E

E
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k
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k+1 k+1

1
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B

C D R

Hk

Fig. 2.2.5 Fig. 2.2.6

By Proposition 15, there exists a partition (Gk)0≤k≤n of BD (G0 = B,
Gn = D) such that

G G

G G

k

k
k k

k k

+

+ +

= +
+

1

1 2

2 1
2 3

 (0 ≤ k ≤ n – 2)
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and a sequence of segments (Hj)  1 ≤ j ≤ n  (Hn = AC) such that

H

H

j

j
j

j +

=
+1

2
2 2

(1 ≤ j ≤ n – 1)

satisfying

(1)
n G G

H

BD AC BD AC

    

  
 <  

  

⋅ ⋅

⋅ ⋅

0 1
1

2 ε .

But by Proposition 16, we can make to correspond to  the  partition
(Gk)0≤k≤n, the sequence of ordinates (EkFk)1≤k≤n   (EnFn = AC) such that

E F

E F

k

k
k k

k k+ +

=
+1 1

2
2 2

 (1 ≤ k ≤ n – 1),

as
Hn = En Fn = AC,

and as, on the other hand, the Hj are unique, then H1 = E1F1 and (1) is
rewritten

(2)
n G G

E F

BD AC BD AC

    

  
 <  

  

⋅ ⋅

⋅ ⋅

0 1
1 1

2 ε .

We thus have

n · G0G1 · 
E F1 1

2
 < ε;

hence
n

3
 · G0G1 · 

E F1 1

2
 < ε.

Let BR be the perpendicular dropped from B onto AC and let F be its
point of intersection with E1F1; we have

BF < G0G1;

hence

 n

3
 BF · E F1 1

2
 < ε.

But by Proposition 17, we have
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2
3

 S – Sn = n

3
 BF · E F1 1

2
;

hence
2
3

 S – Sn < ε.

Comment I.
1) Proposition 15 guarantees:
a) the existence of the partition (Gi)0≤i≤n and the proportionality of the

obtained segments to the consecutive odd numbers starting at 1;
b) the existence and uniqueness of a sequence of segments proportional

to the consecutive even numbers (Hj)1≤j≤n with Hn = BC satisfying

(1) n · G0G1 · 
H1

2
 < ε.

2) Proposition 16 shows that if a) is satisfied, then the terms of the
sequence (EjFj) of the ordinates associated with the partition (Gi) are
proportional to the consecutive even numbers starting at 2; as

En Fn = BC = Hn,

the uniqueness of Hj allows one to rewrite (1) thus:

 n · G0G1 · 
E F1 1

2
 < ε.

3) By a supplementary bounding and by Proposition 17, we obtain the
result.

Comment II. — Proposition 17 shows that 2
3

S is an upper bound of Sn for

all n.

Proposition 19 shows that 2
3

S  is the least upper bound.

In fact, by Proposition 17, for all n,

2
3

 S – Sn = αn (αn > 0),

and by Proposition 19, for all ε  > 0, there exists N such that for n > N,

0 < αn < ε.
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Comment III. — We may observe that Thæbit uses the ε  effortlessly; that

is, starting from an arbitrary fixed ε, he introduces an ε′ = ε
α

 with

α = BD · AC, so α allows the effective use of Proposition 15.

Proposition 20. — The area of the parabola is infinite, but the area of
any of its portions is equal to two thirds the area of the parallelogram
associated with the parabola.

Let S be the area of the portion of the parabola P and S the area of the
parallelogram associated with this portion.

If  2
3

 S ≠ S, there are two cases:

1) S > 2
3

 S.

Let ε > 0 be such that

(1)  S – 2
3

 S = ε.

By Proposition 18, for this ε, there exists N such that for n > N, the polygon
Pn of area Sn satisfies

(2) S – Sn < ε .

By (1) and (2), we have

( 2
3

 S + ε ) – Sn < ε ;

hence
2
3

 S < Sn.

But by Proposition 17, we have

2
3

 S > Sn,

giving a contradiction.

2) S < 2
3

 S.
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Let ε  > 0 be such that

(3)  2
3

 S – S = ε.

By Proposition 19, for this ε, there exists N such that for n > N, the polygon
Pn of area Sn satisfies

(4) 2
3

 S – Sn < ε.

By (3) and (4), we have
(S + ε) – Sn < ε ;

hence
S < Sn.

But Pn is inscribed in P, thus Sn < S. This gives a contradiction. Therefore

2
3

 S = S.

Comment. — This theorem returns to establish the uniqueness of the upper
bound and essentially uses the properties of the upper bound in the proof.

In fact, we want to show that 2
3

 S = S, knowing that

1) S = upper bound (Sn)n≥1 ;

2) 2
3

S = upper bound (Sn)n≥1.

Suppose S ≠ 2
3

S. We have two cases:

a) S > 2
3

S: there thus exists ε > 0 such that S – 2
3

S = ε. But by 1), S is

the least upper bound of Sn ; thus for this ε, there exists Sn such that

Sn > S – ε ;
thus

2
3

 S < Sn,
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which is absurd because by (2), 2
3

S is an upper bound of the Sn.

b) S < 2
3

 S: there thus exists ε > 0 such that 2
3

S – S = ε. But by 2), 2
3

S

is the least upper bound of the Sn ; thus for this ε, there exists Sn such that

Sn > 2
3

S – ε ;

thus
S < Sn,

which is absurd because by 1), S is an upper bound of the Sn.

Naturally, we do not pretend that Thæbit ibn Qurra, any more than his
predecessors or successors up to the eighteenth century, had defined the
concept of the upper bound. But it seems to us that he uses the properties of
the upper bound as a guiding idea in the measurement of convex sets.



2.2.3. Translated text

TTTThhhhææææbbbbiiiitttt ibn Qurra

On the Measurement of the Conic Section Called Parabola



In the Name of God, the Merciful, the Compassionate

THE BOOK OF THÆBIT IBN QURRA AL-ÎARRÆNï

On the Measurement of the Conic Section Called Parabola

Introduction

Successive numbers are such that there is no other number between
them. Successive odd numbers are such that there is no other odd number
between them. Similarly, successive even numbers are such that there is no
other even number between them. Successive square numbers are also such
that there is no other square number between them.

I say, in general, that: Successive <elements> of any species are such
that there is no other element of the same species between them.

Propositions

– 1 – The difference between any two successive square numbers is an
odd number.

Let two successive square numbers be AB and C, and let AD be their
difference.

I say that AD is an odd number.

B

C

D A F H I E

G

K

Fig. II.1.1

Proof: Let the side of AB be the number EF and the side of C be the
number G. From EF, we take away the equal of G, that is FH. I say that
EH is one.

If this is not the case, it is therefore greater than one, as it is the
difference between two <integer> numbers. Let its unity be HI and let the



170 CHAPTER II: THÆBIT IBN QURRA

number K be the square of the number FI. The number FI is greater than
G and less than the number EF. The number K is therefore greater than the
square of G and less than the square of the number EF. The number K is
therefore greater than C and less than the number AB which is a square
number. There is therefore a square number between the successive square
numbers AB and C. This is contradictory.

Consequently, HE is one and the square of the number EF is equal to
the squares obtained from EH and HF, plus twice the product of EH and
HF. The square obtained from FH is C as FH is equal to G. The square of
the number EF is AB and their difference is AD. The result of twice the
product of EH and HF, plus the square obtained from EH, is therefore
equal to the number AD. The result of the product of the number EH and
HF is any number, and the result of twice the product of EH and HF is an
even number. The square obtained from EH is one. If one is added to an
even <number>, then the sum is an odd <number>. The result of twice the
product of EH and HF, plus the square obtained from EH, is an odd
number equal to the number AD. This is what we wanted to prove.

From what we have said, it has also been proved that, if C is one, then
AD is three.

– 2 – In any three successive square numbers, the difference between
the largest and the middle number exceeds the difference between the
middle number and the smallest number by two.

Let the three successive square numbers be AB, CD and E, of which
the largest is AB. Let the amount by which CD exceeds E be the number
CG, and let the amount by which AB exceeds CD be the number AF.

I say that AF exceeds CG by two.

B

CD

AF HI

E

G K

NO

SL

M

Fig. II.1.2

Proof: We let HI be the side of AB, we let KL be the side of CD and we
let M be the side of E. From HI, we take away the equal of KL, that is IN,
and from KL we take away the equal of M, that is LS. As in the previous
proposition, we can show that each of <the numbers> KS and HN is one,
and that twice the product of HN and NI, plus the square obtained from HN,
is equal to the number AF, and that twice the product of KS and SL, plus
the square obtained from KS, is equal to the number CG.



ON THE MEASUREMENT OF THE PARABOLA 171

We set IO equal to M; there remains NO equal to KS. NO will be one.
Twice the product of NO and OI, plus the square obtained from NO, is
equal to the number CG. But twice the product of HN and NI, plus the
square obtained from HN, was equal to the number AF. The difference
between the number AF and the number CG is therefore equal to the
difference between twice the product of HN and NI, plus the square
obtained from HN, and twice the product of NO and OI, plus the square
obtained from NO. Removing the two equal squares which are the square
obtained from HN and the square obtained from NO, there remains twice
the product of HN and NI and twice the product of NO and OI, equal to the
difference between the two numbers AF and CG. But HN is equal to NO.
Therefore there remains the difference between twice the product of NO
and NI and twice the product of NO and OI, equal to the difference between
the two numbers AF and CG. Yet, twice the product of NO and NI is
greater than twice the product of NO and OI by twice the square obtained
from NO. The number AF is therefore greater than the number CG by
twice the square obtained from NO. But twice the square obtained from NO
is two, as NO is one. The number AF thus exceeds the number CG by two.
This is what we wanted to prove.

– 3 – The differences1 between successive square numbers beginning
with one are successive odd numbers beginning with three.

Let the successive square numbers be A, B, C, D and E, of which A is
one, and let the successive odd numbers be F, G, H and I, of which the
number F is three.

I say that the difference between B and A is F, that the difference
between C and B is G, that the difference between D and C is H, and that
the difference between D and E is I, and so on in the same way.

B

C

D

A F

H

I

E

G

Fig. II.1.3

Proof: A is one, therefore B exceeds it by three, which is equal to the
number F. The difference between C and B is greater than the difference

1 Lit.: the difference.
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between A and B by two, as the numbers A, B and C are successive square
numbers. The difference between C and B is therefore equal to the number
F plus two, which is the number G. The difference between D and C
exceeds the difference between C and B by two, and the difference between
C and B is the number G. Therefore, the difference between D and C
exceeds the number G by two. But the number H also exceeds the number
G by two, as these are two successive odd <numbers>. The difference
between D and C is therefore the number H. Similarly, we can show that
the difference between E and D is the number I, and so on in the same way.
This is what we wanted to prove.

From this it is clear that, if the numbers A, B, C, D and E are numbers
beginning with one, such that the successive differences between them are
successive odd numbers beginning with three, then these are successive
square numbers beginning with one.

– 4 – Given the successive odd numbers beginning with one. If one is
added to the largest of these numbers and half of this sum taken which is
then multiplied by itself, the result is equal to the sum of these odd numbers.

Let the successive odd numbers be A, B, C, D and E, of which A is one,
and let the number E, added to one, be equal to the number F. Then the
number F is even, as the number E is odd. Let the number N be half the
number F, and let the number H be the square obtained from N.

I say that the number H is equal to the sum of the odd numbers A, B,
C, D and E.
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Fig. II.1.4
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Proof: Adding one to A gives an even <number>. Take half of the sum,
which is one; let it be I. Adding one to B also gives an even <number>.
Take half of that sum; let it be K. Similarly we can derive the number L
from the number C, and the number M from the number D. The difference
between each of the numbers A, B, C, D and E and the number that follows
it is two, as these are successive odd <numbers>. The differences are the
same if one is added to each number. If they are halved, the differences
between the halves is half of two, which is one.

The numbers I, K, L, M and N are successive numbers beginning with
one. We set the numbers G, S, O, P and H their squares, which are
successive square numbers beginning with one. The differences between
these are equal to the successive odd numbers beginning with three, which
are B, C, D and E. The number H therefore exceeds the number G by a
number equal to the sum of the numbers B, C, D and E. But G is one and
equal to A. The difference between H and G, to which G is added, is equal
to the sum of the numbers A, B, C, D and E. But the difference between H
and G, with A added, is equal to the number H. Therefore, the number H is
equal to <the sum of> the odd numbers A, B, C, D and E beginning with
one. This is what we wanted to prove.

It is also clear, from that which we have said, that the halves of
successive even numbers are successive numbers.

– 5 – Given successive even numbers beginning with two and an equal
number of successive odd numbers beginning with one. Then, the sum of
the squares of the successive even numbers is equal to the sum of the
squares of the successive odd numbers plus half the square of the greatest
even number plus units equal to the number of odd numbers.

Let the successive even numbers beginning with two be A, B, C and D,
of which the greatest is D, and let the same number of successive odd
numbers beginning with one be E, F, G and H, of which the greatest is H.

I say that the sum of the squares of the numbers A, B, C and D is
equal to the sum of the squares of the numbers E, F, G and H, plus half the
square of the number D, plus units equal to the number of odd numbers E,
F, G and H.
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Fig. II.1.5

Proof: Each of the numbers A, B, C and D exceeds the associate
number in the numbers E, F, G and H by one. Therefore, the square of
each of them exceeds the square of the associate odd number by twice the
product of one and this odd number plus the square of one. The sum of the
squares of the even numbers A, B, C and D exceeds the sum of the squares
of the odd numbers E, F, G and H by twice the product of one and the sum
of the numbers E, F, G and H, plus the squares of the equal number of
units. But twice the product of one and the numbers E, F, G and H is equal
to twice the numbers E, F, G and H, and the squares of the units are units.
The sum of the squares of the numbers A, B, C and D therefore exceeds the
sum of the squares of the numbers E, F, G and H by twice the sum of the
numbers E, F, G and H, plus the equal number of units. But, if one is added
to the number H and half of the sum is then multiplied by itself, then the
result is equal to the sum of the numbers E, F, G and H, as these are
successive odd <numbers> beginning with one. The sum of the squares of
the numbers A, B, C and D therefore exceeds the sum of the squares <of
the numbers> E, F, G and H by twice the product of half of one thing by
itself, which is the number H and one, plus the number of units equal to the
number of E, F, G and H. But, if one is added to the number H, this gives
<a number> equal to the number D. The sum of the squares of the numbers
A, B, C and D therefore exceeds the sum of the squares of the numbers E,
F, G and H by twice the product of half of the number D by itself, which is
equal to half the square of the number D, plus the number of units equal to
the number of E, F, G and H. The sum of the squares of the numbers A, B,
C and D is therefore equal to the sum of the squares of the numbers E, F, G
and H, plus half the square of the number D, plus the number of units equal
to the number of E, F, G and H. This is what we wanted to prove.

– 6 – Given successive square numbers beginning with one, and an
equal number of successive square odd numbers beginning with one, then
twice the sum of the successive square <numbers> beginning with one is
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equal to half the squares of the successive odd <numbers> plus the greatest
of the successive squares plus half the units equal in number to the
successive odd squares.

Let the successive squares beginning with one be A, B, C and D of
which D is the greatest, and let the equal number of successive odd squares
beginning with one be E, F, G and H.

I say that twice the sum of the squares A, B, C and D is equal to half
the sum of the squares E, F, G and H to which is added the square D plus
half the units equal in number to the numbers E, F, G and H.
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Proof: We let the numbers I, K, L and M be the sides of the squares A,
B, C and D. The numbers I, K, L and M are successive beginning with one.
Let the numbers N, S, O and P be twice these numbers. Twice <a series of>
successive numbers is <a series of> successive even numbers. The numbers
N, S, O and P are therefore successive even numbers beginning with two,
and each of the numbers N, S, O and P is twice the associated number in
the numbers I, K, L and M. The sum of their squares is therefore four times
the sum of the squares of the numbers I, K, L and M. The squares of the
numbers N, S, O and P are therefore four times the numbers A, B, C and D.
Similarly, the numbers E, F, G and H are successive odd squares beginning
with one. Let the numbers U, Q, R and X be their sides, and U will be one.

I say that the numbers U, Q, R and X are successive odd numbers
beginning with one.

It is clear that they must be odd as, if any of them were even, its square
would also be even; and they are successive. If it is possible that they were
not successive, there would have to be another odd number between them.
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Let T be an odd <number> between U and Q, and let the number V be
its square. But the number T is less than the number Q, and greater than the
number U. Therefore, the square V is less than the square F and greater
than the square E; it is odd as it is the product of an odd number and itself.
The odd squares E and F are therefore not successive. If they were, it would
be contradictory. The numbers U, Q, R and X are therefore successive odd
numbers beginning with one. But we have shown that the numbers N, S, O
and P are successive even numbers beginning with two. But the number of
<the numbers> U, Q, R and X is equal to the number of <the numbers> N,
S, O and P. Therefore, the sum of the squares of the numbers N, S, O and P
is equal to the sum of the squares of the numbers U, Q, R and X plus half
the square of the number P, plus units equal in number to the numbers U,
Q, R and X. But the squares of the numbers U, Q, R and X are the numbers
E, F, G and H. The sum of the squares of the numbers N, S, O and P is
therefore equal to the sum of the numbers E, F, G and H, plus half the
square of the number P, plus units equal in number to the numbers U, Q, R
and X. But we have shown that the sum of the squares of the numbers N, S,
O and P is equal to four times the sum of the squares of the numbers I, K, L
and M, which are the numbers A, B, C and D. Four times the sum of the
square numbers A, B, C and D is therefore equal to the sum of the numbers
E, F, G and H, plus half the square of the number P, plus units equal in
number to the numbers U, Q, R and X. But half the square of the number P
is equal to twice the square of the number M, as the number P is twice the
number M. Four times the sum of the numbers A, B, C and D is equal to
the sum of the numbers E, F, G and H, to which is added twice the square
of the number M and units equal in number to the numbers U, Q, R and X.
But the square of the number M is the number D. Four times the sum of
the numbers A, B, C and D is therefore equal to the sum of the numbers E,
F, G and H, to which is added twice the number D and units equal in
number to the numbers U, Q, R and X. Halving everything mentioned
above, it is clear that twice the sum of the numbers A, B, C and D is equal
to half the sum of the numbers E, F, G and H, to which is added the
number D and half the units equal in number to the numbers E, F, G and
H, as their number is equal to that of <the numbers> U, Q, R and X. This is
what we wanted to prove.

– 7 – Given successive odd numbers beginning with one, if we add
them, then multiply <the sum> by one, then subtract from their sum the
greatest of them, and if we multiply the remainder by two, and then subtract
from this remainder the number that follows the greatest number, and if we
multiply this remainder also by two, and if we then subtract from the
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remainder the number that follows the last to be subtracted, and then
multiply the remainder again by two, and continue to proceed in the same
way until we arrive at one, and if we add all of this, then this sum is equal to
half the sum of the squares of the odd numbers to which is added half of the
units equal in number to their number.

Let the successive odd numbers beginning with one be the numbers A,
B, C and D, of which the number D is the greatest. Let the sum of the
numbers A, B, C and D equal the number E, and let the sum of the
numbers A, B and C equal the number F, and let the sum of the two
numbers A and B equal the number G, and let the number A, which is one,
equal the number H.

I say that the sum of the product of one and E, and the product of two
and F, and G and H, is equal to half the sum of the squares of the numbers
A, B, C and D, to which is added half the units equal in number to the
numbers A, B, C and D.

B

C

D

A

F

H

E

G

Fig. II.1.7

Proof: The sum of the numbers A, B, C and D is equal to the number
E, the sum of the numbers A, B and C is equal to the number F, and the
sum of the two numbers A and B is equal to the number G. The difference
between the number E and the number F is therefore the number D.
Similarly, we show that the difference between the number F and the
number G is equal to the number C, and that the difference between the
number G and the number H is equal to the number B. The numbers H, G,
F and E are numbers that begin with one, which is H, and the successive
differences between them are the numbers B, C and D, which are successive
odd numbers beginning with the number B, which is three. The numbers H,
G, F and E are successive square numbers beginning with one, and the
squares of the numbers A, B, C and D are successive odd square numbers
beginning with one, the number of which is equal to that of the numbers H,
G, F and E. Twice the sum of the numbers H, G, F and E is therefore equal
to half of the sum of the squares of the numbers A, B, C and D, to which is
added the number E and half the units equal in number to that of the
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numbers H, G, F and E. Removing from both parts2 the number E, there
remains the sum of the number E and twice the numbers H, G and F equal
to half the sum of the squares of the numbers A, B, C and D, to which is
added half the units equal in number to that of the numbers A, B, C and D.
But twice the numbers H, G and F is the product of two and H, G and F,
and the number E is the product of E by one. The sum of the product of E
and one, and the products of the numbers H, G and F and two, is therefore
equal to half the sum of the squares of the numbers A, B, C and D, to which
is added half of the units equal in number to that of the numbers A, B, C
and D. This is what we wanted to prove.

– 8 – Given successive odd numbers beginning with one that is
associated with an equal number of numbers, the greatest of which is
associated with <the number> one of the first numbers, and the smallest of
which, that is one, is associated with the greatest of the first numbers, and so
on in succession for all the numbers in between, and if each of the numbers
is multiplied by the number with which it is associated, then the sum <of the
products> is equal to half the sum of the squares of the <successive> odd
numbers, to which is added half of the units equal in number to the odd
numbers.

Let the successive odd numbers beginning with one be the numbers A,
B, C and D, to which the equal number of EF, GH, IK and L are associated.
Let A be equal to L, the number B equal to IK, the number C equal to GH
and the number D equal to EF. Let the product of A and EF equal the
number M, the product of B and GH equal the number N, the product of C
and IK equal the number S, and the product of D and L equal the number
O.

I say that the sum of the numbers M, N, S and O is equal to half the
sum of the squares of the numbers A, B, C and D, to which is added half of
the equal number of units.
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Proof: We let EP, GU and IQ each be equal to L, which is one. There
remain the numbers QK, UH and PF of the successive even <numbers>

2 Lit.: from the two.
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beginning with two, and the difference between each of them and the
number that succeeds it is therefore two. We subtract from each of these
numbers <a number equal to> QK which is two. The subtracted numbers
are the numbers UR and PX. The numbers RH and XF also become two
successive even <numbers> beginning with two. We subtract from the
remaining number XF a number equal to RH, which is two, that is XT.
There remains TF, which is two. The sum of the products of A and EP, B
and GU, C and IQ, and D and L, is equal to the product of the sum of the
numbers A, B, C and D and one. The sum of the products of A and PX, B
and UR, and C and QK, is equal to the product of the sum of the numbers
A, B and C and two. The sum of the products of A and XT, and of B and
RH, is equal to the product of the sum of the two numbers A and B and
two. The product of A and TF is equal to the product of A and two. The
product of A and EP, and PX, and XT and TF is the number M. The
product of B and GU, and UR and RH is the number N. The product of C
and IQ and QK is the number S. The product of D and L is the number O.
If the sum of the numbers A, B, C and D is multiplied by one, and the sum
of the numbers A, B and C by two, and also the two numbers A and B, and
the number A <by two>, and if all these are added, then the sum will be
equal to the sum of the numbers M, N, S and O. But the sum of the
products of the numbers A, B, C and D and one, and the numbers A, B and
C, and the numbers A and B, and the number A and two, is equal to half the
sum of the squares of the numbers A, B, C and D, plus half the equal
number of units, as the numbers A, B, C and D are successive odd numbers
beginning with one. The sum of the numbers M, N, S and O is therefore
equal to half the sum of the squares of the numbers A, B, C and D, to which
is added half of the equal number of units. This is what we wanted to prove.

– 9 – Given successive odd numbers beginning with one, and an equal
number of successive even numbers beginning with two, and if we take
other numbers equal to the difference between the greatest even number
and each of the odd <numbers>, then these numbers will be equal to the
odd numbers, each of them to its associate.

Let the successive odd numbers beginning with one be A, B, C and D,
and let the equal number of associated even numbers beginning with two be
E, F, G and H. Let the difference between the number H and the number A
be the number I, and let the difference between it and the number B be the
number K, and let the difference between it and the number C be the
number L, and let the difference between it and the number D be the
number M.
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I say that I is equal to D, that K is equal to C, that L is equal to B and
that M is equal to A.
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Proof: The numbers A, B, C and D are successive odd numbers
beginning with one, and the numbers E, F, G and H are successive even
numbers beginning with two. The difference between each of the numbers
A, B, C and D and its associate in the numbers E, F, G and H is one. The
difference between H and D is M. The number M is therefore one. The sum
of the two numbers D and M is then equal to H, and the sum of the two
numbers C and L is also equal to H. The amount by which D exceeds C is
equal to the difference between M and L. The amount by which D exceeds
C is two, as they are two successive odd numbers. Therefore, the amount by
which L exceeds M is two. Similarly, we can also show that the amount by
which the number K exceeds L, and the number I exceeds K is also two.
The numbers M, L, K and I are therefore successive odd numbers beginning
with one, as are the numbers A, B, C and D. Consequently, they are equal.
A is equal to M, B is equal to L, C is equal to K, and D is equal to I. This is
what we wanted to prove.

– 10 – Given successive odd numbers beginning with one and an equal
number of successive even numbers beginning with two, then the sum of
the squares of the odd numbers, to which is added one third of an equal
number of units, is equal to two thirds of the product of the sum of these
odd numbers and the greatest of the even numbers.

Let the successive odd numbers beginning with one be the numbers A,
B, C and D, the greatest of which is D, and let the equal number of
successive even numbers beginning with two be E, F, G and H, the greatest
of which is the number H.

I say that the sum of the squares of the numbers A, B, C and D, to
which is added one third of an equal number of units, is equal to two
thirds of the product of the sum of the numbers A, B, C and D and the
number H.
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Proof: We let the amount by which the number H exceeds the number
D be equal to I, the amount by which it exceeds C equal to K, the amount
by which it exceeds B equal to L, and the amount by which it exceeds A
equal to M. The numbers I, K, L and M are therefore equal to the numbers
A, B, C and D which are the successive odd <numbers> beginning with one,
of which the greatest is M and the smallest is I. The sum of the products of
A and M, B and L, C and K, and D and I is equal to half the sum of the
squares of the numbers A, B, C and D, to which is added half of an equal
number of units. We add the squares of the numbers A, B, C and D on both
sides. The sum of the products of A and M, B and L, C and K, and D and I,
plus the squares of the numbers A, B, C and D is equal to one and one half
times the sum of the squares of the numbers A, B, C and D, to which is
added half of the units equal in number to that of the numbers A, B, C and
D. The product of A and M, plus the square obtained from M is equal to the
product of the sum of A and M, and M. The product of B and L, plus the
square obtained from L is equal to the product of the sum of B and L, and
L. The product of C and K, plus the square obtained from K, is equal to the
product of the sum of C and K, and K. The product of D and I, plus the
square obtained from I, is equal to the product of the sum of D and I, and I.
The sum of the product of the sum of the numbers A and M, and M, the
product of the sum of B and L, and L, the product of the sum of C and K,
and K, and the product of the sum of D and I, and I, is equal to one and one
half times the sum of the squares of the numbers A, B, C and D, to which is
added half of the units, equal in number to that of the numbers A, B, C and
D. The sum of the two numbers A and M is equal to the number H. The
same applies to the two numbers B and L, the two numbers C and K, and
the two numbers D and I. The product of the number H and the sum of the
numbers M, L, K and I is equal to one and one half times the sum of the
squares of the A, B, C and D, to which is added half of the units equal in
number to the numbers A, B, C and D. If this is the case, then the sum of
the squares of the numbers A, B, C and D, to which is added one third of
the equal number of units, is equal to two thirds of the product of the
number H and the sum of the numbers M, L, K and I. But the sum of the
numbers M, L, K and I is equal to the sum of the numbers A, B, C and D.
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Therefore, the sum of the squares of the numbers A, B, C and D, to which is
added one third of the equal number of units, is equal to two thirds of the
product of the sum of the numbers A, B, C and D, and the number H. This
is what we wanted to prove.

– 11 – Given successive even numbers of which the first is two, if we
take other numbers such that the first is half of the first of these numbers,
the second is half the sum of the first number and the second number, the
third is half the sum of the second and the third, and so on in the same way,
then the new considered numbers will be successive odd numbers beginning
with one.

Let the successive even numbers be A, B, C and D, of which the
number A is two. Let E be half of this number, let the number F be half of
the sum of the two numbers A and B, let the number G be half the sum of
the two numbers B and C, and let the number H be half of the sum of the
two numbers C and D.

I say that the numbers E, F, G and H are successive odd numbers
beginning with one.
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Proof: The number A is two and the number E is half of this, therefore
one. The difference between each of the numbers A, B, C and D, taken in
succession, is two. If two successive <numbers> from these are added
together, and the sum halved, the difference between this half and each of
them is one. The amount by which B exceeds F is therefore one, as is the
amount by which C exceeds G and that by which D exceeds H. But the
numbers A, B, C and D are successive even numbers beginning with two.
Therefore, the numbers E, F, G and H are successive odd numbers
beginning with E, which is one. This is what we wanted to prove.
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– 12 – Given a set of straight lines3 such that their ratios between them,
taken in succession, are equal to the ratios of the successive odd numbers
beginning with one, each to the others, and such that the first straight line is
the smallest, and given another set of associated straight lines, equal in
number, such that the ratios of these, each to the others and taken in
succession, are equal to the ratios between the successive even numbers
beginning with two, and such that the first of the first set of straight lines is
half of the first of the second set of straight lines, then if the first of the first
set of straight lines, that with ratios equal to the odd numbers, is multiplied
by half of its associate in the second set of straight lines, and if the second of
the first set <of straight lines> is multiplied by half of the sum of the first
and second of the second set of straight lines, and if the third of the first is
multiplied by half of the sum of the second and third of the second set of
straight lines, and so on in the same way, and if these products are added
together and added to the sum of the planes, each of which is equal to the
product of the first of the first set of straight lines and half of the first of the
second set of straight lines, as many times as one third of the number of
straight lines in the first set, then the sum obtained is equal to two thirds of
the product of the sum of the straight lines whose ratios are those of the odd
numbers and the greatest of the straight lines whose ratios are those of the
even numbers.

Let the straight lines whose ratios are those of the successive odd
numbers beginning with one be the straight lines A, B, C and D, of which A
is the smallest. Let the equal number of associated straight lines whose ratios
are those of the successive even numbers beginning with two be E, F, G
and H. Let A be half of E.

I say that the sum of the products of the straight line A and half of the
straight line E, of the straight line B and half of the sum of the two
straight lines E and F, of the straight line C and half of the sum of the two
straight lines F and G, and of the straight line D and half of the sum of the
two straight lines G and H, to which is added the product of the straight
line A and half of the straight line E, as many times as one third of the
number of straight lines A, B, C and D, then the sum is equal to two thirds
of the product of the sum of the straight lines A, B, C and D and the
straight line H which is the greatest of the straight lines E, F, G and H.

3 Lit.: straight lines. We add ‘a set of’ for the needs of the translation.
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Proof: Let the successive odd numbers beginning with one be I, K, L
and M, and the successive even numbers beginning with two be N, S, O and
P. Let the straight line U be half the straight line E, let the straight line Q be
half the two straight lines E and F, let the straight line R be half the two
straight lines F and G, and let the straight line X be half the two straight
lines G and H. Let the number T be half the number N, let the number V be
half the two numbers N and S, let the number W be half the two numbers S
and O, let the number Z be half the two numbers O and P, and let the
straight line A be half the straight line E. The ratio of the straight line A to
the straight line E is equal to the ratio of I to the number N. It is for this
reason that the ratio of I to T, which is half the number N, is equal to the
ratio of the straight line A to the straight line U which is half the straight line
E. Similarly, the ratio of the straight line B to A is equal to the ratio of the
number K to I, the ratio of A to E is equal to the ratio of I to N, and the
ratio of E to F is equal to the ratio of N to S. The ratios of the straight lines
B, A, E and F are therefore equal to the ratios of the numbers K, I, N and S.
It is for this reason that the ratio of the straight line B to E and to F, and to
the sum of E and F is equal to the ratio of the number K to N and to S and
to the sum of N and S, and the ratio of the straight line B to half the sum of
E and F, which is Q, is equal to the ratio of K to half the sum of N and S
which is V. Similarly, the ratio of the straight line C to B is equal to the ratio
of the number L to K, the ratio of B to F is equal to the ratio of K to S, and
the ratio of F to G is equal to the ratio of S to O. The ratio of C to half of F
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and G, which is R, is then equal to the ratio of L to half of S and O, which is
W. Similarly, we can show that the ratio of D to X is equal to the ratio of M
to Z. The ratios of the straight lines A, B, C and D to the straight lines U, Q,
R and X, each to its homologue, are therefore equal to the ratios of the
number I, K, L and M to the numbers T, V, W and Z, each to its
homologue. But the number T is half of the number N, the number V is half
of the two numbers N and S, the number W is half of the two numbers S
and O, and the number Z is half of the two numbers O and P. The numbers
N, S, O and P are successive even numbers beginning with two, and the
numbers T, V, W and Z are successive odd numbers beginning with one.
The same applies to the numbers I, K, L and M. The numbers T, V, W and
Z are equal to the numbers I, K, L and M, each to its homologue. Similarly,
the straight lines U, Q, R and X are equal to the straight lines A, B, C and D,
each to its homologue. Hence, the product of A and U, which is half of E, is
equal to the square of the straight line A, the product of B and Q, which is
half of E and F, is equal to the square of the straight line B, the product of
C and R, which is half of F and G, is equal to the straight line C, and the
product of D and X, which is half of G and H, is equal to the square of D.

Similarly, the ratios of the squares of the numbers I, K, L and M, each
to the others, are equal to the ratios of the squares of the straight lines A, B,
C and D, each to the others. The ratio of the sum of the squares of the
numbers I, K, L and M to the square of the number M is therefore equal to
the sum of the squares of the straight lines A, B, C and D to the square of
the straight line D. We know that the ratio of the square of the number M to
the product of M and P, which is equal to the ratio of M to P, is equal to
the ratio of the square of the straight line D to the product of D and H,
which is equal to the ratio of D to H. Using the equality ratio (ex aequali),
the ratio of the sum of the squares of the numbers I, K, L and M to the
product of M and P is equal to the ratio of the sum of the squares of the
straight lines A, B, C and D to the product of D and H. But the ratio of the
product of M and P to the product of the sum of the numbers I, K, L and
M, and P, which is equal to the ratio of the number M to the sum of the
numbers I, K, L and M, is equal to the ratio of the product of D and H to
the product of the sum of the straight lines A, B, C and D and the straight
line H, which is equal to the ratio of the straight line D to the sum of the
straight lines A, B, C and D, as the ratio of the number M to the sum of the
numbers I, K, L and M is equal to the ratio of the straight line D to the sum
of the straight lines A, B, C and D. Using the equality ratio, the ratio of the
sum of the squares of the numbers I, K, L and M to the product of the sum
of the numbers I, K, L and M and the number P is equal to the ratio of the
sum of the squares of straight lines A, B, C and D to the product of the sum
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of the straight lines A, B, C and D and the straight line H. If we take the
square obtained from I, which is one, as many times as one third of the
number of the numbers I, K, L and M, and the square of the straight line A
as many times as one third of the number of the straight lines A, B, C and
D, then the ratio of this considered multiple of the square obtained from I to
the sum of the squares of the numbers I, K, L and M is equal to the ratio of
the considered multiple of the square of the straight line A to the sum of the
squares of the straight lines A, B, C and D. Therefore, the ratio of the sum
of the squares of the numbers I, K, L and M, plus the squares obtained from
the product of I and itself, of which the number is equal to one third of the
number of the numbers I, K, L and M, to the product of the sum of these
numbers and the number P, is equal to the ratio of the sum of the squares
of the straight lines A, B, C and D, plus the squares obtained from the
straight line A, of which the number is equal to one third of the number of
straight lines A, B, C and D, to the product of the sum of the straight lines
A, B, C and D, and the straight line H. We have shown that the sum of the
squares of the straight lines A, B, C and D is equal to the product of A and
half of E, plus the product of B and half of E and F, plus the product of C
and half of F and G, plus the product of D and half of G and H. Therefore,
the ratio of the sum of the squares of the numbers I, K, L and M, plus the
squares obtained from the product of I and itself, of which the number is
equal to one third of the number of the numbers I, K, L and M, to the
product of the sum of the numbers I, K, L and M, and the number P, is
equal to the product of A and half of E, plus the product of B and half of E
and F, plus the product of C and half of F and G, plus the product of D and
half of G and H, plus the squares obtained from the straight line A, of which
the number is equal to the number of the numbers A, B, C and D, to the
product of the sum of the straight lines A, B, C and D, and the straight line
H. But the numbers I, K, L and M are successive odd numbers beginning
with one, and the numbers N, S, O and P are successive even numbers
beginning with two. Therefore, if the squares of the numbers I, K, L and M
are added and then added to one third of the units equal in number, then
this sum will be equal to two thirds of the product of the sum of the
numbers I, K, L and M, and the number P.4 But one third of the units equal
in number to the number of the numbers I, K, L and M is equal to the
squares obtained from the product of I by itself, equal in number to one
third of the number of the numbers I, K, L and M, as the square obtained
from I is one. Therefore, the sum of the product of A and half of E, the
product of B and half of E and F, the product of C and half of F and G, and
the product of D and half of G and H, to which is added the squares equal

4 From Proposition 10.
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to the square of A, of which the number is equal to one third of the number
of the straight lines A, B, C and D, is equal to two thirds of the product of
the sum of the straight lines A, B, C and D and the straight line H. But the
square of A is equal to the product of A and half of E. The sum of the
product of A and half of E, the product of B and half of E and F, the
product of C and half of F and G, and the product of D and half of G and
H, to which is added the product of A and half of E as many times as one
third of the number of straight lines A, B, C and D, is therefore equal to two
thirds of the product of the sum of the straight lines A, B, C and D and the
straight line H. This is what we wanted to prove.

– 13 – Given a set of straight lines such that their ratios between them,
taken in succession, are equal to the ratios of the successive odd numbers
beginning with one, each to the others, and such that the first straight line is
the smallest of them, and given another set of associated straight lines, equal
in number, such that the ratios of these, each to the others and taken in
succession, are equal to the ratios between the successive even numbers
beginning with two, and such that the first of the first set of straight lines is
not equal to half of the first of the second set of straight lines, then the sum
of the product of the first of the first set of straight lines, those whose ratios
are those of the odd numbers, and half of its associate in the second set of
straight lines, the product of the second of the first <set of straight lines>
and half of the first and second straight lines in the other set, the product of
the third of the first <set of straight lines> and half of the second and third
straight lines in the other set, and so on in the same way, plus the planes
each of which is equal to the product of the first of the first set of straight
lines and half of the first of the second set of straight lines, the number of
which is equal to one third of the number of the first straight lines, is equal
to two thirds of the product of the sum of the straight lines whose ratios are
those of the odd numbers, and the greatest of the straight lines whose ratios
are those of the even numbers.

Let the successive straight lines whose ratios are those of the odd
numbers beginning with one be the straight lines A, B, C and D, of which A
is the smallest. Let the equal number of associated straight lines whose ratios
are those of the successive even numbers beginning with two be E, F, G
and H, such that A is not half of E.

I say that the sum of the product of A and half of the straight line E,
the product of B and half of the sum of the two straight lines E and F, the
product of C and half of the sum of the two straight lines F and G, and the
product of D and half of the sum of the two straight lines G and H, to
which is added the product of A and half of E, as many times as one third
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of the number of straight lines A, B, C and D, then the sum is equal to two
thirds of the product of the sum of the straight lines A, B, C and D and the
straight line H which is the greatest of the straight lines E, F, G and H.
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Proof: Let the straight line I be equal to twice the straight line A, and
let the ratios of the straight lines I, K, L and M, each to the others and taken
in succession, be equal to the ratios of the straight lines E, F, G and H taken
in succession. Therefore, the ratio of E to I is equal to the ratio of F to K,
equal to the ratio of G to L, equal to the ratio of H to M, and equal to the
ratio of their halves to their halves. But the ratio of the product of A and
half of E to the product of A and half of I is equal to the ratio of half of E to
half of I. The ratio of the product of B and half of E and F to its product
with half of I and K is equal to the ratio of half of E and F to half of I and
K. The ratio of the product of C and half of F and G to its product with half
of K and L is equal to the ratio of half of F and G to half of K and L. The
ratio of the product of D and half of G and H to its product with half of L
and M is equal to the ratio of half of G and H to half of L and M.

The ratio of all, that is the sum of the product of A and half of E, the
product of B and half of E and F, the product of C and half of F and G, and
the product of D and half of G and H, to the sum of the product of A and
half of I, the product of B and half of I and K, the product of C and half of
K and L, and the product of D and half of L and M, is equal to the ratio of
half of the straight line E to half of the straight line I. But the ratio of E to I
is equal to the ratio of H to M and the ratio of H to M is equal to the ratio
of the product of the sum of the straight lines A, B, C and D and the straight
line H to its product with the straight line M. Therefore, the ratio of the sum
of the product of A and half of E, the product of B and half of E and F, the
product of C and half of F and G, and the product of D and half of G and
H, to the sum of the product of A and half of I, the product of B and half of
I and K, the product of C and half of K and L, and the product of D and
half of L and M, is equal to the ratio of the product of the sum of the
straight lines A, B, C and D and the straight line H to its product with the
straight line M. Applying a permutation (permutendo), the ratio of the sum
of the product of A and half of E, the product of B and half of E and F, the
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product of C and half of F and G, and the product of D and half of G and
H, to the product of the sum of the straight lines A, B, C and D and the
straight line H, is equal to the ratio of the sum of the product of A and half
of I, the product of B and half of I and K, the product of C and half of K
and L, and the product of D and half of L and M, to the product of the sum
of the straight lines A, B, C and D and the straight line M.

Similarly, the ratio of the product of A and half of E to the product of
the sum of the straight lines A, B, C and D and the straight line H is
compounded of the ratio of the straight line A to the sum of the straight
lines A, B, C and D and the ratio of half of the straight line E to the straight
line H. But the ratio of half of E to H is equal to the ratio of half of I to M.
Therefore, the ratio of the product of A and half of E to the product of the
sum of the straight lines A, B, C and D and the straight line H is
compounded of the ratio of the straight line A to the sum of the straight
lines A, B, C and D and the ratio of half of I to M. The ratio compounded of
these two ratios is equal to the ratio of the product of A and half of the
straight line I to the product of the sum of the straight lines A, B, C and D
and the straight line M. The ratio of the product of the straight line A and
half of the straight line E to the product of the sum of the straight lines A, B,
C and D and the straight line H is equal to the product of A and half of the
straight line I to the product of the sum of the straight lines A, B, C and D
and the straight line M. It is for this reason that the ratio of the product of
the straight line A and half the straight line E, taken as many times as the
number of straight lines A, B, C and D, to the product of the sum of the
straight lines A, B, C and D and the straight line H, is equal to the ratio of
the product of the straight line A and half of I, taken as many times as the
number of straight lines A, B, C and D, to the product of the sum of the
straight lines A, B, C and D and the straight line M.

But we have shown that the ratio of the sum of the product of A and
half of E, the product of B and half of E and F, the product of C and half of
F and G, and the product of D and half of G and H, to the product of the
sum of the straight lines A, B, C and D and the straight line H, is equal to
the ratio of the sum of the product of A and half of I, the product of B and
half of I and K, the product of C and half of K and L, and the product of D
and half of L and M, to the product of the sum of the straight lines A, B, C
and D and the straight line M. The ratio of the sum of the product of A and
half of E, the product of B and half of E and F, the product of C and half of
F and G, the product of D and half of G and H, and the product of A and
half of E, taken as many times as the number of the straight lines A, B, C
and D, to the product of the sum of the straight lines A, B, C and D and the
straight line H, is equal to the ratio of the sum of the product of A and half
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of I, the product of B and half of I and K, the product of C and half of K
and L, the product of D and half of L and M, and the product of A and half
of I, taken as many times as the number of the straight lines A, B, C and D,
to the product of the sum of the straight lines A, B, C and D and the straight
line M.

But the ratios of the straight lines A, B, C and D, each to the others and
taken in succession, are the ratios of the successive odd numbers beginning
with one, each to the others, and the ratios of the straight lines I, K, L and
M, each to the others, are the ratios of the successive even numbers
beginning with two, each to the others, as they are equal to the ratios of the
straight lines E, F, G and H, each to the others. The sum of the product of
A and half of I, the product of B and half of I and K, the product of C and
half of K and L, the product of D and half of L and M, and the product of A
and half of I, taken as many times as one third of the number of straight
lines A, B, C, D, is therefore equal to two thirds of the product of the sum of
the straight lines A, B, C and D and the straight line M. It is for this reason
that the sum of the product of A and half of E, the product of B and half of
E and F, the product of C and half of F and G, the product of D and half of
G and H, and the product of A and half of E, taken as many times as one
third of the number of straight lines A, B, C and D, is equal to two thirds of
the product of the sum of the straight lines A, B, C and D and the straight
line H. This is what we wanted to prove.

– 14 – Given two magnitudes, of which the ratio of one to the other is
known, it is possible to find a set of successive odd numbers beginning with
one, and an equal number of successive even numbers beginning with two,
such that the ratio of the number of units equal in number to the odd
numbers to the product of the sum of these odd numbers and the greatest
of the even numbers considered is less than the known ratio.

Let the known ratio be that of A to B. If the magnitude A has a ratio to
the magnitude B, then it is possible to multiply it until its multiples become
greater than the magnitude B. Let its multiples, which are greater than the
magnitude B, be the magnitude C.5 Let the number of units contained in the
number D be equal to the number of times A is contained in C. Let twice
the number D be the number E. Therefore the number E is even. Let the
successive even numbers beginning with two and ending with the number E
be the numbers F, G and E. We subtract one from each of them. The
remaining numbers will then be the numbers H, I and K. The numbers H, I
and K are therefore successive odd numbers beginning with one and their

5 Implying: one of its multiples.
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number is the same as the number of the even numbers F, G and E. Let the
number L contain as many units as the number of the numbers H, I and K6.

I say that the ratio of the number L to the product of the sum of the
numbers H, I and K and the number E is less than the ratio of A to B.
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Proof: The numbers H, I and K are successive odd numbers beginning
with one, of which the greatest is the number K. The number E is greater
than the number K by one. The square of half of the number E is therefore
equal to the sum of the numbers H, I and K. The ratio of half of the number
E to its square is therefore equal to its ratio to the sum of the numbers H, I
and K, and its ratio to its product with the sum of the numbers H, I and K is
less than its ratio to the sum of the numbers H, I and K, as the product of
half of the number E and the sum of the numbers H, I and K is greater than
the sum of the numbers H, I and K. The ratio of half of the number E to the
product of half of the number E and the sum of the numbers H, I and K is
therefore less than the ratio of this number to its square. The ratio of half of
the number E to the square of half of the number E is equal to the ratio of
one to half of the number E. The ratio of half of the number E to the
product of half of the number E and the sum of the numbers H, I and K is
less than the ratio of one to half of the number E, which is equal to the ratio
of A to C. The ratio of half of the number E to the product of half of the
number E and the sum of the numbers H, I and K is therefore less than the
ratio of A to C. The product of half of the number E and the sum of the
numbers H, I and K is less than the product of the number E and the sum
of the numbers H, I and K. The magnitude C is greater than the magnitude
B. The ratio of half of the number E to the product of the number E and
the sum of the numbers H, I and K is therefore very much less than the
ratio of A to B. But the numbers F, G and E are successive even numbers
beginning with two. Therefore, the difference between each of them and
that which succeeds it is two. The number E contains as many twos as the

6 Therefore L = D = E/2.
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number of the numbers F, G and E, and half of the number E contains as
many units as the number of the numbers F, G and E. The same applies to
the units contained in the number L. The ratio of the number L to the
product of the number E and the sum of the numbers H, I and K is less
than the ratio of A to B. This is what we wanted to prove.

– 15 – Given two magnitudes whose ratio one to the other is known,
and two known straight lines, it is possible to divide one of the straight lines
into parts, such that the ratios of each to the others, taken in succession, are
equal to the ratios of the successive odd numbers beginning with one, and to
consider with the other straight line further straight lines, such that their
number plus this one is equal to the number of parts of the first straight line,
and that the greatest of these is this other straight line, and that their ratios,
each to the others, taken in succession, are equal to the ratios of the
successive even numbers beginning with two, such that the ratio of the
product of the smallest of the parts of the first straight line and half of the
smallest straight line considered in addition to the second straight line as
many times as the number of parts in the first straight line, to the product of
the first straight line and the second straight line, is less than the ratio of one
of the <known> magnitudes having a known ratio to the other magnitude.

Let the two magnitudes be A and B and let the ratio of A to B be
known. Let the two known straight lines be CD and E. If we wish to divide
CD into parts such that the ratios of these, each to the others and taken in
succession, are equal to the ratios of the successive odd numbers beginning
with one, and <to take a number of> straight lines such that their number,
including the straight line E is equal to the number of parts of the straight
line CD, and such that the ratios of these, each to the others and taken in
succession, are equal to the ratios of the successive even numbers beginning
with two, and such that the greatest of these is the straight line E, and such
that the ratio of the product of the smallest of the parts of the straight line
CD and half the smallest of the straight lines which, including E, are equal in
number to the number of parts of the straight line CD, to the product of the
straight line E and the straight line CD, is less than the ratio of A to B, then
we take the successive odd numbers beginning with one to be F, G and H,
of which F is one, and an equal number of successive even numbers
beginning with two to be I, K and L, of which I is two. Let the ratio of the
units equal in number to the number of the numbers F, G and H to the
product of the sum of the numbers F, G and H and the number L, be less
than the ratio of the magnitude A to the magnitude B.7 Let the ratio of the
magnitude CM to the magnitude CD be equal to the ratio of F to the sum

7 This assumption was not mentioned in the statement, but this is possible.
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of the numbers F, G and H, and let the ratio of MN to MD be equal to the
ratio of G to the sum of the two numbers G and H. In this way, we have
divided the straight line CD in the same ratios as the numbers F, G and H,
taken in succession. The smallest of these parts is CM. Let the ratio of E to
S be equal to the ratio of L to K, and let the ratio of S to O be equal to the
ratio of K to I.

I say that the ratio of the product of CM and half of the straight line
O, as many times as the number of parts in the straight line CD, to the
product of CD and E is less than the ratio of A to B.
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Proof: The ratios of the numbers F, G and H, each to the others and
taken in succession, are equal to the ratios of the straight lines CM, MN, and
ND, each to the others and taken in succession. The ratio of F to the sum of
the numbers F, G and H is equal to the ratio of the straight line CM to the
straight line CD. It is for this reason that the ratio of the square obtained
from F to the square <obtained from > the sum of the numbers F, G and H
is equal to the ratio of the square of the straight line CM to the square of the
straight line CD. But the ratio of the square of the sum of the numbers F, G
and H to the product of the sum of the numbers F, G and H and the
number H is equal to the ratio of the square of the straight line CD to the
product of CD and ND. Using the equality ratio, the ratio of the square
obtained from F to the product of the sum of the numbers F, G and H and
the number H, then equals the ratio of the square of the straight line CM to
the product of CD and ND. But the number of the numbers F, G and H is
equal to the number of the parts CM, MN and ND. Therefore, if the square
obtained from F, which is one, is multiplied by the number of the numbers
F, G and H, then its ratio to the product of the sum of the numbers F, G
and H and the number H is equal to the ratio of the square of the straight
line CM, multiplied as many times as the number of parts in the straight line
CD, to the product of the straight lines CD and ND.
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But the ratio of CM to O will either be equal to the ratio of F to I, or it
will not be so. If we first let it be equal, then the ratio of the product of F,
which is one, and half of I, which is also one, to the square obtained from F
is equal to the ratio of the product of CM and half of O to the square of
CM. The ratio of the units equal in number to the number of the numbers
F, G and H to the product of the sum of the numbers F, G and H and the
number H is equal to the ratio of the product of CM and half of O, as many
times as the number of parts in the straight line CD, to the product of CD
and ND. Similarly, the ratio of H to F is equal to the ratio of ND to CM, and
the ratio of F to I is equal to the ratio of CM to O, and the ratio of I to L is
equal to the ratio of O to E. The ratio of H to L is therefore equal to the
ratio of ND to E. The ratio of H to L is equal to the ratio of the product of
the sum of the numbers F, G and H and the number H to its product with
the number L. The ratio of ND to E is equal to the ratio of the product of
CD and ND to the product of CD and E. Therefore, the ratio of the product
of the sum of the numbers F, G and H and the number H to its product
with the number L is equal to the ratio of the product of CD and ND to its
product with E. However, we have shown that the ratio of the units equal in
number to the number of the numbers F, G and H to the product of the
sum of the numbers F, G and H and the number H is equal to the ratio of
the product of CM and half of O, as many times as the number of parts in
the straight line CD, to the product of CD and ND. Using the equality ratio,
the ratio of the units equal in number to the numbers F, G and H to the
product of the sum of the numbers F, G and H and the number L is equal
to the ratio of the product of CM and half of O, as many times as the
number of parts in the straight line CD, to the product of CD and E. But the
ratio of the units equal in number to the number of the numbers F, G and H
to the product of the sum of the numbers F, G and H and the number L is
less than the ratio of A to B. Therefore, the ratio of the product of CM and
half of O, as many times as the number of parts in the straight line CD, to
the product of CD and E is less than the ratio of A to B.

Similarly, let us now assume that the ratio of CM to O is not equal to
the ratio of F to I, but the ratio of CM to P is equal to the ratio of F to I.
Let the ratios of the straight lines P, U, and Q, each to the others and taken
in succession, be equal to the ratios of the numbers I, K, and L, each to the
others and taken in succession. The ratio of the product of CM and half of
P, as many times as the number of parts of the straight line CD, to the
product of CD and Q is less than the ratio of A to B.

Similarly, the ratio of the product of CM and half of P to its product
with half of O is equal to the ratio of half of P to half of O, which is equal to
the ratio of P to O. But the ratio of P to O is equal to the ratio of Q to E, as
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the ratios of the straight lines O, S, and E, each to the others, are equal to
the ratios of the straight lines P, U, and Q, each to the others. Therefore, the
ratio of the product of CM and half of P to the product of CM and half of O
is equal to the ratio of Q to E. But the ratio of Q to E is equal to the ratio of
the product of CD and Q to the product of CD and E. The ratio of the
product of CM and half of P to its product with half of O is therefore equal
to the ratio of the product of CD and Q to its product with E. Applying a
permutation, the ratio of the product of CM and half of P to the product of
CD and Q is equal to the ratio of the product of CM and half of O to the
product of CD and E. It is for this reason that the ratio of the product of
CM and half of P, as many times as the number of parts of the straight line
CD, to the product of CD and Q is equal to the ratio of the product of CM
and half of O, as many times as the number of parts of the straight line CD,
to the product of CD and E. But it has already been shown that the ratio of
the product of CM and half of P, as many times as the number of parts of
the straight line CD, to the product of CD and Q, is less than the ratio of A
to B. Therefore, the ratio of the product of CM and half of O, as many times
as the number of parts of the straight line CD, to the product of CD and E
is less than the ratio of A to B. This is what we wanted to prove.

– 16 – If we produce in a parabola one of its diameters and ordinates to
this diameter such that the ratios of the parts of the diameter into which it is
divided by the ordinates, taken in succession, are equal to the ratios of the
successive odd numbers beginning with one, taken in succession, then the
ratios of the ordinates within the parabola, each to the others and taken in
succession, are equal to the ratios of the successive even numbers beginning
with two, taken in succession.

Let ABC be a parabola, let BD be one of its diameters, and let the
ordinates to this diameter within the parabola be EFG, HIK, LMN, and
ADC. Let the numbers S, O, P and U be successive odd numbers beginning
with one, and let the ratios of BF, FI, IM, and MD, each to the others and
taken in succession, be equal to the ratios of the numbers S, O, P, and U,
taken in succession. Let the equal number of successive even numbers
beginning with two be Q, R, X, and T.

I say that their ratios, each to the others and taken in succession, are
equal to the ratios of the straight lines EFG, HIK, LMN, ADC, each to the
others and taken in succession.
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Proof: Let the number V be equal to the sum of the two numbers S
and O, let the number W be equal to the sum of the numbers S, O and P,
and let the number Z be equal to the sum of the numbers S, O, P and U.
The numbers S, V, W and Z begin with one, and the differences between
one and the other, considered in succession, are the numbers O, P and U
which are successive odd numbers beginning with three. The numbers S, V,
W and Z are therefore the successive squares beginning with one. The ratio
of S to O is equal to the ratio of BF to FI. The ratio of S to the sum of S
and O is therefore equal to the ratio of BF to BI. But the sum of S and O is
equal to the number V. Therefore the ratio of S to V is equal to the ratio of
BF to BI. But it has been shown in Proposition 20 of the first book of the
work of Apollonius on the Conics, as generalized at the end of Proposition
51 of the first book, that the ratio of BF to BI is equal to the ratio of the
square of the straight line EF to the square of the straight line HI. The ratio
of S to V is therefore equal to the ratio of the square of the straight line EF
to the square of the straight line HI.

Similarly, we can also show that the ratio of V to W is equal to the ratio
of the square of the straight line HI to the square of the straight line LM,
and that the ratio of W to Z is equal to the ratio of the square of the straight
line LM to the square of the straight line AD. The ratios of the squares of
the straight lines EF, HI, LM and AD, each to the others, are equal to the
ratios of the numbers S, V, W and Z, each to the others. But we have shown
that the numbers S, V, W and Z are successive square numbers beginning
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with one. Therefore, the ratios of the squares of the straight lines EF, HI,
LM and AD, each to the others and taken in succession, are equal to the
ratios of the successive square numbers beginning with one. It is for this
reason that the ratios of these same straight lines, each to the others, are
equal to the ratios of the successive numbers beginning with one.
Consequently, the doubles of these numbers are successive even numbers
beginning with two, which are the numbers Q, R, X and T, and that the
doubles of these straight lines mentioned are the straight lines EG, HK, LN
and AC. The ratios of the successive even numbers which are Q, R, X and
T, each to the others and taken in succession, are equal to the ratios of the
straight lines EG, HK, LN and AC, each to the others and taken in
succession. This is what we wanted to prove.

From this, it can clearly be seen that, if the ratios of the straight lines
EG, HK, LN and AC, each to the others and taken in succession, are equal
to the ratios of the successive even numbers beginning with two, then the
ratios of the straight lines BF, FI, IM and MD, each to the others and taken
in succession, are equal to the ratios of the successive odd numbers
beginning with one, each to the others.

– 17 – If we produce in a parabola its diameters and ordinates to this
diameter such that the ratios of the parts of the diameter divided by the
ordinates, each to the others and taken in succession, are equal to the ratios
of the successive odd numbers beginning with one, each to the others and
taken in succession, and if the smallest of these parts is the part adjacent to
the vertex of the parabola, and if the extremities of the ordinates on any one
side and the vertex of the portion and the two ends of the smallest of the
ordinates are joined by straight lines, then the polygon thus formed within
this portion of a parabola is less than two thirds of the area of the
parallelogram whose base is the base of this portion and whose height is
equal to its height by the product of the perpendicular dropped from the
vertex of the portion onto the smallest of the ordinates drawn in this portion
and half of this smallest straight line, as many times as one third of the
number of parts of the diameter.

Let the portion of the parabola be ABC, let its diameter be BD and let
its base be AC. Let the ordinates to the diameter BD within this portion be
EFG, HIK and ADC. Let the ratios of the straight lines BF, FI and ID, each
to the others and taken in succession, be equal to the ratios of the successive
odd numbers beginning with one, which are L, M and N, and let L be the
smallest of these. We join the straight lines AH, HE, EB, BG, GK and KC,
draw the two straight lines AS and CO parallel to the straight line BD, and
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we make a straight line SO passing through the point B parallel to the
straight line AC.

I say that the polygon AHEBGKC is less than two thirds of the area of
the parallelogram ASOC by the product of the perpendicular dropped
from the point B onto the straight line EG and half of EG, as many times
as the number of BF, FI and ID.
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Proof: Let the ratios of the straight lines BF, FI and ID, each to the
others and taken in succession, are equal to the ratios of the successive odd
numbers beginning with one, L, M and N. The ratios of the straight lines
EG, HK and AC, each to the others and taken in succession, are therefore
equal to the ratios of the successive even numbers beginning with two. If
this is the case, then the product of BF and half of EG, plus the product of
FI and half of EG and HK, plus the product of ID and half of HK and AC,
plus the product of BF and half of EG as many times as one third of the
number of parts of the diameter BD is equal to two thirds of the product of
BD and AC.8

In addition, the ordinates must either be perpendicular to the diameter
BD, or not so. First, let them be perpendicular. The product of BF and half
of EG is therefore equal to the triangle BEG, the product of FI and half of
EG and HK is equal to the trapezium EGKH, and the product of ID and
half of HK and AC is equal to the trapezium HKCA. The product of BD and
AC is therefore equal to the area ASOC. But we have already shown that
the product of BF and half of EG, plus the product of FI and half of EG
and HK, plus the product of ID and half of HK and AC, plus the product of
BF and half of EG, as many times as one third of the number of parts of the
diameter BD, is equal to two thirds of the product of BD and AC. The
polygon AHEBGKC is therefore less than two thirds of the area of the

8 From Proposition 13.
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parallelogram ASOC by the product of BF and half of EG, as many times as
one third of the number of parts of the diameter BD.

Similarly, let us now assume that the ordinates are not perpendicular to
the diameter BD. Draw the perpendicular BP from the point B onto EG,
the perpendicular FU from the point F onto HK, the perpendicular IQ from
the point I onto AC, and the perpendicular BR from the point B onto AC.
The triangles BFP, FIU, IDQ and BDR are all right-angled triangles, and
the angles BFP, FIU, IDQ and BDR are equal as the ordinates are parallel.
The triangles are therefore similar. It is for this reason that the ratio of BP to
BF is equal to the ratio of FU to FI, and equal to the ratio of IQ to ID, and
equal to the ratio of BR to BD, and equal to the ratio of the product of BP
and half of EG to the product of BF and half of EG, and equal to the ratio
of the product of FU and half of EG and HK to the product of FI and half
of EG and HK, and equal to the ratio of the product of IQ and half of HK
and AC to the product of ID and half of HK and AC, and equal to the ratio
of the product of BR and AC to the product of BD and AC. Adding, we
have the ratio of the sum of the product of BP and half of EG, the product
of FU and half of EG and HK, and the product of IQ and half of HK and
AC, to the sum of the product of BF and half of EG, the product of FI and
half of EG and HK, and the product of ID and half of HK and AC, equal to
the ratio of the product of BR and AC to the product of BD and AC. The
sum of the product of BF and half of EG, the product of FU and half of EG
and HK, and the product of IQ and half of HK and AC is equal to the
polygon AHEBGKC. The ratio of the polygon AHEBGKC to the sum of the
product of BF and half of EG, the product of FI and half of EG and HK,
and the product of ID and half of HK and AC is equal to the ratio of the
product of BR and AC to the product of BD and AC. But the ratio of the
product of BR and AC to the product of BD and AC is equal to the ratio of
the product of BP and half of EG, as many times as one third of the
number of parts of the diameter BD, to the product of BF and half of EG,
as many times as one third of the number of parts of the diameter BD.
Adding, the ratio of the polygon AHEBGKC plus the product of BP and
half of EG, as many times as one third of the number of parts of the
diameter BD, to the sum of the product of BF and half of EG, the product
of FI and half of EG and HK, the product of ID and half of HK and AC,
and the product of BF and half of EG, as many times as one third of the
number of parts of the diameter BD, is equal to the ratio of the product of
BR and AC, which is the area ASOC, to the product of BD and AC.
Applying a permutation, the ratio of the polygon AHEBGKC plus the
product of BP and half of EG as many times as one third of the number of
parts of the diameter BD to the area ASOC is equal to the ratio of the sum
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of the product of BF and half of EG, the product of FI and half of EG and
HK, the product of ID and half of HK and AC, and the product of BF and
half of EG, as many times as one third of the number of parts of the
diameter BD to the product of BD and AC. But we have already shown that
the product of BF and half of EG plus the product of FI and half of EG and
HK plus the product of ID and half of HK and AC plus the product of BF
and half of EG, as many times as one third of the number of parts of the
diameter BD is equal to two thirds of the product of BD and AC. The
polygon AHEBGKC plus the product of BP and half of EG, as many times
as one third of the number of parts of the diameter BD, is therefore equal to
two thirds of the area ASOC. The polygon AHEBGKC is therefore less than
two thirds of the area ASOC by the product of BP, which is perpendicular
to EG, and half of EG, as many times as one third of the number of parts of
the diameter BD, which are BF, FI and ID. This is what we wanted to
prove.

O G
F

K

I U

C

D
Q R

A

B
E

P

H

S

Fig. II.1.17b*

– 18 – Given a known portion of a parabola and a known area, it is
possible to draw ordinates to the diameter within this portion of a parabola
which divide the diameter into parts whose ratios, each to the others and
taken in succession, are equal to the ratios of the successive odd numbers
beginning with one, the smallest of which is that adjacent to the vertex of
the parabola. If the ends of the ordinates, the vertex of the parabola and the
extremities of the smallest of the ordinates are joined with straight lines in

* The manuscript only gives a single figure showing both cases. It is not therefore
accurate.
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such a way as to generate an inscribed polygon within the portion, then the
amount by which this portion of a parabola exceeds the inscribed figure is
less than the known area.

Let the given portion of the parabola be ABC, let its diameter be BD, let
its base be AC and let the known area be E.

I say that it is possible for us to draw ordinates within the portion of a
parabola ABC which divide the diameter BD in the ratios of the successive
odd numbers beginning with one such that the amount by which the
portion of the parabola ABC exceeds the figure generated within it by
joining the extremities of the ordinates and the vertex of the parabola to
the extremities of the smallest ordinate that has been drawn with straight
lines, is less than the area E.
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Fig. II.1.18a

Proof: We join the two straight lines AB and BC. If the two portions
AFB and BGC of the parabola are less than the area E, <then we have
found that which we sought>; if not, we divide each of the two straight lines
AD and DC in half at the two points H and I respectively. We draw two
straight lines HF and IG from these points parallel to the diameter BD. We
join the straight lines AF, FB, BG and GC. Through the point F, we draw a
straight line KFL tangent to the parabola, and through the point A, we draw
a straight line AL parallel to the diameter BD. The straight line HF is parallel
to the diameter BD. Apollonius has shown in Proposition forty-six of the
first book of his work on the Conics9 that, if this is the case, then HF is one
of the diameters of the parabola. The ratio of AH to HD is equal to the ratio

9 It actually follows from Proposition I.46 of the Conics.
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of AM to MB. But the straight line AH is equal to HD. Therefore, the
straight line AM is equal to MB and the straight line MF is one of the
diameters of the parabola and it divides AB into two halves. Apollonius has
shown in Proposition 5 of Book 2 of his work on the Conics that, if this is
the case, then the straight line KFL is parallel to the straight line AB, as the
straight line KFL is a tangent to the portion AFB of the parabola at the
point F which is the vertex of its diameter, and the straight line AL is
parallel to the straight line BK. The surface ABKL is therefore a
parallelogram which surrounds the portion AFB of the parabola. It is
therefore greater than the portion. The triangle AFB is half of the area
ABKL. Therefore, the triangle AFB is greater than half of the portion AFB
of the parabola.
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Fig. II.1.18b*

Similarly, we can show that the triangle BGC is greater than half of the
portion BGC of the parabola. If the portions ANF, FSB, BOG and GPC of
the parabola are less than the area E, <then we have found that which we
sought>, otherwise also divide <each of> the parts AH, HD, DI and IC into
two halves at the points U, Q, R and X and draw the straight lines UN, QS,
RO and XP from <each of> these points parallel to the diameter BD. Join
the straight lines AN, NF, FS, SB, BO, OG, GP and PC. As before, we can
show that the triangles ANF, FSB, BOG and GPC are greater than the
halves of the portions ABF, FSB, BOG and GPC <respectively>. If the
remaining portions ANF, FSB, BOG and GPC of the parabola are less than

* This figure is not in the manuscript.
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the area E, <then we have found that which we sought>, otherwise it is
necessary to apply the same procedure several times until we arrive at a
remainder of the portion of the parabola that is less than the area E. For any
two magnitudes, one of which is greater than the other, if we subtract from
the greatest magnitude more than its half, from the remainder more than its
half, and from the remainder more than its half, and so on in the same way,
we must at some point arrive at a remainder of the greatest magnitude that
is less than the smallest magnitude. <Let us assume> then that the
remainder of the portion which is less than the area E are the portions AN,
NF, FS, SB, BO, OG, GP and PC. Join the straight lines SO, FG and NP.
The two straight lines QS and RO are parallel to the diameter BD, and the
straight line QD is equal to the straight line RD. Therefore, the straight line
ST is equal to the straight line TO. It has been shown according to
Apollonius in Proposition 5 of Book 2 of his work on the Conics, that, if this
is the case, then the straight line SO is an ordinate to the diameter BD.
Similarly, it can be shown that the two straight lines FG and NP are
ordinates to the diameter BD, and that the straight line ordinates SO, FG
and NP are equal to the straight lines QR, HI and UX, each to its
homologue. Similarly, the parts AU, UH, HQ and QD are equal. Therefore,
the ratios of the straight lines DQ, DH, DU and DA, each to the others and
taken in succession, are equal to the ratios of the successive numbers
beginning with one. If each of these is doubled, then the ratios of the
doubles, each to the others and taken in succession, are equal to the ratios of
the successive even numbers beginning with two, as each of these numbers
is twice its homologue in the successive numbers. Twice DQ is RQ, twice
DH is IH, twice DU is XU, and twice DA is CA. The ratios of RQ, IH, XU
and CA, taken in succession, are equal to the ratios of the successive even
numbers beginning with two. We have already shown that the straight lines
RQ, IH and XU are equal to the straight lines SO, FG and NP. The ratios of
the straight lines SO, FG and NP, taken in succession, are therefore equal to
the ratios of the successive even numbers beginning with two. It is for this
reason that the ratios of the straight lines BT, TV, VW and WD, taken in
succession, are equal to the ratios of the successive odd numbers beginning
with one. We have therefore constructed the polygon ANFSBOGPC within
the portion ABC such that the portion ABC of the parabola exceeds an area
less than E. This is what we wanted to prove.

– 19 – Given a known portion of a parabola and a known area, it is
possible to construct a polygon within the portion of a parabola such that
the difference between it and two thirds of the surface whose base is that of
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the portion and whose height is also the height of the portion is a magnitude
less than the given area.

Let the given portion of the parabola be ABC, let its diameter be BD, let
its base be AC, and let the given area be E. Let the parallelogram10 AFGC
have a base AC and a height equal to that of the portion ABC.

I say that it is possible to construct an inscribed polygon within the
portion ABC of the parabola that is less than two thirds of the area AFGC
by a magnitude that is less than the area E.
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Proof: The ratio of the area E to the product of BD and AC is known.
The two straight lines BD and AC are known. We divide BD into parts such
that their ratios, taken in succession, are equal to the ratios of the successive
odd numbers beginning with one, and such that the smallest of them is that
adjacent to the point B. We find straight lines which, taken with the straight
line AC, are straight lines in the ratios of the successive even numbers
beginning with two, and the greatest of which is the straight line AC, such
that the ratio of the product of smallest part of the straight line BD and half
of the smallest of the other straight lines taken with the straight line AC, as
many times as the number of parts of the straight line BD, to the product of
BD and AC, is less that the ratio of the area E to the product of BD and AC.

Let the parts of the straight line BD be the straight lines BH, HI and ID,
and let the straight lines taken with AC be the two straight lines K and L, the
smallest of which is K. We make the two ordinates MHN and SIO passing
through the points H and I on the diameter BD. Join the straight lines AS,
SM, MB, BN, NO and OC. The ratios of the straight lines BH, HI and ID,
each to the others and taken in succession, are equal to the ratios of the
successive odd numbers beginning with one, each to the others, and the
ratios of the straight lines MN, SO and AC, each to the others and taken in

10 Lit.: surface.
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succession, are equal to the successive even numbers beginning with two,
the greatest of which is the straight line AC. The same applies to the ratios
of the straight lines K, L and AC. The two straight lines MN and SO are
equal to the two straight lines K and L, each to its homologue. The ratio of
the product of BH and half of the straight line K, as many times as the
number of parts of the diameter BD, to the product of BD and AC is
therefore less than the ratio of the area E to the product of BD and AC. The
ratio of the product of the straight line BH and half of the straight line MN,
as many times as the number of parts of the diameter BD, to the product of
BD and AC is less than the ratio of the area E to the product of BD and AC.
It is for this reason that the product of the straight line BH and half of the
straight line MN as many times as one third of the number of parts of the
straight line BD is less than the area E. If BH is perpendicular to MN, <we
have found that which we sought>*, if not, the perpendicular is less than
BH. The product of the perpendicular dropped from the point B onto MN
and half of <the straight line> MN, as many times as one third of the
number of parts of the diameter BD, is less than the area E, if BH is
perpendicular to MN. If this is not the case, the product of the perpendicular
dropped from the point B onto the straight line MN and half of the straight
line MN, as many times as one third of the number of parts of the diameter
BD, is very much less than the area E. The polygon ASMBNOC is less than
two thirds of the area AFGC by the product of the perpendicular dropped
from the point B onto the straight line MN and half of the straight line MN,

* This figure is not in the manuscript.
* With the help of Proposition 17.
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as many times as one third of the number of parts of the diameter BD. The
polygon ASMBNOC is less than two thirds of the area AFGC by a
magnitude less than the area E. This is what we wanted to prove.

– 20 – The parabola is infinite, but the area of any portion of a parabola
is equal to two thirds of the area of the parallelogram with the same base
and the same height as the portion.

Let ABC be the parabola, let DBE be one of its portions, let BF be the
diameter of this portion, and let DFE be its base. Let the parallelogram be
DGHE, whose base is DFE, and whose height is the height of the portion
DBE of the parabola.

I say that the entire parabola is infinite, and that the area of the
portion DBE of the parabola is equal to two thirds of the area of the
parallelogram DGHE.
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Proof: The parabola ABC may be extended to infinity and the two lines
BA and BC will never meet at the side of AC so as to form a surface. The
parabola therefore has no limits.

I say that the portion DBE of the parabola is equal to two thirds of the
parallelogram DGHE.

If this were not the case, then it would be either greater than two thirds
or less than two thirds. Let us assume first that it is greater than two thirds
and that the amount by which it exceeds two thirds is equal to the area I. It
is possible to draw ordinates within the portion DBE dividing the diameter
in the ratios of the successive odd numbers beginning with one. If their
extremities are joined by straight lines and the vertex of the parabola joined
to the extremities of the smallest of them, a polygon is generated within the
portion which the portion exceeds by a magnitude less than the area I. Let
KL, MN, SO and DE be the ordinates mentioned above, and let the straight
lines joining <the extremities> be the straight lines DS, SM, MK, KB, BL,
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LN, NO and OE. The polygon DSMKBLNOE, to which is added the area I,
is greater than the portion DBE of the parabola. But the portion DBE of the
parabola is equal to two thirds of the parallelogram DGHE to which is
added the area I. Therefore, the polygon DSMKBLNOE, to which is added
the area I, is greater than two thirds of the parallelogram DGHE to which is
added the area I. Eliminating the area I, which is common to both, the
remaining polygon DSMKBLNOE is greater than two thirds of the
parallelogram DGHE. We have shown in the earlier propositions that it is
less than two thirds of the parallelogram, so this is contradictory. The
portion DBE is therefore not greater than two thirds of the parallelogram
DGHE.

I say that the portion DBE is not less than two thirds of the
parallelogram DGHE.
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If this is the case, then let it be less than two thirds by a magnitude equal
to the area I. It is possible to construct an inscribed polygon within this
portion of the parabola that is less than two thirds of the parallelogram
DGHE by a magnitude that is less than the area E. Let this be the polygon
DSMKBLNOE. The polygon DSMKBLNOE, plus the area I, is greater than
two thirds of the parallelogram DGHE. But the portion DBE, plus the area
I, is equal to two thirds of the parallelogram DGHE. The polygon

* This figure is not in the manuscript.
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DSMKBLNOE, plus the area I, is therefore greater than the portion DBE,
plus the area I. Eliminating the area I, which is common to both, the
remaining polygon DSMKBLNOE is greater than the portion DBE of the
parabola. It is therefore greater than anything inscribed within it, which is
contradictory. Therefore, the portion DBE is not less than two thirds of the
parallelogram DGHE. We have already shown that it is not greater than two
thirds. Consequently, it must be equal to two thirds of the parallelogram
DGHE. This is what we wanted to prove.

The book of Thæbit ibn Qurra al-Îarrænî
on the measurement of the conic section called parabola is completed.
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2.3. MEASURING THE PARABOLOID

2.3.1. Organization and structure of Ibn Qurra’s treatise

At the time when he was writing the treatise on The Measurement of
the Parabola, had Thæbit ibn Qurra figured out, at least in his thoughts, the
treatise on The Measurement of the Paraboloids? The question quite
naturally imposes itself in the lesson of the former: the same thought, the
same language, with the exception that this time it treats space rather than
the plane. Better yet, in the former treatise Thæbit explicitly evokes three
propositions of the latter. We are somewhat struck by such similarities not
only in reasoning, but also, we shall see, in structure; and for this, let us
follow Thæbit as he determines the volume of the paraboloid.

This treatise is composed of 36 propositions, which are divided into
several groups. The first consists of the first 11 propositions, which all
pertain to numerical equalities concerning integers. They are established with
the help of two lemmas, and two propositions of the same nature borrowed
from the treatise on The Measurement of the Parabola. This group of
arithmetical propositions forms the foundation for Propositions 12 and 13,
which extend the result of Proposition 11 to magnitudes, that is to say they
generalize the result to real numbers.  It is this generalized result that will
play a role in Proposition 32.

A little later, Thæbit introduces a group of arithmetical propositions that
pertain this time to numerical inequalities, thereby preparing for the
introduction of the Axiom of Archimedes and the necessary bounds. This
group’s 11 propositions divide into three subgroups. From 22 to 27, the
propositions pertain to numerical inequalities; from 28 to 31, they interpret
these inequalities as magnitudes or real numbers – the two last propositions
study sequences of real numbers (increasing sequences in 30 and decreasing
in 31), and invoke the Axiom of Archimedes. Proposition 21 constitutes a
subgroup in itself, and has bearings on a relation of equality between four
magnitudes.

These two groups – Propositions 1–11 and Propositions 12, 13, and
21–31 – represent in themselves two levels of the graph of this treatise: the
first, on the arithmetical propositions,  concerns equalities or inequalities; the
second, built on the first, is dedicated to magnitudes, and also depends on
the introduction of the Axiom of Archimedes.

Next come a group of lemmas necessary for the last level of the graph,
which consists of Propositions 14–20. Proposition 14 is there for the
purposes of calculation, in the three ensuing propositions, of the volumes of
the frustum of the cone, of the frustum of the ‘hollow’ cone and of the
frustum of the solid rhombus. The results obtained in Propositions 15–17 are
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used in the proof of Proposition 32. Proposition 18 is required for the study
of a property of the tangent to the parabola. In Proposition 19, Thæbit
shows that the solids made by rotating two parallelograms of equal height
around their common base are equivalent. Thus a ‘hollow’ cylinder – which
Ibn al-Haytham will later call ‘conic’ – is equivalent to a right cylinder.
Ultimately, in Proposition 20, Thæbit studies the volume of the solid made
by a parallelogram rotated around a parallel to one of its bases, a solid called
a torus. The results of Propositions 18, 19 and 20 will serve in the
establishment of Propositions 33 and 34.

All is now in place in order to establish the principal propositions of the
third level of the graph, and to determine the volume of paraboloids.

One sees in this cursory  description – and one will verify it – that here
the syntactic structure also superimposes a semantic structure, both
analogous to that which we have been able to see in the case of the
parabola. But one equally observes a similar tendency toward
arithmetization, the exploitation of properties of the upper bound of a
convex set as well as its uniqueness, a recourse to Euclid’s X.1, but
generalized to apply to the case of the paraboloid. In short, we will show the
analogy of the method in the case of the parabola and in that of the
paraboloid, which underlies the structural similarity.

This book of Thæbit ibn Qurra has had a historic destiny, to the point
where it has founded a tradition of research in which one will find al-Qºhî1

and then Ibn al-Haytham.2

If one now indulges in a detailed analysis of the treatise, one first finds
definitions of different parabolic solids. Thus, Thæbit begins by distinguishing
the different types of paraboloids of revolution.  He starts by considering a
first group, for which the axis of rotation is a diameter.  He then defines
three types, according to whether the angle between the diameter and the
demi-chord considered is right, obtuse or acute. In the three cases, the
engendered solid is called a ‘parabolic dome’, where the vertex is the point
shared by the axis of rotation and the arc of the used parabola.  One then
has, respectively, a dome with a regular, a pointed and a sunken vertex.

In the second group, the axis of rotation is the base of the section, that is
to say the chord of the parabola. The engendered solid is called a ‘parabolic
sphere’, and the extremities of the fixed chord are its poles. There are then
two types: the first for which the chord is perpendicular to the axis of the
parabola – the parabolic sphere is called ‘like a melon’; the second for which
the chord is arbitrary – the parabolic sphere is called ‘like an egg’.

Thæbit finally introduces the definition of the ‘hollow cone’ and ‘solid

1 See Chapter V: al-Qºhî.
2 See Vol. II, Chapter II.
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rhombus’.  From the rotation of a triangle having an obtuse angle around
the side incident to that angle, one obtains a hollow cone, which is to say the
difference between two cones having the same base, whereas the rotation of
a triangle around a side incident to one of its accute angles gives the solid
called  a ‘solid rhombus’, which is to say the sum of two cones joined at the
base. Thæbit then passes to the arithmetical propositions. The treatise
comprises in total 17 propositions that pertain to the integers.

Dome with a regular vertex Dome with a pointed vertex

Dome with a sunken vertex

Parabolic sphere ‘like a melon’     Parabolic sphere ‘like an egg’

Hollow cone Solid rhombus
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Frustum of a cone of revolution  Frustum of a hollow cone

Frustum of a solid rhombus   Triangular torus

Recall the properties that the author uses, considering them, for the
most part, as axioms, which we denote by A; two of them are lemmas,
denoted by L, proven by reductio ad absurdum. The propositions of the
treatise on the area of the parabola that Thæbit ibn Qurra uses here will be
denoted by p.

A0: The difference between two consecutive integers is 1.
A1: The difference between two consecutive even numbers is 2.
A2: The difference between two consecutive odd numbers is 2.
A3: Between two consecutive even numbers, there is an odd number.
A4: The product of an integer and 2 is an even number.
A5: Every odd number increased by 1 gives an even number.
L6: Two consecutive squares are the squares of two consecutive integers
– Lemma proven in p1 and here in the first proposition.
A7: A square is odd if, and only if, it is the square of an odd number.
L8: Two consecutive odd squares are the squares of two consecutive
odd numbers, proven in p6.
A9: A cube is odd if, and only if, it is the cube of an odd number.
A10: Two consecutive cubes are the cubes of two consecutive integers.
A11: Two consecutive squared-squares are the squares of two
consecutive squares.
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nSigla: : lemma

Pn On the measurement of the parabola: proposition established in the treatise 
n : proposition

Notes: constitute only one proposition.  33 34and

15 16 17and are independent and are deduced from 14 .Proofs of

The usage of these properties appears clearly, as much in the text as in
the segments depicting numbers (Fig. II.2.7, p. 269 for example), but we cite
only those of which the author himself makes mention.

Note as well that Thæbit ibn Qurra uses the identities
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(x + y)2 = x2 + 2xy + y2;
(x – y)2 = x2 – 2xy + y2;
(x + y) (x – y) = x2 – y2

and assumes that the formula giving the volume of the cone is known.

2.3.2. Mathematical commentary

2.3.2.1. Arithmetical propositions

Proposition 1.
∀ n ∈ ΝΝΝΝ*, n2 – (n – 1)2 = 2n – 1.

This proposition is the same as p1. Thæbit proves it using L6.

Proposition 2.

∀ n ∈ ΝΝΝΝ*, ( ).2 1 1 2 2 1 4 2 12

1

1

n n p
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n

– )  +   =   ( – ) +   ( −
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Thæbit deduces this result from Proposition 1 using A7 and A5 and p4,
which gives the sum of odd numbers.

Proposition 3.

∀ n ∈ ΝΝΝΝ*, ( ( ) .2  –  1)  +   (2  –  1) =  2 (2  –  1) 2  –  1 +  2 n n n n p
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The proof uses A
7
 and A

9
 and is immediately deduced from Proposition

2, multiplying all the terms by 2n – 1.

Proposition 4.

∀ n ∈ ΝΝΝΝ*, (2n – 1)3 + (2n – 1) = 2 [n4 – (n – 1)4].

The result is obtained by rewriting the right side of Proposition 3.
Effectively, taking account of p

4
, we have
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But, by Proposition 1,
2n – 1 = n2 – (n – 1)2,

hence
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2n – 1 + 2 (n – 1)2 = n2 + (n – 1)2;

yet
[n2 – (n – 1)2] [n2 + (n – 1)2] = n4 – (n – 1)4.

The proof thus uses Proposition 3, A9, A11, and p3 and p4.

Comment. — Up to now, Thæbit ibn Qurra expresses the sum of the n
prime odd numbers by the square of half the even number that follows the
largest of these numbers; he expresses it here by the square of n, that is to
say the square of the integer of the same position.

Proposition 5.

∀ n ∈ ΝΝΝΝ*,    
 
  (2p −1)3

1

n

∑ + (2 p −1)
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n

∑ = 2 (2 p −1)
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2
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Thæbit ibn Qurra applies Proposition 4 for p from 1 to n:

s1 = 13 + 1 = 2 · 14  ⇒ σ1 = 2 · 14,
s2 = (2 · 2 – 1)3 + (2 · 2 – 1) = 2(24 – 14) ⇒ σ2 = s1 + s2 = σ1 + s2 = 2 · 24,
s3 = (2 · 3 – 1)3 + (2 · 3 – 1) = 2(34 – 24) ⇒ σ3 = s1 + s2 + s3 = σ2 + s3 = 2 · 34.

Suppose that up to order p – 1, we have σp-1 = 2(p – 1)4; as we have

sp = (2p – 1)3 + (2p – 1) = 2 [p4 – (p – 1)4],

it follows that
σp = σp-1 + sp = 2p4.

The result is thus true for all order p, so we have  σn = 2n4; but by p4

n4 = 2 p −1( )
p=1

n

∑










2

;

hence the result, which is thus obtained from Proposition 4 and p4.
Thbit proceeds by an archaic form of finite induction;3 he shows in

deducing σp from σp-1 that the result established for σp-1 is true for σp.

3 Cf. R. Rashed, ‘L’induction mathématique: al-Karajî - as-Samaw’al’, Archive for
History of Exact Sciences, 9.1, 1972, pp. 1–21; reprinted in The Development of
Arabic Mathematics: Between Arithmetic and Algebra, Boston Studies in Philosophy
of Science 156, Dordrecht/Boston/London, 1994, pp. 62–84.
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Proposition 6.

∀ n ∈ ΝΝΝΝ*,    (2 – 1)   (2 – 1)p p p
p

n

p

n

= =
∑ ∑− +[ ] = 



1

2

0

2

3 2 1 3 6( ) .

This result follows immediately from Proposition 5 by multiplying both
sides of the equation by 3 and pulling out the common factor of (2p – 1)
from (2p – 1)3 and  (2p – 1), recalling A9.

Proposition 7.

∀ n ∈ ΝΝΝΝ*, (2n − 2).2n + 1 = (2n −1)2 .

The proof is immediate, invoking A1 and A3. Proposition 7 is a lemma
for passing from Proposition 6 to Proposition 8.

Proposition 8.

∀ n ∈ ΝΝΝΝ*, 6 2 1 2 2 6 6 2 1
2 1

2

+  3 (2   ( ) ) ( )p p p p
p

n

p

n

− − ⋅ +[ ] = −



= =

∑ ∑ .

By Proposition 7, for 1 ≤ p ≤ n,

(2p – 2) · 2p + 1 = (2p – 1)2;

hence
3 (2p – 2) · 2p + 6 = 3 (2p – 1)2 + 3 = 3 [(2p – 1)2 + 1].

We then deduce

(2 p −1) 3 (2 p − 2).2 p + 6[ ]
p=1

n

∑ = 3 (2 p −1) (2 p −1)2 + 1[ ]
p=1

n

∑







.

Thus by Proposition 6

(1) (2 p −1)
p=1

n

∑  3 (2 p − 2).2 p + 6[ ] = 6 (2 p −1)
p=1

n

∑










2

.

But, since p = 1,
(2p – 1) [3 (2p – 2) · 2p + 6] = 6,

(1) can thus be rewritten in the form given by Thæbit:
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6 + (2 p −1) 3 (2 p − 2).2 p + 6[ ]
p=2

n

∑ = 6 (2 p −1)
p=1

n

∑










2

.

Proposition 9.

∀ n ∈ ΝΝΝΝ*, (2n – 2)2  +  (2n)2 + 2n (2n – 2) = 3 · 2n (2n – 2) + 4.

The result follows from the identity a2 + b2 = 2ab + (b – a)2 by the
addition of ab to both sides, with a = 2n – 2, b = 2n; hence b – a = 2 (by
A1).

Proposition 10.

∀ n ∈ ΝΝΝΝ*,   6 + (2 p −1) (2 p − 2)2 + (2 p)2 + 2 p(2 p − 2) + 2[ ]
p=2

n

∑ = 6 (2 p −1)
p=1

n

∑










2

.

By Proposition 9, we have, for 1 ≤ p ≤ n,

(2p – 2)2 + (2p)2 + 2p (2p – 2) + 2 = 3 · 2p (2p – 2) + 6

and Proposition 8 can thus be written in the form of Proposition 10.

Proposition 11.

∀ n ∈ ΝΝΝΝ*, 1
3

 (2( ) ) ( ) ( ) ( )2 1 2 2 2 2 2
2
3

2 12 2

1 1

p p p p p p
p

n

p

n

− − + + −[ ] + −
= =

∑ ∑

= 1
2

(2n)2  (2 p −1)
p=1

n

∑ .

Proposition 10 can be written

(1) (2 p −1) (2 p − 2)2 + (2 p)2 + 2 p(2 p − 2) + 2[ ]
p=1

n

∑ = 6 (2 p −1)
p=1

n

∑










2

,

since for p = 1 we have

(2p – 1) [(2p – 2)2 + (2p)2 + 2p (2p – 2) + 2] = 6.

But

(2 p −1) =  n2

p=1

n

∑ = 1

4
.(2n)2 (by p4);

hence
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6 2 1
3
2

2 2 1
1

2

2

1

   (( ) ) ( ).p n p
p

n

p

n

−





= ⋅ −
= =

∑ ∑

Dividing both sides of (1) by 3, we obtain the result.

2.3.2.2. Extension to sequences of segments

Proposition 12. — For 1 ≤ p ≤ n, let (bp)p≥1  be a sequence of segments
proportional to the terms in the same position in the sequence (2p – 1)p≥1

of consecutive odd numbers, and let (ap)p≥1 be a sequence of segments
proportional to the terms in the same position in the sequence (2p)p≥1 of
consecutive even numbers, if we write a0 = 0 by convention and if we

suppose b1 = a1

2
, we get

1
3 2

1
2

b  a  +  a  . a  +  a  +  
2
3

a
 b  =  

1
2

 a  bp
p=1

n

p-1
2

p-1 p p
2

p
p=1

n

n
2

p
p=1

n

∑ ∑ ∑( ) 



 .

For 1 ≤ p ≤ n, we have

  

ap

a1

= 2 p

2
,         

bp

b1

= 2 p −1
1

,      with b1 = a1

2
;

hence
b

a

p

p
p

p

= −2 1
2

.

On the other hand,
a

a

p

p
p

p

− = −1 2 2
2

and

 
a

a

p

p
p

p

+ = +1 2 2
2

.

Therefore

  

bp .  ap−1
2 + ap−1 .  ap +  ap

2( )
ap

3 =
(2 p −1) (2 p − 2)2 + 2 p(2 p − 2) + (2 p)2[ ]

(2 p)3

(for p = 1,  2p – 2 = 0 and a0 = 0). But we have

ap
3

an
3 = (2 p)3

(2n)3
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and
an

3

an
2 . bp

p=1

n

∑
= (2n)3

(2n)2 (2 p − 1)
p=1

n

∑
.

Hence

(1)     
b a a a a

a b

p p p p p

n p

p p p p p

n p
p

n

p

n

- -

= =

 +     +  

  
 =  

( – ) ( – )

 ( – )

1
2

1
2

2

1

2 2

2

1

2 1 2 2 2 2 2 2

2 2 1

⋅( ) + ⋅ − +[ ]
∑ ∑

( ) ( )

( )
.

On the other hand,

(2)

2
3 2

2
3

2 1

2 2 1

1

1

2

1

1

2

1

a
b

a b

p

n p

p
p

n

n p
p

n
p

n

p

n





 ⋅ ⋅

=
∑

∑

∑

∑

  

  
 =  

  ( – )

 ( – )
=

=

=

( )
.

If we denote by A and A′ respectively the left sides of Propositions 11
and 12, (1) and (2) give

 

A'

an
2  bp

p=1

n

∑
= A

(2n)2  (2 p − 1)
1

n

∑
.

But, by Proposition 11, we have

A = 1
2

(2n)2 (2 p − 1)
1

n

∑ .

Hence

′ =
=

∑A a bn p
p

n1
2

2

1

.

Comment. — The hypothesis b
a

1
1

2
=  is equivalent to the choice of a unit

segment, which would be b1. The segments of the two sequences can then
be expressed with respect to b1 as bp = (2p – 1) b1  and ap= p · a1 = 2p · b1;
hence
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′ = ⋅ = ⋅ −

⋅ ⋅ −

∑

∑

∑

A b A b n p

n b b p

a b

n

n

n p

n

1
3

1
3 2

1

1
2

1
1

2

1

1
2

2 2 1

2 2 1

( ) ( )

( ) ( )

.

               =  
1
2

               =  
1
2

 

But this approach is not that of Thæbit, who based his proof on
equalities between ratios. The hypotheses give

 
ap−1

ap

= 2 p − 2
2 p

  and  
ap+1

ap

= 2 p + 2
2 p

,

the denominators ap and 2p being the same in the two proportions.

In order to obtain the ratio 
bp

ap

, we begin with the  proportions

a1

ap

= 2
2 p

   and  
bp

b1

= 2 p −1
1

;

hence

 
bp

ap

 .  
a1

2b1

= 2 p −1( )
2 p

.

Letting a1

2b1

= 1, that is b1 = a1

2
, we get the proportion 

bp

ap

= 2 p − 1
2 p

,  with

denominators ap  and 2p.

This explains the choice of the condition, b1 = a1

2
, for an immediate

application of Proposition 11.

Proposition 13. — The statement follows that of Proposition 12, with the

same conclusion, but assuming that b1 ≠ a1

2
.

So let the sequence (cp), 1 ≤ p ≤ n, be defined by

b
c

1
1

2
=  and c

a

c

a
p

p

1

1

= .

We have

 

ap
2

cp
2

=
ap−1 ap

cp−1 cp

 =  
a1

2

c1
2

        for 1 ≤ p ≤ n,

from which we deduce
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1

3
 bp ap−1

2  +  ap−1 .  ap +  ap( )2
 +  

2
3

 
a1

2






2

 bp
p=1

n

∑
p=1

n

∑

1

3
 bp cp−1

2  +  cp -1 .  cp +  cp( )2
 +  

2
3

 
c1

2






2

 bp
p=1

n

∑
p=1

n

∑
 =  

a1
2

c1
2

 =  
an

2

cn
2
.

But, by Proposition 12, the denominator is equal to

1
2

 cn
2 bp

p=1

n

∑ ,

from which we deduce that the numerator is equal to

  

1
2

 an
2 bp

p=1

n

∑ .

We thus find the same result as in Proposition 12.

Comment. — The method used is based again on equalities between ratios.
The terms bp and ap are here related to different unit segments, b1 and

a1. Thæbit thus introduces a sequence (cp) such that

b1 = c1

2
,             

c1

a1

=
cp

ap

= cn

an

;

so the sequences (bp and cp) satisfy Proposition 12:

A (b, c) = 1
2

 cn
2 bp

p=1

n

∑ .

Writing A (b, a) for the left side of the sought Proposition, we have

  

A (b,  c)
A (b,  a)

= cn
2

an
2
;

hence

A (b, a) = 
  

1
2

 an
2 bp

p=1

n

∑ .

The distinction b1 = a1

2
 and b1 ≠ a1

2
 is not necessary; we can give a single

proof.
Proposition 11 can be written for all n ∈ ΝΝΝΝ*:

4
3

2 1 1
2
3

1
4
21

2 2 2

1

2

1

  – 1  +   +   +   2  =   2 – 1( )p p p p p
n

p
p

n

p

n

p

n

− ( ) +( )[ ] −( ) ( )
= = =

∑ ∑ ∑ .
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The hypotheses from Propositions 12 and 13 can be written for
1 ≤ p ≤ n as

bp  = (2p – 1) b1,

2ap  = 2p · a1 ⇔ ap  = p · a1,

from which we deduce

1
3

1 1 1

2
3 2

1
1

2
1

2
1 1

2

0

2 2

1
2

1
1

1

   +   .    =  
1
3

   2   +   .  +  

                                 =  
2
3

  . 

 b a a a a b a p p p p p

a
b b

a

p
p

n

p p p p
p

n

p
p

n

=
− −

=

=

∑ ∑

∑

+[ ] −( ) −( ) −( )[ ]






. ,

22

1

2

1
1 1

2

1

4
1

1
2

1

 2

                                      = 
1
2

  .  .  22

p

a b n b a p

p

n

n p
p

n

p

n

−( )

−( )

=

= =

∑

∑ ∑

,

.

Hence, multiplying both sides of Proposition 11 by 
  
b1 .  

a1
2

4
, we have

1
3

2
3 2

1
21

1
2

1
2 1

2

1

2

1

   +       +       b a a a a
a

b a bp
p

n

p p p p p
p

n

n p
p

n

=
− −

= =
∑ ∑ ∑⋅ +[ ] 



 = .

Proposition 14. — If five magnitudes a1, a2, a3, a4, a5 are such that
a1

a2

= a3

a4

= a4

a5

 and a1 < a2, then a1 (a5 – a3) = (a2 – a1) (a3 + a4).

The hypothesis a1 < a2 implies a3 < a4 < a5. We have

a

a a

a

a a

a

a a
1

2 1

3

4 3

4

5 4−
=

−
=

−
;

hence
a1

a2 − a1

= a3 + a4

a5 − a3

,

and therefore
a1 (a5 – a3) = (a2 – a1) (a3 + a4).

Comments.
1) The author does not specify the nature of the magnitudes. It is

necessary to take a1 and a2 of the same nature, since the hypothesis brings
their ratio into play and the conclusion invokes their difference, and likewise
to take a3, a4 and a5, of the same nature, for the same reasons. If, for
example, a1 and a2 are lengths and a3, a4 and a5 areas, the conclusion bears
upon volumes (this will be the case in  Propositions 15–17).
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2) The hypothesis a1 < a2 is needed in the expression of the differences
a2 – a1 and a5 – a3.

If a1 > a2, the conclusion is a1(a3 – a5) = (a1 – a2)(a3 + a4).

3) If we designate by 1
k

, k ∈ R+ – {0}, the common value of the ratios,

we have a2 = k a1, a4 = k a3, a5 = k2 a3; the proposition follows from the
identity

k2 – 1 = (k – 1) (k + 1).

2.3.2.3. Volumes of cones, rhombuses and other solids

In Propositions 15–17, the solid of revolution under consideration is the
difference between two homothetic solids, with the ratio of homothety being
that between given radii that are presupposed as being known. The volume
of the cone of revolution being known, the sought volume is expressed in
the three cases as sums or differences of volumes of cones of revolution and
the formula is the same for the three solids studied.

Proposition 15. — Volume of the frustum of a cone of revolution.
The figure is drawn in a meridian plane. The centres L and M of the

base circles and the point K of intersection between AD and BE are aligned.
The volume of the frustum of a cone of revolution of height h and with

base circles of radius r and R is V = 1
3

 π h (R2 + r R + r2).

The sought volume is V = V (KDE) – V (KAB).

E

A B

D

K

M

L

Fig. 2.3.1

Let H = KM; we have H – h = KL. We have r

R
= H − h

H
, as LA || MD.

Thæbit introduces an auxiliary circle of radius r′ = √rR; we thus have

r2

rR
= rR

R2
= r

R
= H − h

H
,

H − h

H
= πr2

πrR
= πrR

πR2
;
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and, by applying Proposition 14,

 (H – h) (πR2 – πr2) = h (πr2 + πrR).

If we add πh · R2
  to both sides, we have

πHR2 – π(H – h)r2 = h(πr2 + πrR + πR2).

Hence

V = 1
3

 h (πr2 + πrR + πR2).

Comment. — In fact, for the homothety K
r

R
,



 , we have

r

R

H h

H
= − ;

hence
r

R r

H h

h−
= − ,

and thus

H – h = h r

R r

⋅
−

  and  H = R h

R r

⋅
−

.

Hence

V = 1
3

  π  · h · R r

R r

3 3−
−

= 1
3

   π · h. (R2 + r R + r2).

Proposition 14 replaces the identity

R r

R r

3 3−
−

= R2 + r R + r2.

Proposition 16. — Volume of the hollow cone and of its frustum.
The figure is drawn in a meridian plane. The two vertices H and G, the

centres of the circles, the intersection M of the straight lines DA and EB are
aligned, and, moreover, one has AB || DE and AG || DH (see the definitions
in the introduction).

The volume of the frustum of a hollow cone with base circles of radius
R and r and axial height h is

V = 1
3

  π · h (R2 + r R + r2).

Thæbit first calculates the volume of the two hollow cones:
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V (MEHD) = 1
3

 π MS · R2 – 1
3

 π HS · R2 = 1
3

 π H1 · R
2, with H1 = MH,

V (MAGB) = 1
3

π MN · r2 – 1
3

 π GN · r2 = 1
3

 π(H1 – h) · r2.

The volume of the frustum of the hollow cone is then

V =  1
3

 π h · R2 +  1
3

 π (H1 – h) (R2 – r2).
M

L

K I

DE

F

G

B

C H

N A

<S>

Fig. 2.3.2

If we set, as in Proposition 15, r′ 2 = r R, then

 r

r

r

R′
= ′  and r

r

r

R

r

R

H h

H

2

2

2

2
1

1′
= ′ = = − .

Hence
H1 − h

H1

= πr2

πrR
= πrR

πR2 .

As in Proposition 15, one finishes by applying Proposition 14.

Proposition 17. — Volume of a solid rhombus and of its frustum.
The solid rhombus consisting, by definition, of the sum of two cones of

the same base, the method is the same as in Proposition 16 and the given
formula for the volume V is the same:

V = 1
3

π · h (R2 + r R + r2).

Proposition 18. — Let AB be an arc of a parabola of diameter CD, and
let E and F be two points on the arc AB. From A, E and F we produce, on
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the one hand, three parallel straight lines between them that intersect the
diameter at the points G, H and I respectively and, on the other hand, three
straight lines parallel to the diameter which intersect the tangent at E at
the points K, E and L respectively.

C

I

H

G

D

L

F

O

M

E

K

A

N

SB

Fig. 2.3.3

If AG – EH = EH – FI, then AK = FL = 1
2

(GH – HI).

We have
IF || AG and IG || FM;

hence
IF = GM.

Likewise,
 HG || ES and HE || AG;

hence
HE = GS.

We then have

AG – EH = EH – FI ⇔ EH = 1
2

(AG + FI) ⇔ GS = 1
2

 (AG + GM);

thus S is the midpoint of MA, and ES intersects AF at its midpoint N. But
ES || CD, so ES is the diameter associated with the chord AF, and AF is
parallel to the tangent at E. We thus have

AK = LF = NE = SE – SN = GH – 1
2

 MF = GH – 1
2

 (GH + HI)  

    = 1
2

 (GH – HI).
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In the particular case where F coincides with C, H = O and M = G, so if

MS = 1
2

 MA, we have

LF = AK = 1
2

 (MO – OF) = 1
2

 (GH – HI).

Comments.
1) The established result does not depend on the common direction of

the straight lines AG, EH and FI.

2) The equality GS = 1
2

 (AG + GM) says that the three diameters from

the points A, E and F are equidistant parallels.
Reconsider the parabola with the reference defined by the diameter DC

and the tangent at C, let y2 = ax be its equation, with a the latus rectum
relative to DC. We have

yF  = yE – α,   yA = yE + α,   xN  = x xA F+
2

.

C

D
x

y

α

N

K

A

E

L

α

F

Fig. 2.3.4

But

xA + xF = 1
a

yA
2 + yF

2( ) = 1
a

2yE
2 + 2α 2( ),

hence

xN = xA + xF

2
= 1

a
yE

2 + α 2( ).

But

xE = 1
a

 yE
2 ;

hence

EN = xN − xE = AK = 1
a

 .  α 2.
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Thus for every arc AF of a parabola, the tangent parallel to the chord AF
determines on the diameters passing through A and F two equal segments:

AK = FL =
yF − yA( )2

4a
.

Proposition 19. — If two parallelograms ABCD and AEFD with common
base AD have their bases BC and EF on the same straight line ∆ parallel
to AD, then by rotation about ∆, the two parallelograms produce solids of
equal volume.

AD

F C E B

<∆>

Fig. 2.3.5

The figure from the text gives the points along ∆ in the order BECF.
We have BC = EF; hence BE = CF. The triangles EAB and FDC are equal
and give equal volumes upon rotation about ∆; hence

vol. (ABCD) = vol. (ABFD) – vol. (DCF),
vol. (AEFD) = vol. (ABFD) – vol. (ABE).

Hence
vol. (ABCD) = vol. (AEFD).

Comments.
1) The order of the points E, B, F, C along ∆ may be different from

that of the text. In every case, the triangles DFC and AEB correspond to
each other by translation by the vector AD, and whether they produce solid
rhombuses or hollow cones, their volumes are equal.

A

BC

D

EF
∆

AD

EF BC

h

Fig. 2.3.6
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2) The volume described by each of the parallelograms, whether in the
form of a right cylinder or a hollow one,4 is equal to a right cylinder. In
every case, the volume is

V = π AD · h2,

if h is the distance between the segments AD and ∆, that is, the height of
each of the parallelograms.

Proposition 20. — Let ABCD and EFGH be two parallelograms placed in
the same plane on the same side of the straight line ∆ that contains the two
bases BC and FG; if BC = FG, then ADHE is a parallelogram and the
solids produced by rotating the three parallelograms about ∆ satisfy

vol. (ADHE) = vol. (ABCD) – vol. (EFGH).

G F C B

H E

AD

Fig. 2.3.7

The method used is that same as in Proposition 19, proceeding by sums
or differences of volumes. It is clear that the quadrilaterals BAEF and
CDHG are equal, since CDHG is deduced from BAEF by the translation of
vector BC. The solids produced by rotating these two quadrilaterals about ∆
correspond according to the same translation, and their volumes are thus
equal:

vol. (ABFE) = vol. (CDHG).

But
vol. (BAEHG) – vol. (CDHG) = vol. (ABCD) + vol. (ADHE)

and
vol. (BAEHG) – vol. (ABFE) = vol. (EFGH);

hence
vol. (ADHE) = vol. (EFGH) – vol. (ABCD).

4 Note that Ibn al-Haytham calls the ‘conic cylinder’  WÞd�M*«  W½«uDÝ_« .
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Comment. — In the figure from the text, the height h with respect to FG is
greater than the height h′ with respect to CB; hence vol. (EFGH) >
vol. (ABCD) and the equalities are written according to this hypothesis. But
we can have h ≤ h′; hence vol. (EFGH) ≤ vol. (ABCD). The general result is
thus

vol. (ADHE) = vol. (ABCD) – vol. (EFGH) .

2.3.2.4.  Property of four segments

Proposition 21. — If a, b, c, d are four segments such that a =
b
3

 and c
d
2

= ,

then ac2 + b (c2 + d2 + cd) – (a + b) d2 > ad2.

c
d=
2

 ⇒ c
d2

2

4
=  a

b
=

3
⇒  a

a b= +
4

;

hence
c

d

a

a b

2

2 =
+

 or c2 (a + b) = ad2.

But by hypothesis c

d
> a

b
; hence c.d

d2
> a

b
 and consequently bcd > ad2; hence

bcd + (a + b) · c2 > 2 a · d2,

and, subtracting a · d2 from both sides, we have

ac2 + b (c2 + cd) – ad2 > ad2.

Hence we have the conclusion

ac2 + b (c2 + cd + d2) – (a + b) d2 > ad2.

Comment.

1) Thæbit placed himself at the particular case b

a
= 3, d

c
= 2; these are the

values that come up in Proposition 33. But these numerical values only arise
in expressing the conditions

(1) b

a

d

c
>  and  (2) 1 + b

a

d

c
=

2

2 .   

The proposition is thus true under hypotheses (1) and (2), which are
stronger than those of its statement above. Note that for n an integer, n ≥ 2,
d

c
 = n and b

a
  = n2 – 1 satisfy conditions (1) and (2).
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2.3.2.5. Arithmetical propositions

Proposition 22.

  ∀ p ∈    N*, p (p + 1) = (p – 1)2 + (p – 1) + 2p.

The result is immediate. Thæbit cites A0.

Proposition 23.

  ∀ p ∈    N*, (p + 1)2 + (p – 1)2 = p [(p – 1) + (p + 1)] + 2.

If we set  a = p – 1, b = p, c = p + 1, then

c = b + 1, hence c2 = cb + c
b = a + 1, hence ba = a2 + a
c2 + a2  = cb + ba + (c – a)

   = b (c + a) + 2
(use of A0).

In Propositions 24, 25 and 27, the hypotheses are the same. They
pertain to three consecutive integers B = p – 1, C = p, D = p + 1 to which
are associated the odd numbers of the same position:

F = 2(p – 1) – 1, G = 2p – 1, H = 2(p + 1) – 1.

Observe that the numbers A = 1 and E = 1 mentioned by Thæbit do not
appear in the proofs. They arise only to specify that he here means the
sequence of natural integers and the sequence of odd numbers, both starting
with 1, and that B, C, D on the one hand, and F, G, H on the other, have
the same position in their respective sequences.

Proposition 24.

∀ p ∈    N*, p(2p – 1) [(p – 1) + (p + 1)] + 2p (p + 1) >
(2p – 1) [(p – 1)2 + (p + 1)2] + 2(p – 1)2.

Call the two sides of the inequality I and II; taking account of
Propositions 22 and 23, we have

I = (2p – 1) [(p + 1)2 + (p – 1)2] – 2(2p – 1) + 2(p – 1)2 + 2(p – 1) + 4p.

But
2(p – 1) + 4p – 2(2p – 1) = 2p,
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I = II + 2p;

hence
I > II

(use of A2 and A4).

Proposition 25.

∀ p ∈∈∈∈    N*, (2p – 1) [(p – 1)2 + p2 + p.(p – 1)] + (2p + 1) [p2 + (p + 1)2 + p.(p + 1)] >
[(2p – 1) + (2p + 1)] [(p – 1)2 + p2 + (p +1)2].

Proposition 24 can be written

p(p – 1) (2p – 1) + p(p + 1) (2p + 1) > (2p + 1) (p – 1)2 + (2p - 1) (p + 1)2,

and adding to both sides the expression

(2p – 1) [(p – 1)2 + p2] + (2p + 1) [p2 + (p + 1)2],

we obtain Proposition 25.

Proposition 26.

∀ p ∈∈∈∈    N*, (p – 1) (p + 1) + 1 = p2.

This proposition is a lemma for which the proof is immediate (use of
A0).

Proposition 27.

∀ p ∈∈∈∈    N*,  (2p – 1) [(p – 1)2 + p2 + p.(p – 1)] + (2p + 1) [p2 + (p + 1)2 + p.(p + 1)]
– [(2p – 1) + (2p + 1)] [(p – 1)2 + (p – 1) (p + 1) + (p + 1)2]  > (p + 1)2 – (p – 1)2.

We start from Proposition 25 wherein we transform the right side,
taking account of Proposition 26 and the equality

(2p – 1) + (2p + 1) = 4p = (p + 1)2 – (p – 1)2,

which is deduced from p3.
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2.3.2.6. Sequence of segments and bounding

Proposition 28. — For 1 ≤ p ≤ n, let (ap) be a sequence of segments
proportional to the consecutive integers p and let (bp) be a sequence of
segments proportional to the consecutive odd numbers 2p – 1. If one
supposes that a1 = b1, then

b  a  +  a  . a  +  a  +  b  a  +  a  . a  +  a

 b  +  b  a  +  a  . a  +  a  >  b  a  –  a

p p-1
2

p p 1 p
2

p+1 p
2

p p+1 p+1
2

p p+1 p-1
2

p-1 p+1 p+1
2

1 p+1
2

p-1
2

−( ) ( )
− ( ) ( ) ( )

.

We have for 1 ≤ p ≤ n
a1

ap

= 1
p

  and  b

b pp

1 1
2 1

=
−

,  with a1 = b1;

hence
bp

ap

= 2 p −1
p

.

We also have
ap−1

ap

= p −1
p

, setting a0 = 0,  

and
ap+1

ap

= p + 1
p

.

We deduce

b a a a a

a

p p p p p

p
p p p p p

p

  +     +  
 =  

(  –  )  –   +  (  –  ) +  - -1
2

1
2

3

2 2

3

2 1 1 1⋅( ) ( ) ⋅[ ]

b a a a a

a

p p p p p

p

b b a a a a

a

p

p p p p p

p

p p p p p p

p

+ + +

+ − − + +

( ) [ ]

( ) ( )

1
2

1 1
2

3

2 2

3

1 1
2

1 1 1
2

3

2 1 1 1 

 

 +   .  +  
 =  

(  + )  +  .(  +  ) +  (  +  )  

 +    +   .  +  
 =  

(2  --  1) +  (  + )   -  1)  +  ( -1) (  +  ) +  (  +  )  2 1 1 12 2

3

p p p p p

p

[ ] [ ](
;
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likewise
a

b a a

p

p p
p

p p

3

1 1
2

1
2

3

2 21 1  –  
 =  

(  + )  –  (  –  )-+( ) .

Thus, designating the left side of the sought inequality by A and that of the
inequality from Proposition 27 by A′, we have

A

b a a

A

p pp p1 1
2

1
2 2 21 1  –  

 =  
(  + )  –  (  –  )

 
++( )

′ .

But, by Proposition 27,
A′ > (p + 1)2 – (p – 1)2,

and we thus have
A b a ap p >    –   -1 1

2
1

2
+( ) .

Proposition 29. — The statement is the same as that of Proposition 28, but
we suppose that a1 ≠ b1.

Thæbit then introduces a sequence (cp), 1 ≤ p ≤ n, such that

a1

c1

=
ap

cp

 and  c1= b1;

the two sequences (cp) and (bp) then satisfy the inequality from Proposition
28:

 
b c c c c b c c c c

b b c c c c b c c

p p p p p p p p p p

p p p p p p p

  +     +   +    +   .  +  

  +    +     +   >    –  

- + + +

+ - - + + +

1
2

1
2

1
2

1 1
2

1 1
2

1 1 1
2

1 1
2

⋅( ) ( )
− ( ) ⋅( )

−

pp
2( ).

.

Designate by C and D the two sides of this inequality, and by A and B the
two sides of the sought inequality.

From a1

c1

=
ap

cp

 for 1 ≤ p ≤ n, we deduce that

a

c

a

c

a

c

a a

c c

a a

c c

a a

c c
p

p

p

p

p

p

p p

p p

p p

p p

p p

p p

2

2
1

2

1
2

1
2

1
2

1

1

1

1

1 1

1 1

= = = = =−

−

+

+

−

−

+ − +

−

 . 

 . 

 . 

 

 . 

 .  + +.
.

Hence
A

C

B

D
= .

But we have C > D and hence A > B.



MEASURING THE PARABOLOID 235

Comment. — Propositions 28 and 29 can be deduced from Proposition 27
without distinguishing a1 = b1 and a1 ≠ b1. In fact, we have for 1 ≤ p ≤ n,
setting a0 = 0,

p =
ap

a1

,   p −1 =
ap−1

a1

,   p +1 =
ap+1

a1

,   2 p −1 =
bp

b1

,   2 p + 1 =
bp+1

b1

.

If we transfer these expressions into the inequality in Proposition 27, we
let a denominator of b a1 1

2  appear on the left side and a1
2  on the right.

Multiplying both sides by a b1

2

1 , we have the sought inequality (by analogy
with Propositions 12 and 13).

Reasoning geometrically, however, we understand why Thæbit
separated the two cases: the first corresponding to a homothety, whereas the
second requires  an affine transformation.

Proposition 30. — Let a, b, c be three magnitudes such that a < b < c. We
take as given the pairwise ratios of these magnitudes. We consider the

increasing sequence (ap)p≥1 defined by 
ap

ap+1

= a
b

 with a1 = a and a2 = b; then

there exists n such that an+1 > c.

If c

a
 and b

a
 are known, then b − a

a
 is also. We have a < b < c, hence

c – a > b – a; thus there exists n > 1 such that n (b – a) > c – a.

Moreover,
a

b
=

ap

ap+1

 ⇒  
b − a

a
=

ap+1 − ap

ap

;

but  a < ap and hence  ap+1 – ap > b – a, for  p ≥ 2.

We then deduce

b a a a n b a c ap p
p

n

− + −( ) − −+
=
∑     >   >  1

2

( ) ;

hence
an+1 – a > c – a  and  an+1 > c.

Conclusion:  if n(b – a) > c – a, then  an+1 > c.

Comments.
1) The existence of the number n follows from the Axiom of

Archimedes. If n is the smallest integer solution to the problem, we have
an < c < an+1.
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2) The author proceeds by iteration (supposing n = 3).
3) The terms of the increasing sequence (ap)p≥1 are in continuous

proportion:
a1

a2

= a2

a3

=  ...  = an

an+1

=  ...,

a

b
 being the common value of the ratios. Hence

∀ n ≥ 2,  we have   a

an+1

= a

b






n

,    with a

c
< a

b
< 1;

and we have the equivalence of the two results:

∃ n > 1,  an+1 > c   ⇔  ∃ n > 1,  a

b






n

< a

c
.

The sequence up = a

b






p

  is decreasing and  
n→∞
lim  un =  0.

Let us recall that the Axiom of Archimedes takes two forms: additive
and multiplicative. The first states that if α  and β  are two arbitrary

magnitudes of the same kind, then there exists an integer n such that n α >

β; the second states that if a, b, c are magnitudes of the same kind such that

b > a, then there exists an integer n such that b

a






n

> c

a
.  We derive the

second form from the first by setting b

a
 = 1 + θ,  where θ = b a

a

− , and by

showing that (1 + θ)n > 1 + nθ; in fact, we then have

b

a






n

= 1 + θ( )n > 1 + nθ > c

a

when  nθa > c – a.

Thæbit proceeds as follows to prove Proposition 30: he establishes that

 an+1 – a > n(b – a)

for sufficiently large n, the sequence (ap) being defined according to

ap

ap+1

= a

b
.
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The construction of this geometric sequence points to the multiplicative
aspect, while the additive aspect is found in the consideration of the
differences ap+1 – ap and the inequality ap+1 – ap > b – a, which comes from

ap+1 − ap

ap

= b − a

a
  and ap > a.

This approach applied to (1 + θ)
n
 > 1 + nθ  is expressed thus:

1 1
1

+( ) − = ( )∑
−

θ θ θn p p

p

n

  (1+ )  –  (1+ )+1

=0
,

(1 + θ)p+1 – (1 + θ)p = (1 + θ)p θ > θ.

This commentary shows that Thæbit was able to move away from

Euclid’s Proposition X.1, which is less general, as it assumes a

b
< 1

2
; Thæbit

uses only the hypothesis that a

b
 < 1.

Proposition 31. — Let AB, CD, E and FG be magnitudes such that
AB > CD and E < FG < AB. If we subtract from AB a magnitude X1 such
that  

X
AB

E
FG

1 ≥ ,

from the remainder (AB – X1) a magnitude X2 such that

X
AB – X

E
FG

2

1

≥ ,

and if we continue likewise, we necessarily reach a remainder smaller than
CD.

A M L B

C D I K

E

G H F

Fig. 2.3.8
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Let H be upon GF such that GH = E and let I be upon CD beyond D
such that

DI

DC

HG

HF
= .

We have

CI > CD   and CI

CD

CD DI

DC

HG HF

HF

GF

HF
= + = + = .

We may have either 1) CD < AB < CI
or 2) CD < CI < AB.

• If CI > AB,
AB

CD

CI

CD
< ;

thus
AB

CD

FG

FH
< .

We take L along AB such that
BL

AB

GH

GF
= .   

Then
AB

AL

FG

FH
= .

Thus
AB

AL

AB

CD
> ,

and hence AL < CD; AL is the sought segment.

• If CD < CI < AB, we can by Proposition 30 find magnitudes in
continuous proportion, starting with CD and CI and reaching a magnitude
greater than AB:

CD

CI

CI

CK

CK

CK

CK

CK
n

n

= = = … = −

1

1 , with CKn > AB.

Suppose that CK has the desired property, CK > AB. Then

DI

DC

IK

IC

GH

HF
= = .

Let L and M be on AB such that
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(1) BL

BA

E

FG
≥

and

(2) LM

LA

E

FG
≥ .

Then
BL

AL

GH

HF
≥ .

Hence

(3)  BL

AL

IK

IC

DI

DC
≥ =  .

Likewise, we have

(4) ML

MA

DI

DC
≥ .

From (4) we deduce
AL

MA

CI

CD
≥ .

But
BM

MA

BL

MA

LM

MA

BL

AL

AL

MA

LM

MA
= + = ⋅ + ;

hence
BM

MA

DI

DC

CI

CD
≥ +



1 .

But
CI

CD

CK

CI

IK

ID
= = ;

hence
CI

CD

IK

ID

DK

ID
+ = + =1 1 .

We thus have

(5) BM

MA

KD

DC
≥ .

Hence
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BA

AM

KC

CD
≥ ;

that is to say,

(6) BA

KC

AM

CD
≥ .

• If BA

KC
= AM

CD
, since we have assumed KC > BA, then AM < CD, AM is

the desired remainder.

• If BA

KC
> AM

CD
, there exists on AB a point N such that BA

KC
= AN

CD
; thus

AN > AM. But KC > BA implies AN < CD and a fortiori AM < CD; AM is
the desired remainder.

Comments. — After having established (3) and (4), Thæbit says: ‘From that,
one shows that the ratio of BM to MA is not smaller than the ratio of KD to
CD’; he thus goes without proof from (3) and (4) to (5). We have preferred
to go from (3) and (4) as Thæbit indicates.

But we may go directly from (1) and (2) to (6) without using (3) and (4).
In fact

BL

BA

E

FG
≥  ⇒ AL

BA

FH

FG
≤ ,

LM

LA

E

FG
≥  ⇒ AM

LA

FH

FG
≤ .

Hence
AM

BA
 ≤ FH

FG






2

.

But
FH

FG
 = 

CD

CI

CI

CK
= ;

hence

 FH

FG






2

 = CD

CK
.

We thus have
AM

BA
 ≤ 

CD

CK
,
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and hence

(6) BA

KC

AM

CD
≥ .

We then finish as Thæbit indicated.

The interesting aspect of the second method is that it can be generalized
to the case where it is necessary to consider the continuous proportion up to

order n to obtain CKn > AB. In fact, we then have CD

CKn

= FH

FG






n+2

.

To the point Kn we associate the point Mn such that  

AM

AB
n  ≤ FH

FG






n+2

;

hence
AM

BA
n   ≤ 

CD

CKn

.

We then have
AB

CK

AM

CDn

n≥

and we conclude as in the preceding; AMn is the desired remainder.

Thæbit had not shown the role of successive powers of FH

FG
, associated

with the successive terms CI, CK, … , CKn of the continuous proportion,
whereas he had used such successive powers in the proof of Proposition 30.
Perhaps he simply made a concession to a more archaic style of writing for
Proposition 31.

In his statement, Thæbit considers two magnitudes AB and CD,
AB > CD, and two other magnitudes E and FG such that E < FG < AB.

The hypothesis E < FG serves to define a ratio E

FG
 = k < 1. But the

condition FG < AB does not show up in the reasoning.
So we may put the problem in the following form:

Let a and b be two magnitudes, with a < b, and let k < 1 be a ratio; if
we consider the sequence (bp) defined by
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1
b
b

k1> ≥ , 1 b
b – b

k2

1

> ≥   … 1 > 

 

bp

b − bi
i=1

p−1

∑
 ≥ k … .

Then there exists n ∈ N* such that

b − bi
i=1

n

∑  <  a.

Let a0 be defined by

a

a

k

k
0

1
=

−
.

Hence
a a

a k

+ =
−

0 1
1

.

• If a + a0 > b, then a > b – kb, but b1 ≥ kb; hence a > b – b1. The
desired result is then attained for n = 1.

• If a + a0 ≤ b, we consider the sequence (ap) defined by

 a1 = a,  a2 = a + a0 and a

a

a

a

a

a
p

p

1

2

2

3 1

= = … =
+

.

By Proposition 30, there exists n ∈ N* such that an < b < an+1. But

a

a

a

a a
k1

2 0

1=
+

= − .

Hence

      
a

a
kp

p+

= −
1

1 for p from 1 to n,

from which we deduce

     a

a
k

n

n1

1

1
+

= −( ) , with a1 = a.

Moreover, by the definition of the sequence bp, we have

b

b
k1 ≥  ⇒ b b

b

− 1   ≤ 1 – k,

b

b b
2

1−
 ≥ k  ⇒ 

b b b

b b

− +( )
−
1 2

1

  ≤ 1 – k  ⇒ 
b b b

b

− +( )1 2   ≤ (1 – k)2.
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Suppose the result holds up to order (p – 1), i.e. that

(1)
b − bi

i=1

p−1

∑

b
 ≤ (1 – k)p-1.

For order p, we have

(2)

  

bp

b − bi
i=1

p−1

∑
≥  k   ⇒   

b − bi
i=1

p

∑

b − bi
i=1

p−1

∑
≤  (1 −  k) ,

so

 (1) and (2) ⇒ 
b − bi

i=1

p

∑

b
 ≤ (1 – k)p.

The result is thus true for 1 ≤ p ≤ n, and hence for p = n; we have

b − bi
i=1

n

∑

b
 ≤ a

an+1

, as (1 – k)n = a

an+1

.

But
an+1 > b;

hence
b − bi

i=1

n

∑  < a.

Comments.
1) The construction of the sequence (bp) is done by an archaic

induction, less explicit than the induction applied by Ibn al-Haytham.5

2) The terms bp are not defined in a unique manner, but each bp is to be
taken in the defined interval starting with bp-1:

b > b1 ≥ k b,

b – b1 > b2 ≥ k (b – b1),

…

b − bi
i=1

p−1

∑  > bp  ≥ k ( b − bi
i=1

p−1

∑ ).

5 Cf. Vol. II.
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The propositions that follow are dedicated to the study of the volume of
a parabolic dome described by a parabolic section ABC rotated about the
diameter BC, AC being the ordinate associated to BC.

Propositions 32–35 invoke a division of the diameter BC into n
segments proportional to the consecutive odd numbers 1, 3 … 2n – 1. The
abscissae of the points of this division are then proportional to the squares of
consecutive integers and, by the equation of the parabola, the ordinates
associated with them are proportional to consecutive integers, properties
established by the author in p16. Therefore, two sequences of segments
satisfy the hypotheses of Propositions 13, 21 and 29. The construction of
such segments was used in p17 and p18.

To each partition of BC into n segments there correspond  n circles
inscribed on the parabolic dome. The smallest is the closest to the vertex; let
r1 be its radius and s1 its area. The largest is the circle at the base described
by A; let rA = rn be its radius and sA its area.

2.3.2.7. Calculation of the volumes of paraboloids

Proposition 32. — Let the diameter BC be divided by the n points E0 = B,

E1, E2 … En = C such that 
E  E

E  E
 =  

2p –  1
1

p 1 p

0 1

−  and let there be on the arc

BA the points D0 = B, D1 … Dn = A that are associated to them. Let Sn be
the solid produced by the rotation about BC of the polygon BD1D2 … AC
and vs its volume. Then

vs + 2
3

BC · s
4
1  = 1

2
 BC · sA.

By hypothesis,
E E

E E

pp p− = −1

0 1

2 1
1

, 1 ≤ p ≤ n,

and we deduce

E D

E D

p pp p

1 1 1
2
2

= = (Fig. 2.3.9 below).

First case (Fig. II.2.32a, p. 313, and Fig. 2.3.9 below): The diameter BC
is the axis of the parabola; then EpDp  ⊥  BC, and EpDp is the radius rp of the
circle  described by Dp. The two sequences (Ep-1Ep) and (EpDp) satisfy the
hypotheses of Proposition 13, and we thus have
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(1)  

1
3

1
3

2
3 4

1
2

1 1 1 1 1
2

1 1
2

2

1

    +         +       +    

+        

- - - - -
=

BE s E E E D E D E D E D

BC
s

BC s

p p p p p p p p p p
p

n

A

⋅ ⋅( )





⋅ = ⋅

∑π

.

E  = B = D

E D

D

D

E  = C

E

D  = A

0

1

n-1

n
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Fig. 2.3.9

Using the established expressions in Proposition 15 for the volumes of
the cone of revolution described by the right-angled triangle BE1D1 and the
frusta of the cone described by the rectangular trapezoids Ep-1EpDpDp-1,
volumes for which the sum is the volume vs of the solid Sn, we have

vs + 2
3

BC · s
4
1  = 1

2
 BC · sA,

which we may write as

vs +  
2
3

 π BC .  
r1
2







2

 =  
1
2

 π .  BC .  rA
2 .

Second and third cases (Fig. II.2.32b, c, p. 313, and Fig. 2.3.10 below):
we drop from the points D1 D2 … Dn = A, the perpendiculars D1F1, D2F2…
AFn onto BC, and we have for 1 ≤ p ≤ n

E D

F D

E D

F D
p p

p p

1 1

1 1

= .

Hence
F D

F D

pp p

1 1 1
= ;
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the sequences (Ep-1 Ep) and (Fp Dp) satisfy the conditions of Proposition 13.
Replacing E1 D1, Ep-1 Dp-1, Ep Dp from (1) respectively by F1 D1, Fp-1 Dp-1,
Fp Dp, we recover the expressions for volumes described by the triangle
BE1D1 and by the trapezoids Ep-1 Ep Dp Dp-1: expressions established in
Propositions 16 and 17. The sum of these volumes is vs and we have as in
the first case

vs + 2
3

BC ·  
s1

4
 = 

1
2

 BC · sA.

B

F

E

E

F

E

F

E

D

D

A

r

rA

1

2

n-1

n

1
1

1 2

n

n-1

n-1

C

D

nD

Fig. 2.3.10

Comments.
1) In the second case, the solid described by the triangle BED is a

hollow cone and the solids described by the trapezoids are all frusta of
hollow cones. But in the third case, the type of the solids generated depends
on the angles EBD, GD′F and GF′F, if we denote by D′ and F′ the points
of intersection of the respective segments FD and AF with the diameter BC.

The triangle DBE produces:

a solid rhombus if EBDˆ  < π
2

 (Fig. II.2.32c, p. 313)  

a hollow cone if EBDˆ  > π
2

 (Fig. 2.3.11 below)

a cone if  EBDˆ  = π
2

.

The trapezoid EDFG produces:

a frustum of a solid rhombus if GD F′ˆ  < π
2

   (Fig. II.2.32c, p. 313)
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a frustum of a hollow cone if GD F′ˆ  ≥ π
2

   (Fig. 2.3.11 below).

A
F

D

D

B

E

G

C

F′

′

Fig. 2.3.11

In the case of Fig. II.2.32c, we have a solid rhombus and two frusta of
solid rhombuses; in the case of Fig. 2.3.11, we have a hollow cone, a
frustum of a hollow cone and a frustum of a solid rhombus, since

GF′F < π
2

.

2) We may note here, as we have already seen in the case of the
parabola, that the subdivision of the diameter according to the odd numbers
adopted by Thæbit arranges the ordinates in an arithmetic progression such
that the integration is accomplished according to ordinates instead of
abscissae: in our terms the volume

π π π π
y dx

ydy

p p
r BC r

BC

A A
2

0

4 2

4∫ ∫ ⋅ ⋅  =  y    =    =  
2

   2

0

rA

,

writing the equation for the parabola as y2 = 2px. Hence

r p BCA
2 2 =    ⋅    and   dx  = ydy

p
.

Propositions 33 and 34. — It is possible to inscribe in every parabolic
dome of revolution of volume v a piecewise conic solid Sn whose volume vs

satisfies v – vs < ε, with ε  being a given known volume.

Proposition 33. — The parabolic dome under consideration has the same
axis as that of the parabola.
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Let v1 be the volume of the cone ABC. If v – v1 < ε, the problem is
solved.

If v – v1 ≥ ε, we consider the division of AC into two equal parts,

denoted e1 = (I0, I1, I2), with I0 = C, I2 = A, I0 I1 = 1
2

 I0 I2, and we associate

it on the diameter BC with the division d1 = (E0, E1, E2), with E0 = B and
E2 = C, satisfying6

E E E E0 1 1 2

1 3
= ,

and on the arc AC of the parabola with the points F0 = B, F1 and F2 = A.
We then have

E F E F1 1 2 2

1 2
=

and we apply Proposition 21 to obtain

BE E F E E E F E F E F E F BC AC BE AC1 1 1
2

1 2 1 1
2

2 2
2

1 1 2 2
2

1
2⋅ + + + ⋅[ ] − ⋅ > ⋅ .

F  = E  = B

E  =  I  = C A = I  = F

E F

10

0 0

22 2

1 1

I

Fig. 2.3.12

But by p16, BE1 and E1F1 are the coordinates of F1; thus on multiplying

both sides of the inequality by 1
3

π, with v2 the volume of the solid S2

described by AF1BC, we obtain

v2 – v1 > 1
3

π · BE1 · AC2;

6 We write the ratio in this way in order to simplify notation. Thæbit would have

written E E

E E
1 2

0 1

3

1
= .
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and using the tangent to the point F1 and the property of the subtangent,
Proposition 18, as well as Proposition 19, we show that

 
1
3

π · BE1 · AC2 > 1
3

 (v – v1).

Hence

v2 – v1 > 1
3

 (v – v1),

from which we deduce

v – v2 < 2
3

 (v – v1).

• If v – v2 < ε, the solid S2 solves the problem.

• If v – v2 ≥ ε, we repeat the process by dividing AC into 22 equal parts
according to the subdivision e2 = (I0, I1, I2, I3, I4), with I0 = C, I4 = A and

I I I I I I I I0 1 0 2 0 3 0 4

1 2 3 4
= = = ;

on BC we associate it with the subdivision d2 (E0, E1, E2, E3, E4), with E0 =
B and E4 = C, satisfying

E E E E E E E E0 1 1 2 2 3 3 4

1 2 5 7
= = = ,

 

F
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E

E

E

F

F
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F  = E  = B

2

3 3

2

4 4

1 1

0

00

4 1 2 3III

Fig. 2.3.13
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and on the arc AB with the points F0 = B, F1, F2, F3, F4 = A, we then have

E F E F E F E F1 1 2 2 3 3 4 4

2 4 6 8
= = = .

So, by Proposition 29, we get

 
E E E F E F E F E F E E E F E F E F E F

E E E F E F E F E F E E E F E F

2 3 2 2
2

2 2 3 3 3 3
2

3 4 3 3
2

3 3 4 4 4 4
2

2 4 2 2
2

2 2 4 4 4 4
2

0 1 4 4
2

2 2
2

+ ⋅ +( ) + + +( )
− + ⋅ +( ) > −( )

.

.

Hence we deduce

v E2F2F3E3( ) + v E3F3F4E4( ) − v E2F2F4E4( ) > 1

3
πE0E1 E4F4

2 − E2F2
2( ).

The left side is the volume of the torus described by the triangle A F3 F2

and we show using the tangents to F1 and F3
7

 and Propositions 18–20 that

1

3
π E0 E1 E4 F4

2 − E2 F2
2( )  > 

1
3

v. sg. (AF3F2);

thus

v · tr. (AF3F2) > 1
3

 v. sg. (AF3F2).

Likewise,

v · tr. (F2F1B) > 
1
3

 v · sg. (F2F1B).

Hence by addition

v3 – v2 > 
1
3

 (v – v2),

and hence

v – v3 < 
2
3

 (v – v2) < 
2
3







2 (v – v1).

If v – v3 < ε, the solid described by the polygon BF1F2F3AC solves the
problem.

If v – v3 ≥ ε, we repeat the process to obtain

7 i.e. S and O in the text.
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v – v4 < 2
3

(v – v3)  <  2
3







3 (v – v1),

…

v – vn < 2
3

(v – vn-1)  <  2
3







n-1 (v – v1).

The sequence so obtained is decreasing, and we can find n such that

2
3







n−1

v − v1( ) < ε

and a fortiori v – vn < ε.

The solid Sn corresponding to the division of AC into 2n equal parts
solves the problem.

Comments.

1) Thæbit does not use the decreasing sequence 2
3







p

, but relies upon its

reasoning in Proposition 31; yet we have seen that the proof of this last
general case is made using a sequence (1 – k)p with (1 – k) < 1.

2) To show that the tangent at O and that at S meet the diameter FG at
the same point R (Fig. II.2.33b, p. 320), it suffices to show that OO′ = SS′,
O′ and S′  being the respective midpoints of FB and FA. This follows from
Proposition 18:

AQ = SS′ =  1
2

 (CP – KP) = BU,

as
 KP = 5 BU  and  PC = 7 BU

and, on the other hand,
 OO′  = I′B = BU.

Proposition 34. — The axis BC of the dome is an arbitrary diameter of
the parabola (see Fig. II.2.34a , b, pp. 324, 325).

By successively dividing AC into 2, 22, … , 2n equal parts, we construct
as in Proposition 33 the solids S1, S2, …, Sn inscribed in the dome. As in the
second and third cases of Proposition 32, we drop perpendiculars from the
vertices of the obtained polygons to the axis of the paraboloid. Thæbit
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rehashes the reasoning in referring to each stage of the preceding
proposition. Thus, in every case, we can find n such that v – vn < ε.

Proposition 35. — In every parabolic dome ABC with vertex B (regular
or not), and axis BD, we can inscribe a solid whose volume vS is less than
half the volume V of the cylinder whose base is the circle of diameter AC
and whose height is equal to BD, and differs by a quantity less than a
given volume ε.

F

E

C D A

O
<N >

P

B

N

S

1

Fig. 2.3.14

We thus want to determine a solid whose volume vS satisfies

 0 < 
V

2
 – vS < ε.

Now we have shown in Proposition 32 that if the axis BD is partitioned
into n segments proportional to 1, 3, 5, …, 2n – 1, we can associate with this
partition a solid Sn whose volume vS satisfies

V

2
− vS = 2

3
π r1

2






2

 .  BD,

with r1 the radius of the circle closest to the vertex B. We thus have to show
that we can determine a partition of BD by which we have

(1) 2
3 2

61
2

1
2π ε π εr

BD r BD



 ⋅ < ⇔ ⋅ <  .

Thæbit’s approach comprises two parts:
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B
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C Q
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P

O
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B

U
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P
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D
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Q

C

Fig. 2.3.15

a) With given volumes V and ε, to make use of (1) in part b) of this

proposition, we have to set η = 6ε. We define the volume F by

V

F

F=
η

.

We then have
V

F






2

= V

η
.

In the three cases, AD is an ordinate; we consider an ordinate ON
satisfying

AD

ON

V

F
> .

We then have

 AD

ON

V2

2 >
η

.

• First case:  AC = 2AD, ON ⊥ BD. The ratio of volumes of the right
cylinders of radii AD and ON and of height BD is

π
π

⋅ ⋅
⋅ ⋅

=BD AD

BD ON

2

2

AD

ON

V2

2 >
η

.

But in this case we have

V = π · BD · AD2;

hence
 π · BD · ON2 < η.
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• Second and third cases: AC meets the axis BD at point Q, AC = 2AQ.
We produce from O the perpendicular to BD, so OU || AQ and ON || AD,
hence

AQ

OU

AD

ON

V

F
= >  and  AQ

OU

AD

ON

V2

2

2

2= >
η

.

Then
π
π η

⋅ ⋅
⋅ ⋅

>BD AQ

BD OU

V2

2 .

But, in the two cases,
V = π · BD · AQ2;

hence
 π · BD · OU2 < η.

If we designate by rN the radius of the circle described by the point
O (rN = ON or rN  = OU), we thus have in the three cases

(2) π η     BD rN⋅ <2 .

Comment. — The inequality AD

ON

V2

2 >
η

 does not define a unique point N, but

it is satisfied by all the points of a segment. By the equation of the parabola,

we have  AD

ON

BD

BN

2

2 = , and N thus satisfies BN

BD V
< η  or BN < 

η ⋅ BD

V
.

Let N1 be the point defined by BN
BD

V1 = ⋅η ; then all points N on the

segment BN1 verify the inequality.

b) In order for a solid Sn associated to a partition of BD into segments
proportional to consecutive odd numbers to solve the problem, it suffices
that the first point of the partition should be a point of the preceding
segment BN1.

Let N be this point and let APOBD be the polygon corresponding to the
partition of BD. We then have r1 = rN; thus, on the one hand,

V
v

r
BDS

N

2
2
3 2

2

 –   =      π 



 ⋅  by Proposition 32;

on the other hand,
π BD .  rN

2 <  η     with η = 6 ε  by (2).

But
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2
3 2 6

2 2

 .  =  
r rN N



 ,

and thus
V

2
 – vS < ε.

Comment. — The result of Proposition 35 could have been directly obtained
from Proposition 32 without using part a) of Proposition 35. The solid Sn

corresponds to a partition of AD into n equal segments; we thus have r1 =
AD

n
. The problem is to find n so that r1 satisfies (1), i.e.

  

r1
2







2

 <  
3ε

2π .  BD
 ⇔  

1

n2
 <  

6ε
π .  BD .  AD2

 ⇔  n2 >  
π .  BD .  AD2

6ε
 ⇔  n2 > V

6ε
;

V and ε  are given.

We may thus ask why Thæbit did not follow this path. This style of
writing was perhaps too arithmetical for the ninth-century mathematician.

Proposition 36. — The volume v of every parabolic dome ABC with axis
BD is half the volume V of the cylinder of height h and whose base is a
circle of diameter AC,

v = 1
2

 V = 1
2

  π h · AC
4

2

. [Fig. II.2.36, p. 331]

Thæbit proceeds by reductio ad absurdum.

• Suppose v > V

2
 and let v = V

2
 + ε.

By Propositions 33 and 34, it is possible to inscribe in the dome a solid
of revolution of volume vS such that v – vS < ε, so vS + ε > v. Thus vS + ε >
V

2
 + ε, and hence vS  > V

2
, which is absurd since in Proposition 35 we have

shown that vS < V

2
.

• Suppose v < V

2
and let V

2
 = v + ε.

By Proposition 35, it is possible to inscribe in the dome a solid of

volume vS  such that V

2
 – vS < ε or vS + ε > 

V

2
. Then vS + ε > v + ε, and

hence vS > v, which is absurd since the solid is inside the dome. We thus
have
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v = 
V

2
.

(1) Here, Thæbit refers to Proposition 35, but in Proposition 32 we have
shown that

v
V

h rS  =   –    
2

2
3 1

2π ;

thus

vS   < V

2
;

and in Proposition 35 we have used Proposition 32 to show that for a given
ε  we can find a solid whose volume vS satisfies

V

2
 – vS < ε.

The inequality vS < 
V

2
 does not require a reductio ad absurdum, but

Thæbit wanted, in all evidence, to keep to the strict apagogical rhetorical
method.

2.3.2.8. Parallel between the treatise on the area of the parabola and the
treatise on the volume of the paraboloid

In the two treatises, Thæbit uses a subdivision of the diameter of a
parabolic section into segments proportional to consecutive odd numbers.
The points of the parabola corresponding to this subdivision are then
abscissae proportional to the squares of integers and ordinates proportional
to consecutive integers.

These points determine:

in the plane: in space:
a polygon inscribed in the parabola and
decomposed into trapezoids

s area of the parabola
S area of the associated parallelogram
si area of a trapezoid

a solid of revolution inscribed in the
paraboloid and decomposed into conic-type
solids

v volume of the paraboloid
V volume of the associated cylinder
vi volume of a conic solid

Thæbit shows that, given ε > 0, we can find N such that for all n > N,
we have
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2
3 1

S si
i

n

 –   <  
=
∑ ε (Propositions 17 and 19)

V
vi

i

n

2
 –   <  

=
∑

1

ε
 
(Propositions 32 and 35)

s si
i

n

 –   <  
=
∑

1

ε     (Proposition 18) v vi
i

n

 –   <  
=
∑

1

ε   ( Propositions 33 and 34).

In other words, he has thus shown that

2
3

 =  upper bound  S si
i

n

=
∑

1

V
vi

i

n

2
 =  upper bound  

=
∑

1

s si
i

n

 =  upper bound  
=
∑

1

v vi
i

n

 =  upper bound 
=
∑

1

By a reductio ad absurdum, he then shows in each case the uniqueness of
the upper bound:

s = 2
3

S    (Proposition 20) v =  V

2
   (Proposition 36)



2.3.3. Translated text

TTTThhhhææææbbbbiiiitttt ibn Qurra

On the Measurement of the Paraboloids



In the name of God, the Merciful, the Compassionate

THÆBIT IBN QURRA

On the Measurement of the Paraboloids

<Definitions>

The solid figures which I call paraboloidal are of two sorts: one is
obtained by the rotation of a segment of a parabola about a straight line, I
call this sort the paraboloid of revolution; the other is obtained by the
rotation of a straight line about the perimeter of a segment of a parabola.

Among the paraboloids of revolution, there are two genera which
comprise five species. The first of the two genera is that surrounded by half
of a portion of the parabola, when its diameter is fixed and one of the two
parts of the line of the parabola is rotated at the same time as one of the
two halves of its base, which is adjacent to it, from an arbitrary position up
to where it returns to its original position; I call this genus the parabolic
dome. By the expression half of a portion of the parabola I mean that
which has been limited by the diameter of that portion and one of the two
halves of the line of the parabola which are on opposite sides <of that
diameter> and half of the base of the portion. The other genus is that
surrounded by a portion of the parabola when its base is fixed and the line
of the parabola is rotated around it from an arbitrary position up to where it
returns to its original position. I call this genus the parabolic sphere. I call
the vertex of the portion about which one rotates the half to generate the
parabolic dome the vertex of the dome. I call the two extremities of the
base of the portion which one rotates to generate the parabolic sphere the
two poles of the <parabolic> sphere.

The parabolic dome is of three species. The first is obtained by rotating
a half of the portion of the parabola whose diameters are the axes;1 I call
this species the dome with a regular vertex because of the regularity of its
vertex in its emergence in relation to that which surrounds it. The second

1 In the case where the diameter chosen as axis of rotation is the axis of the
parabola.
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species is obtained by rotating the most distant half from the axis, among
the two halves of the portion of the parabola whose diameters are not the
axes;2 I call this species the dome with a pointed vertex because of the great
elevation of the height of its vertex and of its emergence in relation to that
which surrounds it. The third species is obtained if we rotate half of the
portion of the parabola whose diameters are not axes;3 I call this type the
dome with a sunken vertex because of the depression of its vertex in
relation to that which surrounds it.

The parabolic sphere is of two species. The first is obtained by rotating
a portion of the parabola whose diameters are axes; I call this species a
<parabolic sphere> like a melon, as the shapes of these figures are
rounded4 and similar to the shapes of some kinds of melon. The other
species is obtained by rotating a portion of the parabola whose diameters
are not axes. I call it a <parabolic sphere> like an egg because of the
thinness of one of its extremities and of the thickness of the other
extremity.

If, in an obtuse-angled triangle, one of the sides that enclose the obtuse
angle is fixed and if we rotate the two sides which remain, then I call the
figure thus generated a hollow cone of revolution. If one of the two sides
that enclose an accute angle of a triangle is fixed and if we rotate the two
sides which remain of the triangle, then the figure thus generated is called a
solid rhombus.

If a plane parallel to the base of a cone of revolution cuts it, then I call
the portion of cone located between that plane and the base of the cone a
frustum of a cone of revolution.5 If we take away a hollow cone of
revolution from another hollow cone of revolution, such that the angle of
the two generating triangles for the two cones, which is at the vertex of the
two cones, is common to the two triangles and such that the two straight
lines of the two triangles, intercepted by that angle are parallel, then I call
the portion which remains a frustum of a hollow cone of revolution.6 I call
the homologue of this in the solid rhombus a frustum of a solid rhombus.7

If an arbitrary figure and a straight line are in the same plane such that
the straight line is outside of that figure, if we fix the straight line and if we
rotate about it the plane with the figure which it contains from an arbitrary
position up to where it returns to its original position, then I call the solid

2 In the case where the diameter chosen is not the axis.
3 See the previous note.
4 Lit.: in form of a dome.
5 Lit.: the residue of the cone of revolution.
6 Lit.: the residue of the hollow cone of revolution.
7 Lit.: the residue of the solid rhombus.
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bounded by this figure which is in the plane a torus. If this figure is
triangular, I call the solid a triangular torus; if it is squared, I call it a
square torus, and so on in the same way for the others.

– 1 – Given two successive square numbers, the difference between
them is equal to twice the side of the smaller of them, increased by one.

Let AB and C be two successive square numbers, let the side of AB be
the number DE and let F be the side of C; let GB be equal to C.

I say that AG is equal to twice F, increased by one.

B

C

DA

F

HEG

Fig. II.2.1

Proof: The two squares A B and C are successive; therefore the
difference between their sides is one, as if it were not thus, there would be
a number between them and its square would be between the two square
numbers AB and C; this is not possible, as the two numbers AB and C are
two successive squares.

If we suppose HE to be equal to F, then DH will be one and the square
of the number DE will be equal to the sum8 of the squares obtained from
DH and HE and the double-product of DH and HE. Regarding the square
of HE, it is C as HE is equal to F. Regarding the square of DE, it is AB and
the difference between AB and C is the number AG. The double-product of
DH and HE , plus the square of D H, is equal to the number AG . The
double-product of DH and HE is twice HE, as DH is one; regarding the
square of DH, it is one, thus the number AG is equal to twice HE, increased
by one. But HE is equal to F; thus the number AG is equal to twice F,
increased by one. That is what we wanted to prove.

< 2 > If an odd square number is increased by one, then the sum is
equal to twice its side, plus the quadruple of the sum of the successive odd
<numbers> beginning with one and which are less than the side.

Let A be an odd square number, let B be its side and let the successive
odd <numbers> beginning with one and which are less than B be the odd
numbers C, D, E.

8 We sometimes add ‘sum’ for the purposes of the translation.
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I say that if one is added to the number A, the sum will be equal to
twice the number B, plus the quadruple of the sum of the <numbers> C, D,
E.

B

C

D

A

F

E

Fig. II.2.2

Proof: The number B is odd, as it is the side of the number A which is
odd. If one is added to it, the sum will be even. Let the number F be this
sum and let the number G be the square of the number F. The number G is
thus the quadruple of the square of half of the number F. But the square of
half of the number F  is equal to the sum of the numbers C, D, E , B,
according to what has been shown in proposition four of our treatise On the
Measurement of the Parabola; thus the number G is the quadruple of the
sum of the numbers C, D, E, B; this is why the number G from which one
subtracts twice the number B is equal to the quadruple of the sum of the
numbers C, D, E, plus twice the number B. But the number A is less than
the number G by twice B, which is the side of the number A, increased by
one, as the two numbers A  and G are successive squares; indeed, the
difference between the two numbers B and F, which are their sides, is one.
If one is thus added to the number A, the sum will be equal to twice the
number B, plus the quadruple of the sum of the numbers C, D, E. That is
what we wanted to prove.

< 3 > If we add to an odd cubic number its side, then the sum is equal
to the double-product of the side of the cube with itself and twice the sum
of the successive odd <numbers> beginning with one and which are less
than it.

Let A be an odd cubic number, B its side and C, D, E the successive
odd numbers beginning with one and which are less than B.

I say that the sum of the numbers A and B is equal to the double-
product of the number B with itself and twice the sum of the numbers C, D,
E.
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Proof: The number B is odd, as it is the side of the cube A which is
odd; this is why the square of the number B is odd. Thus, if one is added to
it, the sum will be <even and> equal to twice B, plus the quadruple of the
sum of C, D, E;9 this is why the product of the number B and the square of
the number B – square increased by one – is equal to the sum of the
product of the number B and its double and the quadruple of the sum of C,
D, E. The product of the number B and the square of the number B – square
increased by one – is consequently twice the sum of the product of the
number B with itself and twice the sum of the numbers C, D, E. But the
product of the number B and the square of the number B is the cube A and
the product of the number B and one is equal to the number B; thus the
cube A, plus the number B, is equal to twice the product of the number B
with itself and twice the sum of the numbers C, D, E. That is what we
wanted to prove.

– 4 – Given successive odd cubic numbers beginning with one and, in
equal number, other numbers, namely squares of the successive square
numbers which are associated with them and beginning with one, if we
then add to each of the cubic numbers its side, the sum is equal to twice the
difference between the squares of that the one of the square numbers which
is associated with it and of that which preceeds it, if there is a number that
preceeds it; otherwise it is equal only to its double.10

Let A, B, C, D be successive odd cubic numbers beginning with one
and let, in equal number, E, F, G, H be other numbers, namely squares of
the successive square numbers which are associated with them and
beginning with one, let I be the side of the cube A, K the side of B, L the
side of C and M the side of D.

I say that if we add to each of the numbers A, B, C, D its side, then the
sum is equal to twice the difference between its associated number, among

9 By Proposition 2.
10 That is to say, to twice the square of the square number which is associated with

it.
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the numbers E, F, G, H, and that which preceeds it, and that if we add A
and I, their sum is equal to twice E.

B

C

D

A

F

E

M

K

L

I

G

H

Fig. II.2.4

Proof: If we suppose that the square numbers which are the sides of the
numbers E, F, G, H are, in succession, the numbers N, S, O, P, then the
numbers N, S , O, P are successive squares beginning with one. The
differences11 between the successive square numbers beginning with one
are the successive odd numbers beginning with three, according to what
has been shown in proposition three of our treatise On the Measurement of
the Parabola. But the successive odd numbers beginning with three are the
numbers K, L, M, as they are the sides of the cubes B, C and D which are
the cubes of the successive odd numbers beginning with the first of the odd
cubic numbers;12 thus the difference between the two numbers N and S is
the number K, the difference between the two numbers S and O  is the
number L and the difference between the two numbers O and P  is the
number M. The sum of the double-product of the number K and N, the
square of the number K and the square of N is equal to the square of the
number S. This is why the difference between the square of the number S
and the square of N  is equal to the sum of the double-product of the
number K and N, and the square of the number K. But the square of N is E
and the square of the number S is F; therefore the difference between E and
F is equal to the sum of the double-product of K and N, and the square of
the number K. But N is equal to the sum of the odd numbers less than the
number K, as has been shown in proposition three of our treatise On the
Measurement of the Parabola.13 The difference between E and F is thus
equal to the sum of the products of the number K, once with itself and
twice the sum of the odd numbers which are less than it; it is thus equal to
the sum of the products of the number K with itself and twice the sum of
the odd numbers which are less than it. But the two numbers B and K, if we
add them up, are equal to twice the sum of the products of the number K

11 Lit.: the difference. What matters here is the sequence of the differences between
the successive square numbers taken two by two.

12 Other than one.
13 See Propositions 3 and 4.
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with itself and twice the sum of the odd numbers which are less than it,14 as
the number B is an odd cube and its side is the number K; the two numbers
B and K, if they are added, are thus equal to twice the difference between
the two square numbers E and F. Likewise, we also show that the two
numbers C and L, if they are added, are equal to twice the difference
between the two numbers F and G, and that the two numbers D and M, if
they are added, are equal to twice the difference between the two numbers
G and H. It is clear that A, plus I, is twice E. That is what we wanted to
prove.

– 5 – If we add all the successive odd cubic numbers beginning with
one and if we add to them their sides, then the sum is equal to twice the
square of the number that is equal to the sum of the sides.

Let A, B, C, D be successive odd cubic numbers beginning with one, E,
F, G, H their sides and the number I the sum of the sides.

I say that if the numbers A, B, C, D, E, F, G, H are added, the sum is
equal to twice the square of the number I.
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Proof: If we let the number K be equal to the sum of E and F and if we
let the number L be equal to the sum of E, F and G – with the number I
being equal to the sum of E, F, G, H – then the numbers E, K, L and I will
be successive squares, beginning with one; this was shown in the third
proposition of our treatise On the Measurement of the Parabola, as the
numbers F, G, H are successive odd numbers beginning with three. If we
let the squares of the numbers E, K, L, I, be the numbers M, N, S, O, then
the numbers M, N, S, O are the squares of the successive square numbers
beginning with one. But the numbers A, B, C, D are successive odd cubes
beginning with one, and their sides are E, F, G, H. If it is thus, if then A
and E are added, the sum is equal to twice M and if B and F are added, the
sum is equal to twice the excess of N  over M ;15 thus the sum of the
numbers A, B, E, F is twice the number N. Likewise, if the two numbers C
and G are also added, the sum is twice the excess of the number S over the
number N. If the numbers A, B, C, E, F, G are added, the sum is equal to

14 By Proposition 3.
15 By Proposition 4.
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twice the number S. By this example, it has been also shown that the sum
of the two numbers D and H is twice the excess of the number O over the
number S. The numbers A, B, C, D, E, F, G, H, if they are added, are equal
to twice the number O. But the number O is the square of the number I;
thus the numbers A, B, C, D, E , F, G, H, if they are added, are equal to
twice the square of the number I. That is what we wanted to prove.

– 6 – Given successive odd numbers beginning with one, then the sum
of the products of each of them and the triple of its square, increased by
three, is equal to six times the square of the number equal to the sum of
these odd numbers.

Let A, B, C be successive odd numbers beginning with one, the number
D their sum and the numbers E, F, G their successive squares.

I say that the sum of the product of A and the triple of E, increased by
three, the product of B and the triple of F, increased by three, and the
product of C and the triple of G, increased by three, is equal to six times
the square of the number D.
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Proof: If we let H be the product of A and E, I the product of B and F
and K the product of C and G, then the numbers H, I, K are successive odd
cubic numbers beginning with one, their sides are A, B, C and the sum of
these sides is D; thus the sum of the numbers A, B, C, H, I, K is equal to
twice the square of the number D;16 this is why the triple of the sum of the
numbers A, B, C, H, I, K is equal to six times the square of the number D.
The triple of H is equal to the product of A and the triple of E, the triple of I
is equal to the product of B and the triple of F and the triple of K is equal to
the product of C and the triple of G; thus the triple of the sum of A, B, C
and the sum of the product of A and the triple of E, the product of B and the
triple of F and the product of C and the triple of G is equal to six times the
square of the number D. But the sum of the products of each <of the
numbers> A, B, C and three is equal to the triple of the sum of the numbers
A, B, C; thus the sum of the product of A and the triple of E, to which we

16 By Proposition 5.
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add three, the product of B and the triple of F, to which we add three, and
the product of C and the triple of G, to which we add three, is equal to six
times the square of the number D. That is what we wanted to prove.

– 7  – If one is added to the planar number obtained from the
multiplication of two successive even numbers by each other, then the sum
obtained is equal to the square of the odd number that is between the two
even numbers.

Let A be a planar number and let its sides be two successive even
numbers BC and D, and EF the odd number that is between the two even
numbers.

I say that if one is added to the number A, the sum will be equal to the
square of the number EF.
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Proof: The numbers D, EF and BC are successive; thus the difference
between each of them and that which follows it is one. If we let FG be
equal to D, CH equal to EF and if we also let CI be equal to D, each <of
the numbers> BH, HI, EG will be equal to one. But the product of BC and
D is equal to the product of BI and IC, plus the square of IC. But the
product of BI and IC is equal to the double-product of HI and IC, as HI is
half of BI, the product of BC and D is thus equal to the double-product of
HI and IC, plus the square of IC. Regarding HI, it is equal to EG and IC is
equal to GF; thus the product of BC and D is equal to the double-product
of EG and GF, plus the square of GF. If we add one on both sides, which is
the square of EG, then the product of BC and D, to which one is added, is
equal to the sum of the double-product of EG and GF  and of the two
squares obtained from GF and EG. Yet, this is equal to the square of the
number EF; thus the product of BC and D, to which one is added, is equal
to the square of the number EF. But the product of BC and D is equal to the
number A. If one is added to the number A, then the sum will be equal to
the square of EF. That is what we wanted to prove.

– 8 – Consider successive odd numbers beginning with three and, in
equal number, the planar numbers which are associated with them,
obtained from the multiplication of the successive even numbers beginning
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with two, each by that which follows it; then if we add the products of each
of the successive odd <numbers> and the triple of its associate, among the
planar numbers, increased by six, to the product of one and six, the sum
will be equal to six times the square of the number equal to the sum of the
odd numbers, including unity.

Let A, B, C be the successive odd numbers beginning with three; let D,
E , F be the planar numbers, in equal number, which are associated with
them, obtained from the multiplication of the successive even numbers
beginning with two, each by that which follows it; let G be unity, let H be
six and let I be the number equal to the sum of the numbers G, A, B, C.

I say that the product of G and H, the product of A and the triple of D,
increased by H, the product of B and the triple of E, increased by H, and
the product of C and the triple of F, increased by H, have a sum equal to
six times the square of the number I.
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Proof: If we let the squares of G, A, B, C be the numbers K, L, M, N,
with the numbers G , A , B , C being the successive odd <numbers>
beginning with one, and their squares being K, L, M, N, then the sum of the
product of G and the triple of K, increased by three, the product of A and
the triple of L, increased by three, the product of B and the triple of M,
increased by three, and the product of C and the triple of N, increased by
three, is equal to six times the square of the number I.17 If we let the
successive even numbers beginning with two be the numbers S, O, P, Q,
then the odd number A will be between the two numbers S and O, the odd
number B will be between the two numbers O and P, and the odd number
C will be between the two numbers P and Q. But the product of the number
S and the number O is the planar number D; if one is added to the number

17 By Proposition 6.
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D, the sum will be equal to the square of the number A , which is the
number L.18 Likewise, we also show that if one is added to the number E,
the sum will be equal to the square of the number B, which is the number
M, and that if one is added to the number F, the sum will be equal to the
square of the number C, which is equal to the number N. This is why, if we
add three to the triple of each of the numbers D, E, F, the sum will be equal
to the triple of its homologue19 among the numbers L, M, N. If we add the
number three on both sides, if we then add six to the triple of each of the
numbers D, E , F, the sum will be equal to the triple of its homologue
among the numbers L, M, N, increased by three. The sum of the product of
A and the triple of L, increased by three, the product of B and the triple of
M, increased by three, and the product of C and the triple of N, increased
by three, is equal to the sum of the product of A  and the triple of D ,
increased by six, the product of B and the triple of E, increased by six, and
the product of C and the triple of F, increased by six.

If we let the product of G and the triple of K, increased by three, which
is equal to its product and H, on both sides, then the sum of the product of
G and the triple of K, increased by three, the product of A and the triple of
L, increased by three, the product of B and the triple of M, increased by
three, and the product of C and the triple of N, increased by three, is equal
to the sum of the product of G and H, the product of A and the triple of D,
increased by six, the product of B and the triple of E, increased by six, and
the product of C and the triple of F, increased by six. Yet, we have shown20

that the sum of the product of G and the triple of K, increased by three, the
product of A and the triple of L, increased by three, the product of B and
the triple of M, increased by three, and the product of C and the triple of N,
increased by three, is equal to six times the square of the number I. The
sum of the product of the number G and H, the product of A and the triple
of D, increased by H – which is six – the product of B and the triple of E,
increased by H, and the product of C and the triple of F, increased by H, is
equal to six times the square of the number I. That is what we wanted to
prove.

< 9 > For every pair of successive even numbers, the sum of their
squares and the planar number obtained from their product by each other is
equal to the triple of their product by each other, increased by four.

18 By Proposition 7.
19 That is to say, the sum associated with each of the numbers is the triple of the

homologue of that number: 3D + 3 = 3L.
20 In Proposition 6.
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Let A and BC be two successive even numbers, let the number D be the
square of A, the number E the square of BC and let the number F be the
product of A and BC.

I say that the sum of the numbers D, F, E is equal to the triple of the
number F, increased by four.
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Proof: If we let CG be equal to A, then the two squares obtained from
BC and CG have a sum equal to the double-product of BC and CG, plus the
square of BG. If we let the product of BC and CG on both sides, then the
two squares obtained from BC and CG and the product of BC and CG have
a sum equal to the triple of the product of BC and CG, plus the square of
BG. But CG is equal to A, thus the sum of the two squares obtained from A
and BC – which are D and E – and the product of A and BC – which is F –
is equal to the triple of the product of A and BC – which is the triple of F –
increased by the square of BG. But the square of BG is four as BG is two;
indeed, it is the difference between two successive even numbers. The sum
of the numbers D, F, E is equal to the triple of the number F, increased by
four. That is what we wanted to prove.

– 10 – Given successive odd numbers beginning with three and, in
equal number, the planar numbers which are associated with them,
obtained by the multiplication of the successive even numbers beginning
with two, each by its successor, then the sum of the products of each of
these odd numbers and its associate among the planar numbers and the
squares of the two sides of that planar number, increased by two, and the
product of one and the number six, is equal to six times the square of the
number equal to the sum of the odd numbers, including the unit.

Let A , B , C be successive odd numbers beginning with three and, in
equal number, the planar numbers D, E, F which are associated with them,
obtained by the multiplication of the successive even numbers beginning
with two, each by its successor, their sides <being> the successive even
numbers G, H, I, K beginning with two and whose squares are the numbers
L, M, N, S; let the unit be O, let <the number> six be P and let the number
U be equal to the sum of the numbers O, A, B, C.

I say that the sum of the product of O and P, the product of A and the
sum of the numbers D, L, M, plus two, the product of B and the sum of the
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numbers E, M, N, plus two, and the product of C and the sum of the
numbers F, N, S, plus two, is equal to six times the square of the number U.
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Proof: The two numbers G and H are successive even numbers, their
squares are the two numbers L and M, their product by each other is the
number D, the sum of the numbers D, L, M is thus equal to the triple of the
number D, increased by four.21 If we let the number two on both sides, the
sum of the numbers D, L, M, plus two, is equal to the triple of the number
D, increased by six. Likewise, we also show that the sum of the numbers E,
M, N, plus two, is equal to the triple of the number E, increased by six, and
that the sum of the numbers F, N, S, plus two, is equal to the triple of the
number F, increased by six. The sum of the product of A and the sum of the
numbers D, L, M, increased by two, the product of B and the sum of the
numbers E, M, N, increased by two, and the product of C and the sum of
the numbers F, N, S, increased by two, is equal to the sum of the product of
A and the triple of D, increased by six, the product of B and the triple of E,
increased by six, and the product of C and the triple of F, increased by six.
If we let the product of O and P on both sides, then the sum of the product
of O and P , the product of A  and the sum of the numbers D, L , M ,
increased by two, the product of B and the sum of the numbers E, M, N,
increased by two, and the product of C and the sum of the numbers F, N, S,
increased by two, is equal to the sum of the product of O and P, the product
of A and the triple of D, increased by six, the product of B and the triple of
E, increased by six, and the product of C and the triple of F, increased by
six. But the sum of the product of O and P, the product of A and the triple
of D, increased by six, the product of B and the triple of E, increased by
six, and the product of C and the triple of F, increased by six, is equal to
six times the square of the number U.22 Indeed, these numbers that we have
mentioned are such that, on the one hand, the numbers A , B , C  are
successive odd numbers beginning with three and, on the other, the

21 By Proposition 9.
22 By Proposition 8.
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numbers D, E, F are the planar numbers, in equal number, which are
associated with them, obtained by the multiplication of the successive even
numbers beginning with two, each by its successor; <the number> O is the
unit, <the number> P is six, <the number> U is equal to the sum of the odd
numbers O, A, B, C. The sum of the product of O and P, the product of A
and the sum of the numbers D, L , M, increased by two, the product of B
and the sum of the numbers E, M, N, increased by two, and the product of
C and the sum of the numbers F, N, S, increased by two, is thus equal to six
times the square of the number U. That is what we wanted to prove.

– 11 – Given successive odd numbers beginning with one and, in equal
number, successive even numbers beginning with two which are associated
with them, if we multiply each of the odd <numbers> by the square of its
associate, among the even <numbers>, and if its associate is preceeded by
an even <number>, we also multiply it by the square of that even
<number> and by the planar number obtained from the multiplication of
that associate by <the even number> that preceeds it; if we add all of those,
if we take its third and if we add to it two thirds of the number equal to the
sum of the odd numbers, then the result will be equal to half of the product
of the number equal to the sum of the odd <numbers> and the square of the
greater even <number>.

Let A, B, C, D be successive odd numbers beginning with one and, in
equal number, let the successive even numbers beginning with two which
are associated with them be E, F, G, H; let the planar <number> of E times
F be the number I, and the planar <number> of F times G be the number K,
and the planar number of G times H be the number L, and let the number M
be equal to the sum of the numbers A, B, C, D.

B

C

D

F

E

G

A

M

I

K

L

H

Fig. II.2.11

I say that if we add the product of A and the square of the number E,
the product of B and the sum of the squares of the two numbers E, F, and
the number I, the product of C  and the sum of the squares of the two
numbers F, G, and the number K, and the product of D and the sum of the
squares of the two numbers G, H, and the number L; if we take one third of
the sum and if we add to it two thirds of the number M, the sum will be
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equal to half of the product of the number M and the square of the number
H.

Proof: The numbers B, C, D are successive odd numbers beginning
with three, the numbers I, K, L are in equal number23 and are associated
with them, they are the planar <numbers> obtained by the multiplication of
the successive even numbers beginning with two, each by its successor,
and the number M is equal to the sum of the numbers B, C, D, plus the unit
which is A. If we add the product of the number B and the planar number I,
and the squares of the numbers E, F which are its sides, and two, the
product of the number C and the planar number K, and the squares of the
two numbers F, G which are its sides, and two, and the product of the
number D and the planar number L, and the squares of the two numbers G,
H which are its sides, and two, if we add to this the product of one and six,
the sum will be equal to six times the square of the number M.24 The
product of one and six is equal to the product of A and the square of the
number E, plus two. The product of each of the <numbers> A, B, C, D and
two is equal to twice the sum of the numbers A, B, C, D , which is the
number M. If we add the product of A and the square of the number E, the
product of B and the squares of the two numbers E, F and the number I, the
product of C and the squares of the two numbers F, G and the number K,
and the product of D and the squares of the two numbers G, H  and the
number L; if we add to this twice the number M, the sum will be equal to
six times the square of the number M. Likewise, the numbers A, B, C, D are
successive odd numbers beginning with one; the numbers E, F, G, H , in
equal number, are their associates and are successive even <numbers>
beginning with two; thus each of the numbers E , F , G, H exceeds its
associate among the numbers A, B, C, D by the unit. If we thus add one to
the number D, we obtain the number H; if we take the square of its half, it
will be equal to the sum of the numbers A, B, C, D, which is the number M,
according to what has been shown in proposition four of our treatise On the
Measurement of the Parabola. The square of the number M is thus equal to
the product of the number M and the square of half of the number H; thus
the sum of the product of A and the square of the number E, the product of
B and the squares of the two numbers E, F and the number I, the product of
C and the squares of the two numbers F, G and the number K, the product
of D and the squares of the two numbers G, H and the number L, plus twice
the number M, is equal to six times the square of the number M; it is thus
equal to six times the product of the number M and the square of half of the
number H. But six times the product of the number M and the square of

23 ‘in equal number’ concerns the even numbers from which I, K, L are derived.
24 By Proposition 10.
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half of the number H is equal to one and a half times the product of the
number M and the square of the number H. The sum of the product of A
and the square of the number E, the product of B  and the sum of the
squares of the two numbers E, F and the number I, the product of C and the
sum of the squares of the two numbers F, G and the number K, and the
product of D and the sum of the squares of the two numbers G, H and the
number L, plus twice the number M, is equal to one and a half times the
product of the number M and the square of the number H. From this, one
shows that one third of the sum of the product of A and the square of the
number E, the product of B and the sum of the squares of the two numbers
E, F and the number I, the product of C and the sum of the squares of the
two numbers F, G and the number K, the product of D and the sum of the
squares of the numbers G, H  and the number L, plus two thirds of the
number M, is equal to half of the product of the number M and the square
of the number H. That is what we wanted to prove.

– 12 – Consider straight lines following the ratios of the successive odd
numbers beginning with one and, in equal number, and other straight lines,
which are associated with them, following the ratios of the successive even
numbers beginning with two, and such that the smallest of the straight lines
which are following the ratios of the odd <numbers> are half of the
smallest of the straight lines which are following the ratios of the even
<numbers>; if we multiply each of the straight lines that are following the
ratios of the odd numbers by the square of its associate – among the
straight lines which are following the ratios of the even numbers – and if
there is another straight line before its associate, we multiply it also by the
square of that straight line and by the product of its associate and the
straight line that preceeds it; if we add the solids thus obtained and if we
take one third of the sum to which we add two thirds of the solid formed as
the product of the straight line equal to the sum of the straight lines –
which are following the ratios of the odd numbers – and the square of half
of the smallest of the straight lines which are following the ratios of the
even numbers, then the result is equal to half of the solid formed as the
product of the straight line that is equal to the sum of the straight lines –
which are following the ratios of the odd numbers – and the square of the
greater of the straight lines which are following the ratios of the even
numbers.

Let the straight lines A, B, C following the ratios of the successive odd
numbers beginning with one and let, in equal number, the straight lines
which are associated with them following the ratios of the successive even
numbers beginning with two, be the straight lines D, E, F; let the straight
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line A be half of the straight line D and let the straight line G be equal to
the sum of the straight lines A, B, C.

I say that if we add up the solids formed as the product of the straight
line A and the square of the straight line D, as the product of B and the
sum of the squares of the straight lines D, E and the product of D and E,
and as the product of C and the sum of the squares of the straight lines E, F
and the product of E and F ; and if we take one third of this sum, to which
are added two thirds of the solid formed as the product of the straight line
G and the square of half of the straight line D, the result is equal to half of
the solid formed as the product of the straight line G and the square of the
straight line F.
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Proof: If we let the odd numbers whose ratios are equal to the ratios of
the straight lines A, B, C be the numbers H, I, K, and the even numbers
whose ratios are equal to the ratios of the straight lines D, E , F be the
numbers L, M, N, then the ratio of A to D is equal to the ratio of H to L, as
it is its half.25 The ratio of each of the straight lines A, B, C to each of the
straight lines D, E , F is thus equal to the ratio of the homologue of that
straight line – among the numbers H, I, K – to the homologue of the other
straight line, among the numbers L, M, N. The ratio of the solid formed as
the product of A and the square of the straight line D to the cube obtained
from the straight line D is thus equal to the ratio of the product of H and
the square of the number L to the cube obtained from L. Likewise, one also
shows that the ratio of the solids formed as the product of the straight line
B and the square of the straight line D, and the square of the straight line E
and the product of D and E to the cube obtained from the straight line E, is
equal to the ratio of the sum of the products of the number I and the
squares of the numbers L , M  and the product of L  and M  to the cube
obtained from M, and that the ratio of the solids formed as the products of
the straight line C and the squares of the two straight lines E, F and the
product of E and F to the cube obtained from the straight line F is equal to
the ratio of the sum of the products of the number K and the squares of the

25 By hypothesis A = D

2
.
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two numbers M, N and the product of M and N to the cube obtained from
the number N. But the ratio of each of the cubes of the straight lines D, E,
F to the cube of the straight line F is equal to the ratio of its associate –
among the cubes of the numbers L, M, N – to the cube of the number N.
Thus the ratio of the solids formed as the products26 *of the straight line B
and the squares of the two straight lines D, E and the product of D and E to
the cube of the straight line F is equal to the ratio of the product of the
number I and the squares of the two numbers L, M and the product of L and
M to the cube obtained from the number N. And the ratio of the solids
formed as the products of the straight line C and the squares of the two
straight lines E, F and the product of E and F to the cube of the straight line
F is equal to the ratio of the product of the number K and the squares of the
two numbers M, N and the product of M and N to the cube obtained from
the number N. But the ratio of the cube of the straight line F to the solid
formed as the product of G and the square of F is equal to the ratio of the
cube of the number N to the product of S and the square of the number N.
Thus the ratio of the solid formed as the product of the straight line A and
the square of the straight line D to the solid formed as the product of the
straight line G and the square of the straight line F is equal to the ratio of
the product of the number H and the square of L to the product of the
number S and the square of the number N; the ratio of the solids formed as
the products of the straight line B and the squares of the two straight lines
D, E and the product of D and E to the solid formed as the product of the
straight line G and the square of the straight line F is equal to the ratio of
the product of the number I and the squares of the two numbers L, M and
the product of L and M, to the product of the number S and the square of
the number N; the ratio of the solids formed as the products of the straight
line C and the squares of the straight lines E, F and the product of E and F
to the solid formed as the product of the straight line G and the square of
the straight line F is equal to the ratio of the product of the number K and
the squares of the numbers M, N and the product of M and N to the product
of the <number> S and the square of the number N. Thus the ratio of one
third of the solids formed as the product of the straight line A and the
square of the straight line D and the product of the straight line B and the
squares of the straight lines D, E  and the product of D and E , and the
product of the straight line C and the squares of the straight lines E, F and
the product of E and F, if they are added, to the solid formed as the product
of the straight line G and the square of the straight line F is equal to the
ratio of one third of the product of H and the square of the number L, the

26 *… * The paragraph between the two asterisks renders the Arabic text
reconstituted by us.
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product of I and the squares of the numbers L, M and the product of L and
M , and the product of K and the squares of the numbers M , N and the
product of M and N, if they are added, to the product of S and the square of
N. But the ratio of the solid formed* as the product of the square of the
straight line A and the straight line G to the solid formed as the product of
the straight line G and the square of the straight line F is equal to the ratio
of the number S to the product of the number S and the square of the
number N. This is why the ratio of two thirds of the solid formed as the
product of the straight line G and the square of half of the straight line D to
the solid formed as the product of the straight line G and the square of the
straight line F is equal to the ratio of two thirds of the number S to the
product of the number S and the square of the number N. Yet, we have
shown that the ratio of one third of the solids formed as the product of the
straight line A and the square of the straight line D, as the product of the
straight line B and the squares of the straight lines D, E and the product of
D and E, and as the product of the straight line C and the squares of the
straight lines E, F and the product of E and F, if they are added, to the solid
formed as the product of the straight line G and the square of the straight
line F, is equal to the ratio of one third of the product of H and the square
of the number L, of the product of I and the squares of the numbers L, M
and the product of L and M, and of the product of K and the squares of the
numbers M , N and the product of M  and N,27 *if they are added, to the
product of S and the square of N. The ratio of one third of the solids formed
as the product of the straight line A and the square of the straight line D, as
the product of the straight line B and the squares of the straight lines D, E
and the product of D and E, and as the product of the straight line C and the
squares of the straight lines E, F and the product of E and F, if we add
them up, and if we add to them two thirds of the product of the straight line
G and the square of half of the straight line D, to the solid formed as the
product of the straight line G and the square of the straight line F is equal
to the ratio of one third of the sum of the product of H and the square of the
number L, of the product of I and the two squares of the numbers L, M and
the product of L and M, and of the product of K and the two squares of the
numbers M, N and the product of M and N,* if they are added, and if we
add two thirds of the number S, to the product of the number S and the
square of the number N. But one third of the sum of the product of H and
the square of the number L, of the product of I and the squares of the
numbers L, M and the product of L and M, and of the product of K and the
squares of the numbers M, N and the product of M and N, if they are added

27 *… * The paragraph between the two asterisks renders the Arabic text
reconstituted by us.
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and if we add to them two thirds of the number S, is equal to half of the
product of the number S and the square of the number N,28 as the numbers
H, I, K are successive odd numbers beginning with one and whose sum is
equal to the number S  and the numbers L , M , N  are successive even
numbers beginning with two. Thus one third of the solids formed as the
product of A and the square of the straight line D, as the product of B and
the squares of the straight lines D, E and the product of D and E, and as the
product of C and the squares of the straight lines E, F and the product of E
and F, if we add them up and if we add to them two thirds of the product of
the straight line G and the square of half of the straight line D, is equal to
half of the solid formed as the product of the straight line G and the square
of the straight line F. That is what we wanted to prove.

– 13 – Consider straight lines following the ratios of the successive odd
numbers beginning with one and, in equal number, other straight lines
which are associated with them following the ratios of the successive even
numbers beginning with two, and if the smallest of the straight lines which
are following the ratios of the odd numbers is not half of the smallest of the
straight lines which are following the ratios of the even <numbers> and if
we multiply each of the straight lines which are following the ratios of the
odd numbers by the square of its associate, among the straight lines that are
following the ratios of the even <numbers>, and if there is another straight
line which preceeds its associate, we multiply it also by the square of that
straight line and by the product of its associate and the straight line that
preceeds it; if we add the solids thus formed and if we take one third of the
sum and if we add to it two thirds of the solid formed as the product of the
straight line which is equal to the sum of the straight lines that are
following the ratios of the odd numbers, and the square of half of the
smallest of the straight lines which are following the ratios of the even
numbers, then the sum is equal to half of the solid formed as the product of
the straight line, which is equal to the sum of the straight lines that are
following the ratios of the odd numbers, and the square of the greater of the
straight lines that are following the ratios of the even numbers.

Let the straight lines A, B, C following the ratios of the successive odd
numbers beginning with one and let, in equal number, the straight lines D,
E, F which are associated with them following the ratios of the successive
even numbers beginning with two; let the straight line A not be half of the
straight line D and let the straight line G be equal to the sum of the straight
lines A, B, C.

28 By Proposition 11.
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I say that the solids formed as the product of the straight line A and the
square of the straight line D, as the product of B and the squares of the
straight lines D, E and the product of D and E and as the product of C and
the squares of the straight lines E, F and the product of E and F, if we add
them up, and if we take one third of the sum, to which we add two thirds of
the solid formed as the product of the straight line G and the square of half
of the straight line D, then the sum will be equal to half of the solid formed
as the product of the straight line G and the square of the straight line F.
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Proof: If we let the straight line H be twice the straight line A and if we
let the ratios of the straight lines H, I, K, to each other, taken in succession,
be equal to the ratios of the straight lines D, E, F, to each other, taken in
succession, then the ratio of the solid formed as the product of the straight
line A and the square of the straight line D to the solid formed as the
product of the straight line A and the square of the straight line H is equal
to the ratio of the square of the straight line D to the square of the straight
line H, and the ratio of the solid formed as the product of the straight line B
and the square of the straight line D to the solid formed as the product of
the straight line B and the square of the straight line H is equal to the ratio
of the product of D and E to the product of H and I. But the ratio of the
product of D and E to the product of H and I is equal to the ratio of the
solid formed as the product of the straight line B and the product of D and
E to the solid formed as the product of the straight line B and the product of
H and I; thus the ratio of the solid formed as the product of the straight line
B and the square of the straight line D to the solid formed as the product of
B and the square of the straight line H, which is equal to the ratio of the
square of the straight line D to the square of the straight line H, is equal to
the ratio of the solid formed as the product of the straight line B and the
product of D and E to the solid formed as the product of the straight line B
and the product of the straight line H and I. We also show, in the same
way, that each of the ratios of the solids formed as the product of B and the
square of the straight line E and as the product of C and the squares of the
straight lines E, F and the product of E and F, to its homologue – among
the solids formed as the product of B and the square of the straight line I
and as the product of C and the squares of the straight lines I, K and the
product of I and K – is equal to the ratio of the square of the straight line D
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to the square of the straight line H. It is, likewise, the ratio of one third of
the first solids to one third of the second solids. It is, likewise, the ratio of
two thirds of the solid formed as the product of the straight line G and the
square of half of the straight line D to two thirds of the solid formed as the
product of the straight line G and the square of half of the straight line H. If
we add them up, the ratio of one third of the solids formed as the product
of A and the square of the straight line D, as the product of B and the
squares of the straight lines D, E and the product of D and E, and as the
product of C and the squares of the straight lines E, F and the product of E
and F, if we add them up, plus two thirds of the solid formed as the product
of the straight line G and the square of half of the straight line D, to one
third of the solids formed as the product of A and the square of the straight
line H, as the product of B and the squares of the straight lines H, I and the
product of H and I, and as the product of C and the squares of the straight
lines I, K and the product of I and K, if we add them up, plus two thirds of
the solid formed as the product of the straight line G and the square of half
of the straight line H, is equal to the ratio of the square of the straight line
D to the square of the straight line H, which is equal to the ratio of the
square of the straight line F to the square of the straight line K. But the
ratio of the square of the straight line F to the square of the straight line K
is equal to the ratio of the solid formed as the product of the straight line G
and the square of the straight line F to the solid formed as the product of
the straight line G and the square of the straight line K; thus the ratio of one
third of the solids formed as the product of A and the square of the straight
line D, as the product of B and the squares of the straight lines D, E and the
product of D and E, and as the product of C and the squares of the straight
lines E,29 *F and the product of E and F, if we add them up, plus two thirds
of the solid formed as the product of the straight line G and the square of
half of the straight line D, to one third of the solids formed as the product
of A and the square of the straight line H, as the product of B and the
squares of the straight lines H, I and the product of H and I, and as the
product of C and the squares of the straight lines I, K and the product of I
and K, if we add them up, plus two thirds of the solid formed as the product
of the straight line G and the square of half of the straight line H, is equal
to the ratio of half of the solid formed as the product of the straight line G
and the square of the straight line F to half of the solid formed as the
product of the straight line G and the square of the straight line K. But one
third of the solids formed as the product of A and the square of the straight
line H, as the product of B and the squares of the straight lines H, I and the

29 *… * The paragraph between the two asterisks renders the Arabic text
reconstituted by us.
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product of H and I, and as the product of* C and the squares of the straight
lines I, K and the product of I and K, if we add them up, plus two thirds of
the solid formed as the product of the straight line G and the square of half
of the straight line H, is equal to half of the solid formed as the product of
the straight line G and the square of the straight line K. The solids formed
as the product of the straight line A and the square of the straight line D, as
the product of the straight line B and the squares of the straight lines D, E
and the product of D and E, and as the product of C and the squares of the
straight lines E, F and the product of E and F, if we add them up and if we
take one third of it, to which we add two thirds of the solid formed as the
product of the straight line G and the square of half of the straight line D,
the sum will be equal to half of the solid formed as the product of the
straight line G and the square of the straight line F. That is what we wanted
to prove.

– 14 – Given five magnitudes such that the ratio of the first to the
second is equal to the ratio of the third to the fourth and is equal to the ratio
of the fourth to the fifth, and if the first is less than the second, then the
product of the first and the excess of the fifth over the third is equal to the
product of the excess of the second over the first and the sum of the third
and of the fourth.

Let A, BC, D, E and FG be five magnitudes such that the ratio of A to
BC is equal to the ratio of D to E and is equal to the ratio of E to FG and
such that A is less than BC, let HC be equal to A and IG equal to D.
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I say that the product of A and FI is equal to the product of BH and the
sum of the two magnitudes D and E.

Proof: The ratio of A to BC is equal to the ratio of E to FG; but HC is
equal to the magnitude A; thus the ratio of HC to CB is equal to the ratio of
E to FG. If we set GK equal to E, the ratio of HC to CB is equal to the ratio
of KG to GF. If we separate, the ratio of CH to HB is equal to the ratio of
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GK to KF. But the ratio of D to E is also equal to the ratio of E to GF, the
magnitude D is equal to IG and the magnitude E is equal to GK; thus the
ratio of IG to GK is equal to the ratio of GK to GF. If we separate, the ratio
of GI to IK is equal to the ratio of GK to KF. If we add them up, the ratio of
the sum of GI and GK to the sum of IK and KF, which is equal to IF, is
equal to the ratio of GK to KF and which is equal to the ratio of CH to HB;
thus the ratio of the sum of GI and GK to IF is equal to the ratio of CH to
HB. But GI is equal to D and GK is equal to E and CH is equal to A; thus
the ratio of A to HB is equal to the ratio of the sum of D and E to IF; thus
the product of A and IF is equal to the product of BH and the sum of the
two magnitudes D and E. That is what we wanted to prove.

– 15 – The volume of every frustum of a cone of revolution is equal to
one third of the product of its height and the sum of three circles, where the
first is its upper circle, the other its base circle, and the third, a circle whose
square of diameter is equal to the product of the diameter of the upper
circle of the frustum of a cone and the diameter of its base circle.

Let there be a frustum of a cone of revolution whose base <circle> is
ABC and whose upper circle is DEF, and let the square of the diameter of
another circle, which is the circle GHI, be equal to the product of the
diameter of the circle ABC and the diameter of the circle DEF.
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I say that the volume of the frustum of a cone ABC is equal to one
third of the product of its height and the sum of the three circles ABC, DEF
and GHI.

Proof: If we let the point K be the vertex point of the two cones where
the first is subtracted from the other leaving the frustum of a cone as the
remainder, if we let their axis be KLM and if we make the plane DAKBE
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pass through the axis KLM, then the section DAKBE is a triangle and AB,
which is the intersection of this plane and the plane of the circle ABC, is a
diameter of the circle ABC and DE, which is the intersection of this plane
and the plane of the circle DEF, is a diameter of the circle DEF. If we let
GH be the diameter of the circle GHI, then the product of AB and DE is
equal to the square of the straight line GH, thus the ratio of AB to GH is
equal to the ratio of GH to DE and the ratio of the square of the straight
line AB to the square of the straight line GH is consequently equal to the
ratio of the square of the straight line GH to the square of the straight line
DE and is equal to the ratio of AB to DE. But the ratio of AB to DE is equal
to the ratio of KL to KM, as the straight lines AB and DE are parallel;
indeed, they are the two intersections of the plane KDE and the planes of
the circles ABC and DEF, which are parallel. Thus the ratio of the square
of the straight line AB to the square of the straight line GH is equal to the
ratio of the square of the straight line GH to the square of the straight line
DE and is equal to the ratio of the straight line KL to the straight line KM.
On the one hand, the ratio of the square of the straight line AB to the square
of the straight line GH is equal to the ratio of the circle ABC to the circle
GHI and, on the other, the ratio of the square of the straight line GH to the
square of the straight line DE is equal to the ratio of the circle GHI to the
circle DEF; thus the ratio of KL to KM is equal to the ratio of the circle
ABC to the circle GHI and is equal to the ratio of the circle GHI to the
circle DEF. The product of KL and the excess of the circle DEF over the
circle ABC is thus equal to the product of LM and the sum of the circles
ABC and GHI.30 If we let the product of LM and the circle DEF on both
sides, the product of KL and the excess of the circle DEF over the circle
ABC, plus the product of LM and the circle DEF, is equal to the product of
LM and the sum of the three circles GHI, DEF and ABC. But the product of
KL and the excess of the circle DEF over the circle ABC, plus the product
of LM and the circle DEF, is equal to the triple of the volume of the
frustum of a cone ABCDEF. The product of LM and the sum of the three
circles ABC, DEF, GHI is thus equal to the triple of the volume of the
frustum of a cone ABCDEF. One third of the product of LM and the sum of
the three circles ABC, DEF, GHI is thus equal to the volume of the frustum
of a cone ABCDEF. That is what we wanted to prove.

– 16 – The volume of every frustum of a hollow cone of revolution31 is
equal to one third of the product of its axis and the sum of three circles,
where the first is its upper circle, the other its base circle and the third a

30 By Proposition 14.
31 Definition given in the introduction to this treatise, supra, p. 262.
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circle whose square of diameter is equal to the product of the diameter of
the first of the two circles and the diameter of the other.

Let there be a frustum of a hollow cone of revolution whose upper
circle is ABC, whose base circle is DEF and whose axis is GH;32 let the
square of the diameter of another circle, which is the circle IKL, be equal to
the product of the diameter of the circle ABC and the diameter of the circle
DEF.

I say that the volume of the frustum of a hollow cone AGBEHD is
equal to one third of the product of GH and the sum of the three circles
ABC, DEF, IKL.

M

L

K I

DE

F

G

B

C H

N A

<S>

Fig. II.2.16

Proof: If we let the vertex point of the two hollow cones of revolution,
where the first is subtracted from the other leaving the frustum of a cone as
the remainder, be the point M, and their axis MGNH, and if we produce the
plane DAMBE on the axis MGNH and if we join the straight line DE, then
DAMBE is a triangle; AB, which is the intersection of this plane and the
plane of the circle ABC, is a diameter of the circle ABC, and DE, which is
the intersection of this plane and the plane of the circle DEF, is a diameter
of the circle DEF. One third of the product of MN and the circle ABC is the
volume of the cone of revolution whose base is the circle ABC and whose
vertex is the point M. One third of the product of GN and the circle ABC is
the volume of the cone of revolution whose base is the circle ABC and
whose vertex is the point G. One third of the product of MG and the circle

32 Moreover, by the definition given in the introduction, we have GA || HD.
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ABC is thus the volume of the hollow cone of revolution AMBG. In the
same way, we also show that one third of the product of MH and the circle
DEF is the volume of the hollow cone of revolution DMEH. One third of
the product of GH and the circle DEF, plus one third of the product of MG
and the difference between the two circles DEF and ABC, is the volume of
the frustum of a hollow cone of revolution AGBEHD. If we also let the
diameter of the circle IKL be the straight line IK, then the product of AB
and DE is equal to the square of the straight line IK; thus the ratio of AB to
IK is equal to the ratio of IK to DE. The ratio of the square of the straight
line AB to the square of the straight line IK is consequently equal to the
ratio of the square of IK to the square of the straight line DE and is equal to
the ratio of AB to DE. But the ratio of AB to DE is equal to the ratio of AM
to MD, which is equal to the ratio of GM to MH.33 The ratio of the square
of the straight line AB to the square of the straight line IK is thus equal to
the ratio of the square of the straight line IK to the square of the straight
line DE and is equal to the ratio of GM to MH. But, on the one hand, the
ratio of the square of the straight line AB to the square of the straight line
IK is equal to the ratio of the circle ABC to the circle IKL, and, on the
other, the ratio of the square of the straight line IK to the square of the
straight line DE is equal to the ratio of the circle IKL to the circle DEF.
Thus the ratio of GM to MH is equal to the ratio of the circle ABC to the
circle IKL and is equal to the ratio of the circle IKL to the circle DEF. The
product of GM and the excess of the circle DEF over the circle ABC is thus
equal to the product of GH and the sum of the circles ABC and IKL. If we
let the product of GH and the circle DEF on both sides, then the product of
MG and the excess of the circle DEF over the circle ABC, plus the product
of GH and the circle DEF, is equal to the product of GH and the sum of the
three circles ABC, DEF, IKL. Thus one third of the product of GH and the
circle DEF, plus one third of the product of MG and the excess of the circle
DEF over the circle ABC, is equal to one third of the product of GH and
the sum of the three circles ABC, DEF and IKL. Yet, we have shown that
one third of the product of GH and the circle DEF, plus one third of the
product of MG and the excess of the circle DEF over the circle ABC, is the
volume of the frustum of a hollow cone AGBEHD. The volume of the
frustum of a hollow cone AGBEHD is thus equal to one third of the product
of GH and the sum of the three circles ABC, DEF and IKL. That is what we
wanted to prove.

Moreover, we have shown that the volume of every hollow cone of
revolution is equal to one third of the product of its axis and its base circle.

33 This assumes that A G is parallel to HD , which has been indicated in the
definitions.
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– 17 – The volume of every frustum of a solid rhombus34 is equal to
one third of the product of its axis and the sum of three circles, where the
first is its upper circle, the other its base circle and the third a circle whose
square of diameter is equal to the product of the diameter of the first of
these circles and the diameter of the other.

Let there be a frustum of a solid rhombus whose upper circle is ABC,
whose base circle is DEF and whose axis is GH; let the square of the
diameter of another circle – the circle IKL – be equal to the product of the
diameter of the circle ABC and the diameter of the circle DEF.

I say that the volume of the frustum of a solid rhombus AGBEHD is
equal to one third of the product of GH and the sum of the three circles
ABC, DEF and IKL.
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Proof: If we let the vertex point which is common to the two solid
rhombuses, where the first is subtracted from the other leaving the frustum
as the remainder, be the point M, and their axis MNGSH, and if we make
the plane DAMBE pass through the axis MNGSH, then DAMBE  is a
triangle, and AB – which is the intersection of this plane and the plane of
the circle ABC – is a diameter of the circle ABC, and DE – which is the
intersection of this plane and the plane of the circle DEF – is the diameter
of the circle DEF. One third of the product of MN and the circle ABC is the
volume of the cone of revolution whose base is the circle ABC and whose

34 See the definition in the introduction to this treatise, supra, p. 262.
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vertex is the point M. One third of the product of GN and the circle ABC is
the volume of the cone of revolution whose base is the circle ABC and
whose vertex is the point G. One third of the product of MG and the circle
ABC is thus the volume of the solid rhombus AMBG. In the same manner,
one also shows that one third of the product of MH and the circle DEF is
equal to the volume of the solid rhombus DMEH; thus one third of the
product of GH and the circle DEF, plus one third of the product of MG and
the difference between the two circles DEF and ABC, is the volume of the
frustum of a solid rhombus AGBEHD. We show, as we have shown in the
previous proposition, that one third of the product of GH and the circle
DEF, plus one third of the product of MG and the excess of the circle DEF
over the circle ABC, is equal to one third of the product of GH and the sum
of the three circles ABC, DEF and IKL. Thus the volume of the frustum of
the solid rhombus AGBEHD is equal to one third of the product of GH and
the sum of the three circles ABC, DEF and IKL. That is what we wanted to
prove.

Moreover, we have shown that the volume of every solid rhombus is
equal to one third of the product of its axis and its base circle.

– 18 – If we mark on the line of a portion of a parabola three points in
the one of the halves of the portion, and if we produce parallel straight
lines from these points to the diameter of the section such that the excesses
of the parallel straight lines over each other are equal, and if we produce
from the intermediate point, among the three points, a straight line tangent
to the section and if we produce from the two points which remain two
straight lines parallel to the diameter of the portion until they meet the
tangent straight line, then these two straight lines are equal and each of
them is equal to half of the difference between the two straight lines
separated by the parallel straight lines on the diameter of the portion.

Let AB be a portion of a parabola, of diameter CD. Let us mark on the
line of the parabola the three points A, E, F in one of the halves of the
portion. Let us produce the parallel straight lines AG, EH and FI from these
points to the diameter. Let the excess of AG over EH be equal to the excess
of EH over FI. Let a straight line KEL tangent to the parabola AB pass
through the point E and let one produce from the points A  and F  two
straight lines AK and FL, parallel to the straight line CD and let them meet
the straight line KEL at the points K and L.

I say that the two straight lines AK and FL are equal and that each of
them is equal to half of the difference between the straight lines GH and
HI.
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Fig. II.2.18

Proof: If we extend the straight line LF up to the point M and if we
produce from the point E a straight line ENS parallel to the straight line
CD, then the straight lines FI and EH are equal to the straight lines MG and
SG, thus the straight lines AS and SM are equal, as the excess of AG over
EH is equal to the excess of EH over FI. If we join the straight line ANF,
then the ratio of AS to SM  is equal to the ratio of AN to NF; thus the
straight line AN is equal to the straight line NF, and the straight line ENS is
the first of the diameters of the section according to what has been shown
in proposition forty-six of the first book of the work by Apollonius on the
Conics.35 Yet AF has been divided into two halves. But Apollonius has
shown in proposition five of the second book of his work on the Conics36

that if it is thus, then the straight line AF is parallel to the straight line
tangent to the section at the point E; thus the straight line AF is parallel to
the straight line KL. But the straight lines AK, NE and FL are parallel; they
are consequently equal. But the straight line AN is equal to the straight line
NF; thus the straight line AN is half of the straight line AF; this is why the
straight line SN is equal to half of the straight line FM. But the straight line
FM is equal to the straight line IG; thus the straight line NS is equal to half
of the straight line IG. But the straight line EN is the difference between
the straight lines ES and N S; thus the straight line EN  is equal to the
difference between the straight line ES and half of the straight line IG. But
the straight line ES is equal to the straight line HG; thus the straight line
EN is equal to the difference between HG and half of the straight line IG.
But the difference between HG and half of the straight line IG is equal to
half of the difference between the straight lines GH and HI; thus the

35 Lit.: the conic.
36 Lit.: the conic.
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straight line EN is equal to half of the difference between the straight lines
GH and HI. Yet, we have shown that each of the straight lines AK and FL
is equal to the straight line EN; thus the straight lines AK and FL are equal
and each of them is equal to half of the difference between the straight
lines GH and HI. That is what we wanted to prove.

From that, it is clear that if any of the three points is the vertex of the
portion, such as the point F which is the vertex of the portion whose
diameter is FM, and if AM is twice EO, then the straight lines AK and FL
are equal and each of them is equal to half of the difference between of the
straight lines MO and OF.

< 19 > Consider two parallelograms having a same base, in the same
direction and between two parallel straight lines; if we fix the straight line
parallel to their base and if we rotate all of the other sides, then the two
solids generated by the rotation of the parallelograms are equal.

Let ABCD, AEFD be two parallelograms on the same base AD, in the
same direction and between the two parallel straight lines AD and BF.

I say that if we fix the straight line BF and if we rotate the other sides
of the two parallelograms, then the solid generated by the rotation of the
parallelogram ABCD is equal to the solid generated by the rotation of the
parallelogram AEFD.

D A

F C E B

<∆>

Fig. II.2.19

Proof: The two straight lines BC and EF are equal, as they are equal to
the straight line AD, and the straight line CE is common; thus the straight
line BE is equal to the straight line CF. But the straight line AB is equal to
the straight line CD and the straight line AE is equal to the straight line DF;
thus the sides of the triangle ABE are equal to the sides of the triangle DCF
and their angles are equal. The generated solid – when we fix BE and rotate
the two remaining sides of the triangle ABE – is thus equal to the solid
generated when we fix CF  and rotate the two remaining sides of the
triangle DCF . If we subtract the first of these two solids – let that be
generated when we fix B E and rotate the two remaining sides of the
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triangle ABE – from the solid generated when we fix the straight line BF
and rotate all of the other sides of the figure ABFD, there remains the solid
generated when we fix the straight line EF and rotate all of the other sides
of the surface AEFD. If we subtract the other solid, among the two equal
solids that we have mentioned – which is generated when we fix the
straight line CF and rotate the two remaining sides of the triangle DCF –
from the same solid generated when we fix the straight line BF and rotate
the other sides of the figure ABFD, there remains the solid generated when
we fix the straight line BC and rotate all of the other sides of the surface
ABCD. The solid generated when we fix the straight line BC and rotate all
of the other sides of the surface ABCD is thus equal to the solid generated
when we fix the straight line EF and rotate all of the other sides of the
surface AEFD. That is what we wanted to prove.

– 20 – If two parallelograms are in the same plane, having two equal
bases, and in the same direction, such that their bases are on the <same>
straight line, if two straight lines join the extremities of the two parallel
straight lines to their bases in order to make a third parallelogram, if we fix
the straight line over which the bases of the first two parallelograms are
and if we rotate all of the other sides of the three surfaces, according to
their form,37 then the difference between the two solids generated by the
rotation of the first two surfaces is equal to the torus38 generated by the
rotation of the third surface.

Let ABCD and EFGH be two parallelograms in the same plane, having
two equal bases, BC  and FG , over the same straight line; let the two
surfaces be in the same direction. Let the extremities of the straight lines
AD  and EH  be joined to the two straight lines AE and DH and let us
produce from that a parallelogram ADHE.

I say that if we fix the straight line BG and rotate all of the other sides
of the three surfaces ABCD, EFGH and ADHE, according to their form,39

then the difference between the solid generated by the rotation of the
surface ABCD and the solid generated by the rotation of the surface
EFGH is equal to the torus generated by the rotation of the surface ADHE.

37 That is to say, without deforming themselves.
38 See the definition in the introduction to this treatise, supra, p. 262.
39 That is to say, without deforming themselves.
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Fig. II.2.20

Proof: The two straight lines BC and FG are equal and the straight line
CF is common; thus the two straight lines BF and CG are equal; the two
parallel straight lines AB and CD are equal as they join the extremities of
two parallel straight lines; likewise, the two straight lines EF and HG and
the two straight lines EA and HD are equal. The sides of the figure ABFE
are thus equal to the sides of the figure DCGH and their angles are equal,
since the sides of the three figures are parallel. The solid generated when
we fix the straight line BF and rotate all of the other sides of the figure
ABFE is thus equal to the solid generated when we fix the straight line CG
and rotate all of the other sides of the figure DCGH. If we subtract the first
of these two solids – which is generated when we fix the straight line BF
and rotate all of the other sides of the figure ABFE – from the solid
generated when we fix the straight line BG and rotate all of the other sides
of the figure ABGHE, there remains the solid generated when we fix the
straight line FG and rotate all of the other sides of the surface EFGH. If we
subtract the other solid, among the two equal solids that we have
mentioned – which is generated when we fix the straight line CG and rotate
all of the other sides of the figure DCGH – from the same solid generated
when we fix the straight line BG and rotate all of the other sides of the
figure ABGHE, there remains the solid generated when we fix the straight
line BC and rotate all of the other sides of the figure EABCDH, according
to their form. The solid generated when we fix the straight line FG and
rotate all of the other sides of the surface EFGH is thus equal to the solid
generated when we fix the straight line BC and rotate all of the other sides
of the figure EABCDH, according to their form. If we remove from the two
solids the solid generated when we fix the straight line BC and rotate all of
the other sides of the surface ABCD , there remains the torus that the
parallelogram ADHE generates when we fix the straight line BG and rotate
all of the other sides of the three surfaces ABCD, EFGH and EADH, equal
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to the difference between the solid generated, when we fix the straight line
FG and rotate all of the other sides of the surface EFGH and the solid
generated when we fix the straight line BC and rotate all of the other sides
of the surface ABCD. That is what we wanted to prove.

– 21 – If four straight lines are such that the first is one third of the
second and the third is half of the fourth, then the sum of the solids formed
as the product of the first and the square of the third, and as the product of
the second and the sum of the square of the third and the square of the
fourth, and the surface obtained from the product of the third and the
fourth, from which we subtract the solid formed as the product of the sum
of the first and the second and the square of the fourth, gives a remainder
greater than the solid formed as the product of the first and the square of
the fourth.

Let A, B, C, D be four straight lines; let A be one third of B and let C be
half of D.

I say that the sum of the solids formed as the products of A and the
square of the straight line C, and as the product of B and the sum of the
squares of the straight lines C, D and the product of C and D, from which
we subtract the solid formed as the product of the sum of the straight lines
A, B and the square of the straight line D, gives a remainder greater than
the solid formed as the product of A and the square of the straight line D.

B

C

D

A

Fig. II.2.21

Proof: The straight line C is half of the straight line D; thus its square
is one quarter of the square of D. The straight line A is also one quarter of
the sum of the straight lines A and B; thus the ratio of the square of the
straight line C to the square of the straight line D is equal to the ratio of the
straight line A to the sum of the straight lines A and B. This is why the solid
formed as the product of A and the square of the straight line D is equal to
the solid formed as the product of the sum of the straight lines A, B and the
square of the straight line C. Likewise, the ratio of the product of C and D
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to the square of the straight line D is equal to the ratio of C to D. But the
ratio of C to D is greater than the ratio of A to B; thus the ratio of the
product of C and D to the square of the straight line D is greater than the
ratio of A to B. This is why the product of B and the product of C and D is
greater than the product of A and the square of the straight line D. But we
have shown that the product of A and the square of the straight line D is
equal to the product of the sum of the straight lines A and B and the square
of the straight line C. The product of B and the product of C and D, plus
the product of the sum of the straight lines A and B and the square of the
straight line C, is thus greater than the double-product of A and the square
of the straight line D. We set the product of B and the square of the straight
line D on both sides; then the product of B and the product of C and D, and
the product of the sum of the straight lines A, B and the square of the
straight line C and the product of B and the square of the straight line D
have a sum greater than the double-product of A and the square of the
straight line D, plus the product of B and the square of the straight line D.
But the double-product of A and the square of the straight line D, plus the
product of B and the square of the straight line D, is equal to the product of
the sum of the straight lines A, B and the square of the straight line D, plus
the product of A and the square of the straight line D. The product of B and
the product of C and D and the squares of the straight lines C and D, plus
the product of A and the square of the straight line C, have a sum greater
than the product of the sum of the straight lines A, B and the square of the
straight line D, plus the product of A and the square of the straight line D.
We remove on both sides the product of the sum of the straight lines A, B
and the square of the straight line D, the remainder – which is the solids
formed as the product of A and the square of the straight line C, as the
product of B and the sum of the squares of the straight lines C, D, and as
the product of C and D, from which we subtract the solid formed as the
product of the sum of the straight lines A, B and the square of the straight
line D – is greater than the solid formed as the product of A and the square
of the straight line D. That is what we wanted to prove.

– 22 – If three numbers are successive, then the product of the greater
and the middle is equal to the square of the smaller, increased by the
smaller and by twice the middle.

Let AB, C D and E be three successive numbers, where AB is the
greatest.

I say that the product of A B and C D is equal to the square of E,
increased by the number E and by twice the number CD.
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Proof: If we let BF be equal to CD, then AF is one and the product of
AB and BF is equal to the product of AF and FB, plus the square of the
number BF. But, on the one hand, the product of AF and FB is FB as AF is
one and, on the other, the square of the number FB is equal to the square of
the number CD; thus the product of AB and CD is equal to the square of the
number CD, increased by the number CD. Likewise, if we let DG be equal
to E, CG is one and the square of the number CD is equal to the product of
CD and DG and CG. But the product of CD and DG is equal to the square
of DG, increased by the product of DG and GC; thus the square of the
number CD is equal to the product of CG and CD and DG, plus the square
of DG. But the product of CG and CD and DG is equal to CD and DG. The
square of the number CD is thus equal to the square of DG, increased by
the sum of CD and of DG. But DG is equal to E; thus the square of the
number CD is equal to the square of E, plus the numbers CD and E. But we
have shown that the product of AB and CD is equal to the square of the
number CD, increased by the number CD; thus the product of AB and CD
is equal to the square of E, increased by the number E and by twice the
number CD. That is what we wanted to prove.

– 23 – If three numbers are successive, then the sum of the square of
the greatest and of the square of the smallest is equal to the product of the
sum of the greatest and of the smallest, and the middle, increased by two.

Let AB, C D and E be three successive numbers and let AB be the
greatest.

I say that the sum of the squares of the numbers AB and E is equal to
the product of the sum of AB, E and CD, increased by two.

Proof: If we let BF be equal to CD, then AF is one and the square of
the number AB is equal to the product of AB and BF and AF; the square of
the number AB is thus equal to the product of AB and BF, plus the product
of AB and one. Yet, on the one hand, BF is equal to CD and, on the other,
the product of AB and one is equal to AB. The square of the number AB is
thus equal to the product of AB and CD, plus the number AB.
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Likewise, if we let DG be equal to E, then CG is one and the product
of CD and DG is equal to the square of DG, plus the product of DG and
GC. Regarding GC, it is the unit. Yet, DG is equal to E and its square is
equal to the square of E; thus the product of CD and E is equal to the
square of E, plus the product of the unit and E, which is equal to E. But we
have shown that the square of the number AB is equal to the product of AB
and CD, plus the number AB; thus if we add the squares of the numbers AB
and E, the sum will be equal to the product of AB and of E and CD, plus
the excess of the number AB over E. But the excess of the number AB over
E is two as the excesses of the numbers AB, CD and E, over each other,
taken in succession, are always one. If we add the squares of the numbers
AB and E, the sum will be equal to the product of AB and of E and CD,
increased by two. That is what we wanted to prove.

– 24 – Consider more than two successive numbers beginning with one
and, in equal number, successive odd numbers beginning with one which
are associated with them; if we take among the successive numbers, three
successive numbers, whichever these three <numbers> may be, if we
multiply the odd number associated with the middle number of these three
<numbers> by the product of the sum of the smallest of the numbers,
among them, and of the greatest number and the middle number, and if we
add to the result the double-product of the middle and the greater, then the
sum is greater than the product of this odd number associated with the
middle number and the sum of the square of the small <number> and the
square of the great <number>, increased by twice the square of the small
<number>.

Let A, B, C, D be more than two successive numbers beginning with
one, and in equal number; let E , F , G, H , be successive odd numbers
beginning with one and which are associated with them. Let us take among
the numbers A, B, C, D  three successive numbers, whichever these three
<numbers> may be, let the numbers be B, C, D.
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I say that if we multiply the number G by the product of the sum of B,
D and C, and if we add the double-product of C and D, then the sum is
greater than the product of the number G and the sum of the squares of the
numbers B and D, increased by twice the square of the number B.
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Fig. II.2.24

Proof: The numbers A, B, C, D are successive beginning with one; if
we take numbers in equal number to that of the numbers A, B, C, D and
such that each of them is twice its homologue among the numbers A, B, C,
D, then the chosen numbers are successive even numbers beginning with
two and each of them exceeds by a unit its homologue among the
successive odd numbers beginning with one, which are E, F, G, H. Thus
twice the number C is greater than the number G; this is why twice the
number C, increased by the number B, is much greater than the number G.
If we set the square of the number B on both sides, then the sum of the
number B, twice the number C and the square of the number B is greater
than the square of the number B, plus the number G. But the sum of the
number B, twice the number C and the square of the number B is equal to
the product of C and D, since the numbers B, C, D are successive. The
product of C and D  is thus greater than the square of the number B,
increased by the number G. This is why twice the product of C and D is
greater than twice the square of the number B, plus twice the number G.
But twice the number G is the product of the number G and two, thus the
double-product of C and D is greater than twice the square of the number
B, plus the product of the number G and two. If we set the product of the
number G and the product of the sum of the two <numbers> B, D and C on
both sides, then the product of the number G and the product of the sum of
B, D and C and the double-product of C and D have a sum greater than the
product of the number G and the sum of two and the product of the sum of
B, D and C, plus twice the square of the number B. But the product of the
sum of B, D and C , plus two, is equal to the sum of the squares of the
numbers B and D, as the numbers B, C, D are successive. The product of
the number G and the product of the sum of B, D and C, plus the double-
product of C and D is thus greater than the product of the number G and
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the sum of the squares of the numbers B and D, plus twice the square of the
number B. That is what we wanted to prove.

– 25 – Consider more than two successive numbers beginning with one
and, in equal number, successive odd numbers beginning with one and
which are associated with them; if we take, among the successive numbers,
three successive numbers, whichever these three <numbers> may be, if we
multiply the odd number associated with the middle number, among these
three numbers, by the sum of the square of the smallest of them, the square
of the middle and the product of the smallest and the middle, if we add to
this product the product of the odd number associated with the greatest of
the three <numbers> and the sum of the square of the greatest number, the
square of the middle number and the product of the middle and the
greatest, then the sum obtained is greater than the product of the sum of the
odd number associated with the middle number and the odd number
associated with the great <number> with the sum of the squares of the
three numbers.

Let A, B, C, D be more than two successive numbers beginning with
one and, in equal number, let E , F , G, H , be successive odd numbers
beginning with one, which are associated with them; let us take, among the
numbers A, B , C , D , three successive numbers, whichever these three
<numbers> may be, let the numbers be B, C, D.

I say that if we multiply the number G by the sum of the squares of the
numbers B, C and by the product of B and C, and if we add to the result
the product of H and the sum of the squares of the numbers C, D, and the
product of C and D, the result is greater than the product of the sum of the
numbers G, H and the sum of the squares of the numbers B, C, D.
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Proof: The numbers A, B, C, D are successive beginning with one and
the numbers E, F, G, H are successive odd numbers beginning with one;
thus the product of the number G and the product of the sum of B, D and C,
if we add to it twice the product of C and D, is greater than the product of
the number G and the squares of the numbers B and D, increased by twice
the square of the number B. But, on the one hand, the double-product of C
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and D is equal to the product of two and the product of C and D and, on the
other, twice the square of the number B is equal to the product of two and
the square of the number B. The product of the number G and the product
of B and C plus the product of the number G, increased by two, and the
product of C and D is greater than the product of the number G and the
square of the number D, plus the product of the number G, plus two, and
the square of the number B. But the number H is equal to the number G,
plus two, as the numbers G and H are successive odd numbers, thus the
product of the number G and the product of B and C, plus the product of
the number H and the product of C and D, is greater than the product of the
number G and the square of the number D, plus the product of the number
H and the square of the number B. If we set the product of the number G
and the square of the number B, plus the product of the number H and the
square of the number D on both sides, the product of the number G and the
sum of the square of the number B and of the product of B and C, plus the
product of the number H and the sum of the product of C and D, and the
square of the number D, will be greater than the product of the sum of the
number G and the number H and the sum of the squares of the numbers B
and D. If we set the product of the sum of the numbers G, H and the square
of the number C on both sides, the product of the number G and the sum of
the squares of the numbers B, C and of the product of B and C, plus the
product of the number H and the sum of the squares of the numbers C, D
and the product of C and D, will be greater than the product of the sum of
the numbers G, H and the sum of the squares of the numbers B, C, D. That
is what we wanted to prove.

– 26 – Let there be three successive numbers, if one is added to the
product of the smallest and the greatest, the sum will be equal to the square
of the middle number.

Let AB, C, D, be three successive numbers.
I say that the product of AB and D, increased by one, is equal to the

square of the number C.
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Proof: If we let BE be equal to C and BF equal to D, then each <of the
numbers> AE and EF is equal to one; but the square of the number BE is
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equal to the sum of the squares of BF and FE, plus the double-product of
BF and FE. But the double-product of BF and FE is equal to the product of
BF and FA; thus the square of the number BE is equal to the sum of the
squares of BF and FE, plus the product of BF and FA. On the one hand, the
product of BF and FA, plus the square of BF, is equal to the product of AB
and BF and, on the other, the square of FE is equal to one; thus the square
of the number BE is equal to the product of AB and BF, plus one. Yet, on
the one hand, BF is equal to D and, on the other, BE is equal to C; thus the
product of AB and D , increased by one, is equal to the square of the
number C. That is what we wanted to prove.

– 27 – Consider more than two successive numbers beginning with one
and, in equal number, successive odd numbers beginning with one which
are associated with them; if we take, among the successive numbers, three
numbers which follow each other, whichever these three <numbers> may
be, if we multiply the odd number associated with the middle number
among the three <numbers>, by the sum of the square of the smallest
<number> among them, the square of the middle <number> and the
product of the smallest and the middle, if we add to the result the product
of the odd number associated with the greatest of the three <numbers> and
the sum of the square of the greatest number, the square of the middle
number and the product of the greatest and the middle, if we subtract from
the result the product of the sum of the two odd numbers associated with
the middle number and with the greatest number and the sum of the square
of the smallest <number>, the square of the greatest <number> and the
product of the smallest and the greatest, then the remainder will be greater
than the difference between the square of the greatest <number> and the
square of the smallest.

Let A, B, C, D, be more than two successive numbers beginning with
one and, in equal number, let the numbers E, F, G, H be successive odd
numbers beginning with one, which are associated with them; let us take,
among them, three numbers which follow each other, whichever these
three <numbers> may be; let the numbers be B, C, D.

I say that if we multiply the number G by the sum of the squares of the
numbers B, C  and the product of B and C, if we add to the result the
product of the number H and the sum of the squares of the numbers C, D,
and the product of C and D, and if we subtract from the result the product
of the sum of the numbers G, H and the sum of the squares of the numbers
B, D, and the product of B and D, then the remainder is greater than the
difference between the squares of the numbers D and B.
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Proof: The numbers A, B, C, D are successive beginning with one and
the numbers E, F, G, H are successive odd numbers beginning with one; if
we multiply the number G by the sum of the squares of the numbers B and
C and the product of B and C, and if we add to the result the product of H
and the sum of the squares of the numbers C and D and the product of C
and D, the result is greater than the product of the sum of G, H and the sum
of the squares of the numbers B, C, D.40 But the square of the number C is
equal to the product of B and D, increased by one, as the numbers B, C, D
are successive; thus the product of the number G and the sum of the
squares of the numbers B, C, and the product of B and C, increased by the
product of the number H and the sum of the squares of the numbers C, D
and the product of C and D, is greater than the product of the sum of the
numbers G, H and the sum of the squares of the numbers B, D and the
product of B and D, plus the product of the sum of the numbers G, H and
the unit. If we commonly subtract from the two sums the product of the
sum of the numbers G, H and the sum of the squares of the numbers B, D
and the product of B and D, then the product of the number G and the sum
of the squares of the two numbers B, C and the product of B and C, if we
add to it the product of the number H and the sum of the squares of the
numbers C, D and the product of C and D, and if we subtract from the sum
the product of the sum of the numbers G, H and the sum of the squares of
the numbers B, D and the product of B and D, then the result is greater than
the product of the sum of the two numbers G, H  and the unit, which is
equal to the sum of G, H. But the sum of the numbers G and H is equal to
the difference of the squares of the numbers D and B , as is proven in
proposition three of our treatise On the Measurement of the Parabola. The
product of the number G and the sum of the squares of the numbers B, C
and the product of B and C, if we add to it the product of the number H and
the sum of the squares of the numbers C, D and the product of C and D,
and if we subtract from the result the product of the sum of the numbers G,
H and the sum of the squares of the numbers B, D and the product of B and
D, the remainder is thus greater than the difference of the squares of the
numbers D and B. That is what we wanted to prove.

40 By Proposition 25.
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– 28 – Consider more than two straight lines following the ratios of the
successive numbers beginning with one and, in equal number, straight lines
following the ratios of the successive odd numbers beginning with one and
which are associated with them; if the smallest of the straight lines which
are following the ratios of the successive numbers is equal to the smallest
of the straight lines which are following the ratios of the odd numbers, if
we take three straight lines which follow each other, among the straight
lines which are following the ratios of the successive numbers, whichever
these three <straight lines> may be, if we multiply the straight line
associated with the middle straight line among the three <straight lines>,
by the sum of the square of the smallest straight line among them, the
square of the middle straight line and their product with each other, if we
add to the result the product of the straight line associated with the greatest
straight line of the three and the sum of the square of the greatest straight
line, the square of the middle straight line and their product with each other
and if we subtract from the result the product of the sum of the two straight
lines associated with the middle and the greatest and the sum of the square
of the smallest straight line, the square of the greatest straight line and their
product with each other, then the remainder is greater than the product of
the smallest of the straight lines which are following the ratios of the odd
numbers and the difference between the square of the greatest of the three
straight lines and the square of the smallest.

Let A, B, C, D be straight lines following the ratios of the successive
numbers E, F, G, H beginning with one; let, in equal number, I, K, L, M be
the straight lines which are associated with them, and which are following
the ratios of the successive odd numbers N, S, O, P, beginning with one.
Let one take three straight lines which follow each other, among the
straight lines A , B , C, D , whichever these three <straight lines> may be,
namely B, C, D and let A be equal to I.

I say that if, to the product of the straight line L and the sum of the
squares of the straight lines B, C and the product of B and C, we add the
product of the straight line M and the sum of the squares of the straight
lines C, D and the product of C and D and if we subtract from the sum the
product of the sum of the straight lines L, M and the sum of the squares of
the straight lines B, D  and the product of B and D, the remainder is
greater than the product of the straight line I and the difference between
the squares of the straight lines B and D.
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Proof: The ratios of the straight lines A, B, C, D to each other are equal
to the ratios of the numbers E, F, G, H to each other and the ratios of the
straight lines I, K, L, M to each other are equal to the ratios of the numbers
N, S, O, P to each other. The ratio of A to I is equal to the ratio of E to N, as
A is equal to I; thus the ratio of each of the straight lines A, B, C, D to each
of the straight lines I, K, L, M is equal to the ratio of its homologue, among
the numbers E, F, G, H, to the homologue of the other among the numbers
N, S, O, P. This is why the ratio of the product of the straight line L and the
sum of the squares of the straight lines B and C and the product of B and C
to the cube of the straight line C is equal to the ratio of the product of the
number O and the sum of the squares of the numbers F and G and the
product of F and G, to the cube of the number G. This is also why the ratio
of the product of the straight line M  and the sum of the squares of the
straight lines C and D  and the product of C and D  to the cube of the
straight line C is equal to the ratio of the product of the number P and the
sum of the squares of the numbers G and H and the product of G and H to
the cube of the number G. If we add them up, the ratio of the product of the
straight line L and the sum of the squares of the straight lines B and C and
the product of B and C, to which we add the product of the straight line M
and the sum of the squares of the straight lines C and D and the product of
C and D  to the cube of the straight line C, is equal to the ratio of the
product of the number O and the sum of the squares of the numbers F and
G and the product of F and G, to which one adds the product of the number
P and the sum of the squares of the numbers G and H and the product of G
and H to the cube of the number G.

Likewise, we show that the ratio of the product of the sum of the
straight lines L, M and the sum of the squares of the straight lines B and D
and the product of B and D to the cube of the straight line D is equal to the
ratio of the product of the sum of the numbers O and P and the sum of the
squares of the numbers F and H and the product of F and H to the cube of
the number H. But the ratio of the cube of the straight line D to the cube of
the straight line C is equal to the ratio of the cube of the number H to the
cube of the number G. By the ratio of equality, the ratio of the product of
the sum of the straight lines L, M and the sum of the squares of the straight



ON THE MEASUREMENT OF THE PARABOLOIDS 305

lines B, D and the product of B and D to the cube of the straight line C is
equal to the ratio of the product of the sum of the numbers O and P and the
sum of the squares of the numbers F, H and the product of F and H to the
cube of the number G. But we have shown that the ratio of the product of
the straight line L and the sum of the squares of the straight lines B, C and
the product of B and C, if we add to it the product of the straight line M and
the sum of the squares of the straight lines C, D and the product of C and
D, to the cube of the straight line C, is equal to the ratio of the product of
the number O and the sum of the squares of the numbers F and G and the
product of F and G, if we add to it the product of the number P and the
sum of the squares of the numbers G, H and the product of G and H to the
cube of the number G. Thus the ratio of the excess of the product of the
straight line L and the sum of the squares of the straight lines B, C and the
product of B and C, if we add to it the product of the straight line M and the
sum of the squares of the straight lines C, D and the product of C and D
over the product of the sum of the straight lines L, M and the sum of the
squares of the straight lines B, D and the product of B and D, to the cube of
the straight line C, is equal to the ratio of the excess of the product of the
number O and the sum of the squares of the numbers F, G and the product
of F and G if we add to it the product of the number P and the sum of the
squares of the numbers G, H and the product of G and H over the product
of the sum of the numbers O, P and the sum of the squares of the numbers
F, H and the product of F and H, to the cube of the number G. But the ratio
of the cube of the straight line C to the product of I and the difference
between the squares of the straight lines B, D is equal to the ratio of the
cube of the number G to the product of N and the difference of the squares
of the numbers F and H, since the ratio of the base which is the square of
the straight line C to the base which is the difference between the squares
of the straight lines B and D is equal to the ratio of the base, which is the
square of the number G, to the base which is the difference between the
squares of the numbers F and H, and since the ratio of the height which is
the straight line C, to the height which is the straight line I, is equal to the
ratio of the height which is the number G, to the height which is <the
number> N. By the ratio of equality, the ratio of the product of the straight
line L and the sum of the squares of the straight lines B, C and the product
of B and C, if we add to it the product of the straight line M and the sum of
the squares of the straight lines C, D and the product of C and D, and if we
subtract from the result the product of the sum of the straight lines L, M
and the sum of the squares of the straight lines B, D and the product of B
and D, to the product of the straight line I and the difference of the squares
of the straight lines B and D, is thus equal to the ratio of the product of the
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number O and the sum of the squares of the numbers F and G and the
product of F and G, if we add to it the product of the number P and the
sum of the squares of the numbers G, H and the product of G and H and if
we subtract from the result the product of the sum of the numbers O, P and
the sum of the squares of the numbers F, H and the product of F and H to
the product of N and the difference between the squares of the numbers F
and H. But if, to the product of the number O and the sum of the squares of
the numbers F, G and the product of F and G, we add the product of the
number P and the sum of the squares of the numbers G, H and the product
of G and H and if we subtract from the sum the product of the sum of the
numbers O, P and the sum of the squares of the numbers F , H and the
product of F and H, the remainder is greater than the product of N and the
difference of the squares of the numbers F and H, as N is the unit and its
product by the difference between the squares of the numbers F and H is
equal to the difference between these two squares. If, thus, to the product
of the straight line L and the sum of the squares of the straight lines B, C
and the product of B and C, we add the product of the straight line M and
the sum of the squares of the straight lines C, D and the product of C and D
and if we subtract from it the product of the sum of the straight lines L, M
and the sum of the squares of the straight lines B, D and the product of B
and D, the remainder is greater than the product of I and the difference
between the squares of the straight lines B and D. That is what we wanted
to prove.

– 29 – Consider more than two straight lines following the ratios of the
successive numbers beginning with one and, in equal number, straight lines
following the ratios of the successive odd numbers beginning with one,
which are associated with them, and if the smallest of the straight lines
which are following the ratios of the successive numbers is not equal to the
smallest of the straight lines which are following the ratios of the odd
numbers, if we take three straight lines which follow each other among the
straight lines which are following the ratios of the successive numbers,
whichever these three <straight lines> may be, if we multiply the straight
line associated with the middle straight line, among the three <straight
lines>, by the sum of the square of the smallest among them, and the
square of the middle straight line and their product with each other, and if
we add to the sum the product of the straight line associated with the
greatest straight line of the three and the sum of the square of the greatest
straight line, the square of the middle straight line and their product by
each other and if we subtract from the sum the product of the sum of the
two associated straight lines, the middle and the greatest, and the sum of
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the square of the smallest straight line, the square of the greatest straight
line and their product with each other, then the remainder is greater than
the product of the smallest of the straight lines which are following the
ratios of the odd numbers and the difference between the squares of the
greatest of the three straight lines and the smallest among them.

Let A, B, C, D be straight lines following the ratios of the successive
numbers beginning with one; let E, F, G, H be in equal number, straight
lines which are associated with them and which are following the ratios of
the successive odd numbers beginning with one and such that A is not
equal to E. Let us take three straight lines which follow each other among
the straight lines A, B, C, D, whichever these three <straight lines> may be,
let them be B, C, D.

I say that if, to the product of the straight line G and the sum of the
squares of the straight lines B, C and the product of B and C, we add the
product of <the straight line> H and the sum of the squares of the straight
lines C, D and the product of C and D, and if we subtract from it the
product of the sum of the straight lines G, H and the sum of the squares of
the straight lines B, D  and the product of B and D, the remainder is
greater than the product of the straight line E and the difference between
the squares of the straight lines B and D.
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Proof: If we let the straight line I be equal to the straight line E and if
we let the ratios of the straight lines I, K, L, M  to each other, taken in
succession, be equal to the ratios of the straight lines A, B, C, D, to each
other, taken in succession, then the ratios of the straight lines I, K, L, M, to
each other, taken in succession, are equal to the ratios of the successive
numbers beginning with one, and the straight line E is equal to the straight
line I. If, to the product of the straight line G and the sum of the squares of
the straight lines K and L and the product of K and L, we add the product of
the straight line H and the sum of the squares of the straight lines L, M and
the product of L and M and if, from the result, we subtract the product of
the sum of the straight lines G, H and the sum of the squares of the straight
lines K, M and the product of K and M, the remainder is greater than the
product of the straight line E and the difference between the squares of the
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straight lines K and M.41 But the ratio of the difference between the squares
of the straight lines B and D to the difference between the squares of the
straight lines K and M is equal to the ratio of the square of the straight line
B to the square of the straight line K, as the ratios of the straight lines I, K,
L , M  to each other, taken in succession, are equal to the ratios of the
straight lines A, B, C, D to each other, taken in succession. Thus the ratio of
the product of the straight line E and the difference between the squares of
the straight lines B and D to its product and the difference between the
squares of the straight lines K and M is equal to the ratio of the square of
the straight line B to the square of the straight line K. But the ratio of the
square of the straight line B to the square of the straight line K is equal to
the ratio of the square of the straight line C to the square of the straight line
L; it is equal to the ratio of the square of the straight line D to the square of
the straight line M; it is equal to the ratio of the product of B and C to the
product of K and L; it is equal to the ratio of the product of C and D to the
product of L and M and it is equal to the ratio of the product of B and D to
the product of K and M . Thus the ratio of the product of E  and the
difference between the squares of the straight lines B and D to its product
and the difference between the squares of the straight lines K and M  is
equal to the ratio of the sum of the squares of the straight lines B and C and
the product of B and C to the sum of the squares of the straight lines K and
L and the product of K and L, and is equal to the ratio of the sum of the
squares of the straight lines C and D and the product of C and D to the sum
of the squares of the straight lines L and M and the product of L and M and
is equal to the ratio of the sum of the squares of the straight lines B and D
and the product of B and D to the sum of the squares of the straight lines K
and M and the product of K and M. But if a straight line is multiplied by
two surfaces, then the ratio of the solid formed as its multiplication by the
one to the solid formed as its multiplication by the other is equal to the
ratio of the first of the surfaces to the second. Thus the ratio of the product
of E and the difference between the squares of the straight lines B and D to
its product and the difference of the squares of the straight lines K and M is
equal to the ratio of the product of the straight line G and the sum of the
squares of the straight lines B, C and the product of B and C to the product
of the straight line G also and the sum of the squares of the straight lines K,
L and the product of K and L, and is equal to the ratio of the product of the
straight line H and the sum of the squares of the straight lines C, D and the
product of C and D to the product of the straight line H and, also, the sum
of the squares of the straight lines L, M and the product of L and M, and is
equal to the ratio of the product of the sum of the straight lines G, H and

41 By Proposition 28.
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the sum of the squares of the straight lines B, D and the product of B and D
to the product of the sum of the two straight lines G, H and, also, the sum
of the squares of the straight lines K and M and the product of K and M. If
we thus take the product of G and the sum of the squares of the straight
lines B and C and the product of B and C, if we then add to it the product of
H and the sum of the squares of the straight lines C, D and the product of C
and D and if we subtract from the sum the product of the sum of the two
straight lines G, H and the sum of the squares of the straight lines B, D and
the product of B  and D, then the ratio of the remainder to that which
remains – if we take the product of G and the sum of the straight lines K
and L and the product of K and L, if we add to it the product of H and the
sum of the squares of the straight lines L, M and the product of L and M
and if we subtract from the sum the product of the sum of the two straight
lines G and H and the sum of the squares of the straight lines K, M and the
product of K and M – is equal to the ratio of the product of E and the
difference between the squares of the straight lines B and D to the product
of E and the difference between the squares of the straight lines K and M.
But if we permute, they will be also proportional. But we have shown that
if, to the product of G and the sum of the squares of the straight lines K, L
and the product of K and L, we add the product of H and the sum of the
squares of the straight lines L, M and the product of L and M  and if we
subtract from the sum the product of the sum of the straight lines G, H and
the sum of the squares of the straight lines K, M and the product of K and
M, that which remains is greater than the product of E and the difference
between the squares of the straight lines K and M. If, to the product of G
and the sum of the squares of the straight lines B, C and the product of B
and C, we add the product of H and the sum of the squares of the straight
lines C, D and the product of C and D and if we subtract from the sum the
product of the sum of the straight lines G, H and the sum of the squares of
the straight lines B, D and the product of B and D, the remainder will be
greater than the product of E and the difference between the squares of the
straight lines B and D. That is what we wanted to prove.

– 30 – If three magnitudes are such that each has a ratio with each of its
two associates and such that the first is the smallest and the third the
greatest, we may then find successive magnitudes following the ratio of the
first to the second beginning with the first and ending to a magnitude
greater than the third.

Let the three magnitudes, such that each has a ratio with each of its two
associates, be the magnitudes A, BC, DE  let the smallest be A and the
greatest DE.
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I say that we can find successive magnitudes following the ratio of A to
BC beginning with A and ending to a magnitude greater than DE.
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Fig. II.2.30

Proof: If we let the excess of the magnitude BC over the magnitude A
be equal to the magnitude BF and the excess of the magnitude DE over the
magnitude A be equal to the magnitude DG, the magnitude BF has a ratio
to the magnitude DG; it is then possible by sufficiently multiplying BF by
itself, that it exceeds DG. If we suppose that this multiple which exceeds
the magnitude DG is of the magnitude HI and if we let the ratio of KL to
BC be equal to the ratio of BC to A, and equal to the ratio of M to KL and if
we continue to proceed thus up to where the number of the magnitudes BC,
KL and M is equal to the number of times BF is in the magnitude HI; if we
divide HI into that many times BF, which is to say into parts HS, SO, OI, if
we let KN be equal to the excess of KL over BC – the ratio of A to BC
being equal to the ratio of BC to KL – if we subtract the two smallest from
the two greatest, then the ratio of the remainder, which is BF, to the
remainder, which is KN, is equal to the ratio of A to BC. But the magnitude
A is smaller than the magnitude BC, thus the magnitude KN, which is the
excess of KL over BC, is greater than the magnitude BF which is the excess
of BC over A. Likewise, we also show that the excess of M over KL is
greater than the excess of KL over BC and much greater than the excess of
BC over A. Thus, on the one hand, BF, which is the excess of BC over A, is
equal to HS and, on the other, each of the excesses of KL over BC and M
over KL is greater than SO and OI respectively. But the number of the
excesses is equal to the number of parts of the straight line HI. If we add
them up, then the excess of M over A will be greater than HI. But HI is
greater than DG; thus the excess of M over A is much greater than DG and
the magnitude A is equal to the magnitude GE; thus the excess of the
magnitude M over the magnitude A, plus the magnitude A, is greater than
the magnitude DE. But the excess of the magnitude M over the magnitude
A, plus the magnitude A, is equal to the magnitude M; thus the magnitude
M is greater than the magnitude DE. The magnitudes A , BC, KL, M are
successive following the ratio of A to BC. That is what we wanted to prove.
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– 31 – If two magnitudes are such that the one is smaller than the other
and two other magnitudes such that the first42 is smaller than the greater of
the first two magnitudes, if we subtract from the greater of the first two
magnitudes, a magnitude whose ratio to it is not less than the ratio of the
smallest of the two other magnitudes to the greater, if we subtract from the
remainder a magnitude whose ratio to it is also not less than the ratio of the
smaller of the two latter magnitudes to the greater, and if we then continue
to proceed thus with that which remains, then there will remain of the
greater magnitude, a magnitude smaller than the smaller magnitude.

Let AB and CD be two magnitudes, such that AB is greater than CD,
and let E and FG be two other magnitudes such that E is smaller than FG,
and FG smaller than AB.

I say that if we subtract from AB a magnitude whose ratio to it is not
less than the ratio of E to FG and if we subtract from the remainder a
magnitude whose ratio to it is also not less than this ratio, and if we then
continue to proceed thus with that which remains, then there will remain of
AB a magnitude smaller than the magnitude CD.
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Proof: If we separate from FG, HG equal to E, and if we let the ratio of
ID to DC be equal to the ratio of GH to HF, then either CI will be greater
than AB or it will not be greater that it. If CI is greater that it, *then43 the
ratio of AB to CD is smaller than the ratio of CI to CD. But the ratio of CI
to CD is equal to the ratio of FG  to FH; thus the ratio of AB to C D is
smaller than the ratio of FG to FH. If we let the ratio of BL to AB be equal
to the ratio of GH to GF, then the ratio of AB to AL is equal to the ratio of
FG to FH; thus the ratio of AB to CD is smaller than the ratio of AB to AL;
thus AL is smaller than CD. That is what we wanted.*

42 It consists of the greater, as we see in the example.
43 *… * The paragraph between the two asterisks renders the Arabic text

reconstituted by us.



312 CHAPTER II: THÆBIT IBN QURRA

Otherwise the magnitudes AB, CI and CD have a ratio to each other
and the greatest of which is AB and the smallest is CD; we can thus find
successive magnitudes following the ratio of CD to CI, beginning with CD
and ending to a magnitude greater than AB.44 If we let CD, CI, CK be these
magnitudes, then the ratio of ID to DC is equal to the ratio of KI to IC and
equal to the ratio of GH to HF. If we suppose that the ratio of BL to BA is
not smaller than the ratio of E to FG and likewise, for the ratio of LM to
AL, and if we continue to proceed thus up to where the number of parts BL,
LM, MA is equal to the number of the straight lines KI, ID, DC, then the
ratio of BL to BA will not be smaller than the ratio of E to FG; but E is
equal to GH. If we separate, then the ratio of BL to AL will not be smaller
than the ratio of GH to HF. But the ratio of GH to HF is equal to the ratio
of KI to IC; thus the ratio of BL to AL is not smaller than the ratio of KI to
IC. Likewise, we also show that the ratio of LM to MA is not smaller than
the ratio of ID to DC. From that, one shows that the ratio of BM to MA is
not smaller than the ratio of KD to DC.45 If we compose <the ratios>, then
the ratio of BA to A M is not smaller than the ratio of KC to CD. If we
permute, then the ratio of BA to KC is not smaller than the ratio of AM to
CD; it is thus either equal to it or it is greater. If it is equal to it – BA being
smaller than KC – then AM which remains of AB is smaller than CD. That
is what we wanted.

 If it is greater than it, the ratio will be equal to the ratio of a magnitude
greater than AM to the magnitude CD; let this magnitude be AN; AN will
thus be smaller than CD, as its ratio to CD is equal to the ratio of AM to
CK; thus the magnitude AM which remains of AB is much smaller than CD.
That is what we wanted to prove.

– 32 – If we produce in a portion of a parabola its diameter and if we
extend in one of its two halves ordinate straight lines to this diameter such
that the ratios of the parts of the diameter separated by the ordinate straight
lines, to each other, taken in succession, are equal to the ratios of the
successive odd numbers beginning with one, to each other, and such that
the smallest of these parts is on the side of the vertex of the section, if
straight lines join the extremities of the ordinate straight lines which are on
the same side and the vertex of the parabola also to the extremity of the
smallest of the drawn ordinates, generating in the section a polygonal
figure46 inscribed in half of the portion of the parabola, if we fix the
diameter of this portion of a parabola and if we rotate all of the other sides

44 By Proposition 30.
45 The author does not give any explication; see the commentary.
46 Lit.: a figure of rectilinear sides.
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of the figure which is in its half from an arbitrary position up to where it
returns to its original position, then the solid enclosed by this figure is less
than half of the cylinder whose base is the base circle of this figure if its
base is a circle, or the base of its lower part if its lower part is the surface
of a cone of revolution whose height is equal to the diameter of this portion
of the parabola, by two thirds of the solid formed as the product of the
diameter of the portion and the circle whose diameter is the perpendicular
dropped from the extremity located over the line of the section from one of
the two extremities of the ordinates produced in the section over the
diameter of the section.

Let ABC be half of a portion of a parabola, BC its diameter and, in this
half of the portion, let DE, FG and AC be ordinate straight lines to the
diameter BC. Let the ratios of the straight lines BE, EG, GC to each other,
taken in succession, be equal to the ratios of the successive odd numbers H,
I, K beginning with one, and let BE be the smallest of the straight lines;
join the straight lines AF, FD and DB.

    Fig. II.2.32a    Fig. II.2.32b   Fig. II.2.32c

I say that if we fix the straight line BC and if we rotate all of the other
sides of the figure CAFDB, from an arbitrary position up to its original
position,47 then the solid enclosed by that figure is less than half of the
cylinder whose base is the base circle of this solid, if its lower part is a
circle, or the base circle of its lower part if its lower part is the surface of a
cone of revolution, and whose height is equal to the straight line BC, by
two thirds of the solid formed as the product of BC and the circle whose
diameter is the perpendicular produced from the point D to the diameter
BC.

Proof: The ratio of the square of the straight line FM to the circle of
diameter FM is equal to the ratio of the square of the straight line AL to the

47 Lit.: they have started.
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circle of diameter AL and is equal to the ratio of the product of FM and AL
to the circle whose square of the diameter is equal to the product of FM
and AL and is equal to the ratio of the square of the straight line DN to the
circle whose diameter is DN and is equal to the ratio of the product of FM
and DN to the circle whose square of the diameter is equal to the product of
FM and DN. Thus one third of the solids formed as the product of BE and
the circle of diameter DN, plus the product of EG and the sum of the two
circles whose diameters are the straight lines DN, FM and the circle whose
square of the diameter is equal to the product of D N and FM, plus the
product of GC and the sum of the circles whose diameters are the straight
lines FM, AL and the circle whose square of the diameter is equal to the
product of FM and AL, and two thirds of the solid formed as the product of
BC and the circle whose diameter is DE, have a sum equal to half of the
solid formed as the product of BC and the circle whose diameter is AL.

Yet, on the one hand, one third of the solid formed as the product of
BE and the circle of diameter DN is equal to the volume of the cone of
revolution whose base is the circle of diameter DN and whose height is the
straight line BE.48 On the other hand, one third of the solid formed as the
product of EG and the two circles whose diameters are the straight lines
DN, FM and the circle whose square of the diameter is equal to the product
of DN and FM is equal to the frustum of a cone of revolution whose base is
the circle of diameter the straight line FM, and whose upper surface is the
circle of diameter the straight line DN. Regarding one third of the product
of GC and the two circles of diameters the straight lines FM, AL and the
circle whose square of the diameter is equal to the product of FM and AL, it
is equal to the frustum of a cone of revolution whose base is the circle of
diameter AL and whose upper surface is the circle of diameter FM. And the
solid that we mentioned from the cone and the two frusta of cones of
revolution, if we add them up, is equal to the solid generated when we fix
the straight line BC and rotate all of the other sides of the figure CAFDB.
This solid, plus two thirds of the solid formed as the product of BC and the
circle of diameter the straight line DE, is equal to half of the solid whose
base is the circle of diameter AL and whose height is BC. But this solid is
the cylinder whose base is the circle of diameter AL and whose height is
BC. The solid generated, when we fix the straight line BC and rotate all of
the other sides of the figure CAFDB, from an arbitrary position up to its
original position, is less than half of the cylinder whose base is the circle of
diameter AL and whose height is the straight line BC, by two thirds of the

48 The author first treats the case where the diameter BC is the axis of the parabola
(Fig. II.2.32a).



ON THE MEASUREMENT OF THE PARABOLOIDS 315

solid formed as the product of BC and the circle of diameter DE which is
perpendicular to BC.

Likewise, if we do not suppose the ordinate straight lines to be
perpendicular to the diameter BC – let the perpendiculars produced from
the points A, F, D to the diameter49 be the perpendiculars AS, FO and DP
as in the second and the third case of figure – and if we join the straight
lines LS, MO, NP, then the lines ASL, FOM, DPN are straight lines and the
angles DPE and FOG are equal as they are right angles. But the straight
line DE is parallel to the straight line FG; thus the angle DEP is equal to
the angle FGO and there remains the angle PDE of the triangle EDP equal
to the angle GFO of the triangle OFG. The two triangles EDP and OFG
are thus similar; this is why the ratio of DE to FG is equal to the ratio of
DP to FO. In the same way, we also show that the ratio of FG to AC is
equal to the ratio of FO to AS. But the ratios of the straight lines DE, FG
and AC  to each other, are equal to the ratios of the successive even
numbers beginning with two. But the straight line DN is twice the straight
line DP, the straight line FM is twice the straight line FO and the straight
line AL is twice the straight line AS; thus the ratios of the straight lines DN,
FM, AL, to each other, taken in succession, are equal to the ratios of the
successive even numbers beginning with two, and the ratios of the straight
lines BE, EG, GC, to each other, taken in succession, are equal to the ratios
of the successive odd numbers beginning with one. One third of the sum of
the product of BE and the square of the straight line DN, the product of EG
and the squares of the straight lines DN, FM and the product of DN and
FM, and the product of GC and the squares of the straight lines FM, AL,
and the product of FM and AL, plus two thirds of the product of BC and the
square of half of the straight line DN which is equal to DP, is equal to half
of the product of BC and the square of the straight line AL. But the ratio of
the square of the straight line DN to the circle of diameter DN is equal to
the ratio of the square of the straight line FM to the circle of diameter FM;
it is equal to the ratio of the product of DN and FM to the circle whose
square of the diameter is equal to the product of DN and FM; it is equal to
the ratio of the square of the straight line AL to the circle of diameter AL; it
is equal to the ratio of the product of FM and AL to the circle whose square
of the diameter is equal to the product of FM and AL, and it is equal to the
ratio of the square of the straight line DP to the circle of diameter DP. One
third of the sum of the solids formed as the product of BE and the circle of
diameter DN, the product of EG and the circles of diameters DN, FM and
the circle whose square of the diameter is equal to the product of DN and
FM, and the product of GC and the two circles of diameters the straight

49 Lit.: to the axis.
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lines FM, AL and the circle whose square of the diameter is equal to the
product of FM and AL, plus two thirds of the product of BC and the circle
of diameter DP, is equal to half of the solid formed as the product of BC
and the circle of diameter AL. Yet, on the one hand, one third of the
product of BE and the circle of diameter DN is equal to the volume of the
hollow cone DBNE in the second case of figure, and also to the volume of
the solid DBNE, in the third case of figure which is either a solid rhombus
or a hollow cone. On the other hand, one third of the product of EG and the
two circles whose diameters are DN, FM and the circle whose square of the
diameter is equal to the product of DN and FM is equal to the volume of a
frustum of a hollow cone DENMGF in the second case of figure, and also
to the volume of the solid DENMGF in the third case of figure, which is
either a frustum of a solid rhombus or a frustum of a hollow cone.
*Regarding50 one third of the product of G C and the two circles whose
diameters are FM, AL and the circle whose square of the diameter is equal
to the product of FM and AL, it is equal to the volume of a frustum of a
hollow cone FGMLCA in the second case of figure, and also to the volume
of the solid FGMLCA in the third case of figure, which is either a frustum
of a solid rhombus or a frustum of a hollow cone.* Regarding the product
of BC and the circle of diameter AL, it is equal to the cylinder whose base
is the circle of diameter AL and whose height is BC. Thus the solid DBNE,
which is a hollow cone in the second case of figure and either a solid
rhombus or a hollow cone in the third case of figure, and the two solids
DENMGF and FGMLCA , which are the frusta of hollow cones in the
second case of figure and either two frusta of solid rhombuses, or two
frusta of hollow cones, or the first a frustum of a hollow cone and the other
a frustum of a solid rhombus, in the third case of figure, with two thirds of
the solid formed as the product of BC and the circle of diameter DP, have a
sum equal to half of the cylinder whose base is the circle of diameter AL
and whose height is BC . But the hollow cone of revolution that we
mentioned, plus the two frusta of hollow cones, have a sum equal to the
solid generated by the rotation of the figure CAFDB, in the second case of
figure, if the fixed straight line is BC. It is likewise for the solid rhombus or
the hollow cone in the third case of figure with, in this case, the two frusta
of solid rhombuses or the two hollow cones, or the two solids where the
first is a solid rhombus and the other is a hollow cone. The solid generated,
if we fix the straight line BC and rotate all of the other sides of the figure
CAFDB from an arbitrary position up to where it returns to that position, is
thus less than half of the cylinder whose base is the circle of diameter AL

50 *… * The paragraph between the two asterisks renders the Arabic text
reconstituted by us.
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and whose height is the straight line BC, by two thirds of the solid formed
as the product of B C  and the circle of diameter DP  which is the
perpendicular dropped from the point D on the diameter BC. That is what
we wanted to prove.

– 33 – Consider a known parabolic dome of regular vertex and a
known solid; then it is possible to describe on the lateral surface of the
dome, circles parallel to the base of that surface such that, when we
produce ordinates from their circumferences to the axis of the dome, they
divide it into parts such that the ratios of the ones to the others, taken in
succession, are equal to the ratios of the successive odd numbers beginning
with one and such that the smallest is on the side of the vertex of the dome.
If we join the surfaces between the circumferences of the circles described
over the dome and another surface between the circumference of the
smallest circle and the vertex point of the dome, it generates in the dome an
inscribed solid such that the excess of the dome over this solid is smaller
than the known solid.

Let a parabolic dome be known, of regular vertex, with AB half of the
portion of the parabola which one has rotated, and which has generated it;
let BC be its axis, which is the axis of the parabola; let BD be that half of
the portion, from the other side, where it has turned above the plane in
which it was at the start, and let E be the known solid.

Fig. II.2.33a

I say that it is possible to describe on the surface of the dome ABD
circles parallel to the base circle of its surface such that, when we produce,
from the circumferences of these circles, ordinates to the axis BC, which
divide BC into parts whose ratios to each other, taken in succession, are
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equal to the ratios of the successive odd numbers beginning with the unit,
and if we join the surfaces between the circumferences of these circles and
another surface between the vertex of the dome and the circumference of
the smallest of these circles, an inscribed solid is generated in the dome
such that the excess of the dome over this solid is smaller than the solid E.

Proof: If we join the straight line A B and if we let the ordinate
produced from the point A to the axis be the straight line AC, then the torus
generated by the rotation of the portion AFB, if we fix the straight line BC
and if we rotate the half ABC of the section, is either smaller than the solid
E or it is not thus. If it is smaller, then that is what we want. Otherwise, if
we divide the straight line AC into two halves at the point G, if we produce
from the point G a straight line GF parallel to the straight line BC, <if we
join the straight lines AF and FB>, if we make a tangent HFI pass through
the point F to the section which meets the axis at the point I, and if we
produce from the point A a straight line AH parallel to the straight line BC,
then the parallelogram HIBA is circumscribed about the portion AFB of the
parabola. The solid generated by the parallelogram HIBA, if we fix the
straight line IC and rotate all of the other sides of the parallelogram HIBA
at the same time as the surface of half of the section, is greater than the
torus generated by AFB. But the solid generated by the rotation of the
parallelogram HIBA is equal to the product of BK and the circle whose
semi-diameter is the straight line AC.51 Likewise, BK, KC, FK and AC are
four straight lines such that BK is one third of KC and FK is half of AC.52 If
we add the solids formed as the product of BK  and the square of the
straight line FK and as the product of KC and the squares of the straight
lines FK, AC and the product of FK and AC, and if from the sum, we
subtract the solid formed as the product of BC and the square of the straight
line AC, the remainder is greater than the solid formed as the product of BK
and the square of the straight line AC.53 But the ratio of the solids formed
as the product of BK and the square of the straight line FK, as the product
of KC and the squares of the straight lines FK, AC and the product of FK
and AC and as the product of BC and the square of the straight line AC, to
the solids formed as the product of BK and the circle of semi-diameter FK,
as the product of KC and the circles whose two semi-diameters are FK, AC
and the circle whose square of the semi-diameter is equal to the product of
FK and AC, and as the product of BC and the circle of semi-diameter AC,
each to its homologue, is equal to the ratio of the solid formed as the
product of BK and the square of AC to the solid formed as the product of

51 As BK = BI, property of the sub-tangent, and BI = AH.
52 See the mathematical commentary.
53 By Proposition 21.
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BK and the circle of semi-diameter AC. The solids formed as the product of
BK and the circle of semi-diameter FK, and as the product of KC and the
two circles whose semi-diameters are FK, AC and the circle whose square
of the semi-diameter is equal to the product of FK and AC, if we add them
up and if we subtract from them the solid formed as the product of BC and
the circle of semi-diameter AC – on the one hand, the solid formed as the
product of BK and the circle of semi-diameter FK being the triple of the
cone of revolution generated by the rotation of FBK; on the other, the solid
formed as the product of KC and the two circles whose semi-diameters are
FK, AC and the circle whose square of the semi-diameter is equal to the
product of FK  and AC  being the triple of the frustum of a cone of
revolution generated by the rotation of the trapezium FKCA; and the solid
formed as the product of BC and the circle of semi-diameter AC being the
triple of the cone of revolution generated by the rotation of the triangle
ABC – if we thus subtract the triple of the entire cone generated by the
rotation of the triangle ABC, from the triple of the entire solid generated by
the rotation of the trapezium AFBC,54 then the remainder will be greater
than the product of BK and the circle of semi-diameter AC. But, on the one
hand, that which remains of the triple of the solid generated by the rotation
of the trapezium AFBC, if we subtract from it the triple of the cone
generated by the rotation of the triangle ABC, is equal to the triple of the
torus generated by the rotation of the triangle AFB, if the fixed straight line
is BC; on the other, we have shown that the product of BK and the circle of
semi-diameter AC is equal to the solid generated by the rotation of the
parallelogram HIBA. The torus generated by the rotation of the triangle
AFB, if the fixed straight line is BC, is thus greater than one third of the
solid generated by the rotation of the parallelogram HIBA. Yet, we have
shown that this solid is greater than the torus generated by the rotation of
the portion AFB of the parabola, if the fixed straight line is BC; thus the
torus *generated55 by the rotation of the triangle AFB, if the fixed straight
line is BC, is much greater than one third of the torus generated by the
rotation of the portion AFB of the parabola if the fixed straight line is BC;
that which thus remains of the dome ABD, after having subtracted the
figure generated by the rotation of the quadrilateral AFBC, is composed of
the two tori generated by the rotation of the two portions AF and FB of the
parabola, if the fixed straight line is BC; this remainder, is either smaller
than the solid E, or it is not. If it is smaller than it, that is what we wanted.

54 The polygon AFBC is formed from a triangle and a trapezium.
55 *… * The paragraph between the two asterisks renders the Arabic text

reconstituted by us.
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Fig. II.2.33b

Otherwise, if we divide the two straight lines AG and GC always into
two halves, at the points M and Z, and if we produce from these two points
the two straight lines MS and ZO parallel to the axis and if we make two
straight lines QSR and ROI′,56 tangent to the parabola, pass through the
points S and O, and if we produce from the points S and O two parallel
straight lines to the straight line AC and which meet the axis BC at the
points P  and U and if we produce from the points Q  and R  the
perpendiculars QX  and RT to the axis, then the parallelogram AQRF is
circumscribed about the portion ASF of the parabola and the parallelogram
FRI′B is circumscribed about the portion FOB of the parabola. The torus
generated by the rotation of the parallelograms AQRF and FRI′B is equal to
the solid* generated by the rotation of A Q X C  because the two
parallelograms AQXC and FRTK have equal bases CX and KT, as they are
equal to the two straight lines AQ and FR, bases which are on a single
straight line BC, the two parallelograms being on the same side.57 If we fix
the straight line BC and if we rotate the three parallelograms FRTK, AQXC
and AQRF according to their shape, then the torus generated by the rotation
of the parallelogram AQRF is equal to the difference between the two
solids generated by the rotation of the two parallelograms AQXC and
FRTK.58 But, on the one hand, the solid generated by the rotation of the

56 See the mathematical commentary.
57 By Propositions 19 and 20.
58 See previous note 57.
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parallelogram AQXC is equal to the product of AQ and the circle of semi-
diameter AC. On the other hand, the solid generated by the rotation of the
parallelogram FRTK is equal to the product of FR and the circle of semi-
diameter FK. Thus the torus generated by the rotation of the parallelogram
AQRF, if the fixed straight line is BC, is equal to the product of BU and the
difference between the two circles whose semi-diameters are FK and AC,
as we have shown that BU is equal to each of the straight lines AQ and
FR.59 And also the ratios of the doubles of the straight lines OU, FK, SP
and AC, to each other, taken in succession, are equal to the ratios of the
successive even numbers beginning with two. But the number of the
straight lines BU, UK, KP and PC is the same as the number of those, and
their ratios to each other, taken in succession, are equal to the ratios of the
successive odd numbers beginning with one. If we add the solids formed as
the product of KP and the squares of the straight lines FK, SP and the
product of FK and SP, and as the product of PC and the squares of the
straight lines SP, AC and the product of SP and AC, and if we subtract from
the sum the solids formed as the product of KC and the squares of the
straight lines FK, AC and the product of FK and AC, then the remainder is
greater than the solid formed as the product of BU and the difference
between the squares of the straight lines FK and AC.60 But the ratio of the
square of the straight line FK to the circle of semi-diameter FK is equal to
the ratio of the square of the straight line SP to the circle of semi-diameter
SP and is equal to the ratio of the product of FK and SP to the circle whose
square of the semi-diameter is equal to this product and equal to the ratio of
the square of the straight line AC to the circle of semi-diameter AC and is
equal to the ratio of the product of SP and AC to the circle whose square of
the semi-diameter is equal to this product, and is equal to the ratio of the
difference between the squares of the straight lines FK and AC  to the
difference between the two circles whose semi-diameters are the straight
lines FK and AC. Thus, if we add the product of KP and the two circles
whose semi-diameters are FK, SP and the circle whose square of the semi-
diameter is equal to the product of FK and SP, and the product of PC and
the two circles whose semi-diameters are SP, AC and the circle whose
square of the semi-diameter is equal to the product of SP and AC, and if we
subtract from the sum the product of KC and the two circles whose semi-
diameters are FK, AC and the circle whose square of the semi-diameter is
equal to the product of FK and AC, then the remainder is greater than the
product of BU and the difference between the two circles whose semi-
diameters are the straight lines FK  and AC . But, on the one hand, the

59 By Proposition 18.
60 By Proposition 29.
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product of KP and the two circles whose semi-diameters are the straight
lines FK, SP and the circle whose square of the semi-diameter is equal to
the product of FK and SP, plus the product of PC and the two circles
whose semi-diameters are the straight lines SP, AC and the circle whose
square of the semi-diameter is equal to the product of SP and AC, is the
triple of the solid generated by the rotation of the figure ASFKC, if the
fixed straight line is KC, as it is composed of the two frusta of cones of
revolution FKPS and SPCA. On the other hand, the product of KC and the
two circles of semi-diameters FK, AC and the circle whose square of the
semi-diameter is equal to the product of FK and AC, is the triple of the
frustum of a cone of revolution generated by the rotation of the trapezium
AFKC, if the fixed straight line is KC. The excess of the triple of the solid
generated by the rotation of the figure ASFKC, if the fixed straight line is
KC, over the triple of the solid generated by the rotation of the trapezium
AFKC, if the fixed straight line is KC, is thus greater than the product of
BU and the difference between the two circles whose semi-diameters are
the straight lines FK and AC. On the one hand, the excess of the triple of
the solid generated by the rotation of the figure ASFKC, if the fixed straight
line is BC, over the triple of the solid generated by the rotation of the
trapezium AFKC, if the fixed straight line is BC, is equal to the triple of the
torus generated by the rotation of the triangle ASF, if the fixed straight line
is BC. And on the other hand, we have shown that the product of BU and
the difference between the two circles whose semi-diameters are the
straight lines FK and AC is equal to the torus generated by the rotation of
the parallelogram AQRF , if the fixed straight line is BC . The torus
generated by the rotation of the triangle ASF, if the fixed straight line is
BC, is thus greater than one third of the torus generated by the rotation of
the parallelogram AQRF, if the fixed straight line is BC, and the torus
generated by the rotation of the parallelogram AQRF, if the fixed straight
line is BC, is greater than the torus generated by the rotation of the portion
ASF of the parabola, if the fixed straight line is BC, as the straight line QSR
is tangent to the section. The torus generated by the rotation of the triangle
ASF, if the fixed straight line is BC, is thus greater than one third of the
torus generated by the rotation of the portion ASF of the parabola, if the
fixed straight line is BC. Yet, we have shown that the torus generated by
the rotation of the triangle FOB, if the fixed straight line is BC, is greater
than one third of the torus generated by the rotation of the portion FOB of
the parabola, if the fixed straight line is BK. The two tori generated by the
rotation of the triangles ASF and FOB, if the fixed straight line is BC, are
greater than one third of the two tori generated by the rotation of the two
portions ASF and FOB of the parabola, if the fixed straight line is BC. The
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portion which remains of the dome ABD after having subtracted the solid
generated by the rotation of the figure ASFOBC, if the fixed straight line is
BC, composed of the tori generated by the rotation of the portions AS, SF,
FO and OB, if the fixed straight line is BC, is either smaller than the solid
E or it is not thus. If it is smaller than it, that is what we wanted. Otherwise,
it is necessary, when we continue to proceed in the same way as numerous
times, that we lead to tori, remaining from the dome, which are less than
the solid E, as if two magnitudes are such that the one is greater than the
other and if we subtract from the greater of the two a magnitude whose
ratio to that is greater than a given ratio, and of the remainder, a magnitude
whose ratio to that is greater than this ratio, and if we continue to proceed
thus, it is necessary that we lead from the greater, to a thing which remains
from it, smaller than the smallest.61 Let the tori generated by the rotation of
the portions AS, SF, FO and OB of the parabola, if the fixed straight line is
BC, be that which remains of the dome and let them be smaller than the
solid E; it is then possible to construct oin the lateral surface of the dome
ABD of regular vertex circles parallel to the circle of the base of its surface.
If ordinate straight lines are produced from the circumferences of these
circles to the axis BC, they divide it into arbitrary parts such that their
ratios, to each other, taken in succession, are equal to the ratios of the
successive odd numbers beginning with one, and if we join the surfaces
between these circles and another surface between the vertex of the dome
and the smaller circle, an inscribed solid is generated in the dome, such that
the excess of the dome over this solid is smaller than the solid E; <these
circles> are like the circles whose semi-diameters are OU, FK, SP and AC.
That is what we wanted to prove.

– 34 – Consider a known parabolic dome, with a pointed vertex or with
a sunken vertex, and a known solid; then it is possible to describe on the
lateral surface of the dome circles parallel to the base of that surface, such
that when ordinates are produced from their circumferences to the axis of
the dome, they divide it into parts such that the ratios of the ones to the
others, taken in succession, are equal to the ratios of the successive odd
numbers beginning with one and such that the smallest is on the side of the
vertex of the dome, and if we join the surfaces between the circumferences
of the circles described over the dome and another surface between the
circumference of the smallest of these circles and the vertex of the dome,
an inscribed solid is generated in the dome such that the excess of the dome
over this solid is smaller than the known solid.

61 By Proposition 31.
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Let there be a known parabolic dome with a pointed vertex or with a
sunken vertex, let AB be half of the portion where one has rotated the base,
let BC be its axis which is the diameter of the section, let BD be half of the
portion on the other side, when it has rotated above the plane in which it
was first, and let E be the known solid.

Fig. II.2.34a

I say that we may describe on the surface ABD circles parallel to the
base circle of its surface such that when ordinates are produced from the
circumferences of these circles to the axis BC, they divide BC into parts
whose ratios to each other, taken in succession, are equal to the ratios of
the successive odd numbers beginning with one, and if we join the surfaces
between the circumferences of these circles and the surface between the
vertex of the dome and the circumference of the smaller circle, an
inscribed solid is generated in the dome, such that the excess of the dome
over this solid is smaller than the solid E.

Proof: If we join the straight line A B and if we let the ordinate
produced from the point A to the axis be the straight line AC, then the torus
generated by the rotation of the portion AFB of the parabola, when we fix
the straight line BC and rotate half CAB of the parabola, is either smaller
than the solid E, or it is not thus. If it is smaller than it, that is what we
wanted.
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Fig. II.2.34b

Otherwise, if we divide the straight line AC into two halves at the point
G, if we produce from the point G a straight line parallel to the straight line
BC, which is the straight line GF, if we join the straight lines AF and FB, if
we make a straight line HFI pass through the point F , tangent to the
parabola, which meets the diameter at the point I, and if we produce from
the point A a straight line parallel to the diameter BC, which is AH, we then
show as we have shown in the previous proposition, that the solid
generated by the surface HIBA, if we fix the straight line IC and rotate the
plane of the half AB of the portion, is greater than the torus generated by
the portion A F B  of the parabola, and that the surface HIBA  is a
parallelogram. If we produce two perpendiculars AK  and HL from the
points A  and H to the straight line BC , then the surface HLKA  is a
parallelogram and its base is the same as the base of the surface HIBA,
which is AH, and they are in the same direction and between the parallel
straight lines AH and CI. * 62If we produce from the point F an ordinate
FM, then FM and AC are two parallel straight lines; if we produce from the
point F the perpendicular FN to the axis BC, then FN and AK are two
parallel straight lines. The solid formed as the product of MC and the two

62 *… * The paragraph between the two asterisks renders the Arabic text
reconstituted by us.



326 CHAPTER II: THÆBIT IBN QURRA

circles* of semi-diameters FN, AK and the circle whose square of the semi-
diameter is equal to the product of FN and AK, is equal to the triple of the
solid generated by the rotation of the trapezium FMCA, which is a frustum
of a hollow cone in the first case of figure and a frustum of a solid rhombus
or a frustum of a hollow cone in the second case of figure. But, on the one
hand, the product of BC and the circle of semi-diameter AK is equal to the
triple of the solid generated by the rotation of the triangle ABC, which is a
hollow cone in the first case of figure and a solid rhombus or a hollow cone
in the second case of figure. From that, we show in the same way as in the
previous proposition, that the torus generated by the rotation of the triangle
AFB, if the fixed straight line is BC, is greater than one third of the solid
generated by the rotation of the parallelogram HIBA, if the fixed straight
line is IC. But we have shown that the solid generated by the rotation of the
parallelogram HIBA, if the fixed straight line is BC, is greater than the
torus generated by the rotation of the section AFB of the parabola, if the
fixed straight line is BC. The torus generated by the rotation of the triangle
AFB, if the fixed straight line is BC, is much greater than one third of the
torus generated by the rotation of the portion AFB of the parabola, if the
fixed straight line is BC. After having subtracted the figure generated by
the rotation of the trapezium AFBC,63 that which remains of the dome ABD
is composed of the two tori generated by the rotation of the two portions
AF and FB of the parabola, if the fixed straight line is BC; the remainder is
either smaller than the solid E, or it is not thus. If it is smaller than it, that is
what we wanted; otherwise, if we divide the straight lines AG and GC
always in halves at the points S  and O, if we produce from these the
straight lines SP and OU parallel to the diameter and if we join the straight
lines AP, PF, FU and UB, we show as we have shown in the previous
proposition that the ratios of the ordinates produced from the points A, P,
F, U to the perpendiculars produced from these points to the diameter are
equal. If we pursue this in an analogous way to what we have followed in
the previous proposition, we show that the tori generated by the rotation of
the triangles APF and FUB, if the fixed straight line is BC, are greater than
one third of the tori generated by the rotation of the portions APF and FUB
of the parabola, if the fixed straight line is BC , as the way in this
proposition and in that which preceeds is a same way, except that, here, we
use the perpendiculars64 in place of the ordinates and the straight lines
which are parallel to them, and in place of the cone of revolution, the
hollow cone of revolution, in the first case of figure and the solid rhombus
or the hollow cone of revolution, in the second case of figure, and in place

63 The polygon AFBC is formed from a triangle and a trapezium.
64 The straight lines perpendicular to the axis.
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of the frustum of a cone of revolution, the frustum of a hollow cone of
revolution in the first case of figure, and the frustum of a solid rhombus or
the frustum of a hollow cone in the second case of figure. We show from
this that, when we proceed in the same manner as numerous times, it is
necessary that we reach tori which remain of the dome ABD less than the
solid E. We reach the tori generated by the rotation of the portions AP, PF,
FU  and UB  of the parabola, if the fixed straight line is BC; then it is
possible to construct over the lateral surface of the dome ABD circles
parallel to the circle of the base of its surface. If ordinates are produced
from their circumferences to the axis BC, they divide it into parts such that
their ratios of the ones to the others, taken in succession, are equal to the
ratios of successive odd numbers beginning with one, and if we join the
surfaces between the circumferences of these circles and another surface
between the circumference of the smallest of these circles and the vertex of
the dome, an inscribed solid is generated in the dome ABD, such that the
excess of the dome over this solid is smaller than the solid E; these circles
are the circles that the points A, P, F, U describe during their rotation. That
is what we wanted to prove.

– 35 – Consider a known parabolic dome and a known solid; then it is
possible to construct in the dome an inscribed solid figure which is less
than half of the cylinder, whose base is the circle which is the base of the
dome, if the dome is of regular vertex, or the circle which is the lower base
of the dome if it is not of regular vertex, and whose height is equal to the
axis of the dome, of a magnitude smaller than the known solid.

Let the known parabolic dome be the dome ABC and let AB be half of
the section by which it has been generated; let BD be the axis of the dome
and E the known solid.

I say that we can construct in the dome ABC an inscribed solid which
is less than half of the cylinder whose base is the base circle of the dome
ABC if it is of regular vertex, or the circle of its lower base if it is not of
regular vertex, and whose height is equal to the straight line BD, of a
magnitude smaller than the solid E.

Proof: If we produce from the point A the straight line AC to the point
C, AC  will be perpendicular to the axis. If we let the solid F  be in
proportion with the solid65 and with the solid E,66 and the ratio of AD to
ON67 greater than the ratio of the solid whose base is the circle of diameter
AC and whose height is BD to the solid F – the dome ABC is either of

65 i.e. the solid whose base is the circle of diameter AC and whose height is BD.
66 He means that the cylinder and the solids F and E are in continuous proportion.
67 In the three cases of figure, ON is an ordinate.
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regular vertex or it is not – so if it is of regular vertex, ON is perpendicular
to the axis BD and AD will be half of AC as in the first case of figure, and
the ratio of the circle of semi-diameter AD to the circle of semi-diameter
ON is greater than the ratio of the solid whose base is the circle of semi-
diameter AD and whose height is BD, to the solid F, repeated twice.68 On
the one hand, the ratio of the circle whose semi-diameter is AD to the circle
whose semi-diameter is ON is equal to the ratio of the solid whose base is
the circle of semi-diameter AD and whose height is BD, to the solid whose
base is the circle of semi-diameter ON and whose height is BD. On the
other hand, the ratio of the solid whose base is the circle of diameter AC
and whose height is BD to the solid F, repeated twice, is equal to the ratio
of the solid whose base is the circle of diameter AC and whose height is
BD, to the solid E, as the solid whose base is the circle of diameter AC and
whose height is BD, the solid F and the solid E are in proportion. The ratio
of the solid whose base is the circle of semi-diameter AD and whose height
is BD to the solid whose base is the circle of semi-diameter ON and whose
height is BD, is thus greater than the ratio of the solid whose base is the
circle of diameter AC and whose height is BD to the solid E. But the solid
whose base is the circle of semi-diameter AD and whose height is BD is the
solid whose base is the circle of diameter AC and whose height is BD; the
solid whose base is the circle of semi-diameter ON and whose height is BD
is thus smaller than the solid E.

F

E

C D A

O
<N >

P

B

N

S

1

Fig. II.2.35a

If the dome BC is of pointed vertex or of sunken vertex, if we produce
from the point O the perpendicular OU to the axis BD, as in the second
case of figure and the third case of figure, and if the perpendicular dropped
from the point A onto BD is the perpendicular AQ which is half of AC, then
the straight lines AQ and OU are parallel. But the straight lines AD and ON

68 That is to say to the square of the ratio.
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are also parallel, as they are ordinates. The triangle ADQ is thus similar to
the triangle OUN and, consequently, the ratio of AD to ON is equal to the
ratio of AQ to O U. Yet, we have shown that the ratio of AD to O N is
greater than the ratio of the solid whose base is the circle of diameter AC
and whose height is BD , to the solid F; thus the ratio of AQ  to OU is
greater than the ratio of the solid whose base is the circle of diameter AC
and whose height is BD to the solid F. But the ratio of AQ to OU, repeated
twice, is equal to the ratio of the circle of semi-diameter AQ to the circle of
semi-diameter OU; thus the ratio of AQ to OU, repeated twice, is greater
than the ratio of the solid whose base is the circle of diameter AC and
whose height is BD, to the solid F, repeated twice. On the one hand, the
ratio of the circle whose semi-diameter is AQ to the circle whose semi-
diameter is OU is equal to the ratio of the solid whose base is the circle of
semi-diameter AQ and whose height is BD to the solid whose base is the
circle of semi-diameter OU and whose height is BD; and on the other, the
ratio of the solid whose base is the circle of diameter AC and whose height
is BD to the solid F, repeated twice, is equal to the ratio of the solid whose
base is the circle of diameter AC and whose height is BD to the solid E.
Thus the ratio of the solid whose base is the circle of semi-diameter AQ
and whose height is BD, to the solid whose base is the circle of semi-
diameter OU and whose height is BD, is greater than the ratio of the solid
whose base is the circle of diameter AC and whose height is BD to the solid
E. But the solid whose base is the circle of semi-diameter AQ and whose
height is BD is the solid whose base is the circle of diameter AC and whose
height is BD, thus the solid whose base is the circle of semi-diameter OU
and whose height is BD is smaller than the solid E.
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Yet, we have shown in the first case of figure – that of the dome of
regular vertex – that the solid whose base is the circle of semi-diameter ON
and whose height is BD is smaller than the solid E. Thus in the three cases
of figure, the solid whose base is the circle of semi-diameter the
perpendicular dropped from the point O on the axis BD and whose height
is BD is smaller than the solid E. But the solid generated by the rotation of
the polygon APOBD, if the fixed straight line is BD, in the three cases of
figure, is less than half of the cylinder whose base is the circle of diameter
AC and whose height is BD, by two thirds of the solid whose base is the
circle of diameter the perpendicular dropped from the point O on the axis
BD and whose height is BD,69 as the ratios of the parts BN, NS and SD to
each other, taken in succession, are equal to the ratios of the successive odd
numbers beginning with one. Thus the solid generated by the rotation of
the polygon APOBD, if the fixed straight line is BD, and inscribed in the
dome, is less than half of the cylinder whose base is the circle of diameter
AC and whose height is BD, of a magnitude smaller than the solid E, and
the circle, whose diameter is AC, is in the first case of figure, the base of
the dome, and in the second and third cases of figure, it is the lower base.
That is what we wanted to prove.

– 36 – The volume of every parabolic dome is equal to half of the
volume of the cylinder whose base is the base circle of the dome, if the
dome is of regular vertex, or the lower base of the circle if it is not of
regular vertex, and whose height is equal to the axis of the dome.

Let ABC be a parabolic dome, let its axis be BD, and the diameter of its
base or of the lower base, the straight line AC.

I say that the volume of the dome ABC is equal to half of the volume of
the cylinder whose base is the circle of diameter AC and whose height is
BD.

Proof: If the dome ABC is not equal to half of the cylinder that we
mentioned, then either it is greater than half, or it is smaller than it. First let
it be greater than half, if it were possible, and let its excess over the half be
equal to the solid E; it is possible to describe on the lateral surface of the
dome ABC circles parallel to the base of that surface, such that when
ordinates are produced from their circumferences to the diameter, they
divide it into parts such that their ratios to each other, taken in succession,
are equal to the ratios of the successive odd numbers beginning with one,
and such that the smallest circle is on the side of the vertex of the dome; if

69 We may associate with the point O  the polygon APOBD defined as in
Proposition 32. We do not know if Thæbit omitted to give this justification or if there is
something missing from the manuscript. See the mathematical commentary.
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we join the surfaces between the circumferences of the circles and another
surface between the smallest of the circles and the vertex of the dome, then
the excess of the dome ABC over the figure generated in the dome is
smaller than the solid E. If we suppose that the figure generated in the
dome is the solid figure A P G H B I K L C D, then the solid figure
APGHBIKLCD, increased by the solid E, is greater than the dome ABC.
But the dome ABC is equal to the semi-cylinder whose base is the circle of
diameter AC and whose height is BD, increased by the solid E. The solid
figure APGHBIKLCD, increased by the solid E, is thus greater than half of
the cylinder whose base is the circle of diameter AC and whose height is
BD, increased by the solid E. If we remove that which is common, which is
the solid E, there remains the figure APGHBIKLCD greater than half of the
cylinder whose base is the circle of diameter AC and whose height is BD.
Yet, it has been shown in the previous propositions that it is smaller than
its half; this is contradictory. The dome ABC is thus not greater than half of
the cylinder whose base is the circle of diameter AC and whose height is
BD.

Fig. II.2.36

I say that the dome ABC is not smaller than half of the cylinder that we
mentioned.
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If it were possible, let it be less than its half by the magnitude of the
solid E. It is thus possible to construct in the dome ABC, a solid figure
inscribed in it and such that it is less than half of the cylinder that we
mentioned, by a magnitude smaller than the solid E. Let this figure be the
solid figure APGHBIKLCD; thus the solid figure APGHBIKLCD, plus the
solid E, is greater than half of the cylinder whose base is the circle of
diameter AC and whose height is BD. But the dome ABC, plus the solid E,
is equal to half of the cylinder whose base is the circle of diameter AC and
whose height is BD. Thus, the solid figure APGHBIKLCD, plus the solid E,
is greater than the dome ABC, plus the solid E. But if we remove that
which is common, which is the solid E, there remains the solid figure
APGHBIKLCD greater than the dome ABC; it is thus greater than the dome
and it is inscribed in it; this is contradictory. The dome ABC is thus not
smaller than half of the cylinder whose base is the circle of diameter AC
and whose height is BD. But we have shown that it is not greater than its
half, it is consequently equal to its half. That is what we wanted to prove.

The treatise of Thæbit ibn Qurra on the measurement of paraboloids
is completed.

Thanks be to God, Lord of the worlds.
May the blessing of God be upon MuÌammad

the prophets’ seal, and his own.
Written by AÌmad ibn MuÌammad ibn ‘Abd al-Jalîl at Shîræz,
 the night of Saturday, eight days left to go in Rabî‘ al-awwal,

the year three hundred fifty-eight.
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2.4. ON THE SECTIONS OF THE CYLINDER AND ITS LATERAL
SURFACE

2.4.1. Introduction

Not only has the Treatise on the Sections of the Cylinder and its
Lateral Surface, like the two preceding treatises, made its mark on the
history of infinitesimal mathematics, but it is also one of the most important
texts on geometry. Even more so, as it touched on the study of geometrical
point-wise transformations, it steered research into geometry in a new
direction, and by this fruitful action it influenced algebra as well. The
influence of this treatise may be detected in the work of Ibræhîm ibn Sinæn,
of Ibn Sahl, of Ibn al Haytham and of Sharaf al-Dîn al-™ºsî, among others.

This feature is not the only difference between the first two treatises of
Ibn Qurra and the one under consideration here: in the field of infinitesimal
mathematics itself, Thæbit forged here a new path, more geometric, which
owed nothing to either arithmetic lemmata or integral summation. To this
was added a divergence in historical terms: in The Measurement of the
Parabola, just as in The Measurement of the Paraboloid, Thæbit had no
predecessors. Unaware of the works by Archimedes on this subject, he
conceived a general work that was entirely innovative. In the introduction to
the Treatise on the Sections of the Cylinder, by way of contrast, Thæbit
made reference himself to a study by al-Îasan ibn Mºsæ, his elder and
without a doubt his master, saying that with this book Thæbit was adding his
name to a tradition that had never stopped being theirs, the tradition of the
Banº Mºsæ.

Unfortunately, this book by al-Îasan ibn Mºsæ is lost. In order to
understand the role it played in the beginnings of Thæbit’s research, every
bit as much as, later on, in its contribution to the work of the mathematician
of the Islamic West, Ibn al-SamÌ, only a few indirect statements are
available to us. The first comes to us from the author’s own brothers,
MuÌammad and AÌmad, which we have referred to previously.1 They
inform us that al-Îasan, without any real knowledge of the Conics of
Apollonius – he had a faulty copy of it which he could neither understand
nor translate – studied the ellipse, its properties as a plane section of a
cylinder, as well as the different types of elliptical sections. Thæbit himself
recalls that al-Îasan ibn Mºsæ calculated the area of an ellipse. This was
therefore very much in the field Thæbit ibn Qurra was to make his own. But
we also know, thanks to another witness, the tenth-century mathematician
al-Sijzî, that al-Îasan ibn Mºsæ worked by the bifocal method in order to
study this ‘elongated circular’ figure. One should expect then, if one trusts

1 See Chapter I: Banº Mºsæ.
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in the practice of the mathematicians of the time, which, furthermore, was
marked by a conformity with the requirement for rigour, that one part of
al-Îasan’s book was dedicated to establishing that the figure obtained by
the use of the bifocal method is the same as that generated by the section,
and that it proves, in particular, the fundamental relationship – the
symptoma – which one could come to know through a simple glance at the
first book of the Conics. This hypothesis is far from being arbitrary: it tallies
with the statement of his two brothers, MuÌammad and AÌmad, according
to which al-Îasan conceived a theory of the ellipse and of elliptical sections
following a different path from that of Apollonius; it sheds light for us, on
the other hand, on the researches of Ibn al-SamÌ, who is an excellent
witness to this method, as we shall see further on.

If now we come to the treatise by Thæbit on the sections of the cylinder,
we may note that there is nowhere any question of use of the bifocal
method. Of the various subjects of the Banº Mºsæ, Thæbit thus kept with
only a part. What might appear to be a restrictive choice makes sense if one
recollects another difference with al-Îasan ibn Mºsæ: Thæbit ibn Qurra, in
contrast to the latter, had excellent knowledge of the Conics of Apollonius.
He even translated the last three of the seven books that have survived in
Greek. He therefore had at his disposal from the outset the text of
Apollonius and al-Îasan’s book, and it was with the methods of the first
that he stepped into the tracks of the second. From Apollonius, he took up a
project and various applications; from al-Îasan, he obtained an account of
the Conics, from it the ellipse, and the powerful means for studying them.
This was a hitherto unknown situation, which saw the project become
transformed and develop, and the means evolve and bend in a manner other
than the way in which they were employed in their original field. And it is
true – and here lies the main point of Thæbit’s book – that the project
became one of elaborating a theory of the cylinder and of its plane sections
analogous to that of the cone and its sections. As for the means, they were
enriched by the projections and point-wise transformations. To elaborate the
theory of the cylinder and of its plane sections by drawing inspiration from
the model of the Conics was the transformed project Thæbit undertook to
achieve, by applying – perhaps in this respect he followed al-Îasan ibn
Mºsæ, but in doing so went very much further – projections and point-wise
transformations. Let us explain a little about these essential features of the
Treatise on the Sections of the Cylinder, which have until this point
remained hidden in the shadows.

Thæbit ibn Qurra considered, and he was the first to take a step in this
direction, the cylindrical surface as a conic surface, and the cylinder as a
cone whose vertex would be projected to infinity in a given direction.
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Indeed, he replaced straight lines passing through a point and planes passing
through a point, in the case of the cone, with parallel straight lines and
planes parallel to a straight line, or containing this straight line, in the case of
the cylinder. He began by defining the cylindrical surface then the cylinder,
as Apollonius in the Conics had first defined the conic surface then the cone.
It was also the order as found in Apollonius that he followed for his
definitions: axis, generating line, base, right or oblique cylinder.

Thæbit defined the height of a cylinder as extended from the centre of
its base. Even if an analogous definition did not occur in the work of his
predecessor, the role, in the work of Thæbit, of the plane containing the axis
and the height (thus perpendicular to the base) and in Apollonius of the
plane passing through the axis and perpendicular to the base, is evident in
both authors, from Proposition 5 in Apollonius and Thæbit’s Proposition 9.
This plane, which we call the principal plane, is a plane of symmetry for the
cone and for the cylinder, hence its importance.

Thæbit did not give, as we understand it, definitions for a diameter, for
two conjugate diameters, or one for the axes of a curve, as one finds at the
beginning of the Conics. On the other hand, he does give a definition for
two opposite generating lines, which do not make an obvious appearance in
Apollonius.

Confirmation of the similarity in the approach of the two authors is
obtained when one examines the first propositions in the book of Thæbit.
Propositions 1, 2, 3, 4, 8, 9, 10 and 11 correspond respectively to
Propositions 1, 2, 3, 4, 5, 9 and 13 in Apollonius. Let us quickly examine
these correlations, and note to begin with that Propositions 5 and 6 in
Thæbit, which demonstrate a necessary and sufficient condition whereby the
section of the cylinder through a plane parallel to its axis or containing it is a
rectangle, and Proposition 7, which defines the cylindrical projection, have
no equivalent in Apollonius. Conversely, we find no clear sign in Thæbit of
propositions corresponding to Propositions 6–8 in Apollonius, which
concern the parabola or the hyperbola. Let us note next of all that the
similarity in the first four propositions is so clear that it is not worth
detaining ourselves over it.2 In Propositions 9 in Thæbit and 5 in Apollonius
a correspondence occurs in the methods they employ. Indeed, the method
used to study a section by means of a plane antiparallel to the plane of the
base is the same: the method is based on a characteristic property of the
circle that we translate algebraically as y 2 = x d − x( ), d being its diameter

2 See the first four propositions: Apollonius Pergaeus, ed. I.L. Heiberg, Stuttgart,
1974, vol. 1; Apollonius: Les Coniques, tome 1.1: Livre I, commentaire historique et
mathématique, édition et traduction du texte arabe par R. Rashed, Berlin/New York,
2008.
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(with the tangent at one of its extremities, it defines the system of axes). In
Propositions 8 and 10 Thæbit makes recourse to the cylindrical projection,
and in Propositions 10 and 11 the methods differ. In Proposition 10 Thæbit
shows that the section being studied is an ellipse or a circle, and in
Proposition 11 he shows that it cannot be a circle, whereas Apollonius
begins by showing in Proposition 9 that it is not a circle, in order then, in
Proposition 13, to characterize the ellipse by the symptoma, by which he will
deduce a characteristic property in Proposition 21: it is to this latter that
Thæbit makes recourse in his Propositions 10 and 11, while establishing that
the plane section obtained is no other than the ellipse defined by Apollonius.
Henceforward he makes references to Apollonius in terms of the properties
of the ellipse: conjugate diameters, smaller and larger diameter, etc.

If Thæbit therefore found in the Conics of Apollonius a model for
elaborating his theory of the cylinder, he would develop, for the needs of the
latter, the study of geometric transformations. This is the second quality of
the Treatise on the Sections of the Cylinder to be emphasized here.

As a matter of fact, he made recourse, in Propositions 7 and 8 of the
treatise, to the cylindrical projection p of one plane upon another, which is
parallel to it, whilst in Proposition 10 he moved on to the cylindrical
projection of one plane upon any sort of plane whatsoever. In the second
part of this last proposition, Thæbit set down two cylindrical projections. In
Proposition 12, he showed that two ellipses with the same centre I, whose
axes (a, b) and (a′, b′ ) are respectively collinear and satisfy a′/a = b′/b,
correspond to each other in terms of a homothety h(I, a′/a), seen as
composed of two cylindrical projections and of the homothety between the
base circles.

Thæbit reminds us that for p and h the ratio of any two segments is
equal to the ratio of their homologues.

Proposition 13 defined the correspondence through orthogonal affinity
between the ellipse and each of the circles having its axes for diameters.
Only the ratios between the two segments, perpendicular to the axis of
affinity, or parallel to it, are retained. In Proposition 14, Thæbit showed that
the ratio between the areas of two homologous polygons in an affinity f is

equal to the ratio a

b
 of the affinity, and showed that one may move from an

ellipse to the equivalent circle by a transformation  h o f , h  being a

homothety of ratio b

a
. He thus defined a transformation in which two

homologous areas are equal, a transformation he made use of in
Propositions 15–17 to obtain a circle segment equivalent to a segment of an
ellipse. In these three cases a simple geometric construct was defined of
  h o f . In Propositions 24 and 26, the result, first of all established for two
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homothetic ellipses, is then extended to two similar ellipses. Thæbit defined
the displacement that allowed the movement from homothety to similarity.
Moreover, Proposition 9 introduces orthogonal symmetry in relation to a
plane: it transformed the base circle in the section through an antiparallel
plane.

The possibilities inherent in these transformations are too numerous, and
their role too fundamental in the development of the book, for us to see
them as simple circumstantial facts. What is more, they would outlive
Thæbit, as we have said, in this field as in others. It was all of these means, in
any case, that enabled Thæbit to pursue the elaboration of the theory of the
cylinder and of its sections.

Let us come now to the commentary on the propositions of Thæbit, in
order to trace the implementation of these means in the concrete progress of
his project, and mark their renewal in this context of Archimedean methods.
We shall therefore compare as often as necessary the approach used by
Thæbit with that used by Archimedes, hoping to obtain by that comparative
test a better perception of Thæbit’s contribution. We shall bear in mind at all
times that the latter was not familiar with Archimedes’ On Conoids and
Spheroids.

Let us start with a reminder of our explicit definitions:
D1 cylinder axis
D2 cylinder ‘side’ or generating line
D3 cylinder’s lateral surface
D4 opposite sides
D5 cylinder’s height
D6 right cylinder (when the height is equal to the axis)
D7 oblique cylinder (when the height is different from the axis).

2.4.2. Mathematical commentary

2.4.2.1. Plane sections of the cylinder

Proposition 1. — Every generating line is parallel to the axis.
By definition a generating line and the axis are coplanar and the base

circles have the same radius. The result is immediate by application of Euclid
I.33.

Proposition 2. — The only straight lines lying on the lateral surface of a
cylinder are the generating lines.

Thæbit used a reductio ad absurdum based on the property that a
straight line and a circle have at most two common points.
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Proposition 3. — If a plane containing the axis or parallel to the axis cuts
the lateral surface of the cylinder, then the intersection is formed of two
straight lines. If the plane does not contain the axis and is not parallel to
it, the intersection does not include any straight lines.

The proof makes use of Propositions 1 and 2 and is based on the
uniqueness of a parallel to a given straight line drawn through a given point.

Proposition 4. — If a plane containing the axis or parallel to the axis cuts
a cylinder, the section is a parallelogram.

This result is derived immediately from Proposition 3 by using Euclid
XI.16.

In the case of a right cylinder, the section is a rectangle.

Proposition 5. — For a plane passing through the axis of an oblique
cylinder to cut it producing a rectangle, it must be and has only to be
perpendicular to the principal plane.

Proposition 6. — For a plane parallel to the axis of an oblique cylinder
to cut it producing a rectangle, it must be and has only to be
perpendicular to the principal plane.

Propositions 5 and 6 are the immediate consequences of Proposition 4
and demonstrate their proofs by using the properties of perpendicular planes
and those of straight lines perpendicular to a plane (Euclid XI.18, 19).

Proposition 7. — Given two parallel planes (P) and (P′), A ∈  (P),
E ∈ (P′), and a figure F in the plane (P), the straight lines parallel to AE
passing through the points of F cut (P′) and the points of intersection
belong to a figure F′ similar to and equal to F.

Proposition 7 is thus the study of the cylindrical projection in a parallel
direction to AE with a figure F in a plane (P) above a parallel plane (P′).

Although the transformation under study here is also a translation of
vector AE, the continuation shows that Thæbit was looking to set down the
characteristics of cylindrical projection even when planes (P) and (P′) are
not parallel, as we shall see in Proposition 10.

The proof is by reductio ad absurdum.
Figures F and F′  are therefore isometric.

Proposition 8. — The section of the lateral surface of a cylinder through
a plane parallel to its base is a circle equal to the base circle and centred
on the axis.

More generally, the sections of the lateral surface of a cylinder through
two parallel planes cutting all the generating lines are isometric figures.
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Proposition 8 is an application of Proposition 7.

Proposition 9. — Antiparallel sections
1. Definition of antiparallel planes: for a cone or an oblique cylinder with

circular bases on axis GH and with height GI, the plane of base P and a
plane P′ not parallel to P are said to be antiparallel if:

1) P′ is perpendicular to the plane GHI, the plane of symmetry for the
cone or cylinder;
2) the intersections of the plane (GHI) with the planes P and P′ are
antiparallel straight lines, in other words they make equal angles with the
straight line GH.
2. In the case of the oblique cylinder, the bisecting plane of planes P and

P′, which is perpendicular to GH and is therefore a plane of right section for
the cylinder, will be the plane of a symmetry transforming the base circle
into the antiparallel circle lying in P′. We shall see that this plane gives a
minimal section (Propositions 18 and 19).

3. The intersection of the lateral surface of the cylinder with a plane
antiparallel to the plane of the base is a circle centred on the axis of the
cylinder and equal to the base circle or a portion of such a circle.

This intersection is called a section of ‘contrary position …∑¥é
Ã√|µ`µ…ß` – l{u�« n�U��’ by Thæbit as by Apollonius in the case of the
cone (Proposition I.5).

The method followed by Thæbit is, furthermore, the one used by
Apollonius, in making use of the characteristic property of the circle
MN2 = NO · NS; that is to say, its equation in relation to a system of axes
defined by a diameter and the tangent to one of its extremities is the
equation y2 = x (d – x), where d is the diameter.

In order to gain a better understanding of certain aspects of Thæbit’s
approach in Propositions 8 and 9, let us consider the figure in the plane of
symmetry of the cylinder. The parallelogram ABED is the orthogonal
projection of the cylinder on to this plane, and segments AB and DE the
projections of the base circles.

In Proposition 8, Thæbit defined a family of circles of which AB is a
member.

If A′ is the point of AD such that BA = BA′, we have BAA AA Bˆ ˆ′ = ′ ;
thus A′B is the projection of an antiparallel plane. In Proposition 9, Thæbit
thus defined a family of circles of which A′B is a member.
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B G A

A

E H I
D

′

Fig. 2.4.1

The bisector of ABA ′ is the orthogonal projection of a plane
perpendicular to the axis and is a member of a family of planes. One plane
from this family will be a plane of symmetry for the figure formed by a
circle from the first family and a circle from the second.

Proposition 10. — The cylindrical projection of a circle (ABC) with
centre D on a plane (P) not parallel to the plane of the circle is a circle or
an ellipse.

Let us make p the cylindrical projection being considered.
a) The plane (P) passes through D. It cuts the plane (ABC) following

diameter AB. Let DC ⊥ AB. For every point E of the circle projected
orthogonally in H on to AB, we have EH2 = HA · HB,  y2 = x (2a – x), if
AB = 2a.

If F = p (E), triangle FEH is defined up to a similarity; if G  =  p (C), we

have EH

FH

DC

DG
=  = k; hence k2 FH2 = HA · HB. In the plane (P), FH is an

ordinate y′ relative to AB, FH || GD, and for every point F such that F =
p (E), we have

k2y′ 2 = x (2a – x),          0 ≤ x  ≤ 2a.

The totality of points F is thus a circle or an ellipse.
b) The plane (P) does not pass through D. Let (P′) || P and passing

through D, with p the projection of (ABC) onto (P), p′ the projection of (P′)
onto (P), and p″ the projection of (ABC) onto (P′), the three projections
being made in a parallel direction to the same straight line. According to
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Proposition 7, p′ is a displacement, Thæbit uses here, as we can see, the
composition of transformations

p = p′ o p″.

The figure obtained in (P) is thus equal to the figure obtained in (P′), and is
a circle or an ellipse.

Let us observe that the thirteenth-century mathematician Ibn Abî
Jarræda in the course of his commentary on this proposition made a study of
the cylindrical projection of an ellipse in order to provide a more important
version of it (cf. Supplementary note [3]).

Proposition 11. — Let there be an oblique cylinder (C) with bases ABC
and DEF  and a plane (P) that is neither parallel nor antiparallel to
(ABC) , that does not contain the axis and is not parallel to it. If,
furthermore, (P) ∩ (ABC) = Ø and (P) ∩ (DEF) = Ø, then (P) ∩ (C) is an
ellipse.

Thæbit distinguished two cases according to whether the intersection of
plane P with the principal plane is parallel to the bases or is not.

According to Proposition 10, we know that (P) ∩ (C) is a circle or an
ellipse, Thæbit showed by a reductio ad absurdum, based on the uniqueness
of the perpendicular drawn from a point to a straight line, that (P) ∩ (C)
cannot be a circle.

From Propositions 8, 9 and 11 it is clear that the only circles lying on an
oblique cylinder are situated in planes parallel to the planes of the bases or
antiparallel to those planes.

2.4.2.2. Area of an ellipse and elliptical sections

Proposition 12. — The plane sections of two cylinders with circular bases
having the same axis and the same height are homothetic, the centre of
homothety being their common centre lying on the axis and the ratio of
homothety being the ratio of the diameters of the base circles.

Thæbit takes as the property characterizing two ellipses with similar axes

(2a, 2b) and (2a′, 2b′) the equality ′ = ′a

a

b

b
.

This equality is not set forth in Apollonius, Conics VI.12, but is a
consequence of it [cf. Supplementary notes].

If d and d′ are the diameters of the base circles, and δ and δ′  any two
collinear diameters in the large and the small ellipse, we have
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′ = ′δ
δ

d

d

whatever the diameters being considered; hence

′ = ′ = ′ = ′d

d

a

a

b

b

2
2

2
2

δ
δ

.

The homothety h I
a

a
,

′



 , I being the common centre of the two ellipses,

has been defined from equalities in ratios resulting uniquely from the
cylindrical projection in a parallel direction to the cylinder’s axis.

Proposition 13. — Let there be an ellipse with major axis AC = 2a and
with minor axis 2b and a circle of diameter AC. For every perpendicular
to AC cutting the circle, the ellipse and the axis respectively in G, H and I

we have GI
HI

b
a

= .

The proof uses the characteristic property of the circle and that of the
ellipse in relation to AC. We have

y2 = x (2a – x),

′ = −( )y
cx

a
a x2

2
2 ,

c being the latus rectum relative to the axis AC; hence

y' 2

y2 =
c

2a
=

b2

a2 .

Thæbit thus defined an orthogonal affinity with axis AC and with ratio b

a
 <

1 in which the ellipse is the image of the circle of diameter AC, an affinity
which is a contraction.

In the same way, the ellipse is the image of the circle having as diameter

its minor axis in an orthogonal affinity with ratio a

b
 > 1, which is a

dilatation.
Let there be in an orthogonal reference system, with b < a:

(C1) = {(x, y),     x2 + y2 = a2 },
(C2) = {(x, y),     x2 + y2 = b2 },

(E)   = {(X, Y),    X 2

a2
+ Y 2

b2
= 1 }.

1) (E) = ϕ ((C1)), with ϕ : (x, y) → (X, Y),
X x

Y
b

a
y

=

=







,

;



ON THE SECTIONS OF THE CYLINDER 343

ϕ is a contraction.

2) (E) = Ψ ((C2)), with  Ψ : (x, y) →  (X, Y),
X

a

b
x

Y y

=

=







,

;

Ψ is a dilatation.
y

x

M

M
O

C
A

M

M1

1

Fig. 2.4.2

If one calls principal diameters the major axis and the minor axis of an
ellipse or the diameter of a circle, Proposition 13 is equivalent to the
following:

Two closed conics, ellipse or circle, that have in common a principal
diameter 2a, and for second diameter 2b and 2b′, can be derived from each
other by an orthogonal affinity

′
′







= 





x

y
A

x

y
 , with A b

b

=
′













1

0

     0

    
,

B

y

O A x

′

B

Fig. 2.4.3
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the coordinates being related to the same orthogonal basis with OA a= ,
OB b= , OB b′ = ′, OB a′ ≠  or OB a′ = .

Proposition 14. — If S is the area of the ellipse E with axes 2a and 2b
and Σ that of the circle E with radius r ab= , then S = Σ.

Notation:
S area of the ellipse E    → Sn area of Pn inscribed in E,

Σ area of the equivalent circle E    → Σn area of Πn inscribed in E,

S′ area of the circumscribed circle C → S′n area of P′n inscribed in C.

Thæbit’s proof:
a) If S > Σ, then

(1) S = Σ + ε.

Let Pn be a polygon of 2n+1 sides inscribed in the ellipse E and derived from
Pn-1, the number of vertices of which are doubled in cutting the ellipse by
diameters that pass through the middles of the sides of Pn-1. The first
polygon P1 is the rhombus defined by the vertices of the ellipse. If Sn is the
area of Pn, we have successively

S1 > 1

2
S ⇒ S − S1 < 1

2
S

S2 − S1 >
1

2
S − S1( )⇒ S − S2 <

1

22 S

 

…

Sn − Sn−1 >
1

2
S − Sn−1( ) ⇒ S − Sn <

1

2n S .

So for ε  defined by (1), there exists n ∈ N such that 1
2n S < ε ; hence

S – Sn < ε,

Sn > Σ.

We may therefore consider the circle C and the polygon P′n derived from E

and from Pn by the orthogonal affinity of ratio a

b
 and let S′n be the area of

P′n and S′ the area of C:
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S

S

b

a

ab

a S
n

n′
= = =

′2

Σ ;

but Sn > Σ , hence S′n > S′, which is impossible.

b) If S < Σ , we have
S

S S′
<

′
Σ ;

hence

(2) Σ
′

=
′ − ′S

S

S ε
.

Taking the circle C and the preceding polygons P′n, we have successively:

′ − ′ < ′S S S1

1
2

,

′ − ′ < ′S S S2 2

1
2

,

…

′ − ′ < ′S S Sn n

1
2

.

So for ε′ defined by (2), there exists n ∈ N such that 1
2n S′ < ′ε , therefore

(3) S′ – S′n < ε′.

If Pn is the polygon inscribed in E corresponding to P′n by the orthogonal

affinity of ratio b

a
, then

S

S S

S

S
n

n′
=

′
=

′ − ′
Σ

ε
;

but by (3)
S′n > S′ – ε′ ,

hence Sn > S, which is absurd.
From a) and b) we therefore deduce S = Σ.

Comments
We move from the ellipse E to the circle C by the orthogonal dilatation

f of ratio k1 = a

b
 and from the circle C of radius a to the circle E of radius r
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such that r2 = ab  by a homothety h  of ratio k2 =
r

a
=

ab

a
=

b

a
. Thus

E = h o f (E), the transformation h o f retaining the areas since k k1 2

2 1⋅ = .

The object of Proposition 14 is precisely to show this property in the
case of the ellipse E.

With the foregoing notations Thæbit made use of Σ
′

= =
S

b

a
k2

2  and showed

that S

S

b

a k
n

n′
= = 1

1

 for any value of n; hence

S
S

S S

S

S

S

S
n

n

= ⇔
′

=
′

⇔
′

=
′

Σ Σ .

Thæbit’s method thus corresponds to the following two stages:

a) S

S

S

S
n

n′
<

′
, so S

S

S

S
n

n′
= −

′
ε1 (1).

We can show that

∃  Pn ⊂  E such that S – ε1 < Sn < S.

Now
f(Pn) = P′n ⊂  C proves (1);

hence
S′n > S′,

which is impossible.

b) S

S

S

S
n

n′
>

′
, so S

S

S

S
n

n′
=

′ − ε2

(2).

We can show that ∃  P′n ⊂  C such that S′ – ε2 < S′n < S′ . Now f-1(P′n) =
Pn ⊂  E proves (2); hence

Sn > S,
which is impossible.

We have thus proven that
S

S

S

S
n

n′
=

′
.

Thus moving away from the property of the orthogonal affinity, which
expresses that the ratio of the areas S′n and Sn of the two homologous
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polygons Pn and P′n is, for any value n, equal to the ratio a

b
 of the affinity,

Thæbit deduced from it that the same holds for area S of the ellipse E and
area S′ of C. This amounts to saying that the ratio is retained when reaching
the limit

 ∀n S

S

b

a
n

n′
=

and
S

S

S

S

S

S

b

a
n

n

n

n′
=

′
=

′
=lim

lim
lim .

We may observe that Luca Valerio took this type of assertion as the basis of
his method.3 This method did not involve the use of integral sums.

It only remains to say that this same result had been obtained by
Archimedes in On Conoids and Spheroids, Proposition 4. But this book was
unknown to the mathematicians of the time, including Thæbit. To compare
the approach of the former with that followed by the latter is doubly
advantageous: we would be in a position to form a better understanding of
the contribution of the ninth-century mathematician, and also to apprehend
better what knowledge there was of the Archimedean corpus at this time.

Proposition 4 of On Conoids and Spheroids4 may be rewritten, if one
makes use of the notations of Thæbit’s Proposition 14:

The ratio of an area S of an ellipse E of major axis 2a and minor axis

2b to the area S′ of a circle C of diameter 2a is S
S

b
a′

= .

Archimedes immediately brought it back to the statement of a
proposition equivalent to Thæbit’s Proposition 14. He defined the circle Φ of

area Σ, such that Σ
′

=
S

b

a
, and wrote, ‘I say that Φ is equivalent to E’, in

other words that Σ = S. The circle Φ  is none other than Thæbit’s circle E.

α) Σ > S.

Let Πn be a regular polygon of 2n+1 sides inscribed in E with area Σn

such that Σn > S. So if ϕ1 is the similarity of ratio 
a

b
 and ϕ2 the orthogonal

affinity of ratio b

a
, we have

3 De Centro Gravitatis Solidorum Libri Tres, Bologna, 1661, Book II,
Propositions I–III, pp. 69–75.

4 Archimedes, On Conoids and Spheroids, text established and translated by Charles
Mugler, Collection des Universités de France, Paris, 1970, vol. I, pp. 166–9.
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ϕ1: E → C,

Πn → P′n , polygon inscribed in C;

ϕ2: C → E,

P′n → Pn  , polygon inscribed in E.

We thus have
′ =S a

b
n

nΣ
 and S

S

b

a
n

n′
= ;

hence
Sn = Σn,

which is impossible because Sn < S and we put Σn > S.

Let us note that Archimedes did not prove that the correspondence ϕ2

is an orthogonal affinity: he employed b

a
 without justification.

β) Σ < S.

Let Pn be a regular polygon of 2n+1 sides inscribed in E, such that
Sn > Σ.

ϕ2
−1 : E → C,

Pn → P′n;
ϕ1

−1  : C → E,

P′n →  Πn.

We have
′ =S

S

a

b
n

n

 and Σ n

nS

b

a′
= ;

hence
Σn = Sn,

which is impossible because Σn < Σ′, and we put Sn > Σ′.

From α) and β) we may deduce S = Σ.

Thæbit took the two parts of his proof in reverse order to those in
Archimedes.
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• Σ  < S (a for Thæbit,  β for Archimedes).

Thæbit related in detail the explanation of the construction of the
polygons Pn and made use of Apollonius I.17 in order to introduce the

coefficient 1
2

 so as to apply Euclid’s Proposition X.1 to explain the existence

of n such that S – Sn < ε, with ε = S – Σ. In β Archimedes did not explain

the construction of Pn: he reckoned it was obtained as in α from Πn, but he

gave no explanation here of the existence of n such that Sn > Σ.

Thæbit then passed from Pn to P′n by the orthogonal dilatation f = ϕ2
−1 ,

which he characterized in Proposition 13 and which Archimedes employed

without justification. Both of them established that S

S

b

a
n

n′
= , by breaking

down the polygons into trapeziums and triangles.
Thæbit did not involve Πn inscribed in E.

• Σ > S (b for Thæbit, α for Archimedes).

Archimedes began with Π n, of area Σn inscribed in E  such that

Σ > Σn > S.
He had already used the existence of such a polygon in T h e

Measurement of a Circle, Proposition 1, and had considered this existence
as ‘evident’ in Proposition 6 of The Sphere and the Cylinder, and
‘conveyed in the Elements’. Thæbit began directly with P′n and justified as

in a) the existence of n such that S ′ – S′n < ε′. Both of them used as

previously S

S

b

a
n

n′
= . The two authors used the following as postulate: of two

plane surfaces one of which surrounds the other, the surrounded surface is
the smaller.

Comments on Archimedes — Archimedes made use of the right cylinder
and the isosceles cone in several propositions of The Sphere and the
Cylinder (Propositions 7, 10, 11 and 12) and amongst the lemmata that
precede Proposition 17, Lemma 5 clearly shows that the cones considered
are isosceles. At no point in his text is there any question of the oblique
cylinder or the scalene cone. The author holds with Euclid’s Definitions
XI.21 and 28.

In his treatise on Conoids and Spheroids no definition is given for the
three conics.

From Proposition 4 Archimedes deduced two propositions – 5 and 6 –
and a corollary.
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Proposition 5. — If E is an ellipse with axes 2a and 2b and C a circle of
diameter d = 2r, we have

S E
S C

4ab
d

ab
r2 2

( )
( )

= = .

Proposition 6. — If E is an ellipse with axes 2a and 2b and E′ an ellipse

with axes 2a′ and 2b′, we have
S E
S E

ab
a b

( )
′( ) =

′ ′
.

Corollary. If E and E′ are similar,

S E
S E

a
a

b
b

2

2

2

2

( )
′( ) =

′
=

′
.

Thæbit’s Propositions 21 and 22, which he deduced from Proposition
14, are particular cases of Archimedes’ Proposition 5. If Sm is the area of a
minimal ellipse, SM that of the maximal ellipse and S that of the circle of
radius r, the base of the cylinder, we have the following:

Proposition 21.
Sm

S
=

bm

r
(since am = r).

Proposition 22.
SM

S
=

aM

r
(since bM = r).

Proposition 23 is a corollary of Propositions 21 and 22, but is also a
consequence of Proposition 6.

Proposition 23.
Sm

SM

= bm

aM

.

Proposition 27, which Thæbit derived from Proposition 14, is none other
than Archimedes’ Proposition 6 and its corollary.

Proposition 15. — Let E be an ellipse of major axis EB = 2a, with minor
axis 2b and E the equivalent circle with radius r ab= . A chord AC ⊥ BE
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and a chord IL of the circle separate in E  and in E  respectively the

segments ABC of area S1 and IKL of area Σ1, if 
AC
b

IL
ab

= , so S1 = Σ1.

If C is the circle of diameter EB, by orthogonal affinity f with axis EB

and with ratio a

b
, Thæbit associated with segment ABC a segment TBV. He

constructed in segment ABC a polygon Pn by the procedure indicated in
Proposition 14 and by f associated with it a polygon P′n. He showed that

segments TBV and IKL correspond in a homothety of ratio 
b

a
; therefore

(1) (IKL) = h o f ((ABC)).

The proof is identical then to that of Proposition 14.

V

C

B

A

T

L

I

EK

Fig. 2.4.4

Comment. — From (1) and knowing ABC, we may deduce a simple
geometric construction of IKL if we suppose that E and E are concentric.

We have in fact
AC

IL

b

a
=  and IL

TV

b

a
= ;

hence
IL2 = AC · TV.

The chord IL of the circle E is the geometrical mean of the chords AC of
the ellipse and TV of the circle, chords taken by a same perpendicular to
axis BE, hence a simple construction of IL.
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Proposition 16. — Let E be an ellipse with minor axis EB = 2b and with
major axis 2a and circle E equivalent to E. A chord AC ⊥ BE and a chord
IL of the circle separate in E and in E segments (ABC) and (IKL) with
respective areas S2 and Σ2. If

AC
a

IL
ab

= ,

then
S2 = Σ2.

If C′′′′ is the circle of diameter EB, it is the image of E in the affinity f′ of

axis EB and with ratio b

a
; Thæbit then constructed (UBV) = f′((ABC)).

The circle E is derived from C′′′′ in a homothety h′ of ratio a

b
, and

Thæbit showed that (IKL) = h′ ((UBV)); therefore

(2) (IKL) = h′ o f′ ((ABC)).

K

I

AUV

E

L

B

C

Fig. 2.4.5

Polygons Pn and P′n are defined as before and the proof is identical then
to that of Proposition 14.

Comment. — From (2) we may deduce a geometric construction of IKL.
As in Proposition 15, we can write

AC

IL

a

b
= ,

and on the other hand we have
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IL

UV

a

b
= ;

hence
IL2 = AC · UV.

Proposition 17. — Let E be an ellipse, one of the axes of which is DE and
E the equivalent circle of which NO is a diameter. From two points A and
C of the ellipse are dropped the perpendiculars AI and CK onto DE and
from the points L and M of the circle perpendiculars LP and MU onto
NO. If the position of LM in relation to NO is the same as that of AC in
relation to DE, if the position of points P and U in relation to the centre of
the circle is the same as that of points I and K in relation to the centre of
the ellipse, and if, 2a being the major axis and 2b the minor axis, we have

LP
ab

AI
b

= and MU
ab

CK
b

=         (when DE = 2a)

or
LP
ab

AI
a

= and MU
ab

CK
a

=       (when DE = 2b)

then the two segments separated by AC in the ellipse and by LM in the
circle are both equivalent to each other.

Notation: areas of a segment Ssg,
triangle Str,
trapezium Stp,
area of E or of E: S.

The method used by Thæbit consists of establishing the areas of the
segment of an ellipse and the segment of a circle considered here, with the
aid of sums or differences of respectively equal areas.

Thæbit distinguished eight cases. Let us extend the perpendiculars AI
and CK as far as Q and R and the perpendiculars LP and MU as far as V
and T. Let S be the area of the ellipse and of the circle.
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• DE major axis

• DE minor axis

• AC  cuts DE

• AC  does not cut GF

• AC  cuts GF

• AC  does not cut GF

• AC  cuts GF

• AC does not cut DE

• AC  cuts DE

• AC  cuts GF

• AC  does not cut GF

• AC  cuts GF

• AC  does not cut GF

1

2

3

4

5

7

6

8

• AC does not cut DE

1) Ssg(ABC) < 
1

2
 S and Ssg(LM) < 

1

2
 S.

According to Propositions 15 and 16, we have in all cases

Ssg(ADQ) = Ssg(LNV) and Ssg(CDR) = Ssg(MNT).

a) In figures 1, 2, 3, 4 we have from the hypotheses

Stp(AQRC) = Stp(LVTM).

Likewise, we have

Ssg(ABC) = 
1

2
 [Ssg(CDR) – Ssg(ADQ) – Stp(AQRC)],

Ssg(LM) = 
1

2
 [Ssg(MNT) – Ssg(LNV) – Stp(LVTM)];

hence
Ssg(ABC) = Ssg(LM).

b) For figures 5, 6, 7, 8 we have

Ssg(ABC) = Ssg(ADQ) + Ssg(QC) + Str(AQC),

Ssg(LVM) = Ssg(LNV) + Ssg(VM) + Str(LVM).

According to Propositions 15 and 16, we have

Ssg(ADQ) = Ssg(LNV),

by a) we have
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Ssg(QC) = Ssg(VM),

and by the hypotheses we have

Str(AQC) = Str(LVM).

Therefore
Ssg(ABC) = Ssg(LVM).

2) Ssg(ABC) > 
1

2
 S and Ssg(LVM) > 

1

2
 S.

By 1) we know that

S – Ssg(ABC) = S – Ssg(LVM);

hence
Ssg(ABC) = Ssg(LVM).

3) If Ssg(ABC) = 
1

2
 S, then Ssg(LVM) = 

1

2
 S = Ssg(ABC).

If we relate to the same reference system (Ox, Oy), ellipse E, circle C
having for diameter the major axis and circle E equivalent to E, O being
their common centre, we saw in Propositions 14 and 15 that E = h o f (E).

f   :  E    → C,

       (x, y) → (x′, y′) = 
  

x,  
a

b
y

 
 

 
 ,

h   :  C   → E,

       (x′, y′) → (X, Y) = b

a
x

b

a
y′ ′







, .

Therefore
Y

ab
= y

b
;

this is the relation given by Thæbit in the case where points A and C are
projected on to the major axis. Proposition 17 thus proves that if M1 and M2

are two points of the ellipse, and M″1 and M″2 their images by h o f, then

Ssg(M1M2) = Ssg(M″1M″2).
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A geometric construction has been deduced from it.

2.4.2.3. Concerning the maximal section of the cylinder and concerning its
minimal sections

Proposition 18. — The section of an oblique cylinder with axis IK with
height IL by a plane (P) perpendicular to IK is an ellipse with axes 2a and
2b, a > b, such that 2a = d, the diameter of the base circle, and

b
a

IL
IK

= .

By Proposition 11, we know that the section is an ellipse E. The plane
(Q) which passes through IK and is perpendicular to the principal plane cuts
the plane (P) following a diameter of the ellipse. This diameter is

1) equal to the diameter of the base circle,
2) the largest diameter of E.

Therefore 2a = d.
We have (P) ∩ (Q) ⊥ (P) ∩ (IKL); therefore the minor axis is in (IKL).

By the similarity of two right-angled triangles, we can show that

2b

d
=

IL

IK
.

Comments. — The reasoning employs Proposition 5 and the properties of
straight lines and perpendicular planes.
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The principal plane IKL is a plane of symmetry at one and the same
time for the cylinder and for the plane (P); it is therefore a plane of
symmetry for E, and therefore contains one of the axes of the ellipse.

The plane (P) is called a plane of right section. The cosine of the angle of
(P) with the base plane is

IL

IK
KIL= cos ˆ .

Proposition 19. — Let Em be the ellipse obtained in a plane of right
section (P) and E an ellipse in any plane (Q). If 2am, 2bm, Sm and 2a, 2b, S
are respectively the major axis, the minor axis and the area of Em and of
E, we have

a ≥ am, bm ≤ b ≤ am and S ≥ Sm.

1) (P) || (Q), so by Proposition 8: a = am, b = bm, S = Sm.
2) (P) || (Q). Let d = 2r be the diameter of the base circle; then by

Proposition 18, we have am = r.

If a = r, then a = am and b < am.
If b = r, then b = am, b > bm and a > am.
If a ≠ r and b ≠ r, then a > r > b, hence a > am > b.

We therefore have in all cases a ≥ am and b ≤ am.
The plane containing the axis of the cylinder and the minor axis of E

contains a diameter δ of Em, 2am ≥ δ ≥ 2bm, but 2b ≥ δ; therefore b ≥ bm.
We have in all cases am ≥ b ≥ bm. We have deduced from it am · bm ≤ a · b;
hence S ≥ Sm.

Every ellipse obtained in a plane of right section is called a minimal
ellipse.

Proposition 20. — Let AE be the longer diagonal in the intersection of a
cylinder C with its principal plane GHI. Let (P) be the plane containing
AE, such that (P) ⊥ (GHI), so (P) ∩ (C) is an ellipse EM. If 2aM, 2bM, SM

and 2a, 2b, S are respectively the major axis, the minor axis and the
surface of EM and of any ellipse E situated on the cylinder, then

aM ≥ a,   bM ≥ b   and   SM ≥ S.
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1) Thæbit showed that
a) AE is the largest of the segments joining two points situated on two

opposite generating lines.
b) AE is the largest of the segments joining two points of any two

generating lines.
AE is then the largest of the major axes of the ellipses of the cylinder,

and AE = 2aM, therefore a ≤ aM.

2) The minor axis of EM is perpendicular to AE and is in (P); it is
therefore perpendicular to the principal plane, so 2bM = d, the diameter of
the base circle; but by Proposition 19, 2b ≤ d = 2r, so b ≤ bM. We may
deduce from it S ≤ SM.

The ellipse EM is called a maximal ellipse, it is unique in a given cylinder.
Taking into account Propositions 19 and 20, we have

am = bM = r,
am ≤ a ≤ aM,
bm ≤ b ≤ bM,
Sm ≤ S ≤ SM.

Proposition 21. — If GH and GI are the axis and the height of an oblique
cylinder, (ABC) its base circle of diameter d = 2r and Sm the area of a
minimal section, we have

S
S ABC

b
r

b
a

GI
GH

m m m

m( )
= = = .
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This result is derived immediately from Propositions 14, 18 and 19.

Proposition 22. — If SM is the area of the maximal section, then

S
S ABC

a
r

a
b

M M M

M( )
= = .

This result is derived from Propositions 14 and 20.

Proposition 23. — Corollary of Propositions 21 and 22:

S
S

b
a

m

M

m

M

= .

Proposition 24. — If we have two similar ellipses E and E′′′′ with the same
centre such that their major axes, just as their minor axes, are collinear,
then the tangent at any point on the small ellipse determines in the large
one a chord the point of contact of which is the centre.

The similarity of two ellipses can be characterized by the equality
2 2a

c

a

c
= ′

′
 (Apollonius, Conics VI.12), c and c′ being the latera recta relative

to axes 2a and 2a′, or by the equality of the ratios of the axes a

b

a

b
= ′

′
. By

using these two equalities and Apollonius, Conics I.13, Thæbit showed that
for every half-straight line produced from the centre I and cutting the small
ellipse at N and the large ellipse at L, we have

(1) IN

IL

a

a
= ′ .

This property and Proposition I.50 in the Conics of Apollonius permit us to
conclude.

The equality (1) defines the homothety h I
a

a
,

′



  in which E′′′′ = h(E).

In the last paragraph, Thæbit stated a result that concerns the general
case of the similarity. Let E″″″″ be an ellipse equal to E′′′′, and let k be the
displacement, translation or rotation, such that E″″″″  = k(E′′′′); then E″″″″  =
k o h(E), k o h is a similarity. The displacement k retains the angles;
therefore two homologous diameters of E and E″″″″ make equal angles with
two homologous axes, as Thæbit defined them.

The homothety h I
a

a
,

′



  has been defined here by equalities of ratios,

equalities obtained starting with metric relations, in opposition to what was
established in Proposition 12.
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Proposition 25. — Given two homothetic ellipses of the same centre I,
construct a polygon inscribed in the large ellipse whose sides do not touch
the small ellipse and admitting I as the centre of symmetry.

Let AC and EG be their major axes, BD and FH their minor axes,
AC > EG, and BD > FH.

U
<Y>

P B

S F

M

L
O

K

N

A

Z

I
G

E

Q

C

R

V

T D

H

W

J

Fig. 2.4.8

Let EK be the tangent at E and let α1 = KIEˆ . We then draw the tangent
KLM, then the tangent MSY and repeat until obtaining a tangent that cuts
segment IB. We put α 2 = MIEˆ , α 3 = YIEˆ  to the nth tangent corresponding
to αn.

Thæbit showed by employing Proposition 24 and Conics II.29 and V.11
from Apollonius that

α2 > 3α1,    α3 > 5α1 ...     αn > (2n – 1)α1;

and he admits (by virtue of the axiom of Eudoxus–Archimedes) the

existence of n such that (2n – 1)α1 > 
π
2

; hence αn > 
π
2

. He thus obtained

the desired tangent.

The vertices of the polygon on arc AB of the large ellipse are in turn
any A, K, O on arc KM defined by the second tangent, M a point on the
following arc, and so on until the extremity of the (n – 1)th tangent, and in
the end the point B.

The other vertices of the polygon are obtained:
1) by symmetry with relation to axis BD;
2) by symmetry with relation to I.
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We also obtain a polygon of 8(n – 1) sides. The existence of such a
polygon will make an appearance in Propositions 26, 31 and 32.

Proposition 26. — The ratio of the perimeters of two similar ellipses is
equal to the ratio of similarity.

The reasoning is achieved using two homothetic ellipses of the same
centre k, E1 and E2, of which the major axis, the minor axis and the
perimeter are respectively (2a1, 2b1, p1) and (2a2, 2b2, p2). We assume a1 <
a2; hence b1 < b2 and p1 < p2. We want to show that

p1

p2

= a1

a2

.

a) Let us assume 
p1

p2

> a1

a2

.

So there exists an a3 such that 
p1

p2

= a3

a2

, a1 < a3 < a2.

Let f be the homothety 
  

K,  a1

a2

 
 
  

 
  and g the homothety 

  
K,  a3

a2

 
 
  

 
 ; we have

E1 = f(E2) and may consider ellipse E3 = g(E2). After Proposition 25, we
know how to construct a polygon Pn of 8(n – 1) sides inscribed in E3 and
without common points with E1, let p′3 be its perimeter; we therefore have

p1 < p′3 < p2. Cf. the postulate of Archimedes on the lengths of convex
curves [The Sphere and the Cylinder, Postulate 2].5

If Pn = g-1(Pn), Pn is inscribed in E2, let p′2 be its perimeter; we have
′
′

=p

p

a

a
3

2

3

2

, and therefore ′
′

=p

p

p

p
3

2

1

2

; this is absurd because p′3 > p1 and p′2 < p2.

We therefore have 
p1

p2

≤ a1

a2

.

b) Let us suppose 
p1

p2

< a1

a2

.

Then there exists a′3 such that p

p

a

a
1

2

1

3

=
′
, a′3 > a2 > a1.

Let h be the homothety K
a

a
,

′





3

1

; we can construct the ellipse E′′′′3 = h(E1)

and in E′′′′3 a polygon P′n without common points with E2, and we may

5 Archimedes, On the Sphere and the Cylinder, ed. and transl. by Charles Mugler,
vol. I, pp. 10–11.
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deduce from it P ′′′′n = h -1(P ′n) inscribed in E 1. If p ′3 and p ′1 are their
respective perimeters, we have

′
′

=
′

=p

p

a

a

p

p
1

3

1

3

1

2

,

which is impossible since p′3 > p2 and p′1 < p1. We therefore have 
p1

p2

≥ a1

a2

.

From a) and b) we derive 
p1

p2

= a1

a2

.

The result established for the homothetic ellipses E1 and E2 is still valid if
we replace E1 with an ellipse E′′′′1 derived from E1 by a displacement; this
extends the result to two similar ellipses.

In this proposition, starting with the fact that the ratio of the two
perimeters of two similar polygons is equal to the ratio of similarity, Thæbit
proved that the same applies for the ratio of the perimeters of two similar
ellipses.

Thæbit’s method is, on the one hand, based on an infinitesimal argument
that revisits Proposition 25 in knowing that we can always interpose
between two homothetic ellipses in relation to their common centre a
polygon that is inscribed in the larger one and does not touch the small one,
and this whatever the ratio of homothety even if it is very close to 1, and,
on the other hand, based on an apagogic argument, namely an upper
bounding or a lower bounding.

Why did Thæbit not calculate the perimeter?
In Proposition 14 for determining the area of the ellipse E, Thæbit

moved from E to the equivalent circle E by making up two transformations,
orthogonal affinity and homothety, for which we know the ratio of the
homologous areas.

One cannot compare the perimeter of the ellipse with that of its great
circle by starting with regular polygons P′′′′n of perimeters p′n inscribed in the
circle and with their homologues6 Pn of perimeters pn inscribed in the
ellipse, since the ratio of two homologous segments in the affinity in

question is not constant p

p

b

a
n

n′
≠ , and the affinity does not retain the ratio of

the lengths and thus cannot be of service as in the case of the areas.
Let us note, however, that this is the first time that the length of the

ellipse has been considered, or more generally that of a curve, apart from
the circle.

6 Pn that are not regular.
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Proposition 27.
a) The ratio of the areas S1 and S2 of two ellipses with axes (2a1, 2b1)

and (2a2, 2b2) is
S
S

a b
a b

1

2

1 1

2 2

= .

b) If the ellipses are similar and if δ1 and δ2 are two homologous
diameters,

S1

S2

= a1
2

a2
2 = b1

2

b2
2 = δ1

2

δ 2
2 .

a) is a corollary of Proposition 14,
b) a corollary of a), using the ratio of similarity.

2.4.2.4. Concerning the lateral area of the cylinder and the lateral area of
portions of the cylinder lying between the plane sections touching all sides

Proposition 28. — Two generating lines of a right or oblique cylinder are
opposite if and only if they pass through the extremities of a diameter of
either elliptical or circular section.

Following the definition, two generating lines ∆ and ∆′ are said to be
opposite if they have originated from the extremities of a diameter of one of
the bases. They are thus in a plane the same as the one containing the axis
– hence the result, which we can write in the form: for two generating lines
∆ and ∆′ to be opposite, it must be and is sufficient that a segment joining
any point on ∆ to any point on ∆′ touches the axis.

Proposition 29. — In every right or oblique cylinder, the sum of the given
segments on two generating lines opposed by two planes that do not cut
into the interior of the cylinder and that touch all the generating lines is
constant and equal to twice the given segment on the axis. One of the
planes can be the plane of one of the bases.

The proof makes use of the property of the segment joining the
midpoints of the two non-parallel sides of a trapezium, which Thæbit
demonstrated starting with the property of the segment that joins the
midpoints of two sides of a triangle.
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Proposition 30. — Let there be an oblique cylinder, a minimal section Em
and any section whatsoever, ellipse or circle, that does not touch Em. If in
Em one inscribes a polygon P whose vertices are diametrically opposed to
each other, then the generating lines passing through the vertices of P

determine a prismatic surface the lateral area of which is Σ = 
1

2
p(  l+ L), if

p is the perimeter of polygon P, and l  and L the segments lying on the two
opposite generating lines between the two sections.

The proof makes use of Proposition 29 and the area of the trapezium.
The result remains true if the two sections are tangential.

Proposition 31. — The lateral area Σ of a portion of an oblique cylinder
included between two right sections is

Σ = p · l ,

where p is the perimeter of a minimal ellipse and  l  the length of the
segment of generating line between the two sections.

Let E be one of the sections, K its centre and 2a its major axis.
1) If Σ < p · l , a length g exists, g < p, such that Σ = g · l .
Let there be h  such that g  < h < p . An area ε  exists such that

Σ + ε = h ·   l ; hence ε =   l(h – g).
We may construct the ellipse E1 = ϕ(E), ϕ being the homothety of

centre K with ratio 
a1

a
 such that 1 >

a1

a
>

h

p
. Its perimeter p1 is such that

p1

p
=

a1

a
 following Proposition 26; hence 

p1

p
>

h

p
 and consequently p1 > h.

Let Pn be a polygon inscribed in E and without contact with E1, P′n its
projection onto the other base and pn their perimeter. If Σn is the lateral area

of the prismatic surface with bases Pn and P′n, we have Σn = pn ·  l ; but pn >

p1 > h, and hence Σn > h  l :

(1) Σn > Σ + ε.

a) If 
ε
2

 ≥ s, the areas s and s′ of the two bases, which are minimal

ellipses, being equal, we have ε ≥ s + s′; hence Σn > Σ + s + s′.
The lateral area of the prism inscribed in the cylinder would be larger

than the total area of the cylinder, which is absurd.
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b) If 
ε
2

 < s, we furthermore impose on a1 the condition 
a1

2

a 2 >
s − ε

2
s

, but,

s1 being the area of E1, 
s1

s
=

a1
2

a2 ; hence s – s1 < 
ε
2

.

If sn is the area of Pn, s′n that of P′n, we have

sn = s′n,  s > sn > s1, s – sn < 
ε
2

 and ε > (s – sn) + (s′ – s′n).

From (1) we may deduce Σn > Σ + (s – sn) + (s′ – s′n), which is absurd.

From a) and b) we deduce Σ ≥ p ·   l .

2) If Σ > p · l , there exists a length g, g > p such that Σ = g · l .

Let there be h, p < h < g and let ε be an area such that Σ = h · l  + ε.

Let E1 = ϕ(E), ϕ being the homothety of centre K with ratio 
a1

a
 such

that

a1

a
<

h

p
 and 

a1
2

a 2 <
s + ε

2
s

.

If p1 is the perimeter of E1, we have 
p1

p
=

a1

a
, hence p1 < h.

We inscribe in E1 a polygon Pn, without common points with E. With
the notation of the first part, we have Σn = pn · l ; but h > p1 > pn , and

hence Σn < h · l  and consequently

(2)  Σ > Σn + ε .

But
s1

s
=

a1
2

a2 ;

hence

s1 < s + 
ε
2

.

Now
s1 – s > sn – s;
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hence

sn – s < 
ε
2

.

We know that
Σn + (sn – s) + (s′n  – s′) > Σ;

hence
Σn + ε > Σ,

which is the opposite of (2). We therefore have Σ  ≤ p ·  l .

From (1) and (2) we may deduce Σ = p ·   l .

Let us note that the only areas of curved surfaces considered until this
point were those of the right cylinder, the right cone and the sphere
(Archimedes, The Sphere and the Cylinder). Thæbit was the first to study
the area of the oblique cylinder, which we shall express by means of an
elliptic integral.

Let us pursue the comparison between the results and the methods
created by Archimedes to obtain them, and Thæbit’s Proposition 31 as well
as his own methods. To proceed with this comparison, let us first recall the
propositions of Archimedes set out in The Sphere and the Cylinder, one of
the Arabic translations of which had been revised by Thæbit himself. This
concerns successively Propositions 11, 12 and 13 in Archimedes.

Proposition 11. — The area σ of a portion of the lateral surface of a
right cylinder contained between two generating lines is larger than the
area s of the rectangle defined by the latter lines, σ > s.

Let AA′ and BB′ be the given generating lines and EE′ any generating
line in the portion under consideration:

area (AA′BB′) = s,

area (AEE′A′) = s1,

area (BEE′B′) = s2.

We have AB < AE + EB; hence s < s1 + s2.
Let us put s1 + s2 = s + h.
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1) Let us suppose h > [Ssg (AE) + Ssg (EB)] + [Ssg (A′E′) + Ssg (E′B′)].
We know by postulate 4 of The Sphere and the Cylinder that

σ + [Ssg (AE) + Ssg (EB)] + [Ssg (A′E′) + Ssg (E′B′)] > s1 + s2.

We therefore have σ + h > s + h; hence

σ > s.

2) Let us suppose h < [Ssg(AE) + Ssg(EB)] + [Ssg(A′E′) + Ssg(E′B′)].
Let θ and K be the midpoints of arcs AE and EB, and θθ′ and KK′ the

generating lines coming from these points.7

Str (AθE) > 
1

2
 Ssg (AE);

therefore

Ssg (AE) – Str (AθE) < 
1

2
 Ssg (AE);

that is to say

Ssg (Aθ) + Ssg (θE) < 
1

2
 Ssg (AE),

Ssg (EK) + Ssg (ΚΒ) < 
1

2
 Ssg (EB),

Ssg (A′θ′) + Ssg (θ′E′) < 
1

2
 Ssg (A′E′),

Ssg (E′K′) + Ssg (K′Β′) < 
1

2
 Ssg (E′B′).

7 Cf. Thæbit’s Proposition 14.
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By reiterating if necessary, we obtain (by Euclid X.1) a sum of segments
whose area z is smaller than h.

Let us assume this result obtained in the case of the figure, let s′1 and s″1

be the areas of the rectangles of bases Aθ and θE and let s′2 and s″2 the
areas of the rectangles of bases EK and KB. Bearing in mind Postulate 4,

σ + z > s′1 + s″1 + s′2 + s″2

> s1 + s2,
σ + z > s + h.

But z < h; hence
σ > s.

Corollary of Proposition 11. — If Σ is the lateral area of a cylinder and
Σn the lateral area of a prism inscribed in the cylinder, then, whatever this
prism, Σ > Σn.

Proposition 12. — Let AC  be an arc of the base circle of a right
cylinder; the tangents at A and C intersect at H. The area σ of the part of
the lateral surface of the cylinder contained between the generating lines
AA′ and CC′ is smaller than the sum of the areas of the base rectangles
AH and HC and the height of which is equal to AA′, σ < s1 + s2.

Let B  be a point on arc AC ; the tangent at B  cuts HA  and H C
respectively at E and Z. We have EH + HZ > EZ; hence

AH + HC > AE + EZ + ZC.
H

E B Z

A C

k

Fig. 2.4.10

Let s′1, s′2, s′3 be the areas of the base rectangles AE, EZ, ZC and the

height is equal to AA′. We have s1 + s2 > s′1 + s′2 + s′3.

Let k be the area such that s1 + s2 = s′1 + s′2 + s′3 + k.
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From Postulate 4, we have, whilst taking into consideration equal
figures, trapeziums or segments, in the two bases,

s′1 + s′2 + s′3 + 2 Stp (AEZC) > σ + 2Ssg (ABC),

s′1 + s′2 + s′3 + 2 [Stp (AEZC) – Ssg (ABC)] > σ .

1) If k

2
 ≥ [Stp (AEZC) – Ssg (ABC)], then s′1 + s′2 + s′3 + k > σ; hence

s1 + s2 > σ.

2) If k

2
  < [Stp (AEZC) – Ssg (ABC)].

We take a point θ on arc AB and a point K on arc BC; we draw the

tangents at θ and K and repeat until the sum of the differences of the areas
between each trapezium obtained and the segment that is associated with it

becomes smaller than k

2
. We have then s′1 + s′2 + s′3 + k > σ ;  hence

s1 + s2 > σ.

Corollary of Proposition 12. — If Σ is the lateral area of a cylinder
and Σn the lateral area of a prism circumscribed around the cylinder, then
whatever this prism Σ < Σn.

Proposition 13. — The lateral area of a right cylinder is equal to the
area of a circle whose radius r is the geometrical mean between the
generating line   l  of the cylinder and the diameter d of its base:

r2 =  l  · d.

Let A be the base circle, of diameter d = CD, and let B be the circle of
radius r such that r2 =   l  · d.

Let Σ be the lateral area of the cylinder and S that of circle B; we want
to prove that Σ = S.

1) Let us suppose S < Σ.
From Proposition 5 in Archimedes, we can construct two polygons, Pn

circumscribed around B and Qn inscribed in B, with respective areas sn and

s′n such that s

s S
n

n′
< Σ . And let Rn be circumscribed around A, Rn similar to

Pn. Let  σn be the area of Rn and pn its perimeter. Let us put pn = KD = ZL

and EZ = l .
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The prism of base Rn circumscribed around the cylinder has for lateral
area

Σn = l  · pn = EZ · ZL.

Let T be the middle of CD and P such that ZP = 2ZE; then

Σn = Str (LZP).

r

BA
L

D
T
C

K

P E Z

Fig. 2.4.11

On the other hand,
σn

sn

= TD2

r 2 = TD2

2TD. EZ
= TD

PZ
.

But

 S KTD

S PLZ

TD

PZ
tr

tr

( )
( )

=  and σn = Str (KTD);

hence
sn = Str (PLZ),

and consequently
Σn = sn.

But by hypothesis
s

s S
n

n′
< Σ ;

hence
Σ Σn

ns S′
< ,
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which is absurd since Σn > Σ and s′n < S. We therefore have S ≥ Σ.

2) Let us suppose S > Σ.
From Proposition 5 in Archimedes, we can construct Pn circumscribed

around B and Qn inscribed in B such that s

s

Sn

n′
<

Σ
. Then let there be R′n

inscribed in A and similar to Qn; let σ′n and p′n be respectively its area and
its perimeter.

Let us put again as in 1) KD = ZL = p′n. We have

σ′n < Str (KTD) and ′
′

= = = ( )
( )

σ n

ns

TD

r

TD

PZ

S KTD

S ZPL

2

2
tr

tr

;

hence
s′n < Str (ZPL).

Let Σ′n be the lateral area of the prism of base R′n, inscribed in the cylinder.

We have Σ′n = p ′n ·   l  = EZ  · ZL  = S tr (LZP ); hence Σ′n > s ′n, and

consequently s′n < Σ. But we have put

s

s

Sn

n′
<

Σ
,

which is impossible since sn > S and s′n < Σ. We therefore have S ≤ Σ.

From 1) and 2) we deduce S = Σ.

Thæbit’s Proposition 31 is, as we have seen, a stage towards the
determination of the lateral area of an oblique cylinder with circular bases
and of the lateral area of the whole portion of an oblique cylinder contained
between two parallel planes or not.

In Thæbit’s Proposition 31, which concerns a portion of an oblique
cylinder contained between two planes of right section, this portion is a right
cylinder with elliptical base. The proposition is therefore more general than
the one in Archimedes, which treats the right circular cylinder of revolution.

In Proposition 13 in Archimedes he proved that Σ = π · r2, with r2 =
d · l ; therefore Σ = πd · l , and πd is the perimeter p of the base circle.
Hence Σ = p ·   l , which is the form of the result of Proposition 31 in Thæbit
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in which p is the perimeter of the right section. On the other hand, the form
Σ  = p · l  is the one which proceeds logically from the expression of the
lateral area of a right prism, Σn = pn  ·   l , to which both authors refer, and
which extends, furthermore, to the lateral area of the oblique prism if pn is
the perimeter of a right section of the prism; Σ = p · l  will extend to the
general case of the oblique cylinder.

The definitions and postulates given by Archimedes at the beginning of
the treatise of the Sphere and the Cylinder, concerning the concavity of
surfaces and the order of size of the areas of two surfaces one of which
surrounds the other in the conditions specified in Postulate 4, are employed
by both authors.

Propositions 11 and 12 in Archimedes and their respective corollaries
are lemmata for Proposition 13. They make use of postulate 4, in
Proposition 11 for a prism inscribed in the cylinder, and in Proposition 12
for a circumscribed prism. Additionally, Proposition 11 in Archimedes uses
Euclid X.1.

In Proposition 13, Archimedes used Proposition 5 in both parts of the
reductio ad absurdum, in order to deduce from it on the one hand a prism
inscribed in the cylinder and on the other hand a circumscribed prism.

In the first part of Proposition 31, Thæbit began with a prism inscribed
in the cylinder and showed that the hypothesis Σ < p ·  l  and Postulate 2
(the lengths of convex curves) are contradictory. In the second part, he
began with a prism that surrounds the cylinder, without any contact with it;
Postulate 4 applied again and is in contradiction with the hypothesis
Σ > p · l .

The approaches are different. Archimedes based his reasoning on circle
B equivalent to the lateral surface, and on the inscribed polygon and the
circumscribed polygon associated with circle B. From this he deduced by
similarity a polygon inscribed in the given circle A  or a polygon
circumscribing this circle.

Thæbit used Proposition 25 to construct directly in the first part of his
reasoning a polygon inscribed in E and without common point with the
homothetic ellipse E1, and in part 2) a polygon inscribed in the ellipse E1

homothetic to E, a polygon that surrounds E, without any contact. He used
Propositions 26 and 27, which give the ratio of the perimeters and the ratio
of the areas of similar ellipses. His approach is more natural and leads to a
proof distinctly more easy to follow.

To apply Euclid’s Proposition X.1, Archimedes turned to a property of
the segments of a circle, which allowed him to make apparent the coefficient
1

2
; by iteration he obtained 1

2n . We have seen that Thæbit made use of the
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same procedure in Proposition 14, in applying it to the segments of an
ellipse in the first part and to the segments of a circle in the second.

In Proposition 31, Thæbit used ‘the principle of continuity’ in R (if
g < p, there exists h ∈ ] g, p [).

Proposition 32. — The lateral area Σ of a portion of an oblique cylinder
with circular bases contained between a right section of perimeter p and
any section at all is

Σ = 
1

2
 p(  l  + L),

if   l  and L are the lengths of the portions of two opposite generating lines
contained between the two sections.

1) Let us suppose Σ < 
1

2
 p(  l  + L).

Let g be a length g < p such that Σ = 
1

2
 g( l  + L); let h be a length and

ε an area such that

(1) g < h < p and ε = 
1

2
 (  l  + L) (h – g).

Let G and d be the centre and the diameter of circle C, the base of the

cylinder, let C′′′′ be the circle homothetic with C in the homothety G
d

d
,

′





such that 1 > 
′ >d

d

h

p
. The cylinder, of base C′′′′ and with the same axis GH as

the given cylinder, cuts the plane Π with right section following an ellipse E′′′′
homothetic with the minimal ellipse E. Let p′ be the perimeter of E′′′′; we

have ′ = ′ >p

p

d

d

h

p
, and hence p′ > h.

Let Pn be a polygon of 2n sides inscribed in E whose vertices are two
by two diametrically opposite and that is exterior to the ellipse E′′′′; let pn be
the perimeter of the polygon. We have

pn > p′ > h.

To polygon Pn we join a frustum of a prism. Its lateral area is

Σn = 
1

2
 pn(l  + L) > 

1

2
 h(l+ L),

but from (1)
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1

2
 (l  + L) h = ε + 

1

2
 (l  + L) g;

hence

(2) Σn > Σ + ε.

Let s be the area of the minimal ellipse E and s1 the area of the second
section E1; we have s1 > s.

a) If 
1

2
 ε ≥ s1, then 

1

2
ε > s.

From (2) we derive
Σn > Σ + s + s1 ,

which is absurd.

b) If 
1

2
 ε < s1, we place on d′ a supplementary condition

′ > −d

d

s

s

2

2
1

1
2

1

ε .

Let E′′′′1 be the homothetic ellipse of E1. We have

′ = ′ = ′ > −s

s

d

d

s

s

s

s
1

1

2

2
1

1
2

1

ε .

Hence

′ > −s s1 1

1
2

ε

and
s s

s

s s

s
1 1

1

− ′ = − ′ ;

hence

s – s′ < s1  – s′1  < 
1

2
 ε ,

and so
Σ Σ+ − ′( ) + − ′( ) < +s s s s1 1 ε .

Now, from Postulate 4
Σ + (s – s′) + (s1 – s′1) > Σn,
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Σ + ε  > Σn ,

which is impossible by (2); therefore

(3) Σ ≥ 
1

2
 p · (l+ L).

2) Let us show that we cannot have Σ > 
1

2
 p  (  l  + L). Let LS be the

larger segment of the generating line between the sections in question. The
planes of right section passing through L and S determine a cylindrical
surface the bases of which are the minimal ellipses E and E2; by Proposition
31, its area is Σ2 = p · L, if L is the length of the larger segment of the
generating line.

The cylindrical surface between E1 and E2 has, after the first part, an
area equal to

Σ1 ≥ 
1

2
 p · (  l  – L).

But
Σ1 + Σ = Σ2;

hence

(4) Σ ≤ 
1

2
 p · (l  + L).

From (3) and (4) we deduce

Σ = 
1

2
 p · (  l  + L).

Comments
1) In the first part of the proof of Proposition 32, the method is the

same as in Proposition 31. The prism from Proposition 31 with lateral area
Σn = pn · l  that leads to Σ = p · l  for the cylinder is replaced in Proposition

32 by a frustum of a prism with lateral area Σn = 
1

2
 pn (l  + L), which leads

for the frustum of a cylinder to Σ = 
1

2
 p (  l  + L).

2) Instead of treating the second part with a reductio ad absurdum of
the same type as that in the first part, Thæbit showed that by assuming the

conclusion of the first part to be true, Σ ≥ 
1

2
 p  · (l  + L), we end up, by

proceeding with the sum or difference of areas, with Σ ≤ 
1

2
 p · (l  + L).
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The five propositions that follow are corollaries of Proposition 32. The
notations remain the same: p is the perimeter of a right section, L and l  are
the lengths of the segments defined on two opposite generating lines by the
planes P and Q of the two sections in question, and Σ is the lateral area of
the portion of cylinder contained between P and Q.

Proposition 33. — If P and Q are any planes,

Σ = 
1

2
 p · (  l  + L).

Thæbit brought in a plane of right section and proceeded by the
difference of two surfaces that satisfied the conditions of Proposition 32.

Proposition 34. — If P and Q are two parallel planes, then L =   l  and
Σ = p · L.

If P and Q are the base planes of the cylinder, L is then the length of
the generating lines and Σ the lateral area of the cylinder itself.

Comment. — If P and Q are planes of right section, we find the result of
Proposition 31, we have a right cylinder with elliptical base.

Proposition 35. — Particular case of Proposition 33.
If the sections of the cylinder through planes P and Q are tangent at a

point, we have Σ = 
1

2
 p · L, L being the length of the segment of the

generating line opposite to the segment of no length.

Propositions 36 and 37 are notes using Proposition 29. If lm  and LM are
the lenghs of the shortest and longest segments of the generating line and L1

the length of the segment defined on the axis of the cylinder by planes P
and Q, we have:

Proposition 36.

Σ = 
1

2
 p · (lm  + LM).

Proposition 37.
Σ = p · L1.
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By their very nature, problems of rectification or calculation of the area
of curved surfaces do not reduce directly to quadratures. We understand
therefore that Thæbit did not use integral sums in this treatise. As we have
seen, the principal means implemented in the course of his research are:

– point-wise transformations,
– Archimedes’ postulate 2 on convexity,
– the postulate of Eudoxus–Archimedes and Euclid X.1,
– the construction of a polygon inscribed in an ellipse and not touching
a smaller homothetic ellipse.



2.4.3. Translated text

TTTThhhhææææbbbbiiiitttt ibn Qurra

On the Sections of the Cylinder and its Lateral Surface



In the name of God, the Merciful, the Compassionate

THE BOOK OF THÆBIT IBN QURRA AL-ÎARRÆNï

On the Sections of the Cylinder and its Lateral Surface

The chapters of this treatise

At the beginning of this treatise the species of sections of the right cylinder
and of the oblique cylinder are characterized; these sections have parallel sides
and are surfaces with parallel sides or circles or portions of circles and the
greater part of these cylinder sections are of the species called ellipse belonging
to the conic sections, or portion of an ellipse.

We shall proceed by speaking of the area of a section of a cylinder, which
has been determined by Abº MuÌammad al-Îasan ibn Mºsæ – may God be
pleased with him – and which is the ellipse belonging to the conic sections, and
of the area of the species of portions of that section.

We shall continue by speaking of the sections of the cylinder having the
greatest area, having the smallest area, having the longest diameter, having the
shortest diameter, of their ratios to one another and of the ratios of their axes to
one another.

The remainder of this treatise concerns the area of the lateral surface of the
right cylinder and of the oblique cylinder, and the area of what is lying on the
lateral surface of each of them between the sections meeting their sides.

This is the start of the treatise.

<Definitions>

If we have two equal circles in two parallel planes, if their centres are joined
together by a straight line and their circumferences by another straight line
– these two straight lines being in the same plane – if we fix the two circles and
the straight line joining the two centres and if we rotate the second straight line
on the circumferences of the two circles from a position on one of these latter
until it returns to the original position – both this line and the straight line
joining the two centres being in the same plane during the entire rotation – then
the solid defined by this straight line and the two parallel circles is called a
cylinder.
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The straight line joining the centres of the two circles is called the axis of
the cylinder.

The straight line joining the circumferences of the two circles and which is
rotated, whatever its position, is called the side of the cylinder.

The two parallel circles we have mentioned are called the two bases of the
cylinder.

The surface in which the side of the cylinder lies is called the lateral surface
of the cylinder.

Let us call two of the sides of the cylinder, which are between the
extremities of two of the diameters of its bases, two opposite sides out of the
cylinder’s sides.

Let us call the perpendicular dropped from the centre of one of the two
bases of the cylinder on to the surface of the other base, the height1 of the
cylinder.

If the axis of the cylinder is its height, then that cylinder is called a right
cylinder; if its axis is not its height, the cylinder is called an oblique cylinder.

The introduction of the treatise is finished.

<I. Plane sections of the cylinder>

– 1 – Every side of a cylinder is parallel to its axis and to all its other sides.
Let there be a cylinder, whose two bases are <the circles> ABC and DEF

with centres G and H, and whose axis is GH; let AD be one of the sides of the
cylinder.

I say that AD is parallel to axis GH and to each of the sides of the cylinder.

A

B

C G

H
D

F

E

Fig. II.3.1

Proof: The straight line AD is one of the sides of the cylinder; it is therefore
in the same plane as the axis GH, this plane cutting the planes of the two circles

1 Literally: perpendicular. We shall translate it here as ‘height’.
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ABC and DEF. If we make the two intersections of this plane and the planes of
circles ABC and DEF the two lines GA and HD, then the two lines GA and HD
are straight lines because they are the two intersections of plane GADH with the
planes of the two circles ABC and DEF; they are parallel since the planes of the
two circles ABC and DEF are parallel, they are the two halves of the diameters
of circles ABC and DFE because the centres of these two circles are the two
points G and H, and they are equal because these two circles are equal. The two
straight lines AD and GH which connect their extremities are therefore parallel.2

Thus each of the sides of the cylinder is parallel to its axis. It can also be shown
from this that the straight line AD is equal to each of the other sides of the
cylinder. That is what we wanted to prove.

– 2 – Every straight line lying on the lateral surface of the cylinder is one of
its sides or a portion of one of its sides.

Let there be a cylinder, whose two bases are ABC and DEF, and let there be
a straight line on the lateral surface of the cylinder which is GH.

I say that GH is one of the sides of the cylinder or a portion of one of its
sides.

ABC

G

H

DF
E

I

Fig. II.3.2

Proof: If we mark on the straight line GH any three points, let them be G, I
and H, then these points are on the lateral surface of the cylinder since the
whole of the straight line GH is on its lateral surface. If it was possible that the
line GH was not one of the sides of the cylinder or a portion of one of its sides,
then if we make the sides of the cylinder which pass through the points G, I and
H the straight lines AD, BE and CF, none of them is superposed on the line GH;
these straight lines are parallel, the line GIH is a straight line and cuts them;
they are therefore in the same plane. That is why the three points D, E and F are
in that plane, but they are also in the plane of circle DFE; accordingly they are
at the intersection of these two planes. But every intersection of two planes is a
straight line; therefore only one straight line passes through points D, E and F

2 If we assume A and D are on the same side of GH; cf. Euclid, Elements I.33.
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and meets the circumference of circle DEF at three points; that is impossible.
The straight line GH is therefore one of the sides of the cylinder or a portion of
one of its sides. That is what we wanted to prove.

– 3 – Every plane cutting a cylinder and passing through its axis or parallel
to that axis cuts its lateral surface following two straight lines; if this plane does
not pass through the axis and is not parallel to it, it will not cut the lateral
surface of this cylinder following a straight line.

Let there be a cylinder whose bases are ABC and DEF with centres G and H
and whose axis is GH; let any plane cut this cylinder.

I say that if this plane passes through the axis GH or is parallel to it, then it
cuts the lateral surface of the cylinder ABCDEF following two straight lines;
but if it does not do so, then it doesn’t cut the lateral surface of this cylinder
following a straight line.

AB

C

G

H D

F

E

Fig. II.3.3

Proof: If the plane cutting the cylinder passes through axis GH, then it cuts
the lateral surface of the cylinder following two lines. If we make the
intersections of this plane and the lateral surface of the cylinder the two lines
AD and BE, and if we draw the straight line AGB, then the two straight lines
AGB and GH are in the plane cutting the cylinder. The line AD is therefore the
intersection of the plane containing the two straight lines AGB and GH and the
lateral surface of the cylinder, and it passes through point A. But the side of the
cylinder drawn from point A is in the same plane as GH, and the straight line
AGB which cuts them is likewise in this plane; the side of the cylinder drawn
from point A is therefore in the plane containing the two straight lines AGB and
GH and it is also on the lateral surface of the cylinder; accordingly it is their
intersection passing through point A. But we have shown that the line AD is also
their intersection passing through point A; therefore the line AD is one of the
sides of the cylinder; consequently it is a straight line. In the same way we can
also show that the line EB is a straight line.
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Similarly, if the plane cutting the cylinder is parallel to axis GH, if we make
the line AD an intersection3 of the latter with the lateral surface of the cylinder
and if we make the plane ABE passing through axis GH and through a point on
the line AD , then it will pass through the whole of line AD , which is an
intersection of the secant plane and the lateral surface of the cylinder, and it will
cut the lateral surface of the cylinder with any straight line passing through a
point on the line AD4 and will cut the secant plane with another straight line
passing through this point on the line AD. If we set its section onto the lateral
surface of the cylinder following the straight line AI passing through point A
and its section onto the plane cutting the cylinder following the straight line AK
also passing through point A, then the straight line AI is one of the sides of the
cylinder or a portion of one of its sides. In fact, it is a straight line; it is therefore
parallel to axis GH. But the straight line AK is in the same plane as the straight
line GH and is parallel to it, because if it was not parallel to it, it would have
met it since it is in the same plane as it, and if it had met it, the axis GH would
have cut the secant plane to the cylinder, since AK is in that plane; that is not
possible, because the secant plane to the cylinder is parallel to axis GH. The
straight line AK  is thus parallel to axis GH. Now, we have shown that the
straight line AI is also parallel to axis GH; therefore the two straight lines AI and
AK are parallel, but they met at point A, which is not possible. The plane ABE
therefore passes through the line AD and line AD is an intersection of the plane
ADFC with the lateral surface of the cylinder, and is therefore a straight line.

In the same way, the secant plane to the cylinder cuts the lateral surface of
the cylinder following another straight line. If, in fact, it was not cutting it
following the straight line AD  alone, it would be a tangent to the cylinder
without cutting it, because AD is a straight line. If, therefore, it cuts it, it cuts its
lateral surface following another straight line than AD, as the plane ACFD cuts
it following the line CF. We can show as we did previously that the line CF is
also a straight line.

Furthermore, if the secant plane to the cylinder does not pass through axis
GH and is not parallel to it, and if we make the line AD an intersection of this
plane and of a portion of the lateral surface of the cylinder, it will not be a
straight line. If that was possible, let the line AD be a straight line; it would
therefore be one of the sides of the cylinder or a portion of one of its sides and
would hence be parallel to axis GH, and would then be in the plane GHDA with
it. But the straight line GH meets the secant plane to the cylinder, and meets it
accordingly at the intersection of this plane and the plane GHDA. But their
intersection is the straight line AD; the straight line GH thus meets the straight
line AD. But we have shown that it is parallel to it, which is contradictory. The
line AD is therefore not a straight line. That is what we wanted to prove.

3 AD is a part of the intersection.
4 i.e. point A.
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– 4 – If a plane cuts a cylinder by passing through its axis or in parallel to it,
then the section generated in the cylinder is a parallelogram.

Let there be a cylinder whose two bases are ABC and DEF with centres G
and H, and whose axis is GH. Let the cylinder be cut by a plane passing through
axis GH, as in the first case of figure, or by a plane parallel to axis GH, as in the
second case of figure. Let this plane generate in the cylinder the section ABED.

I say that ABED is a parallelogram.

A

B

C
G

H
DF

E

H
D

E

F

B

C
G

A

Fig. II.3.4

Proof: The two lines AB and DE are both straight lines in the two cases of
figure, because they are the two intersections of the plane ABED with the planes
of the two circles ABC and DEF, and they are parallel because the planes of
these two circles are parallel. But the two lines AD  and BE joining their
extremities are straight lines because they are the two intersections of the plane
ABED – which passes through axis GH or is parallel to it – and the lateral
surface of the cylinder; they are thus two of the sides of the cylinder; that is why
they are parallel. The section5 ABED is therefore a parallelogram. That is what
we wanted to prove.

And it is clear from what we have said that if a plane cuts a right cylinder
and passes through its axis or is parallel to that axis, then the section generated
in the cylinder is a rectangle.

– 5 – If a plane cuts an oblique cylinder and if it passes through its axis
perpendicularly to the plane which passes through its height and through its
axis, then the section which it produces in the cylinder is a rectangle, and the
sections generated by all the other planes which pass through the axis are not
rectangles.

Let there be an oblique cylinder whose bases are ABC and DEF with centres
G and H, whose axis is GH and whose height is GI. Let a plane passing through
axis GH cut the cylinder, let it be the plane ABED, and let the plane passing
through axis GH and through the height GI cut the plane ABED perpendicularly.

5 Literally: surface. Henceforth, in this context, we will translate it as ‘section’.
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I say that the section ABED is a rectangle and that the sections generated
by all the other planes which pass through axis GH are not rectangles.

Proof: The straight line GI is perpendicular to the plane of circle DEF;
therefore all the planes which pass through it are perpendicular to the plane of
circle DEF. The latter is likewise perpendicular to all these planes; therefore the
plane of circle DEF is perpendicular to the plane which passes through the two
straight lines GH and GI. But the plane ABED is also perpendicular to the latter;
therefore the intersection of these two planes, which is the straight line DE, is
perpendicular to the plane which passes through the two straight lines GH and
GI, and is accordingly perpendicular to all the straight lines drawn from point H
in that plane. But one of these straight lines is the straight line HG; therefore the
straight line EH is perpendicular to the straight line HG and the straight line AD
is parallel to the straight line GH; therefore angle ADH is a right angle. But the
section ABED is a parallelogram, and is consequently a rectangle.

A
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Fig. II.3.5

I say that none of the sections generated by the planes which cut the
cylinder and which pass through its axis GH, other than the section ABED, is a
rectangle.

If it can be otherwise, let the section CKLF6 also be a rectangle <whose
plane> passes through axis GH; the angle CFL is therefore a right angle and the
straight line GH is parallel to the straight line CF; therefore angle FHG is a
right angle. Now we have shown that angle DHG is a right angle; therefore axis
GH is perpendicular to the plane containing the two straight lines DH and FH,
which is <the plane> of circle DEF, the axis is therefore perpendicular to it. But
the cylinder is oblique; this is impossible. Therefore CKLF is not a rectangle,
and no other section generated by a plane which passes through axis GH, except
for the plane ABED, is one. That is what we wanted to prove.

6 This section CKLF is not represented in the figure in the text.
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– 6 – If a plane cuts an oblique cylinder and if it is parallel to the rectangle7

which passes through its axis, then the section generated in the cylinder is a
rectangle, and there is not, amongst the sections parallel to the remaining planes
which pass through its axis, any rectangular section.

Let there be an oblique cylinder, whose two bases are ABC and DEF with
centres G and H, and whose axis is GH. On the rectangular section which passes
through axis GH, we have ABED, and on the section parallel to the plane
ABED, we have ICFK.

I say that the section ICFK is a rectangle and that there is not, amongst the
sections parallel to the remaining planes which pass through the axis, any
rectangular section.

G

C

I
A

D K

E F

B

H

Fig. II.3.6

Proof: The two straight lines AD and IK are parallel, because they are two
sides of the cylinder. But the <plane of> circle ABCI cut two parallel planes,
that is planes ABED and ICFK; therefore the two intersections of the former and
these latter – which are AB and CI – are parallel; therefore the two straight lines
AB and AD are parallel to the two straight lines IC and IK, each one to its
homologue. The angle DAB formed by the two straight lines AB and AD is
therefore equal to the angle formed by the two straight lines IC and IK. But
angle DAB is a right angle, so angle KIC is a right angle. But the section ICFK
is a parallelogram, and is consequently a rectangle.

In the same way, we can make the section ABED one of the sections which
passes through axis GH without being a rectangle and so that the section ICFK
is parallel to it.

I say that the latter is not a rectangle.
Proof: We can show, as we have shown previously, that angle DAB is equal

to angle KIC. But angle DAB is not a right angle; therefore angle KIC is not a

7 Literally: to the perpendicular plane; the plane studied in Proposition 5.
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right angle, so the section ICFK is not a rectangle. That is what we wanted to
prove.

It is clear from what we have said that if a plane cuts a right cylinder and if
it is parallel to its axis, then the section generated in the cylinder is a rectangle.8

– 7 – If we have two parallel planes each containing a figure and if a point
on the circumference or on the perimeter9 of one of the two figures is joined
with a straight line to another point on the perimeter of the second figure, so that
each straight line drawn from a point on the perimeter of the first figure in
parallel to the first straight line drawn falls to a point on the perimeter of the
second figure, then the two figures are similar and equal.

Let there be two figures in two planes, on the one we have ABCD and on
the other we have EFGH, and let there be between the circumference or the
perimeter of figure ABCD and the circumference or perimeter of figure EFGH a
straight line, which is AE. Let every straight line drawn from a point on the
perimeter of figure ABCD in parallel to the straight line AE, fall on a point on
the perimeter of figure EFGH.

I say that the two figures ABCD and EFGH are similar and equal.

B A

D

C

F E

H

G I

Fig. II.3.7

Proof: If we mark on the circumference or the perimeter of figure ABCD,
the point B, whatever its position, and if we draw from this point a straight line
parallel to the straight line AE, it falls on a point on the perimeter of figure
EFGH. If we suppose that it falls at the point F, the two straight lines AE and
BF are parallel, and are therefore in the same plane. But the two planes ABCD
and EFGH are parallel; if therefore the plane containing the straight lines AE

8 See Supplementary note [2] at the end of the volume.
9 Al-kha†† al-muÌî† is translated as ‘circumference’ and al-khu†º† al-muÌî†a as

‘perimeter’.
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and BF cuts them, then the intersections of these two latter and the former are
parallel. But these two intersections are the straight line which joins the two
points A and B and the straight line which joins the two points E and F; the two
straight lines AB and EF are therefore parallel. But the two straight lines AE and
BF are likewise parallel; therefore the two straight lines AB and EF are equal. If
we therefore superpose figure ABCD on to figure EFGH, if we superpose point
A of the former on to point E of the other figure and if we superpose the straight
line AB on to the straight line EF so that point B falls on point F, then the rest of
the figure falls on the rest of the other figure and is superposed on to it. In fact
the perimeter of figure ABCD is superposed on to the perimeter of figure
EFGH, because if it was possible that it was not superposed on to it, then if we
suppose that the point C of figure ABCD is superposed on to a point which is
not on the perimeter of figure EFGH, as the point I, and if we draw the straight
lines CA, CB, IE and IF, then the straight line AC will be superposed on to the
straight line EI and the straight line CB  on to the straight line IF. But the
straight line drawn from point C in parallel to the straight line AE falls on a
point on the perimeter of figure EFGH; if we set this point the point G and if we
draw the two straight lines GE  and GF , we can show as we have shown
previously that the straight line CA is equal to the straight line GE and that the
straight line CB is equal to the straight line GF. But points A , B  and C are
superposed on to points E, F and I, the straight line AC is superposed on to the
straight line EI and the straight line CB is superposed on to the straight line IF;
therefore the two straight lines EI and IF are equal to the two straight lines EG
and GF, each one to its homologue. Now, they have come from the points of
origin of the straight lines EG and GF, on the straight line EF and in their
direction, and they met at another point other than G, which is impossible. The
whole perimeter of figure ABCD falls on the whole perimeter of figure EFGH
and is thus superposed on to it. Consequently, the two figures ABCD and EFGH
are similar and equal. That is what we wanted to prove.

– 8 – If a plane cuts a cylinder in parallel to both its bases, then the section
generated in the cylinder is a circle whose centre is the point at which the plane
cuts the axis.

Let there be a cylinder, whose bases are ABC and DEF, with centres G and
H and whose axis is GH. Let a plane cut the cylinder in parallel to <the planes
of> the two circles ABC and DEF, let the section generated be the surface IKL,
let this section cut the axis at point M.

I say that IKL is a circle, with centre at point M.
Proof: If we make the line which bounds the section generated in the

cylinder, the line IKL, then the two figures ABC and IKL are in two parallel
planes; and if we draw from a point on the circumference of circle ABC one of
the sides of the cylinder like the straight line AID, then every straight line drawn
from a point on the circumference of circle ABC in parallel to the straight line
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AID is one of the sides of the cylinder. Each of these straight lines therefore
falls on a point on the line which bounds the section IKL. Consequently, the two
figures ABC and IKL are similar and equal. But figure ABC is a circle, therefore
figure IKL  is a circle. And by the same way followed in the previous
Proposition, we can show that the centre of this circle is the point M. That is
what we wanted to prove.

AB

C

G

K M
I

L

DH
F

E

Fig. II.3.8

Furthermore, we can likewise show that the circle we have mentioned is
equal to each of the cylinder’s two bases. In the same manner as well we can
show that if we have two parallel planes which cut all the sides of the cylinder,
then they generate in the latter two similar and equal sections; and when a point
on one is placed on its homologue on the other, i.e. the one through which
passes the side which passes through the first, then it is possible to put the
whole of the section on to the whole of the section, and the one will be
superposed on to the other without it being either larger or smaller than it.

– 9 – If a plane cuts an oblique cylinder and passes through its axis and
through its height, and if another plane perpendicular to the plane mentioned
cuts the cylinder, so that the intersection of the two planes we have mentioned
meets the two sides of the section generated by the first plane, which are two of
the sides of the cylinder – whether inside the cylinder or outside – and forms
with each of them an angle equal to the angle which is on the same side,
amongst the two angles formed by this side and by one of the two sides
remaining in this plane,10 then the section generated in the cylinder, from the
second of the two planes we have mentioned, is a circle or a portion of a circle,
whose centre is the point at which it meets the axis. Let us call this circle an
antiparallel11 section.

Let there be an oblique cylinder whose bases are ABC and DEF, with
centres G and H, and whose axis is GH; and let GI be the perpendicular dropped
from point G to the plane of the circle DEF. Let the section generated by the

10 i.e. the diameter of one or other of the base circles.
11 Literally: section of contrary position, an expression found in the Conics of

Apollonius, Book I.5 (subcontrary; Ã√|µ`µ…ß`).
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plane which passes through the two straight lines GH and GI in the cylinder be
the parallelogram ABED. Let another plane perpendicular to the plane ABED
cut the cylinder; it therefore meets the two straight lines AD  and BE either
inside of the cylinder, or outside. Let the section generated by this plane in the
cylinder be section KLM, and let the intersection of this plane and plane ABED
be the straight line KL. Let the two angles AKL and KAB be equal.

I say that the section KLM is a circle or a portion of a circle, whose centre
is the point at which it meets the axis GH.

Proof: The straight line KL is either secant to one of the two straight lines
AB and DE, or it is not secant to either of them. If it is not secant to either of
them, if we then mark on the straight line KL a point N, whatever its position,
and if we make a plane parallel to each of the planes of the two circles ABC and
DEF pass through this point, so that the section generated by this plane in the
cylinder is the section SMO , then this section is a circle. If we make the
intersection <of the plane> of this circle and the plane ABED the straight line
SO, then SO is a diameter of circle SMO, because its centre is on the axis GH.
But the straight line GI is perpendicular to the plane DEF, and is accordingly
perpendicular to the plane ABC which is parallel to it; therefore every plane
passing through the perpendicular GI is perpendicular to the planes of the two
circles ABC and DEF; therefore the plane ABED is perpendicular to the planes
of the two circles ABC and DEF. These two planes are likewise perpendicular to
plane ABED, and in the same way as in plane SMO. But the plane KLM is also
perpendicular to plane ABED; if we therefore make the intersection of these two
planes the straight line NM, it will be perpendicular to plane ABED, and is
accordingly perpendicular to each of the two straight lines KL and SO, because
they are in plane ABED. Now, we have shown that the straight line SO is a
diameter of circle MSO, so the product12 of SN and NO is equal to the square of
straight line NM. But angle NSD is equal to angle BAD, because the two straight
lines AB and S O are parallel – since they are the two intersections of plane
ABED with the two parallel planes ABC and SMO. Now, we have made angle
BAD equal to angle AKL; therefore angle NSD is equal to angle AKL, and the
triangle SNK is consequently isosceles. From that, we can likewise show that
triangle ONL is isosceles; therefore the product of SN and NO is equal to the
product of KN and NL. But we have shown that the product of SN and NO is
equal to the square of the straight line NM; therefore the product of KN and NL
is equal to the square of the straight line NM.

In the same way, we can likewise show that for every perpendicular falling
from a point on the line which bounds section KML on to the straight line KL,
its square is equal to the product of one of the two parts into which the straight
line KL is divided, and the other part. Section KML is therefore a circle of
diameter KNL.

12 Literally: the surface obtained by multiplication, henceforth we shall translate this
expression as ‘product’.
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I say that the centre of circle KML is the point at which axis GH cuts plane
KML.
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Proof: If we suppose that this point is the point N, if, in plane ABED, we
make a straight line parallel to AB, let it be SNO, pass through it, and if we
show, as we have shown previously, that the two triangles KNS and ONL are
isosceles and that the straight line SN is equal to the straight line NO, then the
straight line KN is equal to the straight line NL. But we have shown that the
straight line KNL is a diameter of circle KML, its centre is accordingly point N.

With the same procedure, we can likewise show that if the straight line KL
is secant to the straight line AB, or to the straight line DE, or to both of them,
then the section generated in the cylinder from it is a portion of a circle, with as
centre the point at which it meets the axis. That is what we wanted to prove.

Let us call the circle we have referred to an antiparallel section.
It then becomes clear that the antiparallel section is equal to each of the two

bases of the cylinder and that all the antiparallel sections which cut the cylinder
are parallel with each other.

 – 10 – If we have a circle in any plane whatsoever, if we draw straight lines
from its circumference to another plane, and if each of the straight lines drawn
is parallel to the others, then they fall in the other plane at points through which
a single line passes which surrounds an ellipse or a circle.

Let there be a circle ABC with centre D.
I say that if straight lines are drawn from the circumference of circle ABC

to a plane other than its own, and if each of them is parallel to the others, then
all of them fall at points through which a single line passes which surrounds an
ellipse or a circle.
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Proof: The plane on which the straight lines we have mentioned fall either
passes through the centre of circle ABC, which is the point D, or does not pass
through it. If we make it first of all as passing though D, then it cuts the plane of
circle ABC and their intersection is a straight line which passes through point D.
If we make this intersection the straight line ADB, if we draw from point D in
the plane of circle ABC the straight line DC perpendicular to the straight line
ADB, if we mark on the circumference of circle ABC any point at all, amongst
the points from which the parallel straight lines we have mentioned begin, i.e.
point E, and if we draw from the latter the parallel straight line which falls on
the plane on which all the parallel straight lines fall, it will be the straight line
EF and will fall at point F on this plane. If we draw from point C to this plane
likewise the straight line CG parallel to the straight line EF, if we draw from
point E the straight line EH perpendicular to BD, and if we join the two points
D and G by the straight line DG and the two points F and H by the straight line
FH, then the two straight lines FH and DG are in the plane AFGB on which
<all> the parallel straight lines fall, because they join the points, amongst the
points which are in this plane. If we draw from point E in the plane of circle
ABC the straight line EI parallel to the straight line DH, then the surface EHDI
is a parallelogram. In fact, the straight line EH is parallel to the straight line ID
because they are two perpendiculars to BD. The two straight lines EI and HD
which join their extremities are parallel; therefore the two straight lines EH and
DI are equal; the same applies to the two straight lines HD and EI. Similarly, if
we draw from point I, in the plane of triangle DCG, the straight line IK parallel
to the straight line CG, and if we join the two points F and K by the straight line
FK, then the straight line which joins them is in the plane AFGD because the
two straight lines HF and DG are in this plane; it is likewise in the same plane
as all the straight lines FE, EI and IK, because the two straight lines EF and IK
are parallel, since they are parallel to the straight line CG; the straight line FK is
therefore the intersection of the plane in which are points F, H, D and G, and of
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the plane in which are points F, E, I and K. If we draw from point F a straight
line parallel to one of the two straight lines EI and HD, then it will be parallel to
the other one because they are parallel, and it will be in the same plane with
each of them; accordingly it will be in the plane in which are points F, H, D and
G, and likewise in the plane in which are points F, E, I and K; consequently it
will be the intersection of these two planes. But we have shown that the
intersection is the straight line FK; therefore the straight line FK is parallel to
the straight line EI. But the straight line EF is parallel to the straight line IK, and
accordingly is equal to it. We have likewise shown that the straight line EI is
equal to the straight line DH; now it is also equal to the straight line FK;
therefore the straight line DH is equal to the straight line FK and is parallel to it.
The two straight lines FH and KD which join their extremities are then equal
and parallel. But we have shown that the straight line DI is equal to the straight
line EH and that the straight line EF is equal to the straight line IK, therefore the
sides of the triangle HEF are equal to the sides of the triangle DIK. But triangle
DIK is similar to triangle DCG because the straight line IK is parallel to the
straight line CG; therefore the triangle FEH is similar to the triangle GCD;
therefore the ratio of the square of the straight line EH to the square of the
straight line HF is equal to the ratio of the square of the straight line CD to the
square of the straight line DG. But the square of the straight line EH is equal to
the product obtained from AH and HB, because AB is the diameter of circle
ABC and the straight line EH is perpendicular to it; the square of the straight
line CD is also equal to the product obtained from AD and DB; therefore the
ratio of the product obtained from AH and HB to the square of the straight line
HF is equal to the ratio of the product of AD and DB to the square of the straight
line DG. The two points F and G are therefore on the perimeter of an ellipse
with centre D and with B A as one of its diameters, and the straight lines
ordinatewise to this diameter meet it at an angle like ADG , or on <the
circumference> of a circle having this property, according to what has been
shown from the reciprocal of Proposition 21 in Book I of the work by
Apollonius on the Conics.

In the same way, we can likewise show that all the straight lines drawn from
the circumference of circle ABC in parallel to the straight line EF fall on the
perimeter of the ellipse or of the circle on which the straight line EF fell, let it
be AFGB.

If likewise we make the plane on which the parallel straight lines fall, a
plane which does not pass through point D – which is the centre of circle ABC –
and if we draw a plane which passes through point D and which is parallel to
the plane on which the parallel straight lines fall, like the plane AFGB, it can be
shown, as we have shown previously, that the parallel straight lines we have
mentioned cut plane AFGB at points through which there passes a single line
which surrounds an ellipse with centre D and with AB as one of its diameters, or
a circle having the same property. If they are extended until they fall on to the
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other plane parallel to plane AFGB, they fall from the former on to the points
through which there passes a line which surrounds an ellipse or a circle and
such that this ellipse or this circle is equal to the ellipse or to the circle on which
they fall in plane AFGB. That is what we wanted to prove.

Furthermore, it has been shown that the centre of the ellipse or of the circle
on which the parallel straight lines fall is the position on which there falls the
straight line parallel to those straight lines drawn from the centre of the first
circle.13

– 1114 – If a plane cuts a cylinder, without being parallel either to its bases
or to its axis, without passing through the axis and without the section generated
by it in the oblique cylinder being an antiparallel section, or a portion of an
antiparallel section, then it is an ellipse or a portion of an ellipse. If the plane
does not cut the two bases of the cylinder or just the one of them, it is an ellipse;
if it cuts one of the two bases, it is a portion of an ellipse limited by a straight
line and by a part of the perimeter of the ellipse; if it cuts the two bases at the
same time, then it is a portion of an ellipse limited by two parallel straight lines
and two parts of the perimeter of the ellipse; the centre of this ellipse is the point
on which the cylinder’s axis falls.

Let there be a cylinder whose bases are ABC and DEF with centres G and
H, and whose axis is GH; let it be cut by a plane which is not parallel either to
its bases, or to its axis and which does not pass through its axis, let this plane
generate in it the section IKL, such that this section is not – if the cylinder is
oblique – either an antiparallel section, or a portion of an antiparallel section.

Let the plane IKL, first of all, not be secant to the two bases of the cylinder
nor to one of them.
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13 See Supplementary note [3].
14 See Supplementary note [4].
∗ There is only one figure in the manuscript; we shall divide it into two.
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I say that the section IKL is an ellipse and that its centre is the point at
which it cuts the axis GH.

Proof: At every point on the perimeter of the section IKL there falls one of
the sides of the cylinder drawn from the circumference of circle ABC. But each
of these straight lines we have called to mind, that is the sides of the cylinder, is
parallel to the others and to the straight line GH. Through all these points
marked on the perimeter of section IKL there passes a single line which
surrounds an ellipse or a circle, whose centre is on the straight line GH; section
IKL is therefore either an ellipse or a circle.

I say that it is an ellipse.
If it is not possible that it is so, let it be a circle with centre the point M on

the straight line GH. If we draw a plane which passes through the straight line
GH and through the height of the cylinder, dropped from point G on the plane
DEF, then the section generated by this plane in the cylinder will be a
parallelogram. If we make it parallelogram ABED, if we make the intersection
of this plane and plane IKL the straight line IL, and if we pass through point M a
plane parallel to each of the bases ABC and DEF, then this plane generates a
circle in the cylinder; this circle is not the section IKL, because the plane IKL is
not parallel to the two bases of the cylinder. The intersection of this circle
parallel with plane ABED is either the straight line IL or a straight line other
than IL.

If first of all we make their intersection the straight line IL, such that the
circle parallel to the two bases is circle INL, and if we pass through axis GH a
plane which cuts the plane ABED  perpendicularly such that the section
generated by this plane in the cylinder is CSOF, then the surface CSOF will be a
rectangle. If we make the intersection of this plane and the plane of circle INL
the straight line NMP, if we make the point in section IKL through which the
straight line SNO passes the point K, and if we join the two points K and M with
the straight line MK, then the plane CSOF cuts three parallel planes which are
the planes ABC, INL and DEF; therefore the intersections of the former and
these latter are parallel. If we make them the straight lines SC, NM  and FO,
being given the right angle CSO since the surface CSOF is a rectangle, then
angle MNK is a right angle. Point M is likewise the centre of the circle INL,
therefore the straight line IM is equal to the straight line NM; point M is also the
centre of section IKL, so if the section IKL was a circle then the straight line IM
would be equal to the straight line MK. But the straight line IM is equal to the
straight line MN; therefore the straight line MN would be equal to the straight
line MK; that is why angle MNK in triangle NMK would be equal to angle MKN
in this same triangle. But we have shown that angle MNK is a right angle;
therefore angle MKN is likewise a right angle. Now, they are both in the same
triangle, which is impossible. Section IKL is therefore not a circle.
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In the same way, if we make the intersection of the plane ABED and <the
plane> of the circle parallel to the two bases of the cylinder a straight line other
than the straight line IL, let it be the straight line UQ, then it is clear that this
straight line passes through point M which is the centre of this circle, and that
the intersection <of the planes> of this circle and circle IKL also passes through
point M; accordingly it is a common diameter of these two circles, and will then
be equal to the straight line IL – since it is a diameter of circle IKL – and also
equal to the straight line UQ – since it is a diameter of the circle parallel to the
two bases of the cylinder. The straight line IL is therefore equal to the straight
line UQ. If we draw from point I a straight line IR15 parallel to the straight line
UQ, then the straight line IR will also be equal to the straight line UQ. The
straight line IL is therefore equal to the straight line IR, angle ILR will therefore
be equal to angle LRI. But the straight line UQ is parallel to the straight line DE
since they are the intersections <of the planes> of circle DEF and of the circle
of diameter UQ which is parallel to it with plane ABED, and the straight line IR
is also parallel to the straight line UQ; therefore the two straight lines DE and IR
are parallel, angle DEL is then equal to angle IRL. But angle IRL is equal, as we
have shown, to angle ILR; therefore angle DEL is equal to angle ILR. If it is
thus, then the two angles LID and IDE are equal, the antiparallel section
therefore passes through the straight line IL; but section IKL which passes
through the straight line IL is not the antiparallel section. If we therefore make
the antiparallel section another circle which passes through the straight line IL,
that is the circle INL, such that the intersection of its <plane> with plane CSOF
is the straight line NMP, then each of the straight lines NM and KM will be
equal to the straight line IM; therefore the two straight lines NM and KM are
equal and the straight line MN is the semi-diameter of the antiparallel section;
accordingly it is equal to the straight line GS, which is the semi-diameter of

15 See Supplementary note [5].
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circle ABC. But the straight line GS is perpendicular to the straight line NS and
the two straight lines SG and MN are between two parallel lines; therefore the
straight line MN is likewise perpendicular to SO and consequently angle MNO
is a right angle. But we have shown that the straight line MN is equal to the
straight line MK, therefore angle MNK is equal to angle MKN. But angle MNK
is a right angle, so angle MKN is also a right angle; then in triangle MNK there
are two right angles, which is impossible. Section IKL is therefore not a circle,
and is consequently an ellipse with its centre at point M.

In the same way, if we make the plane secant to the cylinder, secant to the
two bases or to one of them, then if this plane is extended and if the lateral
surface of the cylinder is also extended by extending its sides, this plane cuts the
lateral surface of the extended cylinder and generates an ellipse, and what there
is in the cylinder ABED is a portion of the ellipse. When the plane is secant to
only one of the two bases of the cylinder, then this portion is limited by a
straight line and a part of the perimeter of the ellipse. But when the plane is
secant to the two bases at the same time, then this portion is limited by two parts
of the perimeter of the ellipse and two parallel straight lines, since the planes of
the two bases are parallel and are cut by the section plane; therefore their
intersections with the latter are two parallel straight lines. That is what we
wanted to prove.

<II. Area of the ellipse and of portions of the ellipse>

– 1216 – If we have two cylinders such that the two base circles of one are in
the planes of the two base circles of the other and the centres of one pair are the
centres of the others, and if the same plane cuts the two cylinders at once by
cutting their sides in these latter,17 then the two sections generated in the two
cylinders are similar and the ratios of their diameters one to another, each to its
homologue, are equal to the ratio of the diameter of the base circle of the first
cylinder to the diameter of the base circle of the other.

Let there be two cylinders of which the two base circles of the one are ABC
and DEF and the two base circles of the other GHI and KLM. Let the two
circles ABC and GHI be in the same plane, and let point N be their common
centre. Let the two circles DEF and KLM likewise be in the same plane, let
point S be their common centre, and let NS be the axis of the two cylinders. Let
the two cylinders be cut by a plane which cuts their sides in these latter, and
generates in cylinder ABCDEF the section OPU and in cylinder GHIKLM the
section QRV.

I say that the two sections OPU and QRV are similar and that the ratio of
each of the diameters of section OPU to its homologue, amongst the diameters

16 See Supplementary note [6].
17 See Supplementary note [7].
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of section QRV , is equal to the ratio of the diameter of circle ABC to the
diameter of circle GHI.
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Proof: If we cut the two cylinders at the same time by a plane which passes
through their axis, which is N S, it generates in the two cylinders two
parallelograms. If we make the two surfaces ADFC and GKMI, then the sides of
these two surfaces are parallel. If we make the intersection of these two
parallelograms with the first plane which cuts the two cylinders the straight line
OQVU, then the ratio of OU to QV is equal to the ratio of AC to GI and is equal
to the ratio of DF to KM because the straight lines AOD, GQK, IVM and CUF
are parallel and the two straight lines OU and QV are two of the diameters of the
two sections OPU and QRV because they pass through the position where these
two sections cut axis NS, which is the centre of these two sections.

In the same way, we can also show that from each of the diameters of
section OPU is separated, in section QRV, one of the diameters of QRV, as what
is separated from diameter OU is diameter QV.

If we cut the two cylinders by a plane which passes through another
diameter of section OPU, whatever this diameter, like diameter PRTW, such
that it produces in the base circles of the two cylinders the intersections BJ, HZ,
EX and LY, then the ratio of PW to RT is equal to the ratio of BJ to HZ and is
equal to the ratio of EX to LY. But we have shown that the ratio of OU to QV is
equal to the ratio of AC to GI and is equal to the ratio of DF to KM. But the
straight lines AC, DF, BJ and EX are equal because they are diameters of the
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two circles ABC and DEF, and the straight lines GI, HZ, KM and LY are also
equal because they are diameters of the two circles GHI and KLM; therefore the
ratio of diameter PW to diameter RT is equal to the ratio of diameter OU to
diameter QV. In the same way, we can show that all the diameters of the two
sections OPU and QRV are in the same situation. If this is the case, then the two
sections OPU and QRV are either both circles – and what we wanted is then
proved – or they are not so – and then what separates from the largest of the
diameters of section OPU to the inside of section QRV is the largest of the
diameters of section QRV and what separates from the smallest of the diameters
of section OPU, to the inside of section QRV, is the smallest of the diameters of
section QRV. The largest diameter of every section is its largest axis, and its
smallest diameter is its smallest axis.18 Therefore the ratio of the largest of the
two axes of section OPU to the largest of the two axes of section QRV is equal
to the ratio of the smallest of the two axes of section OPU to the smallest of the
two axes of section QRV. But if we permute, the ratio of the largest of the two
axes of section OPU to the smallest axis is equal to the ratio of the largest of the
two axes of section QRV to the smallest axis; then the two sections OPU and
QRV are similar according to what has been shown in Proposition 12 of Book
VI of the work of Apollonius on the Conics.19 It has also been shown that the
ratio of each diameter of section OPU to its homologue, amongst the diameters
of section QRV, is equal to the ratio of the diameter of circle ABC to the
diameter of circle GHI. That is what we wanted to prove.

– 13 – If we have an ellipse and if we construct on its larger axis a semi-
circle, then the perpendiculars drawn from the arc of this semi-circle to the
largest axis of the ellipse have equal ratios with their parts inside the ellipse.

Let there be an ellipse ABCD and its larger axis be AC, let there be a semi-
circle AEC on AC. Let us draw from the arc AEC to axis AC the perpendiculars
EBF, GHI and KLM.

I say that the ratios of EF to FB, of GI to IH and of KM to ML are equal
ratios.

Proof: The ratio of the product obtained from AF and FC to the square of
the straight line F B is equal to the ratio of axis AC  to the latus rectum,
according to what has been shown in Proposition 21 of Book I of the work of
Apollonius on the Conics. But the product obtained from AF and FC is equal to
the square of the straight line EF, therefore the ratio of the square of the straight
line EF to the square of the straight line FB is equal to the ratio of axis AC to its
latus rectum.

18 See Supplementary note [8].
19 See Supplementary note [9].
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In the same way, we can show as well that the ratio of the square of the
straight line GI to the square of the straight line IH and the ratio of the square of
the straight line KM to the square of the straight line ML are, each of them,
equal to the ratio of axis AC to its latus rectum. Therefore the ratios of EF to
FB, of GI to IH and of KM to ML are equal ratios because the ratios of their
squares are equal. That is what we wanted to prove.

It can also be shown by the same procedure that there necessarily follows
for the small axis the analogue of what we have said for the large axis.

– 1420 – The area of every ellipse is equal to the area of a circle the square
of whose diameter is equal to the surface obtained from multiplying one of the
two axes of this section by the other.
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20 See Supplementary note [10].
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Let there be an ellipse ABCD, its large axis AC, its small axis BD; let there
be a circle E such that the square of its diameter is equal to the product obtained
from AC and BD.

I say that the area of the section ABCD is equal to the area of circle E.
Proof: If the area of the section ABCD is not equal to the area of circle E,

then it will either be larger than it or smaller than it.
Let the area of section ABCD first of all be larger than the area of circle E, if

that is possible, and let the excess over it be equal to the surface F. If we draw
the straight lines AB, BC, CD and DA, then either <the sum> of the portions AB,
BC, CD and DA of the section is smaller than surface F or it is not.

If it is smaller than it, that is what we want; if not, then we can divide the
straight lines AB, BC, CD and DA into two halves at points G, H, I and K;21 if
we make the centre of the section point L, if we draw the straight lines LG, LH,
LI and LK which we extend to points M, N, S and O on the perimeter of the
section and if we draw the straight lines AM, MB, BN, NC, CS, SD, DO and OA,
then the triangles AMB, BNC, CSD and DOA are <respectively> larger than the
halves of portions AB, BC, CD and DA of the section, because if straight lines
were drawn tangentially to the section at points M, N, S and O, they would be
parallel to the straight lines AB, BC, CD and DA according to Proposition 17 of
Book I of the work of Apollonius on the Conics. If <the sum> of the portions
AM, MB, BN, NC, CS, SD, DO and OA of the section is smaller than the surface
F, then that is what we want; if not, if we continue to proceed as we have done
previously, we shall of necessity arrive at portions which subtract from the
section less than surface F. Let us then make these portions which subtract from
the section less than surface F, the portions AM, MB, BN, NC, CS, SD, DO and
OA, we get the polygon AMBNCSDO larger than circle E. If we describe on the
straight line AC a circle such that AC is one of its diameters, namely circle
APCU, and if we draw the two straight lines MO and NS so that they cut the
axis AC at right angles, if we extend them to the circle APCU at points Q, R, V
and T, if we likewise extend the straight line BD to points P and U, if we draw
the straight lines AQ, QP, PR, RC, CV, VU, UT and TA, then the ratio of triangle
AMO to triangle AQT is equal to the ratio of the base MO to base QT, and the
ratio of the surface MBDO to surface QPUT is equal to the ratio of the sum of
the two straight lines MO and BD to the sum of the two straight lines QT and
PU, because these two surfaces have equal height. Similarly, the ratio of the
surface BNSD to surface PRVU is also equal to the ratio of the sum of the two
straight lines BD and NS to the sum of the two straight lines PU and RV, and the
ratio of triangle NCS to triangle RCV is equal to the ratio of NS to RV and the
ratios of MO, BD and NS to QT, PU and RV, each to its homologue, are equal
ratios because the ratios of their halves are equal; therefore the ratio of the entire
polygon AMBNCSDO to the entire polygon AQPRCVUT is equal to the ratio of

21 See Supplementary note [11].
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BD to UP. But the ratio of BD to UP is equal to the ratio of the product obtained
from AC and BD to the product obtained from AC and PU which is equal to the
square of the straight line PU; therefore the ratio of polygon AMBNCSDO to
polygon AQPRCVUT is equal to the ratio of the product obtained from AC and
BD to the square of the straight line PU. But the product obtained from AC and
BD is equal to the square of the diameter of circle E, the ratio of polygon
AMBNCSDO to polygon AQPRCVUT is therefore equal to the ratio of the
square of the diameter of circle E to the square of the straight line PU which is
the diameter of the circle APCU. But the ratio of the square of the diameter of
circle E to the square of the diameter of circle APCU is equal to the ratio of
circle E  to circle A P C U , the ratio of polygon AMBNCSDO to polygon
AQPRCVUT is therefore equal to the ratio of circle E to circle APCU. But
polygon AMBNCSDO is larger than circle E; therefore polygon AQPRCVUT is
larger than circle APCU; now, this last one is circumscribed by it, which is
impossible. In consequence, the area ABCD is not larger than the area of circle
E.

I say likewise that it isn’t smaller than it. If that was possible, then let the
area of section ABCD be smaller than the area of circle E. The ratio of circle E
to circle APCU shall be equal to the ratio of section ABCD to a surface smaller
than circle APCU. If we make it equal to the ratio of section ABCD to surface F,
if we make the excess of circle APCU over surface F equal to the surface W and
if we draw the straight lines AP, PC, CU and UA, then either <the sum> of the
portions AP, PC, CU and UA of the circle is smaller than surface W or it is not.
If it is smaller than it, that is what we wanted; otherwise, if we divide the arcs
AP, PC, CU and UA into two halves at points Q, R, V and T and if we draw the
straight lines AQ, QP, PR, RC, CV, VU, UT and TA, then the triangles AQP,
PRC, CVU and UTA of the circle are <respectively> larger than the halves of
the portions AQP, PRC, CVU and UTA. If therefore <the sum> of the portions
AQP, PRC, CVU and UTA of the circle is smaller than surface W, that is what
we want; if not, we can proceed exactly as we have done previously, and of
necessity we shall arrive at portions which subtract from circle APCU less than
surface W . If we make the portions which subtract less than surface W , the
portions AQP, PRC, CVU and UTA, there remains the polygon AQPRCVUT
larger than surface F and the surface F smaller than it. If we draw the straight
lines QT, PU and RV which cut the perimeter of section ABCD at points M, B,
N, S, D and O and if we draw the straight lines AM, MB, BN, NC, CS, SD, DO
and OA, it can be shown as we have shown before that the ratio of the polygon
AMBNCSDO to polygon AQPRCVUT is equal to the ratio of circle E to circle
APCU. But we have made the ratio of circle E to circle APCU equal to the ratio
of section ABCD to surface F. The ratio of polygon AMBNCSDO to polygon
AQPRCVUT is therefore equal to the ratio of section ABCD to surface F. But
polygon AQPRCVUT is larger than surface F; therefore polygon AMBNCSDO
is larger than section ABCD; now, the section is circumscribed by it; that is



ON THE SECTIONS OF THE CYLINDER 405

impossible. The area of section ABCD is therefore not smaller than the area of
circle E. But we have shown that it is not larger than it, therefore it is equal to it.
That is what we wanted to prove.

It is clear from what we know that every ellipse is in proportion between the
two circles constructed on its axes.22

– 1523 – Every portion of an ellipse whose diameter is perpendicular to the
base, such that this diameter is a portion of the large axis, has an area equal to
the area of a portion of the circle equal to the whole ellipse, such that the ratio
of its chord to the diameter of this circle is equal to the ratio of the base of the
portion of ellipse to the smaller of the two axes of the ellipse, on the
understanding that, if the portion of the ellipse is smaller than half the ellipse,
the portion of the circle is smaller than half the circle and that, if the portion of
the ellipse is not smaller than half the ellipse, the portion of the circle is not
smaller than half the circle.

Let there be a portion of an ellipse ABC whose base is AC and whose
diameter is BD; let BD be perpendicular to AC and let BD also be a portion of
the larger of the two axes of the ellipse. Let ABCE be the whole ellipse whose
large axis is BE and small axis FG , and let there be the circle HIKL with
diameter HK, equal to the ellipse. Let the ratio of the chord IL to diameter HK
be equal to the ratio of AC to FG. If the portion ABC of the ellipse is smaller
than half of it, let the portion IKL of the circle be smaller than half the circle; if
portion ABC of the ellipse is not smaller than half the ellipse, then portion IKL
of the circle is not smaller than half the circle.

I say that the area of portion ABC of the ellipse is equal to the area of
portion IKL of the circle.
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Proof: If the area of portion ABC of the ellipse is not equal to the area of
portion IKL of the circle, then it is either larger than it or smaller than it.

22 See Supplementary note [12].
23 See Supplementary note [13].
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Let the area of the portion ABC of the ellipse first of all be larger than the
area of the portion IKL of the circle, if that is possible; let its excess over it be
equal to the surface M. If we draw the two straight lines AB and BC, then <the
sum> of the two portions AB and BC of the ellipse is either smaller than surface
M or it will not be so. If it is smaller than it, that is what we wanted; otherwise,
if we divide the two straight lines AB and BC into two halves at points N and S,
if we make the centre of the ellipse the point O, if we draw the straight lines ON
and OS, if we extend them to points P and U on the perimeter of the ellipse, if
we draw the straight lines AP, PB, BU and UC, then the two triangles APB and
BUC are <respectively> larger than half of the two portions AB and BC of the
ellipse because if two tangents to the ellipse were drawn to points P and U, they
would be parallel to the two straight lines AB and BC, according to what has
been shown in Proposition 17 of Book I of the Conics. If <the sum> of the
portions AP, PB, BU  and UC of the ellipse is smaller than surface M, that is
what we wanted; otherwise, if we continue to proceed as we have done
previously, of necessity, we shall arrive at the portions which subtract from
portion ABC less than surface M; let them be the portions AP, PB, BU and UC,
the circle portion IKL then becomes smaller than the polygon APBUC.

If we describe on the straight line BE a circle such that BE is a diameter of
it, let it be the circle BQER, if we extend the two straight lines FG and CA to the
points Q, R, V and T; if we join the straight line PU between the two points U
and P, if we extend it to circle BQER to points W  and J and if we draw the
straight lines TJ, JB, BW and WV, it can be shown from that, as we have shown
in the previous proposition, that the ratio of the polygon APBUC to polygon
TJBWV is equal to the ratio of CA to TV, which is equal to the ratio of FG to
QR, and that the ratio of the first polygon to the second is equal to the ratio of
the circle HIKL to circle BQER.24 In the same way, the ratio of CA to TV is
equal to the ratio of FG to QR. If we permute, the ratio of CA to FG is equal to
the ratio of TV to QR. But the ratio of AC to FG is equal to the ratio of IL to HK,
therefore the ratio of VT to QR is equal to the ratio of IL to HK. The straight line
HK is the diameter of the circle HIKL; as for the straight line QR , it is the
diameter of circle BQER. If one of the two portions of the two circles TBV and
IKL is smaller than a semi-circle, then the other is smaller than a semi-circle. If
the portion is not smaller than a semi-circle, then the other is not smaller than a
semi-circle, accordingly they are similar. The ratio of each of them to the other
is equal to the ratio of the circle of which it is a portion, to the circle of which
the other is a portion. The ratio of the portion of circle IKL to the portion of
circle TBV is equal to the ratio of circle HIKL to circle BQER. But we have
shown that the ratio of circle HIKL to circle BQER is equal to the ratio of the
polygon APBUC to polygon TJBWV; therefore the ratio of the portion of circle
IKL to the portion of circle TBV is equal to the ratio of polygon APBUC to
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polygon TJBWV. But the portion of circle IKL is smaller than polygon APBUC;
therefore the portion of circle TBV is smaller than polygon TJBWV; that is
impossible because the circle is circumscribed by it. The area of the portion
ABC of the ellipse is therefore not larger than the area of the portion of circle
IKL.

I say as well that it is not smaller than it. If that was possible, then let the
area of portion ABC of the ellipse be smaller than the area of the portion IKL of
the circle; the ratio of the portion of circle IKL to the portion of circle TBV is
therefore equal to the ratio of the portion ABC of the ellipse to a surface smaller
than the portion of circle TBV. If we make this ratio equal to the ratio of the
portion ABC of the ellipse to a surface M, if we make the excess of the portion
of circle TBV over surface M equal to the surface Z and if we draw the two
straight lines TB and BV, then either the two portions TB and BV of the circle
have <a sum> smaller than surface Z or it is not thus. If <their sum> is smaller
than it, that is what we wanted; otherwise, if we divide the two arcs TB and BV
into two halves at the two points J and W and if we draw the straight lines TJ,
JB, BW and WV, then the two triangles TJB and WBV are <respectively> larger
than half of the two portions of circle TJB and WBV . If <the sum> of the
portions TJ, JB, BW and WV of the circle is smaller than the surface Z, that is
what we wanted; otherwise, if we continue to proceed as we have done
previously, of necessity we shall arrive at the portions which subtract from the
portion of circle TBV, less than surface Z. If we make the portions which
subtract less than surface Z, the portions TJ, JB, BW and WV, what is left is the
polygon TJBWV larger than the surface M, and surface M is smaller than it. If
we draw the straight line WJ which then cuts the perimeter of the portion ABC
of the ellipse at points U and P, if we draw the straight lines AP, PB, BU and
UC and if we follow an analogous method to what we followed previously, it
can be shown as we have shown before, that the ratio of the portion of circle
IKL to the portion of circle TBV is equal to the ratio of the polygon APBUC to
polygon TJBWV. But the ratio of the portion of circle IKL to the portion of
circle TBV is equal to the ratio of portion ABC of the ellipse to surface M. The
ratio of portion ABC of the ellipse to surface M is therefore equal to the ratio of
polygon APBUC to polygon TJBWV. The portion ABC of the ellipse is therefore
smaller than polygon APBUC; that is impossible, because it is circumscribed by
it. The area of portion ABC of the ellipse is therefore not smaller than the area
of portion IKL of the circle; now we have shown that it is not larger than it,
consequently it is equal to it. That is what we wanted to prove.

It then becomes clear that the area of portion ABC of the ellipse is equal to
the area of a portion of circle HIKL such that the ratio of its axis to the diameter
HK is equal to the ratio of the diameter of portion ABC, that is BD, to BE which
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is the largest axis; in fact, BD is also the axis of the arc TBV, which is similar to
the arc IKL.25

– 16 – Every portion of an ellipse whose diameter is perpendicular to its
base – this diameter being a portion of the small axis – is such that its area is
equal to the area of a portion of the circle equal to the whole ellipse, a portion
such that the ratio of its chord to the diameter of the circle is equal to the ratio of
the base of the portion of ellipse to the larger of the two axes of the ellipse on
the understanding that, if the portion of the ellipse is smaller than half the
ellipse, the portion of circle is smaller than half the circle, and that if the portion
of the ellipse is not smaller than half the ellipse, the portion of circle is not
smaller than half the circle.

Let there be a portion of ellipse ABC whose base is AC and diameter BD; let
BD be perpendicular to AC, let BD likewise be a portion of the smaller of the
two axes of the ellipse, let the whole ellipse be ABCE, its small axis BE and its
large axis FG and let the circle equal to the ellipse be HIKL and its diameter
HK. Let the ratio of the chord IL to diameter HK be equal to the ratio of AC to
FG. If the portion ABC of the ellipse is smaller than half of it, then the portion
of circle IKL is smaller than half the circle, and if the portion ABC of the ellipse
is not smaller than half of it, then the portion of circle IKL is not smaller than
half of it.

I say that the area of the portion ABC of the ellipse is equal to the area of
the portion IKL of the circle.

Proof: If the area of the portion ABC of the ellipse was not equal to the area
of the portion of circle IKL, then it would either be larger than it or smaller.
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Let the area of the portion ABC of the ellipse first of all be larger than the
area of the portion of circle IKL, if that is possible; let its excess over it be equal
to the surface M. If we follow an analogous method to what we followed in the
previous proposition to construct in the portion ABC of the ellipse a polygon

25 See the mathematical commentary.
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larger than the portion of circle IKL, then this polygon is the polygon ANBSC,
we can construct on the straight line BE a circle such that BE is one of its
diameters; this circle is BOEP. If we join the straight line NQRS between the
points N and S, then the ratio of QT to TN is equal to the ratio of UD to DA and
is equal to the ratio of PW to WF. We can show, as we have shown in the two
previous propositions, that the ratio of polygon ANBSC to polygon UQBRV is
equal to the ratio of the portion of circle IKL to the portion of circle UBV which
is similar to it. But polygon ANBSC is larger than the portion of circle IKL,
therefore polygon UQBRV is larger than the portion of circle UBV; this is
impossible because the circle is circumscribed by it. Therefore the area of the
portion ABC of the ellipse is not larger than the area of the portion IKL of the
circle.

By an analogous method to what we followed in the previous proposition,
we can show that it is not smaller than it; accordingly it is equal to it. That is
what we wanted to prove.

It then becomes clear that the area of the portion ABC of the ellipse is equal
to the area of a portion of circle HIKL, such that the ratio of its axis to the
diameter HK is equal to the ratio of the diameter of portion ABC, that is BD, to
BE which is the small axis; in fact, BD is also the axis of arc UBV which is
similar to the arc IKL.26

– 17 – The area of every portion of ellipse, whatever that portion of ellipse
is, is equal to the area of a portion of the circle equal to that ellipse, a portion
such that if there are drawn from the two extremities of its base two
perpendiculars to one of the diameters of the circle and if there are drawn from
the two extremities of the base of the portion of ellipse two perpendiculars to
one of the axes of the ellipse, then the ratio of each of the two perpendiculars
falling on this axis to the other axis is equal to the ratio of its homologue,
amongst the two perpendiculars falling on the diameter of the circle, to the
diameter of the circle. The two perpendiculars falling on the axis of the ellipse
both fall on to it on the same side and let the two perpendiculars falling on the
diameter of the circle both likewise fall on to it on the same side, or the two
perpendiculars falling on the axis of the ellipse fall on to it on two opposite
sides and the two perpendiculars falling on the diameter of the circle also fall on
to it on two opposite sides and the centre of the ellipse be between the ends of
the two perpendiculars falling on its axis and the centre of the circle is between
the feet of the two perpendiculars falling on its diameter, or the centre of the
ellipse is not between the feet of the two perpendiculars falling on its axis and
the centre of the circle is not between the ends of the two perpendiculars falling
on its diameter and the portion of the ellipse is smaller than half the ellipse and
the portion of the circle is smaller than half the circle or the portion of the

26 See the mathematical commentary.
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ellipse is not smaller than half of it and the portion of the circle is not smaller
than half of it.
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Fig. II.3.17.1

Let there be a portion of ellipse ABC with base AC; let it first of all be
smaller than half the ellipse. Let the ellipse be ABCD and let DE be the large
axis and FG the small axis in the first, third, fifth and seventh cases of figure.
As for the second, fourth, sixth and eighth cases of figure, let us have the
contrary, i.e. let the large axis be FG and the small axis DE. Let point H be the
centre of the ellipse; let there be drawn from two points A  and C two
perpendiculars to axis DE in all the cases of figure of the ellipse, let them be AI
and CK. Let the circle equal to the ellipse ABCD be the circle LMN with centre
S. Let there be a portion of base LM smaller than half of it, let there be drawn
from two points L  and M  to one of the diameters of the circle, namely the
diameter NO, two perpendiculars, let them be LP and MU. Let the ratio of each
of the two perpendiculars AI and CK to axis FG in all the cases of figure of the
ellipse be equal to the ratio of its homologue, amongst the two perpendiculars
LP and MU, to diameter NO in all the cases of figure of the circle. Let the two
perpendiculars AI and CK fall either both on the same side27 on axis DE and let
the two perpendiculars LP and MU  likewise both fall on the same side of
diameter NO as in the first, second, third and fourth cases of figure, or they fall
on two different sides of axis DE and the two perpendiculars PL and MU
likewise on two different sides of diameter NO as in the remaining cases of
figure. Let there be centre H, either between the two perpendiculars AI and CK
and centre S between the perpendiculars LP and MU as in the first, second, fifth
and sixth cases of figure, or not between the two perpendiculars AI and CK and
centre S not between the two perpendiculars LP and MU as in the third, fourth,
seventh and eighth cases of figure.

Then I say that the area of the portion ABC of the ellipse is equal to the
area of the portion LM of the circle.

27 Literally: on the same side of the two sides of the axis.
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Fig. II.3.17.2

Proof: If we draw the perpendiculars AI, CK, LP and MU in all the cases of
figure to the points Q, R, V and T and if we draw first of all in the first, second,
third and fourth cases of figure the straight line QA, then the ratio of AQ, which
is the base of the portion ADQ of the ellipse, to axis FG is equal to the ratio of
the chord LV to diameter NO. But the straight line DI is a diameter of portion
ADQ of the ellipse and is a portion of axis DE, portion ADQ of the ellipse is
smaller than half of it and portion LV of the circle is likewise smaller than half
the circle, therefore the area of portion ADQ of the ellipse is equal to the area of
portion LNV of the circle.
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In the same manner, we can show that the area of portion CDR of the ellipse
– which is, in the first and second cases of figure, larger than half of it and, in
the third and fourth cases of figure, smaller than half of it – is equal to the area
of the portion MNT of the circle, given that it is also larger than half the circle in
the first and second cases of figure and smaller than half of it in the third and
fourth cases of figure; therefore, there remains the area of portion AIQRKC of
the ellipse equal to the area of portion LPVTUM of the circle.
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Moreover, the ratio of DI to DE is equal to the ratio of NP to NO and the
ratio of DK also to DE is equal to the ratio of NU to NO; there remains the ratio
of IK to DE equal to the ratio of PU to NO. If we permute, the ratio of IK to PU
is equal to the ratio of DE to NO. We also have the ratio of AQ, given that it is
the double of AI, to FG, equal to the ratio of LV, given that it is the double of
LP, to NO; and the ratio of CR, given that it is the double of CK, to FG, equal to
the ratio of MT, given that it is the double of MU, to NO. If we add up, the ratio
of the sum of the two straight lines AQ and CR to FG is equal to the ratio of the
sum of LV and MT to NO. If we permute, the ratio of the sum of the two straight
lines AQ and CR to the sum of the two straight lines LV and MT is equal to the
ratio of FG to NO. But we have shown that the ratio of IK to PU is equal to the
ratio of DE to NO. The ratio compounded of the ratio of the sum of the two
straight lines AQ and CR to the sum of the two straight lines LV and MT and of
the ratio of IK to PU is equal to the ratio compounded of the ratio of FG to NO
and the ratio of DE to NO. As for the ratio compounded of the ratio of the sum
of the two straight lines AQ and CR to the sum of the two straight lines LV and
MT and the ratio of IK to PU, it is equal to the ratio of the product obtained
from the sum of the two straight lines AQ and CR times the straight line IK to
the product obtained from the sum of the two straight lines LV and MT times the
straight line PU. As for the ratio compounded of the ratio of FG to NO and the
ratio of DE to NO, it is equal to the ratio of the product obtained from FG and
DE to the square of the straight line NO. But the product obtained from FG and
DE is equal to the square of the straight line NO, the product obtained from the
sum of the two straight lines AQ and CR times the straight line IK is therefore
equal to the product obtained from the sum of the two straight lines LV and MT
times the straight line PU. But half of the product obtained from the sum of the
two straight lines AQ and CR times the straight line IK is the surface of the
trapezium AQRC and half of the product obtained from the sum of the two
straight lines LV and M T times the straight line PU  is the surface of the
trapezium LVTM. The surface of the trapezium AQRC is therefore equal to the
surface of the trapezium LVTM. But we have shown that the area of the portion
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QIABCKR of the ellipse is equal to the area of the portion VPLMUT of the
circle; therefore there remains the area of portions ABC and QR of the ellipse, if
we add them together, equal to the area of portions LM and VT of the circle, if
we add them together. But the two portions LM and VT of the circle are equal
and the two portions ABC and QR of the ellipse are also equal according to what
has been shown in Proposition 8 of Book VI of the work of Apollonius on the
Conics, therefore the area of portion ABC of the ellipse is equal to the area of
portion LM of the circle.
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Similarly, we are going to speak of the fifth, sixth, seventh and eighth cases
of figure. We can draw the straight lines QC, AR, LT and VM and we can show,
as we have shown before, that the area of the portion ADQ of the ellipse is equal
to the area of the portion LNV of the circle and that the area of the trapezium
QCRA is equal to the area of trapezium LVMT and that the area of the portion
QC of the ellipse is equal to the area of the portion VM of the circle. We also
have the ratio of AQ, given that it is the double of AI, to FG, equal to the ratio of
LV, given that it is the double of LP, to NO, and the ratio of FG to CR, given
that it is the double of CK, is equal to the ratio of NO to MT, given that it is the
double of MU. By the ratio of equality (ex aequali), the ratio of AQ to CR is
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equal to the ratio of LV to MT. As for the ratio of AQ to CR, it is equal to the
ratio of the triangle ACQ to triangle ACR, because the heights of these two
triangles are equal; in fact, the height of each of them is equal to IK. As for the
ratio of LV to MT, it is equal to the ratio of the triangle LVM to triangle LTM,
because the heights of these triangles are equal since the height of each of them
is equal to PU. Therefore the ratio of triangle AQC to triangle ARC is equal to
the ratio of triangle LVM  to triangle LTM. But we have shown that the
trapeziums AQCR and LVMT are equal; therefore triangle AQC  is equal to
triangle LVM. Now, we have shown that the area of portions ADQ and QC of
the ellipse is equal to the area of portions LNV and VM of the circle; therefore
the area of the whole portion AQC of the ellipse is equal to the area of the whole
portion LVM of the circle.
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Similarly, if the portion of the ellipse is larger than half the ellipse, like
portion AEC and if the portion of the circle is larger than half the circle, like
LOM, then the area of portion AEC of the ellipse is equal to the area of portion
LOM of the circle, because the area of the whole ellipse is equal to the area of
the whole circle and the area of portion ABC, which is smaller than half the
ellipse, is equal to the area of portion LM of the circle, which is smaller than
half the circle; the result therefore is that the area of portion AEC of the ellipse
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is equal to the area of portion LOM of the circle. If the portion of the ellipse is
equal to half the ellipse and if the portion of the circle is equal to half the circle,
the equality of their areas is obvious. That is what we wanted to prove.

It then becomes clear that if the ratio of DI to axis DE is equal to the ratio of
NP to diameter NO and if the ratio of IK to axis DE is equal to the ratio of PU to
diameter NO, then the area of portion ABC of the ellipse is equal to the area of
portion LM of the circle and <the area of> portion AEC of the ellipse is equal to
<the area of> portion LOM of the circle.

<III. On the maximal section of the cylinder and on its minimal sections>

– 18 – If a plane cuts an oblique cylinder and if the axis of the cylinder
meets this plane, whether in the cylinder or outside it, such that it is
perpendicular to it, then the section generated in the cylinder is an ellipse whose
large axis is equal to the diameter of each of the bases of the cylinder and whose
small axis is a straight line such that its ratio to the diameter of each of the bases
of the cylinder is equal to the ratio of the height of the cylinder to its axis, or a
portion of ellipse having the property we have set out.

Let there be an oblique cylinder with bases ABCD and EFGH and with axis
IK, let us draw from point I the height of the cylinder, let it be IL. Let a plane
cut the cylinder and be met by the straight line IK either inside the cylinder or
outside it, such that this straight line is perpendicular to this plane and that the
plane generates in the cylinder the section MNSO. If the plane MNSO meets all
the sides of the cylinder on the inside of the latter, then the section is an ellipse.
This has been shown because the plane is not parallel to the two bases of the
cylinder, and is not an antiparallel section.

I say that its large axis is equal to the diameter of each of the circles ABCD
and EFGH and that its small axis is a straight line whose ratio to the diameter
of each of the circles ABCD and EFGH is equal to the ratio of IL to IK.
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Proof: If we cut the cylinder by a plane which passes through the two
straight lines IK and IL, that is the plane ACGE, and by another plane which
cuts this plane perpendicularly and passes through axis IK, that is the plane
BDHF, then the surface BDHF is a rectangle. If we make the intersection of this
plane and the plane MNSO the straight line NO, the straight line IPK will cut the
straight line NO perpendicularly because the straight line IP is perpendicular to
plane MNSO, and the straight line NO is likewise perpendicular to the straight
lines BNF and DOH since they are parallel to the axis IPK, given that they are
two of the sides of the cylinder. The two straight lines B N  and DO are
perpendicular to the straight line BD because surface BDHF is a rectangle; the
straight line NO is therefore equal to the straight line BD which is the diameter
of the circle ABCD and to the straight line FH which is the diameter of circle
EFGH. <The straight line> NO is also one of the diameters of the section
MNSO, because it passes through its centre which is the point P. If we draw
another of its diameters, whatever this diameter is, that is UQ, and if we draw
with the two straight lines UQ and IP a plane RVTW which cuts the cylinder,
then the section generated is a parallelogram not a rectangle. But the straight
line UQ is perpendicular to the straight line IK, because IP is perpendicular to
the plane MNSO, the straight line UQ is accordingly perpendicular to the two
parallel straight lines RW and VT, the straight line RV is therefore longer than
the straight line UQ; but the straight line RV is one of the diameters of circle
ABCD, now every diameter of circle ABCD is equal to the straight line NO,
therefore the straight line NO is longer than the straight line UQ. In the same
way, it can also be shown that the straight line NO is the longest of all the
diameters of the ellipse MNSO, and is consequently its longest axis, because the
longest axis is the longest of the ellipse’s diameters, according to what has been
shown in Proposition 11 of Book V of the work of Apollonius on the Conics.
And we have shown that NO is equal to the diameter of each of the two circles
ABCD and EFGH.

I say likewise that the ratio of the small axis of the ellipse MNS to the
diameter of each of the two circles ABCD and EFGH is equal to the ratio of IL
to IK.

Proof: The plane BDHF cuts the plane ACGE perpendicularly; if we
therefore make the intersection of plane ACGE with plane MNSO the straight
line MS, then it is perpendicular to IPK. Therefore, in the two planes ACGE and
BDHF, two perpendiculars have been drawn to IPK, which is their intersection,
that is PN and PM. Therefore angle NPM is a right angle, the straight line MS
cuts perpendicularly the straight line NO which is the largest axis and passes
through the point P which is the centre of the ellipse; therefore the straight line
MS is the smaller of the two axes of the ellipse MNSO, according to what has
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been shown in Proposition 15 of Book I of the work of Apollonius on the
Conics.28

If we draw from point M a straight line parallel to the straight lines AC and
EG, that is MJ, then the external angle MJS is equal to the internal angle EGS
which is opposite to it. In the same way, angle EGS is also equal to angle IKE
because the straight line IK is parallel to the straight line GS; therefore angle
MJS, which is one of the angles of triangle MSJ, is equal to angle IKL, which is
one of the angles of triangle LKI, and the two angles MSJ and ILK, which are
angles of these triangles, are also equal because they are two right angles; there
remains the angle JMS of triangle MSJ equal to the angle KIL of triangle LIK.
The two triangles MSJ and IKL are therefore similar. The ratio of MS to MJ is
accordingly equal to the ratio of LI to IK. But the straight line MJ is equal to the
straight line AC which is one of the diameters of circle ABCD, since this straight
line and the straight line AC are parallel and are between two parallel straight
lines, therefore the ratio of MS to the diameter of circle ABCD, which is equal to
the diameter of circle EFGH, is equal to the ratio of LI to the perpendicular IK.
Now we have shown that MS is the smaller of the two axes of ellipse MNSO;
therefore the ratio of the smaller of the two axes of ellipse MNSO to the
diameter of each of the circles ABCD and EFGH is equal to the ratio of LI to IK.

If the section MNSO does not cut all the sides of the cylinder, then if the
cylinder is extended along its sides in both directions and if the plane MNSO is
drawn until it cuts all its sides, it can be shown according to what we have said
before, that MNSO is a portion of an ellipse having the property we have
mentioned before. That is what we wanted to prove.

– 19 – If a plane cuts an oblique cylinder and if the axis of the cylinder
meets this plane whether in the cylinder or outside it, such that it is
perpendicular to it, then the ellipse generated by this plane in the cylinder, or a
part of which is in the cylinder, is such that amongst the large axes of the
ellipses of this cylinder, there is none which is smaller than its large axis and
which, amongst their small axes, there is none which is larger than its large axis
which is equal to the diameter of each of the bases of the cylinder, nor smaller
than its small axis, and that none of the sections of this cylinder which meet its
sides in the latter is not smaller than this ellipse. Let us call this ellipse the
minimal section of the cylinder.

Let there be an oblique cylinder whose bases are ABC and DEF and whose
axis is GH, let it be cut by a plane met by the straight line GH, whether in the
cylinder or outside it, and such that GH is perpendicular to this plane; let this
plane generate in the cylinder the ellipse IKL or a portion of it.

I say that, amongst the large axes of the ellipses of this cylinder, there is no
axis smaller than the large axis of ellipse IKL and that, amongst the small axes,

28 See Supplementary note [14].
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no axis is larger than its large axis, which is equal to the diameter of each of the
bases ABC and DEF, nor smaller than its small axis; and that none of the
sections of this cylinder which meet its sides in the latter is smaller than the
section IKL.
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Proof: Every ellipse, amongst the ellipses of cylinder ABED, with the
exception of ellipse IKL, is either parallel to ellipse IKL, or not parallel to it. If it
is parallel to it, it is similar to it and equal to it and the two axes of the one are
equal to the two axes of the other, we therefore have with respect to it and with
respect to its axes what we have set out.

If it is not parallel to it, then if we make it the section MNS, its centre will
be the point O at which section MNS cuts axis GH. But if we cut the cylinder by
a plane which passes through point O and which is parallel to the bases of the
cylinder, it generates in the cylinder a circle and the intersection of this circle
and section MNS will be one of the diameters of this circle because it passes
through point O which is the centre of the latter, and it is equal to the diameter
of each of the circles ABC and DEF. If we make this intersection the straight
line MON, then the straight line MON is one of the diameters of section MNS,
because it passes through its centre, and the straight line MN is equal to the
diameter of each of the circles ABC and DEF; the straight line MN is therefore
either the large axis of section MNS  or its small axis or one of its other
diameters. If the diameter MN is the large axis of section MNS, it is clear that its
large axis is not smaller than the large axis of section IKL because we have
shown that the large axis of section IKL is equal to the diameter of each of the
circles ABC and DEF. It has also been shown that the small axis of section MNS
is not larger than the large axis of section IKL; on the contrary it is smaller than
it because it is smaller than the straight line MN. If the straight line MN is the
smallest of the axes of section MNS, then its large axis is not smaller than the
large axis of section IKL; on the contrary it is larger than it because it is larger
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than the straight line MN. It is likewise clear that the small axis of section MNS,
which is MN, is not larger than the large axis of section IKL because it is equal
to it, both being equal to the diameter AB. If diameter MN is not one of the axes
of section MNS it is therefore smaller than its large axis and larger than its small
axis according to what has been shown in Proposition 11 of Book V of the work
of Apollonius on the Conics. If MN is smaller than the largest of the axes of
section MNS, and if it is equal to the largest of the axes of section IKL, then the
largest of the axes of section IKL is smaller than the largest of the axes of
section MNS. The largest of the axes of section MNS is therefore not smaller
than the largest of the axes of section IKL. If the straight line MN is larger than
the smallest of the axes of section MNS, then the largest of the axes of section
IKL will be larger than the smallest of the axes of section MNS. The smallest of
the axes of section MNS is therefore not larger than the largest of the axes of
section IKL.

I say likewise that the smallest of the axes of section MNS is not smaller
than the smallest of the axes of section IKL.

Proof: If we make the smallest of the axes of section MNS, the straight line
MN, and if we cut the cylinder with the plane which passes through the two
straight lines GH and MN, it generates in the cylinder a parallelogram. If we
make this plane the plane ABED and if we make the intersection of plane ABED
and plane IKL the straight line KI, the straight lines AD and BE are two sides of
the cylinder, they are therefore parallel to its axis, which is GH. But the axis GH
is perpendicular to plane IKL; therefore each of the straight lines AD and BE is
perpendicular to plane IKL, and each of them is therefore perpendicular to every
straight line drawn from one of its points29 in plane IKL; therefore each of the
straight lines AD  and BE is perpendicular to IK and the straight line IK is
perpendicular to them; therefore there is no other straight line which might be
drawn between them, which meets them and which is smaller than the straight
line IK; the straight line MN is therefore not smaller than the straight line IK. If
the straight line IK is the smallest of the axes of section IKL, it has also been
shown that the small axis of section MNS is not smaller than it. If the straight
line IK is not the smallest of the axes of section IKL, then its small axis is
smaller than the straight line IK, because the straight line IK  is one of its
diameters and the small axis, in every ellipse, is smaller than all its other
diameters, according to what has been shown in Proposition 11 of Book V of
the work of Apollonius on the Conics. The straight line MN  which is the
smallest of the axes of section MNS is not smaller than the smallest of the axes
of section IKL.

It has also been shown, from what we have said, that amongst the sections
of this cylinder there is not a section smaller than IKL because, amongst the
large axes of these sections, no axis is smaller than its large axis and, amongst

29 This point can only be the point I on AD and the point K on BE.
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the small axes of these sections, no axis is smaller than its small axis. That is
what we wanted to prove.

Let the section IKL be called the minimal section of the cylinder.
It then becomes clear that, amongst the small axes of the ellipses of the

cylinder, there is no axis larger than the diameter of the circle of one of the two
bases of the cylinder and that in the cylinder no straight line can be drawn
which cuts its axis and whose extremities end at its lateral surface, and which is
smaller than the small axis of section IKL.

– 2030 – If a plane cuts an oblique cylinder by passing through its axis and
through its height and if another plane perpendicular to this plane passes
through the largest of the two diagonals, then the ellipse generated in the
cylinder by this last plane is such that its large axis is larger than the axes of the
other ellipses generated in this cylinder, its small axis is a straight line such that
no other of their small axes is larger than it, and its surface is larger than all the
surfaces of the other sections of this cylinder which meet in the latter’s sides.
Let us call this section the maximal section of the cylinder.

Let there be an oblique cylinder whose bases are ABC and DEF with centres
G and H, and whose axis is GH and height GI. Let this cylinder be cut by the
plane which passes through the two straight lines G H and GI and which
generates in the cylinder the parallelogram ABED; let us draw the straight line
AE. The larger of the two diagonals of the parallelogram ABED is the straight
line A E. Let another plane passing through the straight line AE and
perpendicular to the parallelogram ABED  likewise cut the cylinder, let it
generate in the cylinder the ellipse AKE.

I say that the large axis of section AKE is larger than the axis of every
ellipse generated in this cylinder and that, amongst the small axes of these
ellipses, none is larger than its small axis and that its surface is larger than the
surfaces of all the other sections of this cylinder which meet in the latter’s sides.

Proof: The straight line AE is the largest of the straight lines drawn in the
parallelogram ABED because it is the largest diagonal.

I say that it is the largest of the straight lines drawn in all the sections of the
cylinder which pass through its axis. In fact, if we make any one of these
sections, the surface LCFM, it will be a parallelogram and if we make the larger
of its two diagonals the straight line LF, LF will be the largest of the straight
lines drawn in the parallelogram LCFM. If we draw from the point L  a
perpendicular to the plane in which there is the circle DEF, let it be the
perpendicular LN, and if we join the two points N and M with the straight line
MN, the straight line MN will not be on the extension of the straight line MF
because if it was on its extension, plane LCFM would be the plane which passes
through the axis of the cylinder and its height. Now this plane is not thus;

30 See Supplementary note [15].
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therefore the straight line MN is not on the extension of the straight line MF. If
we join the two points N and F with the straight line NF, it will be smaller than
the sum of the two straight lines NM and MF. In the same way, if we draw from
point A a perpendicular to the straight line DE, let it be the perpendicular AS,
then AS will be perpendicular to the plane of circle DEF because it is parallel to
the perpendicular GI and, for that reason, the straight line AS will be equal to
the straight line LN because they are parallel and they are between two parallel
planes. But the straight line AD is equal to the straight line LM because they are
two of the sides of the cylinder, there remains the side SD of the right-angled
triangle ASD equal to side NM of the right-angled triangle LNM. But the straight
line DE is equal to the straight line MF because they are two diameters of circle
DEF; therefore the sum of the two straight lines NM and MF is equal to the
straight line SE and the sum of the two straight lines NM and MF is larger than
the straight line NF; therefore the straight line SE is larger than the straight line
NF. But the perpendicular AS is equal to the perpendicular LN and the straight
line AE which is intercepted by the right angle is larger than the straight line LF
which is intercepted by the right angle; therefore the straight line AE is the
largest of the straight lines drawn in one of the sections of the cylinder which
pass through its axis.31
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I say likewise that the straight line AE is the largest of the straight lines
drawn in every section amongst the sections parallel to the axis of the cylinder.
In fact, if we make one of these sections the surface LOPM, it will be a
parallelogram, and if we make the larger of its two diagonals the straight line
LP, LP will be the largest of the straight lines drawn in the parallelogram
LOPM. If we proceed as we have done previously, it becomes clear that the
straight line NM is equal to the straight line SD. But the straight line DE is
larger than the straight line MP, because DE is a diameter of the circle, and the
straight line which joins the two points N and P, let it be the straight line NMP

31 In this context it is clear that this means the planes of the sections.
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or another straight line,32 is smaller than the straight line SE . But the
perpendicular AS is equal to the perpendicular LN; therefore the straight line AE
is larger than the straight line LP; it is consequently the largest of the straight
lines drawn in one of the sections of the cylinder parallel to its axis. But we
have shown that it is the largest of the straight lines drawn in the sections which
pass through the axis; it is consequently the largest of the straight lines drawn in
the cylinder, because either each of these straight lines is in the same plane as
the axis GH, or it is possible that a plane parallel to the straight line GH passes
through it. If it is thus, it is clear that the straight line AE is the largest of the
diameters of section AKE and that it is larger than every diameter amongst the
diameters of all the sections of the cylinder which meet the sides of the cylinder
in the latter. Therefore the straight line AE is the large axis of section AKE,
according to what has been shown in Proposition 11 of Book V of the work of
Apollonius on the Conics, and it is larger than the axes of all the ellipses of the
cylinder and than all the diameters of the circles which are in the latter.

I say likewise that the small axis of section AKE is the largest of the small
axes of all the sections.

It is in fact equal to the diameter of each of the bases of the cylinder,
because if a plane cuts the cylinder by passing through axis GH and is such that
it is perpendicular to plane ABED, then the intersection of this plane and the
plane of section AKE is perpendicular to the straight line GH and is equal to the
diameter of circle ABC. If we make this intersection the straight line KU, then
KU will be one of the diameters of section AKE, because it passes through its
centre. But the straight line KU cuts plane ABED perpendicularly; accordingly it
cuts the straight line AE perpendicularly; but the straight line AE is the large
axis of section AKE; therefore the straight line KU is its small axis and it is
equal to the diameter of circle ABC. Amongst the small axes of the ellipses
which there are in the cylinder, none is larger than the small axis of section
AKE. But we have shown that its large axis is larger than their large axes; its
surface is therefore larger than their surfaces. That is what we wanted to prove.

Let us call section AKE the maximal section.
It then becomes clear that the largest of the axes of the maximal section of

the cylinder is the largest of the straight lines drawn in this cylinder, and that the
smallest of its axes is equal to the diameter of each of the bases of the cylinder
and that it is also equal to the largest of the axes of its minimal section.

– 21 – For every oblique cylinder, the ratio of each of its minimal sections
to each of the two circles of its bases is equal to the ratio of each of the straight
lines which are such that no straight line smaller than it is drawn in this cylinder
between two of its sides and passing through its axis, to the diameter of each of

32 The points M, N and P are aligned if MP // ED, they are not aligned generally.
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its two bases, and it is also equal to the ratio of the height of this cylinder to its
axis.
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Let there be an oblique cylinder whose bases are ABC and DEF, with
diameters AB and DE, and whose axis is GH. Let us draw from point G the
height of the cylinder, which is GI, and let there be one of the minimal sections
of the cylinder, KL.

I say that the ratio of section KL to each of the circles ABC and DEF is
equal to the ratio of each of the straight lines which are such that no straight
line smaller than it is drawn in this cylinder between two of its sides and
passing through its axis, to each of the diameters AB and DE, and that it is also
equal to the ratio of GI to GH.

Proof: If we make the small axis of section KL the straight line KL, and its
large axis the straight line MN, if we make the square obtained from the straight
line SO equal to the product obtained from KL and MN and if we describe on
the straight line SO a circle such that SO is one of its diameters, then circle SO
will be equal to section KML. The ratio of circle SO to one33 of the two circles
ABC and DEF is equal to the ratio of the square of diameter SO to one of the
squares of the diameters AB and DE, the ratio of section KML to one of the
circles ABC and DEF is therefore equal to the ratio of the square of diameter SO
to one of the squares of the diameters AB and DE. But the square of diameter
SO is equal to the product obtained from KL and MN; therefore the ratio of sec-
tion KML to one of the circles ABC and DEF is equal to the ratio of the product
obtained from KL and MN to one of the squares of the diameters AB and DE.
But MN is the largest of the axes of the minimal section KML; consequently it is
equal to each of the diameters AB and DE; the ratio of section KMLN to one of
the circles ABC and DEF is therefore equal to the ratio of the product obtained
from KL and one of the diameters AB and DE  to the square of one of the
diameters AB and DE. But the ratio of the product obtained from KL and one of
the diameters AB and DE to the square of one of the diameters AB and DE is

33 Literally: to each one. In this context, ‘each one’ will be translated by ‘one’.
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equal to the ratio of KL to one of the diameters AB and DE; therefore the ratio
of section KML to one of the circles ABC and DEF is equal to the ratio of KL to
one of the diameters AB and DE. But no straight line smaller than the straight
line KL is drawn in the cylinder between two of its sides and passing through
the axis, because it is the smallest of the axes of the minimal section KML. The
ratio of section KML to one of the circles ABC and DEF is therefore equal to the
ratio of one of the straight lines such that no other straight line smaller than it is
drawn in the cylinder between two of its sides and passing through its axis, to
one of the diameters AB and DE.

I say likewise that the ratio of section KML to one of the circles ABC and
DEF is equal to the ratio of GI to GH.

Proof: We have shown that the ratio of section KML to one of the circles
ABC and DEF is equal to the ratio of KL, which is the smallest of the axes of
the minimal section KML, to one of the diameters AB and DE. But the ratio of
the smallest of the axes of the minimal section of the cylinder to one of the
diameters AB and DE is equal to the ratio of GI to GH; therefore the ratio of
section KML to one of the circles ABC and DEF is equal to the ratio of GI to
GH. That is what we wanted to prove.

– 22 – For every oblique cylinder, the ratio of its maximal section to one of
the circles of its bases is equal to the ratio of the largest straight line drawn in
the cylinder to the diameter of one of the circles of its bases.
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Let there be an oblique cylinder whose bases are ABC and DEF and the
diameters of these bases AB and DE. Let there be amongst the sections of the
cylinder the maximal section AGEH.

I say that the ratio of section AGEH to one of the circles ABC and DEF is
equal to the ratio of the largest straight line drawn in the cylinder ABCDEF to
one of the straight lines AB and DE.

Proof: If we make the largest of the axes of section AGEH the straight line
AE, and the smallest of its axes GH, and if we make the square obtained from
IK equal to the product obtained from AE and GH, and if we describe on the
straight line IK a circle such that IK is one of its diameters, circle IK will be
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equal to section AEGH, and the ratio of circle IK to one of the circles ABC and
DEF is equal to the ratio of the square of the diameter IK to one of the squares
of the diameters AB and DE. The ratio of section AGEH to one of the circles
ABC and DEF is therefore equal to the ratio of the square of the diameter IK to
one of the squares of the diameters AB and DE. But the square of diameter IK is
equal to the product of AE and GH; therefore the ratio of section AGEH to one
of the circles ABC and DEF is equal to the ratio of the product obtained from
AE and GH to one of the squares of the diameters AB and DE. As for the
straight line AE, it is the largest straight line drawn in the cylinder ABCDEF. As
for the straight line GH, it is equal to one of the diameters AB and DE; therefore
the ratio of section AGEH to one of the circles ABC and DEF is equal to the
ratio of the product obtained from the largest straight line drawn in the cylinder
ABCDEF and one of the diameters A B and DE , to one of the squares of
diameters AB and DE, which is equal to the ratio of the largest straight line
drawn in the cylinder ABCDEF to one of the diameters AB and DE. The ratio of
section AGEH to one of the circles ABC and DEF is therefore equal to the ratio
of the largest straight line drawn in the cylinder ABCDEF  to one of the
diameters AB and ED. That is what we wanted to prove.

– 23 – For every oblique cylinder, the ratio of one of its minimal sections to
its maximal section is equal to the ratio of one of the straight lines such that no
straight line smaller than it is drawn in this cylinder between two of its sides and
passing through its axis, to the largest straight line drawn in this cylinder.
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Let there be an oblique cylinder whose bases are ABC and DEF, GHIK one
of its minimal sections and ALEM its maximal section.

I say that the ratio of section GHIK to section ALEM is equal to the ratio of
one of the straight lines such that no straight line smaller than it is drawn in the
cylinder ABCDEF between two of its sides and passing through its axis, to the
largest straight line drawn in this cylinder.

Proof: The ratio of section GHIK to circle ABC is equal to the ratio of one
of the straight lines such that no straight line smaller than it is drawn in the
cylinder ABCDEF between two of its sides and passing through its axis, to the
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diameter AB. But the ratio of circle ABC to section ALEM is equal to the ratio of
diameter AB to the largest straight line drawn in the cylinder ABCDEF. By the
ratio of equality, we have the ratio of section GHIK to section ALEM equal to
the ratio of one of the straight lines such that no straight line smaller than it is
drawn in the cylinder ABCDFE between two of its sides and passing through its
axis, to the largest straight line drawn in the cylinder ABCDEF. That is what we
wanted to prove.34

– 24 – If we have in the same plane two similar ellipses such that their
centre is common and that the larger of the two axes of one is a portion of the
larger of the two axes of the other, and if there is drawn between them a straight
line tangent to the smallest and such that its extremities end at the perimeter of
the largest, then the point of contact divides this straight line into two halves.
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Let there be two similar ellipses ABCD and EFGH, let I be their centre and
let the large axis of ABCD be the straight line AC, its small axis the straight line
BD , the large axis of EFGH be the straight line EG, and its small axis the
straight line FH. Let there be a straight line between the two sections tangent to
EFGH and whose extremities end at the perimeter of section ABCD.

I say that the point of contact divides this straight line into two halves.
Proof: The tangent straight line is either tangent to section EFGH at one of

the points E, F, G and H, or is tangent to it at another point than these points. If
it is tangent to it at one of the points E, F, G and H, it is clear that <this point>
divides it into two halves because it is one of the ordinate straight lines since it
cuts the axis perpendicularly, according to what has been shown in Propositions
13 and 15 of the first book of the work of Apollonius on the Conics. If it is not
tangent to it at one of these points, then if we make its contact with it point K
and if we make the tangent straight line LKM, if we join the two points K and I

34 See Supplementary note [16].
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by the straight line KPI, if we join the two points L and I by the straight line LNI
and if we draw from points L and N two perpendiculars LS and NO to AC, then
the ratio of the product obtained from AS and SC to the square of the straight
line LS is equal to the ratio of AC to the latus rectum, according to what has
been shown in Proposition 21 of Book I of the work of Apollonius on the
Conics. That is why likewise the ratio of the product obtained from EO and OG
to the square of the straight line N O is equal to the ratio of EG  to its latus
rectum. But the ratio of AC to its latus rectum is equal to the ratio of EG to its
latus rectum, because the two sections ABCD and EFGH are similar;35 therefore
the ratio of the product obtained from AS and SC to the square of the straight
line LS is equal to the ratio of the product obtained from EO and OG to the
square of the straight line NO. If we permute, the ratio of the product obtained
from AS and SC to the product obtained from EO and OG is equal to the ratio of
the square of the straight line LS to the square of the straight line NO. But the
ratio of the square of the straight line LS to the square of the straight line NO is
equal to the ratio of the square of the straight line SI to the square of the straight
line IO. The ratio of the product obtained from AS and SC, plus the square of the
straight line SI, to the product obtained from EO and OG, plus the square of the
straight line OI, is therefore equal to the ratio of the square of the straight line
LS to the square of the straight line NO. As for the product obtained from AS
and SC, plus the square of the straight line SI, it is equal to the square of the
straight line AI. As for the product of EO and OG plus the square of the straight
line OI, it is equal to the square of the straight line EI. The ratio of the square of
the straight line LS to the square of the straight line NO is therefore equal to the
ratio of the square of the straight line AI to the square of the straight line EI. The
ratio of LS to NO is consequently equal to the ratio of AI to IE. But the ratio of
LS to NO is also equal to the ratio of LI to IN, because the straight line LS is
parallel to the straight line NO; therefore the ratio of AI to EI is equal to the
ratio of LI to IN. It will be the same for all the straight lines drawn from point I
to section ABCD. If we therefore join the two points I and M by the straight line
IUM, the ratio of MI to IU is also equal to the ratio of AI to IE, which we have
shown is equal to the ratio of LI to IN; the ratio of MI to IU is therefore equal to
the ratio of LI to IN. If we therefore join the two points U and N by the straight
line UN, the straight line UN will be parallel to the straight line LM. But the
straight line LM is tangent to section EFGH; if we therefore draw a diameter
from point K, the straight line UN will be an ordinate to it, according to what
has been shown in Proposition 50 of the first book36 of the work of Apollonius
on the Conics. If we therefore join the two points I and K by the straight line
IPK, the ratio of NP to PU is equal to the ratio of LK to KM, because the two
straight lines NU and LM are parallel and the straight line NP is equal to the

35 Apollonius, VI.12.
36 i.e. Proposition 47 in the Heiberg edition of the Conics of Apollonius, that is, the

version of Eutocius.
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straight line PU, since NU is an ordinate to diameter IK, therefore the straight
line LK is equal to the straight line KM. That is what we wanted to prove.

Furthermore, it has also been shown that the ratios of the diameters of
similar ellipses one to another – each one to its homologue which describes with
its axis an angle equal to the angle which its associate describes with its
<homologous> axis – are equal to the ratios of their axes, one to another, each
of the axes to its homologue.37

– 25 – We want to show how to construct in the larger of two similar,
unequal ellipses, which are in the same plane, which have a common centre and
which are such that the large axis of the one is a portion of the large axis of the
other, a polygon inscribed in the largest section, surrounding the smallest and
such that the sides of this polygon are not tangent to the smallest section and
such that if its opposite vertices38 are joined by straight lines, they are diameters
of the largest section.39
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Let there be two similar and unequal sections in the same plane which are
ABCD and EFGH, let point I be the centre for both of them, let the large axis of
the largest section be the straight line AC, its small axis the straight line BD and
the large axis of the other section EG the small axis FH. We want to show how
to construct a polygon inscribed in section ABCD and which surrounds section
EFGH, without its sides being tangent to it and such that if straight lines join the
opposite vertices, they are diameters of section ABCD.

Let us draw from point E a perpendicular to EG, which is EK, the straight
line EK becomes tangent to section EFGH, according to what has been shown
in Proposition 17 of Book I of the work by Apollonius on the Conics. Let us

37 See commentary.
38 Literally: angles.
39 See Supplementary note [17].
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draw from point K another straight line tangent to section EFGH, which is the
straight line KL; let us extend it so that it meets the perimeter of section ABCD;
let it meet it at point M. If the straight line KLM met the straight line BD, that is
what we wanted; otherwise we can draw from point M likewise a straight line
tangent to section EFGH and we can proceed as we have done before.

I say that if we continue to proceed in this way, one of the straight lines
which we draw tangent to section EFGH will of necessity meet the straight line
BD at a point which is not outside section ABCD.

Proof: If we join the straight line EL between two points of contact, if we
divide it into two halves at point N and if we draw from point K a straight line to
point N, let it be the straight line KN, straight line KN will be a portion of one of
the diameters of section ABCD , according to what has been shown in
Proposition 29 of Book II of the work by Apollonius on the Conics. If the
straight line KN is extended, it ends at point I which is the centre of the two
sections, i.e. the straight line KNI, and if we draw from point I the straight IL,
the straight line LN is equal to the straight line NE; but the straight line IL is
smaller than the straight line I E, according to what has been shown in
Proposition 11 of Book V of the work by Apollonius on the Conics. The ratio of
LN to NE is therefore larger than the ratio of LI to IE. The angle LIN is therefore
larger than the angle NIE because the straight line which divides angle LIE into
two halves divides LE in an equal ratio <to the ratio> of LI to IE.

Similarly, the straight line KLM  is tangent to section EFGH and its
extremities ended at section ABCD, therefore the straight line ML is equal to the
straight line LK. If we draw the straight line MI, it will be smaller than the
straight line IK, according to what has been shown in Proposition 11 of Book V
of the work by Apollonius on the Conics. The ratio of ML to LK is therefore
larger than the ratio of MI to IK, therefore angle MIL is larger than angle LIK.
But angle LIK is larger than angle KIE; therefore angle MIL is much larger than
angle KIE. Then angle LIE is larger than double angle KIE and angle MIE is
larger than triple this angle.

Similarly, we can also show for all angles generated between the straight
line EI and the straight lines which we draw from point I – if we follow the
preceding method in relation to straight lines tangent to section EFGH – that
they all of them exceed, if taken successively, angle KIE. These angles of
necessity therefore arrive at an angle which is their junction and which will be
larger than angle BIE. If they arrive at this limit, the last tangent straight line
which is drawn will of necessity meet the straight line IB; let this tangent
straight line which meets BI, without going beyond section ABCD, be the
straight line MS. Let us draw the straight lines AK and MB, let us mark on the
portion KM of the section a point O with any position at all and let us draw from
this point the straight lines OK and OM. The straight lines AK, KO, OM and MB
are between the two sections and do not meet section EFGH because the
straight lines EK, KM and MS are tangent to it. If we draw in portion BC of the
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section chords equal to the chords B M, MO , OK and KA , in order and in
succession – as regards the chord BP, it is like chord BM; as regards the chord
PU, it is like chord MO, and the same for the other chords – then there will be
found in portion BC of the section equal chords – and equal in number – to
those found in portion AB, because if half of section DAB is reversed and if it is
placed on half of section BCD, it is positioned over it and superposed on to the
other entirely, then point A is placed over point C, according to what has been
shown in Proposition 4 of Book VI of the work of Apollonius on the Conics. If
we extend the straight line KI to point R and if we draw the straight line CR, the
two straight lines KI and IA are equal to the straight lines RI and IC because the
centre I divides the diameters AC and KR into two halves, according to what has
been shown in Proposition 30 of the first Book of the work of Apollonius on the
Conics, and the two opposite angles KIA and RIC are equal, the base AK is
therefore equal to the base CR. But if half of section ABC is placed on to half of
section CDA such that point A of the former is put on to point C of the latter, it
is superposed completely on to the other, according to what has been shown in
Proposition 4 of Book VI of the work of Apollonius on the Conics. The straight
line AK will be placed on the straight line CR; therefore the straight line CR is
not tangent to section EFGH because half of section EFG is likewise entirely
superposed on to half of section GHE if it is placed on to it. In the same way, if
we likewise draw from the points O, M, P, U and Q diameters of the section,
and if we join the extremities of the diameters drawn by the straight lines RV,
VT, TD, DW, WJ, JZ and ZA, there will thus have been constructed in section
ABCD  a polygon inscribed in section ABCD and which surrounds section
EFGH without touching it, namely the polygon AKOMBPUQCRVTDWJZ, such
that the straight lines which join its opposite vertices40 are diameters of section
ABCD. That is what we wanted to prove.

It is likewise clear according to what we have said that if a polygon is
constructed in an ellipse and if the straight lines which join its vertices41 are
diameters of this section, then the opposite sides are equal.

– 26 – The ratios of the perimeters of similar ellipses, one to another, are
equal to the ratios of their axes, one to another, each axis to its homologue.

Let there be two similar ellipses ABCD and EFGH, let their large axes be
AC and EG and let their small axes be BD and FH.

I say that the ratio of the perimeter of section ABCD to the perimeter of
section EFGH is equal to the ratio of axis AC to axis EG and is equal to the
ratio of axis BD to axis FH.

40 Literally: angles.
41 Literally: angles.
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Proof: If we make the smaller of the two sections the section ABCD with
centre the point I and the centre of section EFGH the point K, and if we place
section ABCD in the plane of section EFGH, centre I of the former on centre K
and the large axis, which is AC, on what it covers of the large axis EG, then its
small axis will be placed on a part of its small axis; let the whole section be
placed in the position of section LMNS and let its large axis be LN and its small
axis MS.

If it was possible that the ratio of the perimeter of section ABCD to the
perimeter of section EFGH was not equal to the ratio of AC to EG, then the
ratio of the perimeter of section LMNS to the perimeter of section EFGH would
not be equal to the ratio of LN to EG; it would therefore be either larger than it
or smaller.

If we suppose first of all that it is larger than it, if that is possible, and if we
make the ratio of the straight line O to the straight line EG equal to the ratio of
the perimeter of section LMNS to the perimeter of section EFGH, the straight
line O will be larger than the straight line LN; but it is clear that it is smaller
than the straight line EG. If we make each of the straight lines KP and KU in the
first case of figure equal to half of straight line O, if we construct on the straight
line PU an ellipse similar to each of the sections EFGH and LMNS, PU will be
its large axis and QR its small axis, let it be the section PQUR, if we construct a
polygon inscribed in section PQUR and which surrounds section LMNS, let the
polygon be PVQTUWRJ, if we draw the straight lines KV, KT, KW  and KJ
which we extend to the points Z, X, Y and O′ and if we draw the straight lines
EZ, ZF, FX, XG, GY, YH, HO′ and O′E, then the ratio of KP to KE is equal to
the ratio of KV to KZ; therefore the two straight lines PV and EZ are parallel and
the ratio of PV to EZ is equal to the ratio of KP to KE. In the same way, we can
show that the ratios of the sides which are left in the polygon PVQTUWRJ to
their homologues amongst the sides of polygon EZFXGYHO′ are equal to the
ratio of KP to KE. The ratio of the sum of the sides of the polygon PVQTUWRJ
to the sum of the sides of the polygon EZFXGYHO′ is equal to the ratio of the
straight line KP to the straight line KE; consequently it is equal to the ratio of
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the straight line PU to the straight line EG; but the ratio of the straight line PU
to the straight line EG is equal to the ratio of the perimeter of section LMNS to
the perimeter of section EFGH because PU is equal to O. Therefore the ratio of
the sum of the sides of the polygon PVQTUWRJ to the sum of the sides of the
polygon EZFXGYHO′ is equal to the ratio of the perimeter of section LMNS to
the perimeter of section EFGH. But the perimeter of section LMNS is smaller
than the sum of the sides of the polygon PVQTUWRJ. The perimeter of section
EFGH is therefore smaller than the sum of the sides of the polygon
EZFXGYHO′; now, it surrounds them, which is impossible. The ratio of the
perimeter of section LMNS to the perimeter of section EFGH is not larger than
the ratio of axis LN to axis EG.

I say that it is not smaller than it.
If it was possible that it was smaller than it, then it would be equal to the

ratio of axis LN to a straight line O. The straight line O will therefore be larger
than axis EG. If we make each of the straight lines KP and KU, in the second
example, equal to half of the straight line O, if we construct on the straight line
PU an ellipse such that PU  is its large axis and it is similar to each of the
sections EFGH and LMNS, namely the section PQUR, if we construct a polygon
PVQTUWRJ which surrounds section EFGH and which is inscribed within
section PQUR, and if we draw the straight lines KZV, KXT, KYW and KO′J and
the straight lines LZ, ZM, MX, XN, NY, YS, SO′ and O′L, then we can show as
we have shown before that the ratio of the sum of the sides of the polygon
LZMXNYSO′ to the sum of the sides of the polygon PVQTUWRJ is equal to the
ratio of KL to KP, which is equal to the ratio of LN to PU. But the ratio of LN to
PU is equal to the ratio of the perimeter of section LMNS to the perimeter of
section EFGH. The ratio of the sum of the sides of the polygon LZMXNYSO′ to
the sum of the sides of the polygon PVQTUWRJ is equal to the ratio of the
perimeter of section LMNS to the perimeter of section EFGH. But the sum of
the sides of the polygon LZMXNYSO′ is smaller than the perimeter of section
LMNS; therefore the sum of the sides of the polygon PVQTUWRJ is smaller
than the perimeter of section EFGH; now, these sides surround it, which is
impossible. The ratio of the perimeter of section LMNS to the perimeter of
section EFGH is therefore not smaller than the ratio of LN to EG, which is equal
to the ratio of AC to EG. Now we have shown that it is not larger than it, it is
consequently equal to it. That is what we wanted to prove.

– 27 – The ratios of the ellipses one to another are compounded of ratios of
their axes one to another. And if these ellipses are similar, then their ratios one
to another are equal to the ratios of the squares of their diameters, one to
another: the square of each of these diameters to the square of its homologue.

Let there be two ellipses ABCD and EFGH; the straight line AC is the large
axis of section ABCD, the straight line BD is its small axis, the straight line EG
is the large axis of section EFGH and the straight line FH is its small axis.
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I say that the ratio of section ABCD to section EFGH is compounded of the
ratio of AC to EG and the ratio of BD to FH. If the two sections ABCD and
EFGH are similar, then the ratio of section ABCD to section EFGH is equal to
the ratio of the square of each of the diameters of section ABCD to the square
of its homologue amongst the diameters of section EFGH.
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Proof: If we make the square of the diameter of a circle I equal to the
product of AC and BD and if we make the square of the diameter of a circle K
equal to the product of EG and FH, circle I will be equal to section ABCD and
circle K will be equal to section EFGH. The ratio of section ABCD to section
EFGH is therefore equal to the ratio of circle I to circle K. But the ratio of circle
I to circle K is equal to the ratio of the square of the diameter of circle I to the
square of the diameter of circle K. But the square of the diameter of circle I is
equal to the product of AC and BD and the square of the diameter of circle K is
equal to the product of EG and FH. The ratio of section ABCD to section EFGH
is therefore equal to the ratio of the product of AC and BD to the product of EG
and FH. This ratio is compounded of the ratio of AC to EG and the ratio of BD
to FH. The ratio of section ABCD to section EFGH is therefore compounded of
the ratio of AC to EG and the ratio of BD to FH.

Furthermore, if the two sections ABCD and EFGH are similar, then the ratio
of AC to BD is equal to the ratio of EG to FH. If we permute, the ratio of AC to
EG will be equal to the ratio of BD to FH. The ratio compounded of the ratio of
AC to EG and the ratio of BD to FH is equal to the ratio of AC to EG repeated
twice, which is equal to the ratio of the square of the straight line AC to the
square of the straight line EG and is equal to the ratio of the square of the
straight line BD to the square of the straight line FH. The ratio compounded of
the ratio of AC  to EG and the ratio of BD to FH is equal to the ratio of the
square of the straight line AC to the square of the straight line EG and is equal
to the ratio of the square of the straight line BD to the square of the straight line
FH. Now we have shown that the ratio of section ABCD to section EFGH is
equal to the ratio compounded of the ratio of AC to EG and the ratio of BD to
FH. The ratio of section ABCD to section EFGH is therefore equal to the ratio
of the square of the straight line AC to the square of the straight line EG and is
equal to the ratio of the square of the straight line BD to the square of the
straight line FH and it is also equal to the ratio of the square of every diameter
of section ABCD  amongst the remaining diameters to the square of its
homologue amongst the diameters of section EFGH, because the ratios of the
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diameters of section ABCD to their homologues amongst the diameters of
section EFGH are equal ratios. That is what we wanted to prove.

<IV. On the lateral area of the cylinder and the lateral area of portions of the
cylinder located between plane sections meeting all the sides>

–  28 – Any two opposite sides of a cylinder pass through the two
extremities of one of the diameters of every section – through which they pass –
amongst the sections of this cylinder, which meets its sides. Two of the
cylinder’s sides, which pass through the two extremities of one of the diameters
of one of its sections which meet its sides, are two opposite sides amongst the
cylinder’s sides.

Let there be a cylinder whose bases are ABC and DEF, with centres G and
H, and whose axis is GH. Let there be in the cylinder one of its sections which
meet its sides, namely IKL; let the two sides of the cylinder, namely AID and
BKE, pass through it.
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I say that if the two sides AID and BKE are two opposite sides amongst the
sides of the cylinder, then they pass through the extremities of one of the
diameters of section IKL. And if they pass through the extremities of one of the
diameters of section IKL, then they are two opposite sides amongst the sides of
the cylinder.

Let us first of all make the two straight lines AID and BKE two opposite
sides amongst the sides of the cylinder.

I say that they pass through the extremities of one of the diameters of
section IKL.

Proof: If we join the extremities of the straight lines AID and BKE by the
two straight lines AB and DE, the two straight lines AB and DE are two of the
diameters of circles ABC and DEF; they therefore pass through points G and H.
The straight lines AID and BKE are two of the sides of the cylinder; they are
therefore in the same plane because they are parallel; that is, why the two
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straight lines which join their extremities are in this plane, they are the straight
lines AGB and DHE ; these two straight lines being in this plane, then the
straight line GH which links them is likewise in this plane, that is, plane ADEB.
If we join the points I and K at which plane IKL cuts the sides AID and BKE,
with a straight line IK, this straight line is in this plane and cuts the axis GH at
the point of intersection of this axis and section IKL, which is the centre of
section IKL. The straight line IK accordingly passes through the centre of
section IKL; it is therefore one of its diameters; the sides AID and BKE therefore
pass through the extremities of one of the diameters of section IKL, which is IK.

Similarly, let us make the two sides AID and BKE passing through the
extremities of one of the diameters of section IKL, which is diameter IK.

I say that AID and BKE are two opposite sides of the cylinder.
Proof: The straight line IK is one of the diameters of section IKL; it

therefore passes through its centre, which is the point at which plane IKL cuts
axis GH. The straight line IK therefore cuts axis GH and meets the straight line
AID. But the straight lines AID and GH are in the same plane; the straight line
IK is therefore together with them in this plane and this plane is the one in
which are the straight lines GH and IK. In the same way, we can also show that
the straight line BKE is in this plane; the three straight lines AID, GH and BKE
are therefore in the same plane. The intersections of this plane and the two
planes ABC and DEF are two straight lines one of which passes through the
three points A, G and B, which is the straight line AGB, while the other passes
through the three points D, H and E, which is the straight line DHE. But the two
straight lines AGB and DHE are two of the diameters of the circles ABC and
DEF because they pass through their centres; therefore the two straight lines
AID and BKE are two opposite sides of the cylinder. That is what we wanted to
prove.

It is clear from what we have said that, if we have in any cylinder at all
sections, in whatever number, amongst those which meets its sides, if diameters
are drawn in these sections and if all these diameters are drawn from one only
of the sides of the cylinder, then the other extremities of these diameters all end
at the opposite side to the first side of the cylinder, from which these diameters
have been drawn.

– 29 – For every cylinder, <the sum> of the portions42 located on any two
opposite sides amongst the sides of the cylinder, between two of its sections
which do not intersect but which meet the sides of the cylinder, or between one
of these sections and one of the bases of the cylinder, if this section does not cut
it, is equal to the sum of the portions located between these sections on any two
other opposite sides, amongst the sides of the cylinder, and is also equal to twice
the portion located between them on the cylinder’s axis.

42 Literally: that which is; we use ‘portion’ for this expression, or an equivalent term.
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Let there be a cylinder whose bases are ABC and DEF with centres G and H
and whose axis is GH, let there be two sections in this cylinder, which do not
intersect and which are IKL and MNU; let the straight lines AIMD and BKNE be
any two opposite sides amongst the sides of the cylinder and let the straight
lines CLSF and OPUQ likewise be two other opposite sides of the cylinder,
whatever these two sides are.

I say that the sum of the two straight lines IM and KN which are located
between the two sections IKL and MNS on the opposite sides AD and BE is
equal to the sum of the two straight lines LS and PU located between the two
sections mentioned on the two opposite sides CF and OQ and is also equal to
the double of RV which is located on axis GH between the two sections, and
that the sum of the two straight lines AI and BK which are located between
section IKL and the base ABC on the two opposite sides AD and BE is equal to
the sum of the two straight lines CL and OP which are likewise located between
section IKL and the base ABC on the two opposite sides CF and OQ and is also
equal to the double of GR which is located on axis GH between ABC and IKL.

O

B G A

T
P

R

L

I

U

W

K

N

E

Q

H

S M

D

F

V

C

Fig. II.3.29

Proof: The two sections IKL and MNS are either parallel or not parallel. If
they are parallel, then all the straight lines located between them and which are
parts of sides of the cylinder and of the cylinder’s axis are equal, because they
are parallel and between two parallel planes. If the two straight lines IM and KN
are added together, the sum will be equal to the two straight lines LS and PU, if
they are added together, and also equal to twice the straight line RV. If the two
sections IKL and MNS are not parallel, then if we draw, from points I and M
which are both on side AIMD of the cylinder, two diameters of the sections IKL
and MNS, they end at the side opposite to side AIMD which is BKNE, and the
two diameters we have imagined, diameters IRK and MVN, of necessity pass
through the centres of the sections, which are the two points at which they cut
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the axis, namely R and V. The straight lines IM and KN are therefore in the same
plane because they are parallel, and the two diameters IK and MN which join
them are in this plane. If we draw in this plane, from point I, a straight line
parallel to the straight line MN, like the straight line ITW, the straight line RT is
parallel to the straight line KW which is a side of triangle KIW. The ratio of side
KI of triangle KIW to the straight line IR is equal to the ratio of KW to RT; but
KI is the double of IR because point R is the centre of section IKL; therefore the
straight line KW is the double of the straight line RT. But the straight lines IM,
WN and TV are equal because they are parallel and between two parallel straight
lines; the double of the straight line TV is therefore equal to the sum of the
straight lines IM and WN. Now we have shown that the straight line KW is also
the double of the straight line RT; therefore the sum of the straight lines IM and
KN which are between the two sections IKL and MNS, on opposite sides of the
cylinder, AD and BE, is equal to twice the straight line RV which is between
these two sections on the axis of the cylinder. In the same way, we can show
that the sum of the two straight lines LS and PU which are between these two
sections on opposite sides of the cylinder, CF and OQ, is equal to twice RV. The
sum of the straight lines IM and KN is therefore equal to the sum of the two
straight lines LS  and PU  and is also equal to twice the straight line R V.
Similarly, we can also show that the sum of the two straight lines AI and BK is
equal to the sum of the two straight lines CL and OP and is also equal to twice
the straight line RG. That is what we wanted to prove.

It is clear from what we have said that, if the portion located between the
two sections IKL and MNS on one of the opposite sides AD and BE is the
smallest straight line located on one of the sides of the cylinder between these
two sections or if the two sections are tangent at <a point> on this side, then the
portion located between them on the other opposite side which passes through
the other two extremities of the two diameters of the two sections drawn from
this first side is the largest straight line located on one of the sides of the
cylinder located between these two sections. If the portion located on the first
side we have mentioned, between the two sections, is the largest of the straight
lines located on one of the cylinder’s sides between the two sections, then the
portion located between them on the opposite side is the smallest of the straight
lines located between them on one of the cylinder’s sides or otherwise the two
sections are tangent at <a point> on this opposite side. It will be the same as
well if one of the bases of the cylinder is substituted for one of the sections.

– 30 – If we have two of the sections of an oblique cylinder which meet its
sides in the latter without cutting; if one of them is a minimal section, if there is
constructed in this minimal section a polygon inscribed in this section and such
that any two opposite sides of the sides of the polygon are between the
extremities of two diameters of the section, if portions of the cylinder’s sides
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located between the two sections and passing through the vertices43 of the
polygon are drawn and if straight lines then join their extremities which are in
the other section, then the area of the sum of the trapeziums generated between
these two sections the bases of which are the sides of the polygon constructed in
the minimal section, is equal to half the product of the sum of the portions
located on any two opposite sides amongst the sides of the cylinder, between the
two sections, and the sum of the sides of the polygon constructed in the minimal
section. The case will be the same if in place of one of these sections we have
one of the bases of the cylinder, the other being a minimal section.

A

B
H

G

I

C

L K

D

FM

E

Fig. II.3.30

Let two of the sections of the cylinder which meet its sides in the latter – or
otherwise one of these two sections and one of the bases of the cylinder – be
ABC and DEF, without cutting. Let section ABC be one of the minimal sections,
let there be constructed in section ABC the inscribed polygon AGHBIC, let any
two opposite sides, amongst its sides, be between the extremities of two
diameters of section ABC, let the portions located on the sides of the cylinder
between the two sections ABC and DEF which pass through the points A, G, H,
B, I and C be the straight lines AD, GK, HL, BE, IM and CF, let the straight
lines DK, KL, LE, EM, MF and FD join their extremities in section DEF.

I say that the area of the sum of the trapeziums ADKG, GKLH, HLEB,
BEMI, IMFC and CFDA is equal to half the product of the sum of the portions
located between the two sections ABC and DEF, on any two opposite sides
amongst the sides of the cylinder, and the sum of the straight lines AG, GH,
HB, BI, IC and CA.

Proof: The straight lines AD, GK, HL, BE, IM and CF are portions of sides
of the cylinder, they are parallel and parallel to the axis of the cylinder and the
cylinder’s axis cuts the plane ABC perpendicularly, because ABC is one of the

43 Literally: angles.
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minimal sections. The straight lines AD, GK, HL, BE, IM and CF are likewise
perpendicular to the plane of section ABC; they are therefore perpendicular to
all the straight lines drawn from their extremities in this plane; that is why the
straight lines we have mentioned are perpendicular to the sides of the polygon
AGHBIC and surround them forming right angles. The area of the trapezium
ADKG is therefore equal to half the product of the sum of the two straight lines
AD and GK times the straight line AG. We can also show in the same way that
the area of the trapezium BEIM opposite to the trapezium we have mentioned is
equal to half the product of the sum of the straight lines BE and IM times the
straight line BI. But side BI of the polygon AGHBIC is equal to side AG of the
latter, because it is opposite to it following the diameter;44 the area of the sum of
the two trapeziums AGKD and BEMI is therefore equal to half the product of
<the sum> of the four straight lines AD, GK, BE and IM times the straight line
AG. But the two straight lines AD and GK are opposite to the two straight lines
BE and IM following two diameters of ABC, because the two sides AG and BI,
amongst the sides of polygon AGHBIC, join the extremities of two diameters of
section ABC. The two straight lines BE and IM are therefore two portions of two
sides of the cylinder opposite to the sides AD and GK; the sum of the two
straight lines AD and BE is therefore equal to the sum of the two straight lines
GK and IM. Now, we have shown that the area of the sum of the two trapeziums
ADKG and BEMI is equal to half the product <of the sum> of the four straight
lines AD, GK, BE and IM times the straight line AG, the product <of the sum>
of the two straight lines AD and BE times the straight line AG is therefore equal
to the area <of the sum> of the two trapeziums ADKG and BEMI. But we have
shown that the straight line AG is equal to the straight line BI, therefore the
product of the sum of the two straight lines AD and BE which are two portions
of two opposite sides amongst the sides of the cylinder, and the sum of the two
straight lines AG and BI, is equal to twice the area <of the sum> of the two
trapeziums ADKG and BEMI and the area <of the sum> of these two trapeziums
is equal to half of what we have said. In the same way, we can also show that
for any two opposite trapeziums amongst the trapeziums located between the
two sections ABC and DEF, the area of their sum is equal to half the product
<of the sum> of the portions of two opposite sides amongst the sides of the
cylinder, located between these two sections, and <the sum> of two sides of
these two trapeziums, which are in section ABC. But the sum of the portions of
any two opposite sides amongst the sides of the cylinder, located between the
two sections ABC and DEF, is constant.45 The area of the sum of the trapeziums
ADKG, GKLH, HLEB, BEMI, IMFC and CFDA is equal to half the product <of
the sum> of the portions of any two opposite sides amongst the sides of the
cylinder, located between sections ABC and DEF, and the sum of the sides of
polygon AGHBIC.

44 The extremities of AG and BI are diametrically opposite.
45 Literally: is the same thing.
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It may sometimes be that a few surfaces limited by sections ABC and DEF
are triangular; this takes place if the two sections are tangent.46 The method of
the proof in this case is like the method we have mentioned previously. It will
be the same if DEF is one of the bases of the cylinder. That is what we wanted
to prove.

– 3147 – For every portion of the lateral surface of an oblique cylinder,
located between two of the minimal sections of this cylinder which meet its
sides in the latter, its area is then equal to the product of the portion of one of
the sides of the cylinder, located between these two sections, whatever this side
may be, and the perimeter of one of the two minimal sections, whatever it is.

Let there be a portion of the lateral surface of an oblique cylinder located
between two of the sections of the cylinder which meet its sides in the latter,
which are ABC and DEF; let these sections be two of the minimal sections of
the cylinder, let the straight line AD be located between them on one of the sides
of the cylinder.
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I say that the area of the portion of the lateral surface of the cylinder
located between the two sections ABC and DEF is equal to the product of AD
and the perimeter of section ABC.

Proof: If the area of the portion of the lateral surface of the cylinder located
between the two sections ABC and DEF is not equal to the product of AD and
the perimeter of section ABC, then it is either smaller than it, or larger than it.

Let the area of the portion of the lateral surface of the cylinder which is
located between the two sections ABC and DEF first of all be smaller than the
product of the straight line AD and the perimeter of section ABC, if that is
possible. The area of the portion of the lateral surface of the cylinder located
between the two sections ABC and DEF will be equal to the product of the
straight line AD and a line smaller than the perimeter of section ABC. If we

46 Two trapeziums are replaced by two triangles having a common apex, which is the
point of contact.

47 See Supplementary note [18].
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make this line the straight line G and if we make the straight line H larger than
it and smaller than the perimeter of section ABC, then the product of the straight
line AD and the straight line H will be larger than the area of the portion of the
lateral surface of the cylinder located between the two sections ABC and DEF;
let its excess over it be equal to the surface I. Let the centre of section ABC be
the point K, its large axis AB and its small axis CL. Half of the surface I is either
not smaller than section ABC, or is smaller than it.

If half of the surface I is not smaller than section ABC, we can separate from
the straight line KA a straight line such that its ratio to the straight line KA is
larger than the ratio of the straight line H to the perimeter of section ABC, which
is the straight line KM in the first case of figure.48 And if half of the surface I is
smaller than section ABC, we can make, in this case of figure, the ratio of KM to
KA larger than the ratio we have mentioned, and we can also make the ratio of
the square of the straight line KM to the square of the straight line KA larger
than the ratio of the excess of section ABC over half of surface I to section ABC.
If we make, in both cases at once, each of the ratios of KN to KB, of KS to KC,
of KO to KL equal to the ratio of KM to KA and if we imagine an ellipse such
that its large axis is MN and its small axis SO, which is the ellipse MSNO, then
the section MSNO will be similar to section ABC because the ratio of axis MN
to axis AB is equal to the ratio of axis SO to axis CL. The ratio of the perimeter
of section MSNO to the perimeter of section ABC is equal to the ratio of MN to
AB which is larger than the ratio of the straight line H to the perimeter of section
ABC. The ratio of the perimeter of section MSNO to the perimeter of section
ABC is therefore larger than the ratio of the straight line H to the perimeter of
section ABC, and that is why the perimeter of section MSNO is larger than the
straight line H. If we construct in section ABC a polygon inscribed in the latter
and which surrounds section MSNO without its sides being tangent to it, let the
polygon be APLUBQCR, and if we draw from points P, L, U, B , Q, C and R
portions of the sides of the cylinder which pass through these points and are
located between the two sections, let them be the straight lines PV, LT, UW, BE,
QJ, CF and RZ, then these straight lines are parallel to the axis of the cylinder
and are perpendicular to each of the planes of the two sections ABC and DEF,
because these sections are two of the minimal sections, for which we have
shown that the axis of the cylinder is perpendicular to them. If we draw the
straight lines DV, VT, TW, WE, EJ, JF, FZ and ZD, the straight lines we have
mentioned before, which are portions of the sides of the cylinder, are
perpendicular to these straight lines and to the sides of the polygon APLUBQCR
and the surfaces generated between the two sections ABC and DEF from all the
straight lines we have mentioned, are rectangles; and if they are added together,
their area will be equal to the product of the straight line AD and the sum of the
sides of the polygon APLUBQCR, because the portions of the sides of the

48 See Supplementary note [19].



442 CHAPTER II: THÆBIT IBN QURRA

cylinder located between the two sections ABC and DEF are all equal to the
straight line AD. But the sum of the sides of the polygon APLUBQCR is larger
than the perimeter of section MSNO, which, we have shown, is larger than the
straight line H. The sum of the surfaces we have mentioned, located between
the two sections ABC and DEF, is therefore much larger than the product of the
straight line AD and the straight line H. Now we have shown that the product of
the straight line AD and the straight line H is larger than the area of the portion
of the lateral surface of the cylinder located between the two sections ABC and
DEF, and we have made its excess over it equal to the surface I. The sum of the
surfaces we have mentioned, located between the two sections ABC and DEF, is
therefore much larger than the portion of the lateral surface of the cylinder
located between these two sections, and its excess over it is larger than surface
I. Surface I, plus the portion of the lateral surface of the cylinder located
between the two sections ABC and DEF is therefore smaller than the sum of the
surfaces we have mentioned, located between these two sections. Half of the
surface I, either is not smaller than section ABC or is smaller than it.

If it is not smaller than it, then it is not smaller than section DEF because
these two sections are equal, given that they are minimal sections. The whole
surface I is therefore not smaller than the sum of the two sections ABC and
DEF. Now, we have shown that surface I, plus the portion of the lateral surface
of the cylinder located between the two sections ABC and DEF, is smaller than
<the sum> of the surfaces with parallel sides located between these two
sections. The sum of these two sections and the portion of the lateral surface of
the cylinder located between them is smaller than <the sum> of the surfaces
with parallel sides we have mentioned, located between these two sections; this
is impossible, because what surrounds is not smaller than what is surrounded.
The portion of the lateral surface of the cylinder located between the two
sections ABC and DEF is therefore not smaller than the product of the straight
line AD and the perimeter of section ABC.

If half of the surface I is smaller than section ABC, then the ratio of the
square of the straight line KM to the square of the straight line KA is larger than
the ratio of what section ABC exceeds half of surface I by, to the section ABC,
because we have made it thus in this case. But the ratio of the square of the
straight line KM to the square of the straight line KA is equal to the ratio of the
square of the straight line MN to the square of the straight line AB; therefore the
ratio of the square of the straight line MN to the square of the straight line AB is
larger than the ratio of what section ABCR exceeds half of surface I by, to
section ABC. But the ratio of the square of the axis MN to the square of the axis
AB is equal to the ratio of section MSNO to section ABC, because these two
sections are similar. The ratio of section MSNO to section ABC is therefore
larger than the ratio of what section ABC exceeds half of section I by, to section
ABC. If we inverse, the ratio of section ABC to the difference surrounded by the
two perimeters of sections ABC and MSNO and located between them, which is
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the difference between these two sections, is also larger than the ratio of section
ABC to half of surface I. The surface of the figure surrounded by the perimeters
of sections ABC and MSNO and located between them is smaller than half of
surface I. But the surface of this figure we have mentioned – the one surrounded
by the perimeters of sections ABC and MSNO and located between them – is
larger than its portions delimited by the straight lines AP, PL, LU, UB, BQ, QC,
CR and RA and the curved lines of which these straight lines we have mentioned
are chords. If these portions we mentioned are added together, the ones which
are delimited by the curved lines and their chords, <their sum> is much smaller
than half of surface I. But these portions we mentioned are equal to the
homologous portions of section DEF, because if section DEF is placed over
section ABC, it will be superposed on to it and each of its points will be placed
on to its homologue in section ABC, at which there ends the side of the cylinder
which passes through the first point. If the portions delimited by the curved
lines and their chords in section ABC and their homologues in section DEF are
added together, <their sum> will be smaller than surface I. But <the sum of> all
these portions we have mentioned and the portions of the lateral surface of the
cylinder which are between them – whose sum is the portion of the lateral
surface of the cylinder located between the two sections ABC and DEF – is
larger than the sum of the surfaces with parallel sides which are located between
these two sections because it surrounds it. Surface I, plus the portion of the
lateral surface of the cylinder located between the two sections ABC and DEF,
is much larger than the sum of the surfaces with parallel sides located between
these two sections. Now, we have shown that it is smaller than it; this is
contradictory. The portion of the lateral surface of the cylinder located between
the two surfaces ABC and DEF is therefore not smaller than the product of the
straight line AD and the perimeter of section ABC, given that half of surface I is
smaller than section ABC. Now, we have shown that it is not smaller than it if
half of surface I is not smaller than section ABC; therefore the portion of the
lateral surface of the cylinder located between the two sections ABC and DEF is
not smaller than the product of the straight line AD and the perimeter of section
ABC.

I say likewise that it is not larger than it.
If that was possible, then it would be larger than it; we have then the area of

the portion of the lateral surface of the cylinder located between the two
sections ABC and DEF equal to the product of the straight line AD and a line
larger than the perimeter of section ABC. If we make this line the straight line
G, and if we make the straight line H  smaller than it and larger than the
perimeter of section ABC, the product of the straight line AD and the straight
line H will be smaller than the area of the portion of the lateral surface of the
cylinder located between the two sections ABC and DEF. If we make their
difference equal to the surface I, if we make the ratio of the straight line KM, in
the second example, to the straight line KA which is smaller than it, smaller than
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the ratio of the straight line H to the perimeter of section ABC, if we make the
ratio of its square to its square likewise smaller than the ratio of section ABC,
plus half of surface I, to section ABC; if we make each of the ratios of KN to
KB, KS to KC, and KO to KL equal to the ratio of KM to KA and if we construct
outside the section ABC an ellipse such that its large axis is MN and its small
axis SO, let it be the section MSNO, then section MSNO will also be similar to
section ABC and the ratio of its perimeter to the perimeter of section ABC will
be equal to the ratio of MN to AB which is smaller than the ratio of H to the
perimeter of section ABC. The ratio of the perimeter of section MSNO to the
perimeter of section ABC is therefore smaller than the ratio of the straight line H
to the perimeter of section ABC as well, and it is for that reason that the
perimeter of section MSNO is smaller than the straight line H. If we construct in
the plane of section ABC a polygon inscribed in section MSNO, and which
surrounds section ABC, without its sides meeting it, namely the polygon
MPOUNQSR, and if we draw from the vertices of the angles49 of this polygon
perpendiculars to its plane which end at the plane where section DEF is, let the
straight lines be MV, PT, OW, UJ, NZ, QX, SY and RO′, these straight lines will
be parallel to the axis of the cylinder and to its sides and equal to the straight
line AD, because the sections ABC and DEF are two of the minimal sections.
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Fig. II.3.31b*

If we draw the straight lines VT, TW, WJ, JZ, ZX, XY, YO′ and O′V, surfaces
with parallel sides outside the lateral surface of the cylinder are generated from
them. It is clear from what we have said, as likewise we have shown, that the
area of the sum of these surfaces is equal to the product of the straight line AD
and the sum of the sides of polygon MPOUNQSR. But the sum of the sides of
the polygon mentioned is smaller than the perimeter of section MSNO which,
we have shown, is smaller than the straight line H. The sum of the surfaces with
parallel sides we have mentioned is much smaller than the product of the

49 Literally: from the points of the angles.
* This figure is not in the manuscript.
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straight line AD and the straight line H. But we have shown that the product of
the straight line AD and the straight line H is smaller than the area of the portion
of the lateral surface of the cylinder located between sections ABC and DEF and
we have made their difference equal to surface I; the sum of the surfaces with
parallel sides we have mentioned is therefore much smaller than the portion of
the lateral surface of the cylinder located between sections ABC and DEF and
their difference is larger than surface I. Surface I, plus the sum of the surfaces
with parallel sides we have mentioned, have <a sum> smaller than the portion
of the lateral surface of the cylinder located between sections ABC and DEF.
Furthermore, section MSNO is similar to section ABC; therefore its ratio to the
latter is equal to the ratio of the square of axis MN to the square of axis AB,
which is equal to the ratio of the square of the straight line KM to the square of
the straight line KA. But we have made the ratio of the square of the straight line
KM to the square of the straight line KA smaller than the ratio of section ABC,
plus half of section I, to section ABC; therefore the ratio of section MSNO to
section ABC is smaller than the ratio of section ABC, plus half of section I, to
section ABC. If we separate, we have the ratio of what section MSNO exceeds
section ABC by – which is the figure delimited by the perimeters of sections
ABC and MSNO and located between them – to section ABC, smaller than the
ratio of half of surface I to section ABC. The surface of the figure delimited by
the perimeters of sections ABC and MSNO and located between them, is
therefore smaller than half of surface I. But the surface of this figure we have
mentioned, which is delimited by the perimeters of sections ABC and MSNO
and located between them, is larger than the surface of the figure delimited by
the sides of polygon MPOUNQSR, located between them and section ABC. The
surface of this figure we have mentioned – located between the sides of polygon
MPOUNQSR and section ABC – is much smaller than half of surface I. But this
surface we have mentioned is equal to its homologue located around section
DEF and which is located between section DEF and the sides of the polygon
VTWJZXYO′ because if this polygon and section DEF are placed according to
their shape over polygon MPOUNQSR and section A B C, they will be
superposed and each of their points will be placed on its homologue in the two
others. The sum of the surfaces of the two figures we have mentioned one of
which is around section ABC and the other around section DEF, is smaller than
surface I. But the sum of these two surfaces and the surfaces with parallel sides
whose bases are the sides of polygon MPOUNQSR is larger than the portion of
the lateral surface located between the two sections ABC and DEF, because it
surrounds it. The sum of surface I and the surfaces with parallel sides whose
bases are the sides which surround polygon MPOUNQSR is much larger than
the portion of the lateral surface of the cylinder located between the two
sections ABC and DEF. Now, we have shown that it is smaller than it; this is
contradictory. The area of the portion of the lateral surface of the cylinder
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located between the two sections ABC and DEF is therefore not larger than the
product of the straight line AD and the perimeter of section ABC.

But we have shown that it is not smaller than it; it is consequently equal to
it. That is what we wanted to prove.

– 3250 – Every portion of the lateral surface of an oblique cylinder located
between two of its sections which do not intersect and which meet, in the
cylinder, all its sides and of which one is one of the minimal sections of the
cylinder and the other one of the other sections of the cylinder, or located
between one of the bases of the cylinder and one of the minimal sections which
do not cut it, has an area equal to half the product <of the sum> of the portions
of any two opposite sides of the cylinder, located between the two sections or
between the section and the base, and the perimeter of any one of the minimal
sections.
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Let there be an oblique cylinder with bases ABC and DEF, with centres G
and H, and let two of the sections of the cylinder which meet its sides in the
latter, either being tangent at a point, or without being tangent and without
intersecting; namely the sections IKL MNS. Then from these two sections, let
section IKL be the one which is minimal and let the two straight lines AIMD and
BKNE be any two opposite sides of the cylinder.

I say that the area of the portion of the lateral surface of the cylinder which
is located between the sections IKL and MNS is equal to half the product of the
sum of the two straight lines IM and KN times the perimeter of section IKL, and
that the area of the portion of the lateral surface of the cylinder located between
section IKL and the base ABC – if it does not cut the base – is equal to half the

50 See Supplementary note [20].



ON THE SECTIONS OF THE CYLINDER 447

product of the sum of the two straight lines AI and BK times the perimeter of
section IKL.

Proof: If the area of the portion of the lateral surface of the cylinder located
between the two sections IKL and MNS is not equal to half the product51 we
have set out, then it is either smaller than half or larger than half.

Let it first of all be smaller than half, if that was possible; the area of the
portion of the lateral surface of the cylinder located between the two sections
IKL and MNS will be equal to half the product of the sum of the two straight
lines IM and KN times a line smaller than the perimeter of section IKL. If we
make this line the straight line O, and if we make a straight line P larger than O
and smaller than the perimeter of section IKL, the half-product of the sum of the
straight lines IM and KN times the straight line P is larger than the area of the
portion of the lateral surface of the cylinder located between the two sections
IKL and MNS; if we make what this half-product exceeds this area by equal to
the surface U, then half of surface U either is not smaller than section MNS or is
smaller than it.

If this half is not smaller than it, we can describe around centres G and H
equal circles, smaller than the two circles ABC and DEF and such that the ratio
of the diameter of each of them to the diameter of each of the circles ABC and
DEF is larger than the ratio of the straight line P to the perimeter of section IKL.
If half of surface U is smaller than section MNS, we can make the ratio of the
diameter of each of the circles we have mentioned to the diameter of each of the
circles ABC and DEF larger than the ratio we have mentioned and we can
likewise make the ratio of the square of the diameter of each of them to the
square of the diameter of each of the circles ABC and DEF larger than the ratio
of the excess of section MNS over half of surface U to section MNS; let the two
circles we have described be the two circles QRV and TWJ. If we imagine,
taking these two cases into account at the same time, a cylinder inside the first
cylinder, the circles QRV and TWJ  will be its bases and the two sections
generated in this small cylinder by the planes of sections IKL and MNS – which
are the sections ZXY and O′LaLb – will be similar to sections IKL and MNS –
each to its homologue – and the ratio of the perimeter of section ZXY to the
perimeter of section IKL will be equal to the ratio of each of the diameters of
section ZXY to the homologous diameter in section IKL; this ratio is equal to the
ratio of the diameter of circle QRV to the diameter of circle ABC, which we
have made larger than the ratio of the straight line P to the perimeter of section
IKL. The ratio of the perimeter of section ZXY to the perimeter of section IKL is
larger than the ratio of the straight line P to the perimeter of section IKL as well.
And it is for that reason that the perimeter of section ZXY will be larger than the
straight line P. If we imagine in the plane of section IKL a polygon inscribed in
section IKL and which surrounds section ZXY without its sides touching it in

51 Literally: of that which.
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such a way that the straight lines joining its opposite vertices52 are diameters of
section IKL and if we imagine that portions of the sides of the large cylinder
have been drawn from the vertices53 of this polygon in such a way that their
extremities end at section MNS and that straight lines join its extremities which
are in section MNS, then polygonal surfaces are generated from that between the
lateral surface of the large cylinder and the lateral surface of the small cylinder
and in section MNS is generated a polygon inscribed in section MNS and which
surrounds section O′LaLb. The area of the sum of the surfaces located between
the two sections IKL and MNS is equal to the half-product of the sum of the two
straight lines IM and KN times the sum of the sides of the polygon we have
imagined in section IKL. But the sum of the sides of this polygon is larger than
the perimeter of section ZXY which, we have shown, is larger than the straight
line P. The sum <of the areas> of the polygonal surfaces we have mentioned,
located between sections IKL and MNS, is much larger than the half-product of
the sum of the straight lines IM and KN times the straight line P. But we have
shown that the half-product of the sum of the two straight lines IM and KN
times the straight line P is larger than the area of the portion of the lateral
surface of the large cylinder delimited by sections IKL and MNS. If we make
what this product exceeds the area by equal to the surface U, then the sum of the
surfaces mentioned located between the two sections IKL and MNS, is much
larger than the portion of the lateral surface of the large cylinder, delimited by
sections IKL and MNS, and its excess over it is larger than surface U. Surface U,
plus the portion of the lateral surface of the large cylinder located between the
two sections IKL and MNS, is therefore smaller than the surfaces we have
mentioned, located between these two sections. But half of surface U either is
smaller than section MNS or is not smaller than it. If it is not smaller than it,
then it is not smaller than section IKL, because section IKL is a minimal section
and section MNS is not a minimal section; therefore the whole surface U is not
smaller than the sum of sections MNS and IKL. But we have shown that surface
U, plus the portion of the lateral surface of the large cylinder located between
the two sections IKL and MNS, is smaller than the sum of the surfaces located
between these two sections and located between the two lateral surfaces of the
two cylinders. The sum of sections IKL and MNS and the portion of the lateral
surface of the large cylinder located between them is smaller than the sum of the
surfaces located between the two sections; that is impossible, because what
surrounds cannot be smaller than what is surrounded. The portion of the lateral
surface of the large cylinder located between sections IKL and MNS is therefore
not smaller than the half-product of the sum of the straight lines IM and KN
times the perimeter of section IKL.

52 Literally: angles.
53 Literally: angles.



ON THE SECTIONS OF THE CYLINDER 449

If half of surface U is smaller than section MNS, then the ratio of the square
of the diameter of circle QRV to the square of the diameter of circle ABC is
larger than the ratio of what section MNS exceeds half of surface U by to
section MNS, because we have assumed thus in this case. But the planes MNS
and IKL cut the two cylinders the bases of one of which are the circles ABC and
DEF and the bases of the other are the circles QRV and TWJ, and generated in
the large cylinder the sections MNS  and IKL and in the small cylinder the
sections O′LaLb and ZXY; the sections O′LaLb and ZXY are therefore similar to
sections MNS and IKL, each section to its homologue, and the ratio of the
square of each of the diameters of one to the square of the homologous diameter
of its associate which is similar to it is equal to the ratio of the square of the
diameter of circle QRV to the square of the diameter of circle ABC. The ratio of
the square of each of the diameters of sections O′LaLb and ZXY to the square of
the homologous diameter of the section MNS or IKL which is similar to it is
larger than the ratio of what section MNS exceeds half of surface U by to
section MNS. But the ratio of the square of each of the diameters of sections
O′LaLb and ZXY to the square of the homologous diameter of the section MNS or
IKL which is similar to it is equal to the ratio of each of the two first sections to
its homologue between the two last, because the two first sections are similar to
the two last sections, each to its homologue. The ratio of each of the sections
O′LaLb and ZXY to its homologue, which is similar to it, between sections MNS
and IKL, is therefore larger than the ratio of what section MNS exceeds half of
surface U by to section MNS. If we inverse, then the ratio of section MNS to its
excess over section O′LaLb – which is the surface located between the
perimeters of these two sections – and the ratio of section IKL to its excess over
section ZXY – which is the surface located between the perimeters of these two
sections – are, each of them, larger than the ratio of section MNS to half of
surface U. As for the surface located between the perimeters of the two sections
MNS and O′LaLb, it is smaller than half of surface U as is shown from what we
have just said. As for the surface located between the perimeters of the two
sections IKL and ZXY, it has been shown from what we have said that the ratio
of section IKL to this surface is larger than the ratio of section MNS to half of
surface U. But section IKL is smaller than section MNS, given that section IKL
is one of the minimal sections; the surface located between the perimeters of the
two sections IKL and ZXY will therefore be, as well, much smaller than half of
surface U. If it is thus, then the sum of the two surfaces one of which is located
between the perimeters of the two sections IKL and ZXY and the other located
between the perimeters of the two sections MNS and O′LaLb, is smaller than
surface U. But the sum of these two surfaces we have mentioned is larger than
<the sum of> their portions which are delimited and contained by the sides of
the two polygons one of which is the one whose sides we have imagined
between the perimeters of sections IKL and ZXY and the other of which is the
one whose sides have been generated between the perimeters of the two sections
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MNS  and O ′LaLb, owing to the fact that we have drawn the straight lines
between the extremities of the portions of the sides of the large cylinder which
are in section MNS. Each of the portions we have mentioned is surrounded by
one of the sides of the two polygons we have described and the curved line
subtended by this side. The sum of these portions we have mentioned, which are
surrounded by the curved lines and their chords, is much smaller than surface U.
But these portions which we have mentioned, if they are added to the portions
of the lateral surface of the large cylinder located between them and whose sum
is the portion of the lateral surface of the large cylinder located between
sections IKL and MNS, are larger than the <plane> surfaces located between
these two sections, placed between the lateral surface of the large cylinder and
the lateral surface of the small cylinder because the portions surround them.
<The sum of> surface U and the portion of the lateral surface of the large
cylinder located between sections IKL and MNS is larger than the sum of the
<plane> surfaces located between these two sections and placed between the
large cylinder and the small cylinder. But we have shown that it is smaller than
it, it is therefore larger than it and smaller than it; that is contradictory. The
portion of the lateral surface of the large cylinder located between sections IKL
and MNS is therefore not smaller than half the product of the sum of the straight
lines IM and KN times the perimeter of section IKL, if half of surface U is
smaller than section MNS. But we have shown that the lateral surface is not
smaller than half of this product. If it is not thus, the portion of the lateral
surface of the large cylinder located between sections IKL and MNS is therefore
not smaller than half the product of the sum of the straight lines IM and KN
times the perimeter of section IKL.

I say likewise that it is not larger than half of it.
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Fig. II.3.32b*

In fact, if we make the largest of the sides of the large cylinder located
between the two sections IKL and MNS, the straight line LS, and if we pass
through the point S a plane parallel to the plane of section IKL which cuts the
large cylinder either as it is, or once the cylinder is extended along its sides, and
which generates in the cylinder the section SLcLd, then the portions of the sides

* This figure is not in the manuscript.
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of the large cylinder, one of which is the straight line LS, placed between the
two sections IKL and SLcLd are equal, because they are parallel and between two
parallel planes; the sections MNS and SLcLd are then tangent only at point S
because the straight line LS is the longest of the sides of the large cylinder
located between sections MNS and IKL and the section SLcLd is one of the
minimal sections. We can show from that, as we have shown before, that the
area of the portion of the lateral surface of the large cylinder located between
sections MNS and SLcLd is not smaller than the half-product of <the sum> of the
portions of any two opposite sides, amongst the sides of the large cylinder,
located between sections MNS and SLcLd times the perimeter of section SLcLd

which is equal to the perimeter of section IKL. But the area of the whole portion
of the lateral surface of the large cylinder located between sections SLcLd and
IKL is equal to the half-product <of the sum> of the portions of these same two
opposite sides we have mentioned amongst the sides of the large cylinder,
located between these two sections times the perimeter of section IKL because
the sections SLcLd and IKL are minimal sections and also the sum of the portions
of two opposite sides, amongst the sides of the large cylinder, is double the
straight line LS. The remainder – that is the area of the portion of the lateral
surface of the large cylinder located between the two sections IKL and MNS – is
not larger than the half-product <of the sum> of the portions of these two
opposite sides we have mentioned, amongst the sides of the large cylinder,
located between the two sections times the perimeter of section IKL. But the
portions of these two opposite sides we have mentioned, amongst the sides of
the large cylinder, located between sections IKL and MNS, are either the two
straight lines IM and KN, or two straight lines such that their sum is equal to the
sum of the other two. The area of the portion of the lateral surface of the large
cylinder located between sections IKL and MNS is therefore not larger than the
half-product of the sum of the two straight lines IM and KN times the perimeter
of section IKL. But we have shown that it is not smaller than it; consequently it
is equal to the half-product.

In the same way, we can also show that the area of the portion of the lateral
surface of the large cylinder located between section IKL and the base ABC is
equal to half the product of the sum of the two straight lines AI and BK times
the perimeter of section IKL. That is what we wanted to prove.

– 33 – The lateral surface of every oblique cylinder and every portion of this
surface located between two of the sections of the cylinder which meet its sides
in the latter, without intersecting and without one of them being a minimal
section, or located between one of these sections and one of the bases of the
cylinder without cutting it, are such that the area of the lateral surface and the
area of the portion are equal to the half-product <of the sum> of the two
portions of any two opposite sides of the cylinder, located between the plane of
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the highest <section> and the plane of its base, times the perimeter of one of the
minimal sections of the cylinder, whatever that section is.

Let there be an oblique cylinder whose bases are ABC and DEF; let two
sections, which meet its sides in it, cut it, namely the sections be GHI and KLM.
Let the two straight lines AGKD and BHLE be two of the opposite sides of the
cylinder.

I say that the area of the lateral surface of the cylinder ABCDEF is equal to
the half-product of the sum of the two straight lines AD and BE  times the
perimeter of any one of the minimal sections of the cylinder, that the area of the
portion of the lateral surface of the cylinder located between sections GHI and
KLM is equal to the half-product of the sum of the two straight lines GK and
HL times the perimeter of any one of the minimal sections of the cylinder, and
that the area of the portion of the lateral surface of the cylinder located between
section GHI and base ABC is equal to the half-product of the sum of the two
straight lines AG and BH times the perimeter of any one of the minimal sections
of the cylinder.
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Proof: If we produce the lateral surface of the cylinder along its sides, if we
imagine on the outside of the cylinder one of the minimal sections, which is the
section NSO, and if we draw the sides AD and BE to points N and S, then the
area of the portion of the lateral surface of the cylinder located between section
NSO and circle ABC is equal to the half-product of the sum of the two straight
lines AN and BS times the perimeter of section NSO because the straight lines
AD and BE are two of the opposite sides of the cylinder. That is also why the
area of the portion of the lateral surface of the cylinder located between section
NSO and circle DEF is equal to the half-product of the sum of the two straight
lines DN and ES times the perimeter of section NSO. The area of the lateral
surface of the cylinder which is left between the two circles ABC and DEF,
which are the bases of the cylinder, is equal to the half-product of the sum of the
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two straight lines AD and BE times the perimeter of section NSO, which is one
of the minimal sections. In the same way, the area of the portion of the lateral
surface of the cylinder located between sections NSO and GHI is equal to the
half-product of the sum of the straight lines GN and HS times the perimeter of
section NSO. The area of the portion of the lateral surface of the cylinder
located between sections NSO and KLM is also equal to the half-product of the
sum of the straight lines KN and LS times the perimeter of section NSO. There
remains the area of the portion of the lateral surface of the cylinder located
between sections GHI and KLM equal to the half-product of the sum of the
straight lines GK and HL times the perimeter of section NSO, which is one of
the minimal sections. In the same way, we can also show that the area of the
portion of the lateral surface of the cylinder located between section GHI and
base ABC is equal to the half-product of the sum of the straight lines AG and BH
times the perimeter of section NSO, which is one of the minimal sections; now,
all the minimal sections are equal. That is what we wanted to prove.

– 34 – The lateral surface of every oblique cylinder and of every portion of
the latter located between two parallel planes amongst those which meet its
sides, in the cylinder, are such that the area of each of them is equal to the
product of the portion of any one of the sides of the cylinder, located between
its upper plane and the plane of its base, times the perimeter of any one of the
minimal sections.

Let there be an oblique cylinder whose bases are ABC and DEF, let there be
a portion of the latter located between two parallel planes GHI and KLM which
meet its sides in the cylinder, let the straight line AGKD be one of the sides of
the cylinder.

I say that the area of the lateral surface of the cylinder ABCDEF is equal to
the product of the straight line AD and the perimeter of any one of the minimal
sections of the cylinder, and that the area of the portion of the lateral surface of
the cylinder located between the two planes GHI and KLM is equal to the
product of the straight line GK and the perimeter of any one of the minimal
sections of the cylinder.

Proof: If we draw in the lateral surface of the cylinder the side opposite to
side AD of the cylinder, let it be the straight line BHLE, then the area of the
lateral surface of the cylinder ABCDEF is equal to the half-product of the sum
of the straight lines AD and BE – given that they are two of the opposite sides of
the cylinder – and the perimeter of any one of the minimal sections of the
cylinder. But the two straight lines AD  and BE are equal, because they are
parallel and are between two parallel planes, the area of the lateral surface of the
cylinder ABCDEF is therefore equal to the product of the straight line AD and
the perimeter of any one of the minimal sections of the cylinder. Similarly, the
area of the portion located between the two planes GHI and KLM is equal to the
half-product of the sum of the straight lines GK and HL – given that they are
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two of the opposite sides of the cylinder – and the perimeter of any one of the
minimal sections. But the two straight lines GK and HL are equal because they
are parallel between two parallel planes; the area of the portion of the lateral
surface of the cylinder located between planes GHI and KLM is therefore equal
to the product of the straight line G K and the perimeter of any one of the
minimal sections of the cylinder.
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In the same way, we can also show that if the plane GHI is parallel to the
<plane of> circle ABC, then the area of the portion of the lateral surface of the
cylinder located between this plane and circle ABC is equal to the product of the
straight line AG and the perimeter of any one of the minimal sections. That is
what we wanted to prove.

– 35 – Every portion of the lateral surface of an oblique cylinder located
between two of the sections of the cylinder which meet its sides in the latter,
and which are tangent at a single point, or every portion located between one of
these sections and one of the bases of the cylinder, if the section is tangent to it
at a single point, is such that its area is equal to the half-product of the largest
side of the cylinder which is between the two sections, or between the section
and the base, and the perimeter of any one of the minimal sections of the
cylinder.

Let there be a portion of the lateral surface of an oblique cylinder located
between two of the sections of the cylinder, or between a section and a base, let
them be ABC and ADE. Let ABC and ADE meet the sides of the cylinder in the
latter and be tangent at a single point, namely the point A. Let the largest of the
sides of the cylinder located between ABC and ADE be the straight line BD.

I say that the area of the portion of the lateral surface of the cylinder
located between ABC and ADE is equal to the half-product of the straight line
BD and the perimeter of any one of the minimal sections of the cylinder.
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Proof: The area of the portion of the lateral surface of the cylinder located
between ABC and ADE is equal to the half-product <of the sum> of the portions
of any two opposite sides of the cylinder located between these two sections,
and the perimeter of any one of the minimal sections of the cylinder. But the
side of the cylinder opposite to side BD is the one which passes through point A,
which is the point of contact; nothing of this side lies between ABC and ADE.
The area of the portion of the lateral surface of the cylinder located between
ABC and ADE is therefore equal to the half-product of BD and the perimeter of
any one of the minimal sections of the cylinder. That is what we wanted to
prove.54

– 36 – Every portion of the lateral surface of an oblique cylinder located
between two of the sections of the cylinder which meet its sides in it and which
do not intersect in the cylinder and are not parallel, or located between one of
these sections and one of the bases of the cylinder which do not intersect in the
cylinder, is such that its area is equal to the half-product of the sum of the
largest straight line of one of the sides of the cylinder, located between the
upper plane of the portion and its lower plane, and of the smallest straight line
of one of the sides of the cylinder located between these planes as well, and the
perimeter of any one of the minimal sections of the cylinder.

Let there be a portion of the lateral surface of an oblique cylinder located
between ABC and DEF, and let ABC and DEF be two of the sections of the
cylinder which meet its sides in it, or let them be one of its sections and one of
the bases of the cylinder, and let these two sections be not parallel and not
intersect in the cylinder. Let the largest portion of one of the sides of the
cylinder located between ABC and DEF be the straight line AD and let the
smallest portion of one of the sides of the cylinder located between these latter
be the straight line BE.

I say that the area of the portion of the lateral surface of the cylinder
located between ABC and DEF is equal to the half-product of the sum of the
straight lines AD and BE and the perimeter of any one of the minimal sections
of the cylinder.

54 See Supplementary note [21].
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Proof: The straight line AD is the largest portion of one of the sides of the
cylinder located between ABC and DEF; therefore the portion of the cylinder
side opposite to the straight line AD located between ABC and DEF is the
smallest portion of one of the sides of the cylinder located between ABC and
DEF. But the smallest portion of one of the sides of the cylinder located
between ABC and DEF is the straight line BE. Therefore the straight line BE is
the portion of one of the sides of the cylinder, opposite to the side of which AD
is the portion located between ABC and DEF. But the area of the portion of the
lateral surface of the cylinder located between ABC and DEF is equal to the
half-product <of the sum> of the portions of any two of the opposite sides of the
cylinder, located between these two sections, and the perimeter of any one of its
minimal sections. The area of the portion of the lateral surface of the cylinder
located between ABC and DEF is therefore equal to the half-product of the sum
of the two straight lines AD and BE and the perimeter of any one of the minimal
sections of the cylinder. That is what we wanted to prove.

– 37 – The area of the lateral surface of every oblique cylinder and the area
of every portion of the latter located between two sections of the cylinder which
meet all its sides in it, but without intersecting in the cylinder, or located
between one of these two sections and one of the bases of the cylinder, is equal
to the product of the part of the axis of the cylinder located between the upper
plane of each of these portions and the plane of its base, and the perimeter of
any one of the minimal sections of the cylinder.

Let there be the lateral surface of a cylinder or a portion of the latter located
between ABC and DEF. Let ABC and DEF meet all the sides of the cylinder in
it, without intersecting within the cylinder; let the part of the axis of the cylinder
located between them be GH.
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I say that the area of the portion of the lateral surface of the cylinder
located between ABC and DEF is equal to the product of GH and the perimeter
of any one of the minimal sections of the cylinder.55

A

E

B

D

G

F

H

C

Fig. II.3.37

Proof: ABC and DEF either are parallel or are not. If they are parallel and if
we make the portions of any two opposite sides of the cylinder located between
ABC and DEF the two straight lines AD and BE, then the area of the portion of
the lateral surface of the cylinder located between ABC and DEF is equal to the
product of AD and the perimeter of any one of the minimal sections of the
cylinder. But the straight line AD is equal to the straight line GH because they
are parallel and between two parallel planes. The area of the portion of the
lateral surface of the cylinder located between ABC and DEF is therefore equal
to the product of the straight line GH and the perimeter of any one of the
minimal sections of the cylinder.

But if ABC and DEF are not parallel and if they are tangent at a single point
or if they do not intersect, then the area of the portion of the lateral surface of
the cylinder located between them is equal to the half-product of the sum of the
two straight lines AD and BE and the perimeter of any one of the minimal
sections of the cylinder. But the straight line GH is equal to half the sum of the
straight lines AD and BE; therefore the area of the portion of the lateral surface
of the cylinder located between ABC and DEF is equal to the product of the
straight line GH and the perimeter of any one of the minimal sections of the
cylinder. That is what we wanted to prove.

You should know that the situation with the circles parallel to the bases of
the right cylinder in the latter is like the situation with the minimal section in the
oblique cylinder and that everything we have explained for the oblique cylinder
concerning the area of its lateral surface and of the portions of its lateral surface
must be identical for the right cylinder. When, in place of its minimal sections,

55 See Supplementary note [22].
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we make the circles parallel to the bases of the right cylinder, the method of the
proof in both cases is the same method.56

The Book of Thæbit ibn Qurra al-Îarrænî
on the sections of the cylinder and its lateral surface is completed.

Thanks be to God, Lord of the worlds.
Blessing upon His messenger MuÌammad and all his own.

56 See Supplementary note [23].



CHAPTER III

IBN SSSSIIIINNNNÆÆÆÆNNNN, CRITIQUE OF AAAALLLL----MMMMÆÆÆÆHHHHÆÆÆÆNNNNïïïï::::
THE AREA OF THE PARABOLA

3.1. INTRODUCTION

3.1.1. IIIIbbbbrrrrææææhhhhîîîîmmmm    iiiibbbbnnnn    SSSSiiiinnnnæææænnnn: ‘heir’ and ‘critic’

Ibræhîm ibn Sinæn ibn Thæbit ibn Qurra was born in Baghdad in
296/909, where he died following an illness 37 years later, in 335/946.1 He
was an ‘heir’ in the strict sense, but in fact, as we shall see, in all senses of
the word, for he was also a mathematician of genius: all the signs forecast
great works. Despite the shortness of his life, Ibræhîm ibn Sinæn was by no
means disappointed.

It is enough to read his full name, to conjure up the high reputation
enjoyed by his parents and their relations, the ∑æbi’ºn, to be convinced that
who we have here is very much an heir. We have but hardly finished with
his grandfather: Thæbit ibn Qurra encouraged his son, Ibræhîm’s father, to
pursue his medical studies: Sinæn excelled to such a degree in this art that he
became doctor to three successive caliphs – al Muqtadir, al-Qæhir and al-

1 Al-Nadîm, Kitæb al-fihrist, ed. R. Tajaddud, Tehran, 1971, p. 332; al-Qif†î,
Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, pp. 57–9; Ibn Abî UÒaybi‘a: ‘His
birth was the year two hundred and ninety-six and his death on the Sunday mid-
MuÌarram the year three hundred and thirty-five in Baghdad. The cause of his death was
a liver tumour’ (‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. A. Müller, 3 vols,
Cairo/Königsberg, 1882–84, vol. I, p. 226, 29–32; ed. N. Ri≈æ, Beirut, 1965, p. 307,
14–17). On the other hand, the manuscript of the autobiography of Ibn Sinæn is part of
Collection 2519 of Khuda Bakhsh – vide infra. The pages of this text are scattered.
A. S. Saidan has noted this fact and given the order of the pages. Cf. ‘Rasæ’il of al-
Bîrºnî and Ibn Sinæn’, Islamic Culture, 34, 1960, pp. 173–5. In 1981 G. Saliba put out
a critical edition of this text, with the title ‘Risælat Ibræhîm ibn Sinæn ibn Thæbit ibn Qurra
fî al-Ma‘ænî allatî istakhrajahæ fî al-handasa wa-al-nujºm’, Studia Arabica & Islamica,
Festschrift for IÌsæn ‘Abbæs, ed. Wadæd al-Qæ≈î, American University of Beirut, 1981,
pp. 195–203. A. S. Saidan in turn put out his edition of this text, in The Works of
Ibræhîm ibn Sinæn, Kuwait, 1983, pp. 23–30. See our edition and French translation in
R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn. Logique et géométrie au Xe siècle,
Leiden, 2000.
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Ræ≈î – and, according to al-Qif†î, ‘foremost of doctors’. A great doctor,
Sinæn was also a geometer: his name is associated with several writings in
mathematics, one of which, dedicated to the Buyid king ‘A≈ud al-Dawla,
concerned inscribed and circumscribed polygons. His son, Ibræhîm’s
brother, Thæbit ibn Sinæn, followed the example of his father, whose place
he filled for caliph al-Ræ≈î; he was at the same time in charge of the hospital
in Baghdad. Thæbit ibn Sinæn was also a historian whose annals are still well
known.2 The cousin of Thæbit and Ibræhîm was no other than the famous
man of letters Hilæl ibn al-MuÌassin al-∑æbi’. These few names, these few
titles, amongst others, make their contribution to assembling the scene of an
intellectual and social aristocracy, the members of which were the moving
forces behind the currents of power, but so too the high circles of science
and of medicine. It was there that Ibræhîm saw the light, it was there that he
grew up, before being the object of a momentary persecution he later
referred to.3

Ibræhîm ibn Sinæn was also the heir to a history. He belonged to a pri-
vileged generation, the fourth down from the Banº Mºsæ. The translation of
the chief mathematical texts had, in the main, been done, and the great tradi-
tions of research were already well established: that of the algebraists, which,
born with al-Khwærizmî, was carried on with Abº Kæmil; that of the geo-
meters, al-Jawharî, al-Nayrîzî, etc., which followed the Euclidean project;
the tradition of the Banº Mºsæ, finally, which, thanks to mathematicians like
Thæbit ibn Qurra, had already amassed a considerable body of results, had
developed new methods and elaborated further theories: so much know-
ledge which had allowed their successors to see further and in greater depth.
It was in this tradition that Ibræhîm ibn Sinæn took his place right away;
namely, where deliberately an Archimedean geometry, as a geometry of
measurement, was combined with a geometry that was concerned with the
properties of positions, as the geometry of Apollonius. Benefiting from the
works of scholars in this tradition, and, in the absolute first place, from those
of his grandfather, Thæbit ibn Qurra, Ibræhîm ibn Sinæn would develop the
study of geometric transformations and of their applications to conic sec-
tions, as well as to the calculation of the area of a portion of parabola. He
would take their works on sundials deeper to fashion the theory of a whole
class of these instruments. There were, finally, the inquiries of his predeces-

2 Al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 195.
3 Autobiography of Ibn Sinæn, in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn.

Logique et géométrie au Xe siècle, pp. 6–8. See also the introduction to his book on
The Movements of the Sun (Fî Ìarakæt al-shams), ed. A. S. Saidan, in The Works of
Ibræhîm ibn Sinæn, p. 275.
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sors into analysis and synthesis that had prompted him to write the first
treatise on this subject worthy of the name.

At the same time we can catch a glimpse of his situation functioning as a
connecting hinge and its eventual impact: with a keen and searching gaze
this heir opened up several fields of the mathematics of the future – so many
privileged training-grounds for his more distinguished successors, like Ibn al-
Haytham a half century later, whose works cannot be properly understood
without Ibn Sinæn’s research. As a matter of fact it was following on from
the latter, but also in opposition to him, that Ibn Haytham put together his
magisterial treatise On the Lines of the Hours.4 The same applies to his trea-
tise, no less magisterial, on Analysis and Synthesis.5

One would hope for a copious amount of information on the life and
work of a mathematician of such broad interests, and of one of those preco-
cious creative forces whom fate has carried off before their time. But we
have learned not to be surprised any more: Ibn Sahl, Sharaf al-Dîn al-™ºsî,
to take only these examples, have made us familiar with having only a pau-
city of information. The situation with Ibræhîm ibn Sinæn is at all events bet-
ter: al-Nadîm devoted an account to him, which was originally to have been
longer; Ibn Abî UÒaybi‘a a few lines, like al-Nadîm. Al-Qif†î did no more,
but he did have in his hands a succinct autobiography of Ibn Sinæn, which
on occasion he made clumsy attempts at summarizing. Much more fortuna-
tely, this autobiography has come down to us.

Ibn Sinæn makes it clear that he drafted it after his 25th year, after 934.
Concerning his life itself, he remains more discreet. He refers rather vaguely
to a time of persecution,6 without specifying either the period, or the
reasons, even whether it is right to assume that this persecution was
connected to his political set. He announces his desire in this autobiography
to make a checklist of his writings until that time, the reasons that have
pushed him to write them down, the aims that are his own, so that neither
works that are not his own might be attributed to him nor one of his
writings might be claimed by someone else. These last have all come down
to us, with the exception of one important book, of his subject matter even,
on Tangent Circles. Apart from this, al-Nadîm, in his bio-bibliography, cites
under Ibn Sinæn’s name two titles that the latter did not mention in his
autobiography: a Commentary on the First Book of the Conics and the

4 R. Rashed, Les mathématiques infinitésimales du IXe au XIe siècle. Vol. II:
Ibn al Haytham, London, 1993, pp. 491–4.

5 R. Rashed, ‘La philosophie mathématique d’Ibn al Haytham. I: L’analyse et la
synthèse’, M.I.D.E.O., 20, 1991, pp. 31–231, and Les Mathématiques infinitésimales
du IXe au XIe siècle, vol. IV: Méthodes géométriques, transformations ponctuelles e t
philosophie des mathématiques, London, 2002.

6 Cf. Note 3.
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Intentions (aghræ≈) of the Book of the Almagest.7 Lastly, there exists a
Treatise on the Astrolabe that carries as its author’s name Ibn Sinæn, but
which no known list counts and whose authenticity has still not been
established. The works cited by al-Nadîm have not come down to us: does
that mean they are books written after his autobiography, or simply that
they are apocryphal works? On this question, no one is in any position to
give an answer.

From the autobiography of Ibn Sinæn stands out what has not stopped
being repeated, since al-Nadîm at least: this was a gifted and precocious
mathematician. According to his own assertions, he began his studies at 15;
by 16 or 17 years old he had put together a first version of his book On
Shadow Instruments, which he was to revise at 25. In this book he wrote:

I have set forth everything which concerns dials. In fact, I have brought
together all the constructions of dials with a plane surface under one single
construction common to them all, which I have demonstrated, in addition to
other things which I have shown [...].8

A year after – at the age of 18 – he was discussing and forming
criticisms of Ptolemy’s views on The Determination of the Anomalies of
Saturn, Mars and Jupiter, in a treatise which he completed six years later, at
the age of 24. In geometry, Ibn Sinæn wrote some treatises: On the Tangent
Circles, On Analysis and Synthesis, On Chosen Problems, On the
Measurement of the Parabola, and On the Drawing of the Three Conic
Sections. Written before his 25th year, all these writings had been revised by
him before this same date.

This autobiography allows us besides to arrange Ibn Sinæn’s writings in
their relations to one another, and to separate out the standard features that
govern them. For each one of them, Ibn Sinæn was set on making explicit
the purpose he was addressing, its range just as much as its place in the
totality of his work. As regards the standard features he complied with, we
can but be struck by the demands of ‘criticism’: criticism is founded in
positive and recognized value, which is practised systematically and in all
directions. It is brought to bear on the works of the ancients, such as those
of Ptolemy, but the writings of the moderns do not escape it, those of al-
Mæhænî, for example. On the other hand, at this period, as we shall see quite
particularly with Ibn Sinæn, rigour is not the only criterion putting its res-
traint on a proof, but elegance must equally be sought out; there are so
many things to respond to in renewing one’s research. From the beginning
of his mathematical career Ibn Sinæn, moreover, applied himself to the theo-

7 Al-Nadîm, al-Fihrist, p. 332.
8 Autobiography of Ibn Sinæn, in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn.

Logique et géométrie au Xe siècle, p. 8.
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retical problems of proofs, and a good part of his work refers to what we
might call a theory of proofs. Thus is explained, in part at least, the interest
he always held for the subject of analysis and synthesis. In other respects, the
desire for simplicity and elegance are reasons he explicitly considered as
being sufficient for taking up again the proof, already correct, of a proposi-
tion.

It is this context that sheds light on the only text by him written on
infinitesimal mathematics, by isolating the features of the work and giving
their sense to Ibn Sinæn’s themes. Let us read what he wrote concerning
this treatise on The Measurement of the Parabola:

I have written a work on the measurement of the parabola, in one book. My
grandfather had determined the measurement of this section. Certain
contemporary geometers have informed me that there is on this subject a
work by al-Mæhænî, which they presented to me, and easier than that of my
grandfather. I did not like it that there was a work  by al-Mæhænî more
advanced than my grandfather’s, without there being amongst us one
which surpassed him in its work. My grandfather had determined it in 20
propositions. He preceded it with numerous arithmetic lemmata, included in
the twenty propositions. The question of the measurement of the section
appeared clearly to him through the method of the absurd. Al-Mæhænî also
preceded what he proved with arithmetic lemmata. He then demonstrated
what he wanted by the method of the absurd, in five or six propositions that
are lengthy. I then proved it in three geometrical propositions, without
preceding them by any arithmetic lemma. I showed the measurement of this
same section by the method of direct proof, and I had no need for the
method of the absurd.9

An expression of the pride of an heir and of the assurance of a scholar
outside the common, these remarks are also the reflection of the standards
of Ibn Sinæn the mathematician: brevity, competence and elegance. Fruitful
and creative, these standards are equally at work in the very heart of Ibn
Sinæn’s work: he took up his own editing to refine the lines of his proof.

3.1.2. The two versions of The Measurement of the Parabola: Texts
and translations

In the introduction to his treatise on The Measurement of a Portion of
the Parabola, Ibn Sinæn writes:

Some time ago, I wrote a book on the area of this section. Later, I made a
number of changes to one of the propositions. This corrected copy and the

9 Autobiography of Ibn Sinæn, in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn.
Logique et géométrie au Xe siècle, p. 18.
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older copy have now been lost and I therefore need to repeat my earlier
work in this book.10

Having this confirmation from Ibn Sinæn himself, modern historians and
biographers have assumed that all the surviving manuscripts of this treatise
derive from one single version, the last one. This is not at all the case.

In his autobiography, we learn that Ibn Sinæn submitted his own works
for critical evaluation and all had been revised before he reached the age of
twenty-five, that is before 321/934. He writes: ‘Those of my books that I
had not already corrected as I was writing them, were corrected by me
before I reached twenty-five years of age’.11 That is to say that by 321/934
there already existed two versions of this text on the measurement of the
parabola; the first either in its original or reworked form, but already lost,
and the final version that was intended to replace it. It is this lost version that
has been rediscovered, making it possible to do that which was
inconceivable in the past; trace the development of Ibn Sinæn’s thought and
mathematical techniques.

The study of the manuscript traditions has made it possible, not only to
recover the lost text of Ibn Sinæn, but also to demonstrate that its existence
was known to earlier copyists. In this regard, one result of an examination of
manuscript 4832 in the Aya Sofya collection in Istanbul should be noted.12

This manuscript is derived from the same source as that copied by MuÒ†afæ
∑idqî in 1159/1746–1747, that is, manuscript Riyæ≈a 40 in the Dær al-Kutub
in Cairo. The following appears in the margin of the first copy of the Ibn
Sinæn treatise (fol. 78v):

He wrote the following in his introduction: Abº IsÌæq Ibræhîm ibn Sinæn
ibn Thæbit originally wrote this book, he then mentioned that he had lost it,
and finally he wrote another book and mentioned this copy in the
introduction to this new treatise.

One can read this citation word for word in the margin of fol. 182v,
written by MuÒ†afæ ∑idqî in his own hand, and in a version of Ibn Sinæn on
the measurement of the parabola. In other words, they have both
transcribed a comment already noted by their common predecessor, which
very likely dates it to before the fifth century of the Hegira, and certainly
before the sixth century, as we have shown. It is therefore clear that this
predecessor knew that the text he was copying was that lost by Ibn Sinæn.
The critical transcription of this text, and its analysis, reveals the rest; that it
is definitely the first version, and not some degenerate version of the second.

10 Vide infra, p. 495.
11 Autobiography of Ibn Sinæn, p. 18.
12 See Chapter II, section 2.1.3.
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All the manuscripts known to us and available to us at the present time
therefore fall into one of two groups: two transmit the lost version and three
transmit the final version. The first two have already been cited and
described: Aya Sofya 4832, fols 76v–79r, referred to as A, and Dær al-
Kutub, Riyæ≈a 40, fols 182v–186v, referred to as Q. It should also be noted
that the text by Ibn Sinæn comes to us in the manuscript Damascus 5648,
fols 159–165. This manuscript is a recent copy of the Cairo manuscript,
Riyæ≈a 40, and no other.

The second and final version of the treatise by Ibn Sinæn therefore
comes down to us through the following manuscripts:

1) Manuscript 2457 in the Bibliothèque Nationale de Paris, copied by al-
Sijzî in 358/967–969 in Shîræz, fols 134v–136r. We have previously made
reference to this famous collection.13 We should, however, draw attention to
one notable feature of this text. After he had translated the Ibn Sinæn
treatise, al-Sijzî compared it with another manuscript and marked all the
variations in another colour. The copy is written in black ink, while the
variations from the other manuscript are written in red ink. Apart from a
single word (annahu) on fol. 135v written in black and added in the margin
almost certainly during the copying process, all the other corrections are in
red ink. Al-Sijzî also uses red ink for the end of the treatise and for the
colophon, in which he declares explicitly that he has compared the copy
with another source. There are around 40 marginal corrections in red ink,
together with another 40 or so notes in the same colour above or below
words in the text. He has also added a number of diacritical marks in red
ink. In all, 11 phrases and 10 words are taken from the second source
manuscript. We refer to this manuscript as manuscript B, the source being
copied as x1 and the other copy as x2.

2) Manuscript 461 in the India Office (Loth 767, fols 191–197), which
we have described elsewhere.14 This manuscript, copied in 1198/1784 from
a source manuscript also located in India in nasta‘lîq, contains no additions
or marginal annotations. We refer to this manuscript as manuscript L.

3) The third manuscript forms part of collection 2519 in the Khuda
Bakhsh library in Patna, India (referred as Kh).15 This important collection
includes 42 treatises by Archimedes, al-Qºhî, Ibn ‘Iræq, al-Nayrîzî, and
others. The manuscript is a collection of 327 sheets (32 lines per page,

13 See Chapter II, Section 2.1.3.
14 R. Rashed, Sharaf al-Dîn al-™ºsî, Œuvres mathématiques. Algèbre e t

géométrie au XIIe siècle, Paris, 1986, vol. I, pp. XLII–XLIII.
15 Corresponds to No. 2468 in the Catalogue of the Arabic and Persian

Manuscripts in the Oriental Public Library at Bankipore, volume XXII (Arabic MSS.)
Science, prepared by Maulavi Abdul Hamid, Patna, 1937, pp. 60–92.
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dimension 24/15, and 20/12.5 for the text). It was copied in 631–632 of the
Hegira, i.e. 1234–1235, in Mosul, in naskhî. Ibn Sinæn’s text occupies folios
132r–134v, and contains no additions or marginal annotations.16

An analysis of errors and other incidents results in the stemma proposed
below:

L

x
x

x

x

B

Kh

1

2

To conclude our discussion of the various editions and translations of the
two versions by Ibn Sinæn: As we have said, the distinction between them
has never been made by biobibliographers and historians. No edition of the
first version exists in any form, and the second has not been the subject of a
critical edition until now. Two non-critical editions of the manuscript Kh
have been published. The first dates from 1947: Rasæ’il Ibn-I-Sinæn, edited
and published by Osmania Oriental Publications Bureau, Hyderabad–
Deccan, 1948. The second is by A. S. Saidan, The Works of Ibræhîm ibn
Sinæn, Kuwait, 1983, pp. 57–65. Translations include that by H. Suter:
‘Abhandlung über die Ausmessung der Parabel von Ibræhîm b. Sinæn b.
Thæbit’, in Vierteljahrsschrift der Naturforschenden Geselschaft in Zürich,
Herausgegeben von Hans Schinz, 63, Zürich, 1918, pp. 214–28. This
translation has been made from manuscript B alone.

We have shown the existence of the two versions in Les Mathématiques
infinitésimales, vol. I, pp. 695–735, to which the reader is referred.

3.2. MATHEMATICAL COMMENTARY

To follow the evolution of Ibn Sinæn’s thought on the measure of the
parabola, we shall simultaneously examine the two versions of his treatise so
as to compare them.  The first – the older – consists of three propositions.
These are all also found in the newer version, which includes a further
corollary to the last proposition.

16 For a detailed comparison of the manuscripts and the history of the manuscript
tradition, see Les mathématiques infinitésimales, vol. I, pp. 680–1.
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Proposition 1. — Let A = (A
0
, A

1
, …, A

n
) and B = (B

0
, B

1
, …, B

n
) be two

convex polygons. We project the points A
1, A2, …, An-1 on A0An in parallel

to An-1An to the points A′1, A′2, …, A′n-1 = An and the points B1, B2, …, Bn-1

on B
0
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n
 in parallel to B

n-1
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n
 to the points B′
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n
. If we
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B0 ′B1
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′Bn−2Bn

= λ ,
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B1 ′B1

=  … = An−1An

Bn−1Bn
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then
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Let h and h′ be the respective heights of the triangles (A0, An-1, An) and

(B0, Bn-1, Bn); h1 and h′1 those of the triangles (A0, A1, A′1) and (B0, B1, B′1),
h

i and h′i those of the trapeziums (Ai-1, A′i-1, A′i, Ai) and (Bi-1, B′i-1, B′i, Bi)
for 2 ≤ i ≤ n – 1. We have

s = tr. (A
0
, An-1, An) = 1

2 h · An-1An
 ,

 s1= tr. (A0, A1, A′1) = 1
2 h1 · A1A′1,

 si = tp. (Ai-1, A′i-1, A′i, Ai) = 1
2 hi  · (Ai-1A′i-1 + AiA′i),
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 S = p. (A
0
, A1, ..., An) =  si

i=1

n-1

∑ ,

s′ = tr. (B
0
, B

n-1
, B

n
) = 1

2 h′ · B
n-1

B
n
,

 s′
1
= tr. (B

0
, B

1
, B′

1
) = 1

2 h′
1
 · B

1
B′

1
,

 s′i = tp. (Bi-1, B′i-1, B′i, Bi) = 1
2 h′i · (Bi-1B′i-1 + BiB′i),

S′ = p. (B
0
, B

1
, ..., B

n
) =  

i=1

n-1

∑  s′
i
.

But, by hypothesis, we have on the one hand,

A1 ′A1

B1 ′B1

=  
Ai−1 ′Ai−1 + Ai ′Ai

Bi−1 ′Bi−1 + Bi ′Bi

= µ (2 ≤ i ≤ n – 1),

and on the other hand

h
i = A′i-1 A′i sin α,   h′i = B′i-1 B′i sin β;

hence
h

′h
= hi

′hi

= λ sinα
sinβ

(1 ≤ i ≤ n – 1).

We then deduce

s

′s
= s1

′s1

=  … = si

′si

=  … = sn−1

′sn−1

=
si

i=1

n−1
∑

′si
i=1

n−1
∑

= S

′S
= λµ sinα

sinβ
,

and hence arrive at the conclusion given by Ibn Sinæn:

s

S
= ′s

′S
.

Comparison of the two versions

In the first version, containing four figures, Ibn Sinæn explains in detail
the construction of the two considered polygons starting with two similar
groups such that (A

0, A′1, … , A′i, … , An) and (B0, B′1, … , B′i, … , Bn). This
detailed construction does not appear in the second version, which contains
only a single figure. The reasoning in the two versions is based on the sup-
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position that α π≠
2

 and β π≠
2

. It remains valid, however, whether α and β
are right angles or not.

In the older version, Ibn Sinæn considers, to end the proposition, the

particular cases where α π=
2

 or β π=
2

 and explains that the segments A0An

and B
0
B

n
 and their parts A′

i-1
A′

i
 and B′

i-1
B′

i
 replace in this case the

respective heights h and h′, h
i
 and h′

i
 of the triangles and trapeziums

considered.
In the later version, the calculations are much more rapid than in the

first. For example the equations for which

h

hi

= A0 An

′Ai−1 ′Ai

are directly deduced by way of the parallelism of the segments given in the
the later version, whereas they are obtained in the first with the help of
similar triangles.

In the two versions, Ibn Sinæn uses the hypotheses in the form

a1

a2

 =  
b1

b2

,  ...  ,  
ai-1

ai

 =  
bi-1

bi

,  ...,  
an-1

an

 =  
bn-1

bn

,

with a
i = A′i-1A′i, bi = B′i-1B′i for 1 ≤ i ≤ n – 1, and (A′0 = A0) (B′0 = B0). In

the later version, Ibn Sinæn deduces without justification that

 a1

an−1

 =  
b1

bn-1

,

whereas in the first, he obtains this equation by constructing the given ratios
step by step. There, the difference must be purely formal.

Let us note that in the two versions, the conclusions pertaining to areas
are obtained in the form

s

s1

= ′s

′s1

,   
s

s2

= ′s

′s2

,  …,  
s

si

= ′s

′si

,  …,  
s

sn−1

= ′s

sn−1

.

In the later version, he immediately deduces

s

′s
 =  

s1

′s1

 =  ...  =  
si

′si

 =  ...  =  
sn-1

′sn−1

 =  
 si

i=1

n−1

∑

 ′si
i=1

n-1
∑

.
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In the first version, Ibn Sinæn transforms firstly by a permutation the ratios
in the first expression.

Lastly, in the two versions, Ibn Sinæn proceeds with the help of the
same pointwise transformation T defined in the statement of that proposition
and in which the polygon (B0, B1, ..., Bn) has as its image the polygon
(A0, A1, …, An). This transformation, we show, is an affine mapping.

Let us take as a system of reference x B
n y and X An Y, with A0 ∈ An X

and B0
 ∈ B

n
 x, A

n-1
 ∈ A

n
 Y and B

n-1
 ∈ B

n
 y, and consider A

0
, B

0
, A

n-1
 and

B
n-1

 as unit points on the axes. Then

B
0
 (x

0
 = 1 ; y

0
 = 0), B

n-1
 (x

n-1
 = 0 ; y

n-1
 = 1),

A
0
 (X

0
 = 1 ; Y

0
 = 0), A

n-1
 (X

n-1
 = 0 ; Y

n-1
 = 1).

For each point B′i (xi ; 0) on Bn x and its homologue A′i (Xi ; 0) on
A

n X, we have by hypothesis
Bn ′Bi

Bn B0

 =  
An ′Ai

An A0

.

Hence
xi

x0

= Xi

X0

;

thus Xi = xi.
For each point B

i
 (x

i
, y

i
) and its homologue A

i
 (X

i
, Y

i
), we likewise have

by hypothesis
′BiBi

BnBn−1

= ′Ai Ai

An An−1

.

Hence

  

yi
yn−1

 =  
Yi

Yn-1
;

thus Y
i = yi.

Thus, the points B
i
 for (0 ≤ i ≤ n) with respect to the system of refe-

rence x B
n y have the same coordinates as the respective images Ai conside-

red with respect to the system of reference X A
n Y. They are thus homolo-

gous under the transformation T defined with respect to the two systems of
reference x B

n y and X An Y, with the two systems of reference being able to
be as here in the same plane, or in two different planes. The function T is
thus an arbitrary affine bijection and the ratio k of an arbitrary area to the
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homologous area is independent of the area chosen. In the example treated
by Ibn Sinæn, k is determined by the data

k = s

′s
= si

′si

= S

′S
= λµ sinα

sinβ
.

In the particular case where α = β, we have k = λµ and the ratio k is
thus the product of the ratios λ and µ  of two affinities (dilatations or
contractions). One can thus consider the transformation T as the product of
two affinities, oblique or orthogonal depending on whether α  is or is not a
right angle, and of a displacement (and likewise of an isometry). In the
particular case where α = β and λ = µ, we have k = λ2, and the
transformation T is then a similarity of ratio λ.

Proposition 2. — The ratio of the areas of the two portions of a parabola
sections is equal to the ratio of the areas of the two triangles which are
associated with them.

Let ABC and DEG be two portions of a parabola, S and S′ their
respective areas, and S1 and S′1 the areas of the triangles P1 and P′′′′1
associated with these sections. We want to show that

′S

S
= ′S1

S1

.

Ibn Sinæn’s proof is by a reductio ad absurdum that relies on the fol-
lowing lemma:

LEMMA: If M is the vertex associated with an arbitrary chord BC of a
parabola, then

tr. (BMC) > 1
2 port. (BMC).

The tangent at M is parallel to BC; it meets the diameter BH at O and
the parallel to BH through C at S. We have

tr. (BMC) = 1
2 area (BOSC).

But
area (BOSC) > port. (BMC);

hence the result.
We then suppose

′S1

S1

≠ ′S

S
.
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1) If ′S1

S1

> ′S

S
, there exists an area J such that ′S1

S1

= ′S

J
; we then have J < S

and we let S – J = ε. We thus have

S – S1 ≤ ε or S – S1 > ε.

If S – S1 ≤ ε, then S – S1 ≤ S – J; hence S1 ≥ J, which is impossible, as
′S1

S1

= ′S

J
 and S′1 < S′.
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If now S – S1 > ε, we divide HC and HA in two halves at the points Q
and U. To this subdivision of AC into 22 equal parts, we associate the poly-
gon P2

, (A, N, B, M, C) having (22 + 1) vertices, of area S
2
. Through itera-

tion, we obtain successive subdivisions of AC into 23, 24, … , 2n equal parts.
To these subdivisions, we respectively associate the inscribed polygons P

3
 of

area S
3
, … , P

n
 of area S

n
. The polygon P

n
 has (2n + 1) vertices. By the

lemma, we have

S – S1 < 1

2
 S,

S – S2 < 1

2
 (S – S1) <

1
22  S,

…

S – Sn < 1

2
 (S – Sn-1) <

1
2n S.
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Thus, for this ε given ∃ N ∈ N*; ∀ n ≥ N, we have S – S
n
 < ε, that is to say

S – S
n < S – J;

hence
S

n
 > J.

Let P
n be the polygon corresponding to this number n. The vertices Mi

and Ni for (0 ≤ i ≤ 2n-1) and with M0 = N0 = B, M2
n-1 = C, N2

n-1 = A, have
pairwise equal ordinate; there thus corresponds to them a single abscissa on
BH. If a is the latus rectum of the parabola, the vertices M

i
 (x

i
, y

i
) of P

n

satisfy the equation   yi
2 =  a xi .

To these vertices there is associated a subdivision along the diameter BH
by the points P

i of abscissa xi, with x0 = 0 and x
2n−1  = BH. To this subdivi-

sion of BH, we associate on the diameter EI of the second section a similar
subdivision by the points P′

i
 of abscissa x′

i
. We then have

(1) xi

′xi

= BH

EI
= λ .

The points M′i and N′i of common abscissa x′i of the parabola DEG define a
polygon P′n of area S′n. If a′ is the latus rectum of DEG, the coordinates (x′i,
y′i) of M′i satisfy the equation y′2 = a′x′i. We have

yi
2

′yi
2 = axi

′a ′xi

= a

′a
λ ,

whence

(2) yi

′yi

= a

′a
λ = µ .

By (1) and (2), the polygons (H, B, … M
i, …, C) and (H, B, …, Ni, …, A)

and their respective homologues (I, E, …, M′i, …, G) and (I, E, …, N′i, …,
D) satisfying the hypotheses of Proposition 1, we deduce

′Sn

Sn

= ′S1

S1

,

whence
′Sn

Sn

=
′S

J
,
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which is impossible, as S
n
 > J and S′

n
 < S′.

2) If ′S1

S1

< ′S

S
, there exists an area J′ such that ′S1

S1

= ′J

S
 with J′ < S′. We

show in the same manner that this is impossible.
From cases 1) and 2), we conclude that

′S1

S1

= ′S

S
.

Comparison of the two versions

1. The difference between the two versions concerns the uniqueness of
the abscissa. In fact, in the older version (vide infra pp. 488–9 and n. 3), to
the two points M and L, which have equal ordinates by construction, Ibn
Sinæn associates two different abscissae IT and IV. To the points T and V
taken to be distinct on IG he associates the distinct points R and X on EH
and then separately considers the polygons (G, I, L, C) and (E, H, Q, A) on
the one hand and (G, I, M, D) and (E, H, J, B) on the other hand, which
satisfy the hypotheses of Proposition 1. From this, he deduces the conclusion
for the polygons (C, L, I, M, D) and (A, Q, H, I, B).

The fact of having given different abscissae to the two points M and L
which have equal ordinates does not, however, have an effect on the rigour
of the reasoning. The uniqueness of the abscissa results from Proposition
I.20 of Apollonius’s Conics. Ibn Sinæn did not think about this in the course
of his first composition in spite of his great familiarity with the Conics.

In the later version, on the other hand, Ibn Sinæn proves that the points
M and N, which have by hypothesis equal ordinates HQ = HU, have a same
and single abscissa BP. He then directly considers the polygons (A, N, B, M,
C) and (D, X, E, T, G) without indicating that these are the polygons (H, B,
M, C) and (I, E, T, G) on the one hand, and (H, B, N, A) and (I, E, X, D) on
the other, which satisfy the hypotheses of Proposition 1.

Yet, in using the affine mapping T deduced in Proposition 1, we have
directly the correspondance between the polygons (A, N, B, M, C) and (D,
X, E, T, G) and we can conclude without separating these polygons into two
parts. It seems likely that it was this very idea that impelled Ibn Sinæn to
produce a new edition of his treatise.

2. Proposition 2, like those that will follow, bears upon parabolic sec-
tions. The vertex of a portion of a parabola is the extremity of the diameter
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conjugate to the chord which is the base of the portion.17 This vertex and
this chord determine the triangle associated with the portion of the parabola.
Now, this triangle plays here an important role.

In fact, in the statement of the proposition in both versions Ibn Sinæn
relates each portion of a parabola to the triangle ‘for which the base is its
base and the vertex its vertex’.

In the statement of Proposition 3, as in that of Proposition 4 of the
newer version, Ibn Sinæn relates the portion of the parabola ‘to the triangle
on the same base and with the same height’, whereas in Proposition 3 from
the older version, he relates the portion of the parabola to the parallelogram
‘which has for base its base and for height its height’. Yet in each of these
propositions, the height of the triangles or of the parallelogram considered
does not appear. Ibn Sinæn uses, in fact, the segment joining the vertex to
the middle of the base. This segment only becomes the height in the
particular case where the diameter considered is the axis of the parabola;
something Ibn Sinæn knew perfectly well.

Proposition 3. — The area of a portion of a parabola is four thirds the
area of the triangle which is associated with it.

Let ABC be a portion of a parabola with base AC and diameter BD; let
Sp be its area and ST that of the triangle ABC. We have

Sp = 4
3  ST.
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Fig. 3.3

17 The Conics, Book I, definition of diameter (R. Rashed, Apollonius: Les Coni-
ques, tome 1.1: Livre I, commentaire historique et mathématique, édition et traduction du
texte arabe, Berlin/New York, 2008, p. 254); the word ‘vertex’ appears in order to
designate the extremity of the diameter.
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Let E and M be the respective midpoints of BC and BA, GH and NU
the corresponding diameters, and H and U the respective midpoints of DC
and DA; thus GN is parallel to AC and cuts BD at I and BC at J.

Let DK ⊥ BC and GL ⊥ BC. We have

IJ

CD
= BI

BD
,

and on the other hand
BI

BD
= IG2

CD2
,

whence IG2 = IJ · CD. But DC = 2 HD = 2GI, whence GI = 2IJ and as a
result GJ = 1

2 GI = 1
4 DC.

The right-angled triangles DKC and GLJ are similar as CDK LGJˆ ˆ=
(acute angles with parallel sides); thus

GL

DK
= GJ

DC
,

whence
GL = 1

4  DK.

The triangles DBC and GBC have the same base BC, whence

tr. (GBC) = 1
4  tr. (DBC) = 1

8  tr. (ABC) = 1
8  ST.

But, by proposition 2,
tr. area ( ) ( )GBC

S

GBC

ST p

= ;

thus
area (GBC) = 1

8  Sp.

Likewise
area (NBA) = 1

8  S
p

 ,

whence
area (GBC) + area (NBA) = 1

4  Sp

and
S

T = 3
4  Sp 

,
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whence the result
S

p
 = 4

3  S
T

 .

We now analytically treat Ibn Sinæn’s result in the case where BD is the
axis of the parabola. In an orthonormal system of reference B(0,0),
A(x0, y0 = ax0 ), C(x0, – ax0 ), we have

Sp = 2 ax  dx =0
x0Ú  4

3  x0 a x0 ;

yet
S

T
 = x

0
 ax0 ,

whence
S

p
 = 4

3 S
T 

.

Comparison of the two versions

The two proofs are very close to one another; however, in the older ver-
sion, to show that HO = 1

4 DP (corresponding to GL = 1
4 DK in the newer

version), Ibn Sinæn makes appeal to the properties of the tangent at a point,
that is to say to Book I of Apollonius’s Conics,18 and the proof is markedly
longer than that of the newer version which is summarised here.

In the figure in the older version, we find as before two different abscis-
sae for two points H and I for which the ordinates are equal. The result is
two distinct points, in place of a single one, for the intersections of the tan-
gents to H and I with the diameter.19 But as before, this does not enter into
the reasoning.

Let us note ultimately that, in the older version, Ibn Sinæn ends by
giving the ratio 2

3  of the parabola to the associated parallelogram.

The following proposition is a corollary to Proposition 3 and is not
found in the older version, but only in the newer.

Proposition 4. — Let ACE and BCD be two portions of the same
parabola. If the bases AE and BD are parallel and if they meet the

18 R. Rashed, Apollonius: Les Coniques, tome 1.1: Livre I, pp. 318 and 320.
19 It is clear that, by their construction, the points I and H have equal ordinates,

DC/2 and DB/2, and thus have the same abscissa; we must therefore have X = R (cf. Fig.
3.3.). Moreover, the vertex A being the midpoint of the subtangent, we must also have
K  = L .



478 CHAPTER III: IBN SINÆN

diameter CH associated with them at the points H and G, then their
respective areas S1 and S2 satisfy

S1

S2

= CH
CG

.
CH
CG

.

K I
C

G
B

A

H

E

D

Fig. 3.4

In fact, by Proposition 3, we have

S
1
 = 4

3  tr. (ACE) = 4
3  area (HCKE),

S2 = 4
3  tr. (BCD) = 4

3  area (GCID);

hence
S

S

HCKE

GCID

CH HE

CG GD
1

2

= = ⋅
⋅

area 

area 

( )
( )

,

as IDG KEHˆ ˆ= . But
HE2

GD2
= CH

CG
;

hence
S1

S2

= CH

CG
.

CH

CG
.

Comment: If we put CH = x
1
, CG = x

2
, we get

S

S

x

x
1

2

1

2

3
2

=






.
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If we call h
1
 and h

2
 the distances from C to the chords AE and BD, then

h
1 and h2 are the heights drawn from C in the triangles ACE and BCD and

we have

S

S

h

h
1

2

1

2

3
2

=






,

as
h

h

x

x
1

2

1

2

= .

The affine transformation T defined by Ibn Sinæn in Proposition 1 and
characterized by the two ratios λ and µ associates with a portion ABC of the
parabola of diameter BD and whose latus rectum relative to the diameter is
a, a portion A′B′C′ of the parabola of diameter B′D′ such that B′D′ = λ · BD
and of base A′C′ such that A′C′ = µ · AC. The latus rectum a′ relative to the
diameter B′D′ is then

′ = ⋅a a
µ
λ

2

.

B

B

B

A

A

A

A

i i

i
′

′

β

α
′

′
i

C D

B

′ ′

D

C

Fig. 3.5

In fact, we have
B′B′i = λ · BBi or x′i = λ xi,

B′A′i = µ · BiAi or y′i = µyi.

By hypothesis, we have
y axi i

2 = .

Hence
′yi

2

µ 2
= a

′xi

λ
,
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and these would be the angles α and β.
Reciprocally, if two parabolic sections ABC and A′B′C′ are given, there

exists a transformation T such that (A′B′C′) = T (ABC).
The affine transformation T becomes a similarity of ratio λ  if α = β  and

λ = µ; we then have a′ = aλ, D′B′ = λ · DB, A′C′ = λ · AC.
Reciprocally, if two parabolic sections (ABC) and (A′B′C′) satisfy

α = β, D′B′ = λ · DB, a′ = λa,

then they correspond by a similarity of ratio

 λ (D′B′ =λ · DB ⇒ A′C′ =λ · AC).

Thus in the course of his treatise Ibn Sinæn introduces in the study of
the area of the parabola the notion of an affine transformation at the same
time as that of infinitesimal procedures. The different stages of Ibn Sinæn’s
approach in this treatise are thus articulated in the following manner:

• In Proposition 1, he shows that the affine transformation T conserves
the ratio of areas in the case of  triangles and polygons.

• He then shows in Proposition 2 that the same holds when one turns to
the ratio of the area of a portion of a parabola to that of its associated
triangle  and to the ratio of their homologues. The subjacency property is in
fact the conservation of ratios of areas (even curvilinear) by every affine
transformation. The mathematical perspective of the epoch, however, did
not lead him to consider general classes of curves and Ibn Sinæn states this
property only for polygons and parabolic sections.

For this, he uses Proposition X.1 of the Elements or, if one prefers, the
Lemma of Archimedes, to show that it is possible to inscribe in the portion
of the parabola a polygon whose area differs as little as one likes from that
of the parabola.

• Having shown this, the calculation of the ratio of the area of a portion
of a parabola to that of the associated triangle did not require any further
infinitesimal treatment, but only the fact that the ratio does not depend on
the portion considered (as was precisely established by Ibn Sinæn).

This strategy of Ibn Sinæn’s, based on the combination of affine trans-
formations and infinitesimal methods succeeded in reducing the number of
lemmas to just two.



3.3. Translated texts
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3.3.1. On the Measurement of the Parabola

3.3.2. On the Measurement of a Portion of the Parabola



In the name of God, the Merciful, the Compassionate

BOOK OF IBRÆHïM IBN SINÆN

On the Measurement of the Parabola1

– 1 – Consider two straight lines AB and CD, and if they are divided
into an arbitrary number of parts at the points E, G, H and I such that the
ratios of the straight lines BG, GE, EA are equal to the ratios of the straight
lines DI, IH, CH, if the parallel lines BN, GL, EK and the parallel lines DS,
IM, HJ are drawn also such that the ratio of BN to GL is equal to the ratio
of DS to MI and the ratio of GL to EK equal to the ratio of IM to HJ, and if
the straight lines AN, AK, LK, LN, CS, CJ, JM, SM, are joined, then the
ratio of the triangle BNA to the triangle DSC is equal to the ratio of the
polygon AKLNB to the polygon CJMSD.
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Fig. III.1.1a

Proof: The straight lines BN, GL and EK are either perpendicular to the
straight line BA or are not thus. If they are perpendicular, we use the
straight lines BG, GE and EA as the perpendiculars to the parallel straight
lines, otherwise we produce from the point A a perpendicular AO to NB, on

1 We find in the margin of the manuscripts: ‘He wrote the following in his
introduction: Abº IsÌæq Ibræhîm ibn Sinæn ibn Thæbit originally wrote this book, he
then mentioned that he had lost it, and finally he wrote another book and mentioned this
copy in the introduction to this new treatise.’
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which it lies at O, from the point E the perpendicular EX to the straight line
GL, and from the point G the perpendicular GQ to the straight line NB.
Likewise, if the straight lines HJ, IM, DS are perpendicular to the straight
line CD, we use the straight lines DI, IH, HC as the perpendiculars to the
parallel straight lines, otherwise we produce from the points C, H, I the
homologous perpendiculars to those produced in the other figure: CF on
DS, HT on M I, IV on SD. We extend KE to AO; it then meets it at the
<point> R and it is perpendicular to it because it is perpendicular to a
straight line parallel to it. Likewise, we extend HJ to CF; it then meets it at
the point Z and it will also be perpendicular to the straight line CF. The
triangle ANB is half of the product of AO and NB and the triangle AEK is
half of the product of AR and EK; thus the ratio of the triangle ANB to the
triangle AEK is equal to the ratio of half the product of AO and NB to half
the product of AR and EK and is equal to the ratio of the product of AO and
NB to the product of AR and EK. But this ratio is compounded of the ratio
of AO to AR and of the ratio of BN to EK, and the ratio of AO to AR is
equal to the ratio of BA to EA as ER is parallel to BO; thus the ratio of the
triangle ABN to the triangle AEK is compounded of the ratio of BN to EK
and of the ratio of BA to AE. In the same way, we also show that the ratio
of the triangle CSD to the triangle CHJ is compounded of the ratio of DS to
HJ and of the ratio of DC to CH. But since the ratio of BG to GE is equal
to the ratio of DI to IH , the ratio of B E to EG  is, by composition
(componendo), equal to the ratio of DH to HI. But the ratio of GE to EA is
equal to the ratio of IH to CH. By the equality (ex aequali), it follows that
the ratio of BE to EA is equal to the ratio of DH to CH; by composition, the
ratio of BA to AE is equal to the ratio of DC to CH, the ratio of BN to GL is
equal to the ratio of DS to MI and the ratio of GL to EK is equal to the ratio
of MI to HJ. By the equality, the ratio of BN to EK is equal to the ratio of
DS to HJ. But since we have shown that the ratio of the triangle ABN to the
triangle AEK is compounded of the ratio of BA to AE and of the ratio of BN
to EK, and that these ratios are equal to the ratio of DC to CH and to the
ratio of DS to HJ, as we have shown, the ratio of the triangle ABN to the
triangle AEK is compounded of the ratio of DC to CH and of the ratio of
DS to HJ, and of these two ratios is compounded a ratio equal to the ratio
of the triangle CSD to the triangle CHJ as we have shown. Thus the ratio of
the triangle ABN to the triangle AEK is equal to the ratio of the triangle
CSD to the triangle CHJ. By permutation, the ratio of the triangle ABN to
the triangle CSD is thus equal to the ratio of the triangle AEK to the
triangle CHJ.
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Moreover, the trapezium EKLG contains the two parallel straight lines
GL and EK; it is thus equal to the product of the half-sum of the two
straight lines GL, EK and EX, which is perpendicular to them. Thus the
ratio of the triangle ABN to the trapezium EKLG is equal to the ratio of the
product of the perpendicular AO and half of the straight line BN to the
product of EX and the half-<sum> of the two straight lines GL and EK. The
ratio of the triangle ABN to the trapezium EGLK is consequently
compounded of the ratio of AO to EX and of the ratio of half of the straight
line BN to the half-<sum> of the straight lines EK and GL. But the ratio of
AO to EX is equal to the ratio of AB to EG from the fact that the triangle
EXG is similar to the triangle AOB, since the straight line AO is parallel to
the straight line EX, as they are perpendicular to two parallel straight lines.
But the straight line BO is parallel to the straight line GX and the straight
line AB is on the extension of the straight line EG; thus the ratio of the
triangle ABN to the trapezium EGLK is compounded of the ratio of AB to
EG and of the ratio of half of BN to the half-sum of GL and EK. In the
same way, we show that the ratio of the triangle CDS to the trapezium
HJMI is compounded of the ratio of CD to HI and of the ratio of half of DS
to the half-<sum> of the straight lines IM and HJ. But since the ratio of GL
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to EK is equal to the ratio of IM to HJ, the ratio de GL to the sum of LG
and EK is equal to the ratio of IM to the sum of IM and HJ. But the ratio of
BN to GL is equal to the ratio of DS to IM; thus the ratio of BN to <the sum
of> GL and EK is equal to the ratio of DS to <the sum of> IM and HJ; the
ratios of their halves are equally thus: the ratio of half of BN to half of <the
sum of> GL and EK is equal to the ratio of half of DS to half of <the sum
of> IM and HJ. Yet, we have shown that the ratio of the triangle ABN to
the trapezium EGLK is compounded of the ratio of AB to EG and of the
ratio of half of BN to half of <the sum of> KE and LG. As for the ratio of
AB to EG, it is equal to the ratio of DC to IH, as the ratio of AB to AE is
equal to the ratio of DC to CH, as we have shown, and the ratio of EA to
EG is equal to the ratio of CH to HI; thus, by the equality, the ratio of AB
to EG is equal to the ratio of CD to HI; as for the ratio of half of BN to the
half-<sum> of EK and GL, it is equal to the ratio of half of DS to the half-
<sum> of HJ and IM. Consequently, the ratio of the triangle ABN to the
trapezium EGLK is compounded of the ratio of CD to HI and of the ratio of
half of DS to the half-<sum> of HJ and IM. The ratio of the triangle CSD
to the trapezium HJMI is compounded of these two ratios, as we have said;
thus the ratio of the triangle ABN to the trapezium EGLK is equal to the
ratio of the triangle CDS to the trapezium HIMJ. By permutation, the ratio
of the triangle ABN to the triangle CSD is equal to the ratio of the
trapezium EGLK to the trapezium HJMI. Likewise, we show that it is also
equal to the ratio of the trapezium BNLG to the trapezium SDIM; yet the
ratio is also equal to the ratio of the triangle AEK to the triangle CHJ. The
ratio of each polygon to its associated one is thus equal to the ratio of all to
all. The ratio of the triangle ABN to the triangle CSD is thus equal to the
ratio of the sum of the triangle A E K, the trapezium EGLK  and the
trapezium GBNL to the sum of the triangle CHJ, the trapezium HJMI and
the trapezium SMID; this is equal to the ratio of the polygon AKLNB to the
polygon CJMSD. That is what we wanted to prove.
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We must show this whether only the angle B is a right angle or each of
the two angles B and D is, so the proof of this case is similar to that one, as
we use the ratio between the straight line AB and each of its parts in place
of using the ratio between the perpendicular AO and the perpendicular EX
or the perpendicular GQ. Likewise, we use in place of the product of AO
and BN, the product of AB and BN and in place of the product of EX and
half <the sum> of KE and LG, the product of EG and half <the sum> of KE
and LG; likewise for the polygon CJMSD.

– 2 – For two portions of a parabola, the ratio of the one to the other is
equal to the ratio of the triangle whose base is the base of the first and
whose vertex is its vertex, to the triangle whose base is the base of the
other and whose vertex is its vertex.

Let ABCD be a parabola; we cut it into two portions AB and CD, we
divide the straight lines AB and CD in two halves at the points E and G and
we make two diameters EH and GI pass through these points, which meet
the parabola at the points H and I. We join AH, HB, CI and ID.

I say that the ratio of the portion AHB of the parabola to the portion
CID of the parabola is equal to the ratio of the triangle AHB  to the
triangle CID.

Fig. III.1.2

If it is not thus, let the ratio of the triangle AHB to the triangle CID be
equal to the ratio of the portion AHB of the parabola to a smaller surface
than the portion CID of the parabola, let that surface be K. <The sum> of
the two portions bounded by the straight line CI and the portion CI of the



488 CHAPTER III: IBN SINÆN

line of the parabola, and by the straight line DI and the corresponding
portion ID of the line of the parabola, is either greater than the excess of
the portion CID of the parabola over the surface K, or is not greater than
this excess.

Let it be first not greater than this excess; there remains the triangle
CDI which is not smaller than the surface K; therefore the ratio of the
portion AHB of the parabola to the surface K is not smaller than the ratio of
the portion AHB to the triangle CDI. But the ratio of the portion AHB to the
surface K is equal to the ratio of the triangle AHB to the triangle CDI; thus
the ratio of the triangle AHB to the triangle CDI is not smaller than the
ratio of the portion AHB to the triangle CDI; this is impossible, as the
triangle ABH is smaller than the portion AHB of the parabola.

Now, let the sum of the two portions CLI and IMD of the parabola be
greater than the excess of the portion CID of the parabola over the surface
K which exceeds the triangle CDI. We divide the two straight lines CI and
ID in two halves at the points N and S, making two diameters parallel to the
straight line GI pass through these points, since the diameters of this
parabola are parallel; these diameters are NL and SM. We join the straight
lines CL, LI, IM and MD , and we make a straight line parallel to the
straight line CNI pass through the point L; it is thus tangent to the parabola,
as was shown in the book of Conics,2 let the straight line be OLP; we
produce to it the diameter GI that it meets at P, and from the point C a
diameter parallel to the diameter GI, let it be CO. The surface COPI is a
parallelogram circumscribed about the portion CIL of the parabola; it is
thus greater than it, its half is thus greater than its half. The triangle CLI,
which is half of the parallelogram COPI, is thus greater than half of the
portion CLI of the parabola. Likewise, we show that the triangle IMD is
greater than half the portion of the parabola in which it is inscribed. If we
proceed in the same manner on the portions of the parabola which are on
the straight lines CL, LI, IM and MD, that is, we separate from each of
them <a surface> greater than its half, we then obtain a remainder of the
portion CID smaller than the excess of the portion CID over the surface K.
Let the remainder be the portions of a parabola CL, LI, IM, MD, so the
polygon CDMIL will be greater than the surface K. But since the diameter
IG  cut the straight line CD in two halves, the straight line C D is an
ordinate. We then produce from the points L and M  two straight lines
parallel to it, that is, ordinates to the diameter GI, let them be LT and MV,

2 Apollonius, I.17.
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which meet the diameter at the points T and V.3 We divide the straight line
EH which is on the diameter EH following the ratios of the parts of the
straight line IG at the points X and R so that the ratio of the straight line HX
to EH should be equal to the ratio of IV to IG and that the ratio of RH to
EH should be equal to the ratio of TI to IG. We produce from the points X
and R two ordinates from the diameter EH, that is, parallel to the straight
line AB, as the straight line AB is also an ordinate since the diameter EH
cuts it in two halves. Let us produce the two straight lines XJ and RQ in
two different directions; they fall on the parabola at the points J and Q; we
join AQ, QH, HJ, JB. But since the diameter of the parabola is EH and
since it had been cut by the ordinates which are AE and QR, the ratio of the
square of AE to the square of QR is equal to the ratio of EH to the straight
line RH; this did part of what was shown in the book of Conics.4 Likewise,
the ratio of the square of DG5 to the square of LT will be equal to the ratio
of the straight line GI to the straight line IT. But since the ratio of the
straight line EH to the straight line RH is equal to the ratio of the straight
line GI to the straight line IT, the ratio of the square of the straight line AE
to the square of the straight line RQ is equal to the ratio of the square of the
straight line GD to the square of LT. But these straight lines are also
proportional in length. Yet it has been shown in the previous proposition
that if one has two straight lines EH and GI and that the straight line EH
has been divided at the point R and the straight line GI at the point T, such
that the ratio of ER to RH is equal to the ratio of GT to TI, if we produce
two parallel straight lines AE and RQ and two parallel straight lines GD
and LT, such that the ratio of AE to RQ is equal to the ratio of GD to LT,
and if we join the straight lines, then the ratio of the triangle AEH to the
triangle CIG6 is equal to the ratio of the polygon AEHQ to the polygon
CLIG. In the same manner, we show that the ratio of the triangle EBH to
the triangle GID is equal to the ratio of the polygon EHJB to the polygon
IMDG. But the ratio of the triangle EAH to the triangle ICG is equal to the
ratio of the triangle EBH to the triangle GID. Indeed, since the straight line
AE is equal to the straight line EB, the triangle AEH must be equal to the
triangle EBH; in the same way, the triangle GCI is equal to the triangle

3 In this version, Ibn Sinæn does not show that the points T and V coincide with a
single point in the middle of the straight line LM. To the points T and V on P G he
associates the points X and R on EH. He then separates each of the triangles ABH and
CDI and each of the polygons ABJHQ and CDMIL into two parts in order to apply the
result of proposition 1.

4 Apollonius, I.20.
5 We know that DG = GC.
6 See the previous note.
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GID. That is why the ratio of the polygon HJBE to the polygon GDMI is
equal to the ratio of the polygon AEHQ to the polygon CLIG. The ratio of
the polygon AEHQ to the polygon CLIG is equal to the ratio of the polygon
ABJHQ to the polygon CDMIL. But the ratio of the polygon AEHQ to the
polygon CLIG is equal to the ratio of the triangle EHA to the triangle CGI,
and is equal to the ratio of the multiples of these triangles. The ratio of the
triangle ABH to the triangle DIC is thus equal to the ratio of the polygon
BAQHJ to the polygon DCLIM. But we have stated that the ratio of the
portion AHB of the parabola to the surface K is equal to the ratio of the
triangle AHB to the triangle DIC and we have shown that the surface K is
smaller than the polygon DCLIM; thus the ratio of the portion AHB of the
parabola to the surface K is greater than its ratio to the polygon DCLIM.
But its ratio to the surface K is equal to the ratio of the triangle HAB to the
triangle DIC, as we have stated; thus the ratio of the triangle HAB to the
triangle DIC is greater than the ratio of the portion AHB to the polygon
DCLIM. But the ratio of the portion AHB to the polygon DCLIM is greater
than the ratio of the polygon ABJHQ to the polygon DCLIM; thus the ratio
of the triangle AHB to the triangle DIC is much even greater than the ratio
of the polygon ABJHQ to the polygon DCLIM. But we have shown that the
ratio of the triangle ABH to the triangle DCI is equal to the ratio of the
polygon ABJHQ to the polygon DCLIM, which is impossible. It is thus not
possible that the ratio of the triangle ABH to the triangle DCI should be
equal to the ratio of the portion ABH to a smaller figure than the portion
DIC.

Were it possible for there to be a surface greater than it, then the ratio
of the triangle DIC to the triangle ABH would be equal to the ratio of the
portion DIC to a smaller surface than the portion ABH. This is
contradictory and not possible.

The ratio of the triangle ABH to the triangle CID is thus not equal to
the ratio of the portion ABH to a surface which is neither smaller nor larger
than the portion ICD, the ratio of the triangle ABH to the triangle ICD is
therefore equal to the ratio of the portion bounded by the straight line AB
and by a section AB of the line of the parabola to the portion bounded by
the straight line CD and the line CD of the parabola. In the same way, for
two arbitrary portions of a parabola, the ratio of the one to the other is
equal to the ratio of the triangle of the same base and vertex to the triangle
in the other. That is what we wanted to prove.

– 3  – Every portion of a parabola is equal to two thirds the
parallelogram with the same base and the same height, and is equal to one
and one third times the triangle of the same base and vertex.
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Let TAV be a parabola, and let it be cut by an arbitrary straight line,
that is straight line BC, which separates the portion BAC. Let the straight
line BC be divided into two halves at the <point> D. Let us produce from
the point D a diameter DA for the portion. We join AB and AC and make a
straight line parallel to the straight line BC passing through point A, that is
the straight line NAS, and produce through the points B and C two
diameters parallel to the diameter AD, which are BN and CS.

I say that the ratio of the portion BAC of the parabola – on the one
hand – to the parallelogram NBCS is equal to the ratio of four to six and –
on the other hand – to the triangle ABC is equal to the ratio of four to
three.

Fig. III.1.3

Proof: We divide each of the straight lines AC and AB into two halves
at the points E and G and we make to pass through these two points two
diameters which cut the parabola; that which passes through the point G
cuts it at I, and the other cuts it at H. We produce from the points I and H
two straight lines IL and H K tangent to the parabola; they meet the
diameter AD at the points K and L. We extend LI so that it meets BN at the
<point> M and the straight line KH so that it meets SC at the <point> J. We
produce from the point H the ordinate straight line HX to the diameter AD
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and likewise the straight line IR.7 We produce as well from the point H the
perpendicular HO to AC and from the point D the perpendicular DP to AC,
so that the straight line HX meets the straight line AC at <the point> Q.
Given that the straight line EH is a diameter which cuts the straight line CA
into two halves, then CA is an ordinate. But the straight line HK has been
produced tangent to the parabola at the extremity of the diameter, it is thus
parallel to the ordinates.8 The straight line AC is thus parallel to the straight
line KJ and, moreover, the straight line KH is tangent to the parabola. One
has produced from the point of contact to the diameter AD an ordinate
which is HX and the diameter AD met the straight line tangent at K; the
straight line KA is thus equal to the straight line AX9 and the ratio of AK to
AX is equal to the ratio of HQ to QX since AQ is parallel to KH; thus the
straight line HQ is equal to the straight line QX. Likewise, since the
straight lines HX  and CD are the ordinates of the diameter AD, CD is
parallel to the straight line XQ; thus the ratio of DA to AX is equal to the
ratio of DC to XQ. But the ratio of DA to AX is equal to the ratio of the
square of DC to the square of XH, as was shown in the Conics.10 The ratio
of DC to XQ is thus equal to the ratio of the square of DC to the square of
XH; for this reason, the straight line HX is in mean proportion between the
two straight lines DC and XQ. The product of DC and XQ is thus equal to
the square of XH, but the square of XH is equal to four times the product of
XQ and QH since XQ is equal to HQ, as we have shown. Consequently, the
product of DC and XQ is equal to four times the product of HQ and XQ;
the straight line HQ is thus one quarter the straight line DC. But since the
straight line DC is parallel to the straight line HQ, the straight line DP is a
perpendicular, the straight line HO is a perpendicular and the straight line
QO is the extension of the straight line OP, the triangle DPC is similar to
the triangle HOQ; thus the ratio of HO to PD is equal to the ratio of HQ to
DC. But HQ is one quarter of CD; thus HO is one quarter of DP. But the
ratio of HO to DP is equal to the ratio of the product of the perpendicular
HO and AC to the product of the perpendicular DP and the straight line
AC. But this ratio is the ratio of the triangle AHC to the triangle ADC; the
triangle AHC is thus one quarter of the triangle ADC, and it is thus one
eighth of the triangle ABC, as the triangle ABC is the double of the triangle

7 It is clear that, by their construction, the points I and H have equal ordinates, DC

2

and DB

2
; they thus have the same abscissa, and we must thus have X = R. Moreover, the

vertex A being the midpoint of the sub-tangent, we must also have K = L.
8 Book I.17 (tangent at the vertex).
9 I.33 and 35 (sub-tangent).
10 Book I.20.
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ADC, since the straight line BC is twice the straight line CD. Yet, it has
been shown in the previous proposition that for two portions of a parabola,
the ratio of the one to the other is equal to the ratio of the triangle whose
base is the base of the first and whose vertex is its vertex, to the triangle
which is its homologue in the other. Thus the portion AHC of the parabola
is one eighth of the portion BAC of the parabola. In the same way, the
portion BIA  of the parabola is one eighth of the portion BAC of the
parabola; the sum of the two portions is thus one quarter of the portion
BAC and the triangle BAC which remains is three quarters of the portion
BAC. The portion is thus equal to one and one third times the triangle. But
the parallelogram BNSC is the double of the triangle BAC; thus the ratio of
the portion BAC to the triangle BAC is equal to the ratio of four to three
and, to the parallelogram BNSC, is equal to the ratio of four to six. That is
what we wanted to prove.

Ibræhîm ibn Sinæn’s book on the measurement of the parabola
is completed.



In the name of God, the Merciful, the Compassionate

BOOK OF IBRÆHïM IBN SINÆN IBN THÆBIT

On the Measurement of a Portion of the Parabola

Some time ago, I wrote a book on the area of this section. Later, I
made a number of changes to one of the propositions. This corrected copy
and the older copy have now been lost and I therefore need to repeat my
earlier work in this book. If a copy where the terms differ from those of
that copy, comes down, or if, in one of its parts, which contains a notion
which differs from some of the notions from that copy, then it is the one of
the two copies which I have evoked. My forebear Thæbit ibn Qurra, as well
as al-Mæhænî, have composed writings on this subject.

– 1 – Consider a polygon ABCDE and a polygon GHIJK as well, if the
straight lines BL, CM, HN, IS are drawn parallel to the straight line DE and
to the straight line JK, such that the ratios of the straight lines AL, LM, ME
are following the ratios of the straight lines GN, NS, SK and the ratios of
the straight lines BL, CM and DE are following the ratios of the straight
lines HN, IS and JK, and if AD and JG are joined, then the ratio of the
triangle ADE to the triangle JKG  is equal to the ratio of the polygon
ABCDE to the polygon GHIJK.
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Proof: Let us produce the perpendicular AOPQ to the parallel straight
lines BL, CM and DE and the perpendicular GRXT to the parallel straight
lines HN, IS  and JK, so the ratio of the triangle ADE to the trapezium
CDEM is equal to the ratio of the product of AQ and half of DE to the
product of PQ and half the sum1 of DE and CM; in fact, their area is equal
to the product of the straight lines that we have mentioned, the ones with
the others. Consequently, the ratio of the triangle ADE to the trapezium
CMED is compounded of the ratio of AQ to QP and the ratio of half of DE
to half the sum of DE and CM.

Likewise, we show that the ratio of the triangle GJK to the trapezium
JKSI is compounded of the ratio of GT to TX and of the ratio of half of JK
to half the sum of JK and IS.

On the one hand, the ratio of AQ to QP is equal to the ratio of AE to
EM by reason of the parallelism of the two straight lines DE and CM and is
equal to the ratio of GK to KS – as we assumed from the start that the ratios
of these straight lines are equal – and is equal to the ratio of GT to TX. On
the other hand, the ratio of half of DE to half the sum of DE and CM is
equal to the ratio of DE to the sum of DE and CM, and this ratio is equal to
the ratio of JK to the sum of JK and IS, as they have been supposed thus by
separation, and this ratio is equal to the ratio of half of JK to half the sum
of JK and IS, the ratio of half of DE to half the sum of DE and CM is
consequently equal to the ratio of half of JK to half the sum of JK and IS.
The ratios from which a ratio equal to the ratio of the triangle ADE to the
trapezium CDEM is compounded are consequently equal to the ratios from
which a ratio equal to the ratio of the triangle GJK to the trapezium JKSI is
compounded. That is why the ratio of the triangle ADE to the trapezium
DEMC is equal to the ratio of the triangle GJK to the trapezium JKSI.
Likewise, the ratio of the triangle ADE to the trapezium BCML is equal to
the ratio of the triangle GJK to the trapezium HNSI; in fact, from the sides
of the rectangles which are equal to them, a same ratio is compounded, as
when we say: the ratio of AQ to OP is equal to the ratio of GT to RX and
the ratio of half of DE to half the sum of CM and BL is equal to the ratio of
half of JK to half the sum of HN and IS. Likewise, the ratio of the triangle
ADE to the triangle GJK is equal to the ratio of the triangle ABL to the
triangle GHN, as the ratio of the perpendicular AQ to OA is equal to the
ratio of GT to GR and the ratio of DE to BL is equal to the ratio of JK to
HN. Consequently, the ratio of the two large triangles is equal to the ratios
of the trapeziums, each to its homologue. If we thus add them up, the ratio
of the trapezium CMED to the trapezium ISKJ will be equal to the ratio of
the polygon ABCDE to the polygon GHIJK and will be equal to the ratio of

1 We add ‘sum’, throughout the text, for the sake of the translation.
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the triangle ADE to the triangle GJK. Consequently, it has been shown by
the proof what we sought.

– 2 – That having been proven, we show that for two portions of
parabola, the ratio of the one to the other is equal to the ratio of the triangle
whose base is its base2 and whose vertex is its vertex, to the triangle
constructed in the other, in the same way.

Let ABC be a portion of the parabola and DEG be a portion of the
parabola3 whose bases are AC and DG. Let us divide them into two halves
at H and at I. Let BH and EI be the diameters of the two portions; let us
join ABC and DEG.

Fig. III.2.2

I say that what we mentioned is true. If it is false, let the ratio of the
triangle DEG to the triangle ABC be equal to the ratio of the portion DEG
to a surface smaller than the portion ABC, which is the surface J. We
divide BC into two halves at the <point> K and AB into two halves at the
<point> L and we produce KM  and L N, two diameters parallel to the
diameter BH, which fall on the points M  and N of the parabola. We join
AN, NB, BM and MC, so each of the triangles ANB and BMC is greater than
half of the section in which it is inscribed; in fact, if we produce a straight
line tangent to the parabola at the point M, as the straight line SMO, it will
be parallel to the straight line BKC which is an ordinate to the diameter
MK. If we produce the diameter CS, it will be parallel to the straight line
B H . Let HB meet M O  at O, so the triangle B C M  is half of the

2 The base of the first.
3 In the three manuscripts, we have a figure with two different parabolas; the

reasoning is valid for two sections of the same parabola.
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parallelogram BOCS; yet the parallelogram is greater than the portion
BMCK; its half, i.e. the triangle BMC, is greater than half of the portion.

We continue to divide the straight lines AN, NB, MB, CM and their
homologues into two halves, to produce diameters through the midpoints
and to join the straight lines that form triangles that are greater than half the
portions in which they are inscribed, until there is a remainder smaller than
the excess of the portion ABC over the surface J. Let the magnitude that
remains be the portions AN, NB, BM, MC; thus the surface AHCMBN is
greater than the surface J. The ratio of the triangle DEG to the triangle
ABC is consequently equal to the ratio of the portion DEG to a surface
smaller than the surface ANBMCH. We join MN; it meets the diameter OH
at P; it will be its ordinate. In fact, we make it so that the diameter MK
meets HC at Q and that the diameter NL meets AH at U. Since AL is equal
to LB and that the diameter LU is parallel to the diameter BH, AU will be
equal to UH. Likewise, HQ will be equal to QC. But AH is equal to CH,
thus HU is equal to HQ; thus the straight line dropped ordinatewise from M
to the diameter BH falls on the diameter BH and will be equal to H Q.
Likewise, the produced ordinate from the point N is equal to HQ; thus the
produced ordinate from N is equal to that produced from M; they thus fall
on a single point, let <the point> be P.4 We divide EI according to the ratio
of BP to BH at the point R; we produce the ordinate XRT parallel to DG
and we join DX, XE, ET and TG. Since the ratio of HB to BP is equal to the
ratio of EI to ER, the ratio of the square of DG to the square of TX is equal
to the ratio of the square of AC to the square of MN. In fact, Apollonius
showed in the book on the Conics that the ratio of the square of the
ordinates, in the parabola, is equal to the ratio of that which they separate
from the diameter for which they are the ordinates. Consequently, the
ratios of the straight lines DG, XT and AC , MN – in length – are equal.
Consequently, the two straight lines EI and BH are divided at two points R
and P in equal ratios, the parallels DG and XT are drawn and likewise AC
and MN; the ratio of DG to XT is thus equal to the ratio of AC to MN.

The ratio of the triangle DEG to the triangle ABC is consequently equal
to the ratio of the polygon DXETG to the polygon ANBMC, as we have
shown in the first proposition; yet the ratio of the portion DEG to a surface
smaller than ANBMC is equal to the ratio of the triangle DEG  to the
triangle ABC; consequently, the ratio of the polygon DXETG to the
polygon ANBMC is equal to the ratio of the portion DEG  to a surface
smaller than the surface ANBMC; this is impossible, from an evident
impossibility and a manifest absurdity, which cannot be, as the portion

4 This is a consequence of Apollonius’s Conics I.20, whose statement Ibn Sinæn
recalls in the paragraph that follows.
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DEG is greater than DXETG. The ratio of the triangle DEG to the triangle
ABC is thus not equal to the ratio of the portion DEG to a surface smaller
than the portion ABC.

If this were possible, let it be equal to a surface larger than it;
consequently, the ratio of the triangle ABC to the triangle DEG would be
equal to the ratio of the portion ABC to a surface smaller than the portion
DEG. We show that this is impossible, as was shown previously, which is
the inverse of what we treat now. The ratio of the triangle DEG to the
triangle ABC is consequently equal to the ratio of the portion DEG to the
portion ABC. That is what we wanted to prove.

– 3 – I say that the ratio of every portion of a parabola to the triangle
of the same base and same height is equal to the ratio of four to three.

Fig. III.2.3

Proof: We consider the portion ABC of base AC whose midpoint is D,
and with diameter BD; we draw the two straight lines AB and BC , we
divide BC into two halves at the <point> E and we draw GEH parallel to
BD which meets the parabola at G; we join BG and GC, we produce an
ordinate straight line GJI which meets the diameter BD at I and the straight
line BC at J. Since the ratio of DC to IJ is equal to the ratio of DB to BI,
which is equal to the ratio of the square of DC to the square of IG, as had
been shown for the ordinates in the book of Conics,5 the straight line IG
will be in mean proportion between DC and IJ, as the ratio of DC to IJ is
equal to the ratio of the square of DC to the square of IG, as we have
shown. But since BE is equal to EC and since the diameter EH is parallel to
the diameter BD, DH is equal to HC; consequently, DC is twice IG, as it is

5 Apollonius, I.20.
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twice DH which is equal to IG, as GIDH is a parallelogram by reason of
parallelism of the ordinate straight lines and of parallelism of the diameters
in the parabola. But the ratio of DC to IG is equal to the ratio of GI to IJ,
thus GI is the double of IJ; consequently, IJ is equal to JG; DC – which is
the double of GI – is hence the quadruple of JG.

If we draw the perpendicular DK to BC and the perpendicular GL to
BC, they will be parallel; but DC is parallel to GJ and the straight line BC
fell on both of them; thus the angle DKC is equal to the angle GLJ, as DKL
is equal to GLK, alternate angles, and the angle DCK is equal to the angle
GJL, alternate angles; thus the two triangles GJL and DKC are similar, the
ratio of DC to G J is then equal to the ratio of DK to GL. Consequently,
since DC is the quadruple of GJ, DK will be the quadruple of GL. The
product of DK and half of BC, i.e. the triangle BCD, is consequently the
quadruple of the product of GL and half of BC, i.e. the triangle BGC. The
triangle ABC – given that it is the double of the triangle BDC as the straight
line AC is the double of the straight line CD – is consequently eight times
the triangle BGC. The triangle BGC is then one eighth of the triangle ABC.
But since BD is a diameter and GH is a diameter, the ratio of the portion
ABC of the parabola to the portion BGC of the parabola is equal to the ratio
of the triangle ABC to the triangle BGC; consequently, the portion BGC of
the parabola is one eighth of the portion ABC.

In the same way, if we divide AB into two halves at <the point> M and
if we draw the diameter MN, we show that the ratio of the triangle ABC to
the triangle ANB is equal to the ratio of the portion ABC to the portion
ANB, we also show that the triangle ANB is one eighth of the triangle ABC;
consequently, the portion ANB is one eighth of the portion ABC.

The sum of the two portions ANB and BGC is consequently one quarter
of the portion ABC. If we set the portion ABC four, the sum of the two
portions ANB and BGC will be one, and there remains the triangle ABC,
three. Thus the ratio of the portion ABC to the triangle ABC is equal to the
ratio of four to three. The ratio of every portion of a parabola to the triangle
of the same base and same height is, consequently, equal to the ratio of
four to three. That is what we wanted to prove.

– 4 – I say that if two portions of a parabola have parallel bases, then
the ratio of one to the other is equal to the ratio of the height of the one to
the height of the other, multiplied by a ratio such that if it is multiplied by
itself, it will be equal to the ratio of the height of the one to the height of
the other.

Let ABCDE be a portion of the parabola, with AE parallel to BD and
CGH the diameter which cuts the straight lines AE and BD into two halves.
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We draw a straight line parallel to AE and BD, which is CI;6 we produce
two straight lines DI and EK parallel to CH. The parallelogram GDIC is
thus equal to the triangle whose base is BD and vertex is C, as BD is twice
DG. Likewise, the parallelogram HEKC is equal to the triangle of base AE
and vertex C. That is why the ratio of the portion ACE to the portion BCD
is equal to the ratio of the parallelogram KCHE to the parallelogram ICGD.
But this ratio – by the equality of the angles of these two parallelograms –
is equal to the ratio of HC to GC, multiplied by the ratio of HE to GD. The
ratio of the portion ACE to the portion BCD is thus equal to the ratio of HC
to GC, multiplied by the ratio of HE to GD. Yet, it is clear that the ratio of
HE to G D, if it is multiplied by itself, will be equal to the ratio of the
square of HE to the square of GD, which is equal to the ratio of CH to CG.
Consequently, the ratio of HE to GD, if it is multiplied by itself, is equal to
the ratio of HC to CG. The ratio of the portion ACE to the portion BCD is
consequently equal to the ratio of HC to CG, multiplied by a ratio such that
if it is multiplied by itself, it is equal to the ratio of CH to CG.
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In the same way, we show that the same holds for two arbitrary
portions7 of a parabola; that is what we intended to prove.

Ibræhîm ibn Sinæn ibn Thæbit’s book
on the measurement of the parabola is completed.

6 CI is thus the tangent at C to the parabola.
7 to parallel bases.



CHAPTER IV

AAAABBBBªªªª    JJJJAAAA‘‘‘‘FFFFAAAARRRR    AAAALLLL----KKKKHHHHÆÆÆÆZZZZIIIINNNN::::

ISOPERIMETRICS AND ISEPIPHANICS*

4.1. INTRODUCTION

4.1.1. AAAAllll----KKKKhhhhææææzzzziiiinnnn: his name, life and works

For the historian of mathematics, the work of al-Khæzin counts in the
results it incorporates and the domains it encompasses, but above all in its
very significance in its own right. Algebra, geometry, number theory and
astronomy are equally chapters in which al-Khæzin was inventive. But he
represents more than any other of his generation a stream of the research of
his era, that of mathematicians who had learnt to marry the Greek
geometric heritage and the algebraic legacy of the ninth century, and so to
advance the frontiers of the former in offering new extensions to the latter.
If one is to believe the testimony of the expert on the material, al-Khayyæm,
al-Khæzin is the first to have successfully applied the conics to the solution
of a cubic equation,1 thereby openning the possibility of that chapter in the
theory of algebraic equations (founded later by al-Khayyæm). He is one of
the first, along with al-Khujandî, who had conceived of the whole of
Diophantine analysis.2 In astronomy, his work is likewise, in the view of his
critics, such as Ibn ‘Iræq3 and al-Bîrºnî, among the most distinguished
contributions of its time.

* Isoperimetric: as having equal perimeters. Isepiphanic: as having equal surface
areas.

1 R. Rashed and B. Vahabzadeh, Al-Khayyæm mathématicien, Paris, 1999; English
version (without the Arabic texts): Omar Khayyam. The Mathematician, Persian Heri-
tage Series no. 40, New York, 2000.

2 R. Rashed, ‘L’analyse diophantienne au Xe siècle: l’exemple d’al-Khæzin’, Revue
d’histoire des sciences, 32, 1979, pp. 193–222.

3 Ibn ‘Iræq, ‘TaÒÌîÌ zîj al-Òafæ’iÌ’, in Rasæ‘il Mutafarriqa fî al-hay’a, Hyderabad,
1948. It suffices to read the words of Ibn ‘Iræq to understand the prestige of al-Khæzin at
the time:

وإن كان بعض الناس يعظم أن يستدرك على مثل أبي جعفر في تأليفاته سهو وقع له ...
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Despite the range of his work, often pioneering, despite the recognition
he received from his contemporaries and successors, the bibliographic
sources are nearly mute on his life and works. Recent uncertainties
surrounding his name have even resulted in presenting him in terms of a
split persona: he has been despoiled of an important swath of his titles,
which have been seen to glorify another author who never even existed. Let
us start with him.

The name most cited currently is Abº Ja‘far al-Khæzin. It is under this
name that al-Nadîm called him in a brief entry (one line),4 and incidentally
cited him twice more.5 It is also under this name that he is mentioned by al-
Qif†î,6 and that his successors referred to him – Ibn ‘Iræq, al-Bîrºnî, al-
Khayyæm, among others. One notes, however, three interesting variants.
The first is that of the contemporary historian of al-Khæzin, Abº NaÒr al-
‘Utbî, who tells us a story is relegated from ‘Abº al-Îusayn Ja‘far ibn
MuÌammad al-Khæzin’.7 The second variant, less important, is from the
hand of al-Nadîm, who one time adds al-Khuræsænî – from Khuræsæn,8 to
indicate his residence. The third, later because it is due to al-Samaw’al, and
thus from the twelth century, gives ‘Abº Ja‘far MuÌammad ibn al-Îusayn
al-Khæzin’.9 Yet this name, noted by al-Samaw’al, is that found in several
books that have come to us from al-Khæzin.10 The name reported by Abº
NaÒr al-‘Utbî is in fact the same, to two close inversions. But, whereas past
mathematicians and historians have never entertained any doubt about the
person’s identity, one thought oneself able to subscribe, after F. Woepcke11

to the existence of two mathematicians: Abº Ja‘far al-Khæzin and Abº

See also the mentions made by al-Bîrºnî of al-Khæzin in TaÌdîd nihæyæt al-amækin
(vide infra, Note 15).

4 Al-Nadîm, Kitæb al-Fihrist, ed. R. Tajaddud, Tehran, 1971, p. 341.
5 Ibid, pp. 153 and 311.
6 Al-Qif†î, Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, p. 396.
7 Tærîkh Abî NaÒr al-‘Utbî, in the margin of SharÌ al-Yamînî al-musammæ bi-al-

FatÌ al-Wahbî al-Manînî, Cairo 1286/1870, vol. I, p. 56.
8 Al-Nadîm, al-Fihrist, p. 325.
9 Al-Samaw’al, Fî kashf ‘uwær al-munajjimîn, MS Leiden 98.
10 Cf. MukhtaÒar mustakhraj min kitæb al-Makhrº†æt bi-iÒlæÌ Abî Ja‘far

MuÌammad ibn al-Îusayn al-Khæzin, MS Oxford, Bodleian, Huntington 539. Cf. ano-
ther copy of this text, with the same authorial name, MS Alger, B.N. 1446, fol. 125r.
One has, as well, a commentary on Euclid’s book X by ‘Abº Ja‘far MuÌammad ibn al-
Îusayn al-Khæzin’, MS Istanbul, Feyzullah 1359, fol. 245r; as well as the version Tunis
B.N. 16167, fol. 65v. Finally, the tract we consider here is also under this name.

11 F. Woepcke, ‘Recherches sur plusieurs ouvrages de Léonard de Pise’, Atti
Nuovi Lincei, 14, 1861, pp. 301–24.
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Ja‘far MuÌammad ibn al-Îusayn. A. Anbouba has recently been able to
show that it pertains well to the same and single person.12

This confusion for once dissipated and the figure’s identity established,
we are not however better informed about his dates or his works. Let us
address ourselves to historians as well as mathematicians: already al-
Nadîm13 tells us that al-Kindî’s student, the littérateur and philosopher Abº
Zayd al-Balkhî, addressed to al-Khæzin his commentary on Aristotle’s De
Cælo. Yet we know that al-Balkhî14 died in 322/934. This gives us a first
reference point: al-Khæzin had to have been born at the end of the third
century of the Hegira, or thereabouts.

On the other hand, according to al-Bîrºnî, al-Khæzin attended the
observation by mathematician and astronomer al-Harawî ‘of the altitude of
the sun at noon on the 12th Wednesday of Rabî‘ the second, the year three
hundred forty-eight of the Hegira’,15 which would indicate he was still active
in 959 at least. Better yet, the historian al-‘Utbî16 reports a story told by al-
Khæzin, on the subject of the arrival of Sebüktijîn in Bukhæræ in the period
of Samanide ManÒºr ibn NºÌ, which is to say around the middle of the
third century of the Hegira. In the seventeenth century, the commentator of
the story of al-‘Utbî, al-Manînî, wrote that al-Khæzin was one of the
ministers of the Samanides,17 which we cannot confirm, but which suggests
that al-Khæzin maintained ties with those who were in power. This version
fits with the data we have from the historian Ibn al-Athîr, and from the
littérateur al-TawÌîdî. According to the former,18 al-Khæzin was the envoy
of the leader – ‘Alî ibn MuÌtæj – of the expedition of Prince Samanide NºÌ
ibn NaÒr in 342/953 against the Bºyid Rukn al-Dawla, to negotiate a halt to
the combat. Here is what he wrote: ‘[…] and the envoy was Abº Ja‘far al-
Khæzin, author of the Zîj al-∑afæ’iÌ, and who was learned in mathematics’.
This testimony shows clearly that al-Khæzin was at this time a mature man,
enjoying both the confidence of the Prince and a solid scientific reputation.

12 A. Anbouba, ‘L’algèbre arabe aux IXe et Xe siècles: Aperçu général’, Journal for
the History of Arabic Science, 2, 1978, pp. 66–100.

13 Al-Nadîm, al-Fihrist, pp. 153 and 311.
14 Yæqºt, Kitæb irshæd al-arîb ilæ ma‘rifat al-adîb (Mu‘jam al-udabæ’), ed.

D. S. Margoliouth, London, 1926, vol. VII, pp. 141, 150–1.
15 Al-Bîrºnî, ‘Kitæb taÌdîd nihæyæt al-amækin li-taÒÌîÌ masæfæt al-masækin’, edited

by P. Bulgakov and revised by Imæm Ibræhîm AÌmad, in Majallat Ma‘had al-Makh†º†æt,
8, 1962, p. 98.

16 Al-‘Utbî, vol. I, p. 56.
17 Ibid .
18 Ibn al-Athîr, Al-Kæmil fî al-tæ’rîkh photographed edn., Beirut, 1979, from that of

Carolus Johannes Tornberg, Leiden, 1862, under the title Ibn-El-Athiri Chronicon quod
perfectissimum inscribitur, vol. 8 (see The events of the year, 342).
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Al-TawÌîdî confirms this portrait of al-Khæzin on all counts when he later
depicts him in the concurrent state, that of Bºyids: he is in the court of
Rukn al-Dawla, protégé of the famous minister Ibn al-‘Amîd.19 Recall that
the passage from one court to another was common practice and admitted
amongst the scholars and writers, resulting originally from a competition
between the courts that was favorable to the development of the arts and
sciences (one thinks of the voyages of al-Mutanabbî). In brief, born, it
seems, at the start of the tenth century, al-Khæzin is always living in the
sixties. A renowned and famous scholar, it must also be that he was a
dignitary so that his name would thus be retained in literature and history.
There ends the knowledge we have of his life and works.

4.1.2. The treatises of al-KKKKhhhhææææzzzziiiinnnn on isoperimeters and isepiphanics

Of the works by al-Khæzin in the field of infinitesimal mathematics, we
know only of the single treatise translated here. However, as the title
indicates, it is a part of a commentary on the first book of the Almagest by
al-Khæzin. One phrase reads, ‘We have copied from the commentary by
Abº Ja‘far MuÌammad ibn al-Îusayn al-Khæzin on the first book of the
Almagest…’ Two references by al-Bîrºnî20 confirm the existence of this
commentary, together with its extension. It was not as short as the surviving
text. This text was not, therefore, an independent treatise intended as an
examination of the isoperimetric problem alone, but rather the contribution
of a mathematician to the proof of a proposition stated, but not proved, by
Ptolemy. Its scope was limited, in contrast as we shall see, to the ambitious
nature of the text by Ibn al-Haytham.

This work by al-Khæzin is only known to have survived, for the
moment at least, in the form of a single manuscript, part of collection 4821
(8), fols 47v–68v in the Bibliothèque Nationale de Paris.21 Unlike the other
texts in this collection, all written in the same hand, al-Khæzin’s text is not
dated. However, the colophons in these manuscripts leave the date in no

19 Al-TawÌîdî, Mathælib al-wazîrayn al-∑æÌib ibn ‘Abbæd wa-Ibn al-‘Amîd, ed.
MuÌammad al-™anjî, Beirut, 1991, p. 346. For further information about al-Khæzin, see
the articles dedicated to him in the Dictionary of Scientific Biography by Y. Dold-
Samplonius, New York, 1973, t. VII, pp. 334–5, and in EI2, IV pp. 1215–6 by
J. Samsó.

20�Al-Bîrºnî, al-Qænºn al-Mas‘ºdî, ed. Osmania Oriental Publications Bureau, 3
vols, Hyderabad, 1954–1956, vol. II, p. 653; TaÌdîd nihæyæt al-amækin, p. 95.

21 See G. Vajda, Index général des manuscrits arabes musulmans de la Biblio-
thèque Nationale de Paris, Paris, 1953, together with the supplements and corrections
added by the late author to his work, held in the Bibliothèque Nationale.
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doubt. Al-Khæzin’s treatise was copied in 544/1149, either in Îamadæn or in
Asadabad, by Îusayn ibn MuÌammad ibn ‘Alî. The collection consists of
86 paper pages, 230 ×  150 mm, with 18 lines per page. The foliation is
more recent, and the collection was in Istanbul in the fifteenth century and
was probably still there at the end of the seventeenth century, before it came
to the Bibliothèque Nationale.

This unique manuscript is a very careful copy, written in perfectly clear
naskhî. All additions and erasures are in the hand of the copyist, and were
almost certainly made at the time of the transcription. There is no evidence
that the copyist compared the finished copy with the source. This treatise
was originally edited and translated into English by R. Lorch.22 The
improvements – some 20 in number – that we have been able to make to
this excellent work are not, in themselves, sufficient to justify a new edition.
But we include it here simply as part of a project to bring all the
contributions to this topic that are known to us together in a single book.

4.2. MATHEMATICAL COMMENTARY

4.2.1. Introduction

To show that, for regions of the plane having a given perimeter, the disc
has the greatest area; and that, for solids having the same total area, it is the
sphere that has the greatest volume: this ‘extremal’ undertaking interested
the mathematicians as much as the astronomers. The latter needed it to
establish the sphericity of the heavens and the earth’s surface, while the
former were enmeshed in the task presumably to satisfy the latter. The
question of isoperimetrics and isepiphanics seems in every case, over a long
period of its history, tied to this cosmological perspective: it is that perspec-
tive which assured it permanence and fecundity for centuries. The detailed
history of this question will be retraced in the last volume of this book, but
for now we must set down some names and titles. The first: Zenodorus, the
successor of Archimedes, and his lost writing on Isoperimetric Figures.
Fortunately, Theon of Alexandria cites it in his Commentary on the First
Book of the Almagest,23 on the topic of a famous formula of Ptolemy’s:
‘Because, amongst different figures having the same perimeter, those which
have more sides are largest, amongst plane figures it is the circle which is

22 R. Lorch, ‘Abº Ja‘far al-Khæzin on isoperimetry and the Archimedian tradition’,
Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften 3, 1986,
pp. 150–229.

23 A. Rome, Commentaires de Pappus et de Théon d’Alexandrie sur
l’Almageste, text edited and annotated, vol. II: Théon d’Alexandrie, Commentaire sur
les livres 1 et 2 de l’Almageste, Vatican, 1936, pp. 355 sqq.
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largest, and amongst solids, the sphere, and the sky is the largest of the
bodies’.24 Commentators on the Almagest, already since Theon, could no
longer put forward a single formula in silence, without giving its proof.
Other mathematicians were interested in this problem, including Hero of
Alexandria, and Pappus, in the fifth book of the Collection.25 But what is
important here is that Theon’s text, as well as the Almagest, were known by
mathematicians and astronomers from Baghdad in the ninth century, and
that they fueled a new tradition of research, which started with al-Kindî. He
claimed to have treated this problem ‘in <his> book on spheres’;26 whereas
the thirteenth century bibliographer Ibn Abî UÒaybi‘a attributes to him The
Sphere is the Largest Solid Figure.27

In this tradition will register, and under very different titles, Ibn Hºd,
Jæbir ibn AflaÌ�…, and above all al-Khæzin and Ibn al-Haytham, who are
the principal figures who we know of for now. The reading and analysis of
these last two contributions will reveal the great distance between two
mathematicians who nonetheless formed part of a single and unified tradi-
tion. While the former develops the past, the latter, in accomplishing it,
graces the banks of the future. But to understand, if only partially, the sense
of this sibylline affirmation, we begin by analyzing al-Khæzin’s text. Al-
Khæzin works from the citation of Ptolemy, which he proposes to establish

24 J.L. Heiberg, Claudii Ptolemaei opera quae exstant omnia. I. Syntaxis ma-
thematica, Leipzig, 1898, p. 13, lines 16–19. Here is the Arabic translation made in
212/827 by al-Îajjæj (MS Leiden 680, fols 3v–4r):

 ÊuJð ¨UÎLEŽ UNLEŽ√ U¹«Ë“ U¼d¦�√ W¹ËU�²� dz«Ëœ w� ÊuJð w²�« Ÿö{_« …dO¦J�« ‰UJý_« Ê√ qł√ s�Ë

ÆÂU�ł_« s� U¼«uÝ U2 rEŽ√ ¡UL��U� ¨WL�:« ‰UJý_« rEŽ√ …dJ�« ÊuJðË WDO�³�« ‰UJý_« rEŽ√ …dz«b�«

25 Cf. note 1 and also the translation of P. Ver Eecke: Pappus d’Alexandrie, La
Collection Mathématique, Paris/Bruges, 1933, t. I, pp. 239 sqq.

26 In his book Fî al-Òinæ‘at al-‘uÂmæ, al-Kindî writes: ‘Just as the largest of the
figures in the circle having equal sides is that which has the most angles, and the largest
of the solid figures having equal planar faces is the sphere as we explained in our book
On spheres, the sky is thus greater than all other bodies, and it is spherical as it must have
the largest shape.’ Here is the Arabic text which we have established on the basis of the
manuscript from Istanbul, Aya Sofya 4860, fol. 59v:

 W�b²F*« WL�:« ‰UJý_« ÓrEŽ√Ë ¨U¹«Ë“ U¼Ôd¦�√ Ÿö{_« W¹ËU�²*« …dz«b�« w� w²�« ‰UJý_« ÓrEŽ√ Ê_ ¨UÎC¹√Ë

 s� U¼«uÝ U2 ÓrEŽ√ w¼ «Î–≈ ¡UL��« ÊuJð ¨d�_« w� UMÐU²� w� p�– UM×{Ë√ UL� Ô…dJ�« ÕuD��« W¹ËU�²*«

ÆrEŽ_« qJA�« UN� ÊuJ¹ Ê√ wG³M¹ t½_ Î̈WÒ¹d� ÂU�ł_«

27 Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. A. Müller, 3 vols,
Cairo/Königsberg, 1882–84, vol. I, p. 210, 18; ed. N. Ri≈æ, Beirut, 1965, p. 289, 27–
28.
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not with the aid of calculation (Ìisæb) but by means of geometry. The
guiding idea, which seems perfectly conscious for al-Khæzin is that, of all the
convex figures of a given type (triangle, rhombus, parallelogram, …), the
most symmetric achieves an extremum for a certain magnitude (area, ratio
of area, perimeter,…). One procedes in the following manner: one fixes a
parameter and varies the figure by way of making it more symmetric with
respect to a certain straight line. Thus, in fixing the perimeter of a paralle-
logram, one transforms this parallelogram into a rhombus by making it
symmetric with respect to a diagonal; the area increases in the process.

As for the treatise, it is divided into two parts, one dedicated to isoperi-
metrics and the other to isepiphanics, both also depending on unstated
notions and undeclared axioms. Amongst these notions is that of convexity:
the polygons and polyhedra considered in this treatise are convex. Among
other axioms, one notably has the following:

A1 If a convex polygon is inscribed in a circle, then its perimeter is less
than that of the circle.

A2 If a convex polygon is circumscribed about a circle, then its perimeter
is greater than that of the circle.

A3 If a convex polyhedron is inscribed in a sphere, then its area is less
than that of the sphere.

A4 If a convex polyhedron is circumscribed about a sphere, then its area
is greater than that of the sphere.

One will remark that from A1 and A2, al-Khæzin deduces the results
relating to areas in Lemma 8; and that from A3 and A4 he deduces the
results relating to volumes in Proposition 19.

Let us consider the two parts of the treatise in succession.

4.2.2. Isoperimetrics

Al-Khæzin required eight lemmas and one proposition to establish the
isoperimetric theorem. The first four lemmas are related to isosceles and
equilateral triangles, and show that the area of an equilateral triangle is
greater than that of every isosceles triangle of the same perimeter. The fifth
shows that the area of an equilateral triangle is greater than that of every
triangle of the same perimeter. In the course of that demonstration, al-
Khæzin established a result already proven by Zenodorus and by Pappus, to
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wit: ‘Among the isoperimetric figures with an equal number of sides, the
largest is that which is equilateral and equiangular.’ In Lemma 6, he
compares the parallelogram to a square of the same perimeter. In Lemma 7,
al-Khæzin takes the example of a regular pentagon, deduces from it an
irregular pentagon having the same perimeter, and shows that the second
has a smaller area than the first. Finally, in Lemma 8, he passes to convex
polygons admitting an inscribed circle and a circumscribed circle.

All is now in place to establish the isoperimetric property of regular
polygons, before ultimately passing to the theorem for the circle. We shall
follow step by step al-Khæzin’s deliberately progressive path in reasoning.

Lemma 1. — Let ABC be an equilateral triangle and ADE an isosceles
triangle (D and E on the segment BC). One has

AB – AD < AD – BE

and
(AB – AD) + (AD – BE) = AB – BE = BD

and
BE · 9AB < (AB + BE + AE)2.28

A

C E D

G

H
I

B
Fig. 4.2.1

Proof: The point D being between B and C, we have AD < AB (as angle
ADB is obtuse) and AD > DC (as ACD CADˆ ˆ>  ); thus AD > BE.

If DG || AC, then AG = CD = BE and GB = DB, and if DH ⊥ AB, we
have BH = HG and AH < AD.

Let I be a point on AB such that AI = AD, then AH < AI < AB, I is
between B and H, and thus BI < IG. Moreover,

28 Al-Khæzin does not give this result in the statement of the lemma, but it is the
object of his proof and he will use it in Lemma 2.
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BI = AB – AD and GI = AI – AG = AD – BE;

thus
AB – AD < AD – BE

and
(AB – AD) + (AD – BE) = BD.

We can write

AB – BE + AB – AD = BG + BI = 2 AB – (AD + BE)

and
AB – BE + AD – BE = BD + IG = (AB + AD) – 2BE.

Then
2AB – (AD + BE) < (AB + AD) – 2BE;

and as a result

3AB – (AB + BE + AD) < (AB + BE + AD) – 3BE.

Dividing the left side by AB + BE + AD and the right by 3BE (we know
that AB + BE + AD > 3BE), it follows that

3AB

AB + BE + AD
< AB + BE + AD

3BE
;

and using the fact that AE = AD, we have

BE · 9AB < (AB + BE + AE)2.

Comment. — The figure, on the one hand, and the reasoning, on the other,
made by al-Khæzin suppose that D and E lie on the segment BC. If D and E
are on the line BC, but on opposite sides of the segment (DE > BC), we
have AD > AB as angle ABD is obtuse and BE > AE, as EAB ABEˆ ˆ> ; thus
BE > AD. The parallel to AC taken through D cuts AB at G; therefore
AG = CD = BE and GB = GD.

Let H and I be on BG such that DH ⊥ BG and AI = AD; we have

AB < AH < AI < AG;

moreover,
BI = AD – AB and GI = AG – AD = BE – AD.

We have BI > IG; thus
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AD – AB > BE – AD

and
(AD – AB) + (BE – AD) = BG = BD = BE – AB.

A

E C B
H

I
G

D

Fig. 4.2.2

From this we deduce

BG + BI = (BE – AB) + (AD – AB) = (BE + AD) – 2AB,
BD + IG = (BE – AB) + (BE – AD) = 2BE – (AB + AD),

so we have
(BE + AD) – 2AB > 2BE – (AB + AD);

hence
(AB + BE + AD) – 3AB > 3BE – (AB + BE + AD).

Divide the left side by 3AB and the right by AB + BE + AD (we know that
3AB < AB + BE + AD); it follows that

AB + BE + AD

3AB
> 3EB

AB + BE + AD
;

and as a result, taking account of the fact AD = AE,

BE · 9AB < (AB + BE + AE)
2
.

Hence, whatever the case of the figure,

BE · 9AB < [per. (ABE)]
2
.

Lemma 2. — Under the same conditions,

per. 

per. 

area 
area 

.
2

2

ADE

ABC

ADE

ABC

( )[ ]
( )[ ]

> ( )
( )
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A

C E D B

Fig. 4.2.3

Proof: By Lemma 1, we have

[per. (ABE)]
2
 > BE · 9BC,

[per. (ADC)]
2
 > DC · 9BC.

Adding the respective sides, we obtain

[per. (ABE)]
2
 + [per. (ADC)]

2
 > 9BC · (BE + DC) > 9BC

2
 + 9BC · ED,

(1) [per. (ABE)]
2
 + [per. (ADC)]

2
 > [per. (ABC)]

2
 + 9BC · ED.

But
per. (ABE) + per. (ADC) = per. (ABC) + per. (ADE),

with
per. (ABE) = per. (ADC) and per. (ABC) ≠ per. (ADE).

From this, we deduce

(2)      [per. (ABC)]
2
 + [per. (ADE)]

2
 > [per. (ABE)]

2
 + [per. (ADC)]

2
.29

As a result of (1) and (2), we obtain

[per. (ADE)]
2
 > 9BC · ED

and
per. (

per. (

  

per. (

ADE

ABC

BC ED

ABC

)

)

.

)
[ ]
[ ]

>
[ ]

2

2 2

9 .

29 Let the four numbers a, b, a′ and b′ be such that a = b, a′ ≠ b′ and a + b = a′ +
b′. We have 2a = a′ + b′ and 4a2 = a′ 2 + b′ 2 + 2a′b′; but a′ 2 + b′ 2 > 2a′b′, as (a′ – b′)2

> 0; hence 4a2 < 2(a′ 2 + b′ 2) and as a result 2a2 < a′ 2 + b′ 2; hence a2 + b2 < a′ 2 + b′ 2.
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But
9

2

BC ED

ABC

ED

BC

ADE

ABC

⋅
[ ]

= =
per. (

area (
area ()

)
)
,

as these two triangles have the same vertex and their bases fall on the same
line. We then have

per. (

per. (

area (
area (

ADE

ABC

ADE

ABC

)

)

)
)

.
[ ]
[ ]

>
2

2

Comment. — The reasoning is valid with GE < BC or GE > BC.

Lemma 3. — If ABC is an isosceles triangle with vertex A and G is a
point on parallel to BC through A, then

GB + GC > AB + AC.

H

E
G

A D

C B

Fig. 4.2.4

We extend BA by a length equal to AH, so the triangles HAG and CAG
are equal and we have GH = GC. From this, we deduce

GB + GC = GB + GH > BH;

thus
GB + GC > AB + AC.

Lemma 4. — If an equilateral triangle ABC and an isosceles triangle
DEG (DE = DG) have the same perimeter, then

area (ABC) > area (DEG).
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A

CE

D

BHGI

Fig. 4.2.5

Proof: Let H  and I be two points on the line DE  such that DHI  is
equilateral. We have by Lemma 2:

pér. (

pér. (

aire (
aire (

DGE

DHI

DGE

DHI

)

)

)
)

[ ]
[ ]

>
2

2 .

But
per. (DGE) = per. (ABC);

moreover, ABC and DHI being equilateral,

pér. (

pér. (

aire (
aire (

ABC

DHI

ABC

DHI

)

)

)
)

[ ]
[ ]

=
2

2 .

Hence
area (
area (

area (
area (

ABC

DHI

DGE

DHI

)
)

)
)

;>

thus
area (ABC) > area (DGE).

Lemma 5. — If an equilateral triangle ABC and an arbitrary triangle
DEG have the same perimeter, then

area (ABC) > area (DEG).

A

CE

D

B

K

I H

G

Fig. 4.2.6
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Proof: On the line DH parallel to GE, there exists a point I such that

IG = IE,

and by Lemma 3
IE + IG < DE + DG;

thus
per. (IEG) < per. (DEG).

But
area (IEG) = area (DGE).

Let K be such that KG = KE and per.(KGE) = per.(DGE) = per. (ABC); we
then have

area (KGE) > area (DGE);30

and by Lemma 4
 area (ABC) > area (KGE).

As a result
area (ABC) > area (DEG).

Lemma 6. — We take up the arbitrary triangle DEG and the equilateral
ABC having the same perimeter, and we complete the parallelogram DEGI
and the rhombus ABCH.

A

CE
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I

G

K

H

L

M
N

Fig. 4.2.7

If per.(DEG) = per.(ABC), we have seen that area (ABC) > area (DEG).
But

area (DEGI) = 2 area (DEG),

30 Al-Khæzin has thus demonstrated without explicitly stating the following result: if
an arbitrary triangle and an isosceles triangle have the same perimeter and an equal base,
then the area of the isosceles triangle is greater than that of the arbitrary triangle.

Note nevertheless that the area of an arbitrary triangle is not less than that of every
isosceles triangle having the same perimeter (for there exist isosceles triangles of a given
perimeter for which the area is next to nothing).
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area (ABCH) = 2 area (ABC);

thus
area (ABCH) > area (DEGI).

But in general
per. (ABCH) ≠ per.(DEGI);

they are only equal if we assume DG = AC.31

31 The parallelogram and the rhombus constructed by al-Khæzin do not in general
have the same perimeter.

per.(ABCH) = per.(EDGI) ⇔ 2AC = ED + EG;
but by hypothesis

3AC = ED + EG + DG.

F

I

I

D

EG

E

H
K L

N A

C B

′

′

Fig. 4.2.8

It is thus necessary to have the supplementary condition AC = DG. We can take up the
reasoning without making use of the equilateral triangle ABC.

Starting with a parallelogram DEGI, let us construct a rhombus of the same perime-
ter. The diagonal DG separates the figure into two triangles of equal area:

 area (DGI ) = area (DGE).

If we construct the points I′ and E′ on the perpendicular bisector of DG such that

I′D = I′G = E′D = E′G = 1
2

 (DE + EG) = 1
2

 EF,

the rhombus DE′GI′ is then of the same perimeter as DEGI. But, by the note from
Lemma 5, area (DE′G) > area (DEG); thus

area (DE′GI′ ) > area (DEGI).

So let ABCH be a rhombus equal to DE′GI′ and BCKL, the square constructed on BC:

area (ABCH) = BC · NC,

area (BCKL) = BC · KC.

Thus the area of the square is greater than that of every rhombus of the same perimeter,
which is itself greater than that of every parallelogram of the same perimeter.
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Let the segment CK ⊥ BC be such that CK = BC, and the segment
KL || CB such that KL = CB. The line AH cuts CK at N and BL at M. We
have

area (BMNC) = area (ABCH) and area (BCKL) > area (MBCN);

thus
area (BCKL) > area (ABCH) > area (DEGI).

Now LBCK is a square that has the same perimeter as the rhombus ABCH,
and if DG = AC, the square also has the same perimeter as DEGI.

The square, as a regular polygon, has a greater area than that of every
parallelogram of the same perimeter.32

Al-Khæzin thus returns to the general statement: Of two convex
polygons, one regular, the other arbitrary, having the same number of
sides and the same perimeter, the regular polygon has the greatest area.

32 We can demonstrate that of all the convex quadrilaterals of the same perimeter,
the square has the greatest area.

Let ABCD be an arbitrary quadrilateral. Let us construct the points C′ and A′ on the
perpendicular bisector of BD  such that C′D  + C ′B = CD  + CB  and A′D  + A′B =
AD + AB; the quadrilaterals ABCD and A′BC′D have the same perimeter. The triangles
CDB and C′DB on the one hand, and ADB and A′DB on the other, have the same
perimeter and, by the note from Lemma 5, we have area (CDB) < area (C′DB) and area
(ADB) < area (A′DB); hence area (ABCD ) < area (A′BC′D).

A

B

C

D A

B

C

D

′

′

′

′

Fig. 4.2.9

By the same procedure, construct the points B′ and D′ on the perpendicular bisector of
A′C′ such that B′A′ + B′C′ = BA′ + BC′ and D′A′ + D′C′ = DA′ + DC′. The quadrilateral
A′B′C′D′ is then a rhombus and area (A′BC′D ) < area (A′B′C′D′). Yet we know that the
area of a rhombus is less than that of the square of the same perimeter; thus area (ABCD )
< area of the square of the same perimeter.
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Lemma 7.
Example: Let ABCDE be a regular pentagon and G a point such that

GB + GE = AB + AE.

The pentagon GBCDE has the same perimeter as ABCDE and

area (ABCDE) > area (GBCDE).

A

G

B E

DC

Fig. 4.2.10

Indeed, by the hypothesis for G, the point is between the line BE and
the parallel to BE through A, as, by Lemma 3, if G is on this parallel, then

GB + GE > AB + AE.

Therefore
area (BAE) > area (BGE),

and as a result
area (ABCDE) > area (GBCDE).33

Lemma 8. — The area of a polygon of perimeter p circumscribed about a
circle of radius r is equal to the product 1

2
p · r.

Let ABC be a triangle circumscribed about a circle with centre I, with
D, E, and G the points of contact. We have

area (AIC) = ID · 1
2

AC,

area (AIB) = IE · 1
2

AB,

33 Starting with a regular pentagon, al-Khæzin produces an irregular pentagon of the
same perimeter, and for which the area is smaller. But he does not demonstrate that an
arbitrary pentagon has a smaller area than that of a regular pentagon of the same perime-
ter.
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area (BIC) = IG · 1
2

BC.

A

G

B

E

DC

I

Fig. 4.2.11

From this, we deduce
area (ABC) = 1

2
 (AB + AC + BC) · r.

If the polygon has n sides and is circumscribed about a circle, we divide
it into n triangles having the center of the circle as a common vertex and the
radius r of circle for their common height. If pn and Sn are respectively the
perimeter and the surface area of the polygon,

Sn = 1
2

pn · r.

The area Sn of the polygon is greater than that of the inscribed circle, as pn is
greater than the circle’s perimeter.

This demonstration is the same as that of the Banº Mºsæ of the first part
of Proposition 1. They, however, complete Proposition 1 with an extension
into space, as an expression of the volume of a polyhedron circumscribed
about a sphere of radius r.

If a polygon admits a circumscribed circle of radius R, then R > r and
Sn < 1

2
pn · R , and it follows that the area Sn is less than that of the

circumscribed circle. These two inequalities are moreover evident from the
inclusions of the figures.

Note that in this paragraph, al-Khæzin considers polygons admitting
both an inscribed circle and a circumscribed circle, a condition that is true in
the case of the triangle and of regular polygons, but is not true in general.

Proposition 9. — Of two regular polygons having the same perimeter,
that which has the most vertices has the greatest area.

Example: Let ABC be an equilateral triangle and DEGH be a square of
the same perimeter p. Then
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area (DEGH) > area (ABC).
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If I and K are the centres of the inscribed circles, L the midpoint of AC
and M the midpoint of HD, then

AICˆ  = 4 π
2

 · 1
3
  and  AC = 1

3
p,

DKHˆ  = 4 π
2

 · 1
4

  and  DH = 1
4

p,

from which we deduce

AIC

DKH

AC

DH

ˆ

ˆ =  and AIL

DKM

AL

DM

ˆ

ˆ = .

Let us take N on AL such that LN = DM, and the circle (I, IN) meets IL
at S and IA at O. Then

AIN

NIL

INO

INS

AIN

NIL

AN

NL

ˆ

ˆ
( )
( )

( )
( )

= < =area sector 
area sector 

area triangle 
area triangle 

,

from which we deduce
AIL

NIL

AL

DM

ˆ

ˆ < ;

hence
AIL

NIL

AIL

DKM

ˆ

ˆ

ˆ

ˆ<

and
 NIL DKMˆ ˆ> ,
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and as a result
INL KDMˆ ˆ< .

Let us construct MDP INLˆ ˆ= ; the point P is on the interval MK, the
triangles ILN and PMD are equal, and IL = MP < MK. Yet

area (ABC) = 1
2

 p · IL and area (DEGH) = 1
2

 p · MK;

thus
area (DEGH) > area (ABC).

We can extend this demonstration to regular polygons of the same
perimeter for whatever numbers n and n′ of vertices.

Note that this proposition will be taken up by Ibn al-Haytham (cf.
proposition 2 of his treatise, Vol. 2). We find it next in Ibn Hºd’s book (see
Chapter VII).

Theorem 10. — Of all the planar figures, regular convex polygons and
the circle, having the same perimeter, it is the circle that has the greatest
area.

Let ABC be an equilateral triangle and DEG a circle having the same
perimeter. Let MNS be an equilateral triangle circumscribed about the circle
DEG. The perimeter of MNS is greater than that of the circle, which is equal
to that of ABC; thus MS > AC.
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Let I be the centre of the triangle ABC and K the centre of the circle, L
the midpoint of AC and D the midpoint of MS; we have DM > AL. The
triangles AIL and MKD  are right-angled and similar, and as a result
DK > LI. But the circle and the triangle ABC have the same perimeter p,
and we have

area of the circle = 1
2

p · DK,
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area (ABC)   = 1
2

p · LI,

and as a result, the area of the circle is greater than that of the equilateral
triangle ABC.

Al-Khæzin then indicates that the same reasoning applies to the square,
to the pentagon and to every regular polygon and deduces from this the
statement of his proposition.

This proposition is taken up by Ibn al-Haytham (cf. Proposition 1 of his
treatise on isoperimetrics, Vol. 2).

Al-Khæzin even remarks that one can proceed in the same manner in
the case of arbitrary polygons. This is true for the triangle, as, a triangle
ABC and a circle being given, it is possible to construct a similar triangle to
ABC circumscribed about the circle. But, in general, there does not exist a
polygon similar to an arbitrary polygon that would be circumscribed by a
given circle.

However, the reasoning applied to a regular polygon permits one to
conclude in the case of an arbitrary convex polygon:

Let P be an arbitrary polygon, P′ a regular polygon and C a circle
having equal perimeters, P and P′ having the same number of sides. We
have

area (P) < area (P′) and area (P′) < area (C),

whence
area (P) < area (C).

If a circle and a convex polygon have the same perimeter, the area of the
circle is greater than that of the polygon.

Thus, for the isoperimetrics, al-Khæzin proceeds a) by comparing
regular polygons of the same perimeter and of a different number of sides,
and b) by comparing a regular polygon with a circle of the same perimeter
by means of a similar polygon circumscribed about a circle. Compared with
the approach of Ibn al-Haytham – cf. Vol. 2 – that of al-Khæzin might be
qualified as static. One will see that Ibn al-Haytham uses a) to establish b),
considering the circle as the limit of a sequence of regular polygons. In other
words, even if al-Khæzin’s method is different from that of Zenodorus or
Pappus, it nonetheless falls in the same family, whilst that of Ibn al-Haytham
is different from the rest.
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4.2.3. Isepiphanics

The second part of al-Khæzin’s treatise pertains to the same extremal
problem, but in space: spatial isoperimetrics. It also consists of nine lemmas
and a theorem. The first lemma pertains to the lateral area of a regular
pyramid and the second to the volume of a pyramid admitting an inscribed
sphere; in the third, al-Khæzin treats the lateral area of a cone of revolution
and its volume. In the fourth lemma (Proposition 14), he considers the
following problem: given a circle C, construct two similar polygons of area
S1 and S2, one circumscribed about C, the other inscribed in C, and such
that S1/S2 < k (the given ratio). In the fifth lemma, al-Khæzin gives another
expression of the lateral area of the cone, in order to pass, in the sixth
lemma, to that of the frustum of the cone. From Lemma 6 (Proposition 16)
is thus deduced Lemma 7:

If a regular polygonal line is inscribed in a circle of area S1, and
circumscribed about a circle of area S2, the area S of the surface
generated by the rotation of that line about one of its axes satisfies
4 S2 < S < 4S1.

Al-Khæzin passes in Lemma 8 to the calculation of the area of the
sphere, then in Lemma 9 to the volume of the sphere. It is in this lemma
that al-Khæzin defines a polyhedron inscribed in a sphere, and admits the
existence of a sphere tangent to all the faces of the solid, which is incorrect
– vide infra. All the preliminaries are thus posed to establish the theorem:

Of all the solids having the same area, the sphere is that which has the
greatest volume. The demonstration is made only for a solid that admits an
inscribed sphere.

We now take in detail this path set by al-Khæzin.

Lemma 11. — Regular triangular pyramid. The base is an equilateral
triangle ABC and the three lateral faces are equal isosceles triangles with
vertex D. The height is DE, perpendicular to the plane ABC. If the triangles
with vertex D are themselves equilateral, one obtains a regular tetrahedron.

Lateral area: The isosceles triangles with vertex D have equal heights, so let
DI = a be one of these:

lateral area = 1
2

 per. (ABC) · a.

Total area of the pyramid: The segment EI is the radius r of the circle
inscribed in ABC:

area (ABC) = 1
2

 per. (ABC) · r,
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total area = (a + r) · 1
2

 per. (ABC).

A
B

C

D

E

I

Fig. 4.2.14

The ratio of the lateral area to the area of the base is equal to a

r
.

These results are valid for every regular pyramid, whatever the nature
of the polygon at its base.

If a is the height of a lateral face, r the radius of the inscribed circle and
p the perimeter of the polygon at the base, we have

lateral area = 1
2

 p · a,

total area = 1
2

p · (a + r),

lateral area
area of the base

= a

r
.

Lemma 12. — Volume of the pyramid ABCD.
By Elements XII.6, this volume is one third the volume of the prism of

base ABC and height DE; thus

V = 1
3
 area (ABC) · DE.
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Pyramid and inscribed sphere.
Let DABC be a regular pyramid; there exists a sphere with center O

inscribed in this pyramid. We can then decompose it into four pyramids
having the sphere’s centre O as a common vertex and heights equal to the
sphere’s radius r. The pyramid OABC has volume

 1
3
 area (ABC) · OE = 1

3
 area (ABC) · r.

The pyramid DABC has volume

V = 1
3
 (sum of bases) · r,

(1) V = 1
3
 total area · r.

Whatever the regular pyramid considered, there exists a sphere of centre
O inscribed in this pyramid. We decompose this into (n + 1) pyramids with
vertex O having the radius r for heights, n being the number of sides of the
polygon at the base. The result (1) remains true.

This pertains to the particular case of the extension of space made by
the Banº Mºsæ in the second part of their first proposition.

Generalisation.
We have shown that, for every polygon, regular or not, circumscribed

about a circle of radius r, we have

area polygon = 1
2

 perimeter polygon · r.
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The same as for every pyramid, regular or not, if it is circumscribed
about a sphere of radius r, then

volume pyramid = 1
3
 total area · r.

Al-Khæzin then recalls some results relating to the cone of revolution.

Oblique or right circular cylinder.
Figure defined starting with two equal circles situated in parallel planes.
Height and axis of the right cylinder.
Generation of the right cylinder starting with a rectangle turning around
one of its sides.

Lemma 13. — Right circular cone – Lateral area.
To a right cylinder there is associated a cone having as its base one of

the bases of the cylinder and for its vertex the centre of the other base.

Let there be a cone whose base is the circle (ABCD) of diameter AC,
with centre E, and whose vertex is the point G, with GE perpendicular to
the base plane. The lateral area S of the cone is

 S = 1
2

 perimeter of the circle · AG

or
 S = length ABC · AG.

G

L C

D

K

N

A I

MB

H

E

Fig. 4.2.16
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Proof: by reductio ad absurdum
Suppose S > length ABC · AG and let IL be the diameter of a circle

(IKLH) such that S = length IKL · AG; one thus has IL > AC.
We then consider a regular polygon, circumscribed about the first circle

and for which all the vertices are on the inside of the second circle; to this
polygon is associated a pyramid with vertex G whose faces are tangent to
the cone. The lateral area of this pyramid is greater than that of the cone.

Let us designate by p the perimeter of the circle (ABCD), by p1 that of
the circle (IKLH) and by p2 that of the polygon; we have p < p2 < p1.

On the other hand, the lateral area of the pyramid is

S′  = 1
2

 p2 · AG

and we have by hypothesis

S = 1
2

 p1 · AG;

p1 > p2 implies S > S′ , which is absurd.

Suppose S < 1
2

 p · AG; then 1
2

 p · AG is the lateral area of a cone with

vertex G and whose base is a circle greater than (ABCD); let this circle be
(IKLH).

We then consider as before a regular polygon circumscribed about
(ABCD) and within (IKLH), and the associated pyramid whose lateral area is
1
2

p2 · AG. This area is greater than 1
2

p · AG, which is that of the cone with

base IHLK, which is absurd, for the pyramid is inside the cone.
The lateral area of the cone is thus

S = 1
2

p · AG.

Volume of the right circular cone
By Euclid, Elements XII.9, the volume of the cone is one third that of

the associated cylinder; thus

V = 1
3

area (ABCD) · EG.

We have just seen that al-Khæzin accepts without justification the
existence of a regular polygon circumscribed about the first circle and inside
the second circle, a problem posed by the Banº Mºsæ in the second part of
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their Proposition 3. Furthermore, the Banº Mºsæ in the first part of
Proposition 9 of their treatise use a regular polygon inscribed in the second
circle and exterior to the first – that is, Proposition XII.16 of the Elements.
Yet in the second part of the same proposition, they consider a regular
polygon circumscribed about the smaller of the two circles and inside the
larger; that is what al-Khæzin does here.

Lemma 14. — Given a circle, construct two similar regular polygons, one
circumscribed about the circle, the other inscribed in the circle such that
the ratio of their areas is less than the ratio of two given magnitudes.

Let EG and H be two magnitudes, EG > H. Let EI be their difference
and let n be the smallest number of the form 2

p
 such that EK = n · EI > H:

EI

EK
< EI

H
.
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Given a segment LM, we divide it into n parts and we produce it by

MN = 1
n

 · LM:

MN

LM
= EI

EK
.

Thus
MN

LM
< EI

GI
,

from which we deduce
LM MN

LM

EI GI

GI

+ < + ,
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that is,
LN

LM
< EG

H
.

We then construct the right angle LMS, with LS = LN.

Let F be the centre of the circle ABCD; we suppose AFBˆ  = 1 right

angle and we consider 1
2

 AFBˆ , 1
4

 AFBˆ , up to AFOˆ  = 1

2k AFBˆ  such that

 AFOˆ  < 2 MLSˆ  .

The bisector of AFOˆ  meets the circle at P and the tangent at P cuts the
lines FA and FO respectively at the points U and Q. The segments AO and
UQ are the sides of two similar polygons having 2k+2 sides, one inscribed in
the circle, the other circumscribed about that circle.

Let R be the midpoint of AO, AFRˆ  = 1
2

AFOˆ ; thus AFRˆ  < MLSˆ , and

as a result Ŝ  < Â. We construct on the right angle LMS a triangle VMT
such that T̂  = Â and TV = LS, so MV > ML and MT < MS. We have

PF

RF
= AF

RF
= VT

VM
< LS

LM
= LN

LM
< EG

H
.

But
PF

RF
= UF

AF
= UQ

AO
;

thus
UQ

AO
< EG

H
.

The ratio of the perimeters of the two polygons is equal to UQ

AO
; it is thus less

than EG

H
.34

To find polygons whose ratio of areas is less than EG

H
, we consider the

length X such that LN

X
= X

LM
, and we do the same construction starting with

34 Cf. Archimedes, The Sphere and the Cylinder, I.3 and 4.
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the lengths LN and X. We then find two polygons with respective sides C1
and C2 such that

C

C

LN

X
1

2

< ;

hence
C

C

LN

X
1
2

2
2

2

2< .

But
LN

X

LN

LN LM

LN

LM

2

2

2

=
⋅

= ;

thus
C

C

LN

LM

EG

H
1
2

2
2 < < .

The ratio of the areas of the polygons is thus less than EG

H
.35

Lateral area of a right circular cone (continued)

Lemma 15. — The lateral area of the cone of revolution is equal to that
of a circle whose radius is the mean proportional of the cone’s generator
and the radius of its base.36

Let AG and AE be the generator and the radius of the base of the cone

and IM such that IM

AG
= AE

IM
. We shall show that the area S′ of the circle (M,

IM) is equal to the lateral area S of the cone.
Al-Khæzin reasons by reductio ad absurdum and supposes at first that

S  > S ′. By the previous proposition, we can construct a polygon
circumscribed about the circle (M, IM) and a polygon inscribed in the circle.
Let INLS and OKPH be hexagons such that

area 
area 

( )
( )

.
INLS

OKPH

S

S
<

′

Let AUCQ  and XBJD be the hexagon circumscribed about the circle
(E, AE) and the hexagon inscribed in that circle. We have

area 
area 

( )
( )
AUCQ

INLS

AE

IM

AE

AE AG

AE

AG
= =

⋅
=

2

2

2

.

35 Archimedes, The Sphere and the Cylinder, I.5.
36 Archimedes, The Sphere and the Cylinder, I.14.
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But by Proposition 11

AE

AG

AUCQ

G AUCQ
= area 

lateral area of pyramid ( ,  )
( ) .

Then
area (INLS) = lateral area (G, AUCQ);

hence
area ( ,  )

area ( )
G AUCQ

OKPH

S

S
<

′

or
area ( ,  ) area ( )G AUCQ

S

OKPH

S
<

′
,

which is absurd, as area (G, AUCQ) > S and area (OKPH) < S′.

If S′ > S, then we construct the hexagons INLS and OKPH such that

area ( )
area ( )

INLS

OKPH

S

S
< ′ ,

and let the hexagon XBJD be inscribed in the circle (E, EA). We have



ISOPERIMETRICS AND ISEPIPHANICS 533

area 
area 

( )
( )

XBJD

OKPH

XE

OM

AE

IM

AE

AG
= = =

2

2

2

2 .

In the plane AEG, let us produce XR parallel to AG. We have

AE

AG
= XE

XR
> XE

XG
.

But
XE

XG

XBJD

G XBJD
= area 

lateral area  
( )

( , )
;

hence
AE

AG

XBJD

G XBJD
> area 

lateral area ( ,  )
( ) ,

and as a result
lateral area (G, XBJD) > area (OKPH)

and
area ( )

lateral area ( ,  )
INLS

G XBJD

S

S
< ′ ,

which is absurd as area (INLS) > S′ and lateral area (G , XBJD) < S.

Consequently, S = S′.

Comment. — If we designate by p the perimeter of the circle at the base, by
r its radius, and by l the length of the generator, we have established in
Lemma 13

S = 1
2

p · l.

We thus have
S = π r · l.

Setting
ρ2 = r · l,

we have
 S = π · ρ2, area of the circle of radius ρ.

Al-Khæzin does not use the expression for the perimeter of the circle as
a function of its radius, whence the necessity of a new proof by reductio ad
absurdum.
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Lateral area of the frustum of a cone and application

Lemma 16. — Let ABC be an isosceles triangle with axis BD. A parallel to
CA cuts BA at E, BD at M and BC at G. Let I be a point on the extension
of DB; the triangle IGE is isosceles. We construct by the same procedure
the isosceles NKL.

Turning around the line BD, the right-angled triangles ABD, EIM, KLS
produce cones of revolution.

The lateral area of the frustum of the cone delimited by the circles (D,
DA) and (M, ME) is equal to the area of a circle of radius O such that

O
2
 = AE · (AD + EM).37
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Proof: Let EH be parallel to BD, EH = MD. Let us consider the segments
O, P and U such that

O
2
 = AE (AD + EM)

P
2
 = AB · AD

U
2
 = EB · EM.

By the previous proposition, the lateral areas of the cones ABC and
EBG are respectively equal to those of the circles of radii P and U. Their
difference is the desired area. But

37 Archimedes, The Sphere and the Cylinder, I.16.
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BA · AD = BE · AD + EA · AD = BE · EM + BE · AH + EA · AD.

The triangles BDA and EHA are similar; thus BE · AH = EA · EM and

BA · AD = BE · EM + EA · EM + EA · AD,

BA · AD = U
2
 + O

2
,

that is,
O

2
 = P

2
 – U

2
.

The lateral area of the frustum of the cone is thus equal to that of a circle of
radius O.

We see that al-Khæzin begins here with the expression for the lateral
area of the cone found in the previous proposition, that is, S = π ρ2, with
ρ2 = r l, r the radius of the base and l the generator. This expression is none
other than the one established by the Banº Mºsæ in Proposition 9, i.e. S =
π r l, and which they will use in Proposition 11 for the lateral area of the
frustum of the cone.

Likewise, the lateral area of the frustum of the cone defined by the
trapezoid EKNG is equal to a circle of radius O1 such that O1

2  = KE · (KS +
EM), and so forth.

If we suppose AE = EK = KQ, the lateral area of the solid between the
circle (I, IQ) and the circle (D, DA) is equal to the area of a circle of radius
R1 such that

(a) R AE DA ME SK IQ1

2 2 2= ⋅ + + +        ( ).

If we consider the solid with vertex L described by LQKEAD, with
LQ = KQ, its area is equal to that of a circle of radius R2 such that

(b) R AE DA ME SK IQ2

2 2 2= ⋅ + + +        2( ).

The approach of al-Khæzin is analogous to that of the Banº Mºsæ in the
second part of their Proposition 11.

Sphere
Let there be a sphere with centre H, ABCD one of its great circles, AC

and BD being two perpendicular diameters, and let AEGBIKC be a regular
polygonal line inscribed in the semi-circle ABC, and LMN the semi-circle
inscribed in this line.
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Lemma 17. — The lateral area of the solid generated by the rotation of
the line AEGB  about the line BH  is less than twice the area of the
circumscribed circle (H, HA) and greater than twice the area of the
inscribed circle (H, HL).
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Let P, O and S be the respective midpoints of EK, GI and GB, and let
Q and U be the intersections of the line HB with the lines AK and EI. The
lines GI, KE and AC are parallel, the lines EI and AK are also parallel, and
so it follows that the triangles GBO, IUO, EPU, KPQ and AHQ are similar,
and the triangle BSH is similar to them since HS is a bisector of the angle
BHG and perpendicular bisector of BG. From this, we deduce

OG

OB
= OI

OU
= PE

PU
= PK

PQ
= AH

HQ
= OG + OI + PE + PK + AH

BO + OU + UP + PQ + HQ
= GI + EK + AH

BH
.

But
OG

OB
= SH

SB
;

thus
SB · (GI + EK + AH) = BH · SH.

And by the previous proposition, the lateral area of the solid generated by
AEGB is equal to the area of a circle of radius R such that

R
2
 = AE · (GI + EK + AH).

We thus have
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1
2

R
2
 = BH · SH, as AE = 2SB.

As a result
 2SH

2
 < R

2
 < 2BH

2
;

thus the lateral area considered lies between twice the area of the great circle
ABCD and twice the area of the inscribed circle (H, HL).

The reasoning is done on a polygonal figure AEGBIKC containing an
even number of sides; we apply result (b) of the previous proposition.

Let us note that the figure there was concave, whereas we apply it here
in a convex case; at any rate, this proposition is sufficiently general and
applies irrespective of the two cases.38

If the polygonal line inscribed in the semi-circle of diameter AC has an
odd number of sides, let these be AEGIKC, it doesn’t have a vertex at B,
the triangle BSH is replaced by the triangle OGH and we have

OI

OU
= PE

PU
= PK

PQ
= AH

HQ
= OI + EK + AH

OH
= OH

OG
;

hence
OG (OI + EK+ AH) = OH

2
.
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By result (a), the lateral area described by the line AEG is that of a circle
of radius R1 such that

38 Does this presentation manifest an intention of al-Khæzin? This demonstration is
based on the same principles as that of Archimedes (The Sphere and the Cylinder, I.21
and subsequent), known in Arabic after the middle of the ninth century at least and
already used by the Banº Mºsæ.
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R AE OI EK AH1

2        = + +( );

thus
R OH1

2 22   = .

The lateral area produced by AEGO is thus that of a circle of radius R2

such that
R R OG OH OG2

2

1

2 2 2 22        = + = + ;

thus
R OH HG2

2 2 2    = +

and
2 22

2

2 2      OH R HG< < .

The lateral area considered thus lies between twice the area of the great
circle ABCD and twice the area of the inscribed circle (H, HO).

Archimedes obtained the same results for a solid defined from a regular
polygon whose number of sides is a multiple of 4, in Propositions 27–30 of
The Sphere and the Cylinder. The Banº Mºsæ next treated the same
problem for a solid defined from a polygonal line, inscribed in a semi-circle
and whose number of sides is even (Propositions 12 and 13). This is
precisely the case treated by al-Khæzin. John of Tinemue studied in
Proposition 5,39 on the other hand, the same proposition starting with a
regular polygon inscribed in a circle, the number of sides being either a
multiple of 4 or just a multiple of 2.

Lemma 18. — The area S of the sphere is equal to four times the area s of
its great circle.40

Let ABCD be a great circle of the sphere and s its area.
Suppose 4s < S; then 4s = S′, the area of a smaller sphere whose great

circle is LMN. We then consider a regular polygon circumscribed about the
circle LMN as in the previous study, a polygon whose vertices are inside the
circle ABCD or on the circle. Let S″ be the area of the solid described by
this polygon. We have

39 See M. Clagett, Archimedes in the Middle Ages, vol. I: The Arabo-Latin
Tradition, Madison, 1964, pp. 469 sqq.

40 Archimedes, The Sphere and the Cylinder, I.33.
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S′ < S″ < S.
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By Lemma 17, S″ < 4s; thus S′ < 4s, which is absurd because we have
supposed that S′ = 4s.

Suppose 4s > S; then 4s = ′S1 , the area of a sphere greater than that of
the sphere ABCD; let QRX be its great circle. We then consider a polygon
circumscribed about the circle ABCD and whose vertices are inside the
circle QRX or on the circle. Let ′′S1  be the area of the solid generated by
this polygon; we have

S < ′′S1  < ′S1 .

By Lemma 17, ′′S1  > 4s, and as a result ′S1  > 4s, which is absurd because by
hypothesis ′S1  = 4s.

Thus S = 4s: the area of the sphere is four times the area of its great
circle, or again the product of the diameter of the great circle with its
circumference.

Note that the Banº Mºsæ for this same proposition use (cf. Proposition
14 of their treatise) in the two parts of the reasoning a solid inscribed in the
larger of the two spheres, and not having any common points with the
smaller, a solid obtained from the Elements XII.6.

Lemma 19. — The volume V of the sphere is the product of the radius R
of a great circle with a third of the surface S of the sphere.

Let ABCD be a great circle of the sphere. Suppose V > 1
3
 R  · S; then

there exists a smaller sphere whose volume is V′ = 1
3
 R · S; let LMN  be a

great circle of that sphere.
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We consider two perpendicular planes to the plane ABCD, one along
AC, the other along BD; they intersect the sphere along the great circles. We
consider the circles of diameter BD that divide each quarter of the circle of
diameter AC in three equal parts. We thus have in all six circles of diameter
BD. On each of these, we consider a polygon such as AEGBIKC. The
vertices of all these polygons define a polyhedron whose faces are trapezoids
or triangles. It is the polyhedron defined in the Elements XII.17 – see
comment c). We associate with each of the faces a pyramid whose vertex is
the centre H of the sphere.

Al-Khæzin supposes that the sphere LMN is tangent to each of these
faces (see the comment at the end of this proposition); each pyramid of
vertex H has in this case the radius R′ of the sphere LMN for its height. The
volume V1 of the solid is thus the product of R′ with a third of the total
surface S1 of the solid:

V1 = R′ · 1
3
 S1 and V1 > V′.

But
R > R′ and S > S1;

thus
R · 1

3
 S > V1 > V′,

which is absurd as we have supposed that V′= R · 1
3
 S.
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If V  < 1
3
 R · S, there exists a sphere greater than the sphere ABCD

whose volume is V′ = 1
3
 R · S; let the sphere be QRX. In this sphere, we

inscribe a polyhedron of the preceding type such that the sphere ABCD is
tangent to the faces of the polyhedron.41 Let V′, V1 and V be respectively
the volumes of the sphere QRX, of the polyhedron and of the sphere
ABCD; we have

V1 = 1
3
 R · S1.

But
S1 > S;

thus
V1 > 1

3
 R · S,

which is absurd as V1 < V′ and we have supposed that V′ = 1
3
R · S.

The volume of the sphere ABCD is thus V = 1
3
 R · S. But if s designates

the area of the great circle, one has

 S = 4s,

whence
 V = (1 + 1

3
) R · s

and
2 s R = 3

2
V.

41 By the comment that concludes this proposition, we can suppose that the
polyhedron inscribed in the sphere QRX is such that the sphere ABCD does not intersect
its faces. We have

1

3

1

33 1 1 1 1h S V h S< < , with R ≤ h
3
.

We know that V
1
 < V′, whence

1

3 2 1h S V< ′ .

But h
2
 ≥ R and S

1
 > S; then

1

3

1

32 1h S R S> ⋅ ;

but by hypothesis V′ = 1
3

R · S, which is absurd.
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The cylinder associated with the sphere has as its volume

v = 2 R · s;

thus
v = 3

2
V.

H

Fig. 4.2.24

The cone associated with this cylinder, a cone of height 2R, has as its
volume

v1 = 1
3
 v = 1

2
V.

The cone of vertex H and of height R has as its volume

′v1  = 1
2

 v1;

thus
 V = 4 ′v1 .

The cone whose base is a circle of area 4s (circle of radius 2 R) and whose
height is R has the same volume as the sphere.

Comment. — Al-Khæzin’s reasoning relies on the existence of a polyhedron
inscribed in the sphere ABCD and circumscribed about the sphere LMN.
Three remarks are called for:

a) The sphere LMN intersects the faces of the polyhedron. The circle
LMN of Proposition 18 is tangent to the chords BI, IK, KC … and by
construction in Proposition 19, the arcs defined on the equatorial circle of
diameter CA and on the meridianal circles of diameter BD are all equal to
the arc BI; their chords are thus equal to the chord BI, and the sphere LMN
is tangent to all these chords. From this we deduce that the sphere LMN is
intersected by all the faces of the polyhedron. Indeed, the midpoints of these
equal chords are the points of contact of the sphere LMN with these chords;
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each face of the polyhedron thus has at least two points on the sphere, and
thus it intersects that sphere LMN.

b) The polyhedron does not admit an inscribed sphere. The distance
from the point H to the faces of the polyhedron is variable. Let T be the
midpoint of CC′; the plane HBT passes through the midpoints V and W of
KK′ and II′. CC KK II′ > ′ > ′ ; hence HT < HV < HW. If we designate by h1,
h2, h3 the respective distances from H to the plans of the faces BII′, II′K′K,
KK′C′C, we have R > h1 > HW > h2 > HV > h3 > HT. Indeed, the triangle
BII′ and the trapezoids II′K′K and KK′C′C are isosceles with IB > II′, IK >
KK′, KC = CC′; thus the angles IBI′, KIK′, CKC′ are acute and the centres
of the circumscribed circles are respectively the segments WB, VW and IV.
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More generally, whatever the number of sides, i.e. whatever the
number n of subdivisions on each quarter of the circle, we have

R > h1 > h2 > … hn-1 > hn.

The polyhedron thus does not admit an inscribed sphere. Its volume V1

satisfies
1
3

1
3

1
31 1 1 1 1               h S V h S R Sn ⋅ < < ⋅ < ⋅ .

To apply al-Khæzin’s reasoning, we can consider that we have chosen n
sufficiently large that the sphere LMN whose volume is V′ = 1

3
 R  · S  and
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whose radius is R′ < R does not intersect the faces of the polyhedron, i.e. n

such that hn ≥ R′. We then have

V′ < V1 < 1
3
R · S1;

thus
 1

3
R · S < 1

3
R · S1,

 which is absurd as S > S1.

c) Note as well that al-Khæzin imagines here a solid of the following
type:

Polyhedron inscribed in the sphere
Let B and D be the poles. Two orthogonal circles pass through B and

D; one traces the corresponding equator that crosses these circles, whence
four points. Al-Khæzin divides each arc into 3 parts, whence there are 12
points on the equator; one thus has 12 points on each of the 6 associated
meridians, that is, 10 points, plus the 2 poles.

If we divide each of the four arcs into n parts, we have 4n points on the
equator, hence 2n meridians.

On each meridian there are 2 (2n – 1) points, plus the 2 poles.
In all there are 4n (2n – 1) points, plus the 2 poles.
The polyhedron thus has 4n (2n – 1) + 2 vertices:

n = 1 6 vertices
n = 2 26 vertices
n = 3 62 vertices, this is al-Khæzin’s example
n = 4 114 vertices.

If An and Vn designate the area and volume of the solid Σn, and if A and
V designate the area and volume of the sphere, then

An increases with n An < A
Vn increases with n Vn < V.

Theorem 20. — Of all the convex solids having the same area, the sphere
is that which has the greatest volume.

Let there be a sphere with centre O, with R its radius, S its area and V
its volume and let there be a polyhedron with the same area as S, with
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volume V1; we suppose it circumscribed about a sphere LMN with centre H,
of radius R′, with area S′. We then have

V1 = 1
3
S · R′.

The area S′ is less than that of the polyhedron; thus S′ < S and, moreover,
R′ < R. Therefore

1
3
S · R′ < 1

3
S · R,

i.e.
 V1 < V.

Note that the nature of the polyhedron is not specified, but the
demonstration supposes that this polyhedron is circumscribed about a
sphere, which is the case for a regular polyhedron, but the demonstration
made here does not apply to an arbitrary polyhedron or solid.

Comment. — Examples of solids having the same area S as a sphere of
radius R.

If a cylinder of radius R has height R, its lateral area is

2πR · R;

its total area is thus
 S = 4πR

2

and its volume is

V R R    = <π π3 34
3

.

If a cone has a base of radius R and a generator with l = 3R, its total
area is

S =  πR R + l( ) =  4πR2 ;

its height is then h such that

 h2 =  l2 − R2 =  8R2 , h = 2 2R

and its volume is

V R R R R        = ⋅ = <1
3

2 2
2 2

3
4
3

2 3 3π π .



546 CHAPTER IV: AL-KHÆZIN

As we have seen, al-Khæzin does not proceed by comparison of
polyhedra, but he achieves the result using the formula that relates the
volume of the sphere to its area, a formula that he obtains by approaching
the sphere by non-regular polyhedra. Ibn al-Haytham’s approach will be
completely different: he tries to proceed by comparing regular polyhedra of
the same area, and with a different number of faces, in order to be able to
give a dynamic demonstration. This fails because of the finite number of
regular polyhedra; consequently, instead of solving the initial problem, he
develops an original theory of the solid angle. He is thus well within the
family of Zenodorus and of Pappus that al-Khæzin belongs to once again, a
family that is not Ibn al-Haytham’s.

4.2.4. The opuscule of aaaallll----SSSSuuuummmmaaaayyyyssssææææ††††îîîî

This text of al-Sumaysæ†î, widely circulated, contains a single result
which had been demonstrated by al-Khæzin – this is the final step of the
latter’s reasoning in Theorem 10. All the results concerning irregular
polygons are, in all evidence, absent from this text.

The area of the circle is greater than that of every regular polygon of
the same perimeter.
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Let there be a circle (A, AB) and a regular polygon CDE of the same
perimeter p as the circle. Let G be the centre of the circle inscribed in CDE
and GH a radius; H is for example the midpoint of DE. The product of the
semi-perimeter p with GH is the area of the polygon.

If GH = AB, then the circle (G, GH) also has p as perimeter, and it has
the same area as the polygon, which is absurd.
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If GH > AB, then the perimeter of the circle G would be greater than
that of the circle A, and the perimeter of CDE, which is greater than that of
the circle G, would be even larger than that of the circle A, which is absurd.
We thus have

GH < AB,
area of the circle (A) = 1

2
 p · AB,

area of the polygon = 1
2

 p · GH;

thus
area of the circle (A) > area of the polygon (CDE).



4.3. Translated texts

4.3.1. Commentary on the First Book of the Almagest

4.3.2. The Surface of any Circle is Greater than the Surface of
any Regular Polygon with the Same Perimeter (al-Sumaysæ†î)



In the Name of God, the Merciful, the Compassionate

TRANSCRIPT1 OF THE COMMENTARY
BY ABª JA‘FAR MUÎAMMAD AL-ÎASAN AL-KHÆZIN

 On the First Book of the Almagest

Ptolemy said that, of different figures with equal perimeters, that with
the most angles is the largest. It is for this reason that it necessarily follows
that the circle is the largest surface and the sphere is the largest solid.

He means that, for different polygons,2 such as the triangle, the square,
and the pentagon, and so on until infinity, if the sum of the sides of each of
them is equal to that of the sides of the others, then that with the most
angles has the largest area. Hence, for the triangle, the square and the
pentagon, if the sum of the sides of each of them is ten, then the square has
a greater area than the triangle, and the pentagon has a greater area than the
square, and so on to infinity for the polygons.3 Finally, the circle whose
circumference is ten is greater than all of them. It is easy to verify this using
arithmetic. To prove it geometrically, we first require a number of lemmas.
We say that:

<Lemmas>

Of two polygons having the same number of sides and the same
perimeter, that with equal sides and equal angles is greater than any of the
others.

Some preliminary propositions are given below.

<1> The triangle ABC is equilateral and the triangle ADE is isosceles.
I say that the amount by which AB exceeds AD is less than the amount

by which AD exceeds BE and that <the sum of> these two amounts is
equal to the amount by which AB exceeds BE, that is BD.

1 Lit.: We have transcribed.
2 Lit.: figures having latera recta.
3 Lit.: figures having many sides.
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Proof: We draw DG parallel to AC, and drop a perpendicular DH onto
AB. The triangle BGD is then equilateral, and therefore BH is equal to GH,
but AH is less than AD. We take AI as being equal to AD. Then BI is less
than IG. But BI is the amount by which AB exceeds AD, and IG is the
amount by which AD exceeds BE, as GA is equal to DC and DC is equal to
BE, and the sum of BI and IG is equal to BD.

Consequently, the amount by which twice AB exceeds <the sum of>
BE and AD, which is <the sum of> BD and BI, is less than the amount by
which <the sum of> AB and AD exceeds twice BE, which is <the sum of>
BD and IG. If we take AB as being common to both twice AB and <the
sum of> BE and AD, and BE as being common to both <the sum of> AB
and AD and twice BE, then the amount by which three times AB exceeds
the sum of AB, BE and AD, that is EA, is less than the amount by which the
sum of AB, BE and EA exceeds three times BE. The product of three times
BE and three times AB – that is the product of BE and nine times AB – will
be less than the square of the sum of AB, BE and EA, as the ratio of the
first to the second is less than the ratio of the second to the third, since the
excess subtracted from the first, which is <the sum of> BD and BI, in order
for the remainder to be the second is less than the excess subtracted from
the second, which is <the sum of> BD and IG, in order for the remainder to
be the third.

– 2 – The triangle ABC is equilateral and the triangle ADE is isosceles.
I say that the ratio of the square of the perimeter ADE to the square of

the perimeter ABC is greater than the ratio of the triangle ADE to the
triangle ABC.



ON THE FIRST BOOK OF THE ALMAGEST 553

A

C E D B

Fig. 2

Proof: The square of the perimeter ABE is greater than the product of
BE and nine times BC, and also the square of the perimeter of ADC is
greater than the product of DC and nine times BC. This is equal to the
product of BC and nine times BC plus the product of DE and nine times
BC. However, the product of BC and nine times itself is equal to the square
of the perimeter ABC. Therefore, <the sum of> the squares of the
perimeters ABE and ADC is greater than the square of the perimeter ABC
plus the product of DE and nine times BC. But the line equal to <the sum
of> the perimeters ABC and ADE has been divided into to equal parts
which are ABE and ADC, and into two different parts which are ABC and
ADE. Therefore, <the sum of> the squares of the perimeters ABC and ADE
is greater than <the sum of> the squares of the perimeters ABE and ADC.
But we have shown that <the sum of> the squares of ABE and ADC is
greater than the square of the perimeter ABC plus the product of DE and
nine times BC. <The sum of> the squares of the perimeters ABC and ADE
is therefore much greater than the square of the perimeter ABC plus the
product of DE and nine times BC. Subtracting the square of the perimeter
ABC, which is common, the square of the perimeter ADE is greater than
the product of DE and nine times BC. Therefore, the ratio of the square of
the perimeter ADE to the square of the perimeter ABC is greater than the
ratio of the product of DE and nine times BC to the square of the perimeter
ABC. But the product of DE and nine times BC is equal to the product of
three times DE and three times BC, and the ratio of the product of three
times DE and three times BC to the square of the perimeter ABC is equal to
the ratio of three times DE to three times BC, and is equal to the ratio of
DE to BC, and is equal to the ratio of the triangle ADE to the triangle ABC.
Therefore, the ratio of the square of the perimeter ADE to the square of the
perimeter ABC is greater than the ratio of the triangle ADE to the triangle
ABC
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– 3 – The triangle ABC is isosceles. Draw the straight line DE through
the point A parallel to BC. Draw two straight lines from the points B and C,
such that they meet at G.

I say that the sum of BG and GC is greater than the sum of AB and
AC.

H

E
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A D

C B

Fig. 3

Proof: We add to AB itself, let it be AH. We join GH. The angle DAB is
then equal to the angle GAH, and the angle DAB is equal to the angle ABC
which is equal to the angle ACB. But the angle ACB is equal to the angle
GAC. Therefore, the angle GAC is equal to the angle GAH. AH is equal to
AC, and AG is common to the two triangles AGC and AGH. Therefore, the
side GH is equal to GC. The sum of GB and GH is greater than BH.
Therefore, the sum of BG and GC is greater than the sum of AB and AC.

– 4 – The triangle ABC is equilateral, the triangle DEG has two equal
sides, which are DE and DG, and their perimeters are equal.

I say that the triangle ABC is greater than the triangle DEG.

A

CE

D

BHGI

Fig. 4

Proof: We construct the equilateral triangle DHI. The ratio of the
square of the perimeter DEG to the square of the perimeter DHI is
therefore greater than the ratio of the triangle DEG to the triangle DHI. But
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the square of the perimeter DEG is equal to the square of the perimeter
ABC. Therefore, the ratio of the square of the perimeter ABC to the square
of the perimeter DHI is greater than the ratio of the triangle DEG to the
triangle DHI. But the ratio of the square of the perimeter ABC to the square
of the perimeter DHI is equal to the ratio of the triangle ABC to the triangle
DHI. Therefore, the ratio of the triangle ABC to the triangle DHI is greater
than the ratio of the triangle DEG to the triangle DHI. The triangle ABC is
therefore greater than the triangle DEG

– 5 – The triangle ABC is equilateral, the triangle DEG is scalene, and
their perimeters are equal.

I say that the triangle ABC is greater than the triangle DEG.

A

CE

D

B

K

I H

G

Fig. 5

Proof: Through the point D, we draw a straight line DH without limits
and parallel to EG. We draw straight lines onto this straight line from the
points E and G with the two straight lines EI and GI being equal. The sum
of IE and IG is therefore less than the sum of DE and DG. From the two
points E and G we draw two equal straight lines EK and GK, <the sum of
which is> equal to <the sum of> the two straight lines DE and DG. The
triangle EKG is therefore greater than the triangle EIG, and the triangle
EIG is equal to the triangle EDG as they are <constructed> on the same
base between two parallel straight lines. The triangle EKG is greater than the
triangle EDG, and the triangle EKG, as we have shown, is not greater than
the triangle ABC as their perimeters are equal. Therefore, the triangle ABC
is greater than the triangle DEG.

From this, we have shown that an isosceles triangle is greater than a
scalene triangle when their perimeters are equal.

– 6 – Let us take up the two triangles ABC and DEG, and double them
by means of the straight lines AH, CH and GI, DI. The lozenge BH is
greater than the parallelogram4 EI, one of which has equal sides and one of

4 Lit.: rectangle lozenge.
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which has unequal sides, even though their perimeters are equal. We draw
CK at a right angle and equal to AC from BC, and draw KL equal and
parallel to BC. We join LB and draw AH to M. The triangle AMB is then
equal to the triangle CNH, and the rectangle BMNC is equal to the lozenge
BH. Therefore, the square BK is greater than the lozenge BH, and it is
therefore very much greater than the parallelogram EI. One has equal sides
and equal angles, and the other has unequal sides and unequal angles.
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This is the case of two polygons with equal numbers of sides and equal
perimeters. The one of the two whose sides and angles are equal is greater
than the one whose sides and angles are unequal.

– 7 – Example: The pentagon ABCDE has equal sides and equal angles.
We join the straight line EB, and from the two points E and B we draw two
straight lines which meet at G such that their sum is equal to the sum of AE
and AB. The triangle AEB is therefore greater than the triangle EGB. We
set the surface EBCD to be common, then the pentagon ABCDE is
therefore greater than the pentagon GBCDE. If the same construction is
made on the other sides, then the pentagon ABCDE will be much greater
than the pentagon whose sides are not equal. Similarly, the angle EAB is
equal to each of the angles ABC, BCD, CDE and DEA, and the angle EGB
is different from the angle EAB. Therefore, the pentagon ABCDE, whose
angles are equal, is greater than the pentagon GBCDE whose angles are not
equal.
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– 8 – For any polygon circumscribed around a circle, the product of the
half-diameter of the circle and half the sum of the sides is equal to the area
of the polygon.
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Let ABC be the figure, and let the inscribed circle be DEG with its
centre at I. We draw ID, IE and IG. These will be the perpendiculars to the
sides. We join the straight lines AI, BI and CI. The product of ID and half of
AC is the triangle AIC. The product of IE and half of AB is therefore the
triangle ABI and the product of IG and half of BC is the triangle BIC. The
product of the half-diameter of the circle and half the sum of the sides is
therefore equal to the area of the triangle ABC.

If the polygon has four sides, it can be divided into four triangles. If it
has many sides, it can be divided into as many triangles as the number of
sides. The product of the half-diameter of the circle inscribed within the
polygon and half of each of the sides is the area of each of the triangles. The
sum of these triangles is the area of the polygon, and the area of the
polygon is greater than the area of the circle – as the product of its half-
diameter and half of its circumference is its area – and half of its
circumference is less than half of the sum of the sides of the polygon as the
polygon surrounds it. It is for this reason that the product of the half-
diameter of the circle circumscribed around the polygon and half of the sum
of its sides is greater than the area of the polygon, and the product of the
half-diameter and half the circumference of the circle is the area of the circle,
then the area of the circle is greater than the area of the polygon enclosed
by the circle.

– 9 – Given two polygons with the same perimeter, with equal sides and
with equal angles, but of two different species, then that with the largest
number of angles is the greatest.

Example: Let ABC be a triangle; let there be a square DEGH, having
equal sides and equal angles, and let their perimeters be equal. The square is
then greater than the triangle.
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Proof: We assume the points I and K to be the centres of the two
circles inscribed in the two figures. We join AI, BI, CI, HK, DK, EK and GK.
The sum of the three angles at the point I is equal to the sum of the four
angles at the point K, as each of the two sums is equal to four right angles.
The angle AIC is therefore the third of four right angles, and the angle DKH
is a quarter of four right angles. AC is one third of the perimeter of ABC,
and DH is a quarter of the perimeter of the square DEGH. The two
perimeters are equal, and therefore the ratio of the angle AIC to the angle
DKH is equal to the ratio of AC to DH. But the angle AIC is greater than
the angle DKH and AC is greater than DH. We drop the two perpendiculars
IL and KM. Each of the two angles AIC and DKH, and each of the two
sides AC and DH are divided into two halves. The ratio of the angle AIL to
the angle DKM is equal to the ratio of AL to DM. But the angle AIL is
greater than the angle DKL, and AL is greater than DM. We take NL equal
to DM, we join NI, and we draw the arc SNO at a distance of IN around the
point I. We extend IL to <the point> S. Then the ratio of the angle AIN to
the angle NIL is equal to the ratio of the sector INO to the sector INS. But
the ratio of the sector INO to the sector INS is less than the ratio of the
triangle AIN to the triangle NIL. But the ratio of the triangle AIN to the
triangle NIL is equal to the ratio of AN to NL. The ratio of the angle AIN to
the angle NIL is therefore less than the ratio of AN to NL. Composing, the
ratio of the angle AIL to the angle NIL is less than the ratio of AL to NL.
But NL is equal to DM. The ratio of the angle AIL to the angle NIL is
therefore less than the ratio of AL to DM. But the ratio of the angle AIL to
the angle DKM is equal to the ratio of AL to DM. The ratio of the angle AIL
to the angle NIL is therefore less than the ratio of the angle AIL to the angle
DKM. But the two angles ALI and DMK are right angles. Therefore the
remaining angle INL in the triangle ILN must be less than the angle KDM in
the triangle KMD. We construct the angle MDP equal to the angle INL. The
triangle MDP is similar to the triangle LNI. But DM is equal to NL.
Therefore, MP is equal to LI, and the product of half the perimeter of the
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square DEGH and KM is therefore greater than its product with PM. Now,
its product with KM is the area of the square DEGH, and its product with
PM is the area of the triangle ABC.

Using a similar procedure, it can be shown that, given two polygons
having equal sides and equal angles, among polygons with the same
perimeter, that with the largest number of angles has the greatest area.

– 10 – We take the triangle ABC given above, without the sector, and at
the same time we draw a circle DEG with centre K; let their perimeters be
equal.

I say that the circle is greater than the triangle.
Proof: We draw the equilateral triangle MNS circumscribed around the

circle, and we join KM and KS. The ratio of the perimeter of the triangle
MNS to the perimeter of the triangle ABC is therefore equal to the ratio of
the side MS to the side AC. But the perimeter of the triangle MNS is greater
than the perimeter of the triangle ABC as it is greater than the
circumference of the circle DEG. Therefore, the side MS is greater than the
side AC. We drop the perpendicular KD. MD is then greater than AL. The
angle MKS is equal to the angle AIC as each of them is one third of four
right angles, the angle MKD is half of the angle MKS, and the angle AIL is
half of the angle AIC. Therefore, the angle MKD is equal to the angle AIL.
But the angle MDK is a right angle, and equal to the angle ALI. Therefore,
the triangle MKD is similar to the triangle AIL. But MD is greater than AL.
Therefore DK is greater than LI. On DK, we mark off DO equal to LI. But
the product of half of the circumference of the circle DEG and DK is the
area of the circle, and its product with DO is the area of the triangle ABC.
Therefore, the circle is greater than the triangle.
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We also compare this circle with the square DEGH from the previous
proposition, taking the square in place of the triangle ABC, and we imagine
that the sum of its sides is equal to the circumference of the circle DEG. We
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construct a square on this circle in place of the triangle MNS and we then
show, using a similar proof to the first, that its area is greater than the area
of the square DEGH.

Similarly, we compare it with a regular pentagon, the sum of whose
sides is equal to its circumference, and with any figure taken from among
the regular polygons beyond the pentagon regardless of the number of sides
and angles, and show that the circle is the greatest of these polygonal figures
having the same perimeter.

It is possible that we could have proved that which we have proved
using two figures with unequal sides, providing that they are similar, and
using a procedure similar to that which we have used, replacing the two
triangles ABC and MNS with the two four-sided or many-sided figures with
unequal sides but similar. We have, however, preferred to show this using
two regular polygons, as each of them is greater than their homologue with
different sides and with equal perimeters, as we have shown earlier.

Following this, we can show that the sphere is the greatest of the solid
figures with equal surfaces,5 regardless of whether these surfaces are plane
as in the cube, the prism and the pyramid,6 or whether they are curved as in
the sphere, the cylinder and the cone.7

<11> We begin with the regular triangular pyramid.8 This pyramid is
the basic element of all these figures, in the same way as the triangle is the
basic element in all plane figures with sides. We draw it according to this
shape, and we imagine its base – the equilateral triangle ABC – located on a
plane parallel to the horizon. The point D, at its vertex, is in the air, as are
the triangles ABD, ADC and BDC. Each of these is isosceles, and the
straight line DE is perpendicular to the plane of the base. If the sides of each
of these triangles are equal and equal to the sides of the base ABC, then the
pyramid is the first of the five figures mentioned at the end of the Elements,
being that called the fire figure from its resemblance to the shape of a flame,
such as the light from a candle or similar lights derived from fire, providing
that the conical shape of the flame leans more towards the circular, even if
its base has straight sides. This is so because this name is used for all
pyramids whose base has sides that are straight and equal, regardless of
whether the number of these sides is three, four, or more, up to as many as
you wish, and all of whose faces are isosceles triangles. The rule for this
species of pyramid is the same as that which we now explain for this

5 Lit.: with equal limits, i.e. isepiphanic.
6 Lit.: the cone whose base has straight sides.
7 Lit.: the cone of the cylinder.
8 Lit.: the cone whose base is triangular with equal straight sides.
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pyramid: <To find> the area of the surface, excluding the area of the base,
we multiply the perpendicular dropped from the point D on one of the sides
AB, BC or AC, dividing it into two halves, by half of the sum of the sides, as
the product of this perpendicular and half of one side is the area of a single
triangle, and the product with three halves of the sides is the area of all three
triangles making up the outside surface of the volume of the pyramid. But,
as the <product of the> half-diameter of the circle inscribed within the
triangle ABC and half the sum of its sides is the area of the triangle, the
product of the sum of the perpendicular and the half-diameter of the circle
multiplied by half the sum of the sides AB, BC and AC is the area of the
surface of the entire pyramid.

<12> As the prism whose base is the triangle ABC and whose
perpendicular is ED can be divided into three equal pyramids, as shown in
Proposition Six of Book Twelve of the Elements, the pyramid ABCD is one
third of the prism. But the product of the perpendicular DE and the surface
ABC is the volume of the prism; therefore its product with one third of the
surface ABC is the volume of the pyramid.
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From this, it can be shown that the ratio of the surface of the pyramid,9

whose base is a figure with straight sides, to the area of the base is equal to
the ratio of the perpendicular dropped along one of the sides to the half-
diameter of the base, as the product of half of the sum of the sides of the
base and this perpendicular is the surface of the pyramid, and its product
with the half-diameter of the base is the area of the base.10

9 This refers to the lateral area.
10 The sequence of the text appears to be incorrect. The paragraph beginning with

‘From this, …’ should logically be placed before the previous paragraph relating to
volume. And the implication ‘It is for this reason …’ suggests that there should be a
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It is for this reason that the product of the half-diameter of the sphere
inscribed within the pyramid having plane bases and one third of <the sum
of> its bases is its volume, as it may be divided into pyramids whose vertices
all meet at the centre of the sphere, and whose bases are the bases of the
pyramid. The sphere is tangent to each of these bases and its half-diameter is
perpendicular to the bases at the point11 of contact, and as such is multiplied
by one third of the base of each of these pyramids, as it is one third of the
prism whose base is its base, and whose height is its height. The product of
the height and the base is the volume of the prism, regardless of whether the
sides of the base are equal or not. As we have already shown that the
product of the half-diameter of a circle inscribed within a polygon and half
the sum of its sides, whether equal or not, is the area of the polygon then,
similarly, the product of the half-diameter of the sphere inscribed within this
pyramid and one third of the sum of its bases, whether equal or not, is the
volume of this pyramid.

<13> The circular cylinder is a solid figure bounded by two parallel
circles and a curved surface joining them. Each of the circles is called the
base of the cylinder. Any straight line joining the circumferences of the two
bases and perpendicular to them12 is called a side of the cylinder. The
straight line joining the centres of the two bases is called the axis of the
cylinder. If the axis stands on the surfaces of the two bases at angles that are
not right angles, then the cylinder is said to be oblique. If it stands on them
at right angles, then it is said to be a right cylinder, and it can be generated
by a surface made up of parallel sides, of which one of the two sides
enclosing the right angle is fixed and the surface rotated until it returns to its
original position.

The cone of a right cylinder is a conically shaped solid figure extending
from the circumference of one of the two bases of the cylinder until it
disappears at the centre of the other base. This centre is the vertex of the
cone. This shape is also called a pinecone from its resemblance to the fruit of
the pine tree. The axis of the cylinder is a perpendicular, also called the
height. Any straight line drawn perpendicularly from its vertex13 to the
circumference of its base is called a side of the cone.

                                    
paragraph relating to the sphere inscribed within a triangular pyramid before the text
moves on to deal with the case of any pyramid (see Lemma 8 relating to the triangle and
the inscribed circle, and the polygon circumscribed around a circle).

11 Lit.: position.
12 This assumes that the cylinder is a right cylinder.
13 Any straight line joining the vertex of a cone to a point on the base circle is

perpendicular to the tangent to the circle at that point.
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We represent this figure as follows: We imagine its base as the circle
ABCD, whose centre is at the point E, lying on a plane parallel to the
horizon, and the point G in the air such that, when joined to <the point> E
by a straight line, it rises perpendicularly to the plane of the circle. We draw
the diameter AC, and join the two straight lines GA and GC.

I say that the product of AG and the arc ABC, which is half of the
circle ABCD, is the surface of the cone ABCDG, excluding the surface of
its base.

G

L C

D

K

N

A I

MB

H

Fig. 12

Proof: It could not be otherwise. If it were possible, then let the product
of AG and an arc greater than the arc ABC be the surface of the cone
ABCDG. Let this arc be the arc IKL, which is half of the circumference of
the circle IKLH. We construct a regular polygon on the circumference
ABCD circumscribing the circle, which is the hexagon AMCN. We imagine
straight lines dropping from the point G onto the extremities of the
hexagon, generating a pyramid with a base having equal straight sides. This
is greater than the cone ABCDG, as it surrounds it. We join the two straight
lines GI and GL, forming the cone IKLHG. We multiply AG by the arc IKL
to obtain the surface of the cone ABCDG. We multiply it by half the sum of
the sides of the hexagon to obtain the surface of the pyramid AMCNG. The
ratio of the arc IKL to half the sum of the sides of the hexagon is therefore
equal to the ratio of the surface of the cone ABCDG to the surface of the
pyramid AMCNG. But the arc IKL is greater than half the sum of the sides
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of the hexagon.14 Therefore, the surface of the cone ABCDG is greater than
the surface of the pyramid AMCNG. But we know that it is smaller; this is
contradictory.

 If the product of AG and <an arc> that is less than the arc ABC is the
surface of the cone ABCDG, then its product with the arc ABC is the
surface of a cone that is greater than the surface of the cone ABCDG. Let
this be the surface of the cone IKLHG. This gives us the product of AG and
the arc ABC, which is the surface of the cone IKLHG, and its product with
half the sum of the sides of the hexagon, which is the surface of the pyramid
AMCNG. The ratio of the arc ABC to half the sum of the sides of the
hexagon is therefore equal to the ratio of the surface of the cone IKLHG to
the surface of the pyramid AMCNG. But the arc ABC is less than half the
sum of the sides of the hexagonal figure. Therefore, the surface of the cone
IKLHG is less than the surface of the pyramid AMCNG. But it was greater
than it, so this is contradictory and not possible.

Therefore we do not obtain the surface of the cone ABCDG by taking
the product of AG and an arc that is greater than the arc ABC, and by
taking its product with an arc that is less than that arc. Its product with the
arc ABC is consequently the surface of the cone ABCDG.

We then draw the perpendicular EG and multiply it by one third of the
surface of the base ABCD. This gives us the volume of the cone ABCDG as
the product of the perpendicular EG and the surface of the base ABCD is
the volume of the right cylinder. But the cone of the cylinder is one third of
this, as shown by Euclid in Proposition 9 of Book 12 of the Elements.
Similarly, <the product of> the perpendicular EG and one third of the
surface of the hexagonal figure is the volume of the pyramid AMCNG, as it
is one third of the volume of the cylinder15 whose base is the surface of the
hexagonal figure and whose height is the perpendicular EG, according to
what has been mentioned in this proposition of the Elements.

<14> Consider the circle ABCD and the two given magnitudes EG and
H, such that EG is greater than H; we wish to construct two similar
polygons within and on the circle such that the ratio of that which is

14 This assumes that the hexagon circumscribed around ABCD is inside the circle
IKL. If the hexagon does not fulfill this condition, we know how to find a polygon
which satisfies it. In fact, making use of Euclid’s Elements XII.16, we obtain a polygon
Pn inscribed inside IKL and that has no common point with the circle ABCD. Let an be its
apothem and r the radius of the circle ABCD. The image of Pn in the homothety (E, r/an)
is a polygon P′n, which gives a solution to the problem.

15 This is actually a prism.
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constructed on the circle to that constructed within the circle is less than the
ratio of EG to H.
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We assume two different straight lines such that the ratio of the largest
to the smallest is less than the ratio of EG to H. In order to find these, we
take GI equal to H and we double EI until the multiple exceeds H. Let this
multiple be EK. We assume any LM and we divide it by the number of
times that EK includes EI. Let MN be equal to one of the parts of LM. Then
the ratio of MN to LM is equal to the ratio of EI to EK. But EK is greater
than H, i.e. greater than GI. The ratio of EI to EK is therefore less than the
ratio of EI to GI. But the ratio of EI to EK is equal to the ratio of MN to
LM. Therefore the ratio of MN to LM is less than the ratio of EI to GI.
Composing, the ratio of LN to LM is less than the ratio of EG to H. If the
two magnitudes EG and H were two surfaces or two solids, then it would
be possible to define two straight lines LN and LM such that the ratio of EG
to H was less than the ratio of LN to LM, as the multiplication16 and division
process is carried out in isolation according to which belongs to each genus.
Having found LN and LM, they are placed in isolation according to this
position, and a straight line MS is drawn perpendicular to the straight line
LM such that if we join the straight line LS, it will be equal to LN. This is
possible as LN is greater than LM. In the circle, we draw the two diameters
AC and BD that cross each other at right angles. We divide the angle AFB
into two halves, then we divide one half into two halves, and we continue
this process until the remaining angle is less than twice the angle MLS, that
is the angle AFO. We join the straight line AO to give one side of the
polygon constructed within the circle. We divide the angle AFO into two
halves by the straight line FP. Through <the point> P, we draw the straight
line UQ tangent to the circle, and we draw FA and FO as far as the points

16 Plural in the Arabic text.
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U and Q. Then UQ will be one of the sides of the polygon constructed on
the circle, which is similar to the <polygon> constructed within the circle.
The angle AFO, which is twice the angle AFR, is therefore less than twice
the angle MLS. The angle AFR is therefore less than the angle MLS. But the
angle M is a right angle and is equal to the angle R. Therefore, the angle S is
less than the angle A. If we draw a straight line from the straight line MS
along <an angle> equal to the angle A, and if we make this straight line
equal to LS, and if we extend it to meet LM, then it will meet it above the
point L. Let it be equal to TV. Therefore its ratio to VM is less than the ratio
of LS to LM, and the ratio of TV to VM is equal to the ratio of AF, i.e. PF,
to RF. Therefore, the ratio of PF to RF is less than the ratio of LS to LM.
But the ratio of PF to RF is equal to the ratio of UF to AF, and it is also
equal to the ratio of UQ to AO. Therefore, the ratio of UQ to AO is very
much less than the ratio of EG to H.

Now, we complete the two figures by adding the remaining sides. We
can show from this that, if we wish the ratio of one polygon to the other to
be less than the ratio of LN to LM, we define a straight line which is their
mean in proportion. We then proceed using the straight line LN to
determine two sides of a polygon as we have done previously with the two
straight lines LN and LM. The ratio of one side to the other is then less than
the ratio of LN to the mean straight line. But the ratio of the square of one
side to the square of the other side17 is less than the ratio of the square of
LN to the square of the mean straight line, and the ratio of the square of one
side to the square of the other side is equal to the ratio of one polygon to
the other polygon, as shown in Proposition 19 of Book 6 of the Elements,
and the ratio of the square of LN to the square of the mean straight line is
equal to the ratio of LN to LM. Therefore, the ratio of one polygon to the
other polygon is less than the ratio of LN to LM.

<15> The figure ABCDG is a cone of a right cylinder, and the half-
diameter of the circle IKLH, which is IM, is the mean in proportion between
the side of the cone, which is AG, and the half-diameter of its base, which is
AE.

I say that the circle IKLH – I mean its surface – is equal to the surface
of the cone excluding its base.

It this were not the case, let it be less than it. Then the surface of the
cone and that of the circle IKLH would be two different magnitudes, the
greatest of which is the surface of the cone. We construct two regular
similar polygons, one within the circle and one lying on it, such that the ratio
of that which was constructed on the circle to that constructed within <the

17 Lit.: the ratio of the side to the side doubled by repetition.
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circle> is less than the ratio of the surface of the cone to the circle IKLH –
this is easy, given that which we have already introduced18 – and let these
be the two hexagons INLS and OKPH. The ratio of the hexagon INLS to
the hexagon OPKH is therefore less than the ratio of the surface of the cone
to the circle.
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Know that, if we speak of the ratio of one figure to another figure, be
they circular or polygonal, we mean by that the areas of the two figures.

We construct a hexagon AUCQ on the circle ABCD. Its ratio to the
hexagon INLS is then equal to the ratio of the square of AE to the square of
IM, as shown in Book 12 of the Elements.19 But the ratio of the square of
AE to the square of IM is equal to the ratio of AE to AG and the ratio of
AE to AG is equal to the ratio of the hexagon AUCQ to the surface of the
pyramid AUCQG, as we have shown in Proposition 11 of these
propositions. The ratio of the hexagon AUCQ to the hexagon INLS is
therefore equal to the ratio of the hexagon AUCQ to the surface of the
pyramid AUCQG. The surface of the pyramid is then equal to that of the
hexagon INLS. But the ratio of the hexagon INLS to the hexagon OKPH is

18 See the previous proposition.
19 The first proposition of Book XII of the Elements stated that ‘Similar polygons

inscribed in circles are to one another as the squares on the diameters’ (ed. Heath, vol. 3,
p. 369). This same property will be proved for the circumscribed polygons with the help
of a method that is similar to Euclid’s one.
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less than the ratio of the surface of the cone ABCDG to the circle IKLH.
Applying a permutation, the ratio of the surface of the pyramid AUCQG to
the hexagon OKPH is less than the ratio of the surface of the cone ABCDG
to the circle IKLH. Applying a permutation, the ratio of the surface of the
pyramid AUCQG to the surface of the cone ABCDG is less than the ratio of
the hexagon OKPH to the circle IKLH. This is contradictory, as the surface
of the pyramid AUCQG is greater than the surface of the cone ABCDG and
the hexagon OKPH is less than the circle IKLH. <The surface of> the circle
IKLH is not therefore less than the surface of the cone ABCDG.

I say that it is not greater than it.
If this were possible, then the ratio of the hexagon INLS to the hexagon

OKPH would be less than the ratio of the circle IKLH to the surface of the
cone ABCDG. We construct a hexagon XBJD in the circle ABCD, which is
similar to the hexagon OKPH. Then the ratio of the hexagon XBJD to the
hexagon OKPH is equal to the ratio of the square of XE to the square of
OM. But the ratio of the square of XE to the square of OM is equal to the
ratio of the square of AE to the square of IM, and the ratio of the square of
AE to the square of IM is equal to the ratio of AE to AG. Now, the ratio of
AE to AG is greater than the ratio of XE to XG, as if we draw XR parallel
to AG, then the ratio of XE to XG is less than the ratio of XE to XR. But
the ratio of XE to XR is equal to the ratio of AE to AG. Therefore the ratio
of XE to XG is less than the ratio of AE to AG. Inverting, the ratio of AE to
AG is greater than the ratio of XE to XG. But the ratio of XE to XG is equal
to the ratio of the hexagon XBJD to the surface of the pyramid XBJDG.
The ratio of AE to AG is therefore greater than the ratio of the hexagon
XBJD to the surface of the pyramid XBJDG. Therefore, the ratio of the
hexagon XBJD to the surface of the pyramid XBJDG is less than the ratio
of the hexagon XBJD to the hexagon OKPH. Therefore, the surface of the
pyramid XBJDG is greater than that of the hexagon OKPH. But we have
assumed that the ratio of the hexagon INLS to the hexagon OKPH is less
than the ratio of the circle IKLH to the surface of the cone ABCDG.
Therefore, the ratio of the hexagon INLS to the surface of the pyramid
XBJDG is very much less than the ratio of the circle IKLH to the surface of
the cone ABCDG. This is contradictory, as the hexagon INLS is greater than
the circle IKLH and the surface of the pyramid XBJDG is less than the
surface of the cone ABCDG. We have already shown that <the surface of
the circle> is not less than it. They must therefore be equal.

<16> The triangle ABC is a surface cutting a cone of a right cylinder
along its axis BD, and the two triangles EIG and KLN are two surfaces
cutting two cylindrical right cones along their axes IM and LS. The three
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axes are continuous along the same straight line, and the diameters of the
bases of the cones, which are the straight lines AC, EG and KN, are parallel.
It is because of this parallelism that the two bases of the upper cones are
circles like the base of the lower cone as, if the straight line DL is held fixed
and the triangles ABC, EIG and KLN rotated until they return to their
original positions, then the straight line AC remains during this rotation
within the circumference of the base, and to do this, the centres of the two
circles are marked on the surfaces of the lower and middle cones. A straight
line QR is also drawn parallel to KN, giving the base of a cone on which lies
the triangle QLR.
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I say that the straight line which is mean in proportion between AE
and the sum of AD and EM is the half-diameter of the circle equal to the
surface of the portion AEGC of the lower cone.

Proof: We draw EH parallel to BD, and suppose that the straight line O
is equivalent in power to the product of AE and the sum of AD and EM,
and that the straight line P is equivalent in power to the product of BA and
AD, and that the straight line U is equivalent in power to the product of BE
and EM. Then the straight line P is the half-diameter of the circle equal to
the surface of the lower cone, and the straight line U is equal to the half-
diameter of the circle equal to the surface of the cone on which lies the
triangle EBG, as we have shown previously. But the product of BA and AD
is equal to the product of BE and AD and that of EA and AD, and the
product of BE and AD is equal to its product with EM plus <its product>
with AH, and its product with AH is equal to the product of EA and EM, as
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the two triangles BEM and AEH are similar. The product of BA and AD is
equal to the product of BE and EM plus <the product of> EA and EM and
that with AD, from which is subtracted the product of BE and EM, which is
equivalent in power to the straight line U. There remains, therefore, the
product of EA and EM and that with AD, which is the straight line O.

Similarly, we can show that the straight line that is equivalent in power
to the product of KE and the sum of KS and EM is the half-diameter of the
circle equal to the surface of the portion of a cone on which lies the
trapezium EKNG, and that the straight line that is equivalent in power to the
product of QK and the sum of QI and KS is the half-diameter of the circle
equal to the surface of the portion on which lies KQRN.

It is clear from this that, for any solid composed of portions of cones of
right cylinders whose bases are parallel and such that two <contiguous>
portions are joined by a common base and such that the straight lines that
pass through their surfaces and which join the extremities of their bases such
as AE, EK and KQ are equal, the product of one with the half-diameter of
the lower base and with the diameter of any common base and with the
half-diameter of the upper base is the square of the half-diameter of a circle
equal to the surface of the solid excluding its base. If the vertex of the solid
is a cone, as in this example, then the product of one of the straight lines and
the half-diameter of the lower base, and with the diameters of the other
bases, is the square of the half-diameter of the circle equal to the surface of
the solid excluding its base. The same rule applies to a single cone cut in the
same way as this section, and for the solid composed of portions as in this
example.

<17> The circle ABCD is the great circle of a sphere. The great circle of
a sphere is that which cuts it into two halves. The two diameters AC and BD
cut each other at right angles and within is a polygon with an even number
of sides. Let the half-polygon be AEGBIKC. It doesn’t matter whether the
number of sides is odd or even; the only reason for specifying an even
number of sides is that it makes the process easier. If it is required to prove
this, it is possible to follow the process using other polygons with odd
numbers of sides, such as the pentagon, heptagon, and others up to infinity.
We join the two straight lines EK and GI. These are parallel, and parallel to
AC. We draw the circle LMN inscribed within the polygon and we imagine
the two points B and D as being the two poles of a sphere. Its axis is then
the diameter BD. If the sphere is rotated until it returns to its original
position, then the two sides AE and EG will delineate two portions of two
right cylindrical cones, the diameters of whose bases are AC and EK, and
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the side GB will delineate a right cylindrical cone, the diameter of whose
base is GI. But the bases are parallel as their diameters are parallel.
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I say that the surface of the solid composed of portions of cylindrical
cones, excluding its base, is less than twice the surface of the great circle
defining the hemisphere circumscribed around the solid, and greater than
twice the surface of the great circle defining the hemisphere generated by
rotating the semicircle LMN inscribed within the solid.

Proof: We place the point S on the point of contact of the side GB and
the circle LMN; it also divides the side GB into two halves. We join the
straight lines SH, IE and KA. Then, IE and KA are parallel and parallel to
GB, the triangles GBO, IUO, EPU, KQP and AQH are similar, and the ratio
of GO to OB is equal to the ratio of IO to OU, and equal to the ratio of EP
to PU, and equal to the ratio of KP to PQ, and equal to the ratio of AH to
QH. But the ratio of each of the antecedents to each of the successors is
equal to the ratio of the sum to the sum. Therefore the ratio of GO to OB is
equal to the ratio of the sum of GI, EK and AH to BH. But the ratio of GO
to OB is equal to the ratio of SH to SB as the two triangles are similar.20

Therefore, the ratio of SH to SB is equal to the ratio of the sum of GI, EK
and AH to BH. Therefore, the product of SB and the sum of GI, EK and
AH is equal to the product of SH and BH. But the product of SH and BH is
less than the product of BH and itself, and greater than the product of SH
and itself. But the product of GB, which is twice SB, and the sum of GI, EK
and AH, as we have shown, is the square of the half-diameter of the circle
equal to the surface of the composed solid <consisting of portions of cones>.
Now, the ratio of the square of the half-diameter of any circle to the square

20 Triangles GOB and SHB.
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of the half-diameter of any other circle is equal to the ratio of one circle to
the other circle. The surface of the solid is therefore less than twice the circle
ABCD, which is the great circle of the sphere circumscribed around the
solid, and greater than twice the circle LMN, which is the great circle of the
sphere inscribed within the solid.

<18> We redraw the figure, omitting the straight lines GI, EI, EK, AK
and SH, and complete the sides of the polygon.
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We say that four times the circle ABCD – by which I mean the surface
of the circle – is equal to the surface of the sphere of which the circle is the
great circle that lies upon it.

If this were not the case, then let it21 be less than the surface of the
sphere, and let it be equal to the surface of a sphere that is smaller than that
which the circle ABCD lies upon. This sphere is such that the circle LMN
lies upon it, and the circle LMN is the great circle that lies upon this sphere.
The surface of this sphere is then less than the surface of the solid composed
of portions of cones similar to <the portions> of the first solid, which is
tangent to the sphere on which lies the circle LMN, as the solid surrounds
the circle.22 We have shown that the surface of the solid is less than four

21 ‘it’ here refers to four times the surface of the circle ABCD.
22 In the first sentence of the statement and in the figure, it appears that the author is

considering here a solid generated from a regular polygon circumscribed around the circle
LMN and inscribed within the circle ABCD similar to the solid used in the previous
study. This raises the question of the existence of such a polygon. If r and R are the
respective radii of LMN and ANCD, the number n of the sides of the polygon must
satisfy r = R cos π/n. The data of r and R does not generally lead to an integer value of n.
(r = R/2 gives n = 3, (R√3)/2 gives n = 6). However, it is sufficient for the polygon
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times the circle ABCD <and greater than four times the circle LMN>.
Therefore, the surface of the sphere on which lies the circle LMN is very
much less than four times the circle ABCD. But we have assumed it to be
equal, which is contradictory.

Now, let four times the circle ABCD be greater than the surface of the
sphere on which lies the circle ABCD, and let it23 be equal to the surface of
the sphere on which lies the circle QRX; this circle is the great circle which
lies on this sphere. We imagine that this sphere surrounds a solid composed
of portions of cylindrical cones.24 Then, the surface of this solid will be
greater than four times the circle ABCD. But the surface of the sphere on
which lies the circle QRX is greater than the surface of this solid as the
sphere surrounds it. Consequently, the surface of this sphere is greater than
four times the circle ABCD. But we have assumed it to be equal, which is
contradictory.

It follows that the surface of any sphere is four times the great circle
that lies upon it. But, as the circle is the product of <one quarter of> its
diameter and its circumference, the surface of the sphere is given by the
product of the diameter of the great circle that lies upon it and its
circumference.

<19> Take the same figure as it is.
We say that the product of BH, which is the half-diameter of the circle

ABCD, and one third of the surface of the sphere on which lies the circle
ABCD is the volume of the sphere.

Proof: Otherwise, let this product be the volume of a sphere that is
smaller than this sphere, namely the sphere on which lies the circle LMN.
We imagine a circle which passes through the two points B and D and
which cuts the circle ABCD at right angles, and a circle which passes
through it at right angles and which passes through the two points A and C
so that the circle ABCD is divided into quarters, and two circles which fall25

into each pair of quarters of the second circle and which pass through the
two points B and D. We have thus divided each quarter, among the quarters
of a circle, into three thirds. We imagine that each of the five circles26

                                    
circumscribed around the circle LMN to be inside the circle ABCD. The solid is then
tangent to the sphere LMN, as the author states, and internal to the sphere ABCD.

23 ‘it’ here refers again to four times the surface of the circle ABCD.
24 This solid is either tangent to the sphere ABCD and internal to the sphere QRX,

or inscribed within the sphere QRX, having no common point with the sphere ABCD.
25 Lit.: between.
26 These are the circles passing through B and D with the exception of the circle

ABCD.
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surrounds a polygon similar to that inscribed within the circle ABCD. We
join the extremities of each pair of similar sides in each pair of polygons
between two successive circles, forming a solid with plane bases. Those
bases which are adjacent27 to the two poles B and D are triangles. The
others are all trapeziums and form the bases of the pyramids into which the
solid is divided. The vertices of these pyramids all meet at the centre of the
sphere, at the point H. The sphere on which lies the circle LMN is tangent to
each of these bases28 and its half-diameter is perpendicular at the point of
contact. Therefore, the product of its half-diameter and one third of the sum
of the bases is the sum of the pyramids forming the entire solid, and the sum
of the bases is the surface of the solid. The product of MH, which is the half-
diameter of the sphere on which lies the circle LMN, and one third of the
surface of the solid is therefore the volume of the solid. But its product with
one third of the surface of the solid is greater than its product with one third
of the surface of the sphere on which lies the circle LMN, as the solid
surrounds the sphere. The product of BH and one third of the surface of the
sphere on which lies the circle ABCD is therefore very much greater than
the volume of the sphere on which lies the circle LMN. But we have
assumed them to be equal; this is contradictory.
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Let us suppose, now, that the product of BH and one third of the
surface of a sphere greater than that on which lies the circle ABCD is the
volume of the sphere, and let this be the sphere on which lies the circle
QRX, which is its great circle. We imagine that it surrounds a solid, with
bases, similar to the first solid and tangent to a sphere on which lies the
circle ABCD. Then the product of BH and one third of the surface of this

27 These are the bases having a vertex at either B or D.
28 See the mathematical commentary.
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solid is greater than the sphere on which lies the circle ABCD. But, as we
have supposed, let the product of BH and one third of the surface of this
sphere be the volume of the sphere on which lies the circle QRX. This
sphere is greater than the solid as it surrounds it. Therefore, one third of its
surface is greater than one third of the surface of the solid, and therefore the
product of BH and one third of the surface of the sphere is very much
greater than the volume of the sphere on which lies the circle ABCD. But
we have assumed them to be equal, this is contradictory.

The product of the half-diameter of the sphere on which lies the circle
ABCD and one third of the surface of a sphere that is either less than or
greater than it is not its volume. Consequently, its product with one third of
its surface is its volume.

But we have shown that the surface of the greatest circle found on the
sphere is one quarter of the surface of the sphere, and that the surface of the
circle plus one third of it is one third of the surface of the sphere. Therefore,
the product of the half-diameter of the sphere and one and one third
<times> the surface of the greatest circle found upon this sphere is the
volume of the sphere. The product of the half-diameter of a sphere and
twice <the surface of> the greatest circle found upon it is therefore equal to
one and a half times the <volume of> the sphere.

But for the cylinder that surrounds the sphere, the product of its axis,
which is the diameter of the sphere, and its base, which is the greatest circle
found upon the sphere, is the volume of the cylinder. Similarly, it is equal to
the product of the half-diameter of the sphere and twice <the surface of>
the greatest circle found on it. The cylinder surrounding the sphere is
therefore equal to one and a half times the sphere.

But as the cone of a cylinder is one third of it, the cone whose base is
equal to the greatest circle found on the sphere and whose axis is equal to
the half-diameter of the sphere is one quarter of the sphere. Therefore, the
sphere is four times this cone. But the ratio of the cone of a cylinder to the
cone of another cylinder is equal to the ratio of one base to the other base, if
they both have the same height, as shown in Proposition 11 of Book 12 of
the Elements. The cone whose base is four times the greatest circle found
upon the sphere and whose axis is equal to the half-diameter of the sphere is
therefore four times the cone whose base is equal to the greatest circle
found upon the sphere and whose axis is equal to the half-diameter of the
sphere. This cone is therefore equal to the sphere.

<20> Now, let us draw the circle TV with its centre at O and let it be
the greatest circle that can be found on a sphere. We draw the diameter TV.
Let the surface of this sphere be equal to the surface of the solid
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circumscribed around the sphere on which lies the circle LMN. Then, <the
volume of> the <first> sphere is greater than the solid, as if MH, which is
the half-diameter of the sphere on which lies the circle LMN, were equal to
TO, then the <first> sphere would be equal to the <second> sphere. But the
surface of the sphere on which lies the circle LMN is less than the surface of
the solid, and the surface of the solid is equal to the surface of the sphere on
which lies the circle TV. Therefore, the surface of the sphere on which lies
the circle LMN is less than the surface of the sphere on which lies the circle
TV. Therefore, the sphere on which lies the circle LMN is less than the other
sphere, and its half-diameter, which is MH, is shorter than TO. But the
product of MH and one third of the surface of the solid is the volume of the
solid, and the product of TO and one third of the surface of the sphere is the
volume of the sphere on which lies the circle TV. This is therefore greater
than the <volume of the> solid. Consequently, the sphere is greater than the
solids with the same perimeter.29
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Fig. 19

29 It is clear that it refers to the surface.



In the Name of God, the Merciful, the Compassionate

OPUSCULE

The surface of any circle is greater
than the surface of any regular polygon with the same perimeter

We wish to show that the surface of any circle is greater than the
surface of any regular polygon with the same perimeter.

Let a circle have its centre at A, its half-diameter AB, and its perimeter
equal to the perimeter of the regular polygon CDE.

I say that the surface of the circle AB is greater than the surface CDE.
Proof: We draw an inscribed circle within the surface CDE, let its

centre be at G. We extend its half-diameter to H, which is the point30 of
contact. If GH is equal to AB, then the circle AB is equal to the circle GH,
and the product of GH and the half-circumference of the circle GH is the
surface of the circle GH. But the product of GH and the half-perimeter of
the figure CDE is the area of the surface CDE. Consequently, the circle GH
is equal to the surface CDE and the smaller would be equal to the greater;
this is contradictory.
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Similarly, AB is not less than GH, as if it were so we could remove from
GH that which is equal to AB, which is GI. The circle GI would then be

30 Lit.: position.
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equal to the circle AB, and therefore the circumference of the circle GH
would be longer than the circumference of the circle GI and the perimeter
of the figure CDE would be greater than the circumference of the circle
GH. The perimeter of the figure CDE would then be very much greater
than the circumference of the circle AB. But have assumed them to be
equal, so this is impossible. Therefore, GH is neither equal to AB nor longer
than it. It is therefore shorter than it. But <the product of> GH and the half-
perimeter of the figure CDE is the area of the surface CDE, and <the
product of > AB, the longer, and half of the circumference of the circle AB,
which circumference is equal to the perimeter of the figure CDE, is greater
than <the product of> GH, the shorter, and the half-perimeter of the figure
CDE, which perimeter is equal to the circumference of the circle AB.
Therefore, the circle AB is greater than the figure CDE. That is what we
wanted to prove.

End of the opuscule
May thanks be unto God



CHAPTER V

AAAALLLL----QQQQªªªªHHHHïïïï, CRITIQUE OF TTTTHHHHÆÆÆÆBBBBIIIITTTT:
VOLUME OF THE PARABOLOID OF REVOLUTION

5.1. INTRODUCTION

5.1.1. The mathematician and the artisan

Abº Sahl Wayjan (Bijæn) ibn Rustam al-Qºhî (al-Kºhî) was one of the
principal astronomers and mathematicians of the school of Baghdad, and in
particular of the Buyid court. We can measure the importance of his works
by the references made to them by his contemporaries, like al-Sijzî or Ibn
Sahl, and by his successors, like Ibn al-Haytham and al-Bîrºnî. In his time,
according to the report transmitted by the man of letters Abº Îayyæn al-
TawÌîdî, al-Qºhî was presented as an eminent scholar who was concerned
neither with theology nor with metaphysics.1 This mathematician developed
to their farthest point the epistemic characteristics that had distinguished this
tradition since its foundation, a century earlier, by the Banº Mºsæ, as well as
throughout its successive transformations since Thæbit ibn Qurra and his
grandson Ibræhîm ibn Sinæn. Al-Qºhî was interested in the application of
mathematics to astronomy and to statics, and in the study of mathematical
instruments such as the perfect compass.2 In addition, he took an active part
in the broadening of research on geometrical transformations: in this regard,
it suffices to mention his Treatise on the Art of the Astrolabe by
Demonstration.3 Al-Qºhî and the mathematicians of his tendency, among
whom was Ibn Sahl, combined the two traditions of Greek geometry – that
of Archimedes and that of Apollonius – in order to advance onto a terrain
that was not truly Hellenistic: that of transformations. Al-Qºhî also had the

1 In his Kitæb al-Imtæ‘ wa-al-mu’ænasa, ed. A. Amîn and A. al-Zayn, al-TawÌîdî,
after mentioning the philosopher YaÌyæ ibn ‘Adî, mentions an entire group, in which are
included al-Qºhî, al-∑æghænî, al-∑ºfî, and al-Sæmarrî, among others, to affirm that ‘none
of them pronounces a single word about the soul, the Intellect, or God, as if this was
forbidden to them, or detestable’ (First part, p. 38).

2 See R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005,
Chapter V.

3 Ibid., pp. 11–12.
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advantage of his chronological situation, and he gathered the fruits of the
already considerable accumulation of work carried out since the Banº Mºsæ
and Thæbit ibn Qurra.

Who was al-Qºhî? Who were his teachers? On these questions, as on all
the others we can raise, the historical and bio-bibliographical sources are
quite silent. His name is that of a Persian, or at least of a family of Persian
origin. His contemporary, the bio-bibliographer al-Nadîm, recalls that he
was originally from ™abaristæn, a mountainous region south of the Caspian
Sea.4 To this brief information, the other bio-bibliographers – except, as we
shall soon see, for al-Qif†î – add nothing substantial.5 The only certainty
comes to us later, from al-Bîrºnî.6 Here, we encounter al-Qºhî in 359/969,
already in the company of the luminaries of his time, for he was in the
company of al-Sijzî, NaÂîf ibn Yumn, and Ghulæm ZuÌal (alias Abº al-
Qæsim ‘Ubayd Allæh ibn al-Îasan) when he attended the astronomical
observations ordered by the master of the province of Færs – ‘A≈ud al-
Dawla in person – and carried out by the well-known ‘Abd al-RaÌmæn al-
∑ºfî, from Wednesday the 2nd of ∑afar to Friday the 4th of ∑afar of the
year 359/969.

At this date, therefore, al-Qºhî was a renowned and widely-cited
mathematician. As an additional proof, let us recall that in that same year, as
we learn from manuscript 2457/2 of the Bibliothèque Nationale, al-Sijzî had

4 Al-Nadîm, Kitæb al-Fihrist, ed. R. Tajaddud, pp. 341–2. On the biography and
bibliography of al-Qºhî, see also the article ‘al-Qºhî’, by Y. Dold-Samplonius, in
Dictionary of Scientific Biography, 1975, vol. 11, pp. 239–41; C. Brockelmann,
Geschichte der arabischen Literatur, B. I, Leiden, 1937, pp. 339–40; F. Sezgin,
Geschichte des arabischen Schrifttums, B. V, Leiden, 1974, pp. 315–21, and B. VI,
pp. 218–19.

5 Among the ancient bio-bibliographers, al-Bayhaqî (462/1070–499/1105) sketches
a highly colorful portrait of al-Qºhî (Tærîkh Ìukamæ’ al-Islæm, ed. M.�Kurd ‘Alî,
Damascus, 1946, p. 88). If we can believe him, al-Qºhî was a kind of acrobat: ‘he
belonged to those who played in the markets by glass bottles (qawærîr); divine grace then
touched him, and he distinguished himself in the science of ingenious procedures, like
mechanics and mobile spheres; he was without rivals in these arts, and quite famous’. As
always, al-Shahrazºrî took up this portrait in his book, and later diffused it (Tærîkh al-
Ìukamæ’, Nuzhat al-arwæÌ wa-rawa≈at al-afræÌ, ed. ‘Abd al-Karîm Abº Shuwayrib,
Tripoli, Libya, 1988, p. 313). See also R. Rashed, ‘Al-Q‚h¬ vs. Aristotle: On motion’,
Arabic Sciences and Philosophy, 9.1, 1999, pp. 7–24.

6 Al-Bîrºnî, Kitæb TaÌdîd nihæyæt al-amækin li-taÒÌîÌ masæfæt al-masækin, text
established by P. Bulgakov and revised by Imæm Ibræhîm AÌmad, Majallat Ma‘had al-
Makh†º†æt, 8, fasc. 1–2, November 1962, pp. 99–100. Cf. the English translation of this
work by Jamil Ali, The Determination of the Coordinates of Positions for the
Correction of Distances between Cities, Beirut, 1967, pp. 68–9.



VOLUME OF THE PARABOLOID 581

already copied his work on The Centres of Tangent Circles,7 which was
therefore composed considerably earlier. It was also around this date that he
had written his treatise on The Construction of the Regular Heptagon.8

Our second encounter with al-Qºhî takes place 19 years later, at
Baghdad, in the reign of Sharaf al-Dawla, son of ‘A≈ud al-Dawla. The
latter had ordered al-Qºhî to observe the motion of the seven planets, along
with their displacement in their signs. With this in mind, al-Qºhî had built an
observatory, fashioned an astronomical instrument, and set about his
observations, in front of witnesses. The event was confirmed by the most
diverse sources, not all of which were independent. We shall glance only at
the testimony of an astronomer, al-Bîrºnî, a bio-bibliographer, al-Qif†î, and
of a historian, Ibn Taghrî Bardî. Al-Bîrºnî writes as follows:

Sharaf al-Dawla ordered Abº Sahl al-Kºhî to make a new observation. So
he constructed in Baghdad a house whose lowest part (qaræruhu) is a
segment of a sphere, of diameter twenty-five cubits (13 and one-half meters),
and whose center is in the ceiling of the house, at an aperture which admits
the rays of the sun to trace the diurnal parallels.9

To confirm this testimony, al-Qif†î bases his account on two crucial
documents in the history of science: two notarized acts, intended to record
scientific–technical results. Drawn up by two judges, these two acts were
undersigned by them, as well as by all the witnesses present, that is, the
astronomers Abº IsÌæq Ibræhîm ibn Hilæl al-∑æbi’, Abº Sa‘d ibn Bºlis al-
NaÒrænî, al-Qºhî himself, Abº al-Wafæ’ al-Bºzjænî, Abº Îæmid al-∑æghænî,
Abº al-Îasan al-Sæmarrî and Abº al-Îasan al-Maghribî. Al-Qºhî built this
observatory in the gardens of the Royal Palace, and he proceeded to two
series of observations in the month of ∑afar, 378/988,10 by means of his

7 Marækiz al-dawæ’ir al-mutamæssa, fols. 19–21.
8 Cf. J. Dold-Samplonius, ‘Die Konstruktion des regelmässigen Siebenecks’,

Janus, 50, 4, 1963, pp. 227–49. See R. Rashed, Les Mathématiques infinitésimales
du IXe au XIe siècle, vol. 3, Appendix I, text no. 7.

9 Al-Bîrºnî, TaÌdîd nihæyæt al-amækin, ed. Bulgakov, pp. 100–1; trans. Jamil Ali,
The Determination of the Coordinates of Positions, p. 69.

10 Al-Qif†î, Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, pp. 351–4. As
usual, but this time very briefly, Ibn al-‘Ibrî takes up some of al-Qif†î’s information; see
Tærîkh mukhtaÒar al-duwal, ed. O.�P.�A. ∑æliÌænî, 1st ed., Beirut, 1890; repr. 1958,
p. 176. On al-Qif†î’s description of the observatory built by al-Qºhî, see A. Sayili, The
Observatory in Islam and its Place in the General History of the Observatory, 2nd
edition, Ankara, 1988, pp. 112–17. Note that we find this same date given earlier: the
28th of ∑afar 378/988. Al-Bîrºnî repeats this same testimony, with the same numbers and
the same names, in his al-Qænºn al-Mas‘ºdî, Osmania Oriental Publications Bureau,
Hyderabad, 1955, vol. 2, sixth book, pp. 642–3.
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instrument, the exactitude and perfection of which were unanimously
attested by those present.

The third source is the historian Ibn Taghrî Bardî,11 who, relating the
events of the same year 378/988, writes as follows:

In the month of MuÌarram of that year, Sharaf al-Dawla, following the
example of al-Ma’mºn, ordered the observance of the seven planets in their
motion and their displacement in their signs. Ibn Rustam al-Kºhî took
charge of this, for he knew astronomy and geometry, and with this in mind
he built a house in the back of the gardens of the Royal Palace; he
proceeded to observation for the two remaining nights of ∑afar.

Although the chronicler Ibn Taghrî Bardî seems to depend on al-Qif†î here,
nevertheless the discoveries he reports, as well as the testimony of al-Bîrºnî,
depend directly on the sources, and the historian also had available a letter
from NaÂîf ibn Yumn,12 relating one of the results of these observations.

Everything thus indicates that around this period, in the eighties of the
tenth century, al-Qºhî was among the most prestigious mathematicians of
Baghdad, and moved in the circle in which he met the scholars already cited,
as well as others like Ibn Sahl. We can even add, without risk of error, that
he had spent at least two decades in the limelight. Finally, let us note that
from this date on, his former companions began to disappear: al-∑æghænî
died one year later, in 379/989, and al-∑æbi’ six years after that, in 384/994,
at the age of about 70. Yet who was al-Qºhî himself?

Without knowing anything about his fate after 378/988, we have seen
that he was already a recognized author at least 20 years previously. Better
yet, a piece of information which has so far gone unnoticed shows that he
was scientifically active in the fifties of the tenth century: if this were truly
the case, he would then be of the generation of his colleagues like al-∑æbi’,
and of an equivalent age, finishing his scientific career, if not his life, with the
end of the century. Al-Qif†î, followed by Ibn Abî UÒaybi‘a, reports in the
article devoted to Sinæn ibn Thæbit ibn Qurra – father of Ibræhîm ibn Sinæn
and of Thæbit ibn Sinæn – that he had ‘corrected the expression of Abº
Sahl al-Qºhî in all his books (fî jamî‘i kutubihi), since Abº Sahl has asked

11 Ibn Taghrî Bardî, al-Nujºm al-zæhira fî mulºk MiÒr wa-al-Qæhira, introduction
and notes by MuÌammad Îusayn Shams al-Dîn, vol. 4, Beirut, 1992, p. 156. Ibn
Taghrî Bardî clearly takes up al-Qif†î’s text here, in the same words.

12 Al-Bîrºnî writes in TaÌdîd nihæyæt al-amækin, ed. Bulgakov, p. 101: ‘NaÂîf ibn
Yumn informed me, in writing, that the summer solstice was found at the end of the first
hour of the night whose morning was on Saturday, the twenty-eighth of ∑afar, year three
hundred seventy-eight of the Hijra [...]’ (trans. Jamil Ali, The Determination of the
Coordinates of Positions, pp. 69–70).
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him to’.13 Yet, still according to al-Qif†î and Ibn Abî UÒaybi‘a, Sinæn ibn
Thæbit died in 331/943. Moreover, Ibn Abî UÒaybi‘a specifies the month
and the day of his death: the Friday of the beginning of Dhº al-Qa‘da. Now,
the plural used does indeed designate several books, at least three, that were
written by al-Qºhî before 943, and this takes his date of birth back to the
end of the first or the second decade of the tenth century. We are also given
a more important piece of information, infinitely more precious: we thereby
learn that al-Qºhî was in direct relation at the time with the son of Thæbit
ibn Qurra and the father of Ibræhîm ibn Sinæn, whom he therefore cannot
have failed to know. This indication by the two ancient bio-bibliographers
needs to be matched up against that of other sources before it can be
confirmed. For the moment, however, it contains nothing unbelievable; and
it merely situates al-Qºhî in the place that mathematical analysis will show
was truly his, within the tradition of the ‘dynasty’ of the Banº Qurra.

5.1.2. The versions of the volume of a paraboloid

The Volume of the Paraboloid is not the only contribution of al-Qºhî
to the field of infinitesimal mathematics. He introduces this treatise as being a
necessary part of a much larger project to investigate centres of gravity. This
project also included a brief memorandum on The Ratio of the Diameter to
the Circumference, which we shall discuss elsewhere as part of a section on
Arabic commentaries on The Measurement of the Circle by Archimedes.
Al-Qºhî discusses the history behind his own research, and especially this
project, in his introduction to the treatise. While engaged in writing a book
on centres of gravity, which by all indications must have been a major work,
he found that he needed first to be able to determine the volume of a
paraboloid. At this point, he turned to the book by Thæbit ibn Qurra, the
only work that he knew on this topic. However, as we saw in Chapter II, Ibn
Qurra began his work by proving 35 preliminary propositions before
arriving at his goal. Al-Qºhî found this road a long and difficult one, so he
sought a path that was both easier (qarîb) and shorter, requiring far fewer
lemmas. This new method only involved two lemmas.

Al-Qºhî states in his own words that he began his study of the volume
of the paraboloid as a requirement of his research into centres of gravity.
While logically a precursor, it was in fact published later. In addition,

13 Al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 195; Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî
†abaqæt al-a†ibbæ’, ed. A. Müller, 3 vols., Cairo/Königsberg, 1882–84, vol. 1, p. 324.
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although he was studying the book by Thæbit ibn Qurra, he wished to carry
out his research more in the style of that author’s grandson, Ibræhîm ibn
Sinæn; that is, with economy and elegance. Taking a lead from Ibn Sinæn, he
abandoned the arithmetical lemmas in favour of a geometric approach, albeit
in combination with  the method of integral sums that had just been
rediscovered. Al-Qºhî must therefore have written his treatise on the
paraboloid either at the same time as he was writing his other book on The
Centres of Gravity – which would have taken some time if the number of
chapters mentioned by the author is anything to go by14 – or very shortly
thereafter. The larger book has sadly been lost, and the only indications we
have as to the date when it was written appear in correspondence between
al-Qºhî and Abº IsÌæq Ibræhîm ibn Hilæl al-∑æbi’. However, the dates of
this correspondence are themselves by no means certain. We are therefore
reduced to suggesting that this book was written between the early eighties
and the early nineties in the tenth century.15

There are a number of surviving manuscripts of the treatise by al-Qºhî
on the measurement of the paraboloid. We shall now examine these in order.
They fall into three distinct groups. The first group, containing a single
manuscript, consists of a ‘rewriting’ of the original text by al-Qºhî. The
second group contains accurate copies, which allow us to get very close to
the original. The third group also contains just one manuscript, similar to
those in the second group, but showing signs of some rewriting of the
introduction only. The first version appears in the manuscript Riyæ≈a 41/2,
fols 135v–137v, in the Dær al-Kutub in Cairo. This manuscript is in the

14 From the correspondence between al-Qºhî and al-∑æbi’, we learn that this work
consisted of six books, to which the author intended to add another four or five. See the
following note.

15
 This correspondence has been published by J. L. Berggren, ‘The correspondence

of Abº Sahl al-Kºhî and Abº IsÌæq al-∑æbî: A translation with commentaries’, Journal
for the History of Arabic Science, vol. 7, nos. 1 and 2, 1983, pp. 39–124. Note that a
similar echo of his research into centres of gravity can not legitimately be found in the
introduction by al-Qºhî to his treatise on The Construction of the Regular Heptagon.  

This takes the form of a general list, including astronomy, numbers, weight, centres
of gravity, and other topics. If these relatively vague expressions are to be read as a
reference to his own research, then somewhere there should be similar works on number
theory. Any search for these is bound to be a fruitless one.

See A. Anbouba, ‘Construction of the Regular Heptagon by Middle Eastern
Geometers of the Fourth (Hijra) Century’, Journal for the History of Arabic Science,
1.2, 1977, pp. 352–84, especially pp. 368-369; ‘Construction of the Regular Heptagon
by Middle Eastern Geometers of the Fourth (Hijra) Century’, Journal for the History of
Arabic Science, 2.2, 1978, pp. 264–9.

Risæla fî istikhræj ≈il‘ al-musabba‘ al-mutasæwî al-a≈læ‘, mss Paris 4821, fols 1–8;
Istanbul, Aya Sofya 4832, fols 145v–147v; London, India Office 461, fols 182–189.
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handwriting of the famous copyist MuÒtafæ ∑idqî, whom we have had cause
to mention several times previously. This copy was made in 1153/1740–41.
An examination of the text reveals that it is a ‘rewriting’, an ‘edition’
(taÌrîr) and not the original by al-Qºhî.16 It is written in the same style that
we have seen in Chapter I in the case of the rewriting by al-™ºsî of the
Banº Mºsæ treatise. This is also the style used by Ibn Abî Jarræda in
rewriting the treatise by Thæbit ibn Qurra On the Sections of the Cylinder, a
style of writing that persisted until the late thirteenth century. This edition
also omitted the historical and theoretical introduction, together with the
final section in which al-Qºhî returns to a discussion of Proposition X.1 in
the Elements of Euclid and its modification. In effect, he has removed
anything that he did not consider to be strictly mathematical. Here, once
again, the editor has removed everything that he considered to be redundant
from the text, together with some of the intermediate steps in the proofs,
relying on the perspicacity of the reader to supply them. In brief, he has
deleted or summarised sections in line with certain rules of economy,
didactically more efficient in his view, without in any way detracting from
the spirit of the text. As to the letter of the text, he occasionally rewrites
some of the expressions used by al-Qºhî in his own words. This linguistic
difference is sufficient to indicate that al-Qºhî himself could not have been
the author of this edition.

As to the identity of the editor, we know nothing for certain. We
therefore feel constrained to offer this text and its translation so that the
reader may compare it with al-Qºhî’s treatise for themselves. We may,
however, put forward a conjecture that one likely candidate could be Ibn
Abî Jarræda. This seems probable for two main reasons. Firstly, we feel we
recognize aspects of his style as it appears in his edition of the treatise by
Thæbit ibn Qurra On the Sections of the Cylinder17 – a treatise that itself
appears in the collection copied by MuÒtafæ ∑idqî. Secondly, Ibn Abî

16 H. Suter has qualified this version as ‘short’ in order to distinguish it from that
copied by the same MuÒtafæ ∑idqî in 1159 [see manuscript Q], and he asks himself ‘ob
beide von Abû Sahl verfasst worden seien (es kam bei arabischen Gelehrten öfters vor,
dass sie eine weiter ausgeführte und eine gekürzte Abhandlung über denselben
Gegenstand veröffentlichten), oder ob die kürzere später von einem andern Gelehrten als
Auszug aus der ersten verfasst worden sei, ist nicht zu entscheiden, doch ist das erstere
wahrscheinlicher.’ [‘Die Abhandlungen Thâbit b. Ëurras und Abû Sahl al-Kûhîs über die
Ausmessung der Paraboloide’, Sitzungsberichte der phys.– med. Soz. in Erlangen, 49,
1917, pp. 186–227, on p. 213]. The eminent historian has constructed an ad hoc
argument by claiming that Arab academics often wrote a shorter treatise based on an
earlier longer version. This is not the case, and any semblance of an attribution to al-Qºhî
has no solid foundation in this case.

17 Ms. Cairo, Riyæ≈a 41, fols 36v–64v.
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Jarræda was interested in writings on infinitesimal mathematics, as is made
evident by his notes on The Measurement of the Circle and The Sphere and
the Cylinder18 by Archimedes. This pure conjecture cannot be confirmed
until such time as another manuscript tradition of the same text is
discovered.

Let us now move on to the second version, the actual treatise written by
al-Qºhî. This survives in the form of four manuscripts, all part of a single
family, as we shall see. The first is found in collection 4832 in Aya Sofya,
fols 125v–129r, a collection that we have mentioned more than once.19 This
copy appears to date from the fifth century of the Hegira (eleventh century),
and is referred to here as manuscript A.

The second manuscript belongs to another famous collection, 4830 in
Aya Sofya. It occupies fols 161v–165r, and the copy dates from
626/1228–1229. We shall refer to it as manuscript U. This manuscript also
contains marginal annotations.20

The third manuscript belongs to the collection Riyæ≈a 40 in Dær al-
Kutub, Cairo, fols 187v–190v. It is in the handwriting of MuÒtafæ ∑idqî, and
was copied in 1159/1746. It is referred to here as manuscript Q.

Finally, the fourth manuscript belongs to collection 5648 in al-Åæhiriyya
in Damascus, fols 166r–171r. We refer to it as manuscript D. This is a copy

18 Ms. Istanbul, FætiÌ 3414, Kitæb fî Misæhat al-dæ’ira, fols 2v–6v; Kitæb al-Kura
wa-al-us†ºwæna, fols 9v–49r.

19 See the description of the manuscript, Chapter II, Section 2.1.3.
20 These marginal annotations are in the handwriting of a certain MuÌammad Sartæq

al-Maræghî, an unknown mathematician working in the eighth century of the Hegira. His
writing appears in the margin of the treatise by al-Qºhî, fol. 165r: ‘MuÌammad Sartæq al-
Maræghî – with the help of God the Highest – has read this illustrious treatise, has learned
from it, and has written his comments, 1st of ∑afar seven hundred and twenty-eight (17th
December 1327) in the Maliki school al-NiÂæmiyya in Baghdad – may he be protected’.

Throughout this treatise, as throughout the other treatises by al-Qºhî in this Aya
Sofya 4830 collection, al-Maræghî notes in the margin all the intermediate, and often
elementary, steps in the proof, with references to his own book, al-Ikmæl, an edition of
al-Istikmæl by Ibn Hºd. For example, in the margin of fol. 162v, he writes: ‘This has
been shown in the proof of Proposition 6 in Chapter 1 of the third kind of species 4 of
genus 1 of the two genera of mathematics in my book, al-Ikmæl: An edition of the
Istikmæl in mathematics’. This particular book is cited throughout these marginal notes,
e.g. fols 169r, 171r, 178v, etc. Also see J.P. Hogendijk, ‘The geometrical parts of the
Istikmæl of Yºsuf al-Mu’taman ibn Hºd (11th century)’, Archives internationales
d’histoire des sciences, vol. 41, no. 127, 1991, pp. 207–81; on p. 219 he reads
Baghdad instead of Nakîsær. On this town, see D. Krawulsky, ïræn – Das Reich der
ïlÏæne. Eine topographisch-historische Studie, Wiesbaden, 1978, p. 407.
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of the previous manuscript alone. We shall not, therefore, take it into
account when establishing the text.

The third version appears in a manuscript copied in Mosul in
632/1234–5. It is held in collection 2519 of the Khuda-Bakhsh Library in
Patna (Bankipore 2468, fols 191v–193v). This version differs from the
previous version in that, while retaining the meaning, the introduction by al-
Qºhî is expressed differently. The same expressions are there, as are the
same ideas, but they are formulated differently. The only real difference is
that the introduction to this version states that al-Qºhî also determined the
centre of gravity of a portion of a hyperboloid. The remainder of the text is
identical, except for the fact that B contains a surprisingly large number of
omissions and errors considering the shortness of the text.

An examination of the final versions21 results in the following stemma:

x

x

Q

A

U B

x

D

5th /11th  century

626/1228-9 632/1234-5

1159/1746

As far as I know, this treatise by al-Qºhî has never been published in a
critical edition. Only manuscript B has ever been published, on three
occasions. The first was in 1947,22 the second in 196623 and the third, by

21 For a detailed comparison of the manuscripts, see Les Mathématiques
infinitésimales, vol. I, p. 841–2.

22 Published in al-Rasæ’il al-mutafarriqa fî al-hay’a li-al-mutaqaddimîn wa-
mu‘æÒiray al-Bîrºnî, ed. Osmania Oriental Publications Bureau, Hyderabad, 1947, sixth
treatise.

23 A.S. al-Dimirdæsh, ‘Wayjan Rustam al-Qºhî wa-Ìajm al-mujassam al-mukæfi’’,
Risælat al-‘ilm, 4, 1966, pp. 182–95.
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‘Abd al-Majîd NuÒayr, in 1985.24 H. Suter25 produced a fairly free German
translation of the introduction and final section of manuscript Q in order to
supply the missing sections of a translation of the first version, which, as we
have shown, is not the work of al-Qºhî.

5.2. MATHEMATICAL COMMENTARY

We shall now consider the mathematical content of al-Qºhî’s
memorandum. As we have already shown, it consists of three propositions.
From the beginning, al-Qºhî distinguished between three different cases. In
the first case, the inscribed and circumscribed cylindrical bodies are cylinders
of revolution. In the second and third cases, these cylindrical bodies are
generated by parallelograms. They are equivalent to the cylinders of
revolution, as al-Qºhî explains in the first proposition. For the sake of
simplicity, we shall refer to them as cylinders throughout. Taking an
inscribed cylinder away from a circumscribed cylinder leaves a cylindrical
ring.

Proposition 1. – Consider a paraboloid with axis XF and let this axis be
subdivided by a number of abscissal points (bi)0≤i≤n, where b0 = 0 and
bn = XF. Let (Ii)2≤i≤n be the volumes of the inscribed cylinders associated
with this subdivision, and let (Ci)1≤i≤n be the volumes of the circumscribed
cylinders associated with this subdivision. Let V be the volume of the
cylinder associated with the paraboloid. Then

Ii
i=2

n

∑  <  
1
2

 V <  Ci
i=1

n

∑  for all n ∈ Ν∗.

Proof:
(a) Let Z be a point on the axis and let EZ be the associated ordinate.

From the fundamental properties of the parabola, we have XF

XZ

AF

EZ
=

2

2 ; hence,

for all three cases, we have
XF

XZ

AD

EI
=

2

2 .

24 ‘Risæla fî misæÌat al-mujassam al-mukæfi’’, Majallat Ma‘had al-Makh†º†æt, 29, 1,
1985, pp. 187–208.

25 ‘Die Abhandlungen Thâbit b. Ëurras und Abû Sahl al-Kûhîs über die
Ausmessung der Paraboloide’, Sitzungsberichte der phys.– med. Soz. in Erlangen, 49,
1917, pp. 186–227.
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If S1 is the area of the circle of diameter AD and σ1 is that of the circle
of diameter EI, then

XF · σ1 = XZ · S1.
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Hence, for all three cases:

(1) v (QGHR) = v (SBCO).

The same argument applies for any pair of cylinders generated in the
same way, for example

v (JLMT) = v (PRHU).

(b) Let y = f(x) be the equation of the half-parabola used to generate the
paraboloid. Each abscissal point bi, i ≥ 1, is associated with an ordinate at
right angles, together with a parallelogram of dimensions bi and f(bi). Let ui

be the volume of the cylinder generated by this parallelogram. If u0 = 0,
then

(2) ui – ui-1 < 2 Ci (1 ≤ i ≤ n).

Al-Qºhî first considers the case where i = n:



590 CHAPTER V: AL-QªHï

un = v (ABCD)   and   un-1 = v (IERH).

We then have

v (ABCD) – v (IERH)  = v (SBCO) – v (IERH) + v (ASOD)
= v (QGHR) – v (IERH) + v (ASOD),

from (1); hence

(3) v (ABCD) – v (IERH) = v (QEIG) + v (ASOD).

However,
v (QEIG) < v (ASOD);

hence
v (ABCD) – v (IERH) < 2v (ASOD).

Similarly, for i = n – 1, we have

ui = v (IERH),  ui-1 = v (KLMN),

and we then have

v (IERH) – v (KLMN) < 2v (EPUI).

(c) The reasoning is identical for all 1 ≤ i ≤ n, and we can deduce from
(2) that

Ci
i=1

n

∑  >  
V

2
.

From (2)

u u Ci
i

n

i
i

n

i
i

n

=
−

= =
∑ ∑ ∑

1
1

1 1

 –   <  2 .

However, un = V; hence

(4) V

2
 <  Ci

i=1

n

∑ .

(d) Similarly, we can show that
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Ii
i=1

n

∑  <   
V

2
, where I1 = 0.

Firstly,

(2′) ui – ui-1 > 2Ii, 2 ≤ i ≤ n.

If we take un = v (ABCD) and un-1 = v (IERH) and In = v (QEIG), then,
from (3),

v (ABCD) – v (IERH) = v (QEIG) + v (ASOD).

However,
v (QEIG) < v (ASOD);

hence
v (ABCD) – v (IERH) > 2v (QEIG).

Similarly, it can be shown that

v (IERH) – v (KLMN) > 2v (JKNT).

The reasoning is identical for all 1 ≤ i ≤ n; hence

(2′) ui – ui-1 > 2Ii, 2 ≤ i≤ n.

From this, we can deduce that

u u Ii
i

n

i
i

n

i
i

n

=
−

= =
∑ ∑ ∑

1
1

1 1

 –   >  2 

and

u In i
i

n

  >   2
2=

∑ .

But V = un, so

(5)     V
Ii

i

n

2 1

 >    
=
∑ .

Combining (4) and (5) completes the proof.
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Proposition 2. – Let a portion of a paraboloid lie between any two
ordinate surfaces, and let I and C be the volumes of the corresponding
inscribed and circumscribed cylinders respectively. If this portion is cut by
a third ordinate surface equidistant from the other two, and we construct
two inscribed cylinders with volumes I1 and I2 respectively, and two
homologous circumscribed cylinders with volumes C1 and C2 respectively,
then

(C1 – I1) + (C2 – I2) = 1
2

 (C – I).

C – I = v (ring HGEC), and C1 – I1 = v (ring NLMC)
C2 – I2 = v (ring LKGS)     
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However, HGEC is a parallelogram, and KM passes through the midpoint L
of NS; therefore

v (ring NLMC) + v (ring LKGS) = 1
2

 v (NSEC) + 1
2

 v (ring NHSG)

 = 1
2

 v (ring HGEC);

and thence the result.
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Comment. — In the mind of al-Qºhî, the meaning of this proof is as follows:
If one begins with the subdivision of the axis XF by the abscissal points
(bi)0≤i≤n, where ( )Ii i n1≤ ≤ , ( )Ci i n1≤ ≤  and I1 = 0 are the volumes of the
corresponding cylinders, and if one then considers the series ( )cj j n0 2≤ ≤ ,

where b c b cn n0 2 =     =    0 , ,  c2i+1 =  
bi +  bi+1

2
, and (I′j )1≤j≤2n  and (C′j)1≤j≤2n

are the volumes of the corresponding cylinders associated with this
subdivision, then

( ) ).′ − ′ −
= =
∑ ∑C I C Ij
j

n

j i
i

n

i
1

2

1

1
2

 =   

Proposition 3. – If P is the volume of a portion of a paraboloid and V the
volume of the associated cylinder, then

P = V
2

.

Proof: If we suppose that P ≠ V

2
, then

P = V

2
 + ε   or   P =  V

2
 – ε  (ε > 0).

We can show that each of these cases results in a contradiction, regardless of
the initial subdivision (bi)0≤i≤n of the axis XF. Using the process described in
the previous proposition, we can construct the subdivisions defined as
follows:

( ) , ( ) , )
. .

b b bi i n i i n i

q

i n q

1

0 2

2

0 22 0 2≤ ≤ ≤ ≤ ≤ ≤
    ... ,  (  ....

If ( )
.

Ii

q

i n q1 2≤ ≤
 and ( )

.
Ci

q

i n q1 2≤ ≤
 are the volumes of the cylinders associated with

subdivision( )
.

bi
q

i n q1 2≤ ≤
, we know from the previous proposition that

(Ci
q

i=1

n.2 q

∑ − Ii
q ) =  

1
2

 (Ci
q−1

i=1

n.2q−1

∑ − Ii
q−1)

for a constant n and any q in N*. From this, al-Qºhî used an extension of
Proposition X.1 of Euclid in order to show that, after a certain number of
operations,
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In other words, he showed that for all ε > 0, there exists N such that for all
q > N equation (6) is satisfied. However,
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which is also impossible by Proposition 1. Therefore

P = V

2
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Al-Qºhî’s proof is effectively established here due to Proposition 1, in
which he compares the sums of the inscribed and circumscribed cylinders
with the volume of the large cylinder without needing to evaluate these
sums; that is, as Archimedes did by summing an arithmetical progression.
The proof of this proposition is based on the inequalities (2) and (2′), which
derive from a consideration of equal cylinders such as QGHR and SBCO
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that are neither inscribed nor circumscribed, and which do not, therefore,
constitute an a priori requirement.

Proposition 2 shows that, if the subdivision is made finer by dividing
each interval by a factor of two, then the difference between the circumscri-
bed and inscribed cylinders is also divided by two. This proposition serves
the same purpose as Proposition 19 in Archimedes’ book The Conoids and
Spheroids.

In its use of integral sums, the method used by al-Qºhî appears to be
similar to that of Archimedes. However, the way in which the proof pro-
ceeds is different. It appears to be more the case that al-Qºhî rediscovered
the use of integral sums.



5.3. Translated texts
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5.3.1. On the Determination of the Volume of a Paraboloid

5.3.2. On the Volume of a Paraboloid



In the Name of God, the Merciful, the Compassionate

TREATISE BY ABª SAHL WAYJAN IBN RUSTAM AL-QªHï

On the Determination of the Volume of a Paraboloid

As an understanding of the measurement of solids, figures, magnitudes
and the ratios between them is a prerequisite to an understanding of their
centres of gravity – the former being as an introduction to the latter, given
that it is not possible to find the centres of gravity until after one has gained
an understanding of measurement – we have needed to gain such a prior
understanding of measurement from the book of Archimedes On the
Sphere and the Cylinder, and from other books written on this subject. It
was on completing this study that we began to write our book On the
Centres of Gravity. In it, we undertook a minute analysis, in so far as is
possible and within the limits of our capabilities, to the point where we
have found the centres of gravity of many things having weight that have
not been found previously by any of the ancients distinguished in
geometry, let alone their modern inferiors, and the earlier discovery of
which we are unaware of before our time, such as the centre of gravity of
any given portion of a sphere or an ellipsoid.1 Once we had discovered it,
we were seized by an intense desire to find the centres of gravity of other
solids which had not been previously found, such as the centre of gravity of
a paraboloid. As we have explained earlier, its volume must be known
before the centre of gravity can be found.

We state that: There is no other book in existence on this subject, other
than the book by  Abº al-Îasan Thæbit ibn Qurra, which is a book that is
well known and famed among geometers. But it is voluminous and long,
containing around forty propositions, some numerical, some geometrical
and some others, all of which are lemmas for a single proposition which is:
How to know the volume of a paraboloid.

When we studied that book, we found it very difficult to understand it,
while we found the book of Archimedes On the Sphere and the Cylinder

1 The manuscript [B] mentions also the centre of gravity of a section of a
hyperboloid.
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much easier despite its difficulty and the multiplicity of its aims, and even
though the aims of the two books are the same. We therefore thought that
all those who have studied the book, from the moment it was written by
Thæbit ibn Qurra to the present day, would have found as we did, that it is
difficult to understand. It was this belief that persuaded us to continue with
our studies into the determination of the volume of this solid, that is, the
paraboloid, beginning once more from the beginning. We have been able to
make this determination by means of an accessible method, using none of
these lemmas, and with no need for any of them. Anyone who examines
this book and our book will see that it is so, as we have said.

But while, in the composition of our book On the Centres of Gravity,
we did not find it necessary to know the volume of a paraboloid, and while
we did know it and we did understand it from the book of Thæbit, we did
not take the time to pursue the determination of that which others before us
have determined – regardless of the method they employed – and we did
not speak of the methods of determination used by those who preceded us,
whether they be long or short, difficult or easy, or requiring or not
requiring lemmas, because that is not how we normally work, and
especially because the byways of this science are many and wide ranging.

We say that: If a portion of a parabola rotates simultaneously with the
parallelogram defined by the diameter of this portion and half of its base,
together with the ordinates to this diameter and the straight lines passing
through the extremities of these ordinates to this diameter, around and
parallel to this same diameter, and if this rotation is continued until the
portion of the parabola returns to its original position, then the solid
generated by the rotation of the plane of this portion is a paraboloid. The
solid generated by the rotation of the parallelogram defined by the diameter
of the section and half of its base is the cylinder of the paraboloid. This
diameter is also the diameter of the paraboloid. We call the surfaces
generated by the rotation of the ordinate lines the ordinate surfaces of the
paraboloid. We call the solids generated between the ordinate surfaces the
cylindrical bodies of the paraboloid. Of all these cylindrical bodies, that
which is generated by a parallelogram that can be wholly enclosed within
the portion such that one of its angles lies on its boundary we call the
cylindrical body inscribed within the paraboloid. And of all these
cylindrical bodies, that which is generated by a parallelogram part of which
lies outside the portion such that one of its angles lies on its boundary we
call the cylindrical body circumscribed around the paraboloid. We use the
term homologous to describe the pair of cylindrical bodies consisting of
one inscribed within the paraboloid and one circumscribed around it,
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provided the inscribed body is separate from2 the circumscribed one, by
which we mean that they have the same height. We shall call any solid
generated by the rotation of one of the surfaces on this portion around the
diameter of this portion, whatever the surface, the solid of this surface or
the solid formed from the surface, regardless of whether it resembles a
ring, a cylinder or any other form.

– 1 – Any half-cylinder of a paraboloid is less than the sum of
cylindrical bodies, whatever their number, circumscribed around the
paraboloid, and is greater than the sum of the cylindrical bodies, whatever
their number, inscribed within it.

Example: Let the cylinder of the paraboloid be ABCD, the paraboloid
AXD, the circumscribed cylindrical bodies ASOD, EPUI and KLMN, and
the cylindrical bodies inscribed within it QEIG and JKNT.

I say that half of the cylinder ABCD is less than the sum of the
cylindrical bodies ASOD, EPUI and KLMN circumscribed around the
paraboloid, and that the sum of their analogues, however many their
number, and is greater than the sum of the cylindrical bodies QEIG and
JKNT inscribed within it and the sum of their analogues, however many
their number.
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Proof: Each of the straight lines AF  and EZ  is an ordinate to the
diameter XZF. The ratio of the straight line FX to the straight line XZ is
therefore equal to the ratio of the square of AF to the square of EZ, as the
portion AXD is a portion of a parabola. But the ratio of the square of AF to
the square of EZ is equal to the ratio of the square of AD to the square of
EI, and the ratio of the square of AD to the square of EI is equal to the ratio
of the circle of diameter AD to the circle of diameter EI. Therefore, the
ratio of the circle of diameter AD to the circle of diameter EI is equal to the

2 i.e. is a part of.
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ratio of the straight line FX to the straight line XZ. The product of the
straight line FX and the circle of diameter EI is therefore equal to the
product of the straight line XZ by the circle of diameter AD. But the
product of the straight line FX and the circle of diameter EI is equal to the
cylinder QRHG generated by the rotation of the parallelogram RQFX about
the diameter XF, regardless of whether or not the ordinate to the diameter
is at right angle to it. If it were not at a right angle, the effect is identical to
having taken a given cone away from one vertex of the cylinder and added
it to the other vertex.
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Similarly, the product of the straight line XZ and the circle of diameter
AD is equal to the cylinder SBCO  generated by the rotation of the
parallelogram SBXZ. The cylinder QRHG is equal to the cylinder SBCO.
Therefore, if we remove the common cylinder ERHI, the remaining solid is
that generated by the rotation of one of the parallelograms SBRE or IHCO,
equal to the cylindrical body QEIG. But the cylindrical body QEIG is less
than the cylindrical body ASOD. The solid generated by the rotation of one
of the parallelograms SBRE or IHCO is therefore less than the cylindrical
body ASOD.

Composing, the sum of this solid and this cylindrical body is less than
twice the cylindrical body ASOD. But the solid and the cylindrical body
together are the excess of the cylinder ABCD over the cylinder ERHI. The
excess of the cylinder ABCD over the cylinder ERHI is therefore less that
twice the cylindrical body ASOD circumscribed around the paraboloid.
Similarly, the excess of the cylinder ERHI over the cylinder KLMN is less
than twice the cylindrical body EPUI, which is circumscribed around the
paraboloid. The same may be said of all the cylinders and cylindrical
bodies circumscribed around it until one arrives at the remainder of the last
part of the given cylinder ABCD; let this remainder be the solid KLMN.
The excess of the cylinder ABCD over the solid KLMN is less than twice



ON THE VOLUME OF A PARABOLOID 603

the sum of the cylindrical bodies circumscribed around the paraboloid,
with the exception of the solid KLMN. If we take the solid KLMN to be
common, the cylinder ABCD will be less than twice the sum of the
cylindrical bodies circumscribed around the paraboloid, whatever their
number. Half of it is therefore less than the sum of the cylindrical bodies
circumscribed around the paraboloid, whatever their number.

Moreover, as the solid generated by the rotation3 of the parallelograms
ABRQ and G H C D is greater than the solid generated by4 the
parallelograms SBRE and IHCO, and as it is equal to the cylindrical body
QEIG, as we have already shown, then the solid generated by5 the two
parallelograms ABRQ and GHCD is greater than the cylindrical body
QEIG. Composing, the sum of the two <solids> is greater than twice the
cylindrical body QEIG. But the sum is the excess of the cylinder ABCD
over the cylinder ERHI. The excess of the cylinder ABCD over the cylinder
ERHI is therefore greater than twice the cylindrical body QEIG. Similarly,
the excess of the cylinder ERHI over the cylinder KLMN is greater than
twice the cylindrical body JKNT, as we have shown. The same may be said
of all the cylinders and cylindrical bodies inscribed within the paraboloid
until one arrives at the final remainder of the given cylinder, which
remainder is the solid KLMN. The excess of the cylinder ABCD over the
solid KLMN is greater than twice <the sum of> the cylindrical bodies
inscribed within the paraboloid, whatever their number. If we add the solid
KLMN to the excess of the cylinder ABCD over it, we have the entire
cylinder ABCD being much greater than twice <the sum of> the cylindrical
bodies inscribed within the paraboloid, whatever their number. Half of the
cylinder ABCD is therefore greater than the sum of the cylindrical bodies,
whatever their number, inscribed within the paraboloid, and less than the
sum of cylindrical bodies, whatever their number, circumscribed around
the paraboloid. This is what we wanted to prove.

– 2 – If one of the cylindrical bodies between two of the ordinate
surfaces of a paraboloid is divided into two halves by another of the
ordinate surfaces such that the division results in two cylindrical bodies
circumscribed around the paraboloid and two inscribed cylindrical bodies
that are homologous to them, then the excess of <the sum of> the two
circumscribed cylindrical bodies over their inscribed homologues is half
the excess of the first circumscribed cylindrical body over its inscribed
homologue prior to the division.

3 Lit.: the solid which turns about.
4 Ibid.
5 Ibid.
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Example: Let one of the cylindrical bodies circumscribed around the
paraboloid ABC be that generated by the rotation of the parallelogram
ADEC, and its homologue inscribed cylindrical body be that generated by
the rotation of the parallelogram ADGH. The straight line IKLM is drawn
so as to divide the straight lines AD and EC, and the lines between them
and parallel to them, into two halves. This is why the straight line IKLM is
parallel to the two straight lines AC and DE. Draw the straight line NLS
parallel to the diameter AB.

I say that the excess of the two cylindrical bodies IDSL and AIMC
over the two homologous cylindrical bodies IDGK and AILN, that is, the
two solids formed from the two parallelograms KGSL and NLMC, is half
the excess of the cylindrical body ADEC over its homologous cylindrical
body ADGH, that is, the solid formed from the parallelogram HGEC.
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Proof: As HGSN is a parallelogram and GH has been divided into two
halves by the straight line KL parallel to the two straight lines GS and HN,
then the parallelogram KGSL is equal to the parallelogram HKLN, and
therefore the parallelogram KGSL is half the parallelogram HGSN. In the



ON THE VOLUME OF A PARABOLOID 605

same way, we can show that the parallelogram NLMC  is half the
parallelogram NSEC. The two cylindrical bodies <generated by> the two
surfaces KGSL and NLMC together – which are the excess of the two
cylindrical bodies IDSL and AIMC over the two cylindrical bodies IDGK
and AILN – are therefore equal to half the cylindrical body <generated by>
the surface HGEC, which is the excess of the cylindrical body ADEC over
the cylindrical body ADGH. This is what we wanted to prove.

– 3 – Any paraboloid is equal to half of its cylinder.
Example: Let ABC be the paraboloid and let D be a body equal to half

the cylinder of the paraboloid ABC.
I say that the solid ABC is equal to the body D.
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Proof: If the paraboloid ABC is not equal to the body D, then it must be
either greater or less than it.

Let it be first of all greater than the body D, if that is possible. Now let
the excess of the solid ABC over the body D be the body E. We construct
any given number of cylindrical bodies circumscribed around the
paraboloid ABC. Let us separate from each circumscribed cylindrical body
a <corresponding> inscribed cylindrical body, i.e. its homologue. Let the
excesses of the circumscribed cylindrical bodies over their inscribed
homologues be the solids formed by the rotation of the parallelograms CG,
GH and HI. Let us divide each of these cylindrical bodies into two halves
by the ordinate surfaces such that the excesses of the cylindrical bodies
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circumscribed around the paraboloid over their inscribed homologues are
equal to half the excesses that existed before the division, as we proved in
the second proposition. Similarly, let us continue to divide these generated
cylindrical bodies into two halves until the excesses of the cylindrical
bodies circumscribed around the paraboloid over their inscribed
homologues become less than the body E. The body E is therefore greater
than the sum of these excesses. Let these excesses be the solids generated
by the parallelograms CJ, JG, GK, KH, HL and LI. The body E is therefore
greater than the sum of these solids, and it is therefore much greater than
the solids formed from the triangles6 contained in the paraboloid, as these
constitute only part of these excesses. If we set the body D to be common,
then the sum of the two bodies E and D is greater than the sum of the solids
formed from all these triangles and the body D. But <the sum of> the two
bodies E and D is equal to the paraboloid ABC, as we have supposed. The
paraboloid ABC is therefore greater than the body D plus all the solids
formed from the triangles within the paraboloid ABC. If we further remove
the common solids formed from the common triangles, then the sum of the
cylindrical bodies, whatever their number, inscribed within the paraboloid
ABC remains greater than the solid D. This is impossible, as we have
proved in the first proposition that it is less than half the cylinder of the
paraboloid, which is equal to the body D. The paraboloid is therefore not
greater than the body D.

If it is possible that the paraboloid ABC is less than the body D, with
the difference between them being the body E, such that the solid ABC plus
the body E is equal to the body D. We then divide each of the cylindrical
bodies circumscribed around the solid ABC into two halves, as we have
already said, so that the excesses arrive at <a sum that is> less than the
body E, as we have shown. The <sum of the> solids of the triangles which
are external to the paraboloid are very much less than the body E, as they
form part of these excesses. If we take the paraboloid ABC to be common,
then the solids of the triangles circumscribed around the paraboloid, that is,
those which are external to it, plus the paraboloid ABC is less than the body
E plus the paraboloid ABC. But the body E plus the paraboloid ABC is
equal to the body D , which is as we had supposed. The solids of the
triangles circumscribed around the paraboloid plus the paraboloid itself are
the cylindrical bodies circumscribed around the paraboloid. The cylindrical
bodies circumscribed around the paraboloid are therefore less than the
body D, which is impossible, as we have proved in the first proposition that
they are greater than half the cylinder of the paraboloid ABC, which is
equal to the body D. The paraboloid ABC is therefore not less than the

6 Implying: curvilinear triangles.
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body D. As we have already shown that it is not greater, the paraboloid
ABC is therefore equal to the body D, which is equal to half its cylinder.
Any paraboloid is therefore equal to half of its cylinder. This is what we
wanted to prove.

We have used the following in this proposition: If we have two
different magnitudes and we separate out from the larger of these, half of
it, half of the remainder, and half of that, and if we continue to proceed in
the same way, we shall arrive at a magnitude that is less than the smaller of
the <original> magnitudes. The larger magnitude in this case is the sum of
the excesses of the cylindrical bodies circumscribed around the paraboloid
over their inscribed homologues. Each of them is divided into two halves
and the smaller magnitude is the body E. Euclid has shown that, if we
separate out from the larger <magnitude>, more than half of it, more than
half of the remainder, and if we continue to proceed in the same way, we
shall arrive at a magnitude that is less than the smaller <of the original
magnitudes>. The proof for both is the same. If it is as we have described,
it would be better to say: If we have two different magnitudes and we
separate out from the larger of these that7 which is not less than half of it,
and from the remainder, that which is not less than half of it, and if we
continue to proceed in the same way, we shall arrive at a magnitude that is
less than the smaller of the <original> magnitudes, so that the proof is
general. All success derives from God.

The treatise of Abº Sahl al-Qºhî
on the volume of the paraboloid is completed.

7 i.e. a part which.
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THE BOOK OF ABª SAHL WAYJAN IBN RUSTAM AL-QªHï

On the Volume of a Paraboloid

In a single treatise and in three propositions

Introduction

If a portion of a parabola limited by the arc of that portion, the diameter
and half of the base is rotated about the diameter simultaneously with the
parallelogram defined by the diameter of this portion and half of its base,
together with the ordinates to this diameter and the straight lines passing
through the extremities of these ordinates parallel to this same diameter,
until it returns to its original position, then the solid generated by the
rotation of this portion is a paraboloid and this diameter is its diameter. The
solid generated by the rotation of this parallelogram is the cylinder of the
paraboloid, the surfaces generated by the rotation of the straight line
ordinates are the ordinate surfaces of the paraboloid, and the solids
generated between them are the cylindrical bodies of the paraboloid. Of all
these cylindrical bodies, that which is generated by a parallelogram that can
be wholly enclosed within the portion such that one of its angles lies on its
boundary is a cylindrical body inscribed within the paraboloid, and that
which is generated by a parallelogram part of which is external to the
portion such that one of its angles lies on its boundary is a cylindrical body
circumscribed around the paraboloid. If one of these is separated from the
other,1 then they are two homologues. The solid generated by the rotation
of one of the surfaces around this diameter is the solid of that surface and it
is obtained from that surface, regardless of whether it <resembles> a
cylinder, a ring, or any other form.

1 i.e. is a part of the other.
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The propositions

– 1 – Any half-cylinder of a paraboloid is less than the sum of cylindri-
cal bodies circumscribed around the paraboloid, and is greater than the sum
of the cylindrical bodies inscribed within it.

Let the paraboloid be AXD, its cylinder ABCD, the circumscribed
cylindrical bodies ASOD, EPUI and KLMN, and the cylindrical bodies
inscribed within it QEIR and JKNT.

I say that half of the cylinder ABCD is less than the sum of the cylin-
drical bodies ASOD, EPUI and KLMN, whatever their number, circum-
scribed around the paraboloid, and greater than the sum of the cylindrical
bodies QEIR and JKNT, whatever their number, inscribed within the
paraboloid.
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Proof: We construct the diameter XZF. The ratio of FX to XZ is then
equal to the ratio of the square of AF to the square of EZ, two straight line
ordinates, that is the ratio of the square of AD to the square of EI, that is,
the ratio of the circle of diameter AD to the circle of diameter EI. The
cylinder QGHR defined by the rotation of the surface QGXF around the
diameter XF is equal to the cylinder SBCO defined by the rotation of the
surface SBXZ around the diameter XF, regardless of whether or not XF is
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an axis, as the excess generated at one extremity of the cylinder is equal to
the missing section at the other extremity. If the common cylinder EGHI is
removed, the remaining solid is that generated by one of the two surfaces
SBGE and IHCO equal to the cylindrical body QEIR. It is therefore less
than the cylindrical body ASOD. The solid mentioned and the cylindrical
body ASOD, that is the excess of the cylinder ABCD over the cylinder
EGHI, are <in sum> less than twice the cylindrical body ASOD circum-
scribed around the paraboloid. Similarly, we can show that the excess of the
cylinder EGHI over the cylinder KLMN is less than twice the cylindrical
body EPUI, and similarly for all the homologous cylinders and cylindrical
bodies – for the reasons that we have just described – until one arrives at
the remainder at the end of the cylinder ABCD; let this remainder be the
solid KLMN. The excess of the cylinder ABCD over the solid KLMN is
therefore less than twice the sum of the cylindrical bodies circumscribed
around the paraboloid, with the exception of the solid KLMN. The entire
cylinder ABCD is therefore less than the solid KLMN plus twice the sum of
the cylindrical bodies circumscribed around the paraboloid, and half the
cylinder ABCD is therefore less than the sum of the cylindrical bodies
mentioned plus half the solid KLMN. It is therefore very much less than the
sum of the cylindrical bodies mentioned plus the solid KLMN.

Similarly, the solid defined by the rotation of one of the two surfaces
ABGQ and RHCD is greater than the solid defined by the rotation of one of
the two surfaces SBGE and IHCO, that is, the cylindrical body QEIR. The
solid defined by the rotation of one of the two surfaces ABGQ and RHCD
plus the cylindrical body QEIR, that is, the excess of the cylinder ABCD
over the cylinder EGHI, is therefore greater than twice the cylindrical body
QEIR. Similarly, we can show that the excess of the cylinder EGHI over
the solid KLMN is greater than twice the cylindrical body JKNT, and
similarly for all the homologous cylinders and cylindrical bodies – for the
reasons that we have just described – until one arrives at the remainder at
the end of the cylinder ABCD; let the remainder be the solid KLMN. The
excess of the cylinder ABCD over the solid KLMN is therefore greater than
twice the sum of the cylindrical bodies inscribed within the paraboloid. The
whole cylinder ABCD is therefore very much greater than twice the sum of
the cylindrical bodies inscribed within the paraboloid. Half of this cylinder is
therefore greater than the sum of the cylindrical bodies inscribed within the
paraboloid; yet, it was less than the sum of cylindrical bodies circumscribed
around the paraboloid. This is what we wanted to prove.

– 2 – If an ordinate surface is produced in any cylindrical body such
that it is parallel to the two ordinate surfaces bounding the cylindrical body



612 CHAPTER V: AL-QªHï

and divides the cylindrical body into two halves forming two cylindrical
bodies circumscribed around a paraboloid and two inscribed homologues,
then the excess of the two circumscribed cylindrical bodies over their
inscribed homologues is equal to half the excess of the divided cylindrical
body circumscribed around the paraboloid over its homologue inscribed
within the paraboloid.

Let the paraboloid be that generated by the rotation of a portion BC of
a parabola and a straight line ordinate AC about the diameter AB, and let
the same rotation about the diameter generate the cylindrical body ADEC
by the rotation of the parallelogram ADEC, and its homologue the cylindri-
cal body ADGH by the rotation of the surface ADGH. We produce a
straight line ordinate IKLM parallel to the two straight lines DE and AC,
dividing the two straight lines AD and EC into two halves. Now, we
produce an ordinate surface along the straight line IM parallel to the two
surfaces DE and AC, which are also ordinates, such that this surface divides
the cylindrical body ADEC into two halves and generates two cylindrical
bodies AIMC and IDSL circumscribed around the solid, and two homo-
logues AILN and IDGK inscribed within it.

I say that the excess of the two cylindrical bodies AIMC and IDSL
over the two homologous cylindrical bodies AILN and IDGK is equal to
half the excess of the cylindrical body ADEC over the cylindrical body
ADGH.
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Proof: We produce a straight SLN from the point L parallel to the two
straight lines AD and EC. As the straight line IKLM divides AD and its
parallels into two halves, the surface KLSG is half the surface GSNH and the
surface NLMC is half the surface NSEC. The same applies to the solids
generated by their rotation. The solid generated by the rotation of the
surface KLSG is therefore half that generated by the rotation of the surface
GSNH, and that generated by the rotation of NLMC is half that generated
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by the rotation of NSEC. The <sum of the> two <solids> generated by the
rotation of KLSG and the rotation of NLMC, that is, the excess of the two
cylindrical bodies IDSL and AIMC over the two cylindrical bodies IDGK
and AILN, is half of that generated by the rotation of HGEC, that is, the
excess of the cylindrical body ADEC over the cylindrical body ADGH. This
is what we required.

– 3 – Any paraboloid is equal to half of its cylinder.
Let ABC be a paraboloid.
I say that it is equal to half of its cylinder.

B
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Fig. V.2.3

Proof: If this were not the case, let the solid ABC be greater than half of
its cylinder by a magnitude equal to the solid D. Let us now circumscribe
any number of cylindrical bodies around the solid ABC and separate them
from their homologues inscribed with the solid. Let the excesses of the
circumscribed cylindrical bodies over their inscribed homologues be the
solids generated by the rotation of the surfaces CG, GH and HI. Let us
divide each of the cylindrical bodies into two halves by ordinate surfaces.
The excesses of the cylindrical bodies over their homologues are then equal
to half the excesses that existed before the division, as was shown in the
second proposition. We continue to proceed in this way until the excesses
become less than the solid D. Let these excesses be the solids generated by
the rotation of the surfaces CJ, JG, GK, KH, HL, and LI. The solid D is
therefore greater than these solids, and it is therefore very much greater
than the solids within the paraboloid and generated by the rotation of the
triangles within the parabola whose lines consist of sections of the straight
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line ordinates, line parallel to the diameter and sections of the perimeter of
the section. But half of the cylinder is greater than the cylindrical bodies
inscribed within the paraboloid, and therefore half of the cylinder plus the
solid D, that is, the paraboloid, is greater than the cylindrical bodies inscribed
within the paraboloid plus the solids generated by the rotation of the trian-
gles, that is the paraboloid. The paraboloid is therefore greater than itself;
this is contradictory.

Now let the paraboloid ABC be less than half of its cylinder by the
magnitude of the solid D. Then the paraboloid plus the solid D is equal to
half of the cylinder. We now continue dividing the cylindrical bodies circum-
scribed around the paraboloid until the remainder is less than the solid D.
The solids of the triangles found outside the paraboloid are therefore very
much less than the solid D. These solids generated by the triangles plus the
paraboloid ABC, that is, the cylindrical bodies circumscribed around the
paraboloid, are less than the solid D plus the solid ABC, that is, half of the
cylinder. The cylindrical bodies circumscribed around the paraboloid are
therefore less than half of the cylinder; this is impossible. The paraboloid is
equal to half of its cylinder.

Completed on the Blessed Saturday, the first night of the month of
Rabî‘ al-awwal

in the year one thousand, one hundred and fifty three
by the humble al-Îæjj MuÒ†afæ ∑idqî.

May God grant him pardon.



CHAPTER VI

IBN AL-SSSSAAAAMMMMÎÎÎÎ

THE PLANE SECTIONS OF A CYLINDER AND THE
DETERMINATION OF THEIR AREAS

6.1. INTRODUCTION

6.1.1.    IIIIbbbbnnnn    aaaallll----SSSSaaaammmmÌÌÌÌ    and Ibn Qurra, successors to    aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    MMMMººººssssææææ

Abº al-Qæsim AÒbagh ibn MuÌammad ibn al-SamÌ died in Grenada on
‘Tuesday, on the twelfth remaining night of Rajab, in the year four hundred
and twenty-six, at the age of fifty-six solar years’;1 i.e. Tuesday, 27th May
1035,2 implying that he was born in 979. While it appears that he was born
in Cordoba, he came to Grenada to work with the Emir Îabbºs ibn
Mæksan (1019–1038 ca). We also know that he was a follower of the
famous astronomer and mathematician Maslama al-Majrî†î, who died in
398/1007–1008. A contemporary of mathematicians such as Ibn al-
Haytham, Ibn al-SamÌ produced a substantial and important body of work
in his own right in the fields of mathematics and astronomy. From the titles
of his works as listed by ∑æ‘id,3 it is clear that his interests included number
theory, geometry, the geometry of the astrolabe, etc. His works encompass

1 This date was given by the historian Ibn Jama‘a, according to Lisæn al-Dîn ibn al-
Kha†îb who quotes it in his al-IÌæ†a fî akhbær Gharnæ†a, ed. MuÌammad ‘Abdallæh
‘Inæn, Cairo, 1955, p. 436. See also ∑æ‘id al-Andalusî, ™abaqæt al-umam, ed.
H. Bº‘alwæn, Beirut, 1985, p. 170. See also the French translation by R. Blachère,
Livre des Catégories des Nations, Paris, 1935, pp. 130–1. Finally, see Ibn al-Abbær,
al-Takmila li-Kitæb al-∑ila, ed. al-Sayyid ‘Izzat al-‘A††ær al-Îusaynî, Cairo, 1955, vol. 1,
pp. 206-207; and Ibn Abî UÒaybi‘a, ‘Uyºn al-anbæ’ fî †abaqæt al-a†ibbæ’, ed. A. Müller,
3 vols, Cairo / Königsberg, 1882-84, vol. II, p. 40, 4–6; ed. N. Ri≈æ, Beirut, 1965,
p. 483, 23–5.

2 The date is given as ‘Tuesday, on the twelfth remaining night of Rajab’. Twelve
complete nights remain before the end of the month of Rajab, Year 426 of the Hegira.
Depending on the method of counting used, this corresponds to either the 27th or 28th
May 1035 in Grenada. We have opted for the 27th May 1035 as this was a Tuesday.

3 See Note 1.
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also a commentary on Euclid’s Elements, and ‘a great book on geometry
with an exhaustive discussion of the parts concerning the line: straight,
arched and curved’.4

From this description we can deduce that this book by Ibn al-SamÌ was
a voluminous work, including chapters on rectilinear figures, circles and
arcs, conic sections, and possibly other topics as well. Of all the titles that
have been listed by the early biobibliographers and historians, or at least
those of which we are aware, this is the only work that could be expected to
include a study of the cylinder and its sections. Although Ibn al-SamÌ could
have written another book on the same field in geometry, it is likely that this
‘great book’ is the source of the text translated into Hebrew. This conjec-
ture is supported by a further argument, taken from the Hebrew version
itself.

In this version, Ibn al-SamÌ takes up a number of themes one after
another, only to dispense with them equally rapidly. The text opens with a
definition of a sphere, the same as that given by Euclid in the Elements. It
would be logical to expect this to be followed by a study on the sphere, and
Ibn al-SamÌ does promise one later (in Section 9), in which he intends to
discuss ‘the surfaces of spheres’ and ‘the volumes of these spheres’. How-
ever, one searches in vain for any trace of these questions in the Hebrew
text that has survived. Another example of a ‘forgotten’ topic is that of the
cone. Ibn al-SamÌ begins be restating Euclid’s definition of a cone and,
then, he refers later (in Section 4) to the ‘first definitions’ of the right and
oblique cone in the Conics of Apollonius. Again, this is the only mention of
Apollonius in the text. All these definitions lead on to nothing in the version
of the text that has come down to us in the Hebrew tradition. These
‘omissions’ give us a clue to the topics that would have appeared in the
‘great book of geometry’ alongside to the studies of the cylinder. By this
reasoning, there must have been a chapter on the circle, another on the
sphere, and a further chapter on the cone, like that devoted by Ibn al-SamÌ
to the cylinder. If this conjecture is true, it also throws light on another as-
pect of the work of Ibn al-SamÌ, namely a tendency to produce mathema-
tical works that, while in essence are summaries, do not in any way exclude
original research. This feature of the work of Ibn al-SamÌ is shared with
that of other mathematicians in Muslim Spain, as was the case with Ibn Hºd
(died 478/1085) in Saragossa. It also makes it possible to identify a corpus of
work from which the Hebrew text was taken: the ‘great book of geometry’.

4 Taken from the ™abaqæt of ∑æ‘id, ed. Bº‘alwæn, p. 170:

ÆwM×M*«Ë ”uI*«Ë rOI²�*« j)« s� U¼¡«eł√ UNM� vB� WÝbMN�« w� dO³J�« tÐU²�



THE PLANE SECTIONS OF A CYLINDER 617

The translated text deals with the cylinder and its elliptical sections, a
topic already addressed by one of the three Banº Mºsæ brothers, al-Îasan,
and later by his collaborator and pupil Thæbit ibn Qurra in the book On the
Sections of the Cylinder. As we pointed out in our earlier discussion of this
book, Ibn Qurra based his work on the book by al-Îasan. This leads us to
ask the question: did Ibn al-SamÌ belong to this tradition? And where
exactly does he fit into the story?

If one examines his book and compares it with that of Ibn Qurra (as that
of al-Îasan is not known to have survived), one is led to the inescapable
conclusion that Ibn al-SamÌ was not familiar with Ibn Qurra’s treatise, and
that any points that appear to be common to the two works all derive from
the treatise by al-Îasan. We shall show later that all the indications are that
Ibn al-SamÌ based his book on the work of al-Îasan, and that he remained
truer to the original than did Thæbit ibn Qurra.

It is useful to consider first of all the differences that separate Ibn al-
SamÌ and Ibn Qurra. Their aims were not the same, and their nomenclature
and methods were different. Ibn al-SamÌ begins by showing that the figure
obtained using the bifocal definition has the same properties as that obtained
by taking a plane section of a cylinder. In contrast, Thæbit ibn Qurra
develops a theory of the cylinder and its plane sections inspired by
Apollonius and his work on cones and conic sections. The terminology used
by Ibn al-SamÌ includes terms that were never used by Thæbit, such as the
‘elongated circular figure’ used to describe the figure obtained from the
bifocal definition. Inversely, the terminology employed by Thæbit includes
many terms that do not appear in the treatise of Ibn al-SamÌ. T h e
terminology used by Thæbit is generally that of the Conics of Apollonius.
The same can certainly not be said for the chapter written by Ibn al-SamÌ.
The lexical divergence from the Conics is matched by a similar conceptual
difference. To give but one example, consider the way in which Thæbit
approaches the case of a plane section of an oblique cylinder with a circular
base by making use of a plane antiparallel to that of the base. This is
identical to the approach taken by Apollonius for the cone. This concept,
together with the associated terminology, does not appear in Ibn al-SamÌ’s
book. These differences also provide other clues. They distinguish Thæbit’s
text from that of his older master, al-Îasan ibn Mºsæ, at least according to
the description given by his brothers that we have already translated.5 All
now becomes clear. As Thæbit ibn Qurra had done before him, Ibn al-SamÌ
based his text on the book by al-Îasan ibn Mºsæ with, however, one crucial
difference. While Thæbit developed the work of his elder colleague in the
light of the Conics of Apollonius, Ibn al-SamÌ continued in a straight line

5 Chapter I, supra, p. 8.
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from the original work without deviation. Remember that we have it from
his own brothers that al-Îasan ibn Mºsæ was engaged on research into the
cylinder and its sections.6

As we have shown, Thæbit wanted to develop a theory of the cylinder
and its sections to stand in its own right in the same way as that of the cone
and its sections developed by Apollonius. Ibn al-SamÌ, on the other hand,
described his research in the chapter that has survived as an initial body of
work leading on to a study of elliptical sections. Working at a later date, and
geographically far from Baghdad, this Andalusian, who lived into the first
decades of the eleventh century, is closer to al-Îasan ibn Mºsæ than his
collaborator and neighbour, Thæbit ibn Qurra. However, there remains a
narrow path between the treatise by Thæbit and the surviving chapter by
Ibn al-SamÌ that enables us to recognize, even from this distance, a number
of topics covered in this important lost work by al-Îasan ibn Mºsæ, and to
wonder how Ibn al-SamÌ would have interpreted it.

6.1.2. Serenus of Antinoupolis, aaaallll----ÎÎÎÎaaaassssaaaannnn    iiiibbbbnnnn    MMMMººººssssææææ,,,,    TTTThhhhææææbbbbiiiitttt    iiiibbbbnnnn
QQQQuuuurrrrrrrraaaa    and IIIIbbbbnnnn    aaaallll----SSSSaaaammmmÌÌÌÌ

Ibn al-SamÌ begins his text with a number of definitions, including that
of an oblique cylinder with a circular base. As can easily be verified, this
definition is similar to that given by Thæbit. However, this definition also
appears in the book by Serenus of Antinoupolis, On the Section of the
Cylinder.7 How are these texts related? And what role, if any, was played
by al-Îasan ibn Mºsæ in bringing them all together? We can answer some
aspects of these questions with a fair degree of certainty. Others are more
doubtful. To begin with, there can be no doubt whatsoever that Ibn al-
SamÌ was unaware of the book by Serenus. Equally, we can be certain that
Thæbit ibn Qurra knew it well. In the absence of a definitive text by al-
Îasan ibn Mºsæ, we can only conjecture that he had a more or less direct
awareness of the Serenus text, but that he did not make use of it as a basis

6 Banº Mºsæ, Lemmas in the Book of Conics, vide supra, Chapter I, p. 8.
7 Sereni Antinoensis Opuscula. Edidit et latine interpretatus est I. L. Heiberg,

Leipzig, 1896. See also the French translation by P. Ver Eecke, Serenus d’Antinoë: Le
livre de la section du cylindre et le livre de la section du cône, Paris, 1969. This is the
definition of the cylinder as given in French by Ver Eecke: ‘Si, deux cercles égaux et
parallèles restant immobiles, des diamètres constamment parallèles, qui tournent dans le
plan des cercles autour du centre resté fixe, et font circuler avec eux la droite reliant leurs
extrémités situées d’un même côté, reprennent de nouveau la même position, la surface
décrite par la droite qu’ils ont fait circuler est appelée une surface cylindrique’, pp. 2–3.
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for his own work. So many relevant questions have never been asked, that
it seems acceptable to risk a few digressions in attempting to answer them.

The Book on the Section of the Cylinder by Serenus opens with a
collection of definitions of cylindrical surfaces and the cylinder on a circular
base. The first three definitions8 also appear in the introduction to the book
by Thæbit ibn Qurra, albeit with a few minor differences. Serenus defines
the generator as a line ‘which, being straight and located on the surface of
the cylinder, touches each of the bases’. He adds that this is also the moving
straight line that, as he describes it ‘is also the straight line moving in a circle
that we have spoken of as describing the cylindrical surface.9 It is this latter
phrase that Thæbit gives as his definition. However, he goes on to show that
the generator is parallel to the axis, and that the only straight lines on the
surface of a cylinder are the generators. In Proposition 7, Serenus addresses
the problem of how to move the generator of a cylinder passing through a
given point, and in Proposition 8 he shows that any straight line joining two
points on a cylinder that are not lying on a same generator falls within the
cylinder, and is not therefore on the surface. These two propositions are
similar to the first two propositions in the book by Thæbit.

Serenus also gives four definitions taken from Apollonius which do not
appear in Thæbit’s introduction; the diameters, conjugate diameters, centre,
and similar ellipses,

In Propositions 2 and 3 Serenus discusses plane sections of a right or
oblique cylinder with the plane lying either along the axis or parallel to the
axis. These sections are parallelograms. At the end of Proposition 4, Thæbit
states that, if the cylinder is a right cylinder, the section is a rectangle. In
Propositions 5 and 6, he goes on to establish the necessary and sufficient
condition for the parallelogram to become a rectangle in the case of an
oblique cylinder. These concepts relating to rectangles do not appear in the
Serenus book.

Thæbit, as we have seen, defines in Proposition 7 the cylindrical
projection (translation) of a figure on a plane P onto another plane P′
parallel to P, and then uses this in Proposition 8 to deduce the plane section
by a plane parallel to the base of the cylinder. This section is discussed by
Serenus in his Proposition 5, making use of his Proposition 2 and a lemma
proved in Proposition 4, in which he establishes the ‘equation of the circle’.

Serenus considers the section by a plane antiparallel to that of the base
in Proposition 6, whereas Thæbit uses the same method in his Proposition 9.
Both make use of the ‘equation of the circle’.

8 Ibid .
9 Ibid., p. 3.
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Thæbit considers a section by a plane that cuts the axis and is neither
parallel nor antiparallel to the plane of the base, and applies a cylindrical
projection to show in Proposition 10 that this section is either a circle or an
ellipse. In Proposition 11, he goes on to show that it must be an ellipse.
Serenus addresses the same question in Propositions 9–17. He begins by
showing that this section is not a circle and it is not composed of straight
lines. He then introduces the principal diameter ∆ (which becomes the major
axis in two cases), the second diameter ∆′, which is the conjugate diameter
of ∆, and finally the properties of points on the ellipse relative to ∆ and ∆′.
In Propositions 17 and 18, he defines the latus rectum associated with the
transverse diameter to arrive at Proposition 15 of Apollonius. The section is
therefore an ellipse.

We can see that the paths begin to diverge as soon as Thæbit introduces
the explicit application of geometric projections. This is the point at which
Thæbit and Serenus go their separate ways. The geometry of Serenus is far
from one in which projections and transformations are important
instruments, despite the fact that there is just a hint of the concept of
translation in his first proposition. From this point on, the divergence
becomes a total break. Serenus and Thæbit each move on to a completely
different set of problems.

Ibn al-SamÌ deliberately chooses to take his direction from Proposition
7, where, in the case of a right cylinder with a circular base, the principal
diameter ∆ becomes the major axis, and the second diameter ∆′ becomes
the minor axis. From the seventh proposition onward, all the propositions of
Ibn al-SamÌ make use of these two axes. From the properties of these two
diameters, it is clear that we can place an ellipse with axes 2a and 2b (a > b)
on a right cylinder of radius b; that is what Ibn al-SamÌ uses in Propositions
7, 10 and 19. Serenus, on the other hand, shows in Propositions 27 and 28
that there exists two families of ellipses with a major axis of 2a (a > b) on a
cylinder of radius b.

These analogies make it possible to show that Thæbit knew the book by
Serenus. It can also be said that his knowledge of the Conics had a dual
paradoxical effect. He used this knowledge to profit from the book of
Serenus, bringing to it his own theoretical and non-essential technical
contribution. Thæbit had direct access to the definitions and results that
Serenus borrowed from Apollonius and, as we have seen, he followed the
path laid down by al-Îasan ibn Mºsæ. The relationship between Ibn al-
SamÌ and Serenus is a minor one, consisting of no more than the definition
of the cylinder and one similar result obtained using a different method. The
only link appears to be through the work of al-Îasan ibn Mºsæ. And
judging by the common basis of the work of Thæbit and Ibn al-SamÌ, if al-
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Îasan ibn Mºsæ was aware of the work of Serenus, he certainly drew little
profit from it.

In order to gain a better understanding of the role played by al-Îasan
ibn Mºsæ’s book, we must make a brief comparison of the Ibn al-SamÌ
chapter with the treatise by Thæbit in the light of this hypothesis. Any
methodological elements common to the two works may be considered to
derive from the work by al-Îasan ibn Mºsæ that they both used as a
reference. We may begin by considering the aspects of their treatment of the
ellipse in which they differ, in effect the topic as addressed by Ibn al-SamÌ.

Ibn al-SamÌ assumes that the results relating to the ellipse obtained
from a section of a right cylinder are well known. He defines this ellipse in
terms of the two axes, the smaller of which is equal to the diameter of the
cylinder (see Property A below). Thæbit ibn Qurra, on the other hand,
considers plane sections of an oblique cylinder in Propositions 3–11 of his
treatise. In Propositions 10 and 11, he examines the elliptical section using
the cylindrical projection and Proposition I.21 of the Conics.

The two mathematicians have the following elements in common:
1.The two orthogonal affinities
Thæbit first examines the affinity relating to the major axis, making use

of Proposition I.21 of the Conics, and indicates that the same method may
be used for the affinity relating to the minor axis. In Proposition 7, Ibn al-
SamÌ discusses the affinity relating to the minor axis by making use of
Property A and similar triangles. He then goes on to discuss the affinity
relating to the major axis in Proposition 8.

2. The area of an ellipse
Thæbit establishes the result in Proposition 14 using an apagogic method

derived from XII.2 of the Elements and the orthogonal affinity relating to
the major axis. Ibn al-SamÌ proceeds in a number of steps (see Propositions
12–17). In the most important of these, he shows that the ratio of the area
of an ellipse to that of a circle of diameter 2b is equal to a / b, using an
apagogic method, Elements XII.2, and the orthogonal affinity relating to the
minor axis. We have it from Thæbit himself (see the Introduction to his
treatise) that al-Îasan ibn Mºsæ had determined this area.

We can therefore conjecture as follows: Both Thæbit and Ibn al-SamÌ
drew on the work of al-Îasan ibn Mºsæ for their ideas of projection and
orthogonal affinity, combined with the application of the Elements XII.2 and
an apagogic method. The formulation proposed by Thæbit was influenced
by his use of Conics I.21, while that of Ibn al-SamÌ remained truer to that
of al-Îasan ibn Mºsæ.

This close relationship between the works of Ibn al-SamÌ and al-Îasan
ibn Mºsæ provides further confirmation. We know from the brothers of al-
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Îasan that he was interested in the diameters, chords and axes of cylindrical
sections: ‘he found out its science and the science of the fundamental
proprieties relative to the diameters, the axes, and the chords, and he has
found out the science of its area’.10 Ibn al-SamÌ devotes his Propositions
19–21 to just these chords and axes.

6.1.3. The structure of the study by IIIIbbbbnnnn    aaaallll----SSSSaaaammmmÌÌÌÌ

Circle

1

2

3

Ellipse–bifocal definition

1

2

3 4 5

6

Ellipse–plane section

Property A

7

9a

9b 10 11

20a

20c

8

21c

19

21a 21b

20b

12

13

1416
15

17

18b18a

Area of the ellipse

Determination of a 
diameter

Chords and axes

Identification

* Propositions 2 and 3 relating to the circle are not used.
* 20c is another demonstration of 8.

We now come to the chapter written by Ibn al-SamÌ as it appears in
the surviving Hebrew version. The network of deductions demonstrates the
consistency of the body of propositions, and raises no doubts as to the
authenticity of the great majority of them. The only difficulties occur at the
beginning and, to a greater extent, at the end of the text. It can be seen that
Propositions 2 and 3 relating to the circle are not used in the remainder of
the chapter, although they do follow naturally from the first proposition.

10 See Apollonius, Les Coniques, tome 1.1: Livre I, ed. R. Rashed, pp. 504–5.
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However, we do not believe that these propositions have been added to the
original text of Ibn al-SamÌ. It does, however, appear likely that Proposi-
tions 20 and 21 have been added in the place of a number of propositions in
the original. Parts of the text of these propositions have been lost, and the
remainder have been collected together in a somewhat random manner to
form the two propositions in the surviving text. We have no way of
knowing whether this loss occurred in the original Arabic manuscript, or
whether it was the fault of the translator or even a later copyist of the
Hebrew text. However, it is clear that, at some point in its history, the text
has been subject to the attentions of a glossator who added the obviously
apocryphal Lemma 4.

6.2. MATHEMATICAL COMMENTARY

6.2.1. Definitions and accepted results

The first part of Ibn al-SamÌ’s text consists of an introduction to the
treatise, in which the author lists the definitions and prior results to be used
without further proof. We do not know whether these prior results had been
obtained by Ibn al-SamÌ himself in an earlier section of the treatise that was
originally much longer than the surviving Hebrew translation, or whether
they formed part of a body of accepted mathematical knowledge shared by
his contemporaries. We have divided this introduction into separate sections
for the purpose of this commentary. We shall now deal with each of these in
turn, in the order in which they appear.

In Section 1, Ibn al-SamÌ begins by defining a sphere as a solid of
revolution generated by the rotation of a semicircle about its diameter. He
also defines the elements of a sphere: the surface area, diameter, centre,
poles, and the great circle. Later, in Section 9, he states that he intends to
discuss a number of problems relating to the sphere, including plane
sections, the surface area and the volume. However, there is no further
discussion of the sphere in the remainder of the text. This absence alone is
sufficient to show that the surviving text is far from complete.

Ibn al-SamÌ then goes on to define a cylinder of revolution, a solid
generated by rotating a rectangle about one of its sides, and its associated
elements, the lateral surface and bases. This definition is the same as that
given by Euclid in the Elements (Book XI, Definition 14), and different from
that given by Serenus (pp. 2–3) and Ibn Qurra, who saw the cylinder of
revolution as a special case of an oblique cylinder with circular bases. Ibn al-
SamÌ does not mention the oblique cylinder until the end of this section. It
should be noted that an oblique cylinder cannot be generated by revolution,
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which explains why Ibn al-SamÌ does not give a more general definition of
the cylinder until later in the work.

The next definition given by Ibn al-SamÌ is that of the cone of
revolution. This definition is deduced from that of the cylinder, with the
lateral surface of the cone being generated by the diagonal of a cylinder, and
the conic solid being generated by the rotation of a triangle about a fixed
side. This definition is also taken from Euclid.

In other words, this confirms that the definition of a cylinder given by
Ibn al-SamÌ in the first section is definitely that of Euclid. Unlike Ibn al-
SamÌ, Euclid gives the definition of the cone of revolution before that of the
cylinder. In addition, Euclid only mentions the cylinder and cone of
revolution, while Ibn al-SamÌ continues with further definition in the
following section.

In the second section, Ibn al-SamÌ gives a more general definition of the
cylinder based on two curves, each with a centre, located on two parallel
planes. It is clear that we are to assume that one of these curves is derived
from the other by a process of translation. A movable straight line in contact
with each of these two curves and parallel to the straight line joining the two
centres generates the lateral surface of the cylinder. This cylinder may be
right or oblique. It should be noted that, if these two curves are considered
to be circles, then the definition corresponds to that given by Thæbit ibn
Qurra in his treatise On the Sections of a Cylinder and its Lateral Surface,
and that given by Serenus. This case is discussed by Ibn al-SamÌ at the end
of the section.

In the third section, it becomes clear that he assumes the curves in
question to be either circles or ellipses. He then goes on to consider the
solids obtained if these cylinders are intersected by two parallel planes,
without actually specifying the shape of the base of the cylinder. However, it
appears from the final sentence in the section that the base is assumed to be
a circle. If the cylinder is a right cylinder on a circular base, then the sections
formed by the two parallel planes will be two ellipses that Ibn al-SamÌ
assumes to be equal (see the following comment below) and they define a
right cylinder with elliptical bases.

Comment 1. — The results given are correct, but they are not proved in
the surviving text. It should be noted that Thæbit ibn Qurra, in Proposition 8
of his treatise On the Sections of a Cylinder and its Lateral Surface, gives a
general proof that the sections of two parallel planes intersecting the axis of
a cylinder with circular bases will always be equal. In Propositions 8–11, he
shows that these sections are either circles or ellipses, using the characteristic
properties of the circle and the ellipse given in Proposition I.21 of the
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Conics. In Proposition 9, Thæbit considers antiparallel circles. These are not
mentioned by Ibn al-SamÌ.

Comment 2. – The final sentence in Section 3 by Ibn al-SamÌ reads as
follows: ‘Beginning with two species whose bases are ellipses, it is possible
to generate the two species with circular bases by proceeding in the reverse
manner.’ It would appear from this sentence that the properties of plane
sections of cylinders with elliptical bases were well known, and that some of
these plane sections were known to be circular.

Ibn Abî Jarræda, a thirteenth century commentator on Thæbit’s text,
showed that the circular base specified in Thæbit’s Proposition 10 could be
replaced by an elliptical base (see Supplementary note [3]).

In the fourth section of the introduction, Ibn al-SamÌ repeats the
definition of a cone found in the Conics of Apollonius. As in the case of the
sphere, no use is made of this definition elsewhere in the text and the cone is
not considered further. This hints at another missing section of the text, the
extent of which remains unknown.

In the fifth section, Ibn al-SamÌ provides a classification of the species of
cylinder that he has considered. This classification may be summarized as
shown in the diagram below:

right cylinder

oblique cylinder 

circular base 

elliptical base 

circular base 

elliptical base 

Ibn al-SamÌ notes that the right cylinder on a circular base was familiar
to the Ancients. This comment indicates that he was only aware of the
definition of a cylinder as given in Euclid’s Elements, and that he did not
know of the book by Serenus.

As regards to the cone, Ibn al-SamÌ takes up his general definition
based on a circle and a point lying outside the plane of the circle before
going on to distinguish between a right cone and an oblique cone. These are
the ‘First Definitions’, 1–3, defined by Apollonius. It is worth repeating that
these two references to the cone in the introduction are the only mentions of
the cone in the surviving manuscript of this treatise. It appears that Ibn al-
SamÌ was familiar with the Conics of Apollonius but, unlike Thæbit ibn
Qurra, he did not make use of it.
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6.2.2. The cylinder

Ibn al-SamÌ continues by discussing the cylinder in more general terms.
He begins with the concept of a closed curve, to remind the reader that the
number of closed curves other than the circle is infinite and that they cannot
all be listed (Section 6). Each of these closed curves can be associated with a
corresponding cylinder, once we have a definition for curves in similar
positions (Section 7).

Let there be two equal portions of planes P1 and P2, both having the
same shape bounded by the closed curves C1 and C2. Let there be two
points M1 ∈ P1 and M2 ∈ P2. Consider the straight lines joining M1 to all
the points on C1 and the straight lines joining M2 to all the points on C2.
Then, if each straight line from M1 is equal to one of the straight lines from
M2 and if the angle between two straight lines from M1 is equal to the angle
between the two equal straight lines from M2, then C1 and C2 are said to be
at similar positions. We would say today that C1 and C2 have the same
equation in polar coordinates relative to the two poles M1 and M2. Ibn al-
SamÌ does not take the polar angle from a given axis; he compares the
angles between two radial vectors.

In other words, Ibn al-SamÌ characterizes homologous points in the
displacement from P1 to P2. If P1 and P2 are in two parallel planes and if a
plane passing through M1 and M2 from ‘similar positions’ cuts them along
equal straight lines, then the closed curves C1 and C2 are said to be in similar
positions. In this case, either C1 or C2 may be derived from the other by
means of a translation. This idea of two curves C1 and C2 ‘in similar
positions’ in parallel planes, and which may each be derived from the other
by a process of translation, is similar to that used by Thæbit ibn Qurra in
Proposition 7 of his treatise On the Sections of a Cylinder and its Lateral
Surface. The process is in some ways reciprocal.

Using these concepts, Ibn al-SamÌ then gives a general definition of a
cylinder on any base (Section 8):

Let there be two plane figures bounded by the closed curves C1 and C2

in ‘similar positions’, and let M1 and M2 be two points ‘at similar positions’
lying within these figures. Then a straight line moving along and touching
both C1 and C2 while remaining parallel to the line M1M2 will describe a
cylindrical surface.

If M1 and M2 are the centres of symmetry of C1 and C2, then M1M2 is
the axis of the cylinder. The movable straight line is called the side of the
cylinder. If M1M2 is perpendicular to the planes of the two figures, then the
cylinder is a right cylinder. If this is not the case, then the cylinder is an
oblique cylinder.
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It will be noted that the definition of a cylinder is a rigorous one, and
that the general concept of closed curves explicitly goes beyond the class of
conic sections characterised by the existence of conjugate diameters.

Comment. – This general definition does not appear again in the treatise
until Proposition 20. In this proposition, Ibn al-SamÌ states that, in order to
discuss it using the method described in Proposition 19, it is necessary to
consider a cylinder on an elliptical base. The method would then involve
placing a circular plane section on this cylinder. Ibn al-SamÌ simply
proposes the method without developing it further.

However, this problem, of an elliptical cylinder and its plane sections, is
not discussed by either Serenus or Thæbit ibn Qurra. It is mentioned by Ibn
Abî Jarræda in his commentary on Thæbit ibn Qurra’s treatise.

In the final section of this chapter, Ibn al-SamÌ announces that he
intends to discuss the plane sections of cylinders, the areas of these plane
sections, spherical surfaces, sections, and the volumes of spheres (Section 9).
However, none of these have survived in the version of the text available
today.

6.2.3. The plane sections of a cylinder

In Section 10, Ibn al-SamÌ continues by summarizing the types of plane
sections of a cylinder of revolution obtained by varying the position of the
secant plane. If this plane passes through the axis or is parallel to the axis,
then the plane section is a rectangle. Ibn al-SamÌ does not consider this
case. If the secant plane is perpendicular to the axis, then the section is a
circle. If the plane is not parallel to the bases and it intersects the axis, then
the section is an ellipse.

Ibn al-SamÌ shows that the plane section generated by the rotation of a
segment around one of its fixed extremities is ‘necessarily’ a circle. All the
points on the boundary of this section are equidistant from the fixed point,
satisfying the definition of a circle in terms of its centre and radius. In this
way, Ibn al-SamÌ identifies the curve obtained as a plane section or circle
defined by the locus of a set of points.

It should be noted, however, that Ibn al-SamÌ does not specify that the
circular plane section is equal to the base circle. We should also note that in
Proposition 8 of his treatise referred to above, Thæbit ibn Qurra shows that
the plane section of a right or oblique cylinder on a circular base is a circle
equal to the base circle, a result derived from the translation considered in
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Proposition 7. This constitutes a further argument that Ibn al-SamÌ did not
base his work on that of Thæbit.

6.2.4. The properties of a circle

Ibn al-SamÌ then considers certain properties of a circle in order to
derive two lemmas needed in the subsequent propositions. The first
properties to be considered are the following: Let C, C1, and C2 be circles
with diameters d, d1, and d2 and circumferences p, p1, and p2 respectively.
Let P1 and P2 be two regular similar polygons with sides l1 and l2 inscribed
within C1 and C2. Ibn al-SamÌ then states the following:

a) area 
area 

    
C
C

d
d

d
d

1

2

1
2

2
2

1

2

2

= =






and

b) area 
area 

  
area 
area 

  
C

C

P

P

l

l
1

2

1

2

1

2

2

= =






,

with the help of the Elements XII, Propositions 1 and 2.

c) area C = 1
2

 
1
2

 d. p



 ,

where 1
2

d and p can be considered as the sides of a right angle of a right-

angled triangle. This refers to Proposition 1 of Archimedes’ On the
Measurement of the Circle.

d) d

p

d

p
1

1

2

2

  = ;

this proposition is the fifth of the treatise of the Banº Mºsæ.11

e) 3 + 10
71

< p

d
< 3 + 1

7
;

this is the third proposition of Archimedes’ On the Measurement of the
Circle.

11 See Chapter I, supra.
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f) area C
d 2

11
14

5
7

1
14

≈ = + ;

this is the second proposition within the same treatise by Archimedes.

Ibn al-SamÌ then establishes a number of properties that he claims are
not mentioned by Euclid, or by Archimedes, or by anyone else.

Lemma 1. — Let there be two circles of diameters AB and EZ and two

points G  and H  on AB and EZ respectively, such that GA
GB

= HE
HZ

; their

chords DGT and KHL being respectively perpendicular to AB and EZ

such that DT
KL

= AB
EZ

.

A

T D
G

B

E

L
H

K

Z

Fig. 6.1

We then have in triangles ADB and EKZ

GD2 = GA · GB and HK2 = HE · HZ;

hence
GD2

HK 2
 =  

GA

HE
 .  

GB

HZ
.

From the hypothesis we deduce

GA

HE
= GB

HZ
= AB

EZ
;

hence
GA

HE

GB

HZ

AB

EZ
⋅ =

2

2 ,
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and consequently
AB

EZ
= GD

HK
= DT

KL
.

The hypothesis led to the construction of two similar figures, hence the
conclusion.

Lemma 2. — Let there be two circles of diameters AB and GD, and two
points E and  H on  AB, and  two points K and  M on  GD such that
AE
AB

= GK
GD

 and BH
AB

= DM
GD

. Let there be two semi-chords EZ ⊥  AB,

HT ⊥ AB, KL ⊥ GD, MN ⊥ GD. Then, the triangles ZHE and LMK are
similar, and the same obtains with regard to triangles EHT and KMN.

A

B

E Z

H T

G

D

K

M

L

N

Fig. 6.2

From the hypotheses, we deduce

AB

GD
= AE

GK
= AH

GM
= EH

KM
.

Following Lemma 1, we have
AB

GD
= HT

MN
;

hence
HT

MN
= EH

KM
.

The right-angled triangles EHT and KMN are accordingly similar. The same
is the case with triangles ZHE and LMK.
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Let us indicate that, as was the case with the preceding lemma,
following the hypotheses, the two figures are similar; thus two homologous
triangles – for example EHT and KMN – are similar.

Lemma 3. — Let there be two circles with diameters AB and KL, and two
points G and N dividing respectively these diameters according to the same

ratio. Let there be GH and NO such that BGH LNOˆ ˆ= ; then HG
ON

= AB
KL

.

M

L

N

K

O

A

G

D

E

B

H

T

Fig. 6.3

This lemma constitutes a generalization of the first, in which we had

BGH LNOˆ ˆ=  = 
π
2

.

We assume that

LNOˆ  ≠ 
π
2

;

therefore

BGHˆ  ≠ 
π
2

.

If OM ⊥ KL and HD ⊥ AB, we then have

AD

DB
= KM

ML
.

In fact, if this were not the case, then there would be a point E on AB, E ≠
D such that

AE

EB
= KM

ML
.
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If we produced ET ⊥ AB, the triangles TGE and ONM  would then be

similar following Lemma 2, and hence TGEˆ  =  LNOˆ ; yet LNOˆ  =  HGBˆ ,
which is absurd.

Following Lemma 1,
HD

OM
= AB

KL
;

yet, on the other hand, based on similarity

HD

OM
= HG

ON
;

hence the conclusion
HG

ON
= AB

KL
.

It should be noted that no use of this lemma is made in the remainder of
the text.

6.2.5. Elliptical sections of a right cylinder

In the first paragraphs of this chapter, Ibn al-SamÌ states that he is
going to establish that the plane section of a cylinder of revolution by a
plane that is not parallel to the bases – i.e. an ellipse – is the same as the
‘elongated circular figure’ obtained from a triangle with a fixed base and
two other sides whose sum is given. The locus of the moving vertex of the
triangle is, in this case, the curves obtained using the bifocal definition. Ibn
al-SamÌ  intends to show that the curve obtained using these two
procedures have common properties. He begins by using the same
procedure that he used for the circular plane section. He defines each of the
elements of the ‘elongated circular figure’: the vertices, centre, diameters,
chord, axes, and the inscribed circle with a diameter equal to the minor axis,
and the circumscribed circle with a diameter equal to the major axis. The
first six propositions all relate to the ‘elongated circular figure’, that is the
curve obtained from the bifocal definition MF + MF′ = 2a. In classical
notation,

AC = 2a, BD = 2b, FF′ = 2c  (where a2 = b2 + c2 ).

Ibn al-SamÌ defines the invariant straight line FL and the separate
straight line FK from the perpendicular to the major axis AC passing
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through F that cuts the great circle of diameter AC at L and the ellipse at K.
He then proves the following propositions:

Proposition 1.
4FL2 + FF′ 2 = AC2.

This equality is immediately deduced from the fundamental property of
the circle:

FL2 = FC · FA = OA2 – OF2 ⇒ FL2 = a2 – c2 = b2,

which Ibn al-SamÌ shows in Proposition 2.

C
N

F FH O
A

K

L M B

D

′

Fig. 6.4

Proposition 2.

i) FL = b;

ii) OB2 = OA · FK ⇒ FK
b
a

FK
FL

b
a

      = ⇒ =
2

.

These results are obtained through the preceding proposition and from
the bifocal definition.

Proposition 3. — The calculation of the radius vector MF′ (MF′ > MF).
Ibn al-SamÌ presupposes point M on the arc BC, such that M ≠ C, and

distinguishes several cases of figures:
i)   M between B and K, for which we have

a) FMFˆ ′  = π
2

, b) FMFˆ ′  > π
2

, c) FMFˆ ′  < π
2

;
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ii)  M at K;

iii) M between K and C.

In these last two cases, the angle FMFˆ ′  is acute.

Let H be the projection of M on AB; Ibn al-SamÌ introduces point N of

the semi-straight line HC, as defined by HN = b2

c
. The demonstration uses

the bifocal definition of Propositions 1 and 2, Pythagoras’ theorem for
FMFˆ ′  right, and Propositions II.12 and II.13 of the Elements respectively
for FMFˆ ′  obtuse, and FMFˆ ′  acute.

For all the cases of figures, we have

MF

NF

OF

OA

′
′

= ′
.

Comments.
1) By positing OH = x, we can note

NF′ = F′O + OH + HN = c + x + b2

c
.

Hence

MF c x
b

c

c

a

a cx

a
′ = + +





⋅ = +
      

2 2

,

and we have

MF a
cx

a
′ = +    ,

and hence

MF = a − cx

a
.

This relation is valid if M is in C; we then have

x = a, MF = a – c, MF′ = a + c.

2) We obtain this result without distinguishing the cases of figures by
using the bifocal definition and a metric relation in triangle MFM′. This
relation is deduced from II.12 and 13 of the Elements. In fact we have
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MF′ 2 = MO2 + OF′2 + 2F′O · OH (Elements II.12)
MF2 = MO2 + OF2 – 2FO · OH (Elements II.13);

hence
MF′ 2 – MF2 = 2OH · (OF′ + OF) = 2OH · FF′.

We equally have
MF′ 2 + MF2 = 2OM2 + 2OF2,

which we will use in Proposition 4. We thus have

MF′ + MF = 2a,
MF′ 2 – MF2 = 4cx;

therefore

MF′ – MF = 2
cx

a
,

and hence

MF′ = a + cx

a
 and MF = a – cx

a
.

Proposition 4. — Product of radius vectors MF and MF′.

C
F H O F

A

D

M
B

N

′

Fig. 6.5

With the preceding notations, if we designate by N the intersection of
HM with the circle of diameter AC, we have

MF · MF′ = NH2 – MH2 + BO2.
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As in Proposition 3, Ibn al-SamÌ distinguishes between five cases of
figures. The demonstration is done by way of using the power of a point
with respect to a circle, and in each case of the figures a result is established
in the course of Proposition 3. Like in this, he posits M ≠ C. But the result is
valid if M falls in C.

Comments.
1) As in the preceding proposition, we give only one proof, which will

be valid for all the cases of figures by means of the bifocal definition and a
metric relation in triangle MFF′. We have

MF + MF′ = 2a, MF2 + MF′ 2 + 2MF · MF′ = 4a2.

However, in triangle MFF′, we have, following the Elements II.12 and 13,

MF2 + MF′ 2 = 2MO2 + 2OF2;

hence
MF · MF′ = 2a2 – OM2 – OF2.

By designating x and y as coordinates of M, and Y as ordinate of N, we have

MF · MF′ = 2a2 – (x2 + y2) – c2.
However,

Y2 = (a – x) (a + x) (power of H);

hence

MF · MF′ = Y2 – y2 + a2 – c2 = Y2 – y2 + b2.

If M falls in B, we have y = b, Y = a and MF · MF′ = a2.

If M falls in C, we have y = Y = 0 and MF · MF′ = b2 = (a – c) (a + c).

2) If we take into account the results of the two preceding propositions,
we have

a − cx

a




 a + cx

a




 = Y 2 − y2 + b2 ⇔ Y 2 − y2 + b2 = a2 − c2x2

a2
.
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However,
Y2 = a2 – x2.

we then have

a2 – x2 – y2 + b2 = a2 – c2 x2

a2
;

hence

b2 = x2 1 − c2

a2







+ y2 .

Hence, on dividing the two members by b2,

1 = x2

a2
+ y2

b2

the equation of the ellipse in relation to its axes.

Proposition 5. — If to a point M of the elongated circular figure we
associate, on the circle having the minor axis as diameter, a point T of the
same ordinate (MT ⊥ BD to point K), we have

MK2 = KT2 + (OA – MF)2.

C
F H O F

A

M

T K

B

D

′

Fig. 6.6

Ibn al-SamÌ demonstrates this proposition with the help of that which
precedes it, of the power of a point with respect to a circle and of the bifocal
definition (at least implicitly).

Comment. — We established in the third proposition
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MF = a – cx

a
, with x = MK,

whence if we posit KT = X, the abscissa of T on the circle,

x X
c

a
x2 2

2

2
2= + .

However, M  and T have the same ordinate y = MH; and whence X2 =
b2 – y2, and then

x2 − c2

a2
x2 + y2 = b2 ,

and, on dividing the two members by b2, we obtain again the equation of
the ellipse.

Proposition 6. — Orthogonal affinity with regard to the minor axis.

With the preceding notations, we have:

MK
TK

OA
OB

=  [i.e. x

X

a

b
= ].

C
F H O F

A

M

T K

B

D

′

Fig. 6.7

Ibn al-SamÌ’s demonstration is based on Propositions 3 and 5.

Comment. — We have seen that by accounting for Proposition 3, the
obtained result in Proposition 5 is noted as

x2 =  X 2 + c2

a2
x2 ⇔  x2 1 − c2

a2







= X2 ⇔  b2 x2 = a2 X2 ;
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hence
x

X
= a

b
.

Ibn al-SamÌ has thus defined an orthogonal affinity for axis BD of a ratio
a

b
> 1 in which the figure ABCD is the image of the circle of diameter BD;

this affinity is a dilatation.

6.2.6. The ellipse as a plane section of a right cylinder

Ibn al-SamÌ continues by summarizing the results relating to plane
sections of a right cylinder with circular bases. He presents these results as
accepted fact, leading one to suppose that he arrived at them in some other
part of the book that has now been lost. The most important is that given
below:

<A> The section of a right cylinder with circular bases by a plane P1

intersecting the axis and not parallel to the base is an ellipse, the centre of
which lies on the axis of the cylinder. The diameter of the cylinder is equal
to the minor axis of the ellipse.

The section of this same cylinder by a plane P2 parallel to the base and
intersecting the centre of the ellipse is a circle equal to the base circle and
the inscribed circle of the ellipse, and having a diameter equal to the minor
axis of the ellipse.

If the plane P1 is rotated about this minor axis until it coincides with P2,
the circle inscribed within the ellipse becomes superimposed on the circle
formed by the section through the cylinder of the plane P2. It would appear
that Ibn al-SamÌ shows that the circle of the plane P2 is at the same time
the rabattement of the small circle of the ellipse and the orthogonal
projection of the ellipse.

Proposition 7. — Orthogonal affinity with regard to the minor axis.
Let there be an ellipse AGBD with axes AB and GD, AB > GD, with

centre N and an inscribed circle of diameter GD. If a parallel to AB cuts
GD in H, the circle in K and the ellipse in T, we have

HT
HK

AB
GD

a
b

= = .
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B Z N E A

G L

M

TH
K

D

Fig. 6.8

If we revolve the ellipse around DG, point A describes a circle in the
plane that is perpendicular in N to DG. This circle cuts the perpendicular in
E at the plane of the ellipse in the point L. The ellipse is placed in the
position DLG, the plane section of the right cylinder whose base is a circle.

Point T describes an arc of a circle with centre H, and falls into M on
the generating line MK. LNE and MHK are similar right-angled triangles
(since ˆ ˆN H= , angles with parallel sides), and we have

LN

NE
= MH

KH
⇒ AN

NE
= HT

HK
⇒ HT

HK
= AB

GD
.

Porism. — In the right-angled triangle LEN, we have LE2 + NE2 = LN2,
whence LE2= a2 – b2 = c2 and LE is thus the distance from the centre to a
focus.

This porism will be used in Propositions 10 and 11.

Comment. — The ellipse AGBD constitutes the rabattement of the ellipse
DLG onto the plane that is perpendicular in N to the axis of the cylinder, the
circle DEG being the cylindrical projection of the ellipse DLG on this same
plane.

Proposition 8. — Orthogonal affinity with regard to the major axis.
Let there be an ellipse AGBD with axes AB and GD, AB > GD, and

the centre L of a circumscribed circle with diameter AB. If a parallel to
GD cuts AB in H, the ellipse in E and the circle in Z, we have

ZH
EH

= AL
LG

= a
b

.
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B
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A

D

E

T
K

GM

N
Z

O
C

Fig. 6.9

The parallel to AB produced from E cuts GD in K and the inscribed
circle in T. Ibn al-SamÌ shows by way of reductio ad absurdum and
Proposition 7 that L, T and Z are aligned, hence deducing the result.

Comments.
1) Proposition 8 is treated by Ibn al-SamÌ like a corollary of 7. Let us

note that in a same way he could have deduced, as a corollary of 6, a
second affinity in the case of the bifocal definition.

2) Following Proposition 7, the ellipse ABGD is the image of the circle

with diameter GD in an orthogonal affinity with a ratio a

b
, which is a

dilatation; and, following Proposition 8, the ellipse is the image of the circle

with diameter AB in an orthogonal affinity with a ratio b

a
, which is a

contraction.

In other words, in an analytic language that was unknown to Ibn al-
SamÌ, if within an orthogonal reference we consider ellipse E and circles C1

and C2 such as:

E = (x,  y),   
x2

a2
+  

y2

b2
 =  1








, with a > b,

C1 = X,  Y( ),   X2 +  Y 2 =  b2{ } ,

C2 = X,  Y( ),   X2 +  Y 2 =  a2{ } ,
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and, if we designate by ψ and ϕ respectively the dilatation and contraction
studied by Ibn al-SamÌ, then

E = ψ (C1) with ψ: (X, Y) → (x, y): 
x

a

b
X

y Y

  

  

=

=







,

,

E = ϕ (C2) with ϕ: (X, Y) → (x, y): 
x X

y
b

a
Y

=

=







,

.

3) It should be remembered that, in Proposition 3 of his treatise On the
Sections of a Cylinder, Thæbit ibn Qurra begins by considering the affinity
relative to the major axis (in this case a contraction), taking as his point of
departure the fundamental property (equation) of a circle of diameter equal
to this major axis, Y2 = x (2a – x), and the equation of the ellipse defined in
terms of its major axis, with d the latus rectum relative to it:

y
d

a
x a x2

2
2    = −( ).

He also shows that
y

Y

d

a

b

a

2

2

2

22
= = .

Thæbit then indicates that the same technique may be used to show that the
orthogonal affinity relative to the minor axis is a dilatation.

After having shown, in Propositions 6 and 7, that the elongated circular
figure with axes 2a and 2b obtained by means of the bifocal definition and
the ellipse with identical axes obtained by taking a plane section of a cylinder
are both derived from a circle of radius b by a dilatation in the ratio of a/b,
Ibn al-SamÌ states and proves their identity in the following proposition.

Proposition 9. — Let there be ‘an elongated circular figure’ AGBD with
axes AB and DG, and an ellipse obtained by a plane section ZTHK such
that AB = ZH and GD = TK. The two figures will be superimposed on
each other point by point.

First method: The result is immediately obtained by superimposing the
axes that are equal two to two, and in applying Propositions 6 and 7.
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Second method: This does not differ from the first and makes use of
Propositions 6 and 7; yet, the axes are not superimposed. Ibn al-SamÌ takes
on the minor axis of each figure a point that is equidistant to the centre and
applies Lemma 1.
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Proposition 10. — Let there be AGBD, a plane section with E, and axes
AB and GD, AB < GD. How then can an equal curve be constructed by
means of the bifocal method?
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Fig. 6.12
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Let NT be a segment such that NT = AB, L being the midpoint of NT.
The foci of the ellipse are K and M on the perpendicular bisector of NT such
that

LT2 + LK2 = EG2 and LM = LK.

Following the porism of Proposition 7,

b2 + LT2 = a2 ⇒ LT2 = a2 – b2 = c2.

We thus have
TK = TM = EG.

Ibn al-SamÌ then notes the construction of the two other vertices Z and
H.

Proposition 11. — Let AGBD be a figure that is constructed by the
bifocal definition. How then can a plane section that is equal to it be
constructed?

Let Z be the centre of AGBD and E one of its foci, with AB > GD. In
plane π we consider a circle with centre M that is equal to the circle with
diameter GD. Let CN and HT be two perpendicular diameters. The required
ellipse will be a plane section of a cylinder of revolution constructed on
circle CHN, its minor axis being CN and its major axis PO, with P being
constructed by applying the porism of Proposition 7:

PT ⊥ π and TP = EZ.
A

E
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G D

P

T

M

H

O

C N

Fig. 6.13
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We thus have
MP = EG = ZA.

Plane CPN cuts the cylinder along section NPCO, which is the required
section.

6.2.7. The area of an ellipse

In the seven propositions in this chapter, Ibn al-SamÌ  seeks to
determine the area of an ellipse. The first of these, Proposition 12, is a
lemma used in Proposition 13. Propositions 17 and 18 are effectively
reformulations of the result established in Proposition 16 (Corollary 1). If S1,
S2, E and Σ are the areas of the circles with diameters 2b, 2a, 2r and 2√ab,
if S is the area of the ellipse, and if P1 and P2 are the perimeters of S1 and S2

respectively, then the following results may be obtained:

13.  S

S1

= a

b
; 14.  S

E
= ab

r2
; 15.  S2

S
= S

S1

;

16. S =  
1
2

 P1.a and S =  
1
2

 P2 .  b , with corollary S ≈  
5
7

+ 1
14





  2a .  2b;

17. S = Σ; 18. is none other than the corollary of 16.

Let us successively take up these propositions.

Proposition 12. — Let ATK be a quarter of an ellipse with centre T,
AT ⊥ TK and AT < TK, and ADBT the quarter of an inscribed circle that
is associated with it. Let KZ  be a chord, ZG ⊥  AT, and ZG cuts the
quarter of the circle in D. We have

A

G

T B
K

Z
D

Fig. 6.14
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area trapezoid

area trapezoid

( )
( )
KZGT
BDGT

TK
TA

a
b

= =

The demonstration uses orthogonal affinity that is relative to the minor
axis of the ellipse. Ibn al-SamÌ decomposes the trapezoids into triangles,
which is not indispensable. In fact, the trapezoids with same height yield

area 
area 

  
( )
( )
KZGT

BDGT

TK GZ

TB GD
= +

+
;

However, based on Proposition 6 (or 7), we have

GZ

GD
= TK

TB
= a

b
= TK + GZ

TB + GD
,

whence
area 
area 

  
( )
( )

.
KZGT

BDGT

a

b
=

We proceed in the same manner from another chord in the quarter of
an ellipse that is being considered.

By reiterating the same with all the other quarters of the ellipse, we
could show that the ratio of the area of an inscribed polygon within the
ellipse to the area of a polygon inscribed within the circle, and associated
with the former, is equal to the ratio of the major axis to the minor one.

Proposition 13. — The ratio of the area S of an ellipse with axes 2a and
2b to the area S1 of the inscribed circle with diameter 2b is

S
S1

= a
b

.

Ibn al-SamÌ demonstrates this proposition with the help of the apagogic
method. Following this undertaking:

a) Let us assume b

a
> S1

S
. Let b

a
= S1

L
 with L < S; thus S = L + ε.
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Let P1 be the area of a lozenge with its summits being the extremities of

the axes of the ellipse; we have P1 >  
1
2

 S.

We double the number of the sides of the inscribed polygon, and we
reiterate this operation in such a way that we successively obtain the
polygons with areas P2, …, Pn, Pn having 2n+1 sides. We have

P S S P S

P P S P S P S

1 1

2 1 1 2 2

1
2

1
2

1
2

1
2

        

       

> ⇒ − <

− > −( ) ⇒ − <

,

,

…

P P S P S P Sn n n n n− > −( ) ⇒ − <− −1 1

1
2

1
2

       .

Hence, for a given ε > 0, there exists N ∈ N* such that for n > N, we have
1
2n

S < ε; thus

S – Pn < ε  and  Pn > L.

Let P′n then be the area of a polygon inscribed in the circle with area S1

and deduce the polygon with area Pn by orthogonal affinity with ratio b

a
.

We have, following Proposition 12,
b

a

P

P
n

n

= ′ ;

hence
′ =P

P

S

L
n

n

1 .

However
Pn > L  and  P′n < S1;

hence
′ <P

P

S

L
n

n

1 ,

which is absurd.

b) Let us assume b

a

S

S
< 1 , namely a

b
> S

S1

. Let a

b

S

L
=

′
 with L′ < S1; thus

S1 – L′ = ε.
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We then divide the circumference into 22, 23, …, 2n+1 parts, which
brings us back to polygons P′1, P′2, …, P′n. We successively have

S P S1 1 1

1
2

− ′ <  ,

S P S1 2 2 1

1
2

− ′ <   ,

…

S P Sn n1 1

1
2

− ′ <  .

So, there exists N ∈ N* such that for n > N, we have 1
2n

S1 < ε; thus

S1 – P′n < ε  and P′n > L′.

However, if Pn is the area of the polygon inscribed in the ellipse that is
associated with the polygon of area P′n that is inscribed in the circle, we
have by Proposition 12

a

b

P

P
n

n

=
′
;

hence
P

P

S

L
n

n'
=

′
.

But
P′n > L′  and  Pn < S;

hence
P

P

S

L
n

n′
<

′
,

which is absurd.

From a) and b) we deduce
S

S

a

b1

= .
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Comments.
1) The apagogic method that is applied here is not the usual method.

To show that S

S1

= a

b
, we assume that

a) b

a
= S1

L
 with L < S,  and hence L

S

S

S1 1

< ;

b) b

a

L

S
= ′  with L′ < S1,  and hence S

L

S

S′
>

1

.

The two cases a) and b) lead to impossibility. However, we usually treat part
b) by positing

b

a

S

L
=

′
1 , with L′ > S.

After all, Ibn al-SamÌ notes in the Hebrew version, which we possess, that
he has established that ‘the ratio of the small diameter to the large diameter
is not equal to the ratio of the circle to a surface that is either smaller than
the ellipse, or greater than it’, which does not exactly describe this
undertaking.

2) From the property of orthogonal affinity, Ibn al-SamÌ shows that for

all n > N, the ratio P

P
n

n′
 of the areas of two homologous inscribed polygons,

one that of the ellipse with area S and the other of the circle with area S1, is

equal to the ratio b

a
 of the affinity. Proceeding from the equality P

P

a

b
n

n′
= , he

shows that we also have S

S1

= a

b
.

The ratio of the areas is preserved when reaching the limit (see the
commentary on Proposition 14 of Thæbit ibn Qurra’s treatise On the
Sections of the Cylinder).

Proposition 14. — The ratio of the area S of the ellipse with axes 2a and
2b to the area E of the circle with diameter 2r is

S
E

= 2a
Z

, with Z such that Z
2r

= 2r
2b

 (whence S
E

= ab
r2

).
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Let S1 be the area of the circle with diameter 2b that is inscribed within
the ellipse. We have (Elements XII.2)

S1

E
= 4b2

4r2
.

However, by hypothesis 4r2 = 2bZ; hence

S1

E
= 2b

Z
.

By Proposition 13, we have
S

S1

= a

b
,

hence
S

E
= 2a

Z
.

Comment. — We can immediately deduce S

E
= ab

r2
, a result that corresponds

with Proposition 5 of Archimedes’ The Sphere and the Cylinder.

Proposition 15. — The ratio of area S1 of the circle with diameter 2b that
is inscribed within an ellipse, to the area S of that ellipse is equal to the
ratio of this area S to area S2 of a circle with diameter 2a that is
circumscribed within that ellipse:

S1

S
= S

S2

.

The demonstration is immediately established and has recourse to
Propositions 13 and 14. By Proposition 13 we have

S1

S
= b

a
,

and by Proposition 14
S

S2

= ab

a2
.

We thus have
S1

S
= S

S2

.
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Ibn al-SamÌ deduces the corollaries

1) S1

S2

= S

S2







2

  and  S2

S1

= S

S1







2

= S2

S






2

;

2) S

S2

= b

a

(which are immediately deduced from Proposition 14).

Proposition 16. — The area S of the ellipse is equal to that of the right-
angled triangle with one of the sides of its right angle equal to the
perimeter p1 of the inscribed circle with diameter 2b and the other side to
the half-axis a:

S  
1
2

 p   a1= ⋅ .

Based on Proposition 1 of Archimedes’ On the Measurement of the
Circle, we have

S p b1 1

1
2

    = ⋅ ,

and by Proposition 13
S

S1

= a

b
;

hence the result follows.
Similarly, if p2 is the perimeter of the circumscribed circle with diameter

2a, we have

S p b    = ⋅1
2 2 .

Corollary 1. — 1
2

p2 ≈ 22
7

a , whence S ≈ 22
7

ab, Ibn al-SamÌ’s result given in
the form

S a b     ≈ +






⋅5

7

1

14
2 2 .

Corollary 2. — If we know S  and 2a (respectively 2b), we find 2b
(respectively 2a).
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Proposition 17. — Every ellipse has an area equal to that of a circle with
a diameter as the mean proportional between the two axes 2a and 2b of the
ellipse.

Let S1 be the area of a circle with diameter 2b, and S2 that of a circle
with diameter 2a, and let Σ be the area of a circle with diameter 2r satisfying
2a

2r
= 2r

2b
 and hence r = ab . Then it follows that

S2

Σ
= Σ

S1

(Elements XII.2 and VI.22),

whence
S2

S1

= S2

Σ






2

.

But in Proposition 15, we saw that
S2

S1

= S2

S






2

.

Hence we have
 S = Σ.

Comment. — In Proposition 14 of the treatise on the Sections of the
Cylinder, Thæbit establishes directly that the area S of the ellipse is equal to
the area Σ of the circle with radius r = ab . He proceeds with the aid of the
apagogic method by successively considering the following:

a) S > Σ  and b) S < Σ.

He introduces the circle with area S2 and diameter 2a, the major axis of the
ellipse, and the orthogonal affinity relative to that major axis. He associates
the polygon with area Pn, which is inscribed in the ellipse, with a polygon
having an area P′n, which is inscribed in the circle with diameter 2a. Thæbit
shows that

P

P

b

a
n

n′
= .

However, according to Elements XII.2, we have

Σ
S2

= ab

a2
= b

a
;
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thus
P

P S

b

a
n

n′
= =Σ

2

.

It is this equality that allows him to show that a) and b) result in an
absurdity; hence

S = Σ and S

S2

= b

a
.

Thæbit does not introduce in this context anything but the circle with a
diameter 2a and area S2, and the circle Σ, while Ibn al-SamÌ introduces in
addition a circle with a diameter 2b and area S1.

However, we note that both mathematicians resort to Proposition XII.2
of the Elements, and evoke the ratio of the areas of the two polygons that
are correlative with respect to an orthogonal affinity, which is a contraction
for one and a dilatation for the other; this ratio is introduced by Thæbit in
the course of the demonstration, while it is given in the conclusion of
Proposition 12 by Ibn al-SamÌ.

Proposition 18. — Every ellipse consists of the 5
7

+ 1
14





  of the rectangle

that is circumscribed in it:

S  
5

7

1

14
 2a  2b≈ +







⋅ .

This result is established in the first corollary of Proposition 16.
However, Ibn al-SamÌ presents here two demonstrations. Based on the
preceding proposition, the first consists of using the result f) of the first
lemmas; namely the second proposition of Archimedes’ On the
Measurement of the Circle. Based equally on the preceding proposition, the
second consists of using Elements XII.2.

We could offer another form of the statement of this proposition:

The ratio S

2a  2b⋅
 is the same for every ellipse, S

2a  2b⋅
= +5

7

1

14
.

6.2.8. Chords and sagittas of the ellipse

In Propositions 19 and 20<a>, Ibn al-SamÌ studies the chords that are
parallel to one of the axes of an ellipse and the sagittas that correspond to it.
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Proposition 19. — Let there be an ellipse AGBD with axes AG and BD,
AG > BD, and the circle C1 with diameter BD. If to a chord OT of the
ellipse that is perpendicular to AG at W we associate in C1 a chord RN
that is equal and parallel, and cuts the diameter EM of C1 in Q, then W
and Q divide respectively AG and EM in the same ratio:

WG
WA

= QE
QM

.

G
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E Q I M A

O
R

B

D
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E
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W

Fig. 6.15

Ibn al-SamÌ returns here to the method that has been already followed
in Proposition 7, by placing the ellipse on the cylinder of revolution with a
base C1; namely the method used in studying orthogonal affinity.

We then let the circle C1 rotate around its diameter BD to bring it to a
plane parallel to that of the base. We pass by the chord RN a plane parallel
to that of the ellipse. The section of the cylinder through this plane is an
ellipse KRZN that is equal to ellipse ABGD. We have RN = OT, whence
GW = ZQ and AW = KQ. The right triangles KQM and ZQE are similar; we
thus have

QZ

QK
= EQ

MQ
,

and hence
GW

AW
= EQ

MQ
.

We see, however, that the result is an immediate consequence of

orthogonal affinity ψ with a ratio a

b
 relative to the minor axis. We have
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ψ (R) = O and ψ (N) = T; while W has the same abscissa T and O, Q has

equally the same abscissa R and N, and we thus have

IW = a

b
 IQ.

We also have

IG = a

b
 IE  and IA = a

b
 IM;

thus

GW = a

b
 EQ  and WA = a

b
 QM,

and hence
WG

WA

QE

QM
= .

Comment. — The idea here is that the ratio of the two sagittas GW and EQ
of the homologous chords OT and RN is equal to the ratio of the affinity:

GW

EQ

a

b
= .

Proposition 20. — Some sections of the text of Proposition 20 are not in
the correct order, and it appears that some paragraphs have been omitted
by either the copyist or the translator. At the start of this proposition, Ibn al-
SamÌ notes that the previous problem may be addressed in the same way if
one considers the circumscribed circle and two equal chords, one in the
ellipse and the other in the circle, both of which are perpendicular to the
minor axis.

It is possible to reconstruct the missing text in order to prove this
statement.

Let there be an ellipse ABGD and its circumscribed circle with
diameter AG that cuts the straight line BD at points M and E. If the two
chords OT in the ellipse, and RN in the circle, are in such a way that
OT = RN, OT ⊥ BD at point W, RN ⊥ EM at point Q, we then have

WB
WD

= QM
QE

.
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We take the ellipse as the base of a right cylinder, and we rotate the
circumscribed circle around AG until M reaches the generator passing by B;
we obtain on oblique circular section of the cylinder, AEGM. From the
chord RN, we pass a plane that is parallel to the plane ABGD, which cuts
the cylinder in an ellipse NZRK , and we have RN = OT , KQ  = BW ,
QZ = WD. The right triangles KMQ and QZE are similar, and we obtain the
proof as in Proposition 19.

This result is a consequence of the orthogonal affinity ϕ of the ratio b

a
relative to the major axis, as already indicated by Ibn al-SamÌ; we thus have

ϕ (R) = O  and  ϕ (N) = T.

However, W has the same ordinate as T and O, and Q has the same ordinate
as R and N. We thus have

IW = b

a
 IQ;

we equally have

IB = b

a
 IM and ID = b

a
 IE,

and hence
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WD

EQ
= WB

QM
= b

a
,

and therefore
WB

WD
= QM

QE
.

The idea here is still that the ratio of two homologous sagittas is equal to the

ratio b

a
 of the affinity.

Ibn al-SamÌ  returns later, in Proposition 20<a>, to this latter
proposition, and he demonstrates it by reductio ad absurdum:

Let there be an ellipse AGBD with major axis AB, with centre I, and a
circle ALBM with diameter AB. Let there be in the ellipse and the circle
the semi-chords NE and HZ such that NE = HZ, NE ⊥ GD, HZ ⊥ LM.
Then

ZL
ZM

= EG
ED

.

L

T
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Fig. 6.17

If it were not such, then there exists T ≠ Z on LM such that

EG

ED
= TL

TM
.

If we take from the semi-chord TK, TK ⊥ LM, then, by Lemma 1, we have

EW

TK
= IG

IL
= b

a
.
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However, by Proposition 6 (or 7),
EW

EN
= b

a
;

therefore
EN = TK,

which is absurd, since EN = HZ.
This demonstration is clearly more efficient.

It is worth noting that in Proposition 19, as well as in 20<a>, Ibn al-
SamÌ established a ratio between the sagittas of two homologous chords,
with one of the orthogonal affinities that associate an ellipse with one of the
circles having its diameter as one of the axes of the ellipse.

To grasp paragraph <b>, let us take into account firstly that a circle is
defined in a unique way by a chord and a sagitta. The equation y2 =
x (d – x) shows that the given chord 2y and its associated sagitta x allow for
the determination of d. However, the equation of an ellipse with axes 2a and

2b can be written as y2 =  
b2

a2
 x(2a - x), with the given chord 2y and its

associated sagitta x not allowing the determination of a and b. Hence, it
follows from this that such givens (chord and sagitta) do not characterize a
unique ellipse per se. Supplementary givens are therefore needed, and this is
precisely what Ibn al-SamÌ indicated by stating that the givenness of a
chord, of its sagitta and of a diameter characterize an ellipse. Nonetheless, he
added that it is ‘possible that the sagitta and the chord are common to <this
ellipse and to> another ellipse’ (infra, p. 714).

The text of paragraph <b>, like that of <a>, is evidently incomplete.
Was this lacuna due to a copyist or a translator? We do not really know.
However, this is what we think might have been omitted:
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Let l1 and l2 be the given lengths for the chord and the sagitta. Based
on the figure, Ibn al-SamÌ seems to initially consider a cylinder having a
base as a circle with diameter WD  > l1, in which the chord HK with a
midpoint Q is placed, such that HK = l1. We can thus place on this right
cylinder, with a circular base, an ellipse HIK with a minor axis equal to WD,
and having a sagitta QI of the chord HK with a length QI = l2, whereby I is
the generator of EZ that passes through point W (regarding the construction
of I, refer to the ‘comment’ below). Let IJ be its major axis. Ibn al-SamÌ
accounts for a second cylinder with diameter WD′ > WD, that is tangent to
the first cylinder following the generator EZ, along with a circle with a
diameter WD′ and a chord H ′K′ = HK = l1. We thus have WQ ′ < WQ ,
whence Q′I < QI. The ellipse H′IK′ on the second cylinder does not answer
to this problem.

Z

J

I

Q W

E

Q

I

J

′

′

′

Fig. 6.19

Yet, there exists on WZ a point I′ such that Q′I′ = QI = l2, and ellipse
H′I′K′ solves the problem (H′K′ = l1, Q′I′ = l2). However, the two ellipses
are not equal (their minor axes are different, since they are equal to the
diameters of the cylinders).

We have thus shown that if a chord, its sagitta and the minor axis (as the
diameter of the cylinder) are given, then the ellipse is determined; however,
if only a chord and a sagitta are given, there are infinite ellipses that satisfy
to this problem.

Comment. — The construction of I is not possible unless QI = l2 > QW.
This corresponds to the comment regarding the ratio of the sagittas in
reference to Proposition 19. We thus need to have

l2

QW
= 2a

2b
,



660 CHAPTER VI: IBN AL-SAMÎ

with 2b = WD and 2a equal to the major axis being sought.
The choice of having QW associated to the given HK, with HK = l1 and

QW < l2, defines in a unique way the circle with diameter WD.

Paragraph <c>, which is inserted in the text of Proposition 20, pertains
to another demonstration of Proposition 8 that has been already established
by reductio ad absurdum from Proposition 7. This time we have a direct
demonstration. Is this the reason that incited Ibn al-SamÌ to reconsider
herein this proposition? Here is the demonstration:

Let AGBD be an ellipse with a major axis AB, and AEB is its large
circle. Let TH ⊥ AB; TH cuts the ellipse in K and the circle in H, and thus

HT

TK
= AB

PO
.

PO is the diameter of the small circle.

B
T O N P

A

D

G

MK

H

E

Fig. 6.20

Let KM || AB and MN ⊥ AB; we have MN = KT. From Proposition 19,
we have

BT

TA
= ON

NP
,

and, following Lemma 1,
HT

MN
= AB

PO
;

hence
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HT

TK
= AB

PO
.

The text of the proposition that follows has undoubtedly received some
alterations. Certain indications suggest this, of which the first is that Ibn al-
SamÌ  informs us in the statement of this same proposition that he
undertakes a line of calculation of the areas of the segments of the ellipse,
which is not treated anywhere else.

Proposition 21. — Given the chord of an ellipse, its sagitta and one of its
axes, how can we derive its second axis, or the area of a segment of this
ellipse or any other element associated with it?

Consequently, Ibn al-SamÌ indicates that, to determine the second axis,
three methods ought to be successively applied as per the case given later.

Problem: Let there be an ellipse KATG, with major axis KT and minor
axis AG. Let there be a chord OH with midpoint M, and KM as its sagitta.
Knowing that OMH = 8, KM = 3 and KT = 15, calculate AG.

K
M D L B T

O

<J>

<J  >

Z

A

H
N

G

′

Fig. 6.21

First method:

OM2 24= , KT

KM
= 5, KT

MT
= 5

4
.

Thus, we obtain AG2 by multiplying these three numbers; Ibn al-SamÌ
applies here Proposition 19. In fact, since we have
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OM ZL= = 4, DB

DL
= 5, DB

LB
= 5

4
,

and since, within the circle, we have

ZL DL LB
DB DB2

5
4

5
16          = ⋅ = ⋅ = ,

then
DB2 = 100,  AG = DB = 10.

Second method: The calculation that is proposed in the text is as follows:

KT

KM4
15
12

5
4  

    
⋅

= = ,    
KT

MT
= 5

4
,  

  
    

KT

KM MT
AG

2
2

4
64

⋅
⋅ = ,

whereby OM = 4, and this calculation yields the result AG2 = 100, AG = 10.

Comment. — The expression of AG as a function of the given values is

AG
OM KT

KM MT
2

2 2

  
  
  

= ⋅
⋅

.

In fact
DL

DB
= KM

KT
  and  LB

DB
= MT

KT
 (by Proposition 19).

Moreover, we have in the circle

ZL2 = OM2 = DL · LB,

OM DB
KM MT

KT
2 2

2    
 . = ⋅ ;

hence

DB AG
OM KT

KM MT
2 2

2 2

= = ⋅
⋅

  
  

.

Accordingly, we would not have 64
4

= 16 = OM2  unless OM = 4.
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Third method:

4KM · MT = 4 · 3 · 12 = 144, KT2 = 152, OH2 = 82,

KT OH

KM MT
AG

2 2
2

4
14 400

144
100

  
  

  ⋅
⋅

= = ⋅ = .

And, if MO cuts the large circle in J and J′, we have

KM · MT = MJ2, 4KM · MT = JJ′ 2,

TK OH

JJ
AG

2 2

2
2⋅

′
=   and  TK

AG

JJ

OH
= ′   (by Proposition 8).

The text is eventually concluded with the following lemma:

Lemma 4. — Let A be a number such that A = B + G, B ≠ G. We posit
A
B

D
A
G

E= =,  , D · E = H, B · G = Z and we want to show that Z · H = A2.

This is immediately established, since

H = A2

BG
= A2

Z
.

Note that, in the course of the proof, and in two attempts, the
conclusion is used. Neither the level of statement, nor that of demonstration,
nor the place where the paragraph is located within the text, allow us to
attribute this to course of inquiry to Ibn al-SamÌ, namely as the author of
the remainder of the text. It is evident that from Proposition 20 onwards the
text has been altered in several places.



6.3. Translated text

IIIIbbbbnnnn    aaaallll----SSSSaaaammmmÌÌÌÌ

On the Cylinder and its Plane Sections



<FRAGMENT BY IBN AL-SAMÎ

On the Cylinder and its Plane Sections>*

Treatise on cylinders and cones

He1 has said: In a text by the eminent2 Ibn al-SamÌ,3 I found these
questions together,4 with blank spaces left between them.5 As far as I am
aware, he included them in his work.6 The intelligibles:7

Definition of spheres, cylinders and cones

<1> Definition of the sphere: A sphere is generated by a semi-circle,
the diameter of which is fixed and unable to move and the arc of which is
rotated until it returns to its original position. The solid described by the arc
and the surface <bounded by it> is a sphere. The surface described by the
arc is the surface of a sphere. The fixed straight line is its diameter. The
extremities <of this straight line> are its poles. The midpoint <of the
straight line> is its centre. The rotated arc is part of the greatest circle that
can be carried on the sphere.

* This fragment has survived as a single manuscript in Hebrew; Neubauer Heb.
2008 [Hunt. 96] in the Bodleian Library, Oxford. This manuscript of 53 folios was
written by Joseph b. Joel Bibas, who copied it in Constantinople in 1506 in a small
cursive Spanish script. Ibn al-SamÌ’s  text occupies fols 46v–53r. The Hebrew
translation is by Qalonymos b. Qalonymos, who completed it on 5th January 1312. He
entitled it Ma’amar ba-iÒ†ewanot we-ha-meÌuddadim, ‘The Treatise on Cylinders and
Cones’. The attribution of the text to Ibn al-SamÌ is beyond doubt, as is indicated in the
incipit, and it is very likely that it is a fragment of his major work on geometry. Mr.
Tony Lévy has transcribed the Hebrew text and translated it into French. I have since
revised this translation. The notes accompanying the translation have been written by
one or other of us.

1 Almost certainly not the Andalusian sage himself, but a compiler. The other
occurrences of the expression ‘he has said’ appear to refer to Ibn al-SamÌ himself.

2 ha-me‘ulleh. In Arabic, possibly: al-fæ≈il.
3 In the manuscript: A.L.S.M.A.Î, which has therefore been read as al-SamæÌ.
4 ellu ha-she’elot mequbbaÒot.
5 hinniaÌ beyneyhem Ìalaq: One has left empty space between them.
6 be-Ìibburo.
7 ha-muskalot. In Arabic, almost certainly: al-ma‘qºlæt.
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Definition of the cylinder: A cylinder is obtained by fixing one side of
a rectangle so that it cannot move, and then rotating the entire rectangle
around the straight line until it returns to its original position. The rectangle
describes the cylindrical solid, and the straight line parallel to the fixed
straight line describes the surface of the cylinder. The two remaining
straight lines, rotating about the extremities of the fixed side, describe the
bases of the cylinder. If it is inclined, the cylinder is said to be oblique.8

The definition of the cone is similar to that of the cylinder. The axes are
the same and the heights are equal. The upper end of the fixed side is the
vertex of the cone and the surface of the cone is described by the diagonal
<of the rectangle>. The conic solid is that described by (the triangle
rotating about the) fixed side, and the base of the cylinder forms the base of
the cone.

The cylinder and the cone were defined in this way by Euclid.
However, Euclid only defined one species of each, that is, the cylinder with
two circular bases and the axis perpendicular to the bases, and similarly for
the cone, that is, the cone derived from this species of cylinder. Euclid had
no need for anything else and this was the only species mentioned in his
work.

<2> The general definition, which goes beyond that stated above, is as
follows: Let two round9 figures, with any contour, be located on two
parallel planes. Let the centres of these figures be determined, and let them
be joined by a straight line. Let a straight line move around the two figures,
parallel to the axis joining their centres, until it returns to its original
position. What this straight line parallel <to the axis> described is a
cylinder. This definition includes all the species of cylinder studied in the
books of the Ancients, together with all their properties. If the axis is
inclined relative to the two bases, then the cylinder is oblique.

<3> Two further species may be derived from these two species by the
use of <plane> sections arranged in a number of ways. If a right cylinder is
sectioned by two parallel planes such that the sections are elliptical,10 the
two sections and the part of the cylinder lying between them form a
cylinder whose bases are ellipses, with the cylinder inclined at an angle

8 See the mathematical commentary: Section 6.2.1.
9
 temunot ‘agolot. It becomes clear from what follows that the author is using this

expression to designate circles and ellipses.
10 ha-Ìatikhot kefufot: the sections being curves. The term kafuf (adjective or noun)

indicates an ellipse. We should highlight the absence of any reference to Apollonian
terminology, which the translator Qalonymos knew and used in other texts.
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relative to them. If an oblique cylinder is sectioned by two parallel planes
at right angles to the axis, the two elliptical figures and the surface of the
cylinder <lying between them> form a cylinder which is a right cylinder
relative to them. These four species are in fact only two, with the other two
being derived from them. Thus, beginning with two species whose bases
are ellipses, it is possible to generate the two species with circular bases by
proceeding in the reverse manner.

<4> The general definition of the cone is as follows: Take a circle and
any point lying outside11 the plane of the circle. Join this point to the centre
of the circle with a straight line, and with an infinite number of straight
lines from the point to the circumference of the circle. Hold the straight
line joined to the centre of the circle fixed and rotate <one of> the others
around the circle until it returns to its original position. The triangle
describes a cone. The surface described by the side <touching> on the
circumference is the surface of the cone. Its axis is the fixed straight line,
its vertex is the point and its base is the circle. This is the definition given
by Apollonius in the book of the Conics.12 The cone whose axis is
perpendicular <to the plane of the circle> is a right cone.13 The cone whose
axis is inclined is an oblique cone.

<5> The general definition of the cylinder is that given above. There
are two genera of cylinder. The first one is the cylinder whose bases are
two round figures that are equal and parallel, defining a regular surface
between them.14 This genus may be divided into two further species
depending on whether the surface defined by these two bases stands at a
right angle to the bases or does not stand at a right angle, but inclined on
them. If the surface stands at a right angle to the bases, then the cylinder is
a right cylinder; if it is inclined, then the cylinder is oblique. Each of these
species may be subdivided further into two more species depending on
whether the two bases are circles or ellipses. If the cylinder is of the first
species and the bases are two circles, then the cylinder is the right circular
cylinder mentioned by the Ancients. If it is oblique, then it is an oblique
circular cylinder. If the two bases are ellipses, then the cylinder is either a
right or oblique elliptical cylinder.

11 ba-awir, be-zulat she†aÌ ha-‘agolah: in the air, outside the plane of the circle.
12 Sefer ha-Ìaru†im.
13 yoÒe‘ min toshavto ‘al zawiyyot niÒÒavot: is built up from the base at right

angles.
14 For the second type, not defined here, see the mathematical commentary:

Section 6.2.2.
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From the point of view of their generation, all these species are
covered by the definition that I have introduced above. If the two bases of
the cylinder are circles and the surface is defined by them at a right angle,
then the axis is perpendicular to the base of the cylinder, as we have said,
and all its straight sides – those joining the bases – are equal, and any plane
dividing the cylinder into two halves forms a rectangle whose diagonals are
equal. These are the diameters of the cylinder and they are all equal.

The treatise on cylinders

<6> He has said: Cylinders, as we have shown, comprise a number of
species, in one of which the bases are two circles and in another of which
they are not two circles. There are many curves which are not circles and it
is impossible to list all of them as they include the sections of right and
oblique cylinders, the sections of cones, oval figures and others, and the
figure bounded by a curved line which is not ordered.15 For all these
reasons, it is necessary to give a general definition that covers all cases.
First, we must list the elements that must be specified prior to stating the
definition itself.

<7> Given two round16 figures that are equal and of the same shape,
we consider a point within each of them from which we draw the same
number of lines to the contour of the figure, such that each line is identical
to its homologue, and such that each pair of lines in any one of the figures
encloses an angle equal to that enclosed by the homologous pair of straight
lines in the other figure. These two points are said to be similar17 positions.
If two round figures that are equal and of the same shape lie on two parallel
planes, and if a common sectioning plane passing through the two points at
similar positions cuts the figures along two straight lines that are equal,
then the two figures are said to be at similar positions.

<8> Having established the above, the definition of the cylinder is as
follows: Let us consider two equal round figures, having the same shape
and lying on two parallel planes in similar positions. Let us determine two
points at similar positions within these two figures, and let us join them
with a straight line. Now let us rotate a straight line parallel to that joining

15 qaw ‘aqum zulat seder. See the mathematical commentary: Section 6.2.2.
16 shney me‘uggalim. The term is manifestly more general than ‘round figures’ in

the sense of the circle or ellipse. As becomes clear from what follows, it can only refer
to closed curves with a centre of symmetry.

17 mitdammot ha-maÒav.
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the two points at similar positions around the contour of the two figures
until it returns to its original position. What is generated by this straight
line is called a cylinder. The straight line joining the two points at similar
positions is called the axis.18 Any straight line from the contour of one of
the two figures to the contour of the other and parallel to the axis is a side
of the cylinder. If the axis is perpendicular to the planes of the two round
figures, then the cylinder is a right cylinder. If this is not the case, then the
cylinder is an oblique cylinder.

<9> He has said: We have previously stated that there are many
different species of cylinder. As there is no single method encompassing all
of them, we wish to mention a number of them that may act as guides in
dealing with the others.

We begin by introducing a treatise concerning the figures obtained
from the plane sections of a cylinder and the problems that are specific to
these sections. This is followed by a treatise on their areas and the
problems that are specific to these areas, including those relating to the
ratios between them and their properties. We then offer a treatise on the
surfaces of spheres obtained from semi-circles and their sections, and
finally a treatise on the volume of these spheres.

We begin with a study of the right circular cylinder, as this is the
simplest19 of all cylinders: a right angle is the simplest of all angles, and a
circle is the simplest of all round figures. From there, shall follow that
which must follow. May the Creator, blessed be He, aid us in this
endeavour.

<10> Treatise on the sections of right cylinders whose bases are two
circles, and the definition applying specifically to this type of cylinder.

The definition applying to this type of cylinder, and to no other, is that
given by Euclid. This is the definition based on fixing the side of a
rectangle that we have mentioned previously. The sections of this type of
cylinder may be divided into three species. If the plane of the section
passes through the axis or is parallel to the axis, then the section is a
rectangle. If the plane of the section is parallel to the bases, then the section
is always a circle. If the plane of the section is not parallel to the bases,
then the section is called an ellipse.20

18 The straight line joining two points ‘at similar positions’ is only an axis if the
two points are the centres of symmetry of the bases.

19 ha yoter yeshara: the straightest. The same adjective is used to qualify the right
angle and the circle.

20 kafuf.



672 CHAPTER VI: IBN AL-SAMÎ

<11> The first species of sections of a right cylinder whose bases are
two circles.

Cutting the cylinder by a plane parallel to the bases gives a section
which can therefore be generated by the movement of a straight line, one
extremity of which is fixed in the plane <of the section>, and which rotates
in the plane until it returns to its original position. The portion of the plane
swept by this straight line is called a circle, and the figure described by the
other extremity is called the circumference. The moving straight line is
called the half-diameter. The fixed point is called the centre of the circle.
All the straight lines starting from this point and ending on the
circumference are equal to each other. This section is necessarily a circle.
Among its properties, we can find that it has an internal point such that all
the straight lines drawn from this point to the periphery of the section are
equal to each other. Also, in the figure generated by the movement of the
straight line, which is the circle, we can also find a point such that all the
straight lines drawn from this point to the periphery are equal to each other.
Thus, if we apply this section on the circle whose half-diameter is equal to
the half-diameter of the said section, then the two will coincide.

<12> We state the following lemmas in relation to the sections that are
circles:

<a> The ratio of any circle to any other is equal to the ratio of the
square of the diameter of the first to the square of the diameter of the
second. This is the square21 of the ratio of the diameter to the diameter.

<b> The ratio of any circle to any other is equal to the ratio of the
polygon inscribed within the first to the polygon inscribed within the
second. This ratio is equal to the square of the ratio of the side of the
polygon to the side of the polygon.

All this has been shown by the proofs of Euclid in the 12th <book> of
his work.

<c> Any circle is equal to the right-angled triangle having one of the
sides enclosing the right angle equal to the circumference, and the second
side enclosing the right angle equal to the half-diameter of the circle.

<d> The ratio of the diameter of any circle to its circumference is the
same as the ratio of the diameter of any other circle to its circumference.22

<e> The ratio of the circumference of a circle to its diameter is less
than three times the diameter plus one seventh of the said diameter added

21 shanuy be-kefel: repeated twice. In Arabic: muthannæ bi-al-takrîr.
22 This property is stated by the Banº Mºsæ: On the Knowledge of the

Measurement of Plane and Spherical Figures, Proposition 5. See Chapter I.
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to it, and greater than three times the diameter and ten seventy-firsts of the
said diameter added to it.23

<f> The ratio of any circle to the square of its diameter is equal to the
ratio of 11 to 14.

<13> All this has been proved by Archimedes.
The following questions relating to the circle have not been mentioned

by Euclid, or by Archimedes, or by anyone else. They are included in the
properties required for the study of the sections of a cylinder.

<Lemma 1> Given any two circles, the diameter of one is divided at
any point other than the centre. A perpendicular is drawn from this point
forming a chord of the circle. The diameter of the other circle is divided in
a similar way. A perpendicular is drawn from the point <of division>
forming a chord of the circle. The ratio of one chord to the other chord is
equal to the ratio of one diameter to the other diameter.
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Fig. VI.1

Example: Consider two circles AB and EZ, having diameters AB and
EZ. Divide AB at a point G, from which a perpendicular GD is drawn and
extended to form the chord DGT of the circle. Now, divide EZ at a point H,
such that the ratio of EH to HZ is equal to the ratio of AG to GB. Draw the
chord KHL through the point H such that it is perpendicular to the diameter
EZ.

I say that the ratio of DT to KL is equal to the ratio of AB to EZ.

23 The formulation by Ibn al-SamÌ is similar to that using in the ninth century by
the Banº Mºsæ (ibid., at the end of the proof of Proposition 6, see Chapter I) and al-
Kindî (R. Rashed, ‘Al-Kindî’s Commentary on Archimedes’ The Measurement of the
Circle’, Arabic Sciences and Philosophy, 3, 1993, pp. 3–53; Arabic: p. 50, 9–11;
English: p. 41).
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Proof: Let us join AD, DB, EK and KZ. The ratio of AB to BG is equal
to the ratio of EZ to ZH, the triangle ADB is a right-angled triangle, and
DG is a perpendicular. The ratio of AG24 to BG is therefore equal to the
ratio of the square of AG to the square of GD, as mentioned by Euclid in
the sixth <book> of his work. Similarly, the ratio of EH25 to ZH is equal to
the ratio of the square of EH to the square of HK. The ratio of the square of
EH to the square of HK is therefore equal to the ratio of the square of AG
to the square of GD. The ratio of AG to GD is therefore equal to the ratio of
EH to HK. <Therefore, the ratio of AG to EH is equal to the ratio of GD to
HK, and the ratio of AG  to EH  is equal to the ratio of GB  to HZ , and
therefore to the ratio of AB to EZ.> Consequently, the ratio of AB to EZ is
equal to the ratio of DG to H K, and DT is equal to twice DG and KL is
equal to twice HK. We have therefore shown that a chord of the <first>
circle, perpendicular to AB, relative to a chord of the <second> circle,
perpendicular to EZ, has the same ratio as one diameter to the other,
provided that these diameters are both divided in the same ratio. That is
what we wanted to prove.

<Lemma 2> Let us consider two circles passing through AB and GD.
Divide GD at K and M, and AB at E and H, such that the ratio of AE to AB
is equal to the ratio of GK to GD, and such that the ratio of BH to AB is
equal to the ratio of DM to GD. Draw the two straight lines EZ and HT at
right angles, and draw the two straight lines LK and NM in the same way.
The ratio of TH to NM will then be equal to the ratio of the diameter of one
to the diameter of the other and, similarly, the ratio of ZE to LK will be
equal to the ratio of the diameter of one to the diameter of the other. Let us
join TE, ZH, NK and LM.
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Fig. VI.2

24
 AB in the MS.

25 EZ in the MS.
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I say that the two triangles ZHE and LMK are similar, and that EHT
and KMN are also similar.

Proof: The ratio of AE to AB is equal to the ratio of KG to GD, and the
ratio of AB to AH is equal to the ratio of GD to GM. Then, considering the
ex-aequali ratios,26 the ratio of AE to AH will be equal to the ratio of GK to
GM. If we separate,27 the ratio of AE to EH will be equal to the ratio of GK
to KM. If we permute,28 the ratio of AE to GK will be equal to the ratio of
EH to KM. But the ratio of AE to GK is equal to the ratio of one diameter
to the other diameter, and therefore the ratio of EH to KM is equal to the
ratio of one diameter to the other diameter, and the ratio of one diameter to
the other diameter is equal to the ratio of HT to MN. The ratio of EH to KM
is consequently equal to the ratio of HT to MN as the angles H and M are
equal. The two triangles are therefore similar. The two triangles EHZ and
KML may be shown to be similar in the same way. That is what we wanted
to prove.

<Lemma 3> Let us consider two circles passing through AB and KL.
Let us mark a point G at any position <on AB>. Let us draw a straight line
from this point to AB, and let this be the straight line HG. Let us divide the
diameter KL <in the same ratio> at the point N. Let us draw a line from this
point to the circle, <namely the straight line N O>, enclosing with the
straight line NL an angle equal to the angle HGB.
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Fig. VI.3

26 ba-yaÌas ha-shiwwuy: by the equality ratio; in Arabic: fî nisbat al-musæwæ. This
is a translation of the Greek expression di’isou logos (Elements, V, Definition 17), and
indicates a consideration of the ratio of the extreme terms in each of the two sequences
of magnitudes.

27
 ka-asher hivdalnu. The verb used refers to the Euclidian expression ‘separation

of the ratio’ (V, Definition 15): hevdel ha-yaÌas; in Arabic: tafÒîl al-nisba.
28 ka-asher hamironu. The verb refers to temurat ha-yaÌas: The permutation of the

ratio (V, Definition 12); in Arabic: tabdîl (or ibdæl) al-nisba.
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I say that the ratio of HG to ON is equal to the ratio of one diameter to
the other diameter.

Proof: From the point O let us draw a perpendicular onto KL. If the
angle ONL is acute, this will be the straight line OM. Similarly, from the
point H let us draw a perpendicular HD onto AB. I say that the ratio of AD
to DB is equal to the ratio of KM to ML. Proof: If this were not the case,
<there would be a point E, other than D on AB such that> the ratio of KM
to ML would be equal to the ratio of A E to E B. Let us draw the
perpendicular ET and join TG. As we have shown earlier, the triangle TGE
is similar to the triangle ONM and the angle TGE is therefore equal to the
angle N. We have assumed that the angle N is equal to the angle HGB.
Therefore, the angle HGB would be equal to the angle TGB – i.e. the
smallest would be equal to the largest. This is impossible. It is then
impossible that the ratio of AD to DB is not equal to the ratio of KM to ML.

From what has been proved in the first proposition, we can deduce that
the ratio of HD to OM is equal to the ratio of one diameter to the other
diameter. Also, the ratio of HD to OM is equal to the ratio of HG to ON, as
the two triangles are similar. The ratio of HG to ON is therefore equal to
the ratio of one diameter to the other diameter, and the same applies to the
ratio of <any pair of> straight lines situated in a similar way.29 That is what
we wanted to prove.

The second species of sections of a right cylinder whose bases are two
circles.

When a right cylinder with bases consisting of two circles is cut by a
plane which is not parallel to its base, the resulting section is that generated
by fixing one side of a triangle and rotating the two remaining sides in the
plane of the triangle <such that their sum remains constant> until it returns
to its original position.

We shall provide proof of this in the following <paragraphs>, when we
indicate among those properties of the figure generated by the movement
of the triangle the one that is characteristic, and among those properties of
the oblique section of the cylinder the one that is characteristic, and <shall
verify> that the latter accords well with the indications that we have given
regarding the figure generated by the movement of the triangle. We
proceed here in the same way as we did with the section of the cylinder
parallel to its base, when we showed a property that accorded with the
property of a circle, i.e. we found a point such that all straight lines drawn
from this point to the circumference are equal.

29 ‘al zeh ha-Ìiqquy.
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Let us, then, introduce all the necessary lemmas relating to the figure
obtained by the movement of the triangle.

We say that the figure obtained by the movement of the triangle is
called the elongated circular30 figure, a name derived from its shape. It has
a circular contour which is elongated. Neither the circularity, nor the
extension in length characterise it uniquely. This name is required by the
act of generating the figure, as the process used to construct it combines
both a circular movement and a rectilinear movement, this being the
extension in length.

The movement of the <common> extremity of the two sides which turn
generates that which is called the contour of the elongated circular figure.
The fixed side of the triangle is called the central side,31 and the other two
sides, those which rotate, are called the movable sides.32 The triangle itself
is called the triangle of movement.

From our description of the construction, it follows that the two
movable sides will coincide with the central side during their rotational
movement, forming a single straight line. The rectilinear and circular
extension is then at a maximum, as is the amount by which one exceeds the
other, the difference between them being equal to the total <length> of the
central side. It is also clear that, as they rotate, one becomes larger as the
other becomes smaller. The one that rotates towards its starting end
becomes smaller, while that which rotates away from its starting end
becomes larger with its increased length being taken from the other side.
As one becomes larger and the other smaller, it follows that they will be
equal at certain positions. This equality only occurs at two positions, either
side of the central side.33 In this case, they are called the equal movable
sides. The perpendicular <onto the central side> from their <common>
extremity then cuts the central side into two halves. This point constitutes
the centre of the figure. It is the centre of two circles. One of these passes
through the <other> extremity of the said perpendicular, which forms its
half-diameter, and this circle is tangent to the figure. In the case of the
other circle, the end of its diameter is located at the point where the two
sides of the triangle coincide making a single straight line. At this point,
the distance of each end from the centre is at its greatest. It also appears
that this diameter is equal to <the sum of> the two movable sides, as it can

30 temunat me‘uggal ’arokh. The expression is a perfect translation of that of the
Banº Mºsæ: al-shakl al-mudawwar al-musta†îl. See the mathematical commentary.

31 Òela‘ ha-merkaz: the side of the centre.
32 Òal‘ey ha-sibbuv: the sides of the rotation.
33 mi-shtey ha-pe’ot: in each of the two directions. In Arabic: fî kiltæ al-jihatayn.
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be built up by bringing them together, considering the excess at each end
relative to the central side with each of these ends exchanged with the
other. This larger circle described on the curve is also tangent to it; they
have in common the greatest diameter. The large circle is said to be
circumscribed, and the small circle inscribed.

All the straight lines passing through the centre and cutting the curved
figure are divided into two halves at the centre. These are called the
diameters.34 The greatest of these is the diameter that is common to <both
the figure and> the circumscribed circle. The smallest of these is the
diameter that is common to <both the figure and> the inscribed circle.

Any straight line cutting the curve without passing through the centre
is called a chord.35 Those chords which are cut into two halves by one or
other of the two diameters, the greatest or the smallest, do so at right
angles. And if <one of these two diameters> cuts a chord at a right angle,
then it cuts it into two halves.

The straight line drawn at a right angle from one extremity of the
central straight line,36 and crossing the large circle, is called the invariant
<straight line>.37 The portion of this straight line falling within the
elongated circular figure is called the separated <straight line>.38

<Proposition 1> In any elongated circular figure, four times the square
of the invariant straight line plus the square of the central straight line is
equal to the square of the large diameter.
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Fig. VI.4

34 qo†er; in Arabic: qu†r.
35 meytar; in Arabic: watar.
36 which we call a ‘focus’ of the ellipse.
37 <ha-qaw> ha-shaweh: the equal straight line. In Arabic, almost certainly: al-

kha†† al-musæwî.
38 <ha-qaw> ha-nivdal. In Arabic, almost certainly: al-kha†† al-munfaÒil.
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Example: Consider the elongated circular figure passing through AB.
The central straight line is EZ, the circumscribed circle passes through HB,
and the invariant straight line is ZH.

I say that four times the square of ZH plus the square of EZ is equal to
the square of AB.

Proof: <On ZE>, mark ZT equal to AE. Then, AT is equal to EZ and TZ
is equal to ZB. The product of BZ and ZA, taken four times, plus the square
of AT is equal to the square of AB. The product of ZB and ZA, taken four
times, is equal to four times the square of ZH. Four times the square of ZH,
which is the invariant straight line, plus the square of AT, which is equal to
the square of the central straight line, is therefore equal to the square of AB,
which is the large diameter. That is what we wanted to prove.

<Proposition 2> In any elongated circular figure, the invariant straight
line is equal to the half-small diameter, and the ratio of the separated
straight line to the straight line forming proportion with the half-small
diameter and the half-central straight line is equal to the ratio of the half-
central straight line to the half-large diameter.

Example: Let the elongated circular figure be ABGD, of which the
circumscribed circle is ATD, the central straight line is EZ, the invariant
straight line is ZT, the separated straight line is ZK, the midpoint of the
central straight line is the point H, the small diameter is BHG, and the ratio
of ZH to HB is equal to the ratio of BH to HL,39 such that the straight line
HL forms proportion <with BH and ZH>.

I say that T Z is equal to HB, and that the ratio of the separated
straight line ZK to HL is equal to the ratio of HZ to HD.

Proof: Let us join TH and BZ. Yet TH is half of the large diameter.
These straight lines are therefore equal. It follows that <the sum of> the
squares of BH and of HZ is equal to the <sum of the> squares of TZ and of
ZH. Subtracting the square of ZH , which is common to both sides, it
follows that the square of TZ is equal to the square of BH. In other words,
BH is equal to TZ.

39 The point L introduced in the statement only appears thereafter in the final
paragraph of the proof.

It is stated that HL = b2

c
 and proved that KZ = b2

a
; hence KZ HL

c

a
= ⋅ .

The position of L depends on the data:
If b < c, then L is between H and B.
If b = c, then L is at B.
If b > c, then L lies beyond B.
The straight line HL is in fact the third in the relationship ZH/HB = HB/HL.
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Let us join EK. As EK plus KZ is equal to AD, the square of EK plus
the square of KZ plus the double product of EK and KZ is equal to the
product of AD by itself. Yet the product of EK by itself is equal to the
product of EZ by itself plus the product of ZK by itself. Therefore the
double product of EK and KZ plus twice the square of KZ plus the square
of EZ is equal to the square of AD.

But the square of AD is equal to the quadruple square of ZT, which
straight line is equal to BH , plus the square of E Z.40 Therefore, the
quadruple square of ZT plus the square of EZ is equal to the square of EZ
plus the double square of ZK plus the double product of EK  and KZ.
Subtracting the square of EZ, which is common to both sides, it follows
that the quadruple square of ZT is equal to the double product of EK and
KZ plus the double square of KZ. The double square of TZ is therefore
equal to one time the product of EK and KZ plus one time the square of KZ.

But the product of EK and KZ plus the square of KZ is equal to the
product of EK and KZ together and KZ, and EK and KZ together is equal to
AD. Consequently, the product of AD and ZK, the separated straight line, is
equal to the double square of TZ, the invariant straight line.

As TZ is equal to BH, BG will be equal to twice TZ. It follows that the
product of TZ and BG is equal to the double square of TZ. If this is so, then
the product of KZ and AD is equal to the product of TZ and BG. In other
words, the ratio of KZ to ZT is equal to the ratio of BG to AD. But ZT is
equal to HB. Therefore, the ratio of ZK to HB is equal to the ratio of BG to
AD, and also equal to the ratio of the half to the half, i.e. the ratio of BH to
HD.

As the ratio of ZK to HB is equal to the ratio of BH to HD, and the ratio
of BH to HL is equal to the ratio of ZH to BH, we have three magnitudes,

40 See Proposition 1.
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namely KZ, BH and HL, and an equal number of other magnitudes, namely
HZ, BH and HD, where magnitudes taken in pairs from the first three are in
the same ratio as magnitudes taken in pairs from the second three, in a
perturbed order.41 Therefore, considering the ex-aequali ratios, the ratio of
KZ, which is the separated straight line, to HL, which is the proportion
forming straight line, is equal to the ratio of ZH, which is half the central
straight line, to HD, which is half the large diameter.

We have therefore shown that the invariant straight line is equal to half
of the small diameter, and that the ratio of the separated straight line to the
invariant straight line is equal to the ratio of the small diameter to the large
diameter, and that the ratio of the separated straight line to the proportion
forming straight line is equal to the ratio of the half-central straight line to
the half-large diameter. That is what we wanted to prove.

<Proposition 3> In any elongated circular figure, if the two movable
sides meet at any point other than the extremity of the small diameter, then
the ratio of the largest movable side <to the straight line obtained by
producing the largest of the straight lines cut from the central straight line
by the foot of the perpendicular dropped from the point at which the two
sides meet as far as> the proportion forming a straight line with the half-
small diameter and the half-central straight line is equal to the ratio of the
half-central straight line to the half-large diameter.

Example: Let ABGD be the elongated circular figure, AB the large
diameter, GD the small diameter, EZ the central straight line, EH and HZ
the movable sides, and E L and ZK the separated straight lines. A
perpendicular HT is dropped from the point H <onto the large diameter>.
Let the ratio of TN to GM be equal to the ratio of GM to ME. TN42 is then
the proportion forming the straight line.

41 yitÌallef ha-yaÌas <ba-shi‘urim> ba-qedima we-’iÌur. In Arabic: ikhtalafat al-
nisba fî al-aqdær bi-al-taqdîm wa-al-ta’khîr. This expression refers to the use of ‘the
perturbed proportion’ (Elements, V, Definition 18): Two consecutive terms in the
second sequence of magnitudes are in the same ratio as two consecutive terms in the
first sequence, with the order of the terms in the second sequence being always offset
relative to the order in the first sequence.

42 The point N introduced in the statement is defined by TN = GM2

ME
= b2

c
. The length

TN is equal to the length HL in the previous proposition. The length of TN does not
depend on the point H chosen. The position of N is associated with the projection T of
the point H on AB. The point N may be between M and B, at B, or beyond B.

The result obtained remains valid if the point H coincides with one of the vertices.
In this case as well, the straight line TN is obtained from the relationship TN/GM =

GM/ME, where M is the centre of the ellipse.
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I say that the ratio of EH to EN is equal to the ratio of EM to MA.
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Proof: The point H, at which the two movable sides meet, must lie
either between the two points G and K, either on the point K, or between
the two points K and B.

To begin, let this point lie between the points G and K. The angle H is
then either a right angle, an obtuse angle, or an acute angle.

To begin, let this angle be a right angle.
<The product of> EH by itself plus the product of HZ by itself plus

twice the product of EH  and HZ  is equal to the square of AB. Yet the
product of EH by itself plus the product of HZ by itself is equal to the
square of EZ, as the angle H is a right angle. Therefore, the double product
of HE and HZ plus the square of EZ is equal to the square of EZ plus the
quadruple square of the invariant straight line.43 Subtracting the square of
EZ, which is common to both sides, the double product of EH and HZ is
equal to the quadruple square of the invariant straight line. One time the
product of EH  and HZ  is therefore equal to the double square of the
invariant straight line.

The product of LE, the separated straight line, and AB is the double
square of the invariant straight line.44 The product of EL and AB is there-
fore equal to the product of EH and HZ. In other words, the ratio of LE,
which is equal to the straight line KZ, to EH is equal to the ratio of HZ to
AB, which is equal to EH and HZ taken together.

Separating, inverting and composing,45 the ratio of CH, <where C is a
point on EH, such that EC is equal to EL>, to EH is equal to the ratio of
EH  to EH  and HZ taken together. The product of CH and EH  and HZ

43 See Proposition 1.
44 See Proposition 2.
45 ka-asher hivdalnu, Ìillafnu, hirkavnu: when we have separated, inverted,

composed. In Arabic, these operations on ratios are designated as tafÒîl, ‘aks, tarkîb al-
nisba.
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together is therefore equal to the product of EH by itself. But the product of
EH by itself is equal to the product of ZE and ET, as the ratio of ZE to EH
is equal to the ratio of EH to ET.

If this is the case, then the product of CH and AB, which is equal to EH
and HZ together, is equal to the product of ZE and ET. In other words, the
ratio of CH to ET is equal to the ratio of EZ to AB. But the ratio of EZ to
AB is equal to the ratio of EM to MA. The ratio of CH to ET is therefore
equal to the ratio of EM to MA. We have shown earlier that the ratio of EM
to MA is equal to the ratio of E L, the separated straight line, to TN the
proportion forming straight line. It follows that the ratio of CH to E T is
equal to the ratio of EL to TN.

Composing, the ratio of EH to EN is then equal to the ratio of CH to
ET,46 which itself is equal to the ratio of EM to MA. Consequently, the ratio
of EH to EN is equal to the ratio of EM to MA. That is what we wanted to
prove.

Now let the angle EHZ be obtuse.
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Let us draw the perpendicular ZO <onto the extended straight line
EH>. The quadruple square of the invariant straight line plus the square of
EZ is equal to the square of AB.47 The square of AB is equal to the square
of EH  plus the square of HZ  plus twice the product of EH  and HZ.
Therefore, the quadruple square of the invariant straight line plus the
square of EH plus the square of HZ plus twice the product of EH and HO is
equal to the square of EH plus the square of HZ plus twice the product of
EH and HZ.

46 This is not, in fact, a composition of the ratios, but an application of Proposition
V, 12: If a/b = c/d, then ab = (a+c)/(b+d), antecedent with antecedent, consequent with
consequent. We know that this particular operation on ratios does not have a specific
designation in the Elements. Moreover, the author uses later a different term: he ‘brings
together’ (= adds) the ratios.

47 See Proposition 1.
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Subtracting the squares of E H  and HZ , which are common, the
quadruple square of the invariant straight line plus twice the product of EH
and HO is equal to twice the product of EH and HZ. In other words, the
product of EH and HZ is equal to twice the square of the invariant straight
line plus the product of EH and HO.

Now, let us make HO equal to HP, <where P is a point on HZ>. The
product of EH and HZ is then equal to twice the square of the invariant
straight line plus the product of EH and HP. Yet the product of EH and HZ
is equal to the product of EH, HP and PZ. The product of EH, HP and PZ
is accordingly equal to twice the square of the invariant straight line plus
the product of EH and HP. Subtracting the product of EH and HP, which is
common to both sides, the product of EH and PZ becomes equal to twice
the square of the invariant straight line.

We have already shown that the product of EL and AB is equal to twice
the square of the invariant straight line. The product of EL and AB is
therefore equal to the product of EH and PZ; hence the ratio of EL to EH is
equal to the ratio of PZ to <the sum of> ZH and HE.

Separating, inverting and composing, the ratio of CH to EH becomes
equal to the ratio of <the sum of> EH and HP, the latter straight line being
equal to HO, to <the sum of> EH and HZ. The product of CH and EH plus
HZ is consequently equal to the product of OE and EH.

As the triangle HET is similar to the triangle EOZ, with both the angles
O and T being right angles and the angle E  being common to both
triangles, the ratio of OE to ET is equal to the ratio of ZE to EH. For this
reason, the product of OE and EH is equal to the product of ZE and ET.
Under these conditions, the product of CH and AB is equal to the product
of ZE and ET, and the ratio of CH to ET is equal to the ratio of EZ to AB,
which is equal to the ratio of EM to AM <, the respective halves>.

We have already shown that the ratio of LE to TN, the proportion
forming the straight line, is equal to the ratio of EM to AM. If we proceed
by composition,48 as before, the ratio of EH to EN becomes equal to the
ratio of EM to AM. That is what we wanted to prove.

Now let the angle EHZ be acute.
Draw the perpendicular ZO <onto the straight line EH>. The quadruple

square of the invariant straight line plus the square of EZ is equal to the
square of AB, i.e. equal to the square of EH plus the square of HZ plus
twice the product of EH and HZ. In other words, the product of each of the
straight lines EH and HZ by itself plus twice the product of EH and HZ is

48
 See Note 46.
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equal to the quadruple square of the invariant straight line plus the square
of EZ.

N B Z T M E A

D

G

K
H

O

C

L

Fig. VI.8

Let us add twice the product of EH and HO. Then, twice the product of
EH and HO plus twice the product of EH and HZ plus the square of EH
plus the square of HZ is equal to the quadruple square of the invariant
straight line plus the square of EZ plus twice the product of EH and HO.
Now, the square of EZ plus twice the product of EH and HO is equal to
<the sum of> the squares of EH  and of EZ, as the angle H is acute.
Therefore, twice the product of EH and HZ plus twice the product of EH
and HO plus the square of EH  plus the square of HZ  is equal to the
quadruple square of the invariant straight line plus the squares of EH and
HZ.

Subtracting the squares of EH  and HZ, which are common to both
sides, twice the product of EH and HZ plus twice the product of EH and
HO becomes equal to the quadruple square of the invariant straight line. In
other words, twice the square of the invariant straight line is equal to the
product of EH and HZ plus the product of EH and HO.

We have already shown that the product of EL and AB is equal to twice
the square of the invariant straight line. Consequently, the product of EH
and HZ plus the product of EH and HO is equal to the product of EL and
<the sum of> EH and HZ. The ratio of EL to EH is therefore equal to the
ratio of <the sum of> HZ and HO to <the sum of> EH and HZ.

Separating, inverting and composing, the ratio of CH to EH will be
equal to the ratio of OE to <the sum of> EH and HZ. The product of CH
and <the sum of> EH and HZ is therefore equal to the product of EH and
EO.

Now, the product of EH and EO is equal to the product of EZ and ET,
as the two triangles EHT and EOZ are similar. Consequently, the product
of CH and <the sum of> EH and HZ is equal to the product of EZ and ET.
Therefore, the ratio of CH to ET is equal to the ratio of EZ to EH and HZ
together, which together are equal to AB, and also equal to the ratio of the
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half to the half. Therefore, the ratio of CH to ET is equal to the ratio of EM
to MA.

We have already shown that the ratio of LE to TN is equal to the ratio
of ME to MA. Bringing together <the ratios>,49 the ratio of EH to EN will
be equal to the ratio of ME to MA. That is what we wanted to prove.

If the two movable sides meet at the point K, then the perpendicular
drawn <onto the large diameter> from K is K Z, as the angle Z is a right
angle. The angle K is therefore acute. As the angle Z is a right angle, then
the angle E is also acute. If a perpendicular <to the straight line EK> is
drawn from the point Z , it will fall on the straight line EK. This
perpendicular is ZO.
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We show, as was done in the previous case, that the product of CK and
<the sum of> EZ and KZ is equal to the product of KE and EO. Yet the
product of KE and EO is equal to the product of EZ by itself, as the two
triangles EOZ and EKZ are similar. The angle KZE is a right angle, as is
the angle EOZ, and the angle E is common to both. Consequently, the
product of CK and EK and KZ together is equal to the product of EZ by
itself. Therefore, the ratio of CK to EZ is equal to the ratio of EZ to AB, and
also equal to the ratio of the half-central straight line to the half-large
diameter.

But the ratio of EL to ZN is equal to the ratio of the half-central straight
line to the half-large diameter.50 Composing <the ratios>, the ratio of KE to
EN will be equal to the ratio of EZ to AB, which is also the ratio of the half
to the half. That is what we wanted to prove.

We have shown that if the two movable sides meet at the extremity of
the separated straight line, then the central straight line relative to the large
diameter is in the same ratio as the large diameter, less the separated

49 ka-asher qibbaÒnu. In Arabic, almost certainly: fa-idhæ jama‘næ.
50 See Proposition 2.
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straight line relative to the central straight line, plus the proportion forming
straight line.

If the two movable sides meet between the two points K and B, let us
consider the two straight lines EH and HZ, the perpendicular HT drawn
<onto the large diameter> from the point H, and the proportion forming the
straight line TN. In this case too, the ratio of EH to EN will be equal to the
ratio of the half-central straight line to the half-large diameter. The proof is
the same as that given previously in the third case. As the angle HZE is
obtuse, the angle H is acute and the angle E is also acute. Consequently,
the perpendicular drawn <onto EH> from Z, ZO, falls on the straight line
HE.
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In the same way, we can show that the product of CH and <the sum
of> EH and HZ is equal to the product of EH and EO. The product of EH
and EO is equal to the product of EZ and ET, as the triangle EOZ is similar
to the triangle EHT. The product of CH and the sum of EH  and HZ  is
therefore equal to the product of EZ and ET, and the ratio of CH to ET is
equal to the ratio of EZ to the sum of EH and HZ, which sum is equal to the
large diameter, this latter ratio being equal to the ratio of EM to MA, <the
halves>. But the ratio of EM to MA is equal to the ratio of EL to TN.

Bringing <the ratios> together, the ratio of EH to EN is thus equal to
the ratio of EM to MA. That is what we wanted to prove.

We have now completed our examination of this question in all its
parts, as nothing remains beyond that which has been mentioned*. Praise
be to God; may He be blessed, exalted and glorified.

* Gad Freudenthal, in his revision of the Hebrew text has proposed that this should
read ki lo hishlimuha bney shakir: ‘as the sons of Shækir did not complete it’, in place of
ki [lo] ha-shlemut ke-fi she-zakhar: ‘as nothing remains beyond that which has been
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<Proposition 4> In any elongated circular figure, if the two movable
sides meet at any point other than the extremity of the small diameter, and
if a chord of the circumscribed circle passing through the point at which
the two movable sides meet falls at a right angle on the large diameter, then
the square of half the chord plus the amount by which the half-small
diameter exceeds the distance along the chord between the point at which
the two movable sides meet and the foot of the chord on the large diameter
is equal to the product of one of the two movable sides and the other.

Example: Let the elongated circular figure be ABGD, and let the
circumscribed circle pass through ANB. Let the two movable sides be EH
and HZ, the central straight line be EZ, the separated straight line be ZK,
and the invariant straight line be EL. From the point H, draw a
perpendicular onto AB, that is HT. Extend it in the circle until the two
points N and P.

I say that the square of NT plus the amount by which the square of GM
exceeds the square of HT is equal to the product of EH and HZ.
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Proof: The point H, at which the two movable sides meet, must lie
either between the two points G and K, exactly on the point K, or between
the two points K and B.

To begin, let this point lie between the points G and K. The angle H
may be a right angle, an obtuse angle, or an acute angle.

To begin, let this angle be a right angle.
Extend EH  to the points S  and Q , so as to form a chord of the

circumscribed circle. As shown in the first part of the preceding question, it
can be proved that the product of EH and HZ is equal to twice the square of
the invariant straight line, EL.
                                          
mentioned’, translated in the text. This confirms the result obtained by the analysis of
the text contents given in the mathematical commentary. [Note added later]
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But the product of the invariant straight line EL by itself is equal to the
product of AE and EB, which is equal to the product of SE and EQ.

Now, ES is equal to HQ. If the perpendicular MC <to EH> is drawn
from the point M, it will be parallel to ZH because the angle C is a right
angle as is the angle H. Therefore, the ratio of EC to CH is equal to the
ratio of EM to MZ. Now, EM is equal to MZ, therefore EC is equal to CH,
and also CS is equal to CQ. Subtracting EC and CH, it follows that SE is
truly equal to HQ.

The product of HQ and HS is thus equal to the product of SE and EQ,
and the product of SE and EQ is equal to the square of the invariant straight
line.51 The product of HQ and HS is therefore equal to the square of the
invariant straight line. But the product of HQ and HS is equal to the
product of NH and HP. Consequently, the product of NH and HP is equal
to the square of the invariant straight line.

We have shown that the product of EH and HZ is equal to twice the
square of the invariant straight line. In other words, the product of EH and
HZ is equal to the square of the invariant straight line plus the product of
NH and HP. But the square of the invariant straight line is the square of HT
plus the amount by which the square of the invariant straight line exceeds
the square of HT. Under these conditions, the product of NH and HP plus
the square of HT plus the amount by which the square of the invariant
straight line, which is equal to GM, exceeds <the square of HT> is equal to
the product of EH and HZ. Yet, the product of NH and HP plus the square
of HT is equal to the square of NT. The square of NT plus the amount by
which the square of GM exceeds the square of HT is thus equal to the
product of EH and HZ. That is what we wanted to prove.

Now let the angle H be obtuse.
The perpendicular onto the straight line EH  from the point Z falls

outside the point H. ZO is this perpendicular. As shown in the second part
of the preceding proposition, it can be proved that the product of EH and
HZ is equal to twice the square of the invariant straight line EL plus one
time the product of EH and HO.

51 E being the midpoint of the chord produced by extending LE.
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As in the preceding section, we can show that the product of EH and
HZ is equal to the square of the invariant straight line plus the product of
QO and OS plus the product of OH and HE. But the product of QO and OS
plus the product of OH and HE is equal to the product of QH and HS. The
product of QH and HS plus the square of the invariant straight line is then
equal to the product of EH and HZ.

Now, the product of QH and HS is equal to the product of NH and HP.
The product of NH and HP plus the square of the invariant straight line is
thus equal to the product of EH and HZ. But the product of NH and HP
plus the square of HT is equal to the square of NT. Therefore, the square of
NT plus the amount by which the square of MG exceeds the square of HT
is truly equal to the product of EH and HZ. That is what we wanted to
prove.

Now let the angle H be acute.
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As the angle EZH is acute, and less than the angle KZE <which is a
right angle>, and the side EH is greater than the side HZ, then the angle E
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is acute. The perpendicular drawn onto the straight line EH from the point
Z therefore falls on the straight line EH inside the triangle <EHZ>. ZO is
this perpendicular.

As shown in the third part of the preceding question, it can be proved
that one time the product of HE and HZ plus one time the product of EH
and HO is equal to twice the square of the invariant straight line.

We can also show, as was done in the first part of this proposition, that
the product of QO and OS is equal to the square of the invariant straight
line, as OQ is equal to ES. The product of QO and OS plus the square of
the invariant straight line is then equal to the product of EH and HZ plus
the product of EH and HO. But the product of QO and OS is equal to the
product of QH and H S plus the product of OH and HE. Therefore, the
product of QH and HS plus the product of OH and HE plus the square of
the invariant straight line is equal to the product of EH and HZ plus the
product of OH and HE. Subtracting the product of OH and EH, which is
common to both sides, it follows that the product of QH <and HS plus the
square of the invariant straight line is equal to the product of EH and HZ>.

The proof is completed in the same way as in the two previous parts;
the square of NT plus the amount by which the square of MG exceeds the
square of HT is equal to the product of EH and HZ. That is what we wanted
to prove.

If the movable sides meet at the point K, or at any point between the
two points K and B, then the angle <ZHE> of the movable triangle is acute,
and the perpendicular falls inside the triangle.52 We then proceed as in the
third part of this proposition. With the help of the Creator.

<Proposition 5> If a perpendicular is drawn from any point marked on
the outline of any elongated circular figure onto the small diameter, then
the square of this perpendicular is equal to the square of the part of this
perpendicular that is contained within the inscribed circle plus the square
of the amount by which the half-large diameter exceeds the smallest of the
movable sides beginning at the point that was selected.

Example: Consider the elongated circular figure passing through
ABGD. The inscribed circle is BDT. Draw a perpendicular from the point K
on the small diameter and extend it until it reaches the elongated curve at
the point H, cutting the circle at the point T. EZ is the central straight line.
Join EH and HZ, which are the movable sides. Let the amount by which
AM exceeds HZ be HN.

52
 See the mathematical commentary, Section 6.2.5, Proposition 4, for the case

where H is at the vertex of the ellipse.
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I say that the square of KH is equal to the sum of the square of KT and
the square of HN.
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Proof: Let us draw the circumscribed circle ACG. From the point H,
we draw the perpendicular HL onto the diameter AZ. We extend this to C,
and join MC.

By virtue of that which we have already proved,53 the square of CL
plus the amount by which the square of BM exceeds the square of KM,
which is the square of HL, is equal to the product of EH and HZ. Now, the
amount by which the square of BM exceeds the square of KM is equal to
the square of KT; in fact, the product of DK and KB plus the square of KM
is equal to the square of BM. Therefore, the amount by which the square of
BM exceeds the square of KM is equal to the product of DK and KB. But
the product of DK and KB is equal to the square of KT, and it follows that
the square of KT is truly equal to the amount by which the square of BM
exceeds the square of KM.

The square of CL plus the square of KT is equal to the product of EH
and HZ. Adding the square of HN, the square of CL plus the square of KT
plus the square of HN is equal to the product of EH and HZ plus the square
of HN. But the product of EH and HZ plus the square of HN is equal to the
square of ZN,54 which is equal to half of the large diameter, as ZN is half of
the large diameter. Consequently, the sum of the square of CL, the square
of KT, and the square of NH, is equal to the square of CM, which is half the

53 See Proposition 4.
54 From the hypothesis HN = AM – HZ, we can derive ZN = HZ + HN = AM. We

also have HE + HZ = 2AM; hence
 HE · HZ + HZ2 = 2AM · HZ and HZ2 – 2AM · HZ + AM2 + EH · HZ = AM2,

i.e. (HZ – AM)2 + EH · HZ = AM2 and therefore HN2 + EH · HZ = ZN2.
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large diameter. But the square of CM is equal to <the sum of> the squares
of CL and LM.

As this is so, <the sum of> the two squares of CL and LM is equal to
the square of CL plus the square of KT plus the square of NH. Subtracting
the square of CL, which is common to both sides, it follows that the square
of LM is equal to the square of KT plus the square of NH. But the square of
LM is equal to the square of KH. The square of KH is thus equal to <the
sum of> two squares, that of KT and that of HN. That is what we wanted to
prove.

<Proposition 6> If a perpendicular is drawn from any point marked on
the outline of any elongated circular figure onto the small diameter, then
the ratio of this perpendicular to its portion that is contained within the
inscribed circle is equal to the ratio of the large diameter to the small
diameter.

Example: Let ABGD be the figure, and let the inscribed circle be GHD.
A point E is chosen at any point on the outline of the elongated circular
figure, and a perpendicular EHZ is drawn from it <onto the small
diameter>.

I say that the ratio of EZ to HZ  is equal to the ratio of the large
diameter to the small diameter, that is equal to the ratio of the half-large
diameter to the half-small diameter.
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Proof: TN is the central straight line and O is the centre of the circle.
Let us join TG . It has been shown that TG  is equal to half the large
diameter. We extend it to K, such that KT is equal to TE. It is clear that GK
is equal to the amount by which AO  exceeds EN.55 Let us draw the

55 ET + EN = 2AO and it is stated that KT = TE. Hence KT = 2AO – EN. But KT =
TG + GK and TG = AO; therefore GK = AO – EN.
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perpendicular EL <onto AB>. Set <the point M on AB such that> the ratio
of ML to OG is equal to the ratio of OG to OT. ML then forms proportion
<with OG and OT>. Extend LE in a straight line as far as C, and join CG.

From that which has previously been proved, we can show that the
ratio of KT, which is equal to ET, to TM is equal to the ratio of TO, which
is half of the central straight line, to TG, which is equal to half of the large
diameter.

These straight lines include the same angle. The triangle GTO is
therefore similar to the triangle TKM. Consequently, the angle K is equal to
the angle O. Now, the angle O is a right angle; the angle K is then a right
angle. There remains the angle TGO, which is equal to the angle <of the
vertex> M. The angle L is a right angle, the same as the angle O . The
triangle CML is therefore similar to the triangle GTO. The ratio of TO to
OG is thus equal to the ratio of CL to L M. But the ratio of TO to OG is
equal to the ratio of GO to LM. Therefore, the ratio of GO to LM is equal to
the ratio of CL to LM. Consequently, OG is equal to CL, and is parallel to
it. The straight line GC is therefore equal to the straight line OL and is
parallel to it. In addition, OL is equal to ZE, and therefore GC is equal to
ZE. It has also been proven that the square of ZE is equal to <the sum of>
the squares of ZH and GK.56 But the square of GC is equal to <the sum of>
the squares of GK and KC as the angle K is a right angle. Therefore, the
<sum of the two> squares of GK and KC is equal to <the sum of> the two
squares of GK and ZH. Let us remove the square of GK, which is common
to both sides; the square of KC will be equal to the square of ZH. Yet, GC
is parallel to OL and the angle KGC is equal to the angle T. Moreover, the
angle O is a right angle, as is the angle K. The triangle KGC is therefore
similar to the triangle GOT. Hence, the ratio of GC to KC is equal to the
ratio of TG to GO; yet, KC is equal to ZH, ZE is equal to GC, and GT is
equal to AO. Consequently, the ratio of EZ to ZH is equal to the ratio of AO
to OG. That is what we wanted to prove.

<The ellipse as a plane section of a cylinder>

In this introduction, we have established all that is necessary in relation
to the curve obtained by the movement of a triangle. We shall now proceed
to all that is necessary in relation to the section of a cylinder.

If a right cylinder is cut <by a plane> not parallel to its base, the point
at which this <sectioning> plane meets the axis of the cylinder is called the

56 See Proposition 5.
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centre of the figure, and the straight lines cutting the ellipse and passing
through its centre are the diameters.

If the cylinder is cut by a plane parallel to its base and passing through
the centre of the figure <obtained above>, the section will be a circle, and
this circle will be inscribed within the ellipse. If the ellipse is rotated about
the common straight line, that which is in the plane of the circle, then the
circle will lie within the ellipse, and the straight line that is common to
both sections is a diameter of the ellipse, the smallest of all the diameters.
The diameter that crosses it a right angle is the largest of all the diameters.
The diameters closest to the small diameter are smaller that those further
away, closer to the large diameter.

The circle inscribed within the ellipse, and whose diameter is equal to
the small diameter, is equal to the base circle of the cylinder of which the
ellipse is a section. The base of the cylinder is the same as the section
passing through the centre of the ellipse parallel to the said base. And the
circle cutting the cylinder <and passing> through the centre of the ellipse
will be inscribed within the ellipse as it has the smallest diameter in
common with the latter.

<Proposition 7> Consider an ellipse and its inscribed circle. From a
point on the small diameter that is not the centre, draw a straight line
parallel to the large diameter until it reaches the outline of the ellipse. Then
the ratio of this straight line that is contained within the ellipse to its
portion that is contained within the circle is equal to the ratio of the large
diameter to the small diameter.

Example: Let the ellipse be ABGD and let the inscribed circle be GEZ.
The point N is the centre of the circle and the centre of the ellipse. AENZB
is the large diameter and DNG is the small diameter, which is the same as
the diameter of the circle. Mark anywhere on DG a point H. From this
point, draw a straight line HKT parallel to the straight line AB. This line
will then be perpendicular to the diameter GD.

I say that the ratio of HT to HK is equal to the ratio of AB to GD.
Proof: Let us imagine a cylinder on the circle GEDZ and imagine that

the straight line DG is held fixed, so that it acts as a pivot.57 Let us imagine
the movement of the ellipse DAG around this pivot towards the surface of
the cylinder so that it reaches the surface in the position of DLMG. The
straight line NL is the same as the large diameter NA, and HM is the same
as HT. Let us join E and L, K and M.

57 kush. In Arabic, possibly: miÌwar.
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As the angle KHG is a right angle, the angle MHG will be the same as
the initial configuration does not change. The straight line GN is
perpendicular to the plane ENL, and any plane passing through the straight
line NG will be perpendicular to the plane ENL, as this has been mentioned
by Euclid.58 Similarly, any plane passing through the straight line HG will
be perpendicular to the plane KHM.

Yet, the plane of the circle passes through the straight line NG, and
therefore each of the planes LEN and HKM is perpendicular to the plane of
the circle. The lateral surface of the cylinder is placed at a right angle on
the plane of the circle, and that common sections such as LE and MK are
perpendicular to the plane of the circle. Two perpendiculars to the same
plane must be parallel to each other. LE is therefore parallel to MK. As the
angle LNG is a right angle, as is the angle MHG, then the straight line LN is
parallel to the straight line MH. Similarly, the straight line EN is parallel to
the straight line KH, and both these lines are in the plane of the ellipse.
Consequently, the sides of the triangle LNE are parallel to the sides of the
triangle MKH, and the angles in these two triangles are equal. The two
straight lines LN and NE contain the angle ENL, the two straight lines MH
and HK contain the angle KHM, and the straight lines are not in the same
plane. The two angles ENL and KHM are therefore equal. Hence, it can be
shown that the angles in the triangle LNE are equal to the angles in the
triangle MKH. The two triangles are therefore similar.

The ratio of LN to NE is therefore equal to the ratio of MH to KH. We
know that LN is equal to AN and MH is equal to HT. But the ratio of AN to
NE is equal to the ratio of TH to HK. That is what we wanted to prove.

<Porism> And we have shown that the square of the straight line from
the extremity of the large diameter to the circle, which diameter cuts the

58
 Elements, XI, Definition 4.
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circle into two halves and passes through the centre, plus the square of half
the diameter of the circle is equal to the square of half the large diameter.

This may be deduced from the fact that the triangle LEN is a right-
angled triangle and, as a result, the square of NE, which is half the small
diameter, plus the square of LE, which is the straight line in question, is
equal to the square of LN, which is half of the large diameter.

<Proposition 8> And I say:59 If a <circumscribed> circle is
constructed on the ellipse ABGD, and a point marked upon the outline of
the ellipse from which a perpendicular is drawn onto the large diameter and
extended as far as the circumference, as is the case of the perpendicular
HEZ, then I say that the ratio of ZH to EH is equal to the ratio of AL to LG.

Proof: Let us fix an inscribed circle, that is circle GTD. From the point
E <on the outline the ellipse>, draw a perpendicular ETK onto the small
diameter. The point L is at the centre. Join L and T, and extend the straight
line from that point to the point N  on the circumference <of the
circumscribed circle>. LN cuts HZ at the point M.
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The triangle LKT is similar to the triangle TEM, as each of them has a
right angle and the two straight lines LM and TE cross each other. By
composition, it follows that the ratio of EK to KT is equal to the ratio of
ML to LT. We have already shown that the ratio of EK to KT is equal to the
ratio of AL, which is half the large diameter, to LT, which is half the small

59 The presence of this first person singular pronoun and the formulation that
follows it, the rhetoric of which is closer to an exposition (ecthesis) rather than a
statement (protasis) of the proposition, seems to indicate the absence of a statement as
such.
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diameter, in other words the ratio of NL to LT. As a result, NL is equal to
ML, which is contradictory and impossible.60

Similarly, we can show that the straight line <LT> cannot pass above
the point Z. If that were possible, it would pass through O. It could be
extended and HZ could be extended such that they would meet at the point
C. Proceeding as before, we can then shown that CL is equal to OL, which
is contradictory and impossible.

It is therefore impossible that the extended LT could pass through any
point other than the point Z.

TE is parallel to LH. Therefore, the ratio of ZL, which is half the large
diameter, to LT, which is half the small diameter, is equal to the ratio of the
perpendicular ZH to EH, the portion of the latter that lies within the ellipse.
That is what we wanted to prove.

<Proposition 9> We wish to prove that the elongated circular figure
generated by the movement of a triangle is equal to the oblique section of a
cylinder when its large diameter is equal to the large diameter of the
elongated figure generated by the movement of a triangle and when its
small diameter is equal to the other small diameter, and that each coincides
with the other at all parts and is identical to the other.

Example: Let us suppose that the figure ABGD is, in all its parts, an
elongated circular figure generated by the movement of a triangle, and that
the figure ZHKT is the oblique section of a cylinder. The straight line ZH is
assumed to be equal to the diameter AB, and the diameter TK equal to the
diameter GD. AB is the large diameter and, similarly, ZH  is the large
diameter. GD is the small diameter and, similarly, TK is the small diameter.

I say that the two round figures ABGD and ZHTK are equal, and that
each coincides with the other.
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60 The point M cannot therefore lie between T and N. In other words, the straight
line LT does not cut the straight line HZ below Z.



FRAGMENT ON THE CYLINDER 699

Proof: The diameters AB and GD cut each other at right angles and into
two halves at <the point> E. Similarly, the diameters ZH and TK cut each
other at right angles and into two halves <at the point L>. If we
superimpose the figure ABGD on the figure ZHTK, with the straight line
AB and the straight line ZH coinciding, as do the point A and the point Z,
and the point B and the point H, then the point E will coincide with the
point L as each figure is divided in half at E and at L. The straight line GD
will coincide with the straight line TK, as each is perpendicular to the other
diameter, and the point G coincides with the point T as ET is equal to EG.
The point D will thus coincide with the point K.

The arc AG can be superimposed on the arc ZT, the arc AD on the arc
ZK, the arc DB on the arc KH, and the arc GB on the arc TH. If they did not
coincide when superimposed, the arcs ZRT, TOH, ZXK, and KNH would
appear thus,61 insofar as that were possible.

Let us therefore construct a circle on the diameter TK. This will be
inscribed in both figures as they are both constructed on the small
diameter. Let this be the circle TPKQ. Let us mark a point S at any point on
the straight line TL and draw from it a straight line SCM that is parallel <to
PQ>.

As the arc TMZ is part of an elongated circular figure generated by the
movement of a triangle, the ratio of MS to SC is equal to the ratio of ZL to
LT, that is to the ratio of the large diameter to the small diameter, as we
have proved previously. Moreover, as the arc TRZ is part of the oblique
section of a cylinder, then the ratio of RS to RC is also equal to the ratio of
ZL to LT, as we have proved this previously. But the ratio of ZL to LT is
equal to the ratio of MS to SC; therefore the ratio of SC to RS is the same as
that to MS. It follows that MS is equal to RS. This is contradictory and
impossible.

It is therefore impossible that the elongated circular figure ABGD does
not coincide with the circular figure ZHTK. Each coincides perfectly with
the other and is identical to it. That is what we wanted to prove.

Let us now prove this property in another way, different from the
apagogic method.

Let ABGD be the <elongated> circular figure generated by the
movement of a triangle, and let MNCO be that which is a section of a
cylinder, the two <pairs of> diameters, small and large, are common to
both. The large diameter GD is equal to the large diameter CO, and the
small diameter AB is equal to the small diameter MN.

61 See Fig. VI.18.
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I say that the figure ABGD coincides with the figure MNCO.
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Proof: Let us inscribe a circle in each of the two figures. These circles
ABH and NMR are equal as the two <small> diameters are equal. Let us
mark a point L anywhere on the arc AG and draw a straight line LT from it
parallel to the straight line GE.

Let us cut the straight line PQ <on PM> in the same way as the straight
line ET. From the point Q, let us draw a straight line QSX parallel to the
straight line CRP. From that which we have proved previously in relation
to the figure generated by the movement of a triangle, the ratio of LT to TK
is equal to the ratio of GE to EZ, and equal to the ratio of CP to PR, as each
<of the two first straight lines> is respectively equal to one of the <two>
others. From that which we have proved previously in relation to a section
of the cylinder, it is clear that the ratio of CP to PR is equal to the ratio of
XQ to QS. Therefore, the ratio of LT to TK is equal to the ratio of XQ to
QS. By permutation, the ratio of XQ to LT will be equal to the ratio of QS
to TK. But SQ is equal to TK as the two circles are equal and ET is equal to
PQ:62 XQ is therefore equal to LT.

If we superimpose the circular figure ABGD on the circular figure
MNCO, the points ABGD will coincide with the points MNCO, the point T
will coincide with the point Q, and the straight line LT will coincide with
the straight line XQ as each of them is perpendicular to the diameter of the
circles. Therefore, the point L will coincide with the point X as the straight
line TL is equal to the straight line QX.

We have thus proved that any point taken on the outline of the figure
ABGD will coincide with a point on the outline of the figure MNCO. That
is what we wanted to prove.

62 See Lemma 1.
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<Proposition 10> We wish to show how to construct an <elongated>
circular figure from the movement of a triangle, such that it is equal to a
given oblique section of a cylinder.

Consider the section ABGD, in which the small diameter is AB and the
large diameter is GD. If we wish to construct an <elongated> circular
figure from the movement of a triangle, such that it is equal to the section
ABGD, we should draw any straight line ZH and divide it into two halves.
A perpendicular LT is drawn from L that is equal to EA. Place the <point K
on the straight line ZH such that the> square of LT plus the square of LK
<are> equal to the square of EG.

Z

K

L

M

N T

H

A

B

GD
E

Fig. VI.20

From that which we have previously proved, it is clear that LK is equal
to the perpendicular produced from the extremity of the large diameter <of
the section> onto the <plane of the> circle which cuts the figure at its
centre64.

Let us join T and K. It is clear that TK is equal to EG. We make LM
also equal to LK. We join T and M. It follows that TM is equal to EG. As a
result, <the sum of> the straight lines KT and TM is equal to the straight
line GD. Let us rotate the straight lines KT and TM, keeping the straight
line KM fixed, until they return to their original position. This movement
generates the figure TZNH.63

I say that the figure TZNH is the same as the figure ABGD.

Proof: At the end of the movement of the triangle TKM which brings
the point T onto the point Z, <the sum of> the straight lines MZ and ZK is
equal to <the sum of> the straight lines KT and TM. When the triangle

63 The points Z and H introduced above thus lie on the ellipse. It was not rare, in
writings of the time, to introduce certain magnitudes and define them later.
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rotates <sufficiently> to bring the point T onto the point H, <the sum of>
the straight lines KH and HM is equal to <the sum of> the straight lines KT
and TM. The <sum of the> straight lines KH and HM is therefore equal to
<the sum of> the two straight lines MZ and ZK. Subtracting KM, which is
common to both sides, it follows that twice MH is equal to twice ZK, and
therefore ZK is equal to MH. As <the sum of> MZ and ZK is equal to <the
sum of> the straight lines KT and TM and ZK is equal to MH, then ZH is
equal to <the sum of> KT and TM. But <the sum of> KT and TM is equal
to GD. Therefore GD is equal to ZH. The large diameter is thus equal to
the large diameter.

TL is produced in a straight line as far as N, such that <the sum of> KN
and NM is equal to KT and TM. As ML is equal to LK, LN is common, and
the angles at <the vertex> L are equal, it follows that KN is equal to NM.
Therefore KN is equal to KT, and the angles to which they form the chords
are right angles. Consequently, the squares of KL and LT are equal to the
two squares of KL and NL. Subtracting the square of KL, which is common
to both sides, there remains the square of LN, which will be equal to the
square of LT. Therefore the straight line LN is equal to LT, and LT is equal
to AE. It follows that AB is equal to TN.

The two circular figures ABGD and TNZH, the first being a section of a
cylinder and the second being the figure generated by the movement of a
triangle, have the same small and large diameters. They are therefore equal
and they coincide.

We have shown that the circular figure TZNH, generated by the
movement of a triangle, is truly equal to the section ABGD. That is what
we wanted to prove.

<Proposition 11> We wish to show how to find a section of a cylinder
such that it is equal to a <given elongated> circular figure generated from
the movement of a triangle.

Let us fix ABGD the <elongated> circular figure generated by the
movement of a triangle. Its large diameter is AB, the small diameter is GD
and the centre is at the point Z. Let us imagine a circle, from all those
circles that could, by superposition, be inscribed within the figure ABGD.
Let us imagine a right cylinder on this circle. Let us imagine a plane LK
which sections the cylinder and cuts its axis. Let us imagine a circular
section HTNC parallel to the base with HT being its diameter and M its
centre.
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<On the perpendicular to the plane of the circle passing through T>, we
cut off a straight line TP equal to ZE,64 and let NC  be <a diameter>
perpendicular to HT. As any three points define a plane, there will be a
plane passing through NCP. Extend this plane until it sections the cylinder.
Let PCON define the outline <of this section>.

I say that the section PCON is the same as the circular figure ABGD.
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Proof: The small diameter GD is equal to the small diameter NC <of
the section>. The <sum of the> two squares of TP and MT is equal to the
square of PM, and the two squares MT and PT are equal to the two squares
GZ and ZE. We know that the squares of GZ and ZE are equal to the square
of GE. The square of GE is therefore equal to the square of PM. It follows
that PM is equal to EG. But EG is equal to AZ. Therefore ZA is equal to
PM. Similarly, we can show that ZB is equal to MO.

The large diameter AB is thus equal to the large <diameter> OP. We
have already obtained that the small diameters are equal. Consequently, the
circular figure ABGD is the same as the section PCON. That is what we
wanted to prove.

<Proposition 12> If any two consecutive chords are drawn in a quarter
of an ellipse, beginning at the extremity of the large diameter and ending at
<the extremity of> the small diameter, and if perpendiculars are drawn
from <the extremities of these chords> onto the small diameter crossing the
quarter circle inscribed within the ellipse, and if the chords associated with
the arcs <of the circle> thus defined are also drawn, then two polygonal

64
 The point E is one of the foci of the ellipse.
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surfaces will be generated, one inscribed within the ellipse and the other
within the circle, such that the ratio of the area inscribed within the ellipse
to the area inscribed within the circle is equal to the ratio of the large
diameter to the small diameter.

Example: Let ATK be the quarter ellipse defined by two half-diameters.
The half-large diameter is KT and the <half->small <diameter> is AT. Let
ADBT be the quarter circle inscribed <within the quarter ellipse>. Let T be
the centre. The chords are drawn within the ellipse, one of which is KZ. A
perpendicular ZDG is drawn from Z onto AT, with the point D being on the
circumference of the circle. The chord DB is drawn within the circle. Two
<polygonal> surfaces are thus generated within the two figures, KZGT in
the ellipse, and BDGT in the circle.

I say that the ratio of the polygonal surface inscribed within the ellipse,
of which KZ is one side, to the polygonal surface inscribed within the
circle, of which BD is one side, is equal to the ratio of TK to AT.
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Proof: Let us draw the straight lines KD and BG. These cut each of the
two quadrilaterals65 into two triangles. The two triangles KZD and BDG
have equal heights. The ratio of the area of one to <the area of> the other is
therefore equal to the ratio of the base ZD to the base DG. Similarly, the
ratio of the triangle KDB to the triangle BGT is equal to the ratio of KB to
BT.

Now, the ratio of KB to BT is equal to the ratio of ZD to DG, as this
has been proved previously. It follows that the ratio of the <four> triangles,
taken in pairs, is the same, and it remains the same when we added them.
The ratio of the quadrilateral KD to the quadrilateral BG is therefore the
same ratio, that is the ratio of KB to BT.

We proceed in the same way for all of the surfaces delimited by the
chords and the perpendiculars. Their ratios, one to the other, will also be
the same. Magnitudes that are in proportion remain in that proportion when

65 no†eh: trapezium, in the Euclidean sense (Elements I, Definition 22). In Arabic:
munÌarif.
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they are added together. The ratio of all the surfaces inscribed within the
quarter ellipse KTA to all the surfaces inscribed within the quarter circle is
thus equal to the ratio of KT to BT.

That which has been performed on the two quadrants may also be
performed on the others which complete them. Hence, the ratio of the
surface inscribed within the ellipse and contained within the chords defined
by the arc of the half-ellipse and the large diameter to the surface inscribed
within the inscribed half-circle and contained within the chords defined by
the half-circumference and the diameter of the semi-circle is equal to the
ratio of the large diameter to the small diameter.

The same holds true for the other half of the ellipse, which completes
the whole figure, and for the remaining semi-circle inscribed in it and
which completes the whole circle. The method is the same. The ratio of the
entire figure inscribed within the ellipse to the entire figure inscribed
within the circle is therefore equal to the ratio of the large diameter to the
small diameter. That is what we wanted to prove.

<Proposition> 13. – We wish to show that the ratio of the area of the
small circle, that which is inscribed within the ellipse, to the area of the
ellipse itself is equal to the area of the small diameter to the large diameter.

Example: Let the ellipse be ABGD. Its large diameter is AG, and the
small one is BD. The small circle, that which is inscribed within the ellipse,
is BWDE, and its diameter is WE.

I say that the ratio of the surface ABGD to the circle EBWD is equal
to the ratio of AG to BD.
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Proof: The ratio of WE, the small diameter, to AG, the large diameter,
is equal to the ratio of the circle EBWD to the ellipse ABGD, and it cannot
be otherwise. If this were possible, this ratio would be equal to the ratio of
the circle to a magnitude that is either smaller or larger than the ellipse.
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To begin, let there be a magnitude that is smaller than the ellipse, and
let this magnitude be the surface L.

The surface L is therefore less than the ellipse, the difference being the
magnitude of the surface U. Let us join AD , DG, GB and BA. These
straight lines on the elliptical surface enclose an area towards the centre
that is greater than half of the latter, that is the lozenge ABGD. Now, let us
divide each of the arcs so formed into two parts and draw the chords. These
define surfaces from <the outline> of the surface towards the centre, that
are greater than half <the elliptical segments defined by> the arcs. If we
continue to proceed in the same way,66 a surface will eventually be
obtained that is smaller than the surface U. The <sum of the elliptical
segments defined by the> arcs AZ, ZH, HB, BT, TK, KG, GM, MN, ND,
DC, CO and OA is therefore smaller than the surface U. It follows that the
polygonal surface thus generated and inscribed within the ellipse is greater
than the surface L.

Draw a number of lines parallel to the large diameter from the
extremities of the arcs that we have obtained by division. The
circumference of the circle is then divided into an equal number of arcs at
the points P, Q, X, S, I, V, R and Y. Now, draw in the chords as before. The
ratio of the figure inscribed within the circle, and passing through W, P, Q,
B, X, S, E, I, V, D, R and Y, to the <polygonal> figure inscribed within the
ellipse, and passing through Z, H, B, T, K, G, M, N, D, C, O and A, is then
equal to the ratio of WE to AG, which is in turn equal to the ratio of the
circle to the surface L. The ratio of the figure inscribed within the circle to
the figure inscribed within the ellipse is therefore equal to the ratio of the
circle to the surface L. But the figure inscribed within the circle is smaller
than the circle, and that the figure inscribed within the ellipse is greater
than the surface L. Under these conditions, the ratio of the smallest to the
largest would be equal to the ratio of the largest to the smallest, which is
contradictory and impossible.

It is therefore impossible for the ratio of WE to AG to be equal to the
ratio of the circle to a magnitude less than the ellipse.

I say that it can not be either a magnitude greater than the ellipse. If
this were possible, the ratio of the ellipse to a surface smaller than the
circle would then be equal to the ratio of the small diameter to the large

66 The figure in the manuscript includes a number of errors, which have been
corrected here. Moreover, it does not correspond to the text. There is a dividing point
missing on each of the arcs AZ, KG, GM and OA. There are then 22 arcs on each quarter
of the ellipse. The corresponding polygon has 24 sides. It should be noted that the figure
is not essential to the argument made in the proof.
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diameter. Let L  be this magnitude, and let the circle exceed it by a
magnitude U.

We proceed as before. The circumference of the circle is divided into
parts and the chords are drawn. The <sum of the> surfaces delimited by
these chords and the arcs will be less than the surface U. Under these
conditions, the polygonal surface inscribed within the circle is greater than
the surface L.

From the extremities of these arcs <on the circle>, we draw a number
of straight lines parallel to the diameter, cutting the ellipse into a number of
arcs. The chords defined by these elliptical arcs are then drawn. As before,
we find that the ratio of the surface inscribed within the circle, which is
greater than the surface L, to the polygonal surface inscribed within the
ellipse, which is smaller than the ellipse, is equal to the surface L, which is
smaller than the figure inscribed within the circle, to the ellipse, which is
greater than the figure inscribed within it. Under these conditions, the ratio
of the smallest to the largest would be equal to the ratio of the largest to the
smallest. This is contradictory and impossible.

The ratio of the ellipse to a surface that is smaller than the circle cannot
therefore be equal to the ratio of the small diameter to the large one.

We have thus proved that the ratio of the small diameter to the large
diameter is not equal to the ratio of the circle to a surface that is either
smaller than the ellipse, or greater than it.67 Therefore, this ratio must be
exactly equal to the ratio of the circle to the ellipse.

<Proposition> 14. – We wish to show that the ratio of an ellipse to any
circle is equal to the ratio of the large diameter to a straight line whose
ratio to the diameter of the circle is equal to the ratio of this diameter to the
small diameter of the ellipse.

Let the ellipse be ABGD and let the inscribed circle be AG. E is any
other circle. <Let Z  be a straight line such that> the ratio of Z  to the
diameter of E is equal to the ratio of this same diameter of E to AG.

I say that the ratio of the ellipse ABGD to the circle E is equal to the
ratio of the diameter BD to the straight line Z.

Proof: The ratio of the circle AG to the circle E is equal to the ratio of
the square of AG to the square of the diameter of E. Now, the ratio of the
square of AG to the square of the diameter of E is equal to the ratio of the
straight line AG  to the straight line Z  as all three straight lines are
proportional.

67 For more specific detail on the use of this apagogic method, see the
mathematical commentary on Proposition 13 in Section 6.2.7, Comment 1.
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The ratio of the circle AG to the circle E is therefore equal to the ratio
of AG to Z, and the ratio of the ellipse ABGD to the circle AG is equal to
the ratio of BD to AG. Under these conditions, and considering the equality
ratio, the ratio of the ellipse ABGD to the circle E is equal to the ratio of
BD to Z.

<Proposition> 15. – We wish to show that the ratio of the small circle
to the ellipse is equal to the ratio of the ellipse to the large circle.

Example: Let EGZD be the large circle, ABGD the ellipse, and AB the
small circle.

I say that the ratio of the circle AB to the ellipse ABGD is equal to the
ratio of the ellipse ABGD to the circle EZGD.
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Proof: We define <a straight line H such that> the ratio of the straight
line AB to the straight line GD <is> equal to the ratio of GD to H. We have
already proved that the ratio of AB to H is equal to the ratio of the square of
AB to the square of GD. Now, the ratio of the square of AB to the square of
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GD is equal to the ratio of the circle AB to the circle EZ. It follows that the
ratio of the circle AB to the circle EZ is equal to the ratio of AB to H.

The ratio of the ellipse ABGD to a <certain> surface T is equal to the
ratio of GD to H. Yet, we have proved that the ratio of the circle AB to the
ellipse ABGD is equal to the ratio of AB to GD. Considering the equality
ratios, it follows that the ratio of the circle AB to the surface T is equal to
the ratio of AB to H. We have shown that the ratio of AB to H is equal to
the ratio of the circle AB to the circle EZ. It follows that the ratio of the
circle AB to the circle EZ and its ratio to the surface T are both the same.
The surface T is therefore equal to the circle EZ. We have already stated
that the ratio of the circle AB to the ellipse ABGD is equal to the ratio of
the ellipse to the surface T. As the surface T is equal to the circle EZ, it
follows that the ratio of the circle AB to the ellipse ABGD is equal to the
ratio of the ellipse ABGD to the circle EZ. That is what we wanted to
prove.

<Corollary 1> From this, it follows that the ratio of the small circle to
the large circle is equal to the square of the ratio of the <small> circle to
the ellipse and that the ratio of the large circle to the small circle is equal to
the square of the ratio of the large circle to the ellipse.

<Corollary 2> It also follows that the ratio of the ellipse to the large
circle is equal to the ratio of the small diameter to the large diameter. The
ratio of the small circle to the ellipse is equal to the ratio of the small
diameter to the large diameter, and it is also equal to the ratio of the ellipse
to the large circle. Consequently, the ratio of the ellipse to the large circle
is truly equal to the ratio of the small diameter to the large diameter.

<Proposition> 16. – Any ellipse is equal to the right-angled triangle
having one of the sides enclosing the right angle equal to the circumference
of the inscribed circle, and the second side equal to half the large diameter.
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Example: Let the circumference of the inscribed circle be AB, and let
half the large diameter of the given ellipse be BG. The angle ABG is a right
angle. Let us join A and G.

I say that the triangle ABC is equal to the ellipse mentioned above.
Proof: Let us extend GB in a straight line such that BD is equal to half

the small diameter. As proved by Archimedes, the triangle ABD is equal to
the small circle.68 We have also proved that the ratio of the ellipse to the
triangle ABD is equal to the ratio of the triangle ABG to the triangle ABD.
The ellipse is therefore truly equal to the triangle ABG. That is what we
wanted to prove.

We can use a similar proof to show that the ellipse is equal to the right-
angled triangle having one of the sides enclosing the right angle equal to
the circumference of the circle circumscribing the ellipse, and having the
second side equal to half the small diameter. Understand this well.

<Corollary 1> From that which we have proved, it follows that if we
take five and a half sevenths of the small diameter and multiply this by the
large diameter, then we obtain the area of the ellipse.

The area of the triangle ABG is obtained by multiplying half of AB by
GB. But half of AB is equal to three and one seventh times B D .
Consequently, one quarter of half of AB is five and one half sevenths of
BD. If this is so, then the product of five and one half sevenths of twice BD
and twice BG is a measurement of the triangle ABG. That is what we
wanted to prove.

<Corollary 2> If we know the area of an ellipse and one of the two
diameters, then we know the other.

Let the known magnitudes be the larger of the two diameters and the
area. Adding three elevenths of the area to itself and dividing the result by
the known large diameter gives the unknown small diameter.

<Proposition> 17. – Any ellipse is equal to the circle whose diameter
is the proportional mean of the two diameters of the ellipse.

Example: Let the small diameter be A, and the large diameter G. Take a
straight line B which is the proportional mean between these two. The ratio
of A  to B  is equal to the ratio of B  to G . If three straight lines are
proportional, then the circles to which these straight lines are diameters are
also proportional. The ratio of the circle A to the circle B is therefore equal

68 On the Measurement of the Circle, Proposition 1, and also Lemma c.
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to the ratio of the circle B to the circle G, and the ratio of the circle A to the
circle G is equal to the square of the ratio of the circle A to the circle B.69

G B A

Fig. VI.27

But the circle A is that which is inscribed within the ellipse, and the
circle G is that which circumscribes the ellipse. We have proved that the
ratio of the circle inscribed within the ellipse to the circle circumscribed
around the ellipse is equal to the square of the ratio of the circle inscribed
within the ellipse to the ellipse itself.70 It follows that the square of the ratio
of the circle A to the circle B is equal to the square of the ratio of the circle
A to the ellipse. Consequently, the ellipse is truly equal to the circle B. That
is what we wanted to prove.

<Proposition> 18. – Any ellipse is equal to five and one half sevenths
of the rectangle that is circumscribed around it.

Example: Let the ellipse be ABGD, the large diameter BD, and the
small diameter AG. Let EZHT be the rectangle circumscribed around it.

I say that the ellipse ABGD is equal to five and one half sevenths of the
rectangle EZHT.
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Fig. VI.28

69 In the text, the letters A, B and G are used to designate both a segment and the
circle having this segment as its diameter. The figure shows the three circles.

70 See Proposition 15, Corollary 1.
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Proof: Let us take a straight line LN that is the proportional mean
between the straight lines AG and BD. Let us construct a circle KLMN on
this straight line, and its circumscribed square COPQ.

From our lemmas, it follows that the circle KLMN is equal to five and
one half sevenths of the square COPQ. The ellipse is therefore equal to five
and one half sevenths of the rectangle EZHT.

We can prove this in another way. The ratio of any ellipse to the
product of its diameters is equal to the ratio of any circle to the square of its
diameter. The ratio of any ellipse to any circle is therefore equal to the ratio
of the product of the diameters of the ellipse to the square of the diameter
of the circle. The proof may be derived from these statements.

The ratio of any ellipse to the product of its diameters is equal to the
ratio of any ellipse to the product of its diameters. That is what we wanted
to prove.

He has formulated a premise in relation to the sections of an ellipse.

<Proposition> 19. – Given any ellipse and its inscribed circle, and
equal chords in each <of these two figures> perpendicular to the large
diameter, then the ratio of the segment cut by one of the two chords from
the diameter that it crosses to the remainder of that diameter is equal to the
ratio of the segment cut by the other <chord> from the other diameter that
it crosses to the remainder of it.

Example: Let the ellipse be ABGD.71 MDEB is the inscribed circle and
AMIEG is the large diameter. ME is the diameter of the inscribed circle and
I is its centre. Consider a chord NR in the circle and <a chord> TO in the
ellipse, which are equal to each other and perpendicular to the <large>
diameter. NR cuts the diameter at the point Q, and TO cuts the diameter at
the point W.

I say that the ratio of WG to WA is equal to the ratio of EQ to QM.
Proof: <Let there be a cylinder whose base is a circle equal to the

inscribed circle, and suppose that the ellipse ABGD is a plane section of
this cylinder, as described above. Rotate the inscribed circle around the
diameter BD to bring it into a plane parallel to the base>. Draw the straight
line KZ parallel to the diameter AG from the point Q in the plane of the
diameter AG, and divide the cylinder into two halves. The plane dividing
the cylinder into two halves and passing through the diameter A G
<therefore lies> between two parallel straight lines which themselves
delimit two <other> parallel straight lines on the surface of the cylinder.

71
 The manuscript only shows one very confusing figure. The proof has been

illustrated here with two figures, one in the space.
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Consequently, the straight line KZ is equal to the straight line AG as the
opposite sides of any parallelogram are equal.
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Extend the plane in which the straight lines KZ and QR cross to form a
plane sectioning the cylinder as the ellipse KNZR. We have therefore
proved that the ellipse KNZR is equal to the ellipse ABGD and is parallel to
it. In addition, the chord NR in one is equal to the chord TO in the other.
The sagitta72 QZ  will therefore be equal to the sagitta WG , and the
remainders of each of the two diameters will be equal. The section
common to the plane mentioned above, which divides the cylinder into two
halves and which contains the two parallel diameters, and to the surface of
the cylinder consists of the straight line KM on one side and the straight
line EZ on the other side.

The angle KMQ will be a right angle, as will the angle ZEQ. The
surface of the cylinder stands at right angles to the plane of the circle and
the common section, i.e. the straight line KM, is therefore perpendicular to
the plane of the circle. Yet, any straight line drawn from KM, and which is
in the plane of the circle, meets it at a right angle. It is for this reason that
the angle KMQ is a right angle. Similarly, the angle ZEQ is also a right
angle, for the same reason.

The two angles <at the vertex> Q , in the triangles are equal.
Consequently, the triangles KMQ and ZEQ are similar. Their sides are
therefore proportional. The ratio of ZQ, which is the chord of the right
angle in one of the triangles, to KQ in the other is thus equal to the ratio of
EQ, in the first triangle, to QM in the other. But QK is equal to AW and QZ

72 i.e. versed sine.
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is equal to WG. The ratio of GW to AW is therefore truly equal to the ratio
of EQ to QM. That is what we wanted to prove.

<Proposition> 20. – If it happens that the chords is drawn in the same
way in the other direction, <i.e. perpendicular> to the <small> diameter,
(then the ratio of the segment cut by the chord of the ellipse from the
diameter that it crosses to the remainder of that diameter is equal to the
ratio of the segment cut by the equal chord of the circumscribed circle from
the diameter that it crosses to the remainder of it). The proof and the
procedure are the same. There is no difference between the two cases. The
ellipse would then be the base of a cylinder of which the <circumscribed>
circle is a section. The proof is then completed <in the same way>.73

<b>74 {There is no doubt that the knowledge of such arcs <of an
ellipse> depends on knowing the sagitta, the chord, and one of the two
diameters of the ellipse from which a segment has been taken. It is possible
that the sagitta and the chord are common <to this ellipse and> to another
ellipse.} <b>

 <c> {From that which has already been proved, we shall now solve the
following problem:

Let us assume that we have an elliptical circular figure passing through
ABGD. Its large diameter is AB, and the circumscribed circle is AEB. A
perpendicular TH is drawn from the large diameter, such that it cuts the
ellipse at the point K.

I say that the ratio of HT to TK is equal to the ratio of AB to PO.

73 See the mathematical commentary: Section 6.2.7, Proposition 20.
74 From here until the statement of Proposition 21 (fol. 52v, 9–22). The surviving

manuscript text presents us with a problem. It appears to be a fairly incoherent collage
of fragments. However, it is possible to distinguish three propositions, which we have
designated <a>, <b> and <c>, and separated by braces without altering the layout of the
text. <a> is an alternative proof of Proposition 20, the earlier proof being only a
suggestion. <b> shows that there exist an infinite number of different ellipses having a
given chord and a sagitta. <c> proposes an alternative proof of Proposition 8.
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Proof: Let us inscribe the circle GODP within the ellipse. From the
point K, draw a straight line KM parallel to the straight line AB, and from
M, draw MN perpendicular <to AB>. This is equal to KT. From that which
we have already proved, the ratio of BT to TA is equal to the ratio of ON to
NP. As the ratio of BT to TA is equal to the ratio of ON to NP, the ratio of
HT to MN will be equal to the ratio of AB to PO, all this from that which
we have established in relation to circles. But MN  is equal to K T. It
therefore follows that the ratio of HT to TK is equal to the ratio of AB to
PO. That is what we wanted to prove.75}<c>

<b> {From what we have said, it follows thus. If the cylinder is
another cylinder, greater than the first, then let it be a tangent to the first
along the straight line ZE. Its circle is greater than <the circle> DW and
tangent <to it> at the point W. The two <circles> are in the <same> plane.76

In the larger circle, it is possible to draw a chord equal to the chord HK and
it is possible to produce from the middle of this chord to the straight line
ZE, the section common to the two surfaces, a straight line equal to the
straight line QI. In other words, it is possible to determine a plane
containing the two secant lines such that the oblique section of the <large>
cylinder <by this plane> is <an ellipse> opposite77 to the ellipse KIH, and
having a chord and a sagitta equal to KH and QI respectively; and this can
be performed in an infinite number of ways.} <b>

75 This property of an ellipse has already been established by Proposition 8.
76 The manuscript does not include a figure. We have included one as Fig. VI.31.
77 mitnaged. In Arabic: muqæbil.
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<a> {<By another method>. Let ABGD be an ellipse, and let ALB be
its circumscribed circle. Let there be two perpendiculars to the small
diameter, EN and ZH, which are equal, one lying in the circle and the other
in the ellipse.

I say then that the ratio of LZ to ZM is equal to the ratio of GE to ED.
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Proof: If this were not the case, the ratio of GE to ED would be equal
to the ratio of LT to TM. We therefore draw the chord TK <in the circle>
perpendicular <to LM>.

From that which we have already proved, the ratio of EW to TK will be
equal to the ratio of GI to IL. Consequently, EN will be equal to TK.78 But
EN is equal to ZH, so this is contradictory, and the ratio of LZ to ZM is

78 From Proposition 6, EW/EN = GI/IL.
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truly equal to the ratio of GE to ED. That is what we wanted to prove.}
<a>

<Proposition> 21. – After having established this premise, we wish to
show how, given the chord and sagitta of an arc of an ellipse together with
one on the two diameters, it is possible to determine the second diameter,
so as to know the ellipse, the area of the elliptical segment and all the other
elements.79

So, if someone says to you, ‘We have an elliptical <segment> whose
chord is eight, whose sagitta is three, and whose associated diameter in
fifteen, how can we solve the problem?’ In order to find the second
diameter and know the area of the ellipse, we could proceed in a number of
ways, the foundation of which is the premise mentioned above.

This is one of the procedures. Take half the chord, in this case four.
Multiply it by itself, giving 16, and save the result. Then divide 15, i.e. the
diameter, by each of its parts. One of these, the sagitta, measures three. We
can then obtain the square of the second diameter (by multiplying the three
numbers, 16, 153 and 1512).

If you wish, you could multiply either of the two <parts of the diameter
by 4, then divide the diameter once by this product, and once by the
remaining part>. Then multiply the two quotients by the square of the
entire chord. This will give you the square of the sought diameter, and
from which you extract the square root. Example: Multiply one part of the
diameter, the sagitta, by four, giving 12. Divide the diameter once by this
product, giving one and a quarter, and once by the remainder of the
diameter, which also gives one and a quarter. Multiply the quotient by the
quotient, which gives one and a half plus a half of an eighth. Multiply this
by sixty-four, the square of the chord. This gives one hundred, which is the
square of the second diameter.

If you wish, multiply one of the parts of the diameter by the other, then
multiply this product by four, which gives 144, which you save as a total.
Then multiply the diameter by itself, and the chord by itself, then multiply
the two squares together, which gives fourteen thousand and 400. Divide
this by the total, giving one hundred, which is the square of the required
diameter.

Concerning the cause explaining these procedures, we shall illustrate it
by an example.

79 It can be seen that the area of an elliptical segment is not discussed, despite the
statement.
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Let there be an ellipse KATG . The circle ABG is tangent to it
<internally>. The large diameter is KDBT, DB is the diameter of the circle,
and AG is the small diameter, which is common to both the ellipse and the
circle. <The straight line> O M H  is a chord within the ellipse,
<perpendicular> to the large diameter. This chord measures eight. KM is
the sagitta. It measures three. KT is the entire diameter. It measures fifteen.
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We wish to know AG, the second diameter.
From O, draw a straight line OZ, parallel to the diameter KT and

extending as far as the circumference. From Z, draw a perpendicular to this
diameter. This is Z L. Let us produce it as far as the point N on the
circumference on the other side. ZN is then the chord associated with the
arc ZDN. As the straight line OZ is parallel to the diameter, and as the
straight line ZN is perpendicular to the diameter and parallel to OH, then
OH and ZN are equal. From the premise that we have already established,
and the chords being equal, we know that the ratio of KM to MT is equal to
the ratio of DL to LB. But the product of DL and LB is equal to the product
of LZ by itself. The product of LZ by itself is known as LZ is known, and it
measures four, the same as OM, as we have mentioned.

Under these conditions, the straight line DB, which is the unknown,80 is
divided into two parts whose product, one by the other, is known, <and
whose quotient, one by the other, is also known>.

The result may be obtained in a number of ways. I have mentioned one
of them, which leads to a determination of the square of the number GA,
which can be known by approximation.81

80 ha-muskal. In Arabic: al-majhºl.
81 be-qeruv. In Arabic: ‘alæ al-taqrîb.
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We shall now establish a lemma, which is of value in the procedures
that we have described.

<Lemma 4> Any number is separated into two different parts. The
number is divided by each of these parts. The result of one division is
multiplied by the result of the other division and the product saved. Then,
each of the two parts is multiplied by the other. Then the product of this
result and the number that was saved is the square of the number.

Example: The number A is separated into two numbers B and G. A is
divided by B, which gives D. Then it is divided by G, which gives E. D is
multiplied by E, giving the product H. B is multiplied by G, giving Z.

I say then that the product of Z  and H, i.e. T, is the square of the
number <A>.

Proof: Multiply D by A, which gives K. Hence, the number A has been
divided by B, giving D, and D has been multiplied by A, giving K. This is
therefore equal to the product of A by itself divided by B. But the product
of A by itself is T. We have therefore divided T by B, giving K.

Similarly, we have divided A by G, giving E, and we have multiplied D
by E, giving H, which is equal to the product of A and D divided by G, and
<the product of> A and D is K. In other words, this product is the quotient
of K by G, which is H.

T has been divided by B, which gives K. But the quotient of T by B,
divided by G, is equal to the quotient of T by the product of B and G, and
that the product of B  and G is Z . The quotient of T  by Z  is thus H.
Consequently, the product of H and Z is truly T. That is what we wanted to
prove.

Having established that, the number A is the diameter of the circle in
the previous proposition. It has been divided at L into two parts, DL and
LB. The quotient of DB by each of these two parts DL and LB is known. It
is equal to the ratio of KT to each of the two straight lines KM and MT, that
is, the quotient of KT by each of these parts,82 that is, five and one and a
quarter. The product of each of these two <parts> by the other is also
known. It is sixteen. It follows that the product of 5 by one and a quarter,
which is six and a quarter, multiplied by sixteen is equal to the square of
DB, as we have proved. That is what we wanted to prove.

82 From KM/MT = DL/LB, we can derive by composition
 (KM + MT)/MT = (DL + LB)/LB.

We have, by way of inversion, MT/KM = LB/DL; then, by composition,
(KM + MT)/KM = (DL + LB)/DL;

hence the indicated result.
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This is all that I, Qalonymos, have found in Arabic, and I have
translated all of it. I finished the translation on the 25 ™evet 72, according
to the short reckoning <= 5 January 1312>. Praise be to God, the Highest.

I, Joseph ben Joel Bibas, completed <the copy>, here in
Constantinople, at dawn on Friday 24 ™evet in the year 5267 of the
Creation <= Friday 9 December 1506>. May the Holy Name be exalted
and sanctified, and blessings be upon Him. Amen.



CHAPTER VII

IBN HHHHªªªªDDDD: THE MEASUREMENT OF THE PARABOLA
AND THE ISOPERIMETRIC PROBLEM

7.1. INTRODUCTION

7.1.1. KKKKiiiittttææææbbbb    aaaallll----IIIIssssttttiiiikkkkmmmmæææællll, a mathematical compendium

Abº ‘Æmir Yºsuf ibn Hºd AÌmad ibn Hºd, known as al-Mu’taman,1

succeeded his father as King of Saragossa on the death of the former in
474/1081. His reign was not to be a long one, as al-Mu’taman died four
years later in 478/1085.2 The King is credited with the authorship of the

1 Al-Mu’taman is not simply a nickname, meaning a man who can be relied upon. It
carries much more significance as one of the titles held by a caliph, as in the case of al-
Ma’mºn, al-Muqtadir etc. This custom of giving glorious titles to Andalusian kings and
crown princes started to be disseminated towards the end of the Umayyad State. For more
information, see ‘Abd al-WæÌid al-Marækºshî, al-Mu‘jib fî talkhîÒ akhbær al-Maghrib, ed.
by M. S. al-‘Aryæn and M. al-‘Arabî, 7th ed., Casablanca, 1978, p. 105. The author
quotes the verses by the celebrated poet Ibn Rashîq that pour scorn on this usage:

2 Ibn al-Abbær, al-Îulla al-siyaræ’, ed. H. Mones, Cairo, n. d., vol. II, p. 248.
H. Suter has translated a few brief extracts from an interesting correspondence between
an Andalusian and an inhabitant of Tangier, reported by al-Maqqarî, in which each extols
the advantages of their country. This correspondence confirms the high regard in which
Ibn Hºd was held. H. Suter has also drawn attention to the work of Steinschneider on
Yºsuf ibn Aknîn, the importance of which will be made clear later. See Die
Mathematiker und Astronomen der Araber und ihre Werke, Leipzig, 1900, p. 108.
See also Ibn al-Kha†îb, History of Islamic Spain (Kitæb a‘mæl al-a‘læm), Arabic text
published with an introduction and index by E. Lévi-Provençal, Beirut, 1956, p. 172; Al-
Maqqarî, NafÌ al-†îb min ghuÒn al-Andalus al-ra†îb, ed. IÌsæn ‘Abbæs, 8 vols, Beirut,
1968, vol. I, p. 441; ∑æ‘id al-Andalusî, ™abaqæt al-umam, ed. H. Bº‘alwæn, Beirut,
1985, p. 181. ∑æ‘id, it should be noted, places Ibn Hºd in context among his
contemporaries together with the second mathematician discussed here, ‘Abd al-RaÌmæn
ibn Sayyid. This is essentially confirmed by the dates and sources. However, ∑æ‘id
comments that Ibn Sayyid is a most distinguished mathematician, and that Ibn Hºd was
also interested in logic, physics and metaphysics. He wrote: ‘As for Abº ‘Æmir ibn al-

ي مما دن زئ د أرض في ي ن سأ ا ل م س عس ه درم ي دمعو اف ب ف  ت

ةممل باقلأ يحي رهالك اهعضموب رغي في ك دسألا ةصول اثاانتف ك
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substantial mathematical work, the Istikmæl,3 which he appears to have
composed while still the Crown Prince. The wide range of topics covered by
the book, together with its bulk, all suggest that it represents the sum total of
a life devoted to mathematics. It could not possibly have been written during
the few leisurely hours available to a king, regardless of the true extent of his
kingdom. We must therefore consider him to have been a mathematical
crown prince rather than a mathematical king, much as we would prefer to
imagine the latter.

Although we do not yet possess the full text of this book, copies of it
have been circulated in the past and several new sections have recently, and
happily, come to light. The recently discovered geometrical sections4 include
a study of the measurement of the parabola and another addressing the
isoperimetric problem. It is this work that we shall discuss here.5 The
attribution of the Istikmæl to Ibn Hºd is almost certain. However, in the
absence of any direct proof, we are obliged to proceed with care. No known
manuscript of the Istikmæl, or, more correctly, no known section of the
work, mentions the name of Ibn Hºd.6 We do, however, have a direct

                                    
Amîr ibn Hºd, while he collaborated with these (i.e. the mathematicians contemporary
with ∑æ‘id) in the science of mathematics, he was distinguished from them (our italics)
by his interest in the science of logic, and by his work in the physical and metaphysical
sciences’, p. 181.

This remark by ∑æ‘id, a contemporary biobibliographer, has passed unnoticed, but is
particularly important in understanding the project carried out by Ibn Hºd.

3 See, inter alia, al-Akfænî, Irshæd al-qæÒid ilæ asnæ al-maqæÒid, p. 54 of the
Arabic text, in J. Witkam, De egyptische Arts Ibn al-Akfænî, Leiden, 1989, who quotes
‘the Istikmæl of al-Mu’taman Ibn Hºd’.

4 J.P. Hogendijk, ‘The geometrical parts of the Istikmæl of Yºsuf al-Mu’taman ibn
Hºd (11th century). An analytical table of contents’, Archives internationales d’histoire
des sciences, vol. 41, no 127, 1991, pp. 207–81. The author refers also to another
article that he published in 1986 in Historia Mathematica, entitled ‘Discovery of an
11th-century geometrical compilation: The Istikmæl of Yºsuf al-Mu’taman ibn Hºd, King
of Saragossa’, pp. 43–52.

5 See our edition of the Arabic text in Mathématiques infinitésimales, vol. I ,
chapter VII.

6 The following fragments of the Istikmæl are known to have survived at the present
time: 1) The geometric sections, by far the most extensive, in manuscript Or. 82 in the
Royal Library of Copenhagen, and manuscript Or. 123-a in Leiden. 2) The arithmetic
fragment in the Cairo manuscript, Dær al-Kutub, Riyæ≈a 40. A copy of this manuscript
alone is also held, as we have shown, in Damascus, Åæhiriyya 5648. 3) Finally, the short
fragment quoted by a commentator in a manuscript held in the Osmaniye Library in

مرع وأب ماأو ن ا ن ريمألا ب ه دوه ب هاشمب مع وف كت ما في ءلاهؤل ر ط را ل ه درنفم ضيايل ون ةانلعاو قطنلا علمب مد ي

مب س موا مسا ا هي. لا س
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citation in which the author attributes the work to Ibn Hºd’s Andalusian
predecessor, the famous mathematician ‘Abd al-RaÌmæn ibn Sayyid.7 This
important attribution is made by an anonymous author, namely, a
commentator on the Elements of Euclid who was clearly familiar with the
mathematical traditions that he was discussing. In relation to Proposition I.5
of the Elements: ‘In isosceles triangle, the angles at the base are equal to one
another, and, if the equal straight lines be produced further, the angles under
the base will be equal to one another’,8 he writes: ‘al-Nayrîzî proved this
proposition through another course of demonstration in which he did not
require this (argument by Euclid), and he was followed in this by Ibn Sayyid
in a book known by the title al-Istikmæl’.9 Yet, the commentary in the
Istikmæl on the first book of the Elements and the early chapters of the
second book, which must have been a substantial body of text, has not yet
been discovered, depriving us of any direct verification. The fact remains
that the anonymous author cites the Istikmæl around ten times and, in
particular reproduces a long passage on amicable numbers to which we have
already drawn attention.10 Comparing this passage with the text from the
Istikmæl leaves no room for doubt. They are both the same text, the one

                                    
Hyderabad that we have identified, see below. With the exception of this last fragment, in
which the Istikmæl is quoted, none of these mentions either the title or the author.

7 ‘Abd al-RaÌmæn ibn Sayyid was a contemporary of ∑æ‘id (see Note 2). The latter
was born in 420/1029. We also know from the philosopher Ibn Bæjja that ∑æ‘id was the
disciple of Ibn Sayyid (see the letter from Ibn Bæjja to the Vizir Abº al-Îasan ibn al-
Imæm, in Rasæ’il falsafiyya li-Abî Bakr ibn Bæjja, ed. Jamæl al-Dîn al-‘Alawî, Beirut,
1983, p. 88). Ibn Bæjja died in around 1139 and it is therefore possible to assume that Ibn
Sayyid was a generation older and that he was active in the final decades of the eleventh
century. Elsewhere, Ibn al-Abbær writes in his Kitæb al-takmila li-Kitæb al-∑ila: ‘Abd al-
RaÌmæn ibn ‘Abd Allæh ibn Sayyid al-Kalbî of Valencia, whose surname is Abº Zayd, is
an eminent scholar in numbers theory and arithmetic; and none of his contemporaries was
his equal in geometry. Only ∑æ‘id of Toledo mentioned him’. He then remarks that Ibn
Sayyid composed in faræ’i≈ and that he studied in 456/1064 (see Complementum libri
Assilah, ed. F. Codera and Zaydin, 2 vols, Madrid, 1887–89, vol. II, p. 550), which
confirms the dates given. He was therefore a contemporary of Ibn Hºd.

8 T. Heath recounts the commentaries provoked by this proposition – Aristotle,
Pappus and Proclus – see The Thirteen Books of Euclid’s Elements, 3 vols,
Cambridge, 1926; repr. Dover, 1956, vol. I, pp. 251–5.

9 Ms. Hyderabad, Osmaniyye 992, fol. 46r:

See also R. Rashed, ‘Ibn al-Haytham et les nombres parfaits’, Historia
Mathematica, 16, 1989, pp. 343–52, in particular p. 351.

10 See previous note.

كلا هذا ىلع يزيرنيال هنروب ره لش خ ثاب م رأ ه جتحي ل ي كذ ىلإ ف كذ ىلع هعباوت ،ل ن ل ت في رس اب هاك  ب

كالاسب وفلمعرا ل.مات
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that has survived.11 The other references to the Istikmæl by the anonymous
author either refer to sections of the book that have been lost or have been
paraphrased.12

At the present time, this is the only source that attributes the work to
Ibn Sayyid. It is important not to discount or ignore the fact that several
independent sources agree in naming Ibn Hºd as the author of the Istikmæl.
The oldest known attribution is that of al-Qif†î,13 who confirms the
authorship of Ibn Hºd, citing an earlier attribution by Maimonides.
Maimonides’ pupil, Ibn Aknîn of Barcelona,14 repeats this attribution in his
™ibb al-nufºs (The Medicine of the Souls), and even includes a sort of
diagrammatic list of the contents of the Istikmæl.15 In fact, after he had
written ‘this is the book of the Istikmæl by al-Mu’taman Ibn Hºd, King of
Saragossa’, he enumerates the five topics that constitute the book.16 The
third source is a fourteenth century mathematician, MuÌammad Sartæq al-

11 This is a fragment on amicable numbers, taken from Thæbit ibn Qurra and
included in the Istikmæl. This fragment is preserved in the Cairo manuscript, Dær al-
Kutub, Riyæ≈a 40, fols 36r-37v; it is cited in the Hyderabad manuscript, Osmaniyye 992,
fols 295r-297r, which starts by noting: ‘the author of the Istikmæl said… (wa-qæla ÒæÌib
al- Istikmæl…)’. We shall account for this matter later.

12 See, for example, fols 34v, 36r, 38r, 46, 47, 50r, 56r, 57r, 68r, 151r and 295r.
13 Al-Qif†î, Ta’rîkh al-Ìukamæ’, ed. J. Lippert, Leipzig, 1903, p. 319. Al-Qif†î

wrote in relation to Maimonides, that ‘he rectified (hadhdhaba) the book of the Istikmæl in
astronomy of the Andalusian Ibn AflaÌ, and that he did it well; yet it showed a confusion
in origination, since he (Maimonides) rectified the book of the Istikmæl of Ibn Hºd in the
science of mathematics (hadhdhaba Kitæb al-Istikmæl li-Ibn AflaÌ al-Andalusî fî al-hay’a
fa-aÌsana fîhi wa-qad kæna fî al-aÒl takhlî† wa-hadhdhaba Kitæb al-Istikmæl li-Ibn Hºd fî
‘ilm al-riyæ≈a)’. It should be noted in this context that the title of the Istikmæl is not rare.

14 The comments of Ibn Aknîn in relation to Ibn Hºd and the Istikmæl are
particularly important and have been well known to historians since the nineteenth
century. The major works in this area are M. Steinschneider, Die hebraeischen
Übersetzungen des Mittelalters und die Juden als Dolmetscher, Berlin, 1893; repr.
Graz, 1956, pp. 33–5; M. Steinschneider, Die arabische Literatur der Juden,
Frankfurt, 1902; repr. Hildesheim/Zürich/New York, 1986, pp. 228–33.

15 The importance of the work of Ibn Aknîn derives from the fact that he includes a
schematic listing of the contents of the Istikmæl in his book in Arabic, but using Hebrew
characters – ™ibb al-nufºs, edited in the nineteenth century and translated into German by
M. Güdemann, Das jüdische Unterrichtswesen während der spanisch-arabischen
Periode, Vienna, 1873, see pp. 28–9 and 87–8. T. Langermann has also drawn attention
to this text and has translated it into English; see ‘The mathematical writings of
Maïmonides’, The Jewish Quarterly Review, LXXV, no 1, July 1984, pp. 57–65, in
particular pp. 61–3. In 1986, J. Hogendijk included an English translation of the same
text in Archives internationales, p. 210.

16 Güdemann, Das jüdische Unterrichtswesen während der spanisch-arabischen
Periode, p. 29.
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Maræghî,17 who wrote a commentary on the Istikmæl entitled the Ikmæl. No
copy of this commentary has yet been found, but it is cited by the author in
the glosses to manuscript 4830 in the Aya Sofya collection. Al-Maræghî also
credits Ibn Hºd as the father of the Istikmæl. To these may be added a
number of indirect references attributing to Ibn Hºd one or the other of the
results found in the Istikmæl; one such example is found in a work by Ibn
Haydºr.18 Taken together, these clues enable us to state with a high degree
of certainty that this treatise is definitely the work of Ibn Hºd. The
mathematical content provides a further argument in favour of this
hypothesis. All the references to the lost work of Ibn Sayyid indicate that he
was at the forefront of mathematical research during his lifetime. We have
already shown19 that he may even have addressed questions relating to the
use of generalised parabolas and skew curves. This is definitely not the level
at which the Istikmæl is pitched. It results from a totally different project, as
we shall see. It therefore appears to us that the attribution of the Istikmæl to
Ibn Hºd is beyond reasonable doubt. However, the exact role of Ibn Sayyid
remains a fundamentally important question. Could it be nothing more that a
simple error? Or could it be a work with the same title, written by Ibn
Sayyid and then included in a compilation and expanded by Ibn Hºd? Or is
it simply an early confusion between two contemporary authors? The
answers to these questions must await future research. For the moment, we
can only reiterate our strong conviction that the attribution to Ibn Hºd is
correct.

In order to arrive at an assessment of the Istikmæl project without either
diminishing or amplifying its extent, consider the judgement found in the
works of the thirteenth-century biobibliographer, al-Qif†î, together with a
single, incontestable historical fact. Al-Qif†î wrote that the book was a
‘compendium (kitæb jæmi‘) that is elegant, yet, that necessitated
verification’.20 As to the historical fact, it is simply the wide distribution of
the Istikmæl, especially among second-rate mathematicians and philosophers.
The evidence points to a close relationship between this judgement and this
historical fact. The opinion of al-Qif†î – or quoted by him – corresponds
perfectly to the surviving sections of the book and the project that is

17 See Chapter V on al-Qºhî, Note 19; and also Hogendijk, ‘The geometrical parts
of the Istikmæl of Yºsuf al-Mu’taman ibn Hºd’, p. 219.

18 Ibn Haydºr (died in 816/1413), al-TamÌîÒ fî sharÌ al-talkhîÒ, ms. Rabat, al-
Îasaniyya 252, fol. 72; edited and analysed by R. Rashed in ‘Matériaux pour l’histoire
des nombres amiables et de l’analyse combinatoire’, Journal for History of Arabic
Sciences, 6, nos. 1 and 2, 1982, pp. 213 sqq.

19�Sharaf al-Dîn al-™ºsî, Œuvres mathématiques. Algèbre et géométrie au XIIe

siècle, 2 vols, Paris, 1986, vol. I, pp. 128–9.
20 Al-Qif†î, Ta’rîkh al-Ìukamæ’, p. 319.
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revealed by their study. The Istikmæl provides a geometer’s compendium,
including arithmetic and Euclidean geometry (taken directly from the
Elements, the Data and commentators such as al-Nayrîzî), the theory of
amicable numbers (borrowed directly from the treatise by Ibn Qurra), the
geometry of conics (from the Conics of Apollonius), spherical geometry and
other topics, all derived in a similar manner. All this borrowing, often
verbatim and at length, indicates that the Istikmæl must have been a kind of
‘Encyclopaedia of Geometry’, or, more accurately, an ‘Encyclopaedia of
Mathematics’ in the sense of the ancient quadrivium, and that it was also
designed to cover astronomy, optics and harmonics.21 This ‘Encyclopaedia
of Mathematics’, in this sense, would have been intended for a readership
cultivated in mathematics but not necessarily research mathematicians in the
pursuit of new knowledge. These would have included philosophers, as ∑æ‘id
tells us, who had with Ibn Hºd many interests in common. This is how we,
very briefly, see the Istikmæl project. It is important not to misinterpret the
nature of this endeavour, or that of Ibn Hºd. The Istikmæl does not in any
way aim to unify the mathematics of the period, as one may naively think.22

It is simply a compilation of the mathematical works essential to a proper
mathematical education. Ibn Hºd did not have the ability to conceive such a
task, let alone to carry it out. To succeed, he would have needed an
altogether different conception of algebra and its role, especially in terms of
its relationship with geometry, something of which Ibn Hºd did not have the

21 T. Langermann (pp. 63–5) has drawn attention to an enumeration and affirmation
of al-Akfænî that implies that the Istikmæl was not completed in accordance with the plan
laid down by Ibn Hºd, and that this plan called for several additional chapters that are not
found in the Istikmæl. After having reviewed the ten sections on geometry (Irshæd al-
QæÒid, p. 54), al-Akfænî wrote: ‘I have not seen hitherto any book that contains these ten
sections. Yet, if the composition of the Istikmæl by al-Mu’taman ibn Hºd – may God be
merciful to him – were to be completed, then it would have been satisfying and
sufficient…’

Let us furthermore note that al-Maqqarî cites the title as Kitæb al-Istikmæl wa-al-
manæÂir; which indicates that al-Istikmæl contained also a part on optics (cited in Note 2,
supra). Al-Akfænî is speaking here only of geometry, but he was aware that the book
contained a major section on arithmetic that was not included in the ten sections in his list.

22 The reader will come across similar affirmations throughout the text, some of
which are even more excessive. Some claim Ibn Hºd to be the most brilliant of all the
Andalusian geometers, while others, carried away by their enthusiasm, consider him to be
a predecessor of Bourbaki … However, these claims all appear to be without foundation
when one considers the work of other Andalusian mathematicians: One needs do little
more that to read the pages of Ibn al-SamÌ, or the comments on Ibn Sayyid, or simply the
comments of their contemporaries.

نل و ك لك ل فصت م ملاسا ني ك م لات ل نل مر دوه بن ؤق شأم ف،اك ناكل ئه،لا هح ن
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slightest idea. However, the question remains as to know when and how this
style of encyclopaedic composition in mathematics, until then the preserve of
philosophers such as Ibn Sînæ in his al-Shifæ’, should have been taken up in
the western Islamic world by mathematicians of the likes of Ibn Hºd.
Following in the tradition of the great mathematicians Banº Mºsæ, Ibn
Qurra, Ibn Sinæn, Ibn al-Haytham, Ibn al-SamÌ and others, he could have
undertaken the task of preparing this encyclopaedia.

In any event, it is in the light of bearing the designation ‘Compendium’
that the Istikmæl includes two studies relating to infinitesimal mathematics.
The encyclopaedic form of the work undoubtedly affects not only their
presentation, but also their extent. The first of these deals with the
measurement of the parabola and is based firmly on the treatise by Ibn
Sinæn on the same subject. The second addresses the isoperimetric problem
and, as we shall see, is based on a proposition by Ibn al-Haytham. Presented
in this form, these two studies are valued more for their historical interest
than for the novelty of their mathematical results. In this work, Ibn Hºd
gives the results in their logical order, rather than in the order in which they
were discovered. The encyclopaedic style also limits the extent to which the
results are developed, as we shall see. That statement may appear to be too
restrictive, given the fact that Ibn Hºd retained some independence of spirit
in his approach to the work. He is not afraid to change the formulation
occasionally, often by making it more general. However, it is also evident, at
least in the two cases discussed here, that this generalization did not always
succeed and the proofs inspired by his predecessors are less rigorous than
the originals. For example, while he succeeded in extending the result
established by Ibn Sinæn for the parabola (the comparison of sections of the
parabola and triangles) to both the ellipse and the hyperbola, he was not able
to use this comparison to extend Ibn Sinæn’s result for the area of a segment
of a parabola, for which the first comparison is a precursor, to other conic
sections.

7.1.2. Manuscript transmission of the texts

The text on the measurement of the parabola survives in a single
manuscript, Or. 82 in the Royal Library of Copenhagen, while the second
text on the isoperimetric problem survives both in that manuscript and
another, Or. 123a in the Library of Leiden. Both these manuscripts have
been used to make the first edition23 of these two texts of the Istikmæl and
to provide the first translation.

23 See the edition of the Arabic text in Mathématiques infinitésimales, vol. I ,
pp. 1001–13 and 1023–27 respectively.
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Arabic manuscripts are rarely described and catalogued as well as those
in Copenhagen, as can be seen in the Codices Orientales Bibliothecae
Regiae Hafniensis Jussu et auspiciis regiis enumerati et descripti. Pars
Altera: Codices Hebraicos et Arabicos Continens (1851), vol. II, pp. 64–7.
The author of this catalogue has carefully and accurately given all the
information that he could possibly glean from the manuscript. He provides
an extremely clear view of the plan followed in the Istikmæl, and gives
citations in Arabic of the various subdivisions. He extracts all the significant
data from the manuscripts themselves. In this way, we know that it came
from the ‘Coll. Paris. De la compagnie de Jésus’, and one can see on fol. 1r

in the internal margin – as in codex 81 in the same library: ‘Signed in
accordance with the Decree dated 5th July 1763. Mesnil’. It should be noted
that the same signature appears on the external margin of fol. 1r. The
manuscript therefore came from France after that date. In addition, a
number of comments in Greek, noted by the author of the catalogue, and
some writing that cannot be later than the Renaissance suggest that the
manuscript spent some time in the Hellenist East before it arrived in Paris.
All the comments (fols 12r, 16r, 21r, 23v, 32v and 122r)24 relate either to the
titles of the chapters or in some way to their content. That is to say, they
were written by a Hellenist who understood the content, at least in part. So,
we can trace this early manuscript from its probable origin in Andalusia,
through the Hellenistic East, to Paris and then on to Copenhagen.

The manuscript itself consists of 128 folios. In several places it has been
damaged by insects or traces of damp. Several sections are missing, in
particular the first section containing a commentary on Book I and part of
Book II of the Elements of Euclid. We know from the anonymous author of
the Osmaniyye manuscript that other important sections originally existed,
including a commentary on the Postulate of Parallels. This early manuscript
is written in a North African hand. Throughout, there appear here and there
marginal notes in another more recent handwriting, which one must be

24 Fol. 12r: √|ƒ® …Ëµ aƒ§¢¥Ëµ aµ`≥∑zß`» ≤`® √ƒª» …d «‡¥`…` }√ß√|{` ≤`®
zƒ`¥¥d» « z≤ƒß«|›» (‘on the analogy of numbers and their comparison with bodies,
surfaces and lines’).

Fol. 16r: √|ƒ® aƒ§¢¥Ëµ •{§∫…ä…∑» ≤`® …∑◊ √ƒª» …d ¥Äƒä « z≤ƒß«|›» (‘on the
intrinsic character of numbers and the comparison of the same <thing> with parts’).

Fol. 21r: The catalogue (Codices Orientales, p. 65) notes the presence in the margin
of the following words: Á{| √∑≥Œ ≥|ß√|§ (‘he therefore leaves much’). However, it
should be noted that √∑≥Œ does not appear on the microfilm.

Fol. 23v: √|ƒ® …Ëµ ≤Õ≤≥›µ √|ƒ§⁄|ƒß`» (‘on the circumference of circles’).
Fol. 32v: {§c√ƒ`∂§» …Ëµ «¤ä¥c…›µ ≤`® å }µ `À…∑±» e«≤ä«§» (‘the drawing of

figures and their study’).
Fol. 122r: √|ƒ® «…|ƒ|Ëµ (‘on solids’).
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careful not to confuse with that of the copyist. He made his own notes in the
margin, indicating that he had revised his copy by comparison with the
source after he had completed the copy. Finally, the copyist wrote the letters
in the mathematical propositions as they were pronounced (a: alif, b: bæ’,
etc.).The text on the measurement of the parabola occupies fols 100v–102v.

The second manuscript is that held in the Library of Leiden, Or. 123-a.
An accurate, albeit briefer, description is given in M.J. de Goeje, Catalogus
Codicum Orientalium Bibliothecae Academiae Lugduno-Batavae (1873),
vol. V, pp. 238–9.25 This manuscript is a fragment of 80 folios of the
Istikmæl. The writing is in eastern naskhî and the manuscript is undoubtedly
more recent than the one discussed above. A comparison of the two
manuscripts also reveals that each belongs to a different manuscript
tradition. There is also no indication that the copyist of the Leiden
manuscript had compared it with the source. The only marginal notes
appear to have been added during the copying process – see fols 49v, 55v

and 56r – or with no relevance to the text – e.g. fol. 69v, which is simply a
verse from the Koran. The catalogue gives no information on the history of
the manuscript, other than that it forms part of the collection of Golius.26

The text on the isoperimetric problem occupies fols 7v–11r and folios
50r–50v of the Copenhagen manuscript.

7.2. THE MEASUREMENT OF THE PARABOLA

7.2.1. Infinitesimal property or conic property

Ibn Hºd’s study of the measurement of the parabola forms part of one
chapter of the Istikmæl relating to sections of the cylinder and cone of
revolution. This chapter is itself divided into two parts. The first of these
deals with ‘sections and their properties, without these relating to one
another’, while the second covers ‘the properties of lines, angles and
surfaces of sections that relate to each other’.27 These two titles provide a
perfect indication of the background against which Ibn Hºd developed the
work. His determination of the area of a section of a parabola did not
constitute an end in itself; rather it was simply a step along the path to

25 See also P. Voorhoeve, Codices Manuscripti VII. Handlist of Arabic
Manuscripts in the Library of the University of Leiden and Other Collections in the
Netherlands, 2nd ed., The Hague/Boston/London, 1980, p. 432.

26 It would be interesting to know whether it was copied in the East or, like other
collections in the time of Golius, in Holland.

27 Ms. Copenhagen, Royal Library, Or. 82, fol. 90v.
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determining a property of the conic section. The infinitesimal aspects of the
study interested him less than those of the conic sections. The importance of
this point cannot be overemphasized, as it serves to distinguish the
perspective of Ibn Hºd from that of his inspiration, Ibræhîm ibn Sinæn. We
have already seen that the latter, in common with al-Mæhænî and his
grandfather, Thæbit ibn Qurra, was interested in the measurement of the
parabola as a metric question in its own right. This difference, together with
the wholesale borrowing from the Conics of Apollonius, characterize the
style of Ibn Hºd and the nature of his path. In order to understand this
difference better, we must make the briefest possible examination of Ibn
Hºd’s work on the measurement of the parabola.

The structure of the text is as follows: After summarizing certain
definitions of the three sections and their elements, he restates several
propositions from the Conics of Apollonius, some paraphrased and some
verbatim, before arriving eventually at the determination of the area of a
section of a parabola in Propositions 18–21. Unlike the earlier propositions,
these are based on the ideas of Ibræhîm ibn Sinæn. The work taken from the
Conics is not only considerable, it also follows the order established by
Apollonius.

In order to illustrate this context, we are obliged to consider both the
preceding propositions leading up to Propositions 18–21 and those following
them. It can clearly be seen that Ibn Hºd borrows his propositions from the
sixth book of the Conics, in the original order, at least at the start, before
returning to Ibræhîm ibn Sinæn.

The tenth proposition (as numbered in the manuscript) is nothing more
than a paraphrased version of the first two propositions in the sixth book. In
these propositions, Ibn Hºd shows that, ‘If the latera recta of the parabolas
are equal and the angles of their ordinates are also equal, then the sections
are equal and similar. If these sections are equal and similar, then their latera
recta are equal. If the sections are other than the parabola, and are such that
the figures constructed on their transverse axes are equal and similar, then
these sections will be equal and similar. Finally, if these sections are equal
and similar, then the figures constructed on their transverse axes will be
equal and similarly disposed’.28

However, it should be noted that, in the case of the parabola, Ibn Hºd
considers the latera recta relative to any diameter, while Apollonius only
considers those relative to the axes. This is also the reason why Ibn Hºd
introduces the angles of the ordinates. It should also be noted that, when he
discusses conics with centre, Ibn Hºd departs from the position taken with
regard to the parabola and makes a distinction between a diameter lying on

28 Ibid., fol. 96v.
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the major axis and any other diameter. He deals with the latter in
Proposition 15, corresponding to Proposition 13 of Apollonius.

The next proposition in the Istikmæl is a restatement of the sixth
proposition in the same book of the Conics: ‘If an arc of a conic section can
be superimposed on an arc of another conic section, then the two sections
are equal’.29

Proposition 13 in this chapter of the Istikmæl is the 11th in this book of
the Conics. All the parabolas are similar. The following proposition in the
Istikmæl is the same as Proposition 12 in the sixth book of the Conics. Here
is the proposition as written by Ibn Hºd: ‘the sections other than the
parabola, of which the constructed figures on the axes are similar, would
themselves be also similar; and, if the sections are similar, then the
constructed figures on the axes are similar [and equal]’.30

In Proposition 18, Ibn Hºd then shows a consequence that he will need
later for the measurement of the parabola:

Let there be two conic sections of the same kind, with respective
diameters AB and GQ, and let points K and T be on BA, and points O and S
on QG such that

(1) BA

AK
= QG

GO
  and  BA

AT
= QG

GS
.

A
T

H I

K
B G

S

N

Q
O

D

Fig. 7.1

Let KI, TH, OD and SN be the ordinates associated with these points.
Then

KI

TH
= OD

SN
.

29 Ibid., fol. 97r.
30 Ibid., fol. 97v. Note that these figures are not equal, despite the assertion by Ibn

Hºd that they are. It is for this reason that we have enclosed ‘and equal’ in square
brackets.
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We have
KI

TH

BK AK

BT AT

AK AB AK

AT AB AT

AK

AB

AK

AB

AT

AB

AT

AB

2

2 1 1= ⋅
⋅

= ±( )
±( )

= ±



 ±



 ;

similarly
OD2

SN 2
= GO

GQ
1 ± GO

GQ







GS

GQ
1 ± GS

GQ





  

;

hence the result  follows with the aid of (1).

The 15th proposition in this chapter of the Istikmæl is the same as
Proposition VI.13 in the Conics. ‘If the figures constructed on the diameters
that are not axes, on sections that are not parabolas, are similar, and if the
angles of their ordinates are equal, then the sections are similar’.31 Ibn Hºd
returns eventually to the reciprocal of this proposition. He then moves onto
the 16th proposition, which is a restatement of Propositions 26 and 27 in the
same book of the Conics: ‘If parallel planes cut a cone, then the sections so
generated are similar’.32 Proposition 17 of the Istikmæl is inspired by
Propositions 4, 7 and especially 8 of the same book by Apollonius, stated as
follows: ‘Let there be a conic section with an axis that separates its surface
into two halves. If a segment is removed, it is possible to find another
segment that is equal and similar to the one removed. Each of the diameters
of an ellipse separates its surface into two halves and its contour also into
two halves’.

These propositions are followed by Propositions 18–21, which we shall
examine again in detail. These are then followed in turn by the following two
propositions: ‘to demonstrate how to construct a section that is equal to a
known section and is also similar to another known section’ – and this is
Proposition 22 – in order to then establish that ‘If there are two similar
portions belonging to two sections of the same kind, then the ratio of the
line surrounding one and forming part of the section to the line surrounding
the other and forming part of the <other> section is equal to the ratio of the
diameter of one to the diameter of the other’.33

This brief summary illustrates the background to the position of the
determination of a portion of a parabola in the Istikmæl: the study of the
properties of conic sections taken, for the most part, from Apollonius. The
path followed by Ibn Hºd is that of an expository order rather than an order
of discovery. This process is also found in his study of the measurement of

31 Ibid., fol. 98v.
32 Ibid., fol. 99v.
33 Ibid., fols 102v–103r–v.
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the parabola, i.e. in the four propositions discussed. The remainder of this
chapter is devoted to an analysis of these propositions.

7.2.2. Mathematical commentary on Propositions 18–21

Ibn Hºd begins with a statement relating to the diameter and transverse
diameter.

A segment of a parabola, ellipse or hyperbola is bounded by an arc and
its chord. Let BAB′ be that segment, and, through C, the midpoint of BB′,
passes AH, a diameter of the section that cuts the arc BB′ at a point A, called
the summit of the segment; the segment AC is then called the diameter of
the segment having BB′ as a base. In the case of a parabola, the diameter
AH is parallel to the axis, and, in the case of an ellipse or a hyperbola, AH
passes by K, the centre of the section, AH being a transverse diameter.

A

B

C

B

B

K

H

H

B

A

C

′
′

Fig. 7.2

In Propositions 18 and 19, the studied portions are not segments, rather
portions such as ABC; the expressions summit A, diameter AC, base BC of
the portion and transverse diameter, are nevertheless all preserved.

Proposition 18. — We consider within two parabolas, two ellipses or two
hyperbolas, the portions ABC and DEG: The first is delimited by a
diameter passing through A and the ordinate BC with respect to that
diameter, and the second is delimited by a diameter passing through D and
the ordinate EG with respect to that diameter.
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H

B

CM
A

E

G

IK

L
D

N

Fig. 7.3

We show that
a) if ABC and DEG are portions of two parabolas

or
b) if ABC and DEG are the portions of two ellipses or of two

hyperbolas, and that, ∆ and ∆′ are the transverse diameters passing
through A and D, assuming

∆ ∆
AC DG

= ′
,

then
port.  (ABC)
port.  (DGE)

= tr.  (ABC)
tr.  (DGE)

.

1) Let us assume that

(*)  tr.(ABC)
tr.(DGE)

= port.(ABC)
H

,

H being a surface such that H < port. (DEG).34 Let I be the midpoint of DE
and IK the diameter of the section:

a) If the section is a parabola, then IK || DG.
b) If the section is an ellipse or a hyperbola, then IK cuts DG at the

centre of the section.

We know that

 tr. (DEG) > 1
2

 port. (DEG)

and

34 It must be assumed that tr. (DEG) < H < port.(DEG), as if H ≤ tr. (DEG), the
equality (*) is absurd.
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tr. (DEK) > 1
2

 port. (DEK).35

If we proceed in the same manner, by considering the midpoints of the
chords KD and KE, we then have a polygonal surface larger than H. Let
DKEG be the resulting polygon, let KL be the ordinate of K, and let M be
on AC such that

(1) AM

CM
= DL

GL
,

from which we deduce

(2) AC

AM
= DG

DL
.

35 These two inequalities are given without justification.

a) tr.(DEG) > 1
2

 port.(DEG).

If we complete the parallelogram DGEG′, and
no matter what type of section we consider, with
DG′ being tangent to that section, then we have

2 · area tr.(DEG)
= area parall.(DGEG') > area port.(DEG);

hence the result.

D

EG

G

′

Fig. 7.4

b) tr. (DEK) > 1
2

 port.(DEK).

If the section is a parabola, KI is
the diameter and the tangent at K is
parallel to DE and cuts DG in H. If we
complete the parallelogram DHLE, we
have

2 · area (DEK) = area parall. (DHLE)
> area port. (DKE);

hence the result.

H D

K I

EL

G

E

G

DH

K

L

I h

Fig. 7.5

Note that Ibn Sinæn gives a demonstration of the inequality b) in the lemma of
Proposition 2, in the case of the parabola. His reasoning applies to the ellipse and the
hyperbola.
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a) If the sections are parabolas, then, according to the Conics of
Apollonius, I.20, we have

BC2

NM2
= AC

AM

and
EG2

KL2
= DG

DL
;

by (2) we have
BC

NM
= EG

KL
.

b) If the sections are ellipses or hyperbolas, then, according to the
Conics of Apollonius, I.21, we have

BC

NM

AC AC

AM AM

2

2 = ±
±

 
 
( )
( )
∆
∆

and
EG

KL

DG DG

DL DL

2

2 = ′ ±( )
′ ±( )

   

   

∆
∆

(+ for a hyperbola; – for an ellipse).

However, by hypothesis, we have

(3) ∆ ∆
AC DG

= ′ .

We can thus note

BC

NM

AC

AM
AC

AC

AM

AC

2

2

1
= ⋅

±





±





∆

∆   and  EG

KL

DG

DL
DG

DG

DL

DG

2

2

1
= ⋅

′ ±





′ ±





∆

∆ ;

following (2) and (3), we have

(4) BC

NM
= EG

KL
.

Yet (1) implies
AC

CM
= DG

GL
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and (4) implies
BC

BC + NM
= EG

EG + KL
;

hence
AC

CM

BC

BC NM

DG

GL

EG

EG KL
⋅

+
= ⋅

+
.

We thus deduce

(5) tr.(ABC)
tp.(BCMN)

= tr.(DEG)
tp.(LKEG)

.*

But
AC

AM
.

BC

NM
= DG

DL
.
EG

KL
;

we thus deduce

(6) tr.(ABC)
tr.(ANM)

= tr.(EDG)
tr.(DLK)

.*

We have
tr.(ABC)

polyg.(ANBC)
= tr.(EDG)

polyg.(DKEG)
;

hence
tr.(ABC)
tr.(EDG)

= polyg.(ANBC)
polyg.(DKEG)

= port.(ABC)
H

,

and hence

* Justification of the equalities (5) and (6):
If we posit ACBˆ = α  and DGEˆ = β , we have

tr.(ABC) = 1
2

BC · AC sin α, tp.(BCMN) = 1
2

(BC + NM) · CM sin α,

tr.(EGD) = 1
2

EG · DG sin β, tp.(LKEG) = 1
2

(EG + KL) · GL sin β;

hence the equality (5).
Likewise

tr. (ANM) = 1
2

MN · AM sin α  and tr. (DLK) = 1
2

KL · DL sin β;

hence the equality (6).
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polyg.(ANBC)
port.(ABC)

= polyg.(DKEG)
H

,

which is impossible, since

polyg. (ANBC) < port. (ABC) ⇒ polyg. (DKEG) < H,

yet, we posited, by hypothesis, polyg. (DKEG) > H.

2) If we suppose

tr.(ABC)
tr.(DGE)

= port.(ABC)
H

, with H > port. (DEG),

this entails that we assumed

tr.(DEG)
tr.(ABC)

= port.(DEG)
H1

, with H1 < port.(ABC).

The preceding form of reasoning shows that this is absurd; hence we obtain
the conclusion.

Comments:
1) Ibn Hºd’s demonstration is undertaken by way of the quadrilaterals

DKEG and ANBC, which are obtained through first dividing the arcs DE
and AB at points K and N respectively, while assuming that from this step
we have

area (DKEG) > H.

He did not show that the same mode of reasoning can be applied, if
necessary, to the division of arcs DE and AB in 2n parts in order to obtain a
polygon Pn such that

area (Pn) > H.

In the next step, to the midpoint I1 of KD we associate K1 as an
intersection of the parallel to DG passing by I1 and the arc KD, and L1 on
DG such that K1L1 || KL || EG; similarly, to point I′1, as the midpoint of KE,
we associate K′1 as the intersection of the parallel to DG passing by I′1 and
the arc EK, and L′1 on DG such that K′1L′1 || KL || EG. To the points L1 and
L′1 we associate on AC the points M1 and M′1 such that
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AC

DG

AM

DL

AM

DL
= = ′

′
1

1

1

1

.

K

K

L L L

K

1 1

1

1

1
G

E

I

I1

β α
D

N

N

N

B

CA
M M M1

1

1

′ ′

′

′

I1

′

Fig. 7.6

We thus have
AC

DG

AM

DL

M M

L L

MM

LL

M C

L G
= = = ′

′
= ′

′
=1

1

1

1

1

1

1

1

λ ,

namely similar divisions into the segments AC and DG.

To points M1 and M′1 we associate on the arc AB the points N1 and N′1
such that M1N1 || MN || M′1N′1 || CB.

Using the equations of the two conic sections, we show, as we did with
points K and N, that

BC

N1M1

= EG

K1L1

  and  BC

N M

EG

K L′ ′
=

′ ′1 1 1 1

;

we thus have
BC

EG

N M

K L

NM

KL

N M

K L
= = = ′ ′

′ ′
=1 1

1 1

1 1

1 1

µ .

Each of the polygons P2 and P′2 obtained by dividing the arcs DE and
AB into 22 equal parts is composed of a triangle and three trapezoids. If we
designate by h1, h2, h3 and h4 the heights respective to the triangle DL1K1,
and the trapezoids (K1L), (KL′1) and (K′1G) with h′1, h′2, h′3 and h′4 the
heights of their homologues in the second figure, we have

′ = =h

h

AC

DG
i

i

 
 

 
sin
sin

sin
sin

α
β

λ α
β

, for i ∈ {1, 2, 3, 4}.
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The properties of the polygons P2 and Q2 that are defined as such would
thus be those of polygons A and B, which were studied by Ibn Sinæn in his
Proposition 1.36

It would be the same for the polygons Pn and Qn obtained by way of
dividing the arcs DE and AB into 2n parts as per the indicated procedure;
we thus show that

area 
area tr.

area 
area tr.

( )
( )

( )
( )

P

DEG

Q

ABC
n n= .37

2) The portions ABC and DEG under consideration belong to segments
BAB′ and EDE′, and are obtained by tracing the chords BB′ and EE′ with
respective midpoints C and G. The triangles ABC and ACB′ have equal
areas, and the same applies to triangles DEG and DGE′.

It is clear that the result established in Proposition 18, for two portions
belonging to distinct sections of the same kind, applies also to two portions
belonging to a same section. We thus have

tr.
tr.

port.
port.

( )
( )

( )
( )

ABC

ACB

ABC

ACB′
=

′
,

and, consequently,
port. (ABC) = port. (ACB′).

A

B

B

C

D

E

E

G

′

′

Fig. 7.7

Similarly
port. (EDG) = port. (DGE′).

36 Refer to the mathematical commentary to Ibn Sinæn, Chapter III.
37 Ibid .
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Hence, the area of each of the portions ABC and DEG is equal to half the
area of each of the segments BAB′ and EDE′.

Proposition 19. — The portions being studied are on the same section;
namely, AC and BE.

a) If the section is a parabola, and if the diameter AD, which defines
the first portion, is equal to the diameter BG that defines the second, then
portions ACD and BEG are equal.

A

C

DM H

L
B

N G

E

I

Fig. 7.8

b) If the section is an ellipse or a hyperbola, the transverse diameters
issued from A and B are respectively ∆ and ∆′; hence, if

∆ ∆
AD BG

= ′ ,

then the portions ACD and BEG are equal.

L

B

N

A
M

K

H

I

C

D

E

G

<P>

Fig. 7.9

Let AN be the ordinate of A relative to BG, and BM the ordinate of B
relative to AD, and AL the tangent in A that cuts BG in L.
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I

H

K

L B N

G

E

A M

C

D

<P>

Fig. 7.10

a) If the section is a parabola, then BL = BN according to Apollonius’
Conics I.35. We thus have BL = BN = AM, and consequently the triangles
ABM and ABN have equal areas.

b) If the section is an ellipse or a hyperbola, we have, following
Apollonius’ Conics I.36,

(1) IN

NB

LI

LB
= .

From (1) we deduce
BL

BN

LI

IN
= ;

hence
BL

BN

LI BL

IN BN
= +

+
ε
ε

with ε = +1 for the hyperbola, ε = –1 for the ellipse.
Let there be HP || AN, with K the centre of symmetry in the two

sections; we then have IP = BN. Therefore

BL

BN

BI

IN IP

BI

PN

BK

KN
=

+
= =

ε
;

thus
KN

BN

BK

BL
= .
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Yet BM || AL, so
KL

LB
= KA

AM
;

we thus have
KB

NB
= KA

AM
.

Yet
AM

AK
= tr.(ABM)

tr.(ABK)

and
BN

BK
= tr.(ABN)

tr.(ABK)
;

the triangles ABM and ABN therefore have equal areas.

By hypothesis we have
AD

AH
= BG

BI

or
AD

AK
= BG

BK
;

we equally have
AK

AM
= BK

BN
;

therefore
AD

AM
= BG

BN
.

This equality is verified for the three sections.
We deduce, as in Proposition 18 – namely, by using in each case the

equation of the section being considered – that

CD

BM
= EG

AN
.

Consequently
CD

BM

AD

AM

EG

AN

GB

BN
◊ = ◊ ;
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hence
tr.(ACD)
tr.(ABM)

= tr.(EGB)
tr.(ANB)

.

However,
tr.(ABM) = tr.(ABN),

and accordingly
tr.(ACD) = tr.(EGB),

but, following Proposition 18,

tr.(ACD)
tr.(EGB)

= port.(ACD)
port.(BGE)

;

thus, the portions ACD and BGE are equal.

Reciprocally – If two portions ACD and BEG of the same section have
equal areas, the straight lines AD and BG, being the diameters ∆ and ∆′ that
issue from A and from B, with CD and EG the ordinates of C and E relative
to these diameters, then:

• if the section is a parabola, then AD = BG;

• if the section is an ellipse or a hyperbola, we have AD BG

∆ ∆
=

′
.

Comment. — Propositions 18 and 19 discussed here relate to two portions
belonging to two parabolas, two ellipses or two hyperbolas, or to a single
section. The area of each of the portions considered is half that of the
segment with which it is associated (see Comment 2, Proposition 18).

It should be remembered that Ibn Sinæn was only interested in the
parabola, and that his second proposition considered the ratio of the areas of
two segments of a parabola using Proposition 1 as a lemma.

Note that, in Proposition 18, Ibn Hºd makes use without justification of
two inequalities relating to the areas of the portions and the triangles
associated with them.38 In Propositions 18 and 19 he uses, without
acknowledgement, equalities that are either direct applications or
consequences of propositions established by Apollonius.

However the study of the implication of

38 See Note 35.



MEASUREMENT OF THE PARABOLA 745

AC

AM
= DG

DL
 ⇒  

BC

NM
= EG

KL
,

that is deployed in Proposition 18, has been examined – in the case of the
ellipse and the hyperbola – in the last part of Proposition 14.

Proposition 20. — Let ABC be a segment of a parabola, with vertex B,
and base AC; we have

sg. (ABC) = 4
3

 tr.(ABC).

A

H

D

C

G
E

B

L

I

Fig. 7.11

Let BD be the conjugate diameter of AC. From the midpoint of AB we
draw a parallel to BD, namely GEH, with ordinate GIL from G. Hence

AB = 2BE  ⇒  AD = 2DH.

However,
 HD = GI;

hence
AD = 2GI,

AD2

GI 2
= BD

BI
= 4GI 2

GI2
= 4,

and hence
BD = 4BI.
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We thus have
tr. (BGI) = 1

8
 tr. (ABD).

We equally have
GH = ID = 3BI

and
EH = 1

2
BD = 2BI,

so
GE = BI,

Hence
tr. (BGI) = tr.(BGE) = 1

2
 tr.(AGB),

and therefore
tr.(AGB) = 1

4
 tr.(ABD).

We also have
tr.(BLC) = 1

4
 tr.(BDC),

so
tr. (AGB) + tr.(BLC) = 1

4
 tr.(ABC),

and thence
port.(AGB) + port.(BLC) = 1

4
 port.(ABC).

However,
port.(ABC) – [port.(AGB) + port.(BLC)] = tr.(ABC),

and then
3
4

 port. (ABC) = tr.(ABC)

or
port.(ABC) = 4

3
 tr.(ABC).
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Comments:
1) The demonstration barely differs from that of Ibn Sinæn in

Proposition 3. The comparison of the areas of two triangles of the same
basis, which are BGA and BDA, is deduced here from the equalities GE =
BI = 1

4
 BD, without the use of heights, while Ibn Sinæn shows that the ratio

of the heights of the two triangles under consideration is 1
4

 and that the

same applies to the ratio of the areas of the two triangles.

2) In Propositions 18 and 19 the studied properties are applied to the
portions of parabolas, of ellipses or hyperbolas, while in Proposition 20 the
property that is being studied concerns only the parabola.

In fact, it is clear that if we established for an ellipse of a diameter ∆ the
construction we indicated with regard to the parabola, we would have

AD2

GI2
= 4 = BD(∆ − BD)

BI(∆ − BI)

and not
BD

BI
= 4.

A
G
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Fig. 7.12

Hence the remainder of this line of reasoning does not apply to the case of
the ellipse.

Proposition 21. — How to separate from a parabola ABC a portion with
the vertex B that is equal to a given surface D.
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Extend from B the diameter BE and the tangent BG, and construct
upon BG a parallelogram GBEH with an area equal to 3

4
 D. From point H,

draw a hyperbola having BG and BE as asymptotes; it cuts the parabola in
point I. The straight line ordinate IK cuts the parabola in C and the diameter
in K, drawing IL as parallel to BK. The parallelograms (BH) and (BI) have
equal areas (as per the property of the hyperbola in Apollonius’ Conics,
II.12). Then

(BH) = (BI) = 3
4

 D,

tr.(IBC) = (BI) = 3
4

 D.

But
tr.(IBC) = 3

4
 port.(IBC),       following Proposition 20;

hence
port. (IBC) = D.
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7.2.3. Translation: KKKKiiiittttææææbbbb    aaaallll----IIIIssssttttiiiikkkkmmmmæææællll

– 18 – Let there be two portions belonging to two parabolas, or two
portions belonging to two hyperbolas or to two ellipses, such that the ratio
of the transverse diameter of one to its diameter is equal to the ratio of the
transverse diameter of the other to its diameter, then the ratio of the area of
one of the two portions to the area of the other is equal to the ratio of the
triangle whose base is the base of the portion and whose vertex is at its
vertex to the triangle in the other portion whose base is the base of the
section and whose vertex is at its vertex.39

Example: The two portions AB and ED belong to two homogeneous40

sections. The diameter of the portion AB is the straight line AC and its
ordinate is the straight line BC, and the diameter of the portion DE is the
straight line DG and its ordinate is the straight line EG. If the two portions
belonged to41 two sections that were not parabolic, then the ratio of the
transverse diameter of the portion AB to AC is equal to the ratio of the
transverse diameter of the portion DE to the straight line DG. We join AB
and DE.

I say that the ratio of the area of the portion ABC to the area of the
portion DEG is equal to the ratio of the triangle ABC to the triangle
DEG.

H

B

CM
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E

G

IK

L
D

N

Fig. 7.14
Proof: It could not be otherwise. If this was possible, let the ratio of the

triangle ABC to the triangle DEG be equal to the ratio of the portion ABC
to an area less than or greater than the area of the portion DEG, and let this
be the area H.

Let us assume first of all that it is less than the area of the portion DEG.
Let us divide the straight line DE into two halves at the point I, and let us

39 See the mathematical commentary.
40 That is: of the same type.
41 Lit.: if they were between.
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produce the diameter IK through the point I until it meets the section at the
point K, and let us join EK and KD. As the area of the triangle DEG is
greater than half of the portion DEG, and as the triangle DKE is greater
than half the portion DEK, if we continue to proceed in this way, we
eventually arrive at a polygonal area that is greater than the area H. Let this
area be DKEG. We draw the straight line ordinate KL from the point K. We
divide the straight line AC at the point M such that the ratio of AM to MC is
equal to the ratio of DL to LG. We draw the straight line ordinate MN from
the point M and we join AN and NB. As the ratio of the transverse diameter
to AC is equal to the ratio of the transverse diameter to DG, and as the ratio
of AC to CM is equal to the ratio of DG to GL, then the ratio of BC to NM
is equal to the ratio of EG to KL.42 Therefore the ratio of AC to CM
multiplied43* by the ratio of BC to the sum of BC and NM considered as a
single straight line – which is equal to the ratio of the triangle ABC to the
area of the quadrilateral MNBC – is equal to the ratio of DG to GL
multiplied* by the ratio of EG to the sum of EG and KL considered as a
single straight line – which is equal to the ratio of the triangle DEG to the
area of the quadrilateral LKEG. But the ratio of AC to AM multiplied* by
the ratio of BC to NM – which is equal to the ratio of the triangle ABC to
the triangle ANM – is equal to the ratio of DG to DL multiplied* by the
ratio of EG to KL – which is equal to the ratio of the triangle DEG to the
triangle DLK. Therefore the ratio of the triangle ABC to the whole area of
the polygon ANBC is equal to the ratio of the triangle DEG to the area of
the polygon DKEG. If we apply a permutation, then the ratio of the triangle
ABC to the triangle DEG – which is equal to the ratio of the area of the
portion ABC to the area H – is equal to the ratio of the area of the polygon
ANBC to that of the polygon DKEG. Therefore, the ratio of the area of the
polygon ANBC to that of the polygon DKEG is equal to the ratio of the area
of the portion ABC to the area H. If we apply a permutation, the ratio of the
area of the polygon ANBC to the portion ABC is equal to the ratio of the
area of the polygon DKEG to the area H. But the area of the polygon
ANBC is less than the area of the portion ABC, and hence the area of the
polygon DKEG is less than the area H. But we initially assumed it was
greater, so this is contradictory and this is not possible.

Therefore, the ratio of the triangle ABC to the triangle DEG is not equal
to the ratio of the portion ABC to an area less than the area of the portion
DEG.

42 See the mathematical commentary. This equality is obtained from the Conics of
Apollonius, I.20 for the parabola and I.21 for the ellipse or hyperbola.

43 Lit.: doubled (hereafter asterisked).
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I also say: and neither to an area greater than it. If this were the case, the
ratio of the triangle DEG to the triangle ABC would be equal to the ratio of
the area of the portion DEG to an area less than the area of the portion
ABC. We have already shown that this is contradictory, therefore the ratio
of the triangle ABC to the triangle DEG is equal to the ratio of the area of
the portion ABC to the area of the portion DEG. That is what we wanted to
prove.

– 19 – Consider two portions of the same section. If the section is a
parabola and the diameters of the two portions are equal, then the two
portions are equal. If the section is not a parabola but the ratio of the
transverse diameter of one to its diameter is equal to the ratio of the
transverse diameter of the other to its diameter, then the two portions are
equal.

Example: Let AD be the diameter of the portion AC of the parabola AB,
equal to the diameter of the portion BE, which is BG. If it is not a parabola,
then let the transverse diameter of the portion AC be the straight line AH
and let the transverse diameter of the portion BE also be the straight line BI
and the centre at the point K, and let the ratio of HA to AD be equal to the
ratio of IB to BG.

I say that the portion AC is equal to the portion BE.
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Fig. 7.15 Fig. 7.16
Proof: From point A on the diameter BG, we draw the straight line

ordinate AN, and from point B on the diameter AD we draw the straight line
ordinate BM. We join AB, AC and BE and produce the straight line tangent
AL from the point A meeting the diameter BI at the point L. If the section is
a parabola, then the straight line BL will be equal to the straight line BN44

and the straight line BL will be equal to the straight line AM. For this reason,
the triangle AMB will be equal to the triangle ABN. If the section is not a

44 See the Conics of Apollonius, I.35.
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parabola, then the ratio of IN to NB is equal to the ratio of IL to LB.45 If we
compound (componendo), then the ratio of IN plus NB to NB is equal to the
ratio of IL plus BL to BL. The halves of the antecedents are also
proportional, and therefore the ratio of KN to NB is equal to the ratio of KB
to BL.46 If we separate (separando), then the ratio of KB to BN is equal to
the ratio of KL to LB, which is equal to the ratio of KA to AM, which is
equal to the ratio of the triangle ABK to each of the triangles ABN and
BAM. Therefore, the two triangles ABN and BAM are equal. As the ratio of
DA to AH is equal to the ratio of GB to BI, and the ratio of HA to AK is
equal to the ratio of IB to BK, and the ratio of KA to AM is equal to the
ratio of KB to BN, then by the equality (ex aequali) the ratio of DA to AM
is equal to the ratio of GB to BN. That is why, for all sections, the ratio of
CD to BM is equal to the ratio of EG to AN. <The ratio of > the straight line
CD to the straight line BM multiplied* by the ratio of DA to AM – which is
equal to the ratio of the triangle ACD to the triangle BAM – is equal to the
ratio of EG to AN multiplied* by the ratio of GB to BN, which is equal to
the ratio of the triangle GEB to the triangle ANB. But the two triangles
ABM and ANB are equal,47 and therefore the two triangles ACD and BEG
are equal, and hence the two portions AC and BE are equal.

I

H

K

L B N

G

E

A M

C

D

 Fig. 7.17

If we now have two equal portions, we can go on to show that the ratio
of the transverse diameter of one to its diameter is equal to the ratio of the
transverse diameter of the other to its diameter, or furthermore, if we add a
portion to one or remove a portion from one, how to add an equal portion
to the other or to remove an equal portion from it.

45 See the Conics of Apollonius, I.36.
46 See the mathematical commentary.
47 See the mathematical commentary.
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– 20 – For any portion of a parabola, its area is one and one third times
the area of the triangle whose base is the base of the parabola and whose
vertex is its vertex.

Example: The vertex of the portion ABC is the point B and its base is
the straight line AC. We join AB and BC.

I say that the area of the portion ABC is equal to one and one third
times the area of the triangle ABC.
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Fig. 7.18

Proof: Let the straight line BD be the diameter of the portion. We
divide the straight line AB into two halves at the point E, and we produce
the diameter GEH from it until it meets the section at the point G and the
straight line AC at the point H. We produce the straight line ordinate GIKL
from the point G until it meets the diameter BD at the point I and the
section at the point L. We join AG, GB, BL, and LC. As BA is twice BE,
then AD is twice DH which is equal to GI. But the ratio of the square of AD
to the square of GI is equal to the ratio of DB to BI, and the square of AD is
four times the square of GI. Therefore, DB is four times BI, and therefore
the triangle GBI is one eighth of the triangle ABD. But the triangle GBI is
equal to the triangle GBE and the triangle AGB is twice the triangle GBE.
Therefore, the triangle AGB is one quarter of the triangle ABD. Similarly,
the triangle BLC is one quarter of the triangle BCD, and therefore the two
triangles AGB and BLC are one quarter of the triangle ABC, and the two
portions AGB and BLC are one quarter of the portion ABC. Therefore the
area of the entire portion ABC is equal to one and one third times the area
of the triangle ABC. That is what we wanted to prove.
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– 21 – We wish to show how to separate a portion from a parabola such
that the area of this portion is equal to the area of a known rectangle and the
vertex of the portion is at a known point.

Let the section be ABC and let the known area be area D. We wish to
separate a portion from the section ABC such that the area of the portion is
equal to area D and the vertex of the portion is at the point B.
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Fig. 7.19

From the point B, let us draw a diameter BE and a straight line tangent
BG, and let us apply to the straight line BG an area equal to three-quarters
of the area D. Let us draw the area BGH with parallel sides and with an
angle H equal to the angle B. Let us make a hyperbola passing through the
point H with asymptotes GB and BE such that it meets the section AB at
the point I. From the point I, let us produce the straight lines IK and IL
parallel to the two straight lines GB and BE. The area BI is then equal to the
area HB, which is equal to three-quarters of the area D. Let us extend IK
until it meets the section at the point C. We join IB and BC. The triangle
IBC is then equal to three-quarters of the area D and it is equal to three-
quarters of the portion IBC. Therefore, the portion IBC is equal to the
surface D.

From this we can show how, given a portion of a parabola, another
portion may be separated from the section such that its ratio to the given
portion is any given ratio. That is what we wanted to prove.
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7777....3333.... THE ISOPERIMETRIC PROBLEM

7.3.1. An extremal property or a geometric property

Ibn Hºd’s study of the isoperimetric problem forms part of one chapter of
the Istikmæl on the properties of circles relating to ‘the angles, surfaces, and
lines that are inscribed in them’.48 That is to say that, once again, it is not the
extremal properties of circles that interest the author, but only those that
arise from elementary geometry. Both these sections serve to illustrate the
consistency of Ibn Hºd’s approach. As in the case of the measurement of a
parabola, the infinitesimal properties are not of interest in their own right,
but rather as a means of gaining a better understanding of the geometrical
figures. As before, he borrows considerably, but in a well-regulated way. In
the case of the measurement of a parabola, his main sources are Apollonius
and Ibn Sinæn. For the isoperimetric problem, he turns instead to
Archimedes, Ptolemy and Ibn al-Haytham.

However, to concentrate on exposing these borrowings would be to
ignore the unifying aspects of the Istikmæl and to misunderstand the
individual contribution of Ibn Hºd. This becomes clear with a better
understanding of the aim of Ibn Hºd in producing this work. This was to
make use of polygons inscribed or circumscribed on a circle to study the
relationships between chords, or between chords and arcs, i.e. just those
relationships that most often give rise to trigonometric relationships. In order
to understand better the path taken by Ibn Hºd, we must make a brief
examination of his work, especially from the point at which he first
introduces polygons in the eleventh proposition. The isoperimetric problem
itself is discussed in two propositions, the 16th and 19th,49 which we shall
translate later.

Proposition 11, taken from The Sphere and the Cylinder by Archimedes
– I.3 – is stated as follows: ‘Given two unequal magnitudes and a circle,
show how to draw a polygon inscribed within the circle and a similar
polygon circumscribed around it such that the ratio of the side of the
circumscribed polygon to the side of the inscribed polygon is smaller that
the ratio of the greater of the two magnitudes to the smaller of these
magnitudes’.50 This involves the construction of a regular polygon P with a
side c that is inscribed within a circle and a similar polygon P′ with a side c′
that is circumscribed in this circle, such that

48 Ms. Copenhagen, Royal Library, fol. 44v.
49 See the edition of the Arabic text in Mathématiques infinitésimales, vol. I.
50 Mss Copenhagen, Royal Library, fols 48r-v and Leiden, Or. 123, fols 3r-v.
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1 < ′ <c

c
k  (k > 1 as given ratio).

This demonstration refers to the consideration of an acute angle α such that

cos α > 1
k

. We seek 
c

c′
≥ cosα . Yet there exists N such that n > N, entailing

π
2n

≤ α ;51 hence cos
π
2n

≥ cosα . Therefore π
2n−1

 is the arc whose chord is the

required side c. We thus have

c R n= 2
2

  sin
π ,

  
′ =c R n2

2
 tan 

π ;

hence
c

c n′
= ≥cos cos

π α
2

  or  
′ ≤ <c

c
k

1
cosα

.

The polygons have 2n sides. The second part of this same Proposition 11
deals with the ratio of the areas of two polygons that are obtained in the
same manner as in the first part of the proposition, based on Archimedes’
The Sphere and the Cylinder, I.5.

Proposition 1252 is also taken from Archimedes (Propositions 21 and
22). However, it should be noted that, in his Proposition I.21, Archimedes
considers a regular polygon with an even number of sides, rather than a
multiple of four as is assumed by Ibn Hºd. This hypothesis is not used in the
proof, which is identical to that of Archimedes. The final section of Ibn
Hºd’s proposition, corresponding to (2), is established by Archimedes in I.22
in the same book (see also Proposition 12 of the Banº Mºsæ).

This is rewritten in the form: Let there be a regular polygon with 4n
sides, A0A1 … A2nA2n+1 … A4n-1. The straight line A0A2n is an axis of
symmetry, and the straight lines AiA4n-i (1 ≤ i ≤ 2n – 1) are perpendicular to
A0A2n at the points L1, …, L2n-1, with Ln as the midpoint of A0A2n; thus, we
have

(1)
A A

A A

A A

A A
i

n n

i
i

n

n i

n

n

i

n
=

−

−

=

−∑
∑= ⇔ =





1

2 1

4

0 2

1 2

0 1 1

2 1

2 4
sin

π π
cotan .

He shows that for 1 < α ≤ 2n – 1, we have

51 This is an application of the porism in Proposition X.1 of the Elements of Euclid
discussed by Ibn al-Haytham (see Les Mathématiques infinitésimales, vol. II,
pp. 499–500).

52 Mss Copenhagen, Royal Library, fols 48v–49r and Leiden, Or. 123, fols 4r–5r.
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Noting that for α = 1 this equality yields

sin

cos
.

π

π
π2

1
2

4
n

n
n−

= cotan

The 13th proposition,53 taken from the Almagest, states: ‘For every
quadrilateral that is inscribed in a circle, the sum of the products of each of
its sides by that which is homologous and opposite to it is equal to the
product of its diagonals with one another’.54 The following proposition is a
lemma to establish that, in a single circle or in two equal circles, the ratio of
two angles at the centre (or two inscribed angles) is equal to the ratio of the
arcs that they intercept. The 15th proposition,55 taken from the Almagest,56

shows that, if two arcs of a circle AB and BC are such that AB BC+  < 180°
and AB < BC, then

53 Mss Copenhagen, Royal Library, fol. 49r and Leiden, Or. 123, fols 5r–v.
54 Heiberg, I.10, pp. 36–37; French trans. Halma I, p. 29.
55 Mss Copenhagen, Royal Library, fols 49v–50r and Leiden, Or. 123, fols 6v–7v.
56 Heiberg, I.10, pp. 43–5; French trans. Halma I, p. 34.
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1 < <BC

BA

BC

BA
,

which is rewritten, by way of positing AB = 2α , BC = 2β  with α + β < π
2

and α < β,

1 < sinβ
sinα

< β
α

.

Proposition 1757 is rewritten: If, within a triangle ABC, we have B̂ < π
2

,

Ĉ < π
2

 and AB > AC, then

AB B

AC C

C

B

 

 

cos ˆ

cos ˆ

ˆ

ˆ>   or cotan 

cotan 

ˆ

ˆ

ˆ

ˆ
B

C

C

B
> .

In other words, the ratio of the projections of sides AB and AC onto the side
BC is larger than the ratio of the angle C to angle B.

Finally, Proposition 18,58 which is borrowed from the Almagest,59 is
rewritten in the form: Let there be a triangle ABC such that AC < BC, then,
we have

AC

CB AC

B

C

B

A B

B

C−
> ⇔

−
>











ˆ

ˆ
sin ˆ

sin ˆ sin ˆ

ˆ

ˆ .

At the very least, this serves to illustrate the underlying path taken by
Ibn Hºd and the reasons for including this series of borrowed propositions.
We shall now consider Propositions 16 and 19.

7.3.2. Mathematical commentary on Propositions 16 and 19

Proposition 16. — If within a triangle ABC, we have AB > AC and

AD ⊥ BC, then BD
DC

BAD

DAC
>

ˆ

ˆ .

Ibn Hºd takes D to be between B and C (see the comment).

57 Mss Copenhagen, Royal Library, fol. 50v and Leiden, Or. 123, fols 8r–9r.
58 Mss Copenhagen, Royal Library, fol. 50v and Leiden, Or. 123, fols 9r–10r.
59 Heiberg vol. II, XII.1, pp. 456–8; French trans. Halma II, p. 317.
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The circle (A, AC) cuts AD in H, AB in G, and BD in E. Thus, we have

area tr. (ABE) > area sect. (GAE),
area tr. (AED) < area sect. (EAH),

so
area tr.
area tr.

area sect.
area sect.

( )
( )

( )
( )

ABE

AED

GAE

EAH
> .

Hence

 

area tr.
area tr.

area sect
area sect.

( )
( )

.( )
( )

ABD

AED

GAH

EAH
> ,

and it follows that
BD

DE

BAD

EAD
>

ˆ

ˆ .

However,
DE = DC and EAD DACˆ ˆ= ;

hence
BD

DC

BAD

DAC
>

ˆ

ˆ .

A

G

B
E
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DC

Fig. 7.21

Comment:
AB > AC  ⇒  ˆ ˆC B> .

D is between B and C, while taking B and C to be acute. Yet, we can
have C as obtuse and the proposition would still be true, since, if we posit

DAC DAEˆ ˆ= = α ,
DABˆ = β ,
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then we have two cases,

DE = DC = AD tan α,
DB = AD tan β,

and the result is noted as
tan 
tan 

β
α

β
α

> ,    with α and β ∈ 





 0
2

,
π ,

a lemma that is known and disseminated in Greek as well as in Arabic60 (cf.
al-Khæzin’s treatise).

Proposition 19. — Let there be two regular polygons P1 with n1 sides at a
length c1, and P2 with n2 sides at a length c2, such that n1c1 = n2c2 with
n1 < n2; therefore c1 > c2. In order to compare their inscribed circles O1 and
O2, Ibn Hºd uses a circle J equal to O1. On the tangent at P to this circle,

we take Q such that PQ = 1
2

 c1 and we extend the other tangent QZ. We

thus have

PJZ
n

PJQ
n

ˆ , ˆ= =2

1 1

π π
          ,

since the figure PJZQ is equal to the figure associated with a summit A of
polygon P1. We then take on the tangent at P a point S and we extend the
tangent SX, in order that figure PSXJ becomes similar to the figure

associated with a summit D of polygon P2. It is sufficient to have PJS
n

ˆ = π
2

,

which determines point S.

60 W.R. Knorr, ‘The medieval tradition of a Greek mathematical lemma’,
Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften, 3, 1986,
pp. 230–64.
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n n PJQ PJS PQ PS1 2< fi > fi >      ˆ ˆ .
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The triangle SJQ satisfies the hypotheses of Proposition 16, therefore

PQ

PS

QJP

SJP
>

ˆ

ˆ ,

and hence
2
2
PQ

PS

PZ

PX
> .

We thus have
PQ QZ

PZ

PS SX

PX

+ > + ;

hence
c

PZ

c

PX
1 2> .

If p1 and p2 are the respective perimeters of the inscribed circles, we have

n1c1

p1

> n2c2

p2

.

But
n1c1 = n2c2;

hence
p1 < p2.

If r1 and r2 are the respective radii of the inscribed circles, we then have r1 <
r2. Yet
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2 area P1 = n1c1r1,
2 area P2 = n2c2r2;

hence
area P2 > area P1.

Comparison with Proposition 2 of Ibn al-Haytham’s treatise on the figures
of equal perimeters and the solids of equal surface areas:

Despite the differences in the statement, both dealt with the same
proposition (see also al-Khæzin, Proposition 9).

The two demonstrations introduce same properties without being
identical.

In each of the polygons P1 and P2, to each side is associated an isosceles
triangle, which is itself divided into two right triangles. The isosceles triangles

have respective angles at the summit 2p
n1

 and 2p
n2

, and the right triangles

associated to each of them have respective acute angles p
n1

 and p
n2

.

QE S P

J

p
n2 p

n1

Fig. 7.24

The two authors consider a figure that comprises a right triangle equal
to the triangle associated with P1 and a right triangle similar to the one
associated with P2, both having in common a side of the right angle, which
is the apothem of P1.

We have EP = PQ = 1
2

c1, JP = a1  and  SP

PJ
=

1
2

c2

a2

.

Ibn Hºd introduces the inscribed circles within each of the polygons;
namely, circles with respective radii r1 and r2, as apothems a1 and a2. In
applying Proposition 16, he shows that a1 < a2.

Ibn al-Haytham demonstrates61 – like Ibn Hºd in Proposition 16 –
through inequalities in the areas of the triangles and the areas of the sectors,

61 See Les mathématiques infinitésimales, vol. II, p. 392.
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that
EP

PS
> c1

c2

;

thence PS < 1
2

c2. Yet JP = a1; hence apothem a2 associated with c2 satisfies

a2 > a1, thus obtains the conclusion.

It is clear that here Ibn Hºd is following the proof of Ibn al-Haytham
with a few slight variations. The original proof as written by Ibn al-Haytham
remains the more elegant of the two. Ibn Hºd’s introduction of the inscribed
circles is not necessary.

One may wonder why Ibn Hºd stops here and fails to go on to consider
isoperimetric polygons, in which the number of sides increases until they
become a disc. This was the approach taken by Ibn al-Haytham and al-
Khæzin, and both inspired his work as we have seen. Does this study appear
in one of the missing sections of the book? Or did he believe that the
problem, which in another language we would take to be going to the limit,
was too complex for the level at which he pitched his compendium? Even if
this was the case, he would certainly have taken this lemma from the
isoperimetric theory developed in such a masterly fashion in the book by Ibn
al-Haytham and treated it as an elementary geometric property following the
style of composing a compendium.
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7.3.3. Translation: KKKKiiiittttææææbbbb    aaaallll----IIIIssssttttiiiikkkkmmmmæææællll

– 16 – If a triangle has two unequal sides and a perpendicular is drawn
from <the vertex of> the angle enclosed by the two unequal sides down to
the base, then the ratio of the longest part of the base to the shortest part is
greater than the ratio of the part of the angle, from which the perpendicular
was drawn, that intercepts the longest part to the other part of the angle.

Example: Let the triangle be ABC and let the side AB be longer than
the side AC. A perpendicular AD is drawn from <the vertex of> the angle A
onto the side BC.

I say that the ratio of BD to DC is greater than the ratio of the angle
BAD to the angle DAC.

A

G

B
E

H

DC

Fig. 7.25

Proof: We take the point A as a centre and with the shorter distance AC
we describe a circle CHEG such that it cuts the straight line BD at the point
E and AB at <the point> G, and let the perpendicular AD meet it at the
point H. As the triangle ABE is greater than the sector AGE, its ratio to it
will be greater than the ratio of the triangle AED to the sector AEH, as the
triangle AED is less than the sector AEH. If we apply a permutation, then
the ratio of the triangle ABE to the triangle AED is greater than the ratio of
the sector AGE to the sector AEH. If we compound, then the ratio of the
triangle ABD to the triangle AED is greater than the ratio of the sector AGH
to the sector AEH. But the ratio of the triangle ABD to the triangle AED is
equal to the ratio of the straight line BD to the straight line DE which is
equal to the straight line DC, and the ratio of the sector AGH to the sector
AEH is equal to the ratio of the angle GAH to the angle EAD, which is
equal to the angle DAC. Therefore, the ratio of the straight line BD to the
straight line DC is greater than the ratio of the angle BAD to the angle DAC.
That is what we wanted to prove.

– 19 – If two polygons with equal perimeters are regular – within a
circle – then the circle inscribed within the polygon with the greater number
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of sides is greater than the circle inscribed within the polygon with the lesser
number of sides.

Example: Let there be two figures ABC and DEGH, and let the
perimeter of the figure ABC be equal to the perimeter of the figure DEGH.
Let each of the figures be regular within a circle, and let the figure DEGH
have the greater number of sides.

I say that the circle inscribed within this figure is greater than the
<circle> inscribed within the surface ABC.

H O D

M

ENG

U
<O  >2

<O  >

A

I

BKC

L

1

S P Q

X
J

Z

Fig. 7.26

Proof: We inscribe a circle within the figure ABC, that is, the circle IKL,
and a circle within the figure DEGH, that is, the circle MNUO. We describe
a circle ZPX equal to the circle IKL and draw from the point P a straight
line QPS as a tangent to it. Make the straight line PQ equal to the straight
line AI, and the straight line PS equal to half of one side of the figure
circumscribed around the circle and similar to the figure DEGH. From the
points Q and S draw two straight lines QZ and SX tangent to the circle, and
let the centre of the circle be at the point J. We join PJ, JQ and JS. As the
figure DG has a greater number of sides, the straight line PS is less than the
straight line PQ,62 and hence the ratio of the straight line QP to the straight
line PS is greater than the ratio of the angle QJP to the angle PJS, which is
equal to the ratio of half of the arc ZP to half of the arc PX. Therefore, the
ratio <of the sum> of the two straight lines ZQ and QP to the arc ZP is
greater than the ratio <of the sum> of the two straight lines PS and SX to
the arc PX, and the ratio <of the sum> of the straight lines ZQ and QP to
the arc ZP is equal to the ratio <of the sum> of the two straight lines IA and
AL to the arc IL. But the ratio <of the sum> of the two straight lines PS and
SX to the arc PX is equal to the ratio <of the sum> of the two straight lines
MD and DO to the arc MO. The ratio <of the sum> of IA and AL to the arc
IL, which is equal to the ratio of the perimeter of the figure ABC to the
circumference of the circle IKL, is greater than the ratio <of the sum> of

62 See the commentary.
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MD and DO to the arc MO, which is equal to the ratio of the perimeter of
the figure DEGH to the circumference of the circle MNUO. But the
perimeter of ABC is assumed to be equal to the perimeter of the figure
DEGH, and therefore the circle IKL is less than the circle MNUO.
Therefore, the half-diameter of the circle IKL is shorter than the half-
diameter of the circle MNUO. So the product of the half-diameter of the
circle IKL63 and the half-perimeter of ABC, which is equal to the area of
ABC, is less than the product of the half-diameter of the circle MU and the
half-perimeter of DEGH, which is equal to the area of DEGH.

From this, it becomes clear that if two straight lines with an included
angle are tangents to a circle, and if two straight lines that are shorter than
them with an included angle are also tangents to the same circle, then the
ratio <of the sum> of the longer lines to the arc lying between them on the
circle is greater than the ratio <of the sum> of the shorter lines to the arc
lying between them. That is what we wanted to prove.

63 Lit.: its product.
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The Formula of Hero of Alexandria according to TTTThhhhææææbbbbiiiitttt    ibn Qurra

[1] In his treatise on the measurement of plane and solid figures, Thæbit ibn
Qurra, who worked with the Banº Mºsæ, mentions the formula and then
discusses its origin. Reading the text, it appears that this formula was widely
known, and that not all mathematicians attributed it to Hero. This is what
Thæbit wrote: ‘The common rule to all types of triangles: Some attribute it
to India, while others state that it comes from the Byzantines (al-Rºm). It is
described as follows: Let the three sides of a triangle be added together, and
then take half of the sum. Take the amount by which this half exceeds each
of the sides, and multiply this half by the amount by which it exceeds one of
the sides of the triangle. Then, multiply this product by the amount by
which it exceeds one of the other sides of the triangle, and then multiply that
product by the amount by which it exceeds the third side of the triangle.
Take the square root of the product, which is the area of the triangle’ (R.
Rashed, ‘Thæbit et l’art de la mesure’, in Thæbit ibn Qurra. Science and
Philosophy in Ninth-Century Baghdad, p. 182; Arabic p. 183, 16–21).

Commentary of IIIIbbbbnnnn    AAAAbbbbîîîî    JJJJaaaarrrrrrrrææææddddaaaa    on The Sections of the Cylinder by
TTTThhhhææææbbbbiiiitttt    iiiibbbbnnnn    QQQQuuuurrrrrrrraaaa

[2, Proposition 6, p. 389] This conclusion is the same as that of Proposition
4 relating to the right cylinder. It is given here as a consequence of the
conclusion relating to the oblique cylinder. In the case of a right cylinder,
any plane containing the axis GH is a plane of symmetry of the cylinder and
fulfils the same role as the plane GHI, the single plane of symmetry in an
oblique cylinder.

[3, Proposition 10, p. 396] In re-writing this text, Ibn Abî Jarræda considers
the case where the circle ABC is replaced by an ellipse of which AB is a
diameter and DC is an ordinate. In this case, he makes EH parallel to DC
and continues with the proof in order to show that the two triangles FHE
and GDC are similar, and to prove that

AH HB

EH

AD DB

DC

⋅ = ⋅
2 2   and  EH2

HF2 = DC2

DG2 ,
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from which it follows that
AH HB

HF

AD DB

DC

⋅ = ⋅
2 2 .

Ibn Abî Jarræda writes: ‘This proof also includes the circle and it is
better. We give a general statement of the proposition and we prove it, even
if the point D is not the centre’.

Ibn Abî Jarræda has therefore generalized Proposition 10 by considering
the cylindrical projection of an ellipse. This enables him to consider the plane
section of a cylinder with an elliptical base in Proposition 11. See his text
(ms. Cairo, Dær al-Kutub 41, fol. 40 r)1:

‘I say that: That which we seek may be shown by this proof if ABC is an
ellipse. We draw DC as an ordinate and we draw EH parallel to it, we then
continue the proof until it is shown that the two triangles FHE and GDC
are similar. The ratio of the product of AH and HB to the square of EH will
be equal to the ratio of the product of AD and DB to the square of DC, as
has been shown in I.21 of the Conics. But the ratio of the square of EH to
the square of HF is equal to the ratio of the square of DC to the square of
DG. Using the equality ratio, the ratio of the product of AH and HB to the
square of HF is equal to the ratio of the product of AD and DB to the square
of DG and this gives us that which we were looking for.

‘This proof also includes the circle and it is better. We give a general
statement of the proposition and we prove it, even if the point D is not the
centre; the proof is completed.’

[4, Proposition 11, p. 396] Ibn Abî Jarræda introduces this proposition with
a lemma (see fols 40r-v) in order to justify his assertion that

GM // SN,  SG = MN  and GSNˆ = π
2

 ⇒  MNSˆ = π
2

.

AB

CD

E

Fig. 1

1 See the Arabic quotations in the French edition Les mathématiques infinitésimales.
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‘Lemma: Let there be two parallel straight lines AB and CD such that the
two straight lines AC and BD are equal. I say that the two angles A and B
are equal, or their sum is equal to two right angles.

‘Proof: If AC and BD meet, let them meet at E. We have therefore drawn CD
in the triangle ABE parallel to the base AB. The ratio of EA to AC is
therefore equal to the ratio of EB to BD. But AC and BD are equal, and
therefore the two straight lines EA and EB are equal. Therefore the two
angles A and B are equal.

‘If AC and BD are parallel, then <the sum of> the two angles A and B is
equal to two right angles.’

[5, Proposition 11, p. 398] Ibn Abî Jarræda notes that it is not necessary to
draw IR. We know MQ = ML, hence MLQ MQLˆ ˆ= , and from that,
DEL ILEˆ ˆ= . An antiparallel plane therefore passes through IL. The
remainder of the proof is unchanged (fol. 41r-v):

‘I say that you have no need to draw IR. Instead, you say that the part of
the straight line intersecting the two circles that lies between <each of the
points> of intersection and the point M, is a half diameter of each of them. It
is therefore equal to MQ, a half diameter of the circle parallel to the two
bases and equal to ML, a half diameter of the circle IKL. The two straight
lines ML and MQ are therefore equal, the two angles MLQ and MQL are
then equal, and the angle DEL is equal to the angle MQL. The two angles
DEL and ILE are then equal and an antiparallel section passes through the
straight line LI. The conclusion is as before’.

[6, Proposition 12, p. 399] Ibn Abî Jarræda first proves a lemma using three
methods (fol. 41v–42r).

1) If two ellipses have major axes AP and CQ, minor axes BW and DH,

and centres K and O respectively, and if PA

BV
= CQ

DH
,  then the ellipses are

similar.
BV

PA

DH

QC

BK

KA

DO

OC

BK

KA KP

DO

QO OC
= ⇔ = ⇒

⋅
=

⋅

2 2

,

from I.21 of the Conics; we therefore have

latus rectum of latus rectum of PA

PA

QC

QC
= .

The proof would be the same if PA, BV, QC and DH were the
conjugate diameters instead of the axes.
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2) Let A, B and C, D be the axes of two ellipses where A

B
= C

D
, and let E

and G be the latera recta relative to A and C respectively. From I.15 of the
Conics, we have A2 = E · B and C2 = G · D. Hence

E

B

E B

B

A

B
= ⋅ =2

2

2  and G

D

G D

D

C

D
= ⋅ =2

2

2 ,

from which
E

B
= C

D
,

and the ellipses are similar from VI.12 of the Conics.

3) From I.15 of the Conics, we have E

A
= A

B
 and G

C
= C

D
 and by

hypothesis A

B
= C

D
, and therefore E

A
= G

D
. From VI.12 of the Conics, the

ellipses are similar.

[7, Proposition 12, p. 399] If the intersecting plane under consideration is
parallel or antiparallel to the planes of the base, the section of each cylinder
is a circle equal to its base circle. Thæbit mentions this in the course of the
proof.

[8, Proposition 12, p. 401] In the expression ‘the greatest diameter of any
section is its largest axis, and its smallest diameter is its smallest axis’, Ibn
Abî Jarræda is undoubtedly referring to the Conics V.11.

[9, Proposition 12, p. 401] In the Conics VI.12, Apollonius shows that if two
ellipses have axes 2a and 2a′ and associated straight sides c and c′ such that
2 2a

c

a

c
= ′

′
, then they are similar, and vice versa.

If 2b and 2b′ are the second axes of the ellipses, then from Apollonius,
second definitions III, we have

4b2 = 2 a · c;

hence
a2

b2 = 2a

c
.

Similarly,
′
′

= ′
′

a

b

a

c

2

2

2 .
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Therefore
2 2a

c

a

c

a

b

a

b
= ′

′
⇔ = ′

′
.

It is this condition that Thæbit uses. He makes no use here of the straight
sides c and c′, but in Proposition 24 he uses the property

2 2a

c

a

c
= ′

′
.

[10, Proposition 14, p. 402] In his edition, Ibn Abî Jarræda includes two
lemmas immediately prior to Proposition 14 (fol. 43r).

Lemma 1. – Let BAD be a semi-ellipse with its centre at L, its major axis
BD, and its vertex at A. LO and LM are half-diameters passing through the
mid-points K and G of the chords AD and AB. Then OM is perpendicular to
AL.

A

BD

G

H

K

L

MO

Fig. 2

The proof follows immediately from VI.8 of the Conics.

Lemma 2. – If two convex quadrilaterals ABCD and EGHI are located
between the parallel lines AD and BC, with EI on AD and HG on BC, then

S (EGHI)
S (ABCD)

= EI + GH

AD + BC
.

The proof follows immediately from the fact that ABCD and EGHI are
trapeziums or parallelograms with the same height.

A

BC

D E

GH

I

Fig. 3
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[11, Proposition 14, p. 403] In order to double the number of sides, Thæbit
considers the diameters passing through the midpoints of the chords. Hence,
if G is the midpoint of AB, then LG cuts the ellipse at M. The tangent at M
is parallel to AB, and it cuts the tangents at A and B at the points X and Y
such that XY < AB. AXYB is a trapezium and we have

A

B

G

L

M

X

Y

Fig. 4

area of tr. (AMB > 1
2

 area of tp. (ABYX).

Hence

area of tr. (AMB) > 1
2

 area of sg. (AB),

from which we can deduce that

area of sg. (AB) – area of tr. (AMB) < area of sg. (AB).

This is true regardless of whether AB is an arc of an ellipse or an arc of a
circle.

[12, Proposition 14, p. 405] If 2a and 2b are the axes of the ellipse, and 2r is
the radius of the circle E equivalent to the ellipse, then r2 = ab, from which

a

r
= r

b
 and a2

r2
= r2

b2
.

The area of an ellipse is the proportional mean of the areas of its major circle
and its minor circle.

[13, Proposition 15, p. 405] Ibn Abî Jarræda also includes two lemmas prior
to Proposition 15 (fol. 44v).

Lemma 1. – The arcs AC and EH of two circles of diameter d1 and d2

respectively are similar if and only if
AC

d1

= EH

d2

.
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Lemma 2. – Let AC and EH be two chords whose midpoints are K and M
respectively and that belong to two different circles. Let BL and GN be the
diameters passing through K and M respectively. Then the arcs AC and EH
are similar if and only if

KB

KL
= MG

MN
.

A

BC

D

K

L

E

GH

I

M

N

Fig. 5

The proofs follow immediately from the definitions of similar arcs. The
included angles are equal and vice-versa.

[14, Proposition 18, p. 417] In I.15 of the Conics, Apollonius defines the
conjugate diameter of a given diameter. These diameters are the axes if the
angle between them is a right angle, according to Apollonius, first definitions
VIII.

[15, Proposition 20, p. 420] Ibn Abî Jarræda includes a lemma prior to
Proposition 20, and follows it with a proof that is different from that of
Thæbit (fol. 49r).

Lemma. – Let there be two parallel planes P1 and P2, a point G in P1, and a
point I in P2 such that GI ⊥ P2. Let GL be a straight line in P1, and let HQ
be a straight line in P2. Then HQ || GL and I ∉HQ. The orthogonal
projection N from L onto P2 does not lie on the straight line HQ. The proof
is by reductio ad absurdum.

G

H I

L

NQ

Fig. 6
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Ibn Abî Jarræda offers a simplified proof of Proposition 20 (fol. 50v):
1) Given a plane P, a point C ∉ P and points B, D, A ∈ P such that

BC ⊥ P and B, D, and A are aligned in that order, for any point G ∈ P not
lying on BD, we have

BDC GDC ADCˆ ˆ ˆ< < .

The circle (D, DG) cuts the straight line BD at A and E. In all three
cases, BA > BG > BE, from Euclid, Elements III.7 and III.8. From this, we
can deduce that CA > CG > CE ≥ CB. But in the triangles CDA, CDG, and
CDE, we have DA = DG = DE; hence

ADC GDC EDCˆ ˆ ˆ> > .

A B

C

D
E

G

A A
B B
E

E

C C

D D
G G

Fig. 7

2) If two parallelograms ABCD and IGEH satisfy AB = CD = EG = HI,

ADC EIH IEGˆ ˆ ˆ≥ ≥ , ADCˆ  > π
2

, and their areas are equal, then AC is the

largest of all the segments whose ends lie one on AB and the other on CD,
or one on EG and the other on IH.

If the areas and bases of the parallelograms are equal, then their heights
must also be equal.

  ADCˆ  > π
2

 ⇒ ADCˆ  > BADˆ  and  ADCˆ  > ACDˆ

⇒ AC > BD and AC > AD,

EIH IEG EIHˆ ˆ ˆ≥ ⇒ ≥ π
2

 and EIH EHIˆ ˆ>

  ⇒ EH ≥ IG and EH > EI.
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Let L ∈ [CD] and M ∈ [BA] such that ML || AD, then CM > BL and

CM < AC as AMCˆ  > π
2

.

With each segment having one end on AB and the other on CD, one
can associate an equal segment having one end on B or C and the other on
CD or AB. Therefore AC is the largest of these segments. Similarly, EH is
the largest of all the segments having one end on EG and the other on IH.

On the other hand, ADC EIHˆ ˆ≥  ⇒ AD ≥ EI.
If ADC EIHˆ ˆ= , then AD = EI, and one can deduce that AC = EH.

If ADC EIHˆ ˆ>  ≥ π
2

, then AD > EI. Let K be such that IK = AD; then

AC > HK. But HK > EH as IK > IE. Therefore AC > EH. Therefore AC is
the largest of all the segments listed in the statement.

AB

C DL

M
E

G

H I

K

Fig. 8

3) Let us now return to the figure given by Thæbit, Figure II.3.20. We

have GHEˆ  > π
2

 by hypothesis, and GHE GHF GHDˆ ˆ ˆ> > , regardless of the

position of the point F on the circle of diameter DE. The diagonal AE of the
parallelogram ABED is therefore greater than the diagonal LF in the
parallelogram LCFM. Therefore, AE is the greatest segment joining a point
on one generator to a point on the opposite generator.

The proof is then completed in the same way as that of Thæbit.

[16, Proposition 23, p. 426] Ibn Abî Jarræda (fol. 52v) proposes an
alternative method using the equivalent circles to each of the two ellipses,
from which

Sm

SM

= ambm

aMbM

= bm

aM

,

as am = bM = r, the radius of a base.



776 SUPPLEMENTARY NOTES

[17, Proposition 25, p. 428] Ibn Abî Jarræda includes the following lemma
prior to Proposition 25 (fol. 53r): Let there be three non-aligned points A, B,
C. If D is the midpoint of BC, and AB > AC, then DAC DABˆ ˆ> .

It can be seen that AB > AC and DB = DC ⇒ AC

AB
< DC

DB
.

A

BC E D

Fig. 9

Let E ∈ [CB] such that EC

EB
= AC

AB
; then EC < DC, but AE is the bisector

of BACˆ . Therefore EAC EABˆ ˆ= , and hence the result follows.

[18, Proposition 31, p. 440] Ibn Abî Jarræda includes two lemmas prior to
Proposition 31 (fols 57v–58r).

Lemma 1. – Given a segment AB, two surfaces c and d such that c < d, and
two segments e and g such that e < g, there exists N on the segment AB
such that

NB

AB
> e

g
 and NB2

AB2 > c

d
.

Lemma 2. – If c > d and e > g, then there exists N on the extended BA such
that

NB

AB
< e

g
 and NB2

AB2
< c

d
.

The proof given by Ibn Abî Jarræda is based on the existence of a point

L such that LB

AB
= h

k
 if h and k are two segments defined by h2 = c and

k2 = d.
However, his argument cannot be concluded successfully, as it requires

the introduction of the point G such that GA

AB
= e

g
.

It should be noted that the points labelled A, B and N by Ibn Abî
Jarræda correspond to the points labelled A, K and M by Thæbit, and the
points L and G correspond to the points M1 and M2 that appear in the
following note.
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[19, Proposition 31, p. 441] Determination of the point M in this part of the
proof.

We have H < P, hence H

P
< 1, and we also have 

S − 1
2

I

S
< 1.

If M1 and M2 satisfy KM1

KA
= H

P
 and KM2

2

KA2 =
S − 1

2
I

S
, then:

KA > KM1 ≥ KM2: in this case, place M between M1 and A.

KA > KM2 ≥ KM1: in this case, place M between M2 and A.

The method is the same if H

P
> 1 and 

S + 1
2

I

S
> 1.

[20, Proposition 32, p. 446] Ibn Abî Jarræda includes a lemma prior to
Proposition 32 in his edition (fol. 60r-v) and follows it with three comments
(fols 62r-v).

Lemma. – Let a, b, c and d be positive numbers such that a

b
> c

d
 and a < c.

Then b < d.

In other words, there exists e such that a

e
= c

d
. Therefore, e < d and

a

e
< a

b
, which implies that e > b, and consequently b < d.

Comments
1) We can show by reductio ad absurdum that it is impossible for

S > 1
2

p (IM + KN) to be true.

2) We can show by reductio ad absurdum that the opposite case is
impossible; we can also show that if LS is the longest segment of the
generator between the sections SMN and SLcLd, then these two sections
cannot have any common point other than the point S.

3) Similarly, we can show by reductio ad absurdum that the polygon
that is obtained in the plane MNS by the cylindrical projection of a polygon
inscribed within the section IKL and that has no point in common with the
section XYZ is itself inscribed within the section MNS and has no point in
common with the section O′LaLb.

For the notation, see the text and the figures in Proposition 32.

[21, Proposition 35, p. 455] Ibn Abî Jarræda comments that the same result
can be obtained if the two sections are antiparallel circles (fol. 63v).
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This comment is unnecessary, as the result obtained by Thæbit is equally
valid for all sections regardless of their shape.

[22, Proposition 37, p. 457] Ibn Abî Jarræda makes the same comment here
as that above. It is also unnecessary for the same reason (fol. 64r).

[23, Proposition 37, p. 458] Ibn Abî Jarræda proves (fol. 64r) that, in the
case of a right cylinder on a circular base, the smallest of the sections is the
base circle, and he states without explanation that the largest ellipse is that
whose major axis is a diagonal of a rectangle whose plane passes through
the axis.

One could prove, as in Proposition 20, that such a diagonal is the
longest segment having its extremities on the two opposite generators.
Therefore, if the two perpendicular planes passing through the diagonals are
associated with each plane passing through the axis, then their intersections
with the cylinder are the maximal ellipses.

To summarize, in both right and oblique cylinders, any plane perpen-
dicular to the axis gives a minimal section, and while an oblique cylinder
only has one maximal section, there are an infinite number in a right
cylinder.
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Abscissa: 156, 244, 247, 256, 473,
474, 477, 477 n. 19, 588, 589, 593,
638, 655

Affine: see application, transformation
Affine mapping: 470, 474
Affinity: 471, 642
– oblique: 471
– orthogonal: 336, 342–348, 351, 362,

471, 621, 638–641, 642, 646, 647,
649, 652–656, 658

see also axis, contraction and dilatation
Algebra: xv, xix, xx, 333, 503, 726
– geometric: 122
Analysis
– combinatorial: xxi
– Diophantine: xx, xxi, 503
– numerical: xxi
– and synthesis: xv, xxii, 460, 461, 463
Angle: 9, 14, 757
– acute: 66, 210, 211, 476, 543, 634,

756, 759, 762
– obtuse: 67, 210, 211, 510
– of the ordinates: 731
– polar: 626
– right: 45, 65, 68, 210, 471, 530, 628,

651, 671 n. 19, 762, 773
– solid: 546
Apagogic
– argument: 362

– method: 44, 54, 56, 60, 256, 621,
646, 648, 652, 707 n. 67 (see also
Proof)

Apothem: 42, 43, 564 n. 14, 762
Approximation: 46, 69, 130, 131, 154
– of π: 38
– of the cubic root: 69
Arc: 50, 616, 633, 755, 757, 773
– of a circle: 45, 52, 368, 772
– of a conchoid: 67, 68
– of the ellipse: 359, 772
– of the parabola: 210, 228, 247
– of a conic section: 730, 733
Archimedes/Archimedean
– method: 46, 47, 60, 337
– tradition: xiv, xxii, 38, 40
Area:
– of circle: 38, 40–46, 56, 60, 344,

347–354, 369, 399, 522, 524, 529,
533–539, 541, 542, 546, 547, 589,
645, 649, 650, 652

– of curved surfaces: xxi, 10, 130, 366,
377

– of an ellipse: 333, 341–355, 362,
372, 621, 622, 645–652, 772

– of plane and spherical figures: 10, 34,
38; of plane, rectilinear and curvilinear:
124

– of a parabola: 130, 164, 212, 256,
459–480, 723, 727–755; of a portion:
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130–132, 154, 164, 460, 471, 475,
678, 480, 729–730, 744

– of a parallelogram: 159, 161, 164,
256, 517 n. 31, 518, 735 n. 33, 774

– of a pentagon: 519
– of a polygon: 40, 45, 157, 165, 336,

347, 472, 480, 519, 524, 526, 529,
531, 546, 547, 646–649, 653, 756

– of a rectangle: 366, 368
– of a rhombus: 517 n. 31, 518 n. 32,

647
– of a right cone: 366
– of a section: elliptical 8, 341–355;

maximal/minimal: 358, 359
– of a sector: 41, 45, 521, 762
– of a segment: of circle: 354; of the

segments of the ellipse: 354, 661; of a
parabola: 727, 744

– of a square: 517 n. 31, 518, 521, 522
– of a trapezoid: 157, 256, 353, 354,

364, 369, 646, 772
– of a triangle: 38, 40, 45–47, 159,

354, 471, 475, 480, 514–518, 521,
522, 742–744, 747, 759, 762, 767;
equilateral 509, 523; isosceles 509,
516 n. 30; right-angled: 651

Area, lateral
– of a cylinder: 123, 337–338, 363–

377, 434, 545, 624; of portions: 363–
377, 434

– of a frustum of a cone: 38, 50, 524,
534, 535

– of a hemisphere: 56
– of a polyhedron: 57, 509, 545
– of a prism: 364, 364, 368–372, 375
– of a pyramid: 49, 524, 528, 529, 532
– of a right circular cone: 526, 531; of

revolution: 38, 48–50, 524, 531, 624
– of a solid: 40, 55–57, 535–537, 544,

545; of revolution: 50
– of a sphere: 38, 47–54, 366, 524,

538, 539, 544–546, 623
Arithmetic: xv, 113 n. 1, 723 n. 7, 726
Arithmetisation: 130, 210
Astrolabe: 118 n. 8, 615
Astronomical
– calculations/observations: 3, 7, 581,

582
– tables: 117
Astronomy: xx, xxi, 2, 2 n. 4, 7, 10,

113 n. 1, 122, 503, 579, 582, 584 n.
15, 615, 724 n. 13, 726

Asymptotes: 748
Axis: 8, 335, 622, 632
– of affinity: 336, 351, 352, 639

– of the circle: 47
– collinear: 336, 359
– of the cone: 48, 49
– of a curve: 335
– of the cylinder: 337, 338, 341, 342,

356–358, 373, 377, 382, 526, 626
– of the dome: 251
– of the ellipse (major/minor): 336, 343,

344, 347, 350, 352, 353, 355–364,
621, 632, 637–639, 646, 647, 652,
653, 658–661, 769, 770, 771

– of the parabola: 210, 244, 247, 475,
477

– of the paraboloid: 251
– of rotation: 210
– of symmetry: 88 n. 46, 157, 158, 756
– transverse: 730
Axiom
– of Archimedes: 131, 148, 209, 235,

236
– of Eudoxus–Archimedes: 360, 377

Base: 335, 733
– elliptical: 371, 624–627, 768
– circular: 371, 618–620, 623–625,

627, 778
Bifocal:
– definition: 617, 622, 632–634, 636,

637, 641, 642
– method: 333, 334, 643
– property: 8, 8 n. 30
Bijection: 470
Bisector: 67, 83 n. 40, 85 n. 44, 88 n.

46, 530, 536, 776
Bound, upper/lower: 46, 130–132, 163,

165, 166, 210, 257, 362
Bounding: 142, 163, 209, 233, 362

Centre
– of gravity: 583, 584 n. 15, 587
– of symmetry: 670 n. 16, 671 n. 18,

742
Chord: 8, 55, 61, 156, 160, 210, 226,

228, 351, 352, 359, 471, 474, 479,
542, 622, 629, 630, 632, 645, 646,
653–659, 733, 735, 740, 755, 756,
771, 773

Circle: xv, xxi, 38, 40, 56, 60, 61, 68,
244, 336–355, 369, 509, 519–539,
541–547, 589, 616–660, 668 n. 9,
755, 757, 759–762, 767, 768, 772,
773, 775

– antiparallel: 339, 625, 777
– auxiliary: 223
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– base: 49, 223–224, 252, 255, 336–
341, 356–358, 368, 369, 371, 627,
639, 659, 770, 778

– elongated: 8, 8 n. 30 (see Figure)
– equatorial: 542
– homothetic: 373, 374
– meridianal: 542
– orthogonal: 544
Compass, perfect: 579
Concavity of the surfaces: 372
Concentric: 42, 351
Conchoid of a circle: 66–69
Cone: 38, 48, 55–60, 223, 225, 246,

247, 334, 339, 528, 531, 535, 541,
542, 545, 616, 618, 625, 732

– hollow: 209–211, 212, 224, 228,
229, 246, 247

– isosceles: 349
– oblique: 616, 625
– of revolution: 38, 48–50, 212, 223,

245, 524, 527, 531, 534, 624, 729
– right: 62, 366, 616, 625; circular:

527–528, 531
– scalene: 349
– truncated: see frustum
Configuration of orbs: 5 n. 13
Conics: xiv, xxii, 9, 10, 343, 503, 620,

726, 730 (see also section)
Conoids: 130
Construction
– geometric: 351, 352, 356
– mechanical: 4, 60
Continuity, principe: 372
Contraction: 342, 343, 471, 641, 642,

653
Convexity: 377, 509
Coordinates: 470, 473, 636
– polar: 67, 626
Coplanar: 38, 91 n. 48, 337
Cosine: 42, 357
Cube: 61, 124, 212
Curve: 10, 61, 66 n. 10, 335, 480, 624,

643
– closed: 626, 627, 670 n. 16
– convex: 49, 361, 372
– at similar positions: 626
– skew: 725
– trisecting: 66
Cylinder: xv, xvi, 8, 61, 123, 252, 253,

255, 256, 333, 335–342, 350, 356,
359, 363, 369–375, 381, 527, 528,
541, 545, 588–595, 615–621, 624–
627, 639, 640, 644, 654, 656, 659,
729, 767, 778

– conic: 210, 229 n. 4

– hollow: 210, 229
– right: 62, 210, 229, 229, 335, 337,

349, 363, 366–369, 371, 382, 527,
619–621, 624–627, 632, 639, 640,
656, 659, 767, 778

– oblique: 335, 337–339, 341, 349,
356, 359, 363, 364, 366, 371, 382,
527, 618–621, 623–626, 767, 778

– of revolution: 61, 371, 588, 623,
624, 627, 632, 644, 654

Cylindrical bodies: 588

Descent, finite: 135, 136, 139, 154
Diagonal: 357, 509, 517 n. 31, 624,

757, 775, 778
Diameter(s)
– collinear: 341
– conjugate: 335–336, 474, 619, 620,

627, 745, 769, 773
– principal: 343, 620
– transverse: 620, 733, 741
Dilatation: 342, 343, 471, 639, 641,

642, 653
– orthogonal: 345
Disc: 507, 763
Displacement: 337, 341, 359, 362, 471,

626
Division
– of arcs: 738, 739
– of a diameter: 244
Dome, parabolic: 210, 211, 244, 247,

251, 252, 255
– with a pointed/regular/sunken vertex:

210, 211

Ellipse: xxi, 8, 123, 333–336, 340–363,
372, 377, 381, 619–622, 624, 625,
632, 633, 637–661, 668 n. 9–10, 727,
733, 734, 736, 741, 742, 744, 745,
747, 767, 769–772, 778

(see also Figure, elongated circular)
– homothetic: 337, 360–362, 372–374,

377
– maximal: 350, 358, 778
– minimal: 350, 357, 373, 375
Engineering: 7
Equalities
– numerical: 209
– between four magnitudes: 209
– of ratios: 131, 220, 221, 342, 359
– between sequences of integers: 131
Equation
– algebraic: 503
– of the circle: 619, 642
– cubic: 503
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– of the ellipse: 637, 642, 658
– the half-parabola: 589
– of the parabola: 227, 244, 254
– of conic sections: 739, 743
Equator: 544
Exhaustion method: 45, 59, 130
Existence: 130
– of a circle: 42, 43
– of a cone of revolution: 49
– of a hemisphere: 56
– of n: 42, 235, 349, 360
– of a point: 776
– of a polygon: 42, 349, 361, 528, 572

n. 22
– of a polyhedron: 57, 58, 542
– of a sphere: 57, 524
Extremum: 509

Figure
– elongated circular: 2 n. 5, 8, 333,

618, 616, 632, 637, 642, 677, 677
n. 30

– convex: 509
– curved: 123
– curvilinear: 124
– equilateral and equiangular: 510
– isometric: 338
– isoperimetric: 510, 763
– plane: 54, 123, 124, 507, 626
– polygonal: 537
– rectilinear: 124, 616
– solid: 123, 508 n. 26
Focus: 640, 644, 678 n. 36
Frustum
– of a cone: 38, 50, 51, 54, 55, 209,

212, 524
– of a hollow cone: 209, 212, 246, 247
– of a cone of revolution: 50, 212
– of a solid rhombus: 209, 212, 246,

247
– of a prism: 373, 375
Function cosine: 42

Generator, generating line
– of a cone: 48, 50, 51, 531, 535, 545,
– of a cylinder: 61, 335, 337, 338, 358,

366–369, 375, 376, 619, 640, 656,
659, 775, 778

– opposite: 335, 358, 363, 364, 373,
376, 775

Geometry: xiv, 2, 2 n. 4, 5 n. 13, 7, 60,
113 n. 1, 122, 333, 503, 509, 579,
582, 616, 723 n. 7, 726, 755

– algebraic: xxi
– Archimedean: 460

– of the astrolabe: 615
– of conics: 9–10, 726
– Euclidean: 726
– infinitesimal: 123
– of measurement: 460
– plane: 38, 40, 52
– spherical: xv, 726
Groove, circular: 67

Harmonics: 726
Height
– of the cylinder: 253, 358, 527
– of the trapezium: 467, 469, 739
– of the triangle: 467, 469, 475, 479,

739, 747
Hero’s formula: 38, 40, 46, 767
Hexagon: 531, 532, 564 n. 14
Homothety: 43, 44, 49, 223, 224, 235,

336, 341, 342, 346, 351, 352, 359–
365, 373, 564 n. 14

Hydraulics: 3, 7
Hyperbola: 335, 727, 733–734, 741–

744, 745, 747, 748
Hyperboloid: 587, 599 n. 1

Induction
– archaic: 134, 215, 243
– incomplete: 138
Inequalities
– numerical: 209
– sequence of segments: 132, 132
Infinitesimal:
– argument: 362
– calculus: xxi
– geometry: 123
– mathematics: xiv, xx–xxii, 9, 122,

130, 333, 463, 506, 583, 586, 727
– methods: 480
Infinity (concept): 124
Integers: 69, 131–137, 209, 211, 212,

215, 231, 236, 256
– consecutive: 132–134, 156, 212, 229,

233, 244, 256
– natural: 231
Integral: 54
– elliptic: 366
– sums: 333, 347, 377, 584, 595
Integration: 247
Intersection: 338
Isepiphanics: xxi, 503, 506, 507, 509,

523–546, 560 n. 5
Isometric: 338
Isometry: 471
Isoperimeters: xxi, 503, 506, 507, 509–

523
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Isoperimetric (problems): 503, 722,
727, 755–763

Iteration: 236

Latus rectum: 227, 342, 359, 473, 479,
620, 642, 730, 769, 770

Length
– of convex curves: 361, 372
– of the ellipse: 362
– of the generator: 50, 51, 373, 376,

531
Limaçon (of Pascal): 66, 67
Limit: 45, 60, 347, 649, 763
Line, polygonal: 54–56, 523, 535, 537,

538
Lozenge: see rhombus
Lunes: xxi

Magnitude: 12, 34, 60, 209, 222, 235–
238, 241, 509, 755

Mathematics: xix, 2, 7, 60, 122, 579,
615, 727

– applied: 7
– Archimedean: 38
– astronomical: 122
– Hellenistic: 60
see also infinitesimal
Means
– the two means: 38, 60
– geometric/proportional: 351, 369,

531, 652, 772
Measurement: see area
Mechanical: apparatus: 65: device: 66;

method: 62–65
Mechanics: 2, 7, 117, 580 n. 5
Meridians: 544
Meteorology: 7
Motion of the seven planets: 581, 582
Movement: 62–64
– of stars: 5 n. 13
– on the ecliptic: 123
Mutawassi†æt: 10, 35

Numbers: see also sequence, theory
– amicables: 724 n. 11, 726
– even: 132, 136–142, 145, 148, 150,

156, 163, 212, 218
– odd: 132–142, 144, 148, 150, 151,

155, 161, 163, 212, 214, 218, 231,
233, 244, 247, 254

– real: 209

Optics: xx, 726
Ordinate: 154, 156, 158, 161–163, 244,

247, 253, 256, 340, 473, 474, 477,

477 n. 19, 588, 589, 636, 637, 656,
730–733, 735, 741, 745, 748, 767

Orthogonal: see affinity, dilatation, pro-
jection, symmetry, system of reference

Parabola: xv , xxi, 130–133, 154, 156–
164, 209–211, 225, 227, 244, 247,
251, 256, 335, 466, 471, 473–480,
588, 589, 722, 727, 729–734, 741,
742, 744, 747, 748

Paraboloid: xv, xxi, 130, 209, 244,
251, 256, 583, 588–593

– of revolution: 210
Parallelism of the segments: 469
Parallelogramm: 159, 161, 164, 210,

228, 229, 256, 338, 475, 477, 509,
516–518, 588, 589, 592 619, 735 n.
33, 748, 771, 774, 775

Parallels, equidistant: 227
Partition: 150, 151, 154, 161, 163, 244,

251, 252, 255 (see also subdivision,
division)

Pentagon: 510, 519, 523
Perimeter: 40–46, 361–364, 370–373,

376, 507–525, 527, 531, 533, 546,
645, 651, 761

Perpendicular bisector: 517 n. 31, 518
n. 32, 536, 644

Pin: 64, 67
Plane
– antiparallel: 335, 337, 339–341, 616,

619, 769, 770
– of the base: 335, 357, 616, 619, 654
– bisecting: 339
– meridian: 223, 224
– parallel: 49, 335, 335, 338, 341, 371,

376, 527, 624, 626, 654, 656, 773
– principal: 335, 338, 341, 356–358,

639
– secant/intersecting: 627, 770
– of symetry: 335, 339, 340, 357, 767
– of a right section: 339, 357, 372–376
Point
– of contact: 88 n. 46, 359, 519, 542
– equidistant: 46
– fixed: 627
– of intersection: 62
– non-coplanar: 38, 46, 47
Poles: 67, 544, 623, 626
Polygon: 40–45, 48, 132, 158, 160,

161, 164, 165, 244, 250, 251, 254,
256, 336, 344, 345, 347–351, 360–
365, 369–373, 377, 468, 470, 472–
474, 480, 509, 519, 523–526, 528–
531, 539, 540, 546, 547, 564 n. 14,
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646–649, 652, 653, 738–740, 755,
756, 760, 762, 777

– convex: 467, 509, 519, 523
– irregular: 42, 510
– isoperimetric: 763
– regular: 42, 49, 347, 348, 362, 510,

518–523, 526, 528, 538, 546, 572 n.
22, 628, 756, 760

Polyhedron: 58, 59, 524, 540–546
– convex: 509
– regular: 545, 546
Portion
– of an ellipse: 381, 399
– of a parabola: 130, 132, 154, 156,

158–161, 164, 471, 474, 475, 477–
480, 727, 732, 733, 748

– of a paraboloid: 592, 593
Power of a point: 61, 105 n. 88, 636–

637
Prism: 364, 364, 368–375, 525
Procedures
– infinitesimal: 122, 123, 480
– ingenious: 5 n. 13, 14, 580 n. 5
– mechanical: 14
Progression, arithmetical: 247, 594
Projection(s)
– cylindrical: 335, 338–342, 619, 621,

640, 768, 777
– geometric: 620
– orthogonal: 339, 340, 639, 773
Proof by reductio ad absurdum: 46,

137, 212, 255–257, 337, 338, 341,
372, 375, 463, 471, 528, 531, 533,
657, 660, 773, 777

Proportion
– continuous: 10, 236, 238, 241
– ‘perturbed’: 681 n. 41
Proportionality of the segments: 163
Property
– of angles: 729
– characteristic of the circle: xv, 335,

339, 342, 624, 628, 633, 642, 755; of
the ellipse: 336, 624, 658

– of conic sections: xv, 119, 131, 729,
730, 732

– curved surfaces and solids: xv
– of diameters: 620
– of the ellipse: xv, 9, 333, 341, 342
– of equal ratios: 144
– extremal: 755
– of elementary geometry: 755, 763
– of the hyperbola: 748
– infinitesimal: 729, 755
– of the parabola: 131, 133, 588
– of perpendicular planes: 338, 356

– of points on the ellipse: 620
– of polygons: 510, 740
– of positions: 460
– of a segment: 363, 372; of four seg-

ments: 230
– of straight lines: 338, 356, 729
– of the subtangent: 249, 318 n. 51
– of the tangent: 210, 477
Pyramid: 40, 48, 49, 523–528, 532,

540
– regular: 49, 523–525

Quadrature: 377
Quadrilaterals: 229, 518 n. 32, 738, 757
– convex: 518 n. 32, 770

Rabattement: 640
Radial vector/radius vector: 626, 633–

635
Ratio
– of the circumference to the diameter:

39
– of the diameter to the perimeter: 45
– of homothety: 223, 362
– of similarity: 361–363
– operations: 682 n. 45, 683 n. 46
Rectangle: 63, 64, 52, 335, 338, 366,

368, 527, 619, 627, 778
Relations
– metric: 359, 634, 636
– trigonometric: 755
Rhombus, solid: 209, 211, 212, 223,

225, 228, 246, 247, 344, 509, 509,
516–518, 647

Ring: 64, 67, 592
– cylindrical: 588
Rod: 63, 64, 67, 68
Roots, cubic: 12, 60, 69
Rotation: 359
– regular polygonal line: 524, 535
– of a semicircle: 623
– of a triangle: 211, 228

Sagittas: 653, 655–659
Section(s)
– antiparallel/of contrary position: 339,

391 n. 11, 393
– of a circle: 336, 354, 372; circular:

363, 627
– of a cone of revolution: 729
– conic: xv, 123, 460, 616, 627, 727,

729–732, 739
– cylindrical: 8, 334, 335, 339, 376,

621, 654, 729; maximal: 356–363,
415, 778; minimal: 339, 356–364,
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415, 778; oblique circular: 656; plane
section of a cylinder: 333–334, 337,
338, 341, 363, 382, 615–621, 625–
627, 632, 639, 642–644, 767; of the
lateral surface: 338

– elliptical: 8, 117, 333, 363, 617, 618,
621, 632

Segment
– of an ellipse: 336, 354, 373, 733
– of a hyperbola: 733
– a parabola: 733, 744
Sequences
– of consecutive even numbers: 136–

142, 145, 147, 148, 150, 156, 218
– of consecutive odd numbers: 134,

135–142, 144, 147, 148, 150, 151,
155, 218

– of consecutive squares: 134–138,
155, 155

– increasing: 142, 144, 209, 235, 236
– decreasing: 139, 209, 236,  251
– of integers: 131, 134, 135, 137, 231
– of magnitudes: 675 n. 26, 681 n. 41
– numerical: 147
– of real numbers: 209
– of ordinates: 162, 163
– of segments: 10, 131, 132, 142, 144,

145, 150, 151, 154, 163, 218, 233–
244

Set, convex: 130, 166
Side
– of a cylinder: 337, 382, 626
– fixed: 624
– opposite (of a cylinder): 337
– of a polygon: 755, 756, 760
– of a trapezium: 363
– of a triangle: 363
Similarity: 337, 340, 347, 356, 359–

363, 372, 471, 480, 632
Slide: 64
Solid: 40, 41, 57–59, 123, 130, 210,

211, 223, 228, 229, 244–252, 256,
508, 524, 535–540, 544, 546

– conic: 247, 624
– convex: 544
– curved: xv, xxi
– homothetic: 223
– parabolic: 210
– polyhedral: 40, 41
– of revolution: 51, 54, 223, 255, 256,

623
Space (extension): 520, 524, 526
Sphere: xv, 38, 40, 41, 46, 47, 54–60,

130, 366, 507–509, 520, 524–526,
535, 538–546, 616, 623–625, 627

– concentric: 56–58
– hemisphere: 54–57
– mobile: 580 n. 5
– parabolic: 211; ‘like an egg’: 210;

‘like a melon’: 210
Sphericity: 507
Spheroids: 130
Square(s): 510, 517, 518, 520, 523
– consecutive: 132–134, 156, 212, 244
Statics: xxi, 122, 123, 579
Straight line(s)
– antiparallel: 339
– invariant: 632
– moveable: 619, 624, 626
– separate: 632
Structure, semantic/syntactic: 131, 132,

210
Subdivision
– of the axis: 252, 588, 593, 593
– of the diameter: 156–160, 247–249,

256, 472, 473
Subtangent: 249, 477 n. 19, 492 n. 7, n.

9
Summit: see vertex
Sundials: 460, 462
Surface (see also area)
– conic: 334
– convex: 49
– curved: xv, 10, 130, 366, 377
– of a cylinder: 61, 334, 375, 619, 626
– ordinate: 592
– polygonal: 735
– prismatic: 364
– spherical: 616, 627
Symmetry, orthogonal: 337
System
– of axes: 336, 339
– of reference: 355, 470; orthogonal:

342, 344, 641; orthonormal: 477

TaÌrîr (edition, rewriting): 11, 12, 584,
585

Tangent: 61, 83 n. 40, 210, 226, 227,
249–251, 336, 339, 360, 368, 369,
471, 477, 492 n. 8, 530, 735 n. 33,
741, 748, 760, 772

Tetrahedron, regular: 524
Theory
– of algebraic equations: 503
– of conics: 9
– of the cylinder and its plane sections:

334–337, 617, 618
– of proofs: 463
– of the ellipse and its elliptical sections:

334
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– isoperimetric: 763
– of numbers: xiv, xx, 122, 503, 584 n.

15, 615, 723 n. 7, 726
Torus: 62, 210, 250
– triangular: 212
Transformation (geometrical): xv, 336,

341, 346, 362, 460, 470, 471, 579,
620

– affine: 235, 479, 480
– point-wise: 333–335, 377, 470
Translation: 359, 620, 624, 626, 627
– by the vector: 228, 229, 338
Trapezoid/trapezium: 157, 246, 256,

349, 354, 363, 369, 467, 469, 535,
540, 543, 646, 704 n. 65, 739, 771,
772

– rectangular: 245
Triangle: 38, 40, 46, 52, 158, 211, 228,

246, 250, 349, 354, 363, 467, 469,
471, 475, 480, 509, 514–518, 521–
523, 530, 536, 537, 621, 629–631,
646, 727, 739, 740, 742–744, 747,
758, 762, 767, 774

– equilateral: 509, 510, 514–517, 520,
522, 524

– isosceles: 509, 510, 514–516 n. 30,
524, 534, 543, 723, 762

– right-angled: 45, 61, 63, 65, 88 n.
46, 245, 356, 476, 522, 534, 628,
630, 651, 654, 656, 762

– similar: 52, 61, 158, 621, 630, 632
Trigonometric: 52
Trisection of angle: 9, 14, 34, 38, 60,

66–69

Uniqueness:
– of the abscissa: 474
– of the upper bound: 165, 210, 257
– of a parallel: 338
– of the perpendicular: 341

– of a point: 254
– of a sphere: 38, 47
– of a sequence of segments: 163
Unit of length /measure: 147
Unit segment: 219, 221

Vertex
– moving: 632
– of a portion of parabola: 474, 475,

733, 745, 747
Visibility of crescents: 122
Volume:
– of a cone: 214, 223, 247, 248, 542,

545; right circular: 528; hollow: 224,
228; of revolution: 223, 245, 524

– of a parabolic dome: 244, 247, 251,
255

– of a cube: 61
– of curved surfaces and solids: xxi, 10,

130
– of a cylinder: 252, 255, 256, 528,

542, 545, 588–594; right: 253
– of the frustum of the cone: 209, 245;

hollow: 209, 224, 225; of revolution:
223

– of the frustum of the solid rhombus:
209

– of paraboloids: 130, 210, 244, 256,
583, 588–594; of a portion: 592, 593

– of a polyhedron: 57, 58, 520, 540,
544

– of a polyhedral solid: 40
– of a pyramid: 40, 41, 524–527
– of a solid: 40, 41, 57–59, 124, 210,

223, 244, 245, 247, 248, 252, 544;
conic: 256

– of solid rhombus: 223, 225, 228
– of a sphere: 38, 41, 47–60, 130, 524,

539–541, 544–546, 616, 623, 627
– of the torus: 250
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aaaallll----AAAAkkkkffffæææænnnnîîîî
Irshæd al-qæÒid: 722 n. 3, 726 n. 21

Anonymous [Pseudo-Jordanus]
Liber de triangulis: 68

Apollonius
Conics: 3 n. 7, 9, 119, 121, 128, 129,
131, 333–336, 488, 489, 492, 498, 499,
616–621, 669, 726, 730

I: 334–336, 477
I.5: 335, 339, 391 n. 11
I.13: 359, 426

I.15: 417, 426, 770, 773
I.17: 349, 403, 406, 428, 488 n. 2,
492 n. 8
I.20: 133, 155, 196, 474, 489, 492
n. 10, 498 n. 4, 499 n. 5, 736, 750
n. 42
I.21: 395, 401, 427, 621, 625, 736,
750 n. 42, 769
I.30: 430
I.33: 492 n. 9
I.35: 492 n. 9, 742, 751 n. 44
I.36: 742, 752 n. 45
I.46: 133, 201, 290
I.50: 359, 427
I.51: 133, 196
II.5: 133, 161, 202, 203, 290
II.12: 748
II.29: 360, 429
III.35: 105 n. 88
V.11: 360, 416, 419, 422, 429, 770,
VI: 730
VI.4: 430, 732
VI.7: 732
VI.8: 104 n. 87, 413, 732
VI.12: 341, 359, 401, 427 n. 35,
731, 770
VI.13: 731, 732
VI.26, 27: 732

Archimedes
On Conoids and Spheroids: 337, 347,

349, 595
The Measurement of the Circle: 34,

39, 349, 583, 586, 586 n. 18, 628,
629, 651, 653, 710

The Sphere and the Cylinder: 34, 38,
49, 59, 60, 121, 349, 350, 361,
366–369, 371, 372, 530 n. 34, 531
n. 35–36, 534 n. 37, 537 n. 38, 538,
538 n. 40, 586, 586 n. 18, 599, 650,
755, 756

AAAArrrriiiissssttttoooottttlllleeee
De caelo: 505

BBBBaaaannnnºººº    MMMMººººssssææææ
Kitæb ma‘rifat misæÌat al-ashkæl al-

basî†a wa-al-kuriyya (On the Know-
ledge of the Measurement of Plane
and Spherical figures): 1–111, 520,
526, 528, 529, 539, 628, 672 n. 22,
673 n. 23, 756

Kitæb al-shakl al-handasî alladhî
bayyana Jælînºs (On a Geometric
Proposition Proved by Galen): 9

Muqaddamæt Kitæb al-Makhrº†æt
(Lemmas of the Book of Conics): 6
n. 24, 8, 8 n. 31, 9, 618 n. 6

Qawl fî tathlîth al-zæwiya al-mustaqîma
al-kha††ayn (On the Trisection of the
Angle) (attributed to AÌmad): 9

See also Ibn Mºsæ

aaaallll----BBBBîîîîrrrrººººnnnnîîîî
al-Athær al-bæqiya ‘an al-qurºn al-

khaliya: 117 n. 7
al-Istî‘æb: 117 n. 7
Istikhræj al-awtær fî al-dæ’ira: 46 n. 3,

n.�5
al-Qanºn al-Mas‘ºdî: 506 n. 20, 581

n.�10
TaÌdîd nihæyæt al-amækin: 504 n. 3, 505

n. 15

Euclid
Data: 11, 726
Elements: 2 n. 4, 11, 13, 39, 119 n. 9,
121, 560, 585, 616, 625, 723, 726, 728

I. def. 22: 704 n. 65
I.5: 723
I.33: 337, 383 n. 2
II.12, 13: 634, 635
III.7, 8: 774
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III.35: 105 n. 88
V. def. 12: 675  n. 28
V. def. 15: 675  n. 27
V. def. 17: 675 n. 26
V. def. 18: 681 n. 41
V.12: 683 n. 46
VI: 674
VI.8: 104 n. 87
VI.19: 566
VI.22: 652
X: 504 n. 10
X.1: 130, 131, 133, 160, 210, 237,
349, 368, 372, 377, 480, 585, 593,
756 n. 51
XI. def. 4: 696 n. 58
XI. def. 14: 623
XI.16, 18, 19: 338
XI.21, 28: 349
XII: 41, 60, 567, 567 n. 19, 672
XII.1: 628
XII.2: 39, 46, 82 n. 37, 621, 628,
650, 652, 653
XII.6: 525, 539, 561
XII.9: 528, 564
XII.11: 575
XII.16: 39, 42–45, 56, 78 n. 27,
529, 564 n. 14
XII.17: 56, 58, 540

Eutocius
Commentary on the Sphere and the

cylinder: 60

IIIIbbbbnnnn    aaaallll----AAAAbbbbbbbbæææærrrr
Kitæb al-takmila li-Kitæb al-∑ilæ: 723

n .  7

IIIIbbbbnnnn    AAAAbbbbîîîî    JJJJaaaarrrrrrrrææææddddaaaa
TaÌrîr Kitæb qu†º‘ al-us†uwæna wa-

basî†ihæ li-Thæbit ibn Qurra (Com-
mentary on the Sections of the Cy-
linder by Thæbit): 767–778

IIIIbbbbnnnn    AAAAkkkknnnnîîîînnnn
™ibb al-nufºs (The Medicine of the

Souls): 724, 724 n. 14–15

Ibn al-Haytham
Fî anna al-kura awsa‘ al-ashkæl al-

mujassama (On the Figures of Equal
Perimeters): 762

Fî khu†º† al-sæ‘æt (On the Lines of the
Hours): 461

Fî misæÌat al-kura (On the Measure-
ment of the Sphere): 130

Fî misæÌat al-mujassam al-mukæfi’ (On
the Measurement of the Parabo-
loid): 130

Fî al-taÌlîl wa-al-tarkîb (On Analysis
and Synthesis): 461

IIIIbbbbnnnn    HHHHººººdddd
al-Istikmæl: 586 n. 20, 721–748, 749–

754, 755–763, 764–766

IIIIbbbbnnnn    aaaallll----‘‘‘‘IIIIbbbbrrrrîîîî
Tærîkh mukhtaÒar al-duwal: 4, 4 n. 12,

5, 114, 114 n. 2, 118, 118 n. 8–9, 581
n.�10

IIIIbbbbnnnn    MMMMººººssssaaaa,,,,    AAAAÌÌÌÌmmmmaaaadddd
Kitæb al-Ìiyal (Book of Ingenious De-

vices): 1 n. 2, 2 n. 5

IIIIbbbbnnnn    MMMMººººssssææææ,,,,    aaaallll----ÎÎÎÎaaaassssaaaannnn
al-Shakl al-mudawwar al-musta†îl (The

Elongated Circular Figure): 2 n. 5,
8, 618

IIIIbbbbnnnn    aaaallll----SSSSaaaammmmÌÌÌÌ
On the Cylinder and its Plane Sections:

616–663, 667–720
Commentary on Euclid’s Elements: 616

IIIIbbbbnnnn    SSSSîîîînnnnææææ
al-Shifæ’: 727

IIIIbbbbnnnn    SSSSiiiinnnnæææænnnn,,,,    IIIIbbbbrrrrææææhhhhîîîîmmmm
Aghræ≈ Kitæb al-Majis†î (Intentions of

the Book of the Almagest): 461
Fî ælæt al-aÂlæl (On Shadow Instru-

ments): 462
Fî al-as†urlæb (On the Astrolabe) (?):

462
Fî al-dawæ’ir al-mutamæssa (On the

Tangent Circles): 461, 462
Fî Ìarakæt al-shams (On the Movements

of the Sun): 460 n. 3
Fî istikhræj ikhtilæfæt ZuÌal wa-al-

Mirrîkh wa-al-Mushtarî (The De-
termination of the Anomalies of Sa-
turn, Mars and Jupiter): 462

Fî al-masæ’il al-mukhtæra (On Chosen
Problems): 462

Fî misæÌat al-qi†‘ al-makhrº† al-mukæfi’
(On the Measurement of the Para-
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bola) – 1st�redaction: 462, 463, 483–
493

Fî misæÌat al-qi†‘ al-mukæfi’ (On the
Measurement of a Portion of a
Parabola) – 2nd redaction:  462,
463, 495–501

Fî rasm al-qu†º‘ al-thalætha (On the
Drawing of the Three Conic Sec-
tions): 462

Fî al-taÌlîl wa-al-tarkîb (On Analysis
and Synthesis): 462

Tafsîr li-al-maqæla al-ºlæ min al-
Makhrº†æt  (Commentary on the
First Book of the Conics): 461

Fî waÒf al-ma‘ænî (Autobiography): 460
n. 3, 461–464

IIIIbbbbnnnn    TTTTaaaagggghhhhrrrrîîîî    BBBBaaaarrrrddddîîîî
al-Nujºm al-zæhira fî mulºk MiÒr wa-al-

Qæhira: 582, 582 n. 11

IIIIbbbbnnnn    WWWWaaaaÌÌÌÌsssshhhhiiiiyyyyyyyyaaaa
al-FilæÌa al-naba†iyya: 118 n. 8

aaaallll----KKKKhhhhææææzzzziiiinnnn
MukhtaÒar mustakhraj min Kitæb al-
Makhrº†æt: 504 n. 10
Min al-sharÌ li-al-maqæla al-ºlæ min al-

Majis†î (Commentary on the First
Book of the Almagest): 506–547,
551–576

Tafsîr Òadr al-maqæla al-‘æshira min
Kitæb Uqlîdis (Commentary on the
Book X by Euclidis): 504 n. 10

Zîj al-Òafæ’iÌ: 505

aaaallll----KKKKiiiinnnnddddîîîî
Fî al-Òinæ‘at al-‘uÂmæ: 508 n. 26
Fî al-ukar (On the Spheres): 508, 508

n. 26

aaaallll----MMMMaaaarrrræææægggghhhhîîîî,,,,    MMMMuuuuÌÌÌÌaaaammmmmmmmaaaadddd    SSSSaaaarrrrttttææææqqqq
al-Ikmæl: 586 n. 20, 725

Menelaus
On the Elements of Geometry: 60
Spherics: 34

Nicomachus of Gerasa
Arithmetical Introduction: 121

Pappus
Collection: 508, 508 n. 25

Ptolemy
Almagest: 121, 506, 507, 757, 758

aaaallll----QQQQººººhhhhîîîî
Fî anna al-qu†r ilæ al-muÌî† nisbat al-

wæÌid ilæ thalætha wa-sub‘ (The Ra-
tio of the Diameter to the Circum-
ference): 583

Fî istikhræj ≈il‘ al-musabba‘ al-
mutasæwî al-a≈læ‘ (The Construction
of the Regular Heptagon): 581, 584
n. 15

Fî istikhræj misæÌat al-mujassam al-
mukæfi’ (On the Determination of
the Volume of the Paraboloid): 579,
583, 584, 599–607

Fî marækiz al-athqæl (The Centres of
Gravity): 584, 599, 600

Marækiz al-dawæ’ir al-mutamæssa (The
Centers of Tangent Circles): 581

Kitæb misæÌat al-mujassam al-mukæfi’
(On the Volume of the Paraboloid):
579, 583, 586, 609–614

Kitæb Òan‘at al-as†urlæb bi-al-baræhîn
(Treatise on the Art of the Astro-
labe by Demonstration): 579

∑∑∑∑ææææ‘‘‘‘iiiidddd    aaaallll----AAAAnnnnddddaaaalllluuuussssîîîî
™abaqæt al-umam: 615, 615 n. 1, 616

n.�4, 721 n. 2

al-Samaw’al
Fî kasf ‘uwær al-munajjimîn: 504 n. 9

Serenus of Antinoupolis
On the Section of a Cylinder: 8, 618–

621, 623–625, 627

aaaallll----SSSShhhhaaaahhhhrrrraaaazzzzººººrrrrîîîî
Nuzhat al-arwæÌ wa-rawa≈at al-afræÌ:

580 n. 5

aaaallll----SSSSiiiijjjjzzzzîîîî
Fî waÒf al-qu†º‘ al-makhrº†iyya (On the

Description of Conic Sections): 8 n.
30

aaaallll----SSSSuuuummmmaaaayyyyssssææææ††††îîîî
Fî anna sa†Ì kull dæ’ira awsa‘ min kull

sa†Ì mustaqîm al-a≈læ‘… (The Sur-
face of any Circle is Greater than
the Surface of any Regular Polygon
with the Same Perimeter): 577–578
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Kitæb al-imtæ‘ wa-al-mu’ænasa: 579 n. 1
Mathælib al-wazîrayn: 506 n. 19

TTTThhhhææææbbbbiiiitttt    ibn Qurra
Fî al-a‘dæd (On the Numbers): 113 n. 1
Fî al-Ìujja al-mansºba ilæ Suqræ† (On

the Proof Attributed to Socrates):
113 n. 1

Fî istikhræj al-masæ’il al-handasiyya (On
Defining the Geometrical Pro-
blems): 113 n. 1

Fî misæÌat al-ashkæl al-musa††aÌa wa-
al-mujassama (On the Measurement
of Plane and Solid Figures): 123,
123 n. 21, 124, 767

Fî misæÌat al-mujassamæt al-mukæfi’a
(On the Measurement of the Para-
boloids): 123, 128, 130, 209–257,
261–332, 333

Fî misæÌat al-makhrº† alladhî yusammæ
al-mukæfi’ (On the Measurement of

the Parabola): 123–128, 130–166,
169–208, 266, 267, 302, 333

Fî misæÌat qi†a‘ al-khu†º† (On the Mea-
surement of Line Segments): 124

al-Qaras†ºn: 123, 123 n. 20
Fî qu†º‘ al-us†uwæna wa-basî†ihæ (On

the Sections of the Cylinder and its
Lateral Surface): 2 n. 5, 9 n. 33,
123, 128, 129, 333–377, 381–458,
585, 617, 624–628, 642, 649, 652,
653, 767

Fî al-shakl al-qa††æ‘ (On the Sector-
Figure): 113 n. 1

Theodosius
Spherics: 39, 47, 47 n. 6, 92, 92 n. 49

Theon of Alexandria
Commentary on the First Book of the

Almagest: 507, 508

Zenodorus
Isoperimetric Figures: 507
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